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Abstract

Modern robust control synthesis techniques aim at providing robustness with respect to
uncertainty in the form of both additive noise and plant perturbations. On the other
hand, most popular system identification methods assume that all uncertainty is in the
form of additive noise. This has hampered the application of robust control methods
to practical problems. This thesis begins to address this disparity by considering the
connection between uncertain models and data. The model validation problem addressed
here is this: given experimental data and a model with both additive noise and norm-
bounded perturbations, is it possible that the model could produce the observed input-
output data? This question is reformulated as an optimization problem: what is the
minimum norm noise required to account for the data and mect the constraint imposed
by the perturbation uncertainty? The assumptions typically used for robust control
analysis are introduced and shown to lead to a constant matrix problem. This problem
is studied in detail, and bounds on the size of the required noise are developed. Th(—::
(iimensionality issues that arise in the consideration of the structured singular value (u)
also arisc here.

A geometric framework is used to introduce a variation on u. This is extended to
allow the consideration of robust control analysis problems that include input and output
data. The more general problem is then used to illustrate the connection between p and
the model validation theory.

The application of the theory is illustrated by a study of a laboratory process control
experiment. Typical steps in the identification of a robust control model for a physical
system are discussed. It is shown, by example, how the model validation theory can be
used to provide insight into the limitations of uncertain models in describing physical

systems.
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Chapter 1

Introduction

This decade has witnessed the attention of control theorists return to more physically
motivated paradigms for the solution of control problems. Principle among these is the
robust control paradigm in which the system model includes uncertainty in the form of
perturbations as well as noise.

Robustness has become a desirable feature of the solutions to control problems. In
this context robustness means the preserving of system characteristics, stability or per-
formance, for example, in the presence of unknown perturbations and uvise.

In order to pose a meaningful problem, the perturbations and the noise are assumed
to be norm-bounded leading to a set description as a system model. The choice of norm
is a compromise between those that best describe the system and those that lead to
mathematically tractable problems. Assuming a power or energy bound on the unknown
signals leads to induced norm problems which can be solved using the recent results in
H, theory. If the perturbations are assumed to be bounded by the same induced norm,
a unifying framework can be used for the consideration of these problems.

Robust control theory now gives the engineer the power to describe physical sys-
tems with a model which includes two types of uncertainty: additive noise and block
structured, norm-bounded uncertainty entering the model in a linear fractional manner.
Linear models in which the only uncertainty is in the form of additive noise cannot
account for a loss of stability not predicted by the nominal model. Robust control mod-

els can capture this feature, essentially being able to include unmodeled but bounded



dynamics.

Before the robust control methods can be applied, a bound on the uncertainty must
be qﬁantiﬁed. Current identification methods are well developed in the case where all
of the residuals, or uncertainty, are attributed to additive noise. For models with both
additive noise and norm-bounded perturbations, no such identification methods exist.
This has hindered the application of robust control theory to practical problems.

Once a system is modeled, perhaps by ad hoc methods, and the engineer is confident
of the applicability of the model, the robust control theory gives techniques for designing
systems which are theoretically rpbust. This theory, or any other for that matter, makes
no statements about the performance or the stability of the actual physical system. Such
a statement requires assumptions on the behavior of the system and the applicability
of the model. This presents a problem; the engineer must be confident that the model
will describe all input-output behaviors of the system. This condition can never be
guaranteed, but it is possible to test a necessary condition: the model must be able to
describe all observed input-output behaviors of the system. This is simply the model
validation question to be considered here.

Assuming the perturbations and noise to be norm-bounded gives a set description
for the model. The model validation question: Can the model account for the observed
data? is answered by attempting to find a member of the model set which maps the
observed inputs onto the observed outputs.

The problem of finding such a member of the model set is formulated as an optimiza-
tion problem. A series of problems can be considered; the one analyzed in detail here
arises from imposing the constraints that the inputs are mapped to the outputs and the
perturbations meet the assumed norm bound. The objective then becomes finding the
minimum norm noise signal meeting these constraints. If the norm of the required noise
is less than the bound assumed by the model, then the model accounts for the data. If
the required noise has norm greater than the assumed bound, then the model cannot
account for the data. Comparing the norm of the required noise to the assumed bound
also gives an idea of how much a model must be changed in order to account for the
data.

The properties of this optimization problem are studied in detail. It is possible to
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formulate a convex optimization problem to find a bound on the solution. A test is
available to determine whether or not the bound is actually a solution to the desired
problem. In certain cases, when there is only one unknown perturbation, for example,
the bound is guaranteed to be exact.

This thesis examines the connection between robust control models and reality, and it
is befitting that a real system is used as an example of the theory. Models of a laboratory
chemical process have been studied with this theory. Experimental input-output data is
presented and analyzed using the model validation techniques. It is shown, by example,

how the theory presented here can be used in identifying the system.

1.1 The Organization of the Thesis

Chapter 2 introduces and discusses the robust control theory with particular emphasis
on the models and assumptions used by the theory. In this context the structured
singular value, more commonly known as p, is presented. In subsequent chapters it will
be shown that the model validation problem has certain properties in common with u;
in particular, those involving the number of perturbation blocks.

Identification of systems with respect to robust control models is considered and used
to motivate the model validation problem. Chapter 2 concludes with a formal statement
of the general model validation problem.

The general problem is reformulated as an optimization problem in Chapter 3. The
assumptions commonly used for the robust control analysis of systems are introduced
and used to refine the optimization problem. In particular, the fact that the input-
output data will be in a discrete form is used to motivate a constant matrix formulation
of the optimization. This formulation will be considered throughout the remainder of
the thesis. At this point a summary of the results is presented.

Lagrange multiplier techniques will be used to study the properties of the optimiza-
tion problem. Chapter 4 reviews the required theory on Lagrange multipliers and duality.

Chapter 5 considers the Lagrange multiplier approach to this problem in detail. There
is a strong relationship between the Lagrange multipliers used here and the scalings used

in the calculation of an upper bound to u. This is used to illustrate a connection between
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stable models and certain convexity properties of the domain of the dual function. A
more detailed study of the dual function indicates when Lagrange techniques can be
expected to yield a solution to the required optimization problem. It is shown that for
models with only a single perturbation uncertainty such a solution always exists.

Chapter 6 introduces a variation on the p problem, named skewed p. While there is a
good engineering motivation for the consideration of this problem, it is not fundamentally
different from g and can be calculated via an iteration on p. It is used to introduce
a geometric framework for a class of optimization problems. Both g and the model
validation problem can be considered in this manner.

A general framework for p problems with input-output data is introduced in Chap-
ter 7. The properties of these problems can be studied with the geometric framework of
the previous chapter. This is done for the model validation problem leading to a means
of calculating a bound on the solution to the model validation problem. The geometric
framework also leads to necessary and sufficient conditions for the existence of Lagrange
multipliers at the solution of the model validation problem. The dimensionality (with
respect to the number of perturbation blocks) properties that u exhibits can be seen eas-
ily in the geometric framework. The dimensionality properties of the model validation
problem are similarly obtained.

Chapter 8 presents three numerical examples. The Lagrange multiplier techniques
and the geometric framework are tied together by studying each example from both
points of view. Also included is a four perturbation block example illustrating the
limitations of the Lagrange multiplier approach.

The experimental example is studied in a tutorial manner in Chapter 9. Typical steps
in the identification of the system are presented to illustrate how the model validation

techniques can be used to gain an understanding of the physical system.



Chapter 2

Models and Robust Control

This chapter introduces and discusses the models used in the robust control paradigm.
Other methodologies attribute the differences between experimental observation and
model predictions to additive noise. Robust control models consider uncertainty to arise
from both perturbations and additive noise. The simple example in the next section will
make this point clear. A geheric robust control model structure is introduced and dis-
cussed in detail. The analysis and synthesis theories are also outlined as it will be shown
that there exists a strong connection between these theories and the model validation

problem.

2.1 Géneric Models for Robust Control

Both perturbations and noise can be represented in the models used for robust control.
Uncertainty in the model is represented by set descriptions of the unknown perturbations
and noise. Several assumptions on the nature of the uncertainty are possible. This chap-
ter will discuss the issues that arise as a result of the more commonly used assumptions.
A thorough understanding of the form of the model is a prerequisite to considering the

model validation problem.

2.1.1 Notation

The following notation will be nsed throughout this thesis. Other symbols and terms
will be defined as needed.



R field of real numbers
C ficld of complex numbers
Ymax(4) maximum eigenvalue of a matrix A
Tmin(A) minimum eigenvalue of a matrix A
Omax(A) maximum singular value of a matrix A
Omin(A) minimum singular value of a matrix 4
p(A) spectral radius of A
AT transpose of a matrix (or vector) A
A* complex-conjugate transpose of a matrix (or vector) 4
dim(A) dimension of A
Ker(A) Lkernel of 4
co[S] convex hull of a set §
Lo (0,00) time domain Lebesque space
< z,y > inner product of vectors 2 and y (= z*y)
& direct sum
:= “is defined by”
» QED

Block diagram descriptions will frequently be used to describe matrix and system
. operations. For example the block diagram illustrated in Figure 2.1 represents the equa-

tions
T = P11U+P121) (21)
¥y = Puu+ Pov (2.2)

where Pjju, for example, can represent one of several operations. If u,v € R or C,
F;; € R or C, then the above represents matrix multiplication. Alternatively the P;;
could be considered as more general operators. For example, u,v € L,,(0,00), and the
F;; are corvolution operators.

In the above u, v, z, and y could be vectors, and Figure 2.1 and Equations 2.1 and 2.2

wonld represent matrix aperations.



T 4———— P; Py pe——u

Y —— P21 P22 D

Figure 2.1: Example Block Diagram

2.1.2 The Generic Model

A model is considered to be an interconnection of lumped components and perturbation
blocks. The inputs to the model, denoted by w, can represent control inputs, distur-
bances, and noise. The outputs, denoted by e, can represent system outpufs and other
variables of interest. The use of the notation e is motivated by the robust analysis and
synthesis approach discussed in Sections 2.2 and 2.3.

In order to treat large systems of interconnected components, it is necessary to use
a model formulation that is general enough to handle interconnections of systems. To

illustrate this point consider an affine model description:
e=(G+ AGyw, JA| L1,

where w is the input and e is the output. A is an unknown but bounded operator,
referred to as a perturbation. While such a description could be applied to a large class
of linear systems, it is not general enough to describe the interconnection of models. More
specifically, an interconnection of affine models is not necessarily affine. As an example,
consider unity gain positive feedback around the above system. The new input-output

description is
e = (G+AGo)I - (G + AGo)™ w.

It is not possible to represent the new system with an affine model. Note that stability
questions arise from the consideration of the invertibility of (I — (G + AGy)].
The model structure to be used, referred to as a linear fractional transformation, is

given by



e = [PuA(T = PuA) Pra + Po| w, (2.3)

where the A is norm-bounded. Figure 2.2 shows a block diagram equivalent to the
system described by Equation 2.3. In general, the elements P;; are matrix operators and

A is a block diagonal matrix operator.

Ay
A,
z B v
P11 Py e
e «———— Py; Popy o w

Figure 2.2: Generic Model Structure Including Uncertainty

Linear fractional transformations have the required property that they are preserved
under interconnection: any interconnection of linear fractional transformations is still a
linear fractional transformation. Consider the previous example. The original system

can be modeled in this form by
Pi1=0, Pi3=Ggo, Pyy=1I, and Ppy=G.
The system with unity gain feedback is then
P =Go(I-G)Y, Pa=1I Py=G(I-G)!, and P,o=G(I-G)™

The distinction between perturbations and noise in the model can be seen from both
Equation 2.3 and Figure 2.2. Additive noise will enter the model as a component of
w. The A block represents the unknown but bounded perturbations. It is possible
that for some A, (I — P;;A) is not invertible. This type of model can describe nominally
stable systems which can be destabilized by perturbations. Attributing unmodeled effects

purely to additive noise will not have this characteristic.
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An interconnection of models of this form will lead to a model with multiple per-
turbation elements. This is illustrated in Figure 2.2 where the A in Equation 2.3 is of
block diagonal form. Choosing A to be block diagonal is without loss of generality as the
inputs and outputs can always be rearranged in order that this is so. It will be assumed
that a model contains m such blocks: A;, and that each block is square. The restriction
to square blocks is also without loss of generality as the input and/or outputs of P can
be augmented with zero inputs or outputs.

The block structure is a m-tuple of integers, (ky,...,km), giving the dimensions of
each A; block. It is convenient to define a'set A with the appropriate block structure
rcpresenting all possible A blocks, consistent with that described above. By this it is
meant that each member of the set of A be of the appropriate type (complex matrices,
real matrices, or operators, for example) and have the appropriate dimensions. In Fig-
ure 2.2 the elements Py; and Pj, are not shown partitioned with respect to the A;. For
consistency the sum of the column dimensions of the A; must equal the row dimension

of P;;. Now define A as
A = {diag (Ar1...Ap) | dim(A;) = ki } .
It is assumed that each A; is norm-bounded. Scaling F allows the assumption that the

norm bound is one. If the input to A; is z; and the output is v;, then
lodl = lAwzll < lall.

It will be convenient to denote the unit ball of A, the subset of A norm-bounded by
one, by BA. More formally

Ba:={Aca||a]< 1}.

Lincar fractional cquations of the form given in Equation 2.3 will be abbreviated to
e=F,(P,A)w

where the F,(-,) indicates that the loop is closed around the upper block. Fy(-,-) will

denote the loop closed around a lower block. The uncertain model is now specified by
e=F,(P,A)w, AeBA (2.4)

References to a robust control model will imply a set description of the form given in

Equation 2.4.



10

2.1.3 Assumptions on P and A

It will be assumed that the elements of P are either real-rational transfer function
matrices or complex valued matrices. The second case arises in the frequency by fre-
quency analysis of systems.

In modeling a system, Py; defines the nominal model. Input/output effects not
described by the nominal model can be attributed to either w or the perturbation
A. Unmodeled effects which can destabilize a system should be accounted for in A.
Examples would include unmode}ed nonminimum phase behavior and nonlinear dynam-
ics. The A can loosely be considered as accounting for the following. This list is by
no means definitive and is only included to illustrate some of the physical effects better

suited to description with A.

e Unmodeled dynamics. Certain dynamics may be difficult to identify, and there
comes a point when further identification does not yield significant design perfor

mance improvement.

e Known dynamics which have been bounded and included in A to simplify the
model. As rontroller complexity depends on the order of the model, a designer

may not wish to explicitly include all of the known dynamics.

o Parameter variations in a differential equation model. For example, linearization

constants which can vary over operating ranges.

o Nonlinear or inconsistent effects. At some point a linear model will no longer

account for the residual error in identification experiments.

Several assumptions on A are possible. In the most general case A is a bounded
operator. Alternatively, A can be considered as a linear time varying multiplier. This
assumption can be used to capture nonlinear effects which shift energy between frequen-
cies. Analysis and synthesis are possible with this assumption; Doyle and Packard [1]
discuss the implications of this assumption on robust control theory.

This thesis will focus on the assumption that A is an unknown complex constant

at each frequency. This assumption is implicit in the usual treatment of robust control
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analysis and synthesis. The engineering significance of this can be seen by considering
the following single-input, single-output example.
A system with additive uncertainty is modeled as

y=(G+WA (2.5)

where G is the nominal transfer function and W is a frequency weighting on the uncer-

tainty. The interconnection structure for this example is

ow
P - 1Y) .

A typical Nyquist diagram for such a system is given in Figure 2.3.

IMAGINARY

Figure 2.3: Nyquist Diagram of an Example Uncertain SISO System

At each frequency w the transfer function F,(P,A) for a particular perturbation
A, lies in a circle, centered at G(jw), of rading |W(jw)|. Note that the inclnsinn of a
perturbation A allows elements of the model F,(P,A) to be nonminimum phase even
though the nominal transfer function is not.

It is possible to further restrict A to be in R®**". While this could be a good model
for real parameter variations, it is mathematically difficult to handle. In some physical
problems the effects of several real parameter variations can usually be modeled well as
a single complex variation. For examples the reader is referred to Laughlin [2] and Smith

et al. [3].
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The designer must select the assumptions on P and A. An inevitable tradeoff arises
between the ideal assumptions given the physical considerations of the systém and those
for which gnoad synthesis techniques exist. The synthesis questions will be addressed in
more detail in Section 2.3.

Systems often do not fall neatly into one of the usual choices of A discussed above,
Consider a nonlinear system linearized about an operating point. If a range of operation
is desired, then the linearization constants can be considered to lie within an interval.
The model will have a A block representing the variation in the linearization constants.
If this is considered to be a fixed function of frequency, then the model can be considered
to be applicable for small changes about any operating point in the range. The precise
meaning of small will depend on the effect of the other A blocks in the problem.

If the A block is assumed to be time varying, then arbitrary variation is allowed in
the operating point. However, this variation is now arbitrarily fast, and the model set
now contains elements which will not realistically correspond to any observed behavior
in the physical system.

The robust control synthesis theory gives controllers designed to minimize the maxi-
mum error over all possible elements in the model set. Including nonphysically motivated
signals or conditions can lead to a conservative design as it may be these signals or con-
ditions that determine the worst case error and consequently the controller. Therefore,
the designer wants a model which describes all physical behaviors of the system but does
not include any extraneous elements.

The most commonly used assumption, which will be treated in this thesis, is that
A is an unknown complex constant at each frequency. The Euclidean norm is assumed
spatially giving the maximum singular value as the induced norm. The generic model is

therefore

e=F,(P,A)w, AE€A, Omu(A)<1. (2.7)
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2.2 Analysis

2.2.1 Measures of Performance

The previous section illustrated that the model has a set representation. In developing
the notion of performance the inputs and outputs of a system will also be specified in
terms of sets. The generic notation introduced in Section 2.1.2 and Figure 2.2 will be
used here. As in the case of the generic model, w could represent command inputs,
noise, and disturbances. For a meaﬁingful definition of performance, e represents signals
which must be kept small, in a sense to be defined below. Such signals could be tracking
error or actuator effort, for example. The elements of P will now be considered to be
real-rational transfer functions.

The inputs w are described only as members of a set. The performance question is
then: For all w in this set, are all possible outputs e also in some set? The following set

descriptions are considered, where B again denotes the unit ball.

. g 2
Power : BP := {w 111_120 3T s [w(t)|*dt < 1} (2.8)
Energy:  BLgi= {w ol = [ [w() e < 1} (2.9)

Magnitude: BLy, := {w lw|leo = ess sup jw(t)| £ 1} (2.10)

b

These norms are defined for scalar signals for clarity. The choice of w and e as the
above sets defines the performance criteria. Consider only the nominal model (A = 0,
e = Pyw). The performance can be considered as a test on the induced norm of the

system. More formally,

Lemma 2.1 (Nominal Performance)

For all w in the input set, e is in the output set

if || Pl < 1.

Only certain combinations of input and output sets lead to meaningful induced norms.
The current work in robust control theory focuses on the cases w, e € BP and w,

¢ € BL2. Both of these cases lead to the following induced norm.
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1Plos = 5P e [P(je)]. (2.11)

The choice of other input and output sets can lead to meaningful norms with
engineering significance. For example w, e € BL, is arguably a more suitable choice for

some problems and leads to ||p||; as a performance measure where

lipll = /0 ~ Ip()ldt. (2.12)

and p(t) is the convolution kernel of P. For a discussion on the other possible selections
of input and output sets, and the mathematical advantages of the induced norms, the
reader is referred to Doyle [4]. "The major advantage of choosing BP or BLy is that
the test for robust stability ( F,(P, A) stable for all A € BA) can also be formulated
in terms of the same norm. It will be seen that this allows the performance test to be

treated as an additional A block.

2.2.2 Robust Stability and g

It will be assumed that the interconnection structure P consists of stable transfer function
matrices, where stability is taken to mean that the system has no poles in the closed
right half plane. In practice this amounts to assuming that Py (the nominal mode})
is stable as the other elements, P, Pi2, and Ps;, are weighting functions and can be
chosen Lo be stable.

Consider the case where the model has only one A block (m = 1). This is often
referred to as unstructured, and the well known result (refer to Zames {5] and Doyle and

Stein [6]) is given in the following lemma.

Lemma 2.2 (Robust Stability, Unstructured)
Fu(P,A) is stable for all A, omax(A) <1,

if  Falle < 1.

A generalization of the above is required in order to handle F,(P, A) models with
more than one A block (m > 1). The positive real valued function y can be defined on

a matrix M by

det(J— MA)#0 forall A€ A, omal(d)<7,
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iff (M) < 1.
The use of v is simply to illustrate that u scales, i.e.,
foralla € R, p(aM) = |aju(M).

In practice the test is normalized to one with the scaling being absorbed into the inter-
connection structure. An alternative definition of y is the following. Define a ball of

elements of A of size 6§ by
Bsa = {A|A €A, oma(A) < 6}
Then

0ifno A € A solves det(/ + MA)=0
#(M) := { otherwise
-1
[min {¢ ] JA € BsA such that det(I + MA) = 0}]
AeA

Note that p is essentially defined as the answer to the following robust stability problem.

Lemma 2.3 (Robust Stability, Structured)
Fu(P,A) stable for all A € BA

iff  N(Pra)lleo < 1.

where

ll#(Pr1)]loo = sup p[Pr1(jw)l

The use of this notation masks the fact that u is also a function of the structure of
A. In applying the matrix definition of u to a real-rational Pj;, it has been assumed

that A is a complex constant at each frequency.

2.2.3 Robust Performance

The obvious extension to the above is to consider performance in the presence of pertur-
bations A. For e, w € BP or BL2 robust performance is a simple extension of robust

stability.
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Lemma 2.4 (Robust Performance)

Fu(P,A) is stable and |[Fy(P, Al < 1 for all A € BA

iff  Nu(Plleo < 1,

where p is taken with respect to an augmented structure A,
R := {diag(8, Amt1) | A € A, dim(Bpys) = dim(w) x dim(e)} -

Ay, +1 can loosely be thought of as a performance block appended to the A blocks:
Aj...A,,. This result is the Ir;ajor benefit of the choice of input and output signal

norms; the norm test for performance is the same as that for stability.

2.2.4 Properties of

The results presented here are due to Doyle [7]. Fan and Tits [8, 9] have done extensive
work on algorithms for tightening the bounds on the calculation of u. Packard [10] has
also worked on improvement of the bounds and the extension of these results to the
repeated block cases. The upper bound results are particularly important as they will
be used to classify models in the development of the model validation problem.

Using A = {A]'| XA € C} reduces the definition of u to that of the spectral radius.
a={M|rec} = uM)=p).

For the other extreme consider A = {A | A € C™*"}; the definition of y now reduces to

that for the maximum singular value,
A={A]A€C™"} = pM)=omux(M).

Observe that every possible A contains {AI | A € C} and every possible A is contained

in C®X"_ These then act as bounds on u for any set A giving
p(M) < p(M) < oma(M).

The above bounds are conservative but can be improved by using the following trans-

formations. Define the set

D := {diag(d L1, .., dmly) | dim(}) = ki, di €R, d;>0}, (2.13)
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where m is now the total number of A blocks. Packard [10] shows that the restriction
that d; be positive real is without loss of generality. For the purposes of bounding u it
can be assumed that d,, = 1. The definition given here, with d,, not necessarily equal
to one, will be used for the model validation problems presented in subsequent chapters.

Now define Q as the set of unitary operators contained in A:
Q= {Q cA | Q*Q = I}, (2.14)

It is easy to show (refer to Doyle [7]) that u(M) is invariant with respect to certain
operations on these sets. The bounds on u(M) can be tightened to

M) < M) < inf DMD™Y. 2.
glggp(Q ) £ pM) < gguamx( ) (2.15)

It has been shown by Doyle [7] that the lower bound is always equal to y but-the implied
optimization has local maxima which are not global. For the upper bound Safonov and
Doyle [11], have shown that finding the infimum is a convex problem but the upper
bound is equal to p only in certain special cases. One such case of relevance here is when
m < 3. Computational experience has yet to produce an example where these bounds
differ by more than 15 percent. In practically motivated problems the gap is usually

much less.

2.3 Synthesis

The problem of synthesizing a controller for systems of the type described above can be
posed in terms of the preceding analysis. Referring to Figure 2.4, the problem is to find
K such that K stabilizes P and

For all A € BA, ||u(Fi(P, K))|lo < 1.

This is equivalent to guaranteeing that the performance specification is achieved for all
members of the F, (P, A) model.
This problem has not yet been solved. H, synthesis solves a closely related problem;

find K such that K stabilizes P and

IF1(P, K )[loo < 1.
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z v
L P ————— W
T i c

Figure 2.4: The Generic Structure for Synthesis

For more detail on the Ho, problem refer to Francis [12] or Doyle et al. {13]. Current
approaches to the synthesis problem involve iterative application of the above and the
procedure for finding an upper bound for p. This involves finding a solution to
: -1
N T
The reader is referred to Doyle [14] for details of this problem. If this is considered as an
optimization of two variables, D and K, the problem is convex in each of the variables
separately, but not jointly convex. Doyle [4] gives an example where this method reaches

a local nonglobal minimum.

2.4 Identification and the Role of Model Validation

The preceding sections have introduced a generic model and illustrated the techniques
available for the analysis of a system and the synthesis of robust controllers. An engineer
having a physical system and wishing to apply the above theory is immediately faced
with a problem: how to select good nominal models, bounds on the perturbations and

weights on the input and output sets.
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An identification methodology is required such that given input-output experiments,
and some assumptions on the system, the methodology gives a weighted ¥, (P, A) model
which will lead to a sé,tisfactory control design. In the case where uncertainty is attrib-
uted to additive noise the procedures for generating models are relatively well developed.
Whether or not these models lead to good controller designs is another question. For a
terse treatment of the subject the reader is referred to Doyle [15]. Ljung [16] provides
a comprehensive treatment of the methods available for identifying systems where the
noise is assumed to be stochastic. Such methods are of value here for identifying nominal
models. g

For the purposes of identification and model validation, the generic (P, A) structure
is modified. Figure 2.5 shows the structure that will be used throughout as the generic
identification and model validation structure. In identification cxperiments certain inputs
to the system are known. The input is now partitioned into » and w with u representing
the system inputs that are known. As in the previous sections, w represents the unknown
inputs from a specified set: BP or BLg . The output y represents the measured outputs

and is assumed to be known.

Ay

Pll P12 P13

Y<+—"""1 Py Py Py

Figure 2.5: The Generic Structure for Identification and Model Validation Problems

It must be stressed that although the same notation is used for interconnection

structures for identification, synthesis, and analysis, the elements of the interconnection
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structure will change depending upon the use of the structure. For identification, P will
most closely resemble the usual notion of a model of a system. To pose the synthesis
problem, the system outputs would be compared to some ideal response or a setpoint
input. Additional outputs, actuator action or other internal variables of interest, would
be added to make the synthesis problem meaningful. Weights, reflecting the desired
performance, would be factored into the inputs and outputs. For the analysis problem,
a controller would also be factored into the intercannection struncture to form the closed
1oop system. An example of an interconnection structure for a physically motivated
problem is given in Smith et al.[3]). The Fy(P, A) style of notation is used in order that
each of these problems be considered in its most general form.

The “black box” identification problem, given u and y find the “best” model, is
improperly posed. A large set of models will be able to produce the observed data
and the measure of suitability of these will depend strongly on the design performance

objectives. For example, consider the system illustrated in Figure 2.6.

Y + ) G‘ U

Figure 2.6: An Example Identification Problem

Given any input-output datum y and u, it is possible to attribute the discrepancies
between the nominal behavior (¥ = Gu) and the observed behavior entirely to W,w.
Similarly, these residuals can also be attributed entirely to AW;s. In this context the
term ambiguity will be introduced; ambiguity is uncertainty about uncertainty. Such a
system would present little problem in practice as an experiment with v = 0 could be

used to estimate W,w, and an additional experiment such that Gu > W,w could give
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a good estimate of AWj. The goal of good experimental design is to reduce ambiguity
iﬁ the modeling process.

The above trivially illustrates the value of information about the structure of the
model in the identification procedure. First principles modeling will often provide such
information and an initial nominal model. Engineering judgement will always be required
in the generation of F,,(P, A) models.

Even if a good modecl, based on past data, were available, the designer must assume
that this model will accurately predict all possible future behaviors of the system. Again
judgement is required on the quality and sufficiency of the past data.

A necessary condition for the suitability of a given model is that it can account for
all past data. In the robust control framework this means that for each observed input-
output datum there exists a model in the model set able to generate that datum. The
model validation theory presented here is a test of this condition for F,(P, A) models.
Consider the data to be a series of experiments. For each experiment the model validation

problem is as follows.

Problem 2.5 (Model Validafion) Given a model F,(P,A) and an input-output
datum (u,y), does there ezist (w,A), ||w|| <1, A € BA, such that

3/=Fu(PvA)|:2,:]'

This simply requires that there is an element of the model set and an element of the
unknown input signal set such that the observed datum is produced exactly.

This thesis will present and discuss a method for finding (w,A) meeting the con-
straints of the model: |jw|| < 1 and A € BA. A (w,A) pair meeting these constraints
will be referred to as admissible. Note that no statement is made relating the particular
element of the model set or the particular element of the input signal set to any physical
system or signal. Such a relationship does not exist; the only physical meaning that can
be drawn from the model is whether or not the model describes the system behavior.
Strictly speaking, the only indicator of system behavior is the observed input-output
behavior. If, however, for any experimental datum (u,y) no admissible (w, A) exists,

then the model cannot account for all of the observed behavior and can be considered as
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inadequate in its ability to describe the physical system. Such a tool is of use in culling
inappropriate models from a group of candidate models.

The model validation test is therefore a necessary condition for any model to describe
a physical system. Model validation is a misleading term; strictly speaking, it is never
bossible to validate a model, only to invalidate it. The fact that every experiment can be
accounted for in this manner provides little information about the model and the system.
There may be experiments, as yet unperformed, which will invalidate the model. The
particular w and A do not necessarily bear any relationship to physical signals, but if
a consistent property is observed in the w or A, then it may be possible to reformulate
the model with greater fidelity. There is no guarantee of this, but any such model could
of course be tested against the experimental data with the model validation procedure.

In a stochastic additive noise model framework, where all af the ohserved behaviors
are attributed to a nominal model plus noise, identification methods are such that the
resulting model is consistent with the past data. In the case of robust control models,
no such identification methbds exist and ad hoc models will require a model validation
technique. |

The model validation theory has two additional uses. Large systems of many inter-
connected components can lead to models with a large number of A blocks. The control
design problem is simplified, both conceptually and numerically, if a suitable model with
fewer A blocks can be found. Model validation gives a means of testing such reduced
models against the experimental data.

Of significant interest to operating engineers is the problem of fault detection. Given
a design model and a controller in operation, the model validation theory gives a means
of continuously assessing whether or not the physical system is still described by the
design model. It will be seen that the techniques presented here produce the v and w
(from which the A can be calculated) that come closest to satisfying the conditions of
the model. Gradual deterioration in a system may manifest itself as increasing ||A|| and
||w]| requiréd for accountability of the data. A sudden failure may be identified by a

sudden jump in the size of the required A and w.
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Although the model validation question previously posed has a yes/no answer, the
theorv presented here will, in general, produce A and w which can account for the

input-output observations. This information is of engineering significance.
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Chapter 3

The Model Validation Problem

The previous chapter introduced the model validation problem. This is now considered in
greater detail. The assumptions on Fy(P, A) that lead to a meaningful model validation
question are considered. The model validation problem is stated in very general terms
and then reformulated as a series of computable tests on a candidate signal. This in turn
is considered as an optimization problem to find the best, in a sense to be defined later,
candidate signal.

Several assumptions are introduced in order to formulate a finite dimensional opti-
mization problem. These assumptions are consistent with those commonly used in robust
control analysis and synthesis. An engineering discussion on their significance is also
given.

The optimization problems that are studied in the remainder of this thesis are pre-
sented. In certain cases it is not always possible to obtain a solution to the desired
problem. Consideration of a simpler problem leads to a bound on the solution. This
situation is analogous to the gap between u(M) and its upper bound (Equation 2.15) for
m > 3. The relationship between the gap in the y analysis case and the model validation

case will be studied in more detail in subsequent chapters.

3.1 Properties of the Model Validation Problem

Section 2.4 introduced the statement of the problem. For completeness it is repeated

here. Consider the model F,(P,A), A € BA given as a model for a physical system.
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Input output datais taken in a series of experiments. For each datum, or experiment, the
model validation question posed below can be asked. Although necessary and sufficient
conditions will be derived with respect to a single datum, the model validation theory
provides only a necessary condition for the model to describe the system. For each datum

the model validation problem is as follows.

Problem 3.1 (Model Validation) Given ¢ model F,(P,A) and an input-output
datum, (u,y), does there ezist (w,A), ||w|| < 1, A € BA, such that

y:Fu(P,A)[?:}.

~

Any (w,A) pair meeting the conditions of Problem 3.1 will be referred to as admis-

sible. The properties of an admissible (w,A) are
Al <1, A€A, (3.1)
llwll <1,

and, using the notation introduced for generic identification models in Figure 2.5,
y = F,(PA) [ Z’] =  Pyv+ Pouw+ Pau.

These conditions are satisfied for every member of the model set accounting for the
datum. The conditions on A can be expressed as a condition on the signals v and z. If

v and z are partitioned conformally with the A blocks, Equation 3.1 is equivalent to
fvill < |zl i=1,...,m
or
ol £ |[(Piiv+ Pigw + Pizu)il|, i=1,...,m.
For convenience define z as the vector
= [Z] (3.2)
and define R; as a projection of v onto v;.
R;, = block row(0y,...,0_1,1;,0i41,...,0,), (3.3)
where  dim(0;) = k; X k;, dim(;) = k; x k;.

A two element row vector notation will be used to consider the partition of z into v and

w and P[zT uT]T into z and y:
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[RiOJlz=v;, [0 ]]z=w, [R; O]P[Z:’ =2z, and [0 I]P[z] =y.

The existence of an admissible (w,A) can now be reduced to m + 1 norm conditions
and an equality condition. Using the above definitions and the square of the norms for

the test, Theorem 3.2 immediately follows.

Theorem 3.2 (Model Validation)

There ezists an admissible (w,A) for the model validation problem:
y = F,,(P,A)[’;’], lwl| <1, A€BA,
iff there exists x such that the following conditions are satisfied.
2
z
[R; O]P[ " ]

i) l[R: 0]z ||> < | , i=1,...,m (3.4)
i) oz <1 (3.5)

iii) y=0 I]P[Z] (3.6)
It will be assumed throughout that the model is robustly stable. This assumption is

discussed in more detail in Section 3.3.2. Robust stability is equivalent to

M(Pu) < 1.
For each admissible (w,A) the signal v can be calculated from
v = A(I - PnA)_l(Plgw + P13’U,).

Note that A being admissible implies that (I — Py;A) is invertible. For every admissible
(w,A) there exists an z, where z is defined by Equation 3.2. This z will also be referred
to as admissible.

It should also be noted that given an admissible z it is possible to calculate a A such
that

v = Az
and ||A|| = ||v||/]iz]|- Taking each A; as
1
Aj = v v;2]
Il 211>

gives such a A. With the exception of the scalar case, and the trivial case where v = 0,

the choice of A is not unique.
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3.2 Formulation of Optimization Problems

Several optimization problems will be posed to find an admissible . The generic struc-

ture of the optimization problems will be
mgnf(w) subject to gi(2) <0, i=1,...,m.

Theorem 3.2 gives m + 2 computable conditions on a candidate vector z such that
z meets the conditions if and only if there exists w and A accounting for the observed
datum. The above can be posed as an optimization problem in a number of ways. If
any one of the m + 1 inequality relationships is selected as an objective function, the
remaining m inequality relationships and the equality relationship form constraints.

A physically motivated choice for an objective function is
llwll? = o =%,
giving the following as the constrained optimization problem.
Problem 3.3 (Minimum ||w|| ‘Optimization)
mgn f(z) subject to gi(z) <0, i=1,...,m
and ge(z) = 0, (3.7)
where

f)= 0 I=|?

hl

ai(2) = lI[R: 0]z - u[R,- ow[z]

and
g(z)=y—[0 ””[Z]- (3.8)

In the single A block case (m = 1) R; = I. An alternative optimization problem
arises by considering g;(z) (¢ = 1) as the objective function and f(z)— 1 and g.(z) as
the constraints. This optimization finds w and v, meeting the problem constraints, such
that ||2|| — ||»|| is maximized. In any practically motivated problem, all components of

v will be reflected in the output y effectively penalizing the size of v. This optimization
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problem can then be thought of as finding the minimum ||Al| that accounts for the
datum. Such a problem could be of engineering significance in attempting to reduce
the bound on the size of the perturbations included in a model. Section 3.3.1 will give
an engineering motivation for minimum ||w|| problem. It is this problem that will be
considered in the remainder of this thesis.

If # solves Problem 3.3, in other words # achieves the minimum of f(z) subject to
the constraints, then it only remains to test the condition:

[[onz] <1. (3.9)

»

If Equation 3.9 is satisfied then £ is admissible and the model can account for the datum.
If & solves Problem 3.3 and Equation 3.9 is not satisfied, the model cannot account for
the datum.

3.2.1 Removal of the Equality Constraint

This section will introduce a reparametrization of x which removes the equality condition
of Equation 3.8 and reduces the dimension of the search over z. This is achieved by
parametrizing all solutions of Equation 3.8 and substituting this parametrization back
into the optimization problem.

Consider the solutions to

y — Pasu= [Py Pz (3.10)

T=z08 T (3.11)
with zo l;eing a solution to

y — Paau = [Py1 Pp2] 20
and

z1 € Ker[Py; Poy).

There is a unique zo orthogonal to the kernel of [Py; Pyg]. A means of obtaining zo from

any solution to Equation 3.10 will subsequently be given.
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. In attempting to perform this parametrization of z, several possibilities can arise.

Certain of these immediately lead to a solution to the model validation problem.

i) y — Pa3u ¢ Range[P,; P2;]. In this case there is no admissible z and consequently

no w or A that can account for the datum.

ii) y— P3u € Range[P; Py;] but Ker[Py; Py] is trivial. There is a unique z specified
by the input u and output y. It only remains to calculate the norms of w and A

to determine if this z is admissible.

ili) y — Paau € Range[Ps; Pp2] and dim(Ker[Pgl Py3]) > 0. This is the generic case
where the reparametrization of z has removed the equality constraint and reduced

the dimension of the search for z by restricting it to the kernel of [Py; Ppo).

The first two possibilities give an immediate answer to the model validation question.
In the first case the answer is no: the model cannot account for the datum. In the second
case either answer is possible depending upon the outcome of the calculation of the norms
of w and A. The case of interest is the third. Throughout the remainder of this thesis
it is assumed that y — Py3u € Range[ P2y Py2] and dim(Ker[ P21 Pyy]) > 0.

A singular value decomposition will allow the restriction of the search to the kernel of
[Py Pa3]. A detailed description of the singular value decomposition and algorithms for
its calculation are discussed in Golub and Van Loan [17]. The discussion presented here
will assume that P is a matrix and z is a vector. These assumptions will be considered
in more detail in the next section.

There exists Up and V;, Uy U, = I, VIV, = I such that
[Po1 Pyp] = UpZVy

where ¥ is the matrix of singular values. Note that in the case where the row and
column dimensions of [Pz; P23] are not equal, ¥ will not be diagonal. However, all of
the nonzero elements are on the main diagonal, and the partitioning described below is
still applicable. If the kernel of [Pp; Pag] is nonzero then ¥ has one or more zeros on the
main diagonal. Partition U, and V, accordingly with ¥ being the diagonal matrix of

nonzero singular values. Then
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(P Pule= |0 U][E(; g”&:]m.

For z defined by z = Vz,, i.e., the span of the right singular vectors corresponding to

the zero singular value,

(o pa)e = [0, 0% 0[] v
- Lo ][50 [0

Note that the columns of V are orthogonal to each other and of unit norm. The
assumption that zo be orthogonal to all columns of V is simple to enforce. Given any

solution #q,

y — Pau = [ Py1 Pa]do,
zg can be calculated by

zg = (I — VV*)i,.

This then gives a suitable parametrization of z in terms of z.. It is convenient to
define the set X, as the set of all z meeting the equality constraint (Equation 3.8). More

formally,

X, = {a: I T =z9+ V:::e}. (3.12)

3.3 Assumptions on P, w and A

The previous sections have posed the model validation problem and an associated opti-
mization problem. The formulation is very general; the operators P;; may have infinite
dimensional kernels and the resulting optimization will then be infinite dimensional.
This section will introduce assumptions which will lead to the consideration of a simpler
problem, the constant matrix problem. Although simpler, this problem is not without

engineering significance.
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3.3.1 Rationale of the Constant Matrix Formulation

This section will introduce the assumptions typically used with p analysis: A is a complex
constant at each frequency, and the interconnection structure I’ consists of matrices of
real-rational transfer functions. Only an outline will be given here. For a more concrete
éxample, Chapter 9 will study an experimental problem in detail using the method
discussed below.

As an example, the bounded power framework will be discussed here. To be amenable
to numerical optimization, this problem must be formulated in a digital framework. Two
properties must be preserved ifi the digital format: the norm of the signals and the
mapping of the input onto the output. It should be noted that the actual data will
almost certainly be digital. In the case that it is not, an analog recording for example,
it will have to be digitized in order to perform numerical computations. The digital
domain is the most appropriate for the practical consideration of real data.

'To see how this might be done, consider an experimental datum (y(n),u(n),
n = 0,...,L — 1) consisting of L samples with a sample period of T seconds. It is
assumed that the datum arises from the sampling of underlying continuous time signals
y(t) and u(t). The quantity of interest is the power of the signals, defined for a signal
w(t) by

1 7 1/2
el = { im 5= [" (o] (3.13)
The notation is somewhat misleading as || @ ||p is only a seminorm. In order to apply
a Discrete Fourier Transform (DFT) analysis, it will be assumed that y(¢) and u(t)
are periodic. This will have the effect of requiring v(?) and w(t) to also be periodic.
Note however that this assumption removes the limit from the calculation of the power
seminorm. By appropriate selection of T and L, the integral in Equation 3.13 can be

replaced by a summation leading to the following approximation.

L-1 1/2
le@lp ~ {5% > le(n)l2}

n=0
Now consider a DFT pair,

L-1

W(k) = 3 w(n)e i

n=0
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w(n) = %LZ—IW(k)ejzf"".

k=0
Parseval’s relation for this pair is
L-1 =
> lu(m)l? = 3 3 W)
n=0 k=0
The reader is referred to Oppenheim and Schafer [18] for a thorough discussion on the
properties of this transform.

This now gives

1 (£ ~y 1/2 .
lw()llp = Z{ZIW(k)IZ} - - (3.14)

k=0
The signals under consideration are now in the discrete frequency domain. The W (k)

can be considered as samples of the z-transform of w(n) on the unit circle at the points
z=el %% k=0,...,L-1.

The interconnection structure P must also be transformed into the digital domain.
P is generally specified as a function of a continuous frequency variable s. The trans-
formation of P(s) to an equivalent digital system P(z) must preserve the convolution
properties. In the digital case convolution refers to periodic rather than linear convolu-
tion. The input and output signals will be equal to sampled versions of continuous time
signals only if the continuous time signals are periodic.

To determine an equivalent digital system P({z), consider P(s) to be preceded by a
zero order hold and followed by a sampler of period T. For simplicity it will be assumed
that the hold and the sampler operate at the same time points. This assumption is not
necessary but simplifies the calculation of the equivalent digital system. Kwakernaak
and Sivan [19] study this problem for more general systems than those presented here.
Chapter 9 will provide, by example, more detail on this procedure.

Now consider P(z) evaluated at the same L discrete frequency points,
z= ejsz, k=0,...,L~-1.
The notation P(k) will be used to denote

P(k) = P(z)|z=ejzf,‘.
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The requirement that the inputs v, w, and u are mapped onto the outputs y and z is

now simply
Vv (k)
Z(k) | _ _
[Y(k)] = P(k)| W(k) |, k=0,...,L~1.

U(k) .

Assuming A to be independent between frequencies allows the problem to be consid-
ered as L constant matrix problems. Furthermore, as y(n) and u(n) are real, it suffices
to consider only the points k = 0,...,L/2.

The minimum of Equation 3.14 is achieved by minimizing |W(k)|? at each k. This
then gives L/2 + 1 constant matrix probiems with the final test being the following
condition.

L/2—1 1/2
le(le ~ 1 {xW(0)|2+z S WP+ IW(L/2)P} <1
k=1

Note that the assumptions on A have allowed the corresponding norm constraints to
be applied independently at each frequency. The equality constraint can also be applied
at each frequency. In contrast to this, note that if the norm relationship for one of the
A; blocks was chosen as an objective, the constraint |jwjl < 1 would not decompose
into frequency by [requency bounds. This is another reason for the choice of ||w|| as the
optimization objective function.

Formulating a meaningful experiment and equivalent digital problem requires con-
siderable engineering judgement. The reader is referred to Chapter 9 for a discussion of
some of the engineering issues.

The above discussion provides an engineering motivation for considering a frequency
by frequency approach to the problem. A discrete frequency domain representation will
be obtained for W(k) and simple calculation will provide one for A(k). An inverse
DFET could provide a time domain version of w(n) and A(n). Care must be taken in
interpreting these as causality has not been assumed in the derivation of the W (k) and
V (k). This situation is analogous to that for y analysis.

Solving the mode] validation optimization problems can produce sampled versions of
w(t) and v(1) consistent with the input-output data and the assumed norm bound on

the uncertainty. This does not mean that these signals exist in the physical system.
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3.3.2 Model Requirements

The analysis treatment given by Doyle 7, 4] includes the possibility of repeated A blocks.
The model validation theory presented here currently handles only the nonrepeated case.
This represents some loss of generality, and future work should include this case. The
discussion to be presented here assumes that the spatial norm is the Euclidean norm.
This assumption is discussed in the next section.

"~ Models including unstable transfer functions pose a problem for model validation.
It is not possible to set up an exPeriment which would allow the testing of the system
with the assumptions on the input and out;;ut signals: ¥ and u both in BP or in BLsg.
In practice an unstable physical system would be stablized by a feedback controller
before experiments are performed. This can easily be handled in the model validation
framework as the interconnection structure P will now include the stabilized system.
The interconnection structures to be considered here are therefore restricted to be stable
for all A € BA. This is only a constraint on the nominal model.

Robust stability is equivalent to the condition that

| (Pr1)lloo < 1,

where it is understood that P;; is a function of frequency. For the case of a single A

block this is simply
SUP Omax(P11) < 1. (3.15)
w
Consider the subset of stable models, denoted o-stable, defined by
jnf Omax(DPn D) <1 for all w,

where D is defined by Equation 2.13. There exist stable models which are not o-stable

as

Fu(P,A) is stable iff ||u(Pr1)]jec < 1
and

|£(P11)o0 < 1%%% Omax(DPi1 D).

The upper bound is only guaranteed to be equal to u for three or fewer blocks. In this

case all stable models are o-stable.
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3.3.3 Formulation with the Euclidean Spatial Norm

Doyle [4] argues that the difference between spatial norms in control design problems
is less significant than between temporal norms. The Euclidean norm provides a more
convenient mathematical formulation and will be used here.

Define the matrices, T;, i = 1,...,m by

T; = RIR;

= diag(Ol, “ee ,0,‘-1,[{,0,’4.1, “ee ,Om).

The model validation theorem is now as foilows.

Theorem 3.4 (Model Validation, Constant Matrix)

There exists an admissible (w,A) for the model validation problem:
y=Fu(P,A)[Q:jI, ”w”§1, A€ BA,

iff there exists ¢ such thai:

NEREX s 1ol T0] [2] .

i) z [0 O}x < [:c U ]P [0 O]P[u]’ z—-l,...,m..
. oo

i) z [0 I]z < 1.

i) y = [OI]P[z].

The minimum ||w{| optimization problem for this formulation of the model validation
problem is given below. Note that the equality constraint (condition iii above) is reflected

as a restriction on the search to ¢ € X,.

Problem 3.5 (Minimum [|lw||, Constant Matrix)

- min f(z) subject to gi(z)<0, i=1,...,m,
r€X. .

where

f(z) = z[g g]m (3.16)
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and
_ Jmo
gi(z) = = [0 O]x

v «1lox| i 0 T
- [z u ]P [O O]P[u]' (3.17)
The reparametrization of Section 3.2.1 can be used to cast the problem into one
in terms of a:; rather than z. This results in different objective and constraint func-

tions. The notation fe(ze) and gei(2.) will be used to distinguish these from those of

Equations 3.16 and 3.17 above. .
Problem 3.6

rréinfe(a:e) subject to gei(z.) <0, t=1,...,m,

where
* ®Y % 00 .
fe(ze) = (x5 + z2V™) 0 I (zo + Vz.) (3.18)
and
*Y Ti 0
Gei(ze) = (ap+ 22V )[0 0](mo+Vxe)
* wY/ * * * T; 0 -'EO+V$U€
— [es+2vew |P [0 O]P[ . } (3.19)

Consider the constraint equations in more detail.

_ _ owpe y | o= P TP =P TPy |
gez(xe) - (zeV + xO)[ _P;ZTiPII —Pl*2T{P12 (1'0 + VmE)

~ 2Re {(za +2eV*) { ﬁ‘,} ]nnau}
12

- u*P{"3T,-P13u
This formulation is somewhat cumbersome but clearly shows the structure of the qua-

dratic term. The constraints are indefinite quadratic inequalities. In contrast, the ob-

jective function is a positive semidefinite quadratic.
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3.4 Solving the Model Validation Problem: A Summary

of the Results

The previous sections have formulated the model validation problem and, in the constant
matrix case, set up an optimization problem to solve it. Having now introduced this
problem, and sufficient notation, it is appropriate to outline the results that will be
developed in énhseqnent chapters.

The approach taken is to consider the application of Lagrange multipliers to Prob-
lem 3.5. It is well known, aud dgtailed in Chapter 4, that finding a saddlepoint of the
Lagrangian is a sufficient condition for solving the optimization problem.

There is a strong relationship between the model validation problem and p. There
is also a strong relationship between the Lagrange multipliers and the D scalings of the
upper bound calculation (Equation 2.15). As is the case with y and its upper bound, the
Lagrange multiplier approach does not always yield the solution. The block structure
dimensionality issues that arise in the consideration of the upper bound for u also arise
in the model validation problem.

In considering any equivalence between the number of blocks in the model validation
and u problems, one must count the equality constraint as a block. The following

situations arise:

m=1 The single perturbation block problem can always be solved by finding a

saddlepaint. of the Lagrangian. This is shown in Section 5.3.3.

m=2 I dim(V) > 1 then a saddlepoint of the Lagrangian still exists. The
dimensionality of V enters here, and not in the similar three block u
problem, because of the difference between the equality constraint and

the usual A block constraint. Section 7.5 provides these results.

m>3 A saddlepoint of the Lagrangian does not always exist. Section 8.3.2
presents a counterexample. In the four block p case it is known that the

upper bound is not necessarily equal to u.

In the cases where a solution to Problem 3.5 can be found, the model validation

question, Does the model account for the datum?, can be answered exactly. As in the y



38

case, it is possible to bound the solution to Problem 3.5. This is based on always being
able to answer the m = 1 problem and is considered in more detail in Section 5.2.2.

A geometric framework, which allows the inclusion of known inputs and outputs
in robust analysis problems, is introduced in Chapters 6 and 7. The model valida-
tion problem and p are then considered as snbproblems of the general problem. The
dimensionality issues are inherited from the underlying general problem. The existence
of Lagrange multipliers (or D scalings for u) is then the result of a simple geometric

condition involving a separating hyperplane.
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Chapter 4

Lagrange Multipliers and Duality

This chapter reviews some well known optimization results about Lagrange multipliers
and duality. These will be used in subsequent chapters to study the model validation
optimization problem. Lagrange multipliers may not be the most effective way to solve
this optimization, but their use in this case leads to an interesting analogy with the
current calculation techniques for u. The reader is referred to Wismer and Chattergy [20]
for an introduction to the subject and Mangasarian [21] for more comprehensive details.
Rockafellar [22] is a complete reference on convexity.

Chapters 6 and 7 will introduce and use an geometric interpretation of Lagrange

multipliers. Luenberger [23] is a good background reference for this approach.

4.1 Preliminaries

The following presents the notion of convexity and develops tests for the convexity of
quadratic forms. These definitions and results are commonly known but are included
here for completeness.

T € C™is a conver set if for all z;, z2 € T, and for all @ € R, « € [0, 1],
(1-a)z1tazx el

A functional f(z) defined on a convex set I' C C™ (for all z € T', f(z) € R), is called
a conver functional if for all 24, z; € T and o € R, o € [0, 1],

(1= a)f(z1) + af(z2) = f((1- a)z1 + azy).
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- The above functional f(z) is strictly conver if for all 1,22 € T and o € R, o € (0, 1),

(1= a)f(z1) + af(z2) > f((1—- )z + azy).

A functional f(z) defined on a convex set I' C C* (for all z € ', f(z) € R), is called
a concave functional if for all z1, 22 € T and a € R, & € [0,1],

(1= o)f(21) + af(z2) £ f((1- a)zy + azxs).

Similarly, the functional f(z) is strictly eoncave if for all 24, 2, € T and a € R,
a €(0,1),

(1~a)f(z1)+af(z2) < f((1-a)r; + az;).

A quadratic form z*Az, z € T C C", where A is Hermitian (A* = A), is positive
definite if forallz € ', 2 #£ 0, 2*Az > 0.

The above quadratic form is positive semidefinite if for allz € T', 2 #£ 0, 2* A2 > 0.

For a twice differentiable functional f(z) defined on I' C C™, the symmetric matrix

of second partial derivalives is known as the Hessian and is denoted here by H[f(x)]:

P 82
Eé(z) o+ Fxden (z)

H{f(z)]= : :
2h(2) o Sh)

For notational simplicity it is assumed that dim(I') = n. Note that in the case of a
quadratic form z™ Az, where A is Hermitian, the Hessian H[z*Ar] = 24.
The following lemmas relate the positive definiteness (or semidefiniteness) of the

Hessian to the convexity of the functional.

Lemma 4.1
A twice differentiable functional f(z), defined on an open set T' C C*, is conver iff

the Hessian H(z) ts positive semidefinite.

L.emma 4.2
For a twice differentiable functional f(z), defined on an open setT C C*, if H(z) is

positive definite, then f(z) is strictly convez on T'.
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4.2 Optimization Problems

The generic optimization problem will be formulated as
méll‘l f(z) subject to gi(z) <0, i=1,...,m. (4.1)

where f(z) is referred to as the objective functional and the g;(z) are the constraints.
The following terms will be used. The feasible region of the optimization problem

(Equation 4.1), denoted here by F, is
F={:c |g,~(:z:)5 0,z€el, i= 1,...,m}.
This is simply the region of I' where the constraints of the optimization problem are

satisfied.

If there exists # such that
f(&)y= mmf z), subject to gi(z)<0,i=1,...,m, (4.2)

then f(Z) is called the global minimum of the optimization problem (Equation 4.1).
Finding the global minimum is the goal of the optimization. However, it is usually only
possible to find a local minimum:

If there exists an open ball Bs(£) about &, with radius é > 0 where

7 bject to s <O, '=1,..., N
f(&)= _min_ f(e), swbjectto gi(2)<0, m

then f(%) is a local minimum of the optimization problem (Equation 4.1).
The following lemmas relate the various minima to conditions involving convexity.

They are presented without proof.

Lemma 4.3

If f(z) is conver then all local minima to the problem

gggf(m)

are also global minima.

Lemma 4;4

If f(z)is strictly convez, then there is a unique global minimum to the problem

min f(z)-

Clearly, convexity is a powerful property in optimization problems.
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4.3 Lagrange Mnultipliers

Constrained optimization problems can be studied with Lagrange multipliers. Given the

standard problem of Equation 4.1, referred to as the primal problem,
min f(z) subject to gi(z) <0, i=1,...,m.
el

form the Lagrangian, defined for \; > 01=1,...,m, as

L(z,A) = f(z) + Z Aigi(z)

where A = [Ay,.. .,/\m]T. The constraint that A; > 0 (or A; > 0) will be abbreviated to

A > 0 (or respectively A > 0). A dual function k() is now defined as
R(A) = min L(z, ).

This provides a lower bound on the primal problem solution; for A > 0,
h(A) < f(2),

where Z, as defined in Equation 4.2 achieves the minimum subject to the m constraints.
The dual problem can be considered as tightening this bound. More formally, the dual

problem is
max h(A). (4.3)

A saddlepoint is a (z,A) pair, denoted here by (Z,A), such that for all z € 1" and for
all A >0,

L(z,A) < L&, £ L(z,A). (4.4)

Kuhn and Tucker [24] give an alternative but equivalent characterization of the saddle-
point for differentiable functions f(z) and g(z). The term Kuhn-Tucker saddlepoint will
often be used synonymously with saddlepoint, particularly when the discussion requires

the definition of the form given in the following theorem.
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Theorem 4.5
A point (£,1) with X > 0 is a saddlepoint of the Lagrangian L(z, ) iff the following

conditions are satisfied.
i) I minimizes L(z,X) over all z.
1) g{%) <0, foralli=1,...,m.

iit) X,'g,'(:l—:) =0, foralli=1,...,m.

Notice that condition ¢ requires a glob:;l minimization of the Lagrangian. This may
be difficult to verify for a nonconvex problem.

Proof of Theorem 4.5: Assume that (Z,)) is a saddlepoint, defined by Equa-
tion 4.4.

Condition ¢ is simply a restatement of the right hand inequality of Equation 4.4.
To see that conditions it and #7 must also hold, consider the left hand inequality of

Equation 4.4,
L(z,)) < L(z, ).
Using the definition of the Lagrangian gives
m m
F(2) 4D Xigi(@) < £(2) + D Jigil®)
$=1 =1
which implies that
m
D (A —A)gi(Z) <0 forall A > 0. (4.5)
=1
Clearly g;(7) € 0for all 1 = 1,...,m. If for any 1 this were not sa, then a sufficiently
large choice of the corresponding A; would violate Equation 4.5. Therefore, the point
satisfies the constraints of the optlimization, and condition # of the theorem is satisfied.
Now choose A; = 0 in Equation 4.5 giving
m‘ _
- Z Aigi(2) <0 forall A; > 0. (4.6)
=1
Noting that ¢;(Z) < 0 for i = 1,...,m, it is clear that Equation 4.6 can only be satisfied
if
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Xigi(z) =0, fori=1,...,m (4.7)
which is condition i#zi.
To prove the converse, assume that Z satisfies conditions 1, 4, and #ii of Theorem 4.5.

Condition i immediately implies the right hand inequality; for all z,
L(%,X) < L(z, ).
The left hand inequality is obtained by considering
m
L(z,)\) = f(@)+ ) Nigi(z)
i=1
< f(x) as \; > 0 and condition 4 implies that g;(F) < 0
m
f(2)+>_ Migi(8)  as condition i implies that A;g:(Z) = 0

=1

L(3, ).

I

>
Finding a saddlepoint leads to a sufficient condition for the solution of the primal

problem.

Theorem 4.6
If the point (Z,)) is a saddlepoint of the Lagrangian L(z,\) then T solves the primal

problem:
f(z) = mlgf(z) subject to gi(z) <0, i=1,...,m.
z€
Proof of Theorem 4.8: Consider the right hand inequality of Equation 4.4

f(@+ i Xigi(Z) < f(=) + i;‘igi(x)
1=1 =1
which reduces to
1@ < @)+ 3 higi()
=1

by condition . Now for any z satisfying gi(z) < 0,for:=1,...,m,

f(z) < f(=).
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»

The following result indicates why it is often easier to attempt to solve the dual

problem rather than the primal problem. For the dual problem, Equation 4.3, define a
domain D by

D ={x| 220,k is finite} .
Linearity of the Lagrangian with respect to A leads to the following theorem.

Theorem 4.7

»

The dual function h(A) is concave over any convez subsct of its domain D.

Proof of Theorem 4.7: Consider A1, Az in F, a convex subset of D, and the dual

function
h(ad + (1 — a)A;) for a€[0,1).
As (@M + (1 - a)X2) € E,

hladi + (1 —a)rz) = mEllI_‘l L(z,al + (1 — a)A2)
T

min aL(z, )+ (1 — a)L(z, A2)
zel

1\

amin Liz,M)+(1-a) min L(z,A;)

ah(A1) + (1 — a)h(Az).

v

>

In certain model validation problems it will be shown that the domain of A(\) where
the dual function is finite, D, is always convex. Theorem 4.7 can then be used to show

that on this domain the maximization of the dual is a well behaved problem.
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Chapter 5

Application of Lagrange
Techniques to the Model
Validation Problem

The Lagrange multiplier techniques outlined in Chapter 4 will be applied to the minimum
||w|| model validation problem (Problem 3.5). The Lagrangian is formulated for two
closely related problems; the first is Problem 3.5 with the restriction that 2 € X, dropped:

mxinf(w) subject to gi(z) <0, i=1,...,m,

where
f(x)=w*[g ?]w (5.1)
and
gi(z) = x*[:g" g]m
- [« u*]P*I::lg g]P[Z] (5.2)

The second Lagrangian to be considered is that for the problem of interest (Problem 3.6):
r%in fe(ze) subject to gei(z.) <0, i=1,...,m,

where
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foloe) = (25 + 22V*) [3 g](wo +Va.). (53)

and
* *y Ti 0
gei(xe) = ($0+$6V )[ 0 0](230-{- V:Be)

~ [sa+ave u]P[q(; g]P[z”uV%]. (5.4)

The dropping of the equality constraint allows certain properties of the Lagrangians
to be shown more easily. The Lagrange multipliers associated with the first Lagrangian
have a very strong relationship to the D € D used in the calculation of the upper bound
to i (Equation 2.15). This leads to the fact that o-stable models always have a region
of A space on which the dual function is finite. More specifically, it will be shown that
this finite region is also convex.

The concavity of the dual function then leads to some desirable optimization prop-
erties. If the maximization of the dual occurs at a A value inside this region, then a
saddlepoint has been found and the solution to the primal problem (Problem 3.6) imme-
diately follows.

Difficulties arise when the maximization of the dual function leads to the boundary
of the region on which the dual function is finite. In this case it is possible that no
saddlepoint exists but the Lagrangian has a nontrivial kernel. A further search in this
kernel will always vield a saddlepoint in the single perturbation block problem.

The details now follow.
5.1 Formulation of the Lagrangians
Consider the Lagrangian for Problem 3.5 without the constraint z € ..
L(z,A) = f(z) + Y Migi(z), Ai>0.
. =1
The associated dual function h(A) is defined, for A > 0, as

h(A) = min Lz, \).

Introducing the notation
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A= T; — PLT; P,y —P}T;Ps
YT =PRTiPy —PRTiP

and

it

allows the Equations 5.1 and 5.2 of the optimization problem (Problem 3.5) to be

expressed as
f(z) = 2*Bx

and
* * P]Tl » %
gi(z) = 2" Az — 2 Re {z [sz ]T,-Pwu} — u” P{5T; Pisu.

Section 5.1.1 will study the properties of this Lagrangian in detail.
Now consider the inclusion of the constraint 2 € A.. The Lagrangian is now for-
mulated for Problem 3.6. Using the notation introduced above Equations 5.3 and 5.4

become

fo(z.) = 22V*BVz, + 2 Re{zj BV z.} + zg5Bz0o
and

gei(ze) = zV*AVz,

+2 Reqz;V*Ajro — we V™ Pl*] T:Pisu
P12

—2 Re {za‘ [ If;l*l jIT,-Plsu} + 25 Aizg — w* PTi Pisu.
12
The Lagrangian, denoted by L.(z.,A) to emphasize the inclusion of the equality

constraint, associated with the above is

m
Le(ze,A) = fe(ze) + ZAigei(me)> Ai 2 0. (5.5)
=1
m
= V(B + ) MAi)Vz. +2 Re{z}Ce(A)} + de(X)
=1
where

m bl
Ce(N) = V*Bzo+ 3 M [V*A,-a:o —v [ ]};1,} ]T;Plgu] (5.6)
i=1 12



and

m
de()) = 25Bzg + Z Ai[zgAizo — 2 Re{ zg

i=1
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[ Pll ]T,’Pu;’ll. }—u* Pf3T,'P13U] .

12

Note that in this formulation z. is unconstrained. The dual function, denoted by h.(}),

is now defined for A > 0 by

he(A) = min L.(zc, A).

The Lagrangian L.(z., A) is the one of interest in solving Problem 3.6. However, a study

of the properties of L(z, A) will aid in understanding the equality constrained case.

5.1.1 Properties of the Lagrangian: L(z,A), The Unconstrained Case

Define A as the region of A space upon which the Hessian of L(z, ) is positive definite.

Lagrange multipliers are generally defined with components A; > 0. Here they will be

taken to be A; > 0 with A; = 0 treated as a special case.

Now the property that the Hessian of the Lagrangian is strictly positive definite is

shown to be equivalent to a maximum singular value test. Consider the Lagrangian for

AEA

Clearly, it suffices to consider the positive definiteness of L H[L(z,))]. This is done

for notational simplicity. Now

1
LIERY)

Define D by

™

SONT
=1

"

= B+) MNA
i=1
LA IS}
= B -+ -
; —PLA\Ti Py
[ Ml ]
Al
L AmIm -
[ 21, ]
a3l

&2 In |

T = Py AT Py —PH AT P

—PHLHAT Py |



= pTp = D*D = D? (5.7)

where d; > 0. Only X.- > 0 are being considered so D! is well defined. Note also that
D defined above is an element of D defined by Equation 2.13. Now

SH[L(z,))] = B+ [Dz— PuD Py -PiD ZP”]
2 3

-P;,D?Pyy —P;,D%Pp,
D? - Py D*P,y, —-PL,D%*Pp
—-P{‘2D2P11 I-PHRD* Py |
The problem is to find D, and consequently A;, such that the above is positive definite.
Equivalently, using Ymin and Ymax to denote the minimum and maximum eigenvalue
respectively,
| D= P D?Pn -PRD’Pra |
Twin|  _peD?P;, I- P5LD*Py

PyD?P - D? PLD?Py,
0

= 7”‘“"[ P;,DP,  PLD*Pp—1| °

Premultiplying and postmultiplying by a symmetric matrix does not change the inertia

of the above matrix. As the above has all eigenvalues less than zero, the condition is

equivalent to the following.
D'o * D?P1y — D? P;,D%P, D1 o
Ymax * 2 « 12 <0
0 I PIQDPII P12D P12—I 0 I

[ D-1P;,D?P;, D' — I D~'P;,D?Py;
& Omax| pnpiPyDTl PRDPL I 0

< Mmax|  psp2p p-1 PyD2P,

[ D-1P;, D?Py, D! D-lpﬁmpu] <1

L

—1 px
< “Ymax D PHD [DPHD-l DPu] <1
PyD

= O'ma_x[DPnD—l DP12] <1 (58)
-1
' DO||Pn P|{DO
— UM{[OI][O OHOI < 1.
This condition is reminiscent of that for the upper bound to u,

. -1
Iljren;amax(DMD )< 1.
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This is formally stated in the following theorem, relating the sufficient test for robust
stability (Equation 2.13) to the existence of Lagrange multipliers. In essence it says that
the Lagrange multipliers giving a positive definite Hessian of the Lagrangian exist if and

only if the model is o-stable.

Theorem 5.1
There exist D € D with d; > 0 such that

omax(DPnD ') < 1
iff there exist A; > 0, such that
(B + i AiAi)
i=1
is positive definite.
Proof of Theorem 5.1: Assume there exist D € D such that
Omax(DP11 D7) = B < 1 and omax(DPy2) = 1.
Note that the D contains a free parameter. In other words
a,mx(aDPu(aD)'l) = UM(DPnD'l) =p<1.
Now asa — 0
omax[aD Pi1(aD)™! aDP;3) < f + ay

which for a € (0,(1— 3)/n) is less than 1. The condition of Equation 5.8 is now satisfied
for aD. By appropriate choice of A from Equation 5.7, the Hessian of the Lagrangian is
positive definite.

For the converse finding A such that the Hessian of the Lagrangian is positive definite

is equivalent to finding a D such that
Umx[Dpllp_l DPlz] = ﬂ < 1,
which must necessarily satisfy

Omax(DPnD1) < B < 1.

>
Packard [10] points out that there is no loss of generality in restricting D to be

positive and real. This translates exactly into the same requirements on .
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5.1.2 Properties of the Lagrangian: L.(z.,A), The Constrained Case

Now define A, as the region of A space in which the Hessian of the Lagrangian L.(z., )
is positive definite and A; > 0. It will be shown for A € A,, h.(}) is finite and concave.

The following lemma relates A, to A.
Lemma 5.2
ACA.

Proof of Lemma 5.2: For every A € A and for all z # 0,
m
:L‘*(B + ZA,’A,’)&' > 0. (5.9)
i=1
Now consider, for all z, # 0,
m
V' (B+ ) AMA)Ve..
=1
Note that for each z. there exists an z, given by £ = Vz,, and from Equation 5.9, for
all z. # 0,
m
2V (B+ Y M A)Vz, >0
< N LJ d
=1
Therefore A € A.. >
It can now be shown that the existence of D € D giving a sufficient condition for
robust stability is sufficient to guarantee the existence of A such that the Hessian of

L.(z., ) is positive definite. This is expressed in the following theorem.

Theorem 5.3
If there ezist D € D with d; > 0 such that

Omax(DP1 DY) < 1,
then there ezist \; > 0 such that
VY (B+ > MA)V

=1

is positive definite.
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Proof of Theorem 5.3: This follows immediately from Theorem 5.1 and Lemma 5.2.

>

Theorem 5.3 shows that o-stable models always have a region of A space upon which
he(A} - finite. Chapter 7 will establish a stronger relationship between robust stability

(#(P11) < 1) and the existence of a solution to the model validation problem.

5.1.3 Properties of the Sets A and A,

The previous sections have shown that for models which meet the sufficient condition
for robust stability, the sets A and A, are not empty. This section gives some results

rcgarding these sets.

Packard [10] points out that the region of D such that for D € D,
Omax(DMD™ 1) < 1,
is a convex region. It it not surprising then that A and A, are also convex regions.

Lemma 5.4 The set A, consisting of all A such that the Hessian of the Lagrangian,

H[Le(ze,\)] = 2V*(B + i,\,—A;)V, (5.10)

i=1

is positive semidefinite, is a convez set.

Proof of Lemma 5.4: Consider 1 and £, elements of A space such that for all z.,
m m
ZVT(B+ ) MiA)VZ. 20 and zV'(B+)_ &iA)Vz. 2 0.
=1 1=1
Examine the positive definiteness of $ H[L.(z,, A)] for all convex combinations of 7 and

€. For all z, and a € [0, 1],

V(B4 (ami+ (1 - a))A)Vz. = azlV*(B+ Y mA)Vz,
=1 =1
+(1-a)z}V* (B + ) &A)Vz,
=1
> 0

Corollary 5.5

A, is convez.
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Proof of Corollary 5.5: A, is simply the set of all A > 0 such that the Hessian of
L.(z.,A) is strictly positive definite. The proof is identical to that for Lemma 5.4 with

strictly greater than signs replacing greater than or equal to signs in the equations.

Corollary 5.6

A 1s convez.

Proof of Corollary 5.6: The proof is identical to that for Lemma 5.4 and
Corollary 5.5 with z substituted for z. and the removal of V from the equations. >
By Lemma 4.2, L.(z, A) is a strictly convex function of z. for A € A.. It is in fact a

positive definite quadratic. Now for every A € A,
he(A) = rrllcin Le(ze,A)

is readily calculated as L.(z.,A) has a unique global minimum.
The above shows that the Lagrangian is well behaved for A contained within A..
Unfortunately, maximizing the dual will sometimes lead to the boundary of A.. The

definition and some of the properties of the boundary are studied in the next section.

5.1.4 The Boundary of A,

The properties of the Lagrangian on the boundary of A. are now studied. Two types of
honndary are possible for the set A.. Denote by dA. the boundary of A, such that the
minimum eigenvalue of the Hessian of the Lagrangian is zero. As the multipliers in A,
are constrained to have components greater than zero, the hyperplanes defined by each
component of A. being equal to zero also bound A.. Denote these boundaries by dpA.,.

It is possible that a point A meets the definition for both A, and GpA.. Such points
will be considered to be elements of dA.. This will allow the space upon which it is
always possible to solve the problem to be clearly defined.

Figure 5.1 gives a stylized example of the regions A., dA., and JpA. in order to make
this point clear. The region GpA. consists of the union of the two half open intervals
[[0,a),0]T and [0,[0,b)]T. The points A = [a,0]T and X = [0,5]T are defined to belong to
the region 9A..
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A2

9A,
4

>

0 a A\

Figure 5.1: Example A Space Dlustrating A., 0A., and JgA.

Two further facts are suggested by Figure 5.1; the point A = 0 is either a member of
JoA. or a member of JA.; and the set A.|JJIA|JoAe is convex. The first fact follows
from observing that V*BV is either positive definite or positive semidefinite. The second
fact arises from noting that the set A, |JOA.|JdoA. is simply the intersection of the set
A > 0 and the set where the Hessian of the Lagrangian is positive semidefinite. The
convexity of this then comes directly from Lemma 5.4.

Now consider the eigenvalues of the Hessian of the Lagrangian for each part of the A
space where A > 0. For A € A.JdoA., all the eigenvalues of

V*(B + i AANV
i=1
are strictly greater than zero. For A € 9A.,
m
V*(B+ Y MA)V
i=1
has at least one zero eigenvalue. For A > 0 and A g A, U dA.,
V*(B+ f: MNANV
i=1
has a negative eigenvalue and selecting z. as the associated eigenvector allows the
quadratic term to dominate h.()A). Consequently h.(A) = —oo. In searching for a
maximum of h.(A), for A > 0, it suffices to study A., A, and HA..
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5.1.5 Properties of the Dual Function: A.(})

It is well known (refer to Wismer and Chattergy [20] for example) that the dual function
is concave over convex regions of the domain on which it is finite. This is explicitly

stated in the context of this problem in the following theorem.

Theorem 5.7
For all X\ € A., the dual function

he(A) = min Le(ze,A)

18 concave.

Proof of Theorem 5.7: The proof is identical to that of Theorem 4.7. >

5.2 Solving the Model Validation Problem

The properties of the space A. and the dual function h.(A) can give a solution to the
model validation problem by finding a Kuhn-Tucker saddlepoint. It will be shown here
that if the solution to the dual problem occurs away from the boundary dA., then it also
solves the primal problem and hence the model validation problem. In the case where the
maximization leads to the boundary dA., it may not be possible to find a Kuhn-Tucker
saddlepoint. In these cases it is possible to bound the solution to the primal problem.

This is examined in Section 5.2.2.

5.2.1 Solution via the Dual Problem

Theorem 5.8
If

max he()) = Le(Ze, A)  with A ¢ 8A.,,
then T = z9 + V%, solves Problem 3.5:

f() = min f(z) subjectto gi(z)<0, i=1,....m

and ge(z) = 0.
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Proof of Theorem 5.8: The proof of this theorem will proceed by establishing each
of the three conditions given in the Kuhn-Tucker Saddlepoint theorem (Theorem 4.5:.
h.()) is concave over A, LI 3oA. so every local maximum is also global. As L.(z., ) is
convex for A € A,UdgA,, the calculation of () does in fact give a global minimization
of Le(ze, ) over all z.. The first condition of Theorem 4.5 is therefore satisfied.

The second and third conditions are established for the case where X € A.. At A

Ohe(A)|  _
oA A=) -
By the construction of the Lagrangian
Ohe())  0Le(ze, M) + O0Lc(ze, ) Oz,
ax - ax Az,  AX’
But for . chosen to minimize L.(z., A),
OLc(Te,A) 0
Oz, -
giving
ge1(Ze)
Ohe(X) 0Lz, ) )
o D= O =z
gcm(ie)

50 gei(Ze) = 0 for i = 1,..., m satisfying both conditions i#i and ii{ of Theorem 4.5.
It only remains to consider the case where A € GpA.. Define I,, as the set of indices

t where \; = 0. Fori=1,...,m,t ¢ I,

OLc(Z.,\) = 0 implying that g.(z.) = 0.
0/\; A=)
And fori € I,,,
To, A
OL(Ze, A) < 0 implying that g(z.) < 0.
3/\,' A=)

If this were not so, then there exists € > 0 such that for A; = ¢,
he(X) > he(R),

contradicting the fact that h.(}) is the maximum. For i € I,, condition #ii is satisfied by
gei(ze) = 0. For ¢ € I, it is satisfied by A; = 0.

The three conditions of Theorem 4.5 are satisfied and so (Z.,A) is a Kuhn-Tucker
saddlepoint. By Theorem 4.6 Z. solves Problem 3.6 and consequently Z = zo + VZ,

solves Problem 3.5. >
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5.2.2 Bounds on a Solution to the Model Validation Problem

A detailed examination of the dual function on the boundary is postponed until Sec-
tion 5.3. The result of interest here is that it is always possible to solve the single
perturbation block case (Section 5.3.3). This allows the calculation of a lower bound on
the minimum ||w|| required to account for the observed datum.

If the structure of the perturbation block A is ignored, a simpler problem can be
posed. This is equivalent to simply setting m = 1. Denote an admissible (w,A) for this

problem as (w;,A).
Theorem 5.9

There ezist no admissible (w,A) for the model validation problem (Problem 3.4) with
lwll < [fwill.

Proof of Theorem 5.9: This follows immediately from the fact that every A
structure with m > 1 is contained within the set of unstructured (m = 1) A. Every
solution to the model validation problem (Problem 3.4) meets the constraints of the

m = 1 case and therefore satisfies

z* 00 z >z Oo‘x
or|"="orl|™
which is simply

llwl|? > [Jwill®.

>
Solution via the dual problem involves finding z such that the constraints g.;(z)
are met exactly (gei(z) = 0) or the constraint is satisfied and inactive at the solution
(Ai = 0). In the case where the maximization of the dual leads to the boundary 9A.,
it may not be possible to find a Kuhn-Tucker saddlepoint. Any z, denoted here by =z,
such that g.(z,) < 0 for i = 1,...,m is a feasible point of the minimization and as
such /f(z,) ( = ||w.]| say) is an upper bound of the minimum ||w|| solving the model

validation optimization.
The Lagrange multiplier approach leads to the possibility of a gap in the solution of

the model validation problem. In the case where a solution is found on the interior of
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A, or on JA., the minimum ||w|| meeting the constraints is found. In the case where
m =1 and A € dA., the minimum ||w|| is still found. This allows the model validation
question Can the model account for the observed datum?, to be answered in a yes/no
manner.

If m >3 (or m =2 and dim(V) = 1)! and A € A, maximizes the dual function, it
is possible to have a gap in the answer to the model validation question. By this it is
meant that the Lagrange methods do not yield the solution and ||wy|| > ||wi]|. This is
analogous to the gap between the upper and lower bounds in the calculation of . It will
be proven in Chapter 7 that if m = 1 or m = 2 and dim(V) > 1, then the gap cannot
occur.

Even though a gap exists it may still be possible to answer the model validation
question. If ||wy|| > 1, then by Theorem 5.9 there is no vector z meeting all of the
constraints of the model. Alternatively, if ||w,|| < 1 there does exist a vector meeting all
of the constraints of the model (z, is such a vector). However, if |jw|| < 1 and |jw,|| > 1,
there is no conclusive statement that can be made with regard to the model validation

question.

5.3 The Dual Function at the Boundary: 0A,

Section 5.2.1 showed that a saddlepoint can always be found if the maximum of the dual
function occurs for A € A, or A € GpA.. The remaining case, the maximum occurring
on the boundary dA., can only occur if ~.(A) is finite on dA.. To see this note that for
A € A., the quadratic term is always positive definite and so h.()) > —o0. For A € 9A.,
he(A) ma,y be finite or may be equal to negative infinity. If the maximum of h.(A) is to
occur for some X € dA., then h.{)A) must be finite.

The properties of k() for A € A, are now studied. For A close to the boundary
0A., the Hessian of the Lagrangian

H[L(z.,A)] =2V*(B + iA;A,-)V

=1

!Refer to Section 8.3.2 for an example where m = 3 and no saddlepoint exists. Section 7.5 discusses
the case where m = 2 and dim(V) = 1.
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has an eigenvalue close to zero. In general, the z. achieving the minimum of L.(z., )
will become larger in norm as A approaches the boundary. This happens as the linear
term dominates and can be made large and negative with a sufficiently large z.. This
is not always the case, and the next section will give necessary and sufficient conditions

under which h.() is finite on the boundary.

5.3.1 When is h.()) finite on 0A.?

For A € 8A,. the Hessian of the Lagrangian has a zero eigenvalue. Whether or not the
minimum of Le(z.,A) for A € JA. is finite depends on the associated eigenvector and

the linear term of the Lagrangian; C.()). For A € dA,, define

m
A = Z XiAi.
=1

Theorem 5.10
he(A) = —oo for X € A, iff there ezists z.x € Ker[V*(B + XA)V] for which
Re{C.(A)*zex} # 0.

Proof of Theorem 5.10: Assume there exists
Tex € Ker[V*(B +m)V]
and
Re{Ce(A)"zex} = B # 0.
Take z. = azk.
he(X) € Le(@Zer, ) = 25 V(B + AA)Vzek + 2008 + de(})
20f + de(X).

Pick o such that 2a8 < 0 and as |a| — oo,
he(X) < Lo(aTer, ) — —00.

For the converse assume h(A) = —oco but for all z.; € Ker[V*(B + XAV,

Re{C.(A)*zcx} = 0. Partition z. as z. = Zex ® 73, then
h,(.i) = min L (z ® :ri‘k, i)
Ter®z

= minz{ V(B + AAWzh + 2 Re{C.(A)" 25} + de(R). (5.11)

Tk
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But
eV (B+XA)Vzh >0 (5.12)

for all z, and if h.(A) = —oo, then there must be a z} of infinite norm achieving

this. From Equation 5.12 the quadratic term is always positive implying that h.(\) = oo

which is a contradiction. >

Corollary 5.11
he(X) is finite for X € OA. iff for every z.x € Ker[V*(B+XA)V], Re{Ce(N)*zex} = 0.

The above gives necessary and sufficient conditions for the value of h.()) to be finite

on the boundary of A.. If the above condition is satisfied it is possible that
ax he(})

occurs for A € OA.. However, it is not necessarily true that

Ohe(A)
PG AT < Q.
NN 0

Although condition i of Theorem 4.5 is satisfied, conditions ii and #ii may not be, and

it is no longer guaranteed that (Z.,A) is a Kuhn-Tucker saddlepoint.

5.3.2 Finding a Kuhn-Tucker Saddlepoint on the Boundary

The previous section demonstrated that on the boundary dA. where h.()) is finite, there

exists z.; such that
e V(B +AA)Vze =0,
and for every such .,
Re{Ce(A)"zek)} = 0.

T.r is therefore in the kernel of the Lagrangian L.(z.,A) and can be considered as an
additional degree of freedom that can be exploited in attempting to find a saddlepoint.

This is now discussed more formally.
If
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mthe(/\) = L (Z, :\)
with A € dA., then for every vector z.x in the kernel of V*(B + T\_Z)V,
Le(Ze + Teky A) = Le(Ze, ). (5.13)

The choice of z.; gives an additional degree of freedom in finding a Kuhn-Tucker sad-

dlepoint. Consider the constraint
gei(ze) = z.V'AiVz,

+2 Re {x:V*A‘-xo —-z;V* [ ?‘1 }T;Plgu}
12

—2 Re {xg [ 2:; } :I}Pwu} + 25 Aizo — v PjT Piau,
and examine the effect of adding z.x to z..
Gei(Te + Zek) = 2TV AiVzer
+2 Re {z,V*Ai(z0 + Vz.)} — 2 Re {x:kV* [ 2:: } T,-Plsu}
+9ei(e)-
This in effect defines another problem. Does there exist z.x € Ker[V*(B + XZ)V],

such that, for ¢ = 1,...,m, the following equation is satisfied.
2o V*AVze + 2Re{z,V* Ai(z0 + Vz.)}
_2Re {x;kw [ Pry ]TP}
Py,
+gei(ze) = 0. (5.14)

The following section will show that this problem can be solved in the single pertur-

bation block case.

5.3.3 The Single Perturbation Block Case

If 0max(P11) < 1 and X is a scalar, then A, is an open interval on the real line: (0,0A.).
It will be shown that in this case it is always possible to solve the boundary problem of

Equation 5.14.

Consider Z., corresponding to a solution of the Lagrangian on the boundary:
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he(X) = n;in Le(ze,A) = Le(Ze,A), X = 0A..

The choice of Z. is not unique. To aid in the proof of the Lemmas that follow, choose
Z. as the limit of a sequence of solution vectors Z. as the boundary is approached from
within A..

More formally,

— . ~

T, = Ilc}llﬂo Ze (5.15)
where

H[L(ze, X~ €)] > 0,
and

Le(%e,X—€) = rr:x:ien Le(zey A — €).

Note that in the single perturbation block case, A, and consequently ¢, is a scalar.

Furthermore for € > 0, the Hessian of the Lagrangian is positive definite, and %, is

unique. At A = X, z.x € Ker[V*(B + AA)V], giving

L.(z.+ az.., 5\\ = L%, )

7

a€eC.

The vector z.x will be considered as a free variable to be searched over in an attempt to
find a saddlepoint. The following two lemmas give the properties required for a solution

of Equation 5.14 in the case where m = 1.

Lemma 5.12

For m = 1 and 3. defined by FEquation 5.15,
gei(je) 2 0.

Proof of Lemma 5.12: Consider the derivative of h.()) from the left:

i he) =h(A-¢)

=0 €

Note that £, has been defined such that

dhe(A—¢) .
aA - ge’(ze)'
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left.

he(A) = he(X =€)
p .

gei(je) = P_E%

If gei(Z.) < 0, then ho(X — €) > h.(A) contradicting the fact that the maximum occurs

on the boundary. >
Lemma 5.13
TV AVz < 0.

Proof of Lemma 5.13: On the boundary z;, V*(B +7\74.)V:cek =0.
As 2, V*BVze, 2 0, 22, V* AV < 0. Equality cannot occur; if it did, then there
would exist a zero eigenvalue for all A\, making A, empty and contradicting omax(P11) < 1.

>
Now, for Z, minimizing the Lagrangian on the boundary, there is an extra degree of

freedom. For a € C,

a"a(z,, V' AVz.)

g(xe) = g(fe + azek)
+ 2Re{a"z; V*A(zo +VZ.)}
— 2Re {a‘z:kV" [ PI‘I }T,’P,gu}
P
+ 9(z).
The above is simply a quadratic in a. By Lemma 5.13 it is negative definite, and by

Lemma 5.12, for a = 0, Equation 5.14 has a non-negative value. Therefore, there exists

a such that
g(z.) = 9(z. + azex) = 0.

All three conditions of Theorem 4.5 are now satisfied, and z. is therefore a solution of

the primal problem.
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Chapter 6

Skewed 7!

This Chapter considers the u problem in more detail and develops a generalization of
the perturbation blocks. The results and methods of proof presented here are simple
extensions of those of Fan and Tits [9, 8] and Doyle [7]. The notation developed here

will allow the model validation problem to be considered in a simpler form in Chapter 7.

6.1 Motivation for a Generalization of pu

This chapter will consider the general problem with m perturbation blocks. Again each
of the m blocks will be assumed to be a full complex matrix. Consider the system

illustrated in Figure 6.1. As in Section 2.1.2, the block structure is an m-tuple of integers

(ky,...,km) and A is defined by
A = {diag (A1...An) | dim(A) = ki)
Recall, from Section 2.2.2, the definition of BsA and u:
B;A = {A ] AEA, Oma(d) < 8} (6.1)
0 ifno A€ A solvesdet(J+ MA)=10

w(M) = otherwise (6.2)

-1
[min 6 | 3A € BsA such that det(I + MA) = o}] :
AeA «
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Also recall the definition of R; (Equation 3.3):

R; = block row(0y,...,0;—1,1;,0i41,-..,0m),
where dlm(oj) = k; X kJ‘, dim(I,-) = k; X k;.

Note that the m A blocks are the only constraints to be considered in this problem.

Therefore, the use of R; is sufficient to select the desired components of both z and Mz.

Ay

Mz T

Figure 6.1: System to be Considered for u Problems

The following theorem (due to Fan and Tits [8]) states that u is equivalent to a

maximization problem over the unit sphere. For details of the proof, refer to [8].

Theorem 8.1

p(M)

max {y|||Rizlly = |R:Mz], i =1,...,m}

Tllzli=1

{v|I1Bzlly < |RiM=]), i = 1,...,m}.

max
¥ ll=li=1

The above illustrates that the yu can be considered as a maximization with a series of
norm constraints on z and M=z. This is reminiscent of the constraints imposed for the
model validation problem. For the u problem the variable to be maximized, v, affects
all constraints uniformly.

It is easy to imagine a similar maximization where the ¥ dependence was not present
in every constraint. In other words, for certain perturbation blocks 7 is replaced by a

fixed scaling. A physical motivation for this problem arises from the following.



67

Consider a model of the form F,(M, A) with inputs w and outputs e as in Figure 2.2.
For the convenience of the reader, Figure 2.2 has been repeated here as Figure 6.2. It is
assumed that ||A]| < 1 and the following question is posed: What is the worst case ||e]|2,
for any signal w € BL2 ? This is not strictly speaking a y problem. If u(M) = a, then
it is possible to say that for ||A|| € 1/a, the worst case norm of the error e is less than

or equal to 1/a. Note the uniformity of the scaling in the answer that u provides.

A
Am
z v
Pu Py
e+—— Py Ppp—w

Figure 6.2: Generic Model Structure Including Uncertainty

Although the results of this chapter provide a means of directly answering the worst
case error question, the same answer can be trivially obtained by an iterative procedure
using the standard p problem formulation. Consider a scaling of the output e by ne, and
absorb this scaling into the system M. Now find 7 such that the scaled system, denoted
M, has u(M,) = 1 and the worst case error is then 1/7. Assuming that u(M,) can be
calculated, a simple bisection technique will be able to accomplish this iteration.

So the results of this chapter do not provide anything that is fundamentally new.
They do, however, allow considerable notational and conceptual simplification of the

more general problem to be considered in Chapter 7.

6.2 Skewed p: p;

Consider the integers 1,...,m to be divided into two disjoint sets: I, and I, where I,

may be empty. It will now be assumed that for ¢ € I, ||A;|| < 1. Define a ball in which
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only certain of the A blocks are allowed to vary in size:

lof AN <1l,iel; )
BiA := {A|A€A, max( A1) MR (6.3)
amax(Ai) < 5’ 1€ Ia
Now define “skewed p”, denoted p,, by the following:

4

0 ifno A €BPA solvesdet(J+ MA)=0

ps(M) := < otherwise (6.4)

-1
[ min {6 | 3A € BEA such that det(] + MA) = o}] .
{ |AeBgA

Two maximization problems are now introduced:

( A
) |Riz|| = |R:Mz]|, i € I,
Ao(M) = max 47 0 : (6.5)
TESTU ] (Rislly = Rz, i €T,
and
( 3\
|Riz|] < ||RiMz||, i € I,
AM) = max {9 1 (66)
iR || IRl < |R:Ma3ll, i €T,

Note that it is not necessary to restrict z to be on the unit sphere (||z}| = 1) as for any
z meeting the above constraints, az, o € (0,00), also meets the constraints. However,
the restriction to the unit sphere, and the compactness of the unit sphere, makes it clear
that the maximum is achieved.

For a finite matrix M, u(M) is also finite. This is no longer true for p,(M). If the
A; blocks with i € T, do not play a role in the equation det(/ + MA) = 0, then u,(M)
will be infinite. In other words there is a choice of A; with i € I, ||A;]| £ 1, such
that det(I + M A) = 0 irrespective of the size of the A; for ¢ € T,. An example will be
presented at the end of this section in which this pathology arises.

In the case where u (M) is finite, the above maximizations are indeed equivalent.
This is proven in a manner similar to that used by Fan and Tits [8] for the analogous

p(M) maximization problems.
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Theorem 6.2
If us(M) is finite, then

ps(M) = p(M) = ps(M).

The proof of Theorem 6.2 will proceed via two preliminary lemmas. The first concerns
the properties of the smallest zero of a polynomial in C™. This lemma is due to Doyle [7],
but the formulation given here more closely resembles that of Packard [10].

Consider the zeros of a polynomial p: C™ — C. If z € C™, define
l12lle = max|z].

Now define 8 as the norm of the smallest zero of the polynomial.
g = min { ||zl | p(2) = 0}. (6.7)

Lemma 6.3

Let p be a polynomial from C™ — C and define 8 by Equation 6.7. Then there
erists @ z € C™ such that || =8 for alli=1,...,m and p(z) = 0.

In other words, there exists a minimizing solution with every component equal in
magnitude. Doyle [7] and Packard [10] use this result to prove that u is always equal
to its lower bound (Equation 2.15). Here it will play a similar role, but the existence of
blocks that do not scale complicates the issne. This complication is removed with the

following lemma.

Lemma 6.4

If

b=, min, {6 |30 € B{A such that det(I + MA) =0},

then there erxists A € BgOA such that

1, iel,

|As| = o
60, t€el,

and det(I + MA) = 0.
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Proof of Lemma 6.4: By hypothesis there exists A € BgOA such that
det(J+ MA) =det(I+ AM) =0,

1, tel,

|Ail < -
603 te I_,,

and for at least one i € T,, |A;| = 8. Performing a singular value decomposition of this
A and factoring out a scaling matrix gives

A=UEZV", U,V e@Q (Qisdefined by Equation 2.14)
with

z

dja‘g(dl-ll,"'adm[m)’ djm(Iz) = ki X ki
Y, = diag(dih,...,dnl,), dim(L)=k; x k;

where X, is a scaling matrix defined by
d 1/éo, f I,
1, i1€el,.
Therefore each element of ¥ is bounded in magnitude by &g,
m?x|d,-| = dg.
Now
det(I + US,SV*M) =0

can be considered as a polynomial in the m real variables, d;. Denote this polynomial

as p(d), then

b0 = min {|1d]leo | p(d) = 0} .

By Lemma 6.3 there exists d, with elements d;, such that p(d) = 0 and |d;| = 6p. This is

equivalent to the existence of a ¥ such that

Y o= diag(Jlll,...,JmIm)
= 60Qy Q € Q

satisfying
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det(I + 6oUS,QV*M) = 0.
Choose A to be
A = 6UT,QV* € BOA.

Note that this choice of é satisfies the requirements of the Lemma. >

Proof of Theorem 6.2: It will be shown that u,(M) > i,(M). By definition
us(M) > 0, and so if g,(M) = 0, the claim is obviously true. Consider the case where
fs(M) # 0. Initially consider ji,(M) to be finite. With this assumption there exists Z

and 7 achieving ji,(M). This Z and v will be used to construct a A € B3 A such that
det(/ + MA)=0. Now fi,( M) is defined by

= e | | 1Bl S IRl i€ L

Tllzll=1

_ (68)
I1Rizlly < |R:Mall, i € T;

implying that there exist Q;, dim(Q;) = k; X ki, with omax(@Q:) < 1 such that
~Riz = QiRiMz, i€l
~ps(M)R:iZ = QiR:Mz,i€l,.
Stacking these equations into a block matrix form gives
-nZ=QMz
where

1, 1€ I,

n = diag(mli,...,0mln), ni= R
ﬁ,(M), NS Is,

and

Q = block diag(Qi,...,Qm)-
Therefore

(I+QM)z=0 = (I+77'QM)z=0.
Note that choosing A as A = 771 Q gives

A€BAMTA and det(I+MA)=0.
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The definition of u,(M),

1 . 5
—_— = 6 |34 € BgA h that det(/+ MA)=0,,
(T = o 138 € Bia such dhat den1 4 M2) = 0

implies that

and consequently
ps(M) 2 fis(M).

Now return to the assumption that i,(M) is finite. If this were not so, then there
would exist v and z meeting the constraints of Equation 6.8 with vy > u,(M). It should
be noted that the statement of the theorem assumes that p,(M) is finite. The above
construction could then be used to obtain a A € BYA for which det(] + MA) = 0,
contradicting v > u,(M).

Now consider the claim that i,(M) > u,(M). By definition 2,(M) > 0, and so
if ps(M) = 0, the claim is obviously true. Assume then that u,(M) > 0 and define
6§ = 1/us(M). 6 is finite and by the assumption that p,(M) is finite § > 0. This implies

that there exists
A € BSA such that det(I+ AM)=0

and for at least one i € T, Omax(A;) = 6. By Lemma 6.4 there exists a A such that

1, iel,

1A = -
6, tel,

and det(f + MA) = det(I + AM) = 0. Consequently, there exists Z such that for this
choice of A,

(I+AM)z =0,
implying that

T=-AMz.
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Now consider the norm relationships implied by the above equation for each partition

R;:

”R,f” = HR,JW:E”, t€ I,

| R:Z|[1/6 |R:Mz|, i€,

7 and 1/ therefore satisfy the conditions of the ji,(M) maximization giving

(M) 2 1/6 = p(M).

Combining the above claims gives the following inequalities.
(M) 2 ps(M) = [,(M).

But any z and 4 achieving the maximum for ji,(M) also satisfies the conditions of i,(M),

and therefore

fis(M) 2 fis(M).
>
In the p case no conditions on the solutions of the maximizations being finite are
required. This is not so for u,(M) as can be seen in the following example. If u (M) is
not finite, the value of u,(M) implied as a result of the maximizations can be arbitrarily

bad. To illustrate this consider

a0
M—[lo], a>1

with block structure (1,1) and I, = {1}, I, = {2}. Define z = [z, z5]7. Consider the
fs(M) maximization in this case:
|| = ||laz,
D) = w4 | Tl = Tl

ilizlf=1
' llz2lly = [zl

The only way to meet the first constraint is to make z; = 0. This implies then that
||z2]| = 1. The only way to achieve the second constraint is to set ¥ = 0, implying that
py(M) = 0.

Consider A € A,

6 0
s[5 )
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with |6;] < 1 giving A € B A. Examine the condition det(] + MA) = 0 for this A.
al 61 0
o 14135 )
1 + 61(1 O
o ([0 3)

=0 (6.9)

det(I + MA)

1l

If § = —1/a, |6;] < 1 and Equation 6.9 is satisfied for any value of §;, including é§; = 0,
implying that p,(M) = oc.

Now consider ji,(M) for this example. The first constraint of Equation 6.6 will be
met for every z,, and by choosing z2 = 0 the second can be met for any v implying that
fis(M) = oo.

This example will be reconsidered in Section 6.5.2 in light of the following geometric

interpretation.

6.3 A Geometric Interpretation

The numerical range, or field of values, of a Hermitian matrix N is defined as the set
{z* N2 ] 2l =1} (6.10)

A generalization of the numerical range is the following. Consider m Hermitian matrices
N;, ¢t =1,...,m of dimension n X n. Define a vector valued function of £ where each

component of the vector v is given by
vy = z*N;z.

Define as the generalized numerical range, the range of this function when the domain

is restricted to ||z|| = 1:
W(N1,...,Np) = {x/ | v; =z"Niz, ||z|| = 1} .
The following lemma is proven by Fan and Tits [25, 26].

Lemma 6.5

Ifm< 3, orm =23 and n > 2, then W(Ny,...,Ny,) is a convez set.
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The convexity of the m = 2 case was proven by Doyle [7], and in a different context, by
Householder [27]. The proof of the m = 1 case is due to Hausdorff 28], and dates from
the introduction of the numerical range by Toeplitz [29].

Now consider the application of the numerical range to the y,(M) problem. Define
Ni(a)
N(a) = :
Nen(a)

where a € R, a > 0, and

Note that each N;(a) is still Hermitian. The numerical range of N(a) is defined as W(a):

W(a) = {V

vi = 2*Ni(e)z, ||zl = 1} .

For each a, W(a) is a set in R™. For m < 3 this set is convex as the above construc-

tion guarantees that n > m. Define ¢(a) as the minimum distance between W{(a) and

the origin.
() = min { ||v]| |» € W(a)}

Lemma 6.6

If po (M) is finite, c(ps(M)?) = 0, and for all @ > p,(M)?, c(a) > 0.

Proof of Lemma 6.6: Assume Z is a solution to the u,(M ) maximization of Equa-

tion 6.5. Then

|R:Z|| = ||R:M3z|, i€l
|R:z|lus(M) = [|R:iMz||, i€T,.
Now
(us(M)?) = min {[Ivl | = 2" Ni(us (M)}
m 1/2
= min z*N; )z)?
= uzu=l{(,§( Ni(us(M)*) ))) }
m 1/2
< (Z(E‘N.-(u.(M)’)f)’)) .
=1
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However,
| Riz|? ~ |\RiMz|?, i€,
|Riz|Pus(M)? — ||R:ME|?, i€,
= 0 (6.11)

2" Ni(ns(M)*)z

and so ¢(p,(M)?) = 0. To prove the second part of the lemma, assume that for a
particular o, 0 € W(a). This implies that there exists an z, denoted here by %, such
that

#*Ni(a)z =0, t=1,...,m.
Therelore,

1R:2))* — | B:M2|*

il
i
-,
m
o

|Riz||*a - |RiME|* = 0, i€l
which implies that

|| R:z|

= ||RMzl, i€,
|Riz|le}? = ||R:iM3|, ieT,.

al/? is a feasible point of the p,(M) maximization of Equation 6.5 and so

a2 <p, (M) =  a<p,(M)>

Corollary 6.7
If us(M) is finite,

ue(M) = inf {1 | 0 ¢ W(p)for all § > a}.

The calculation of us(M) can be formulated as a search over a. Before proceeding

with an algorithm, it is necessary to investigate several properties of c(a).

Lemma 6.8

c(a) is continuous and for all a € R, s € R, with s > 0,

c(a+s)<Lcla)+s.
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Proof of Lemma 6.8: Define ¢(z,a) as a vector valued function of z and a:
¢i(z,a) = =" Ni(a)z,||z]|=1l,a€R i=1,....,m
Then
(@) = min|éi(z, a)]|

The norm is a continuous function of its argument, ¢(z, @) is also continuous, and as the
domain z, ||z|| = 1, is compact, ¢(a) is continuous.

Consider

1/2
c(a+s)= ” H-— {(Z( *Ni(a + s)x)2) } .

Define the vector valued functions A(z,a) and B(z) b
Ai(z,a) = z"Nya)z
and

Bi(z) = z6(i)Tx where s(i)=14 > ‘€%
1, 1€ I,
Then
z*Ni(a + s)z = Ai(z,a) + Bi(z)
and
clat+s) = mm |A(z, a) + sB(x)||

ll=ll=1

min {ll4(z, o)) + s B@)}-

IN

Note that -
1B(2)ll < llzff =1,
implying that

clats) < i, {llA(z, @)|| + s}

ﬁm {llA(z,a)ll} + s

= c(a)+s.
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6.4 An Algorithm for p, (M)

Corollary 6.7 and Lemma 6.8 suggest an algorithm for the calculation of u,(M). This is
the same algorithm as that presented by Fan and Tits [9]. The proof of convergence is
also identical but is included here for completeness. This algorithm actually calculates
fs(M). The assumption that p,(M) is finite is disguised in step i.

6.4.1 Outline of the u,(M) Algorithm
Algorithm 6.9 (u,(M))

i) Setag > ps(M)>.

i) ajy1 = aj —c(aj).

it1) j=73+1. Go to step ii.

Theorem 6.10

The sequence {a;} generated by Algorithm 6.9 is monotonic nonincreasing and
lim a; = l‘a(M)z‘
j—o0

Proof of Theorem 8.10: If a; > u,(M)?, then ajy1 > u,(M)?% To show this,

consider the means of obtaining a;4; (step #i of Algorithm 6.9).

a; - c(a;)
a; — e(a; — us(M)? + py(M)?)
a; — c(ps(M)?) + ps(M)? — a; by Lemma 6.8

aj+1

1l

v

> pa(M)P as c(p(M)?) = 0.

Given, by step i of the algorithm, ag > u,(M)?, then o; > u,(M)? for all 5. The
sequence is monotonic nonincreasing as ¢(a) > 0 for all a € R. The algorithm therefore

converges to a limit, denoted here by a, satisfying
&> p, (M) (6.12)

Taking the limit of step #i, and noting from Lemma 6.8 that ¢(a) is continuous, gives
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a=a-—ca).

This implies that ¢(@) = 0 which by Lemma 6.6 implies that & < p,(M)?. Combining
this with the inequality of Equation 6.12 gives the desired result. >

It should be noted that for @ < p,(M)? it is not necessarily true that 0 € W(a).
This may make the choice of ap difficult. In the case where I, = @, p,(M) = u(M), and
the obvious choice is the upper bound: ag = omax(M)2.

When p,(M) is not finite, it is not possible to choose ag. If ag < ps(M)?, the
algorithm may converge to an incorrect finite value. The examples demonstrated in
Section 6.5.2 have this unfortunate property.

Algorithm 6.9 disguises the difficulties in the calculation of ps(M). These difficulties

are identified in the next section.

6.4.2 On the Calculation of ¢(a)

Critical to Algorithm 6.9 is the calculation of ¢(a). This is still an unsolved problem. It

is, however, easy to calculate the following:
c'(a) = min {||u|| ‘ Ve co[W(a)]} .

The following algorithm, due to Gilbert [30], will calculate ¢/(a). This algorithm is
discussed by Doyle [7] and Packard [10], both of whom provide a proof of convergence.

In the discussion below the index j will denote iteration number.
Algorithm 6.11 (¢'(a))

i) Select any vy € co[W(a)]. Any choice of zo, ||zo|| = 1, will give a suitable vy by

v; = z5Ni(a)zo.
i) Given v; € colW(a)], find 7; € W(a) minimizing < v;,v; >.
#11) vj41 = min{co[v;,7;]}. Clearly vi41 € co[W(a)).

i) j=7+ 1. Go to step ii.
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Step 11 of the algorithm is now considered in greater detail. The iteration index
j is dropped for clarity. The index i will be used to denote the :*P component of v:

v; = 2* Ny(a)z.

min < v, 7 > min ZV,V‘
fi=ll=1 li=ll=1;

]
b
S
H
2
=
Q

~—

2]

= Hﬁigl z* (Z V.'N,'(a)) z

=1

This is achieved for any unit norm z corresponding to the minimum eigenvalue:

Ymin (‘Z: V;N,-(a)) .

Unfortunately for 0 € co[W(a)],

limv; =0 = hm (ZU,N (a)) = 0.

oo 1=1

As j — oo, and a approaches pu,(M)?, the algorithm requires finding the eigenvector
corresponding to the minimum eigenvalue of a matrix which is itself approaching zero.
This is numerically poorly conditioned, and this algorithm will not reliably give z; as

j— oo.

6.4.3 An Imperfect Algorithm
Using ¢/(a) instead of ¢(a) gives the following algorithm.
Algorithm 6.12
i) Setag > us(M)>%.
i) aj = a; - d(a;).
iti) j=j+1. Go to step ii.

In certain cases this will still yield the correct value of u,(M). The following results

are immediate.
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Theorem 6.13
If us(M) is finite and '(a) = ¢(a) for all & € R, then Algorithm 6.12 converges to

sy (M)H2.

Proof of Theorem 6.13: Substitution of ¢(a) for ¢/(a) in Algorithm 6.13 gives
Algorithm 6.9. Theorem 6.10 then gives the result. >

Lemma 6.14

If W(a) is convez, then ¢'(a) = ¢(a) for all a € R.
Proof of Lemma 6.14: If W(a) is convex, then co[W(a)] = W(a). >

Lemma 6.15
If us(M) is finite and m < 3, Algorithm 6.12 converges to u,(M)?.

Proof of Lemma 6.15: By Lemma 6.5, if m < 3, then W(a) is convex. Lemma 6.14
and Theorem 6.13 then give the result. >

The above supports Doyle’s [7] result that u(M) can easily be calculated for m < 3.
The fact that this is also true for p,(M) is hardly surprising as u,(M) can be iteratively
calcnlated from u(M). Note that a particunlar type of nonconvexity is required in arder
for Algorithm 6.12 to fail to yield u,(M)?. More specifically, Algorithm 6.12 will converge
to a value strictly greater than u,(M)? only if there exists @ > pu,(M)? for which 0 €
co[W(a)].

Fan and Tits [9] show that in the pu(M) case, the existence of a halfspace containing
W (u(M)?) is equivalent to the existence of D € D such that

. -1y __
jnf Gmax(DMD™) = p(M).
Section 7.5.1 will give a similar result relating the existence of the halfspace to the
existence of a saddlepoint of the Lagrangian for the model validation problem.
6.5 Numerical Examples

6.5.1 A Geometric Example of (M) and p,(M)

To illustrate some of the geometric concepts consider the following system.
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0.05-0.5: 1.04+: -0.1+0.25
M= 05 075+05 05 (6.13)
1.0 — 0.25i 1.0 -0.5+1

and a block structure of (1,2). Two cases are considered:
i) I, =0. T, = {1,2}. This is simply u(M).
i) I, ={1}. I, = {2}.

The boundaries of W(a) for a = 0, 1, 5.6, 15, and 20 are plotted in each of the
figures. The algorithm for plotting the boundaries of W(a), for m = 2, is given in
the next section. Figure 6.3 shows these boundaries for the first case. In this example
u(M)? = 5.6 and, as expected, the curve labeled W(5.6) passes through the origin.

Figure 6.4 shows the boundaries for the second case. Note that for I, = {1},
ps(M)? = 15, and the curve labeled W(15) passes through the origin. The o = 1
curve is actually identical on both plots as for I, # @ the assumed scaling is one. This is
difficult to see as Figures 6.3 and 6.4 use different axis scales.

15 W(20) :
10 -...Mm<:

v2

a4

N

sL. W8
ol W) _
~
W(0)
-5
-5 0 5 10 15 20 25

vl

Figure 6.3: Boundaries of W(a) for @ = 0, 1, 5.6, 15, and 20. I, = 0. (u(M))

6.5.2 The Pathological Example Revisited

Consider again
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Figure 6.4: Boundaries of W(a) for a = 0, 1, 5.6, 15, and 20. I, = {1}
M= [‘1‘ g], a>1
with a block structure (1,1) and I, = {1}. For this example the sets W(a) are simply
intervals. W(a) will be examined for a = 2. Figure 6.5 shows the boundary of W(«a)
plotted for & = 0, 1, and 5. Note that 0 € W(0) and for & > 0, 0 ¢ W(a). The v, = 0
axis gives all solutions meeting the second (I,) constraint with equality. Note that for
all @ > 0, this axis intersects W(a) in a region where 1; < 0. The z giving these points
satisfy the first constraint (I,) with a strict inequality. Observe that such a region can

always be found. As & — oo the only v in W(a) with »; = 0 is the point » = [-3 0]7.

6.5.3 Algorithm to Plot the Boundaries of W(a)

The algorithm to plot the boundaries of W(a) when m = 2 is that used by Fan and

Tits [9]. It is given here for completeness.
Algorithm 6.16 (W(a) Boundary)
i) Set 8 = 0 and choose K to be a large integer.

i1) Select z, any unit norm eigenvector corresponding to

Ymin [c0s @ N1(a) + sind Ny(a)].
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Figure 6.5: Boundaries of W(a) for a =0, 1, and 5. I, = {1}. (a = 2)
i) Set

_ | #*"Ny(a)z
V2= [z*Ng(a)z]'

iv) If@ # 0 draw the line segment vy v3.

If6 > 27 stop.

v) Setvry =1y, 8§ =0+27/K. Go to step ii.
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Chapter 7

A General Interconnection

Structure

A more general (P,A) interconnection structure, one in which known inputs and outputs
are included, is now presented. Several problems can be posed with such a structure;
i, its, and model validation are examples. It is shown, by treating the model validation
problem as an example, how the general problem can be reformulated using the gener-
alized numerical range of Chapter 6. The convexity properties of the numerical range
are then inherited by each of the subproblems. The geometric framework also gives an
interpretation of the existence of a Kuhn-Tucker saddlepoint. For the model validation
example, this framework is used to determine the conditions under which a saddlepoint
will always exist.

The discussion of the interconnection structure and the resulting problems is appli-
cable to general systems of matrix operators. However, the specific results applying to
the model validation problem will assume a constant matrix problem with a minimum

|lw|| objective.
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7.1 Formulation of the General Problem
7.1.1 Interconnection Structure

Consider all possible classes of inputs and outputs used in both u and model validation

problems. These are:

v Inputs from the A block. These are signals internal to the
model.

z Outputs to the A block. Again these are internal to the
model.

w Inputs to the system which are known to have bounded

norm. These can have physical meaning: noise, distur-

bances, command inputs.

e Outputs from the system for which the norm is the quan-
tity of interest. These can be errors, actuator outputs,

and/or combinations of variables.
u Known or measured inputs to the system.

y Known or measured outputs from the system.

A general interconnection structure including all of the above listed inputs and out-
puts is shown in Figure 7.1. The notation N;; is used to represent the elements of the
interconnection structure in order to avoid confusion with the subblocks P;; introduced
in earlier chapters.

It is again assumed that each of the m perturbation blocks is a square norm-bounded
matrix operator. In the discussion that follows, when both e and w are present in the
model, it will be assumed that dim(e) = dim(w). This is without loss of generality as
the interconnection structure can be augmented with zero inputs or outputs.

Chapter 6 introduced the consideration of norm constrained problems in which cer-
tain of the norm relationships are fixed and others are allowed to scale in an optimization
problem. The general problem presented here is simply the u, problem with an addi-

tional constraint imposed by the input v and output y.
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N1 Niz Ni3
e «——— Ny Np; Ny3 fe———w

Yy «—— N3 N33 N3z f&—— u

Figure 7.1: The General Interconnection Structure

Consider the norm relationships implied by Figure 7.1. Again the vector z is defined

as z = [vT wT)T.

HoillS: < ‘([Nn Ni2 N13][Z]).u, t=1,...,m. (7.1)
lwl[Sm+1 < {[N21 Naoz Nog] [ z ] ” (7.2)
y = [Na N3 Nsa][i} (7.3)

where §; represents a general scaling.

The integers 1,...,m + 1 are divided into two disjoint sets: I, and T, where I, may
be empty. As in Chapter 6 this will allow one of the norm relationships of Equation 7.1
or 7.2 to be considered as a maximization ob jective and the remaining norm relationships
to be considered as constraints. For ¢ € I, the norm relationship is assumed to be fixed
and, without loss of generality, is assumed to be unity. For i € T, the norm relationships
will be scaled, and, consistent with Chapter 6, the variable v will be used as the scaling.
In terms of the general scaling S introduced above,

S = 1 forie-fi
v foriel,.
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Again R, is defined as the projection from z to the components of z corresponding
to the itk A block. However, in order to discuss the problem in the most general manner
R; is defined for ¢ = 1,...,m + 1. Contrast this with the definition used throughout
Chapter 3 (Equation 3.3). For the remainder of this chapter R; is defined by

R; = block row(0y,...,0i—1, 1,041, - -, Om+1),

where the row dimension of all blocksis k; if i = 1,..., m and equal to dim(w) if i = m+1.
The column dimension of the j*B block is equal to k; for j = 1,...,m and dim(e) for
j=m+1.

A two element vector notation, similar to that in Chapter 3, will again be adopted

to identify certain components of [z e y]T. The notation is as follows:

[ h

Rz = v; and [R;O]Nz =2z, fori=1,...,m,
[ 2] .

Riz=w and [R;O]N u =e fori=m+1,
L ]

z
and [0 I}N[u} =y.
As in the model validation problem, it is possible that there is no z such that

y = [o I]N[z]

[ Na N32N33][ }

1

Define X, as the set of all z meeting this equality constraint:

xo={z|v=[o1]n]z]}.

When this problem framework is applied to the model validation problem, this definition

of X, will coincide with that of Equation 3.12. It will also be required that there exist
an z € X, such that the norm conditions corresponding to i € I, are satisfied. More

formally, z will be called “feasible” if ¢ € &, and

I1R:zll < |[ B: O]N[z] , i€l
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The formulation of a meaningful optimization problem requires the existence of at least

one feasible z.

The general problem to be considered is the following.

Problem 7.1

If there erists at least one feasible z, then compute the following quantity:

.

YT

\

Supﬁ'r

| Riz|| SIHR‘ o|¥[z u]T el

| Rizlly < “[Rf 0|N[2 uﬂ!,ie'f:

y — [0 I]N[:c u]T

)

v’

J

If the input-output constraint of Equation 7.3 is dropped, then Problem 7.1 rem-

iniscent of u,(N). The following section will discuss some of the problems that this

framework can be used to address.

7.1.2 Applicable problems

A series of problems can be posed for the structure depicted in Figure 7.1. The following

distinctions and nomenclature are somewhat arbitrary but serve to illustrate the range

of problems that this framework will address.

It is important to note the distinction between an input or output being equal to

zero or being absent. For example y = 0 imposes as much of a constraint on the problem

as any other value of y. However, y being absent poses no constraint.

i) Given measured inputs u, outputs y, and ||A|| < 1, what is the mazimum gain from

w to e (|le]l/]|w]|)? This is Problem 7.1 with I, = {1,...,m} and I, = {m + 1}.

Without the y and u constraints, it would be possible to assume that either ||e]| = 1

or |jw|]| = 1 and pose the question as a worst case output or minimum norm input

question. This may no longer be true in general.

ii) The signal e is absent, and y are u are known outputs and inputs. w is known to

be bounded. This is the model validation problem. Three cases serve to illustrate

the range of possible subproblems.
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(a) ]|Al} € 1. This is the minimum |{w|| problem considered in detail in Chapter 5.

This can be formulated as Problem 7.1 where I, = {1,...,m}.

(b) |lw]] £ 1. Again a Problem 7.1 arises with J, = m + 1. All A blocks scale

equally and the minimum ||A[| solution will be found.

(c) I, is any other subset of {1,...,m + 1}. The previous two cases can be con-
sidered as extremes of the more general problem. Considering the model vali-
dation problem as a constrained p, problem allows the choice of the ||A;]| < 1

assumption to be placed on any subset of {1,...,m}.

A particularly relevant subproblem is then, given a selected A;, what is the min-
imum ||A;|| such that ||A;]] < 1, 7 # 4, |lw|| £ 1, and the observed datum is
accounted for? This is a powerful tool for the identification of systems modeled

with F,(P, A) models.

iii) The signal w is absent. Given measured inputs (u) and a measured part of the
output (y), what is the worst case e that can arise from ||A]| < 1% This formulation
can be used to study worst case internal variables given an observed input and

output.

iv) The signal y is absent. Given a known part of the input (u), and an unknown
bounded part (w, |jw|| € 1), what is the worst case e? This is simply a p problem

(or more generally a p, problem) with part of the input known.

v) The signal u is absent. This is again a worst case error question where part of the

output (y) is constrained.
vi) The signals u and y are both absent. This is the usual p (or p,) formulation.

vii) Both e and w are absent. The problem becomes, what is the minimum ||A|| that

can account for the observed datum (y and u)?

The above list gives an idea of the type of problems that can be posed in this frame-
work. It should be noted that whenever y and/or u are present, there is an equality
constraint upon z. In the constant matrix case, the equality constraint will be reformu-

lated to give a subspace constraint on z. Unfortunately, the subspace constraint alters
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the characteristics of the associated optimization problem. In Chapter 6 it was shown
that for finite u,, the maximization problems fi, and ji, were equivalent. When a sub-
space constraint is imposed, this is no longer true. The norm inequalities arising from the
A blocks might not be met at their boundaries (for ||A;]| = 1). It is for this reason that
less than or equal to signs were used in the formulation of Problem 7.1. In the constant
matrix case, Problem 7.1 is therefore more closely related to fi, than to p, itself.

In some cases certain of the signals are absent, the signal ¢, for example, in the model
validation problem. This will often change the nature of the problem formulation. How-
ever, the techniques used here in considering the general problem will still be applicable.
Section 7.3 demonstrates this for the case of model validation.

The next section will demonstrate a means of reformulating Problem 7.1 in order to
replace the equality constraint by a subspace constraint. For the model validation case

at least, this leads to a solution via the geometric framework of Chapter 6.

7.2 Reformulation of the General Problem

Problem 7.1 is similar to the u, problem of Chapter 6. The differences are the imposition
of the equality constraint and the inclusion of u in the norm constraints. This section
will introduce a reformulation of the problem which will allow the geometric analysis of
Chapter 6 to be applied to the model validation problem.
Consider the equality constraint imposed by y and .
y=[N31 NazNaal[z]- (7.4)
This vector constraint will be replaced by a subspace constraint plus a scalar equality
constraint. The method used is similar to the reparametrization of Section 3.2.1. The
details presented here are applicable to constant matrix problems; however, the principles
used in this formulation can be applied to more general systems.
Denote by V an orthonormal matrix of basis vectors for the kernel of [N3; N3,).

Choose zg as the solution to Equation 7.4 with zg orthogonal to V. Define the subspace
X by

X = span{zo, V},
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then z satisfies Equation 7.4 if and only if z € X and < zo,z > = ||zo]|>. These
constraints will now be applied to the problem.

Now cousider the system shown in Figure 7.2. Note that dim(§) = 1 and dim(a) = 1.
Furthermore, if § = 1, then < zg,z > = ||zo||>. If in addition z € X, then the output
equality constraint is satisfied. Note also that if & = 1, then Ny3u@ = Nj3u (and similarly

for Nazu) and the effect of the input on z and e is correct.

A

Am

Ny N2 Nysu fe

€ ¢——f N21 Ngg Nzgu | o me——— T )

go— z5/llzoll® 0 p——a

Figure 7.2: The Generic System with a Reparametrization to give Scalar Constraints

It is possible to at least guarantee that § = & by closing the loop from § to #. Doing
this results in the following system:

F = Nu Ny 1 | Nyzuzg
Na1 Na; [|lzol|? | N2auzg

with inputs v and w and outputs z and e. This allows Problem 7.1 to be cast into

the following problem. Note that the equality constraint has been replaced by a sub-
space constraint and an equality constraint on z, and that u no longer enters the norm

constraints directly.
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Problem 7.2
If there exists at least one feasible z, then compute the following quantity:
1Rzl < RNzl i€ 1,
sup ; o
i |Rizlly < ||RiNz||,i€ 1,

subject to z € X and < zg,z > = ||z0]|?.

Although the constraint < zg,z > = ||zo||> appears to be as restrictive as the original
constraint, it will subsequently be seen that it is only important that < z¢,z > # 0.

The equivalence of Problems 7.1 and 7.2 is formally stated and proven in the following

theorem.

Theorem 7.3

Problem 7.1 is equivalent to Problem 7.2.

Proof of Theorem 7.3: Consider every feasible z for Problem 7.2: z € X,

< 20,z > = ||ol|?, and

| Riz||

IA

|R:Nz||
Nu Ny 1 | Niauzg
= {|R; z+ - z
(Lo =+ o v )
= IR Ni11 Ny Nis z
*\| Na1 NaaNog || u

= [&o]w]z]

Note that z € X, iff z € X and < zo,T > = ||z0||? and so every feasible z for Problem 7.2

is also feasible for Problem 7.1. The converse is true as the right hand sides of the norm

inequalities shown above are in fact equal. Furthermore, by the same manipulations,

swp {7 |IRally < |Ria| } = sup {7 IRizlly < | [ & o]NH } :
5 v u
z feastble r feasible
and so a candidate (v,z) for one problem is also a candidate for the other. >

A function ¢,(M, ') is defined and used to attempt to solve Problem 7.2. ¥,(M, &)
is simply the fi,(M) maximization (or supremum in the general case) with the additional
constraint that z € X,

Deﬁne
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{

0 if {z|z€x,||Ral| < ||RiMzl,i€ L}=0
otherwise
Yo (M, X) = 4 (7.5)
|Riz|| < ||RiMzl|, i€ I,
sup {7
| i |Rizlly < |[RiM=], i € T,

The function ¥,(M,X') has been defined such that ¥5(N,X) is a bound on the solution
to Problem 7.1 or Problem 7.2. The following theorem states this and also gives sufficient

conditions for the bound to be exact.

For notational convenience define 7o as the solution to Problem 7.2 in the case that

a feasible z exists:

|Riz|l < ||[R:iNz|l,i€ 1,
Yo = su ) _
ToeX | Rizlly < ||RiNz||,i€ I,

<zo,2> =||zol[?
Theorem 7.4
If there ezists a feasible z for Problem 7.2, then

d’s(ﬁsx) Z Yo-

Furthermore, if there ezists an = achieving the supremum for ,(N, X) defined in Equa-

tion 7.5 such that < 29,z > # 0, then
d)a(fva X) = “Yo-

Proof of Theorem 7.4: By the hypotheses of the theorem there exists a sequence
zx, k = 1,...giving the supremum of Problem 7.2 such that z; € X, < 2o,z > = ||z0||?,

and

| Rizill < |R:iNzell, i€ L.
Define

1(zr) = sup {7 | |Rizlly < | RN 2] i € L},
then, for this particular sequence zg,

Jim 7k(zx) = Yo
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Now define a sequence <, k = 1,... by

Tk
llzkll

Then ||z§]l = 1, z} € &, and

zp =

1Rizill < |R:Naill, i€ L.
The sequence z} therefore satisfies the constraints of the 9,( N, X) optimization and

Jm sup {7 || Rizilly < |R:Naf], i € 1,}
00 e

lim sup {7 ‘ | Rizklly < || RiNzk||, i € I,}
k—00

Iim Y:(zx) = 7.
k—rc0

Therefore, (z3,7£(zx)) is a candidate sequence for the (N, X') optimization, giving the

same supremum (7o), implying that

’/’s(N’X) 2 Yo-
To prove the second part of the theorem, consider the z achieving the supremum of
¥,(N,X). By hypothesis z € &, ||z|| = 1, < Zo,2 > =8 # 0, and

|Rizf < ||RiNz|l,i€l,
[ Rizllwe(N, X) < |[RiNz|,ieT,

Choose z; as

ol
: 9
then z; € X, < 9,25 > = ||zo||?, and z, still meets the above norm constraints. z, is

therefore a feasible z for Problem 7.2, and (z,,¥5(N, X)) is a candidate (z,y) pair for
the optimization of Problem 7.2 implying that

d’a(ﬁax) < Yo-
>
It will be seen that when this framework is applied to the constant matrix problem,

the sufficient conditions of Theorem 7.4 (z achieves the supremum for ,(N,X) and
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< zg,z > # 0) will always be met. A large part of the reason is the restriction to the
constant matrix, and hence finite dimensional, case.

In many problem applications some of the signals shown in the general interconnec-
tion structure (Figure 7.1) are not present. In the model validation problem, for example,
there is no signal e. Without this signal the number. of block inputs is not equal to the
number of block outputs. A fictitious input or output (in the case of model validation)
must be included to formulate the problem in the manner described here.

An additional problem can arise in the method of finding a solution to the general
problem. The function 4, has been defined as the solution to an optimization problem.
It will subsequently be seen that, in the constant matrix case, 9, is ideally suited to
calculation via the geometric framework presented in Chapter 6. However, calculation of
1, may yield a maximizing Z such that < zo,Z > = 0. In this case v, is only an upper
bound to the desired v¢ of Problem 7.1 or Problem 7.2.

In at least the case of model validation there is a choice of fictitious output which

will always ensure that < zo,Z > # 0 if the problem does indeed have a finite solution.

7.3 Application to the Model Validation Problem

In this section the general interconnection structure and reformulation of Section 7.2 will
be applied to the constant matrix minimum ||w|| problem.

As discussed above, a fictitious output must be added to the interconnection structure
before the model validation problem can be considered in the general framework.

The general interconnection structure is defined by the following.

[N11 Nig Ni3] = [P11 P12 Pis)

[Nag Naa Nog] = [[:ca/ﬂzz(,”?] 0]

[N3y N3z Naz] = [Py P Ppa]

where Z is a block of zeros of dimension dim(w) — 1 X dim(z). The first element of the
output e in the general interconnection structure is now made equal to § of Figure 7.2.

The block of zeros Z is simply appended to satisfy the assumption that dim(e) = dim(w).
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The removal of the equality constraint by the reparametrization to form § and 4 and

then closing the loop between § and 4 results in the following system.

Pll P12 -
F o= |ag/llzol? | + 12[“3"’”"]
; ol | 0

(7.6)

Now consider the minimum ||w|| problem studied in detail in Chapter 5. For the
equivalent %, problem choosc I, = {1,...,m} and I, = {m + 1}. Thc main result is
given in the following theorem. The terms “(w,A) is feasible” or “z is feasible” will both
be taken to mean that the z (and equivalently the associated w and A) satisfy the norm

constraints arising from the A blocks:
|Riz|| < ||R:iNz|, i=1,...m
and the equality constraint

y:[N31N32N33][ ]

T

u

This definition of “z is feasible” is consistent with that used in Problems 7.1 and 7.2.
Theorem 7.5

Consider the minimum ||w|| model validation problem (Problem 3.3). Consider also

¥5(N, X) where N is defined by Equation 7.6, I, = {1,...,m}, and I, = {m + 1}.
I p(Pr) < 1 and $,(F, %) =0,

then no feasible (w,A) ezists.
If p(Pr1) < 1 and 4,(N,X) > 0,

. 1
then min Jw| = -—m—r.
z feasible ¢3(N, X)

The proof of Theorem 7.5 will require a preliminary lemma. Before considering the
lemma or the proof, some points are noted in the following remarks.

Note that as robust stability of the model is assumed (u(Py;) < 1), the above theorem
covers all cases of interest.

In the constant matrix case considered here that for each ¢ € I,, the set of z meeting

the constraint
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| R:z|l < [|R:Nzll

is a closed set. The set of all feasible z is therefore a finite union of closed sets and
consequently is itself closed and bounded (]jz]| = 1). Therefore, there will always be a
feasible z achieving the supremum of the 4,(N,X’) optimization.

Although the maximizing z will always be feasible, it may still occur that Yo(N,X) =
oo. Clearly, this will happen if and only if there exists a feasible z such that

|Riz|| =0 forallieI,.

In the model validation problem this simply, says that there exists a (w,A) pair satisfying
the constraints with w = 0. In other words, the perturbation uncertainty alone can
account for the observed input-output datum.

Recall from Theorem 7.4 that 1, will solve the general problem (Problem 7.1) if
there exists a feasible z achieving the supremum of 1,(N,X) with < zg,z > # 0. The
consideration of the constant matrix case has guaranteed that the maximizing « exists.
The following lemma will show that the construction of N for the model validation

problem guarantees < zg,z > # 0 for every feasible z for which
[[Riz|| < ([R;Nx”, i€ 1,
This argument will be made more rigorous in the proof of Theorem 7.5.

Lemma 7.6

In the case where u(Py;) < 1 and ¥,(N,X) > 0, if z € X satisfies the norm con-

straints,
|Riz|| < |]R.-Nz||, i=1,...,m (7.7)
|Rizlly < ||RiNz|, i=m+1,y>0, (7.8)

then < zo,z > # 0.

Proof of Lemma 7.6: Assume the contrary: consider a feasible z for the model
validation optimization (z € X and Equation 7.7 satisfied) for which < zo,z > = 0.
Equation 7.8 implies that
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< Zo,T >
llzol[?

lwlly <

0

By assumption ¥ > 0, implying that w = 0. Note that in this case ¢,(N,X’), which is
bounded below by the supremum of the above over all v, would be infinite.

Consider the resulting input-output relationship for N with this choice of z.

P P
Z - Z:}llzoﬁg + 1 Plauza
0 Mool ) + gz | o
[P Py
= | z3/llzo|® |z as < zo,2>=0
| A

_ [ Pv _tol v
=[] e o] i
This implies that there exists v such that

[[Riv|| £ ||RiPuv|| foralli=1,...,m

which contradicts the stability assumption for Piy: p(Pry) < 1. >
The reason for the choice of z3/||zo||?> as the only nonzero component of the fictitious
output is now clear. This choice ensures that < zq,z > # 0 satisfying the sufficient
condition for 4,(V, X) to solve the general problem. The details of this are now presented
for the model validation problem.
Proof of Theorem 7.5: Consider the case where ¢,(N ,&) > 0. To show that
1
Yu( N, X)

consider z € &, ||z]| = 1, meeting the constraints

min ||wf] <

|Rizl| < |RiNz)l, i=1,...,m (7.9)

| Rizll$s(N, X) < [[RiNz||, i=m+1. (7.10)
Now

BN = L2022 |

llzoll*
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and by Lemma 7.6, all feasible z meeting the constraints of Equations 7.9 and 7.10,

< ZTg, T >
llzoll?

Define

=60 #£0.

1
Ty = ‘52, and Ws = Rm+ll‘3.

Then < zo,2zs > = ||20||?, 25 C X, and, as the norm constraints of Equation 7.9 are
invariant to a scaling, z, is feasible. Therefore, w, and an associated A are also feasible.

Now from Equation 7.10, which is satisfied for z,,

. . ~ < ZTo,Ts >
| Rm4125[|1s(NV, X) = ||ws]|$0s( NV, X) < || Rmy1 Nzsl] = _Tl'oz—(;'ﬂi— =1 (7.11)

If ¢,(N,X) = oo then ||w,|| = 0, directly implying that

min  |lw|| = 0.
z feasible

This is consistent with the formulation used in the theorem;
) 1
- it = S Ry

If, on the other hand, gb,(ﬁ ,X) < oo, then Equation 7.10 and consequently Equa-
tion 7.11 is satisfied with equality. If this were not so, then there would exist ¢ > 0 such
that 1,(N, X) + € still meets the constraint of Equation 7.10, contradicting the definition
of P, (N, X).

Therefore, noting that by assumption ¥,(N, &) > 0,

.
YoV, &)

and consequently

lJwsll =

min_ o]l € —=—.
z feasible ¢3(N, X)
Now to show that for ,(V, X) finite,
> e
¥s(IV, &)

assume that there exists a feasible (w,A). This implies that there exists an z such that

min [|w]|

Bzl < B[ Pr1 Paz ]z + Prau)|
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and
y - P23U. = [P21 ng ]I.

Consequently, z € X and < zg,z > = ||zo||?>. Now consider Nz.

z P P 1 Pyzuzy
g1 =11 z5/llzoll? +——-—-2-[ e °]
0 7 l|zoll 0

z=[ Py P2 )z + P,
the norm constraint imposed by the A blocks becomes
|Riz]] < ||R:iNz|, fori=1,...,m.

Furthermore,

< Zg,T >

§= =1
[lzoll?

which implies that
|Rms1Va]| = 1
and

1 .
|lRm+1$Hm = 1= |[|[RupNz|.

Therefore, = satisfies the norm constraints for a 1,(N, X') problem with v = 1/||w]|. =

can be scaled without changing the norm constraints allowing it to also satisfy ||z|| = 1

and z € X'. Consequently,

1 .
T S (N, A 7.12
”w" 8( ) ( )
implying that

ol :

> ——
(N, X)
for all feasible w and so

1

min ||w|| _>__ -_—
¥a(N, &)
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Combining the two claims gives, for the ¢;,( N, X’) case, the result that
1
bo(N, X)
To show that if 4,(N,X’) = 0, then no feasible (w,A) exists, refer to Equation 7.12.

min [|w] =

The argument preceding this equation gives a construction of a candidate z and v for
the ¥,(N, X) optimization. Equation 7.12 then applies giving the conclusion that if a
feasible (w,A) exists, then 9,(N,X) # 0. >

Theorem 7.5 shows that 1, has been defined such that 1/4,(M, X) is the answer to
the model validation problem. The following lemma shows that 1, can be bounded by
Ms-

Lemma 7.7

Ps(M, X) < po(M).

Proof of Lemma 7.7: If ¢,(M,X) = 0 or us(M) = o0, then the lemma is obviously
true, albeit vacuous. Therefore, assume t,(M,X) > 0 and u,(M) < oo. The first
argument presented will assume that ¢,(M, X’) < co. Consider any 7 and = meeting the

constraints of the 1, definition. Then
”R,‘I” < ”R,‘Mﬁt”, i€ I,
|Rizlly < |[RiMz|,i€T,

with 2 € X. v and z then meet the requirements of the fi,(M) maximization which is
equal to p,(M) if p,(M) is finite. This is true for all ¥ and therefore for ,(M, X).
Now consider the case when 9,(M,X’) = oo. The norm conditions imply that there

exists z and @; such that
—Riz=Q;Mzx

where

"Qz“ <1 1€ I,
”Ql“ < 7-11 t€ -I_s-
Choosing A such that A; = @; and stacking up each of the above equations into block

matrix form gives
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0.

il

(I +AM)z

But for 1,(M, X) = oo, the A such that det(I+AM) = 0is an element of BJA implying
that p,(M) = oc. >

7.4 A Geometric Interpretation

The previous section introduced the function v, and showed its relationship to the model
validation problem. As in the u and u, cases, a numerical range function can be defined
and used to develop a geometric approach to the problem. The convexity properties of

the generalized numerical range then apply.

7.4.1 A Numerical Range Function

The ¥,(M, X') problem (Equation 7.5) is considered for a general matrix M and subspace
X. It will be assumed in the notation used in this section that the general problem has
m + 1 norm constraints; in other words I, JT, = {1,...,m + 1}. To further avoid a
surfeit of notation, assume that Vy is an orthonormal matrix of basis vectors for the

subspace &', and for all £ € & there exists T, given by

z=Vyry. (7.13)

Note that for all ||zx|| = 1, z defined by Equation 7.13 has the properties ||z|| = 1 and
z € X. Define

Ni(e)
N'(a) = :
m+1(a)
where
VyRTRVxy —~V3M*RTR.MVy, i€,
Ni(e) =

oViRTRVy — VEM*RTR,MVy, i€l

The numerical range of N'(a) is defined as W'(a):

W'(a) = {v | v; = 2y Nj(a)zx, |22l = 1}
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The following lemma is immediate from Lemma 6.5 by noting that the numerical

range function W'(a) is defined by m + 1 Hermitian matrices.

Lemma 7.8

Ifm=1, orm £ 2 and dim(z,) > 2, then W/(a) is convez.

7.4.2 Properties of W/(a)

In the x and pu, cases, it was sufficient to consider the relationship between the numerical
range function and the origin. In the 9, case the maximization problem may only have
a solution with a strict inequality on one of the constraints. Consideration of the origin
is no longer sufficient; the quadrant where all components of v are negative must also be
included.

Therefore, define

v = {v

A lemma, analogous to Lemma 6.6 for the p, case, can now be proven.

V;SO}.

Lemma 7.9

For all a < ¢,(M, X)?,
W'(a)(v- # 9,

and for all a > (M, X)?,
W' (a)(v- = 0.

Proof of Lemma 7.9: Assume that Z is a solution to the ¥, maximization. Then

z € X and

1Rz
IRE|ws(M, X) < |IR:Mz||, i€T..

IN

\R:Mz||, i€l

As z € X there exists T, given by Z = VyZ,. Now consider # where

7; = LN (0s(M, X)?)Z ».
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Forie I
vi = EYWVRRTRVyZy -2 ,VsMRTRMVyZ,
= ||R:z|* - |R:Mz|?

0.

IN

Similarly, for the i € T, case,

1l

Vi | RiZ|[¢s(M, X)? - || RiMZ||?
< 0
and so 7 € v_. In the case where ¢ (M, X) = o0, #, = —||R;MZz||?, and the above

argument holds. This argument also holds for any a < ¥,(M, X )? as the same Z can be

chosen.
For the second part of the lemma, consider a such that there exists v € W'(a)Nv-.

This implies that there exists z, such that
zeNi(a)z, <0, i=1,...,m+1.
Choosing z = Vyz » gives
| Riz|” - [RiMz|> <0 i€l
Rzl — |\ R:M2|® <0 i€,
implying that
IRzl < |[R:iMz|, i€,

|Rizlla? < ||R:Mz|, i€T,.

By construction z € X and so z and a!/? are a feasible solution to the Ys(M, X)

optimization. Therefore, a < ¥s(M, ¥)2. >
Corollary 7.10

Ds(M, X) = 31;1;{ oM? | W'(B)Yv- = B for all # > o}
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Lemma 7.9 is somewhat stronger than Lemma 6.6 in that it provides a means of
determining if a < ¥4(M,X)?. On the other hand Algorithm 6.9. which gives u,, now
only gives an upper bound for ¥,(M, X’).

Using Algorithm 6.9 as a template, Corollary 7.10 could be used as the basis of an
algorithm to calculate ¥,(M, X’). To do this it is necessary to develop an algorithm to
determine the minimum distance between W'(a) and v_. This will be a future research

problem.

7.5 Relationship to the Lagrangian Formulation

Fan and Tits [9] show that the existence of a halfspace containing W (u(M)?) is equivalent
to the upper bound achieving .

. -1y _
J0f Omax(DMD™Y) = p(M).

A similar relationship exists for the model validation problem. It will be assumed

throughout that the model is robustly stable: u(FPy;) < 1.

The numerical range function W’(a), defined in Section 7.4.1 for a general matrix
M is now applied to N given by Equation 7.6. For the model validation problem I, =
{1,...,m} and I, = {m + 1}. The subspace X is parametrized by

Vy = [ _To_ V]
l1zoll
where zg and V are defined in Section 3.2.1.
The connection between the geometric formulation of ¢,( /N, X) and a Kuhn-Tucker

saddlepoint for the model validation problem (Problem 3.6) is investigated in the follow-

ing theorem.

7.5.1 The Existence of a Kuhn-Tucker Saddlepoint

Theorem 7.11

If (N, X) > 0, ¥,(N,X) < oo, and W'(¢,(N,X)?) is contained in a halfspace
defined by &,

HE={v|<&v> 20,620 np1 >0},



107

then the Lagrangian, L.(z.,)) (Equation 5.5), has a Kuhn-Tucker saddlepoint.

Proof of Theorem 7.11: This proof will proceed by deriving A and z, which will

then be shown to satisfy conditions i, i1, and it of Theorem 4.5.

m+1

<ELv> = ) Gy
=1
m+1

= 3 &NV, X))z

i1=1

But, using £ = Vyzyu,

ey NL 1 (Us(N, X))z

[ Rm1Varzl?$s(V, X)? ~ || Ry NV zx||?
lwl*a(W, X)* - {91,

and so

<&v> = Lnpa(lolP9e(F, X)7 = 917 + 3 &2iNi($s(N, X))z (7.14)

t==1

Define

_ &
B Em+1 ¢3(N’ X)Z'

This is well defined as by assumption hoth %,(N, X)? and £,.,4, are greater than zero.
Then

(7.15)

<&v>
£m+l ¢’(N 3 X)2

I S P |
= 1l P AN 02~ R

By Lemma 7.9 the sets v_ and W'(¢,(IV, X)?) have at least one element in common.

Denote one of these elements by 7. Then #; < 0 but the condition that

m+1
<&u>= Y & 20 forall v e W (y,(N,X)?)

=1
with §; > 0for i = 1,...,m and ,,41 > 0 can only be satisfied if for every v; < 0, the
corresponding &; = 0. Furthermore, this leads to

<&p>=0.

Now denote by Z, the z, such that



108
Dy = EyN[(¢s(N, X)) 4.

By Lemma 7.6

< fCQ, fox >

=6@ and @ #0.
lIZol|?

Define

It is claimed that (A,Z) defined by the above is a saddlepoint of the Lagrangian. To
prove this note that

< Zg, T >

i/ = =1
llzoll?

implying that Z satisfies the equality constraint, Z = zo + Vz..

Now
Le(xe,)\) = “w“2+z)‘igi(xe)
_ s> P
£m+l ¢J(N, "Y)2 %(N,X)z

But z satisfies ¢ = z¢ + Vz. if and only if § = 1 and = € X implying that

<€v> + 1
§m+1 "/)J(vi)z ¢J(N7X)2.

For all z. there exists a corresponding element of X: z.. Although ||z || may not be

Le(z.,A) =

equal to one, there exists a scaling a € R such that ||azy]| = 1 and the v corresponding

to this @z, is an element of W’(,(V, X)?). By the hypotheses of the theorem
<&v>2>0, wherey; = o’z N'(¢,(N, X))z,

and consequently
<&v>>0, wherev; = 23 N'(Y5(N, X))zx.

Noting that ¥,(N,X)? > 0 and £myq > 0,

1

Lc(zc, /\) > m

But Zy achieves < {,v > = 0 giving
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1

Le(i‘e, /\) = m

Therefore, Z, minimizes L.(z.,A) over all z, satisfying condition i of Theorem 4.5.

Furthermore, for ¢ = 1,...,m,

GEY = g N, X
= ||Rz|? - ||R:NzZ|
= |Riz|* = |R([ Puu P12 |z + Piau)||®
= gi(2)

= gei(%.), forz=1zo+Vz,.

Finally, #;.< 0 implying that ge.;,(£.) < 0 for i = 1,...,m. Condition #i of Theorem 4.5
is also satisfied.
To verify the complementary slackness condition (condition #ii) of Theorem 4.5, con-

sider 7; for i such that g.i(Z.) < 0.

1

gei(Ze) <0 = TH N (Ys(N, X))z < 0
= <0
= &=0
= \N=0

All three conditions of Theorem 4.5 are satisfied implying that (z,)) is a saddlepoint
of Le(ze, A). , >

A possible source of complication is the requirement on the halfspace H(£) that
€m+1 > 0. Note from Equation 7.14 that if {m41 = 0, then the functional f(z) = ||w||?
plays no part in the optimization. This case arises if z is specified by the constraints g;(z)
alone; there does not exist z such that g;(z) < 0, ¢ = 1,...,m. This is a pathological
condition which will always cause a problem for a Lagrangian formulation. The proof of
Lemma 7.13 will illustrate the effect of this condition.

Theorem 7.11 requires that ¢,(N,X) > 0. By Theorem 7.5, if ¥s(N,X) = 0, then
no feasible (w,A) exists. This condition then imposes no additional restriction on the

conditions under which a saddlepoint will exist.
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The case where ¥,(N,X) = oc must be treated separately. Fortunately this case
is even less restrictive than that considered in Theorem 7.11, as is illustrated by the

following theorem.

Theorem 7.12
If Yo(N,X) = oo, then the Lagrangian L.(z.,)) has a saddlepoint at X = 0.

Proof of Theorem 7.12: If ¢,(N,X) = oo, then there exists a feasible z such that
R;z = 0 for all i € T,. In the model validation problem this implies that there exists a
feasible z, denoted here by z, with R;Z = @w = 0. Define zZ. by Z. = zo+ V Z. It will now
be demonstrated, by testing the three conditions of Theorem 4.5, that the point (zZ.,0)
is a saddlepoint.

Note that for A = 0,
Le(ze,A) = ”w“2’

and for z., ||@||> = 0. Condition i is therefore satisfied. The fact that Z. is feasible
implies that g.i(Z.) < 0, i = 1,...,m, satisfying condition ii. The choice of A = 0 is
sufficient to satisfy condition #1i. >

All possibilities for 11),(]\7 , &) have therefore been covered by Theorems 7.11 and 7.12.
For ¢5(N,X) = 0 or ¢4(N,X) = oo, the result is clear: no feasible (w,A) exists and
min ||w]| = 0 respectively.

For 9,(N,X) € (0,00) the existence of a Kuhn-Tucker saddlepoint depends on a
separating hyperplane condition for W/(a). in certain cases, the convexity of W(a) can

be used to obtain a sufficient condition for the existence of a saddlepoint.

Lemma 7.13

For the two perturbation block (m = 2) model validation problem, if the feasible
region defined by the inequality constraints has at least one interior point mecting the
equality constraint (i.e., there ezists z € X, such that gi(z) < 0 fori=1,...,m) and the
dimension of the kernel of [ Py; Py3] is greater than one, then the Lagrangian L.(z., A)

has @ Kuhn-Tucker saddlepoint.

Proof of Lemma 7.13: If the dimension of the kernel of [ P;; P»;] is greater than
one, then dim(zx) > 2. For m = 2, dim(W’(a)) = 3. By Lemma 6.5 W'(a) is convex.
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The existence of z € X, such that gi(z) < 0 for i = 1,...,m is sufficient to give a
feasible (w,A) which by Theorem 7.5 implies that 1,(N,X’) > 0. If 3,(N, X) = oo, then
the saddlepoint exists by Theorem 7.12. Assume therefore that ¥,(N,X) < co.

Now consider v € W/(,(N,X)?)Nv_. Clearly v € OW'(1,(N,X)?) and v € dv_.
If this were not so, then there would exist z such that

|Riz|| < [[RiNz||, i=1,...,m
|Rms12l|$s(N, X) < [|Rmsa Nz,
contradicting the definition %,(N,X) (Equation 7.5). Both v_ and W'(¢,(N,X)?) are

convex nonoverlapping sets although they share at least one point in common on their

boundaries. They can therefore be separated by a hyperplane. Note that every hyper-

plane separating v_ from any convex set such that v ¢ v_ is of the form
<&v>=10, £2>0, i=1,....m+1, £#0.

Therefore, W(1,( VN, X')?) is contained in a halfspace defined by
H(E):{u|<£,u> >0,620,i=1,...,m+1, £#0}.

Now consider {,,4+1. By the hypotheses of the lemma, there exists £ € X, [|Z|| = 1 such

that ¢;(£) < 0,i=1,...,m. Define £x by £ = Vx%, and ¥ by
b = £ N{(N, X)), < 0.

Then for any £ with §; 2 0,i1=1,...,mand {p41 =0,

m+1 m
<&o>= Y & =) &gi(3) < 0,
=1 =1

contradicting the fact that W’(¢,(]V ,X)?) is bounded by a halfspace: < £,v > > 0.
Therefore, £,41 > 0 and the halfspace is

HE={¢|<&v> 2 0,620, tnp >0}

Theorem 7.11 then implies that the Lagrangian L.(z.,A) has a Kuhn-Tucker saddlepoint.

4
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A Summary of the Application of (M, X) to the Model
Validation Problem

A function ¥,(M, X’) has been defined and used to study the model validation problem

from a geometric point of view. Section 7.3 showed that it was possible to reformulate

the model validation problem as a ¢,(M, X’) problem. Theorem 7.5 then indicates that

¥s(M, X') is the quantity of interest in solving the model validation problem. In particular
1

¥s(N, X)

or if no feasible (w,A) exists, then ¥,(N, &) = 0.

min [|w]| =

Section 7.4.1 presented a generalized numerical range function and related its proper-
ties to (M, X'). No algorithm is given for the calculation of 1,( M, X"); a prerequisite is
an algorithm to find the minimum distance between v_ and the numerical range function
of Ps( M, X).

However, the convexity properties of the generalized numerical range are used to

establish the conditions under which a Kuhn-Tucker saddlepoint for the model validation
optimization problem will always exist.

It is of interest to recap the means of bounding the model validation problem. Any
upper bound to v¥,(N,X) gives a lower bound on the minimum ||w||. By Lemma 7.7
ps( V) gives such a bound. As noted above, Algorithm 6.9 and Corollary 7.10 suggests a
means of calculating ¥,( N, X). Judging by the difficulties associated with the application
of Algorithm 6.9 to the p, case, it is likely any such algorithm would only give an upper
bound to %,(N, X) when W’(a) was not convex. The third means of obtaining a bound
has been discussed in Section 5.2.2: solve the problem with Lagrange multipliers for the
m = 1 case. In the experimental example presented in Chapter 9, the minimum |jw||
problem is solved by a local search technique. The author has no expericnce with the
calculation of bounds by any of the three techniques described above and, consequently,
it is not known which will give the best results. It should be noted, however, that
Algorithm 6.11, which in general calculates only an upper bound for u,, is identical to
the usual upper bound for 4 (Equation 2.15) when I, = . In practical applications this

bound is very good, suggesting that the second method discussed above might lead to
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the tightest bound on ¥,(N, X).
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Chapter 8

A Study of Several Numerical

Examples

This chapter will study several numerical examples to illustrate the relationship between
the Lagrange multiplier approach of Chapter 5 and the geometric approach of Chapter 7.

Three single perturbation block cases are considered. The first shows the generic case
where a solution to the Lagrange problem is found in the interior of A.. In the second
case A = 0 is the optimal solution. This illustrates the difference between the u, and
1, formulations. The third case is studied for two different block structures: a single
block problem and a three block problem. For both problems the Lagrange approach
will encounter the boundary. In this single block problem, this becomes benign when

considered from the geometric point of view. In the three block problem, it is proven

that no saddlepoint exists.

8.1 Casel

Consider the single perturbation block model described by
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01-0.1: 02-02: 01400z 06-04:} 0.6-0.6¢
0 0 01401z} 07-0.1:| 04-0.2¢
02+02: 00-01: -0.1+0.1¢|-0.4-0.1¢| 0.6+ 0.5
0.3+04: -03-02¢ -0.1-03:| 0.0-0.8{|-0.3+0.9:
-0.6-0.1: 02401 01-05:| 0.5-0.57|-0.3+0.2:
| -06-01: 024017 -01+04:| 0.140.0:|-0.5+0.6:

where the solid divisions indicate the partitions Pyy,..., Py3. The input u and the output

y are:

u = [0.5—0.41’]

and
0.4 +0.0¢
y = 0.3 -0.62
0.1-1.12

In this case the block structure is simply given by k; = 3.

Consider the reparametrization discussed in Section 3.2.1. In this example

- 9

0.5085 + 1.3140:
—0.8333 + 0.7643:

g =

—2.1379 — 0.2296i

| 2.2116 - 0.0191i |
and

[ _0.4749 + 0.0000i |

yo_ | —0TTT+ 0267

0.0476 + 0.2109i
0.1952 — 0.2424i |

It is a simple matter to verify that z¢ is orthogonal to V' and that

y — Ppsu = [ Py Py Jzo.



116

In this case the dimension of the search for z has been reduced to one.

Consider the constrained form of the Lagrangian:

Le(ze,A)

where

= fe(ze) + Z ’\igei(xe)a Ai20
1=1

Ce(A)=V*Bzo+ Y_ X

and

m
de(X) = zgBzo + Z)\; [zoAizo — 2 Re{zg

In this case

and

Al =

o o o o

=1

=1

o O o O
-0 O O

o o o o

- Py, Py
0.90 + 0.00:
-0.02 — 0.02
—0.01 + 0.05i
0.00 + 0.084

[V"A;zo -V [

I-PhLPy -PhPpy
— P2 P2

—0.02 + 0.02:

0.91 + 0.00:
—0.01+ 0.01z
—0.21 - 0.00:

making the quadratic term of the Lagrangian

22(0.0969 + 0.6821))z..

C.(A) and d.()) are given by

C.(\) =

and

Ph| o
Pfg ] T.P13u]

m
V(B + D MA)VTe + 2 Re{z;Ce(N)} + de(A)

i=1

[ Pl,} ]TiP13u }—u* Pi3T; Piau] .
12

—~0.01 — 0.051
—-0.01 - 0.01:

0.95 + 0.00:
—-0.15 - 0.07¢

(—0.4363 + 0.53241) + A(1.2862 — 0.94781)

0.00 — 0.08:
—-0.21 4+ 0.00:
—0.15 + 0.07¢
—1.19 + 0.00:




117

d.()) = 4.8916+ A2.2538.

Figure 8.1 shows the dual function plotted against A. The maximum occurs in the
interior of A.; at A = 0.7610. At this point the value of the dual function is ~(0.7610) =
6.0710 implying that ||w||? = 6.0710 and consequently the minimum ||w|| = 2.4639. The
value of z. achieving this is z. = —0.8808 + 0.3067: giving as an optimizing z

0.9268 + 1.1683i |

0.2569 + 0.2990i
~2.2444 — 0.4007

2.4579 + 0.1727¢ ]

It is easily verified that for this

[onP[‘;] =y,

g(z) =0, and ||w}| = 2.4639.

Figure 8.1: Case 1: Dual Function: k() (solid line) and the minimum eigenvalue of the
quadratic term: V*(B + AA)V (dashed line)

Now consider this problem from the geometric point of view. By Theorem 7.5, for a
stable model P, finding %,(/V,X’) (Equation 7.5) also yields the minimum ||w]|;

1

min ||wf| = TR
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¥,(N, X) can be found by the optimization implied by
Dy (N, X) = i’i%{ a'/? | W'(8)(v- =0 forall 3> a}.

For this problem I, = {1} and T, = {2}. Using zo and V given above N (Equa-
tion 7.6) is:

N=

0.0469 — 0.1277:  0.1638 — 0.1684:  0.0997 + 0.0914:  0.6096 — 0.4935: ]
—0.0220 — 0.0227: —0.0234 4+ 0.0098:  0.0846 + 0.1457:  0.7204 — 0.1452:
0.2209 + 0.1490¢ —0.0320 — 0.1306¢ —0.1838 4 0.1073: —0.3134 — 0.0990:
| 0.0398 - 0.1028: —0.0652 - 0.0598: —0.1673 4+ 0.0189¢  0.1731 — 0.0015:¢

Figure 8.2 shows the set W’(a) for @ = 0.165. Observe that 0 € W'(a). For all
a > 0.165, W'(a)Nv- = @ implying that

T oyl(N, X)) V0165

min ||w|| 2.46.

This value agrees with that obtained via the Lagrange multiplier optimization.

0.04 ! T T

0.03

0.01

-0.01

Figure 8.2: Case 1: W'(a) for @ = 0.165 and the supporting hyperplane defined by
< &v>2>0,€=[0.1256,1]T

Furthermore, W/(a), a = 0.165, is contained in a halfspace H(£):
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H(E):{u|<£,u>2 0}

where

0.1256
5=[ : ]

The boundary of this halfspace is also shown in Figure 8.2.
By Theorem 7.11 the associated Lagrange optimization has a saddlepoint. Equa-
tion 7.15, in the proof of Theorem 7.11, gives the Lagrange multiplier as

s £ _ 01286 _ oo
T b1 Ys(N,X)2 T 100265 .

Again this is in agreement with the results of the Lagrange multiplier optimization.

8.2 Case 2

Consider

06+05i] 00+0.2|08+0.2: 0.3+0.8:
P=| —09-04i| 03+0.0:/05-0.4: 0.0+ 0.4:
0.140.2i|{-0.3-0.5/0.0-1.0i —0.1+0.7¢

with
1.1+ 0.2:
y =
-0.3-0.2:
and
v = [ -0.3- 0.2 ] . (8.2)

The block structure is (1).

Considering z as ¢ = z¢ + Vz. gives for zg and V

—1.1536 + 0.1046:
0.2826 — 0.3729:
—0.2397 — 0.0625:

Lo

and
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0.3289 + 0.0000:
vV = 0.7132 — 0.4429:
—0.1579 + 0.4025¢

Consider the Lagrange multiplier approach, using the Lagrangian of Equation 8.1.

The functional B and the quadratic term of the constraint constraint, A4;, are given by

0 0O
B=1010
0 01

and

0.39 +0.00: -0.10-0.12¢ —0.58+ 0.28:
Ai1=1| -0.10+0.12: —0.04+0.00: —0.04+ 0.16¢
—0.58 - 0.28: -~0.04 - 0.16¢ —0.68 + 0.00:

The quadratic term of the Lagrangian is
z:(0.8918 — 0.2551\)z..

Ce()) and d.()) are given by

I

C.()) (0.3794 — 0.03444) + A(0.1933 ~ 0.3635i)

and

d.(A) = 0.2802+ 20.0029.

The dual function k() is plotted in Figure 8.3. Note that the maximum occurs for

A = 0. The constraint is satisfied with inequality at this point. A(0) = 0.1175 implying

that the minimum [|w]| = 0.3428. The minimizing z. = —0.4254 + 0.0386: giving as the

minimizing z
—1.2935+ 0.1173¢

z =1 —-0.0037 — 0.1569¢
—0.1880 — 0.2398:

Consequently the minimizing w is
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—0.0037 — 0.1569:
—0.1880 — 0.2398:

In this case the constraint is not satisfied with equality. In fact

g(z) = —0.2362.

0.8 B S manang-

04

0.2

_0.2 I e TSI AT SRR . :

-0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

lambda

Figure 8.3: Case 2: Dual Function: h(A) (solid line) and the minimum eigenvalue of the
quadratic term: V*(B + AA)V (dashed line)

The Lagrange multiplier optimization has yielded a solution to the model validation

problem. Again the geometric approach is compared. N is given by:

0.5309 + 0.7089: 0.0812+ 0.1638:  0.8012 + 0.2470:

N =] —0.7112 - 0.0645; 0.1742 + 0.2299: —0.1478 + 0.0385:

0 0 0
Note that a row of zeros has been added to make the second perturbation block square.

The 9,(N, X) problem is posed with I, = {1} and I, = {2}.

The W'(a) regions are shown for @ = 5.5 and o = 8.51 in Figure 8.4. Note that
for a = 5.5, the origin is on the boundary of W/(«a). In fact, if the maximization were
posed, as is done in the u or p, cases, with 0 ¢ W’(a) then, as is illustrated here, the

solution would be conservative. In this example %,(N,X)? = 8.51 implying that
1
¥s(N,X)  /8.51

min [jw|| = = 0.3428.
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v2
IS

0.5 -0.4 0.3 0.2 -0.1 0 0.1 0.2 0.3

vl

Figure 8.4: Case 2: W/(a) for a = 5.5 & 8.51 and the supporting hyperplane defined by
<&r>20,6=[0,1)7

Note that the halfspace containing W’(a) is now defined by

implying that the Lagrange multiplier associated with the saddlepoint is A = 0. As
expected, the values of ||w|| and X agree with those obtained from the Lagrange multiplier

optimization.

8.3 Case 3

Two examples will be considered. These are both based on the four block example
derived by Doyle and used by Packard [10] to illustrate the gap between x and its upper
bound. In the first the block structure is defined such that a single perturbation block
boundary problem occurs. In the second a three block problem is defined for which no
saddlepoint exists. This second example also illustrates a direct application of the model
validation problem to the calculation of 4.

Consider the system



1
1
1

L -

Up,Vs € C4*2 and are defined by

ja ]}

[ 4 0:- [ 0 a ]
b b b —b
Uy = , W=
c jc c —jc
d f ejmf el%2 4
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, where P = U,Vy .

The constants are chosen such that UU, = V'V, = I?*2, Select y = 1 and u = 0.

This choice of u eliminates the last column and makes the plant under consideration

equivalent to that considered by Packard [10]. It will be seen in Section 8.3.2 that the

choice of y = 1 allows this formulation to address a p problem.

For this example, set 7 = 3 + v/3 and 8 = v/3 — 1. Now define .

a= % b=t =Ll a-_/2
¥ N4l 2] v

f=(4iy=, br1=-%, o=

- J 'Yﬁ’ 1 2 9 -
This gives

pP=

[ 0  0.2989+0.0000;  0.2989 + 0.0000: | 0.3493 + 0.3493; |
0.2989 + 0.0000i 0  0.2113+ 0.2113i | 0.4278 + 0.2470i
0.0000 + 0.2989i  0.2113 — 0.2113i 0 | 0.2470 + 0.4278i

| 0.3493 4 0.3493i —0.4278 — 0.2470i —0.4278 + 0.2470i 0

If the reader wishes to recreate this example, it is advisable to recalculate the values

of P to greater precision than displayed here. The rounding error will obscure the

characteristics illustrated by the example.
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8.3.1 A Single Block Boundary Problem

The block structure is chosen as (3) making the model validation problem a single A

block problem (m = 1).

Proceeding with the Lagrange optimization approach gives

Io

and

0.4771 — 0.4771i |

—0.5844 + 0.3374i
9

—0.5844 — 0.3374i

0

—0.8165 + 0.0000¢
—0.3943 - 0.1057:
—0.1057 — 0.3943:

0 0
~0.3536 + 0.6124i 0
0.7071 + 0.0000 0

0 0 1.0000

-

Note that the dimension of the search has been reduced from four to three. The functional

and quadratic parts of the constraint are

and

Ay

-

-

o o O o

)
0
0
1.

00
0 0
00
0 0

0.8214 + 0.0000:
0.0632 — 0.0632¢
0.0632 4 0.0632:
0.2557 + 0.0000:

0.0632 + 0.0632:
0.8214 + 0.0000:
—0.0893 4 0.0000:
—0.0662 + 0.2470:

The quadratic term of the Lagrangian is

E 3

Ze

0 00
0 0 0=
0 01

—0.0632 — 0.0632:
—0.0893 + 0.0000:

0.8214 + 0.0000:
—0.2470 + 0.0662:

—0.2557 — 0.0000:
—0.0662 — 0.2470:
—0.2470 -- 0.0662¢
~0.7321 + 0.0000:
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0.8660 + 0.0000:  0.1294 4+ 0.0347:  0.3132 — 0.0000:z
+Az. | 0.1294 — 0.0347i  0.8660 + 0.0000: —0.3025 + 0.0811i | ..
0.3132 + 0.0000: —0.3025— 0.0811: —0.7321 + 0.0000:

Ce()) and d.()) are given by

0
CC(A) = 0
0

and
de(A) = A

If the dual function is maximized over A > 0, the boundary of A, is encountered at
A = 1. This is illustrated in Figure 8.5. The minimum eigenvalue of V*(B + AA)V is
also plotted, and at A = 1 the eigenvalue is zero. Note that h(1) = 1 and for A > 1
h(A) = —o0.

o —
T
P R S // il
Pt S
oL - .........
R TN NN U NS SO O e
1 0.2 04 06 08 1 12 14 16

lambda

Figure 8.5: Case 3 with Block Structure (3): Dual Function: h(A) (solid line) and the
minimum eigenvalue of the quadratic term: V*(B + AA)V (dashed line)

The Lagrangian has no linear term. Therefore, the z achieving the minimum is z = 0.

This reduces the dual function to h(A) = A as can be seen on the plot.
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However, at A = 1 the search can be restricted to the kernel of V*(B + A)V without
affecting the value of the Lagrangian. Consider the constraint for the equality constrained

case:
ge(ze) = z.V*'AVz,

- 42 Re {z:V*A:rg -V [ P‘: ]Plsu}
Py

-2 Re {Ia{ Pltl ] P13‘U.} + IaAg.’Eo - u‘Pf3P13u.
12

In this example u = 0 and

0
V"A.’lfo = 0

0

reducing the constraint to
ge(ze) = 2 V*AVz, + z5Azo. (8.4)

For zo given above zgAzo = 1. Now consider the quadratic term of the Lagrangian at
A = 1. This has eigenvalues 0, 1, and 1. Selecting the eigenvector corresponding to the

zero eigenvalue gives
—0.3660 + 0.0000:
Zek = | 0.3536 — 0.0947:
0.8556 — 0.0000:

Lemma 5.12 predicts that a3, V*AVzet < 0 and in fact it is
z:kV*szek = —0.7321.

Choosing z. = 1.1688z.; makes Equation 8.4 equal to zero, satisfying the constraint

exactly. This gives as an optimizing =

z = z9+Vz,
= zo0+ 1.1688Vz.i
[ 0.8264 — 0.4771i |
—0.4940 + 0.6748i
—0.2470 — 0.2470:
1.0000 — 0.0000i |
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It is easily verified that this z meets the output equality constraint and corresponds
to ||A|| =1 and |jw]| = 1.

Now consider this example from the geometric point of view. Although the Lagrange
multiplier approach required a search in the null space of the quadratic term of the
Lagrangian, a saddlepoint was still found. This suggests that the geometric approach
will also lead to a saddlepoint and, as expected, this is the case.

The choice of u = 0 makes

N =U\V, =

[ 0  0.2989+0.0000i  0.2989 + 0.0000; 0.3493 + 0.3493; |
0.2989 + 0.0000s 0 02113402113 0.4278 + 0.2470i
0.0000 + 0.2989;  0.2113 — 0.2113i 0 0.2470 + 0.4278i

| 0.3493 4 0.3493i —0.4278 ~ 0.2470i —0.4278 + 0.2470i 0 |

Again I, = {1} and T, = {2}.
Figure 8.6 illustrates the set W/(a) for a = 1.0. Note that 0 € W’(1) and for a > 1,
W'(a)(v- = 0. The set W’(1.0) is contained in a halfspace described by

HE={v|<&v>20}

where

This implies that the minimum [|w|| = 1 and that a saddlepoint exists for A = 1.

It is interesting to note that the complications of the Lagrange optimization are not
reflected in the geometric approach. The nature of W’(a) and its behavior as a function
of a differ little in qualitative terms from the example studied in Case 2.

The only significant difference is that W’(a) and the supporting hyperplane now
intersect at more than one point. Section 5.3 established the fact that when h.(}) is
finite at the boundary OA., the Lagrangian L.(z.,A) has a nontrivial kernel. In this
case this is also evident from the geometric viewpoint. To see this note that when
W' (¥s(N,X)?) lies within a halfspace defined by < &,v > > 0, the Lagrangiau is given
by
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Figure 8.6: Case 3 for Block Structure (3): W'(a) for @ = 1 and the supporting hyper-
plane defined by < £,v > >0, ¢ = [1,1]T

<&v> 1
L1 Ys(N, X)? (N, X)2°

From Figure 8.6 it is clear that the v for which < £,» > = 0 is not unique. Consequently,

Le(ze, ) =

the z,. for which

1

Lc(zc, A) = W

is also not unique, implying that for this value of A, the Lagrangian has a nontrivial

kernel.

8.3.2 An Application to p - the 4 Block Counterexample

A block structure of (1,1,1) is assumed, and the question is u(P) < 1?2 is addressed.
This is exactly the four block counterexample where it is known that the upper bound

cannot be used to answer this question.
For a u problem with a scalar output signal e, the model validation approach can be

used directly by considering e to be known; y = e. If there exists z such that
l0NPzl=1, and |[0Nc]<1,

and fori=1,...,m,
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1{Qi 0] z || = || [Qi 0] Pz .

then g4 > 1. In the scalar case it suffices to choose y = 1. Assume that the minimum

|| [0 I] z || is achieved by Z and
Pz=9, | =1

Then 8*% has the same norm and meets the constraints
lfor6 z || = [01] Pe*z |

and
[01) P6*z =676 = 1.

The choice of u = 0 will effectively reduce the full P interconnection structure to the
required P. Clearly, if using the model validation approach, the minimum llw|l meeting
the constraints (including the output constraint that y = 1) has norm greater than one,
then u < 1.

For this example

-1
. pol;[Do o
15%%"“‘“([0 I]P[O 1] )“’"‘“(P)‘l'

However, A, is not ecmpty as
Omax(P11) = 0.5176.

Although the upper bound for y is equal to one, Packard proves that u < 1. The
best estimate for u, obtained by extensive searching, is 0.874.

Therefore, for all w meeting the uncertainty constraints, |jw|]| > 1 as u < 1. It will
be shown that the minimum ||w|| cannot be found with the model validation techniques.
If it could be found then it would be possible to calculate u for this problem by iter-
ative application of the model validation approach. This is hardly surprising, given
the demonstrated relationship between the Lagrange multipliers and the D used in the
calculation of the upper bound of u in Section 5.1.1.

Lemma 8.1 will show why it is not possible to find the minimum ||w||. For notational
convenience consider an equivalent formulation of the quadratic term of the Lagrangian,

using D defined by Equation 5.7.
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- _ — » -D2 0 . D2 0 -
z (B+§A,A,)x =z ([ 0 I]—P [ o O}P)r (8.5)
where
3 Py Py
P= .
[Pm P22]

Note that in this case, with « = 0, this is actually the complete Lagrangian.

Lemma 8.1

For scalar y = 1, u = 0, and a model P such that

-1
. Do|-|DO
>
52‘%”““”‘({0 I]P[o I] )—1’
miixhc(A)Sl.

Proof of Lemma R.1: Assume there exists X such that h.()) > 1. This implies,

using the formulation introduced in Equation 8.5, that

. L[| D*o =.| D* 0} 3
he()‘)"ﬂj,%x ([ 0 I]~P [ 0 0]P):c>1.
Note that for z € X,,

o [00)s o
xP[OI]P:c—-HyH = 1.

Giving the result that for all z € A,

z"([]?: ‘}}-P*[’f 2]13)7»0. (8.6)

z can be partitioned as 29® Vz.. Note that 2o # 0; if it were, it would imply that e = 0.
In the scalar case the span of {zo,V} is the whole of the space in which z lies. In this

case Equation 8.6 is true for all z. If there exists an =z ¢ A, such that
D? 0 - 1 D2 0]
- - P <
then z has a decompaosition
z=nz9+ Vy.

Now z/n € X, and z/n will also violate Equation 8.6. Note that this argument can only

be made for a scalar signal y. Choosing z, as
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zo= |2 %2
oI

gives, for all z,,

-1 -1
. DO .| D*0}|-|DO
,,(1-[01} P[o IHOI] )r,>0

which implies that

e ([2[23]) <

contradicting the assumptions of the Lemma. >
Now h.(A) is simply
m
he(X) = [0 I}2]1? + D Migei(=). (8.7)
=1
From Lemma 8.1, any z meeting the equality constraint will also satisfy
m
|| + E X;g.i(z) < 1. (8.8)
1=1

But it is known that in this example ||w|| > 1. Consequently,
m
D Aigei(z) < 0 (8.9)
=1

and the constraint can never be met exactly.
In fact, for this problem, attempting to answer the u question by the model validation
method results in a boundary problem. For

1

A=11], h(N)=1 (8.10)
1

but the three constraints cannot be met exactly. It is possible to find z at the boundary
such that all constraints, including the equality constraint, are met, but it is not possible
to state that this z has the minimum |jw||. Hence, it is not possible to answer the

question is u(P) < 1?
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Chapter 9

An Experimental Example

An experimental chemical process control system is used as a model validation example.
This system has many of the characteristics found in industrial process control problems.
Although the complete system is described here, only a two-input two-output subsystem
will be used as a model validation example. Additional identification and control work
on the complete system is described by Smith et al. [3, 31].

The system will be described in some detail. A theoretical model is developed and
used as a nominal nonlinear model. Several ad hoc techniques have been used to quantify
the uncertainty, and these are discussed. A nonlinear model of the system, including an
uncertainty description, is presented. The choice of a suitable linear model for design
and analysis requires engineering judgement. As an example application of the model
validation approach, two different linear models are compared in their ability to account
for the observations of a particular experiment.

The techniques presented here are typical of those that a designer might apply in
identifying a suitable robust control model: iterative application of first principles mod-
eling, open loop experiments, and closed loop experiments. The goal of this chapter is

to illustrate, by example, how model validation can be a useful tool in this procedure.
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Figure 9.1: Schematic Diagram of the Two Tank System
9.1 The Two Tank Experiment

9.1.1 A Physical Description

The system, shown schematically in Figure 9.1, consists of two water tanks in cascade.
The upper tank, referred to as tank 1, is fed by hot and cold water via computer con-
trollable valves. The lower tank, referred to as tank 2, is fed by water from an exit at
the bottom of tank 1. A constant level is maintained in tank 2 by means of an overflow.
A fixed stream of cold water also feeds tank 2. It is the presence of this bias stream that
allows the tanks to be maintained at different temperatures.

Tank 1 is 5% inches in diameter and 30 inches in height. Tank 2 is 7]2‘ inches in
diameter. Four overflows are provided at 53, 71, 91, and 114 inches. For the experiments
described here, the overflow at 74 inches was used. This configuration maintains the
water level in tank 2 at 4% inches below the base of tank 1.

The hot and cold water supplies are filtered through a 5 micron filter and regulated
to 20 psig. Half inch piping is used for the main flow lines and the connection between

tanks 1 and 2. Two half inch Kimmer valves (30 000 series) with electropneumatic
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actuators are used to control the flows. These have a linear characteristic and a C,
of 1.0. Variable area flowmeters measuring from 0.2 to 2.0 gpm provide a means of
calibrating the actuators. Approximately 72 inches of pipe connects the actuators to the
flowmeters. The hot and cold flows are combined in a tee junction 10 inches from the
flowmeters, and the mixed flow is piped a further 18 inches to tank 1. The pipe outlet is
31 inches above the base of tank 1. Approximately 36 inches of pipe connects the tanks,
from the base of tank 1 to the base of tank 2. The tank 2 bias stream is fed from the cold
supply via a needle valve and flowmeter. This arrangement allows manual adjustment
of the bias stream flow from 0.015 to 0.3 gpm.

Isolated E type thermocouples are inserted into each of the tanks approximately
3 inch above the base. Omega MCJ thermocouple connectors provide the ice point
reference. The temperature signals are amplified by Omega Omni-Amp amplifiers (gain:
1000). There is also provision to measure the temperature of the hot and cold flows prior
to the valves and the mixed flow just before it enters tank 1.

A pressure sensor (0 to 5 psig) provides a measurement of the water level in tank 1.
Both tanks are stirred with laboratory stirrers. Tank 1 has a shaft running the full length
of the tank with three 2 inch propellers mounted on it. A single propeller stirs tank 2.

A Masscomp 5400 is used for the data acquisition and control. All signals from the
experiment are filtered using fourth order butterworth filters, each with a cutoff frequency
of 2.25 Hz. The Masscomp is equipped with analog/digital (AD12FA) and digital/analog
(DAOSF) boards, each with 12 bit resolution, and a floating point accelerator board.
Software allows the designer to provide arbitrary control signals to the experiment and
implement linear state space and nonlinear controllers. A sample time of 0.1 seconds has

been used for the majority of the identification and control experiments.

9.1.2 The Scope of the Model Validation Problem

The model validation problem presented here is part of a sequence of problems that
would naturally be considered in the process of identifying and designing controllers for
the system. Wherever possible the system should be broken down into component parts
for identification. Only a single experiment will be presented. Again this is representative

of one of a series of similar experiments that a design engineer might perform.
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The system to be examined will consist of only the top tank. The hot and cold flows
(fr and f.) will be considered as the inputs and the height (k;) and the temperature of
the top tank (t;) will be the outputs.

The problem is most naturally considered with a bounded power assumption on the
input and output signals. Output noise, on both h; and #;, will be the only unknown
inputs to the interconnection structure.

A theoretical model will be developed and used as a nominal nonlinear model. Exper-
iments have been performed in an attempt to quantify a bound on the uncertainty asso-
ciated with this model. These procedures lead to a candidate interconnection structure
which is then tested against an experimental datum with the model validation procedure.

In the example presented here, two candidate interconnection structures are considered.

9.2 Modeling the System

9.2.1 Development of a Nominal Model

The top tank is considered from a first principles’ point of view to give an initial estimate
of a suitable nominal model. The choice of nominal model plus uncertainty description
is not unique. Developing a nominal model from the theoretical equations is not neces-
sarily the best technique; however, it does have an intuitive engineering appeal. Another
possible approach is to attempt to identify the system by assuming that the only un-
certainty is additive noise. The methods for doing this are well developed. Ljung [16]
provides a comprehensive treatment of these methods.

In order to proceed it is necessary to make some typical, and unfortunately inaccurate,

assumptions. These are as follows:
¢ No thermal losses in the system.
e Perfect mixing occurs in both tanks.
e The flow out of tank 1 is related only to the height of tank 1.

o There are no thermal or flow delays.
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The system variables are given the following designations.

Sre command to hot flow actuator.
fn hot water flow into tank 1.

See command to cold flow actuator.
fe cold water flow into tank 1.

h total flow out of tank 1.

Aq cross-sectional area of tank 1.
hy tank 1 water level height.

t temperature of tank 1.

th hot water supply temperature.
te cold water supply temperature.

Conservation of mass in tank 1 gives

k)= + £ - f

It is assumed that the flow out of tank 1 (f;) is a2 memoryless function of the height (k,).
This is reasonable because of the incompressibility of the media. As the exit from tank 1
is a pipe with a large length to diameter ratio, the flow is proportional to the pressure
drop across the pipe and thus to the height in the tank. With a constant correction term

for the flow behavior at low tank levels, the height and fiow can be related by an affine

function.
hi=afi — 3 where a,8>0 and f; > f8/a.
Therefore,
d
Alaa'gfl =fu + fo = f1.

Defining f; as a state variable leads to a linear state equation and an affine output

equation for A; (in the allowable range of f;).

; -1 1 1
f = mfl + Alafh + Alafc' (9.1)
b = afi - B (9.2)

Conservation of energy will lead to a model for the temperature of tank 1 (¢;) as
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d
g{(

It is useful to define a variable

Arhaty) = fatp + fete = fith.

E1 = hltl

which can loosely be thought of as the energy in tank 1. Now
h
Aty = ( 1+ﬂ> 1]

a
1 g
T« (1+ h1)E1'

Defining E; as a state variable gives a nonlinear state equation and a nonlinear output

equation for t;.

s - Lo, B8 In L

E, = Ala(1+h1)El + Alfh+ A,f"' (9.3)
1

tl = ""'El. (94)

h1
Note that for a fixed h;, the above equations are linear. This will be useful in the
development of an uncertainty description.
The system of units has been normalized for the temperature, height, and input

flows. The supply temperatnres are therefore

t, =1.0 and ¢, =0.0.

Measurement of the physical system and scaling by the appropriate normalization factors

gives the following:
Ay =914.

The above theoretical model is only a good approximation over a range of h;:
0.15 < hy £0.75.

The assumed relationship between f; and h; breaks down outside of the above range.
Static measurements have been performed in order to estimate a and 3. Note that «

appears as a gain in the model equations and can also be estimated dynamically. These

estimates yield
a=134 and B =0.6.

Equations 9.1, 9.2, 9.3, and 9.4 provide a simple model for the top tank.
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9.2.2 Development of a Description of the Uncertainty

This section will give only a very brief outline of some of the techniques used for quan-
tifying the uncertainty in the model. There are no formal methodologies for doing this
for robust control models; only ad hoc methods are discussed.

The techniqueé are arbitrarily divided into open and closed loop methods. In reality
the distinction between modeling, identification, and control design is often blurred. The
engineer generally works on the problem iteratively: identifying some aspect of a system,
designing a controller, evaluating that controller, and using the information gained to
refine the model of the system.

A fundamental feature of robust control models is their ability to model destabilizing
uncertainty effects. It is difficult to distinguish such effects from noise or disturbances
in an open loop experiment. Closed loop experiments can therefore be helpful in the
development of a good robust control model.

Note that the model validation approach treated in this thesis applies equally to open
or closed loop models of the system. Modcl validation is another tool which can be used

to arrive at a suitable model.

Open Loop Experiments

Ljung [16] provides a very good treatment of open loop identification methods. These
can be used to provide a nominal model and, as will be seen here, illustrate where the
theoretical model fails to describe the system’s behavior.

Note that when considered incrementally, the equations describing the behavior of h
are linear and independent of the steady state values of h; or ¢;. Open loop experiments
have been performed to estimate the transfer function between f + f. and h;.

Band limited noise, in several frequency bands, was used for the input signals. Data
records were 8192 samples in length with sample rates of 1.0 Hz and 10.0 Hz. The
transfer function estimates, presented below, have been obtained by the Welch method,
using Hanning windows on sections of the data [32]. The data plotted in the figures
comes from several window lengths, typically 1024 and 4096. Only the points with good
coherency (typically greater than 0.95) are plotted.
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The results of these experiments are shown in Figure 9.2. The transfer function
predicted by Equations 9.1 and 9.2 are also plotted. The effects of the butterworth
filter and the nominal actuator model (refer Section 9.3) are included in the theoretical
transfer function. This filter accounts for the large amount of additional phase observed
at frequencies beyond 0.1 Hz.

Note that the theoretical model agrees very well with the smoothed estimate of the
transfer function over four frequency decades. From this, one might surmise that the
theoretical model describes the system very well. This is quite possibly true, although
the smoothing will tend to obscure any deviations from the average. In some loose
average sense, the theoretical model does describe the system well. An engineer would
feel comfortable in assigning relatively little uncertainty to the theoretical model of the
hi behavior. Contrast this with the situation that arises in the #; case.

For h, fixed, the E; state variable equation (9.3) and the ¢; output equation (9.4)
are linear. Experiments have been performed at h; = 0.15, 0.25, 0.47, and 0.75. The
input waveforms were generated such that f,. = —f.. which maintains a constant A;.
Figure 9.3 shows a smoothed estimate of the empirical transfer function between f;, —
fee(= 2fne) and t; calculated from the experimental data and estimated from the model
(Equations 9.3 and 9.4 and the Butterworth filter). For the data shown, h; = 0.15 and
hy = 0.75. The other cases lie between the two curves shown.

There are obvious discrepancies at much lower frequencies than in the h; case. Note
in particular the extra phase, particularly in the hy = 0.75 case. This is not altogether
unexpected as the tank is tall and thin and poorly stirred, in contrast to the assumptions
made in the development of the theoretical model. At the higher levels some loss in
gain is also evident. Clearly the theoretical model is better at the lower heights. The

uncertainty model must be able to capture these discrepancies.

Closed Loop Experiments

Two types of closed loop experiment have been performed. The first is the implementa-
tion of a relay controller designed to drive the system into stable limit cycles. The second
type involves the implementation of a series of linear controllers and analysis using .

Astrdm [33] uses relay controllers to drive a closed loop system to stable limit cycles.
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This technique works for a large class of systems including the two tank system. In the
experiments performed here, a decoupled controller (into height and temperature loops)
was used with a relay in the temperature control loop. This allowed stable control of the
tank height (h;) and produced limit cycles in ¢;. These experiments were performed at
fixed heights (hy = 0.15, 0.25, 0.47, and 0.75).

With a simple relay the closed loop system will limit cycle at the frequency where the
response has a phase of 180 degrees. The gain at this frequency can also be estimated
from the input-output data. This experiment will identify the system at a single point.
Using this information, a new controller is designed to introduce some lead into the sys-
tem. This new closed loop system limit cycles at a higher frequency giving. an additional
point at which the plant can be identified. In practice this technique can be repeated
until the nonlinear and/or inconsistent effects dominate and the closed loop system no
longer limit cycles consistently. This also provides information on the frequency at which
uncertainty should dominate in the model.

The uncertainty description can also be improved by using u analysis. Comparison of
the stability of a closed loop system predicted by u analysis with the observed stability
gives inforwation on the applicability of a particular model set.

The proposed technique is then as follows:

¢ Design a series of nominally stable controllers.

Predict, by u analysis, the robust stability of each controller.
e Experimentally determine the stability of each controller on the physical system.

o Comparison of the stability predictions and experiments can determine that the

system is not described by an element of the model.

Refine the uncertainty description and iterate on this procedure.

Several points must be noted here. The number of controllers required, and their char-
acteristics, is not obvious. This technique can only make a definitive statement when a
theoretically stable controller is found to be unstable on the true system. In such a case
the set of plants described by the uncertainty model does not include the behavior of the

physical system. The converse situation does not give as conclusive a result. If a system
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(constructed with a particular controller) is theoretically not robustly stable, then there

exists at least one plant in the described set which will be destabilized by that controller.

9.3 A Numerical Model of the System

The identification experiments described in the previous section have been used to esti-
mate a model of the system. A general nonlinear model with uncertainty is presented.
This model is intended to be valid over the range 0.15 < h; < 0.75. In order to test this
model, and develop a model validation example, an operating point is selected and a lin-
ear model developed about that point. The subsequent linear model is then transformed

into an equivalent digital system.

9.3.1 A Full Range Nonlinear Model with Uncertainty

Figure 9.4 is a block diagram of the nonlinear tank 1 model derived by the procedures
of the previous section. The uncertainty is included as a multiplicative perturbation at
the output of each of the nominal h; and ¢; models.

In the frequency range of interest, the actuators can be modeled as a single pole
system with rate and magnitude saturations. The rate saturation has been estimated
from observing the effect of triangle waves of different frequencies and magnitudes. The

following model has been estimated for the actuators.

1
fo = [m] Jhe (9.5)
with magnitude limit: 1.0
rate limit: 3.5

Note that the rate limit determines the actuator performance rather than the pole loca-
tion. For a linear model some of the effects of rate limiting can be included in an
uncertainty model. For the experiments described here, the saturations have little effect
and are ignored. Hence

1

Poct = 7 +0.05s°
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Figure 9.4: A Numerical Nonlinear Model of Tank 1
The block labeled h; model is described by the following equations.
1
h = [——_1 n 122.53] (fu+ fe) (9.6)
hy = 1.34fi-0.6 (9.7)
h, is simply the nominal height in tank 1. The block ¢; model is given by
. -1 0.6 1
E, = _—122_5(1+ﬁ_1)E1+mfh : (9.8)
- 1
t, = —F 9.9
1 " 1 (9.9)

where f; denotes the nominal temperature of tank 1. Note that the nonlinear model
for t; includes an input A;. As can be seen from Figure 9.4, this is the height with the
inclusion of uncertainty. The question of whether to use h; or &, for this input is open
to debate. In this case the weight W}, will be so small that it makes little difference

which signal is used. The equation given here is a more conservative description.
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The weights for the perturbations have been estimated as

0.5s
Wi 0.255 + 1
and
35h18
7 — .
Wa = 01+ 02541

As expected from the earlier experiments, the uncertainty weight associated with #;
increases with h;. A

The model does not include any sensor dynamics. In the frequency range of interest,
unity gain is a good enough model of both the thermocouple and the pressure sensor.
Any multiplicative uncertainty can be absorbed into the existing output uncertainty
weights: Wy, and Wy;. Weighted additive noise is included on each measured output.
It is assumed that this noise is bounded in power. Measurements on a quiescent system

give the following estimates.

Wy, = 0.01
Wm = 003

The model validation procedure will directly test these values.
This gives a candidate nonlinear model for the top tank. In the next section an
operating point will be selected and a linear model developed for consideration as a

model validation example.

9.3.2 A Linear Model

The operating point is selected as by = 0.47 and ¢; = 0.5. This requires actuator
positions close to the midpoint and consequently avoids saturation issues in both A; and
the input flows.

The first of two linear models is now developed. This is not a standard linearization
of the nonlinear model as the cross coupling between height and temperature will be
ignored. If such a model, with uncertainty, could adequately describe the system, then

the resulting controller design problem would be simplified. It will be seen that the
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uncertainty associated with the temperature is large; it is this that tempts one to attempt
using a simplified nominal model.

In the derivation of the temperature model, it will be assumed that the height is
fixed. This results in a simplified linear model for the top tank. In practice one hopes
that the model equations are good for small variations about the nominal height. In
this example large deviations will also be considered. In a robust control framework, it
is hoped that the discrepancies in the behavior due to the effects of changing h; will be
captured in the uncertainty description.

This emphasizes a fundamental point in using robust control models to describe any
system. The criterion of importance is that the linear model plus uncertainty be able to
describe the actual effects observed in the system.

These issues arise in the ¢hoice of W;;. The previous section gave an equation for Wy,
which was a function of h;. The means used to estimate a suitable W;; were really only
applicable to small deviations about the nominal h;. Some faith is required to apply this
weight to a description of the full nonlinear behavior. It is also not clear which value
should be used for A; in the derivation of W;y; hy = 0.47 (the nominal h;) or h; equal
to the maximum likely to occur in practice. Note that the maximum value of h; gives
the most conservative estimate of the weight. For this problem the value h; = 0.47 will
be used. The suitability of the resulting model can then be tested against experimental
data.

Linearizing the h; and ?; model equations at hy = 0.47 gives

by = ['1—_:—1%—5;] (fa+f) = hun(fu+ f2)
h = [-1—-1-1_523?-5.;] o = tinkn

The weights on the output perturbations are selected as
Wi = 'i—-;-q.oi.;_s-.;
e

and the weights for the additive output noise are

Wi = 0.01
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Figure 9.5: Nyquist Plot of the Transfer Function: f; + f. to hy. Circles indicate the
equivalent additive uncertainty bound

W‘tn = 0.03.

Figure 9.5 shows a Nyquist plot of the transfer function f + f. to hy. The Nyquist
plot of the transfer function from f, to t; is illustrated in Figure 9.6. The perturbation
uncertainty is illustrated by circles about the nominal transfer function at each frequency.
Note that this diagram illustrates the perturbation uncertainty in an additive form
although the above mathematical description is in multiplicative form. For SISO models
the additive weight is simply the product of the plant and the multiplicative weight.

The uncertainty on the f, + f. to h; transfer function ie very small. It is almost
indistinguishable on the plot. The system is very close to linear with regard to the
height model. It will be seen that the height output uncertainty weight Wy, is in fact
adequate. It appears that the temperature uncertainty weight is greater than zero as the
frequency approaches infinity. This is not actually the case; if more high frequencies were
included on the plot, the weight would collapse into the origin. While the temperature
uncertainty weight appears to be generous, it will be seen that the model does not
adequately describe the temperature response.

Define the inputs and outputs associated with A; as 2; and v; respectively. The
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interconnection structure P is therefore
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where P is shown divided up into the usual partitions, F;;.

The perturbation block has two elements;

6 ©
0 6

A=
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giving a block structure of (1,1). In the ¢, problem this will give
I,={1,2} and I, ={3}.

Certain features are immediately obvious. Firstly, P;; = 0 and Pj3 = 0. This
means that the quadratic term of the Lagrangian is positive definite for all A; > 0. The
boundary case (A € dA) cannot occur.

In order to consider the problem numerically, the state space representation is intro-

duced. The matrix transfer function P(s) can be represented as

B
clD

P(s)=C(sI-A)"'B+D =

The numerical values of the above A, B, C, and D matrices are given in Appendix A
(Equations A.1, A.2, A.3, and A .4). .

9.3.3 The Discrete Version of the Interconnection Structure

Section 3.3.1 outlined a means of formulating a digital version of the model validation
problem. In order to apply this approach to this example, an equivalent digital inter-
connection structure is developed.

Consider P(s) to be preceded by a zero order hold and followed by a sampler of
period T. Figure 9.7 illustrates the required digital system.

Pe)]
N Pl | G
z(n ' ° 3 v(n)
3] T L)

Figure 9.7: The Equivalent Digital System: P(z2)

Kwakernaak and Sivan [19] discuss this problem for time varying A, B, C, and D

matrices and varying periods for the zero order hold and the sampler. In the example
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presented here it is assumed that the sampler and the zero order hold operate syn-
chronously without delay and with a fixed period, T. In this case the discrete system is

given by
P(2) = C4(zI — Ag)"'Ba + Dy
where
T
Ag=e4T, B;= / eA"Bdr, Cy=C, and Dgq=D.
0

For the example considered here, T = 0.1. Appendix A gives the discrete time state
space matrices Aq and By (Equations A.5 and A.6). The model is now in a form suitable

for application of the model validation techniques.

9.4 A Model Validation Problem

9.4.1 The Experimental Datum

Consider an experiment which closely matches the assumptions on the digital model
validation problem. The noise is assumed to be of bounded power and the inputs and
outputs of the system are periodic.

A periodic input signal was applied to the flow actuators. Figure 9.8 shows a window
of data taken from this experiment. Several periods elapsed before this data was taken
in order to remove the initial transient.

The sampling period was 0.1 seconds and 4096 sample points were recorded during the
experiment. The period of the input signal was 204.8 seconds, and the record therefore
contains two periods. Several points about the datum should be noted. These pertain
to using the DFT for spectral analysis but are also applicable to this problem; the initial
and final points in the record are at the same value, and the record contains an integer
number of periods. Discontinuities or partial periods will distort the frequency domain
representation of the signals. Using a Fast Frequency Transform (FI'T) algorithm to
calculate the DFT can introduce these problems if the number of samples in the record
is not a power of two. Some algorithms, those in Matlab [32] for example, pad the record

with zeros in order to increase its length to a power of two.
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Both the input and output signals have a bias. As the linear model represents
deviations from the operating point, the mean value of each signal was subtracted off
before performing the DFT.

The following DFT pair was used.

L-1 o
Y(k) = Y y(n)e i T

n=0

1 L1 J2T e
y(n) = I S Y (k) LEn,
k=0

Figure 9.9 shows the magnitude of the DFT of u(n) and y(n). Only the positive
frequency values are plotted.

This datum arises from a periodic input experiment. It is not necessary to choose
a periodic input. A suitable experiment could begin with the system in a quiescent
state with zero input; an input could then be applied and eventually returned to zero,
allowing the system to return to the quiescent state. Analysis in the digital domain will,
however, impose the assumption of periodicity. This poses no problem for the input u;
the experiment postulated above begins and ends with u at zero and could easily be
considered as one period of a periodic experiment.

The norm-bounded unknown input w cannot be dealt with as easily. While one might
be comfortable with the assumption that the spectral characteristics are similar between
periods, the equality constraint imposed by the inputs u and outputs y forces the use of
the assumption that w is also periodic. This is an unavoidable consequence of the fact
that the experiment consists of a finite data record.

However, the analysis of the system will proceed with this assumption. Although
this may introduce some conservativeness, this example will show that useful engineering

judgements can be based on the results.

9.4.2 Solving the Constant Matrix Problems

Each discrete frequency point gives a constant matrix problem. Only the points from

k = 0 to 2048 are considered. At each point P(z) is evaluated:

P(k) = P(2)|___ a5

The input-output relationship at each frequency is simply the matrix relationship:
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: V(k)
[)Z&%] = P(k)| w(k) |.
U(k)
The goal is to minimize the function
] L/2-1 1/2
lo(@)llr ~ 7 {|W<0)|2 r2 3 Wy |W<L/2>P}
k=1
which is achieved by minimizing |W(k)|? at each k. Choosing the Euclidean norm spa-
tially gives, for a vector valued W(k),
[W(k)? = W(k)'W (k).

The minimum ||w]| optimization problem then becomes, for cach k,

51(%:1) f(X(k)) subject to gi(X(k)<0, i=1,....m

and  g.(X(K)) =0,
where

JOX(R)) = my[g E]XUc),

(X)) = X(k)'[fﬂ‘ g}m)

- [ Xy U(k)*]P(k)*["g‘ g]P(k)[g((:))]
and
9e(X (k) = Y (k) — Paa(k)U(k) = [Paa(k) Poo(k)] X (k).

This is exactly the constant matrix problem discussed in Chapters 5, 7, and 8.

The block structure is (1,1), and to set up the ), problem, consider I, = {1,2} and
1, = {3}.

The author has written a software program to attempt to solve this problem based
on the optimization package NPSOL available from the Systems Optimization Laboratory
of Stanford University [34]. The user interface is via Matlab [32]. The program attempts
to find a solution to the optimization problem via a Sequential Quadratic Programming

(SQP) method.
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Figure 9.10: Magnitude of W(k)

In this example there are only two uncertainty blocks. The dimension of X (k) is four
and the dimension of Y (k) is two. Consequently, dim(V') > 2, and if the feasible region
has an interior, a saddlepoint is guaranteed to exist (Lemma 7.13). At every frequency
point the program found the Kuhn-Tucker saddlepoint.

The results of this optimization are presented in the next section.

9.4.3 A Discussion of the Results

The optimization approach discussed in the previous section yields X (k) for

k =0,...,2048. Figure 9.10 shows |W (k)| for k = 1,...,2048.

L/2-1

1/2
(@)l ~ -,1.;{|W<0)|’+2 > WP+ |W(L/2)P} = 1.3184.
k=1

As this is larger than one, there is no element in the model set (which includes the
assumption that |jw||p < 1) which can account for the experimental datum. Examination
of Figure 9.10 indicates that there are several values of k for which W(k) dominates the
problem. This is hardly surprising as the U(k) and Y (k) are also large at these points.

The noise on the temperature output (w;) is considerably larger than that on the
height output (w;). This suggests that the model for temperature may require

modification.
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Figure 9.11: Time Domain Results: z(n)

It is tempting at this point to examine the time domain version of W (k) by performing
an inverse transform. This can be done by calculating the value of X (k) for the remaining
values of k. For k = 2049, ...,4095 X (k) is the complex conjugate of X (4096 — k).

Figure 9.11 shows the time domain version of z(n) (v(n) and w(n)). The noise

contribution w(n) appears to be larger than that of the perturbation v(n). It should be

borne in mind, however, that the noise signals arc weighted in order to make the norm
comparison with one. The scaling is 0.01 for w; and 0.03 for ws.

The noise on the temperature output (w;) is almost a sinusoid of the same period
as the input signal. Recall that the nominal model for the temperature response is
minimum phase even though it is known from the previous input-output experiments
that considerable delay is expected (refer to Section 9.2.2 and Figure 9.3). The intent
was to select the perturbation weight Wy, large enough to account for the nonminimum
phase behavior. It can be seen by examining v, and 2z, (although z» has not been plotted
here) that the perturbation block does account for some of the residual (y — Paau). It
seems from this experiment that the output noise signal w, also accounts for a significant
amount. One must be careful in making such judgements based on examination of X (k)
or z(n). These signals are only an example of a single signal, compatible with the system

model, and describing the input-output behavior.
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This experiment indicates that the model presented in Section 9.3.2 cannot account
for the observed behavior (||w||p > 1.3184). There are several immediate possibilities for
modifying the model so that this datum may be accounted for. One is to simply scale
the w input. Applying an additional scaling factor of 0.75 is sufficient. The alternative
is to modify the weights on the perturbation blocks. The discussion in the previous
paragraph suggests that modifying W,; in order to increase its value at least at the
dominant frequency of the response may lower the norm of the w required to account
for the datum.

Examining the time history w(n) shows that w,;, when considered at the output
t1, has a peak magnitude of +£0.06. This is of the order of the deviation in #; itself,
suggesting that something more fundamental is wrong with the model. An examination
of the nominal behavior shows that, in fact, the nominal model does a very poor job of
approximating the observed datnm. The model validation analysis given here indicates
that the perturbation uncertainty is inadequate to account for the discrepancy. The next

section will formulate a better model and repeat the model validation analysis.

9.5 Analysis of a More Sophisticated Model

The previous section indicated that the nominal model was inadequate and that the
perturbation uncertainty description could not correct the deficiencies. The fundamental
reason for this is that the previous model had treated the system much like two single-
input single-output (SISO) systems rather than a multivariable system.

There is a strong coupling between the height and the temperature which is not
captured in the previous model. Section 9.3.2 discussed the compromise of treating
hi to be fixed in the temperature model (Equations 9.8 and 9.9). It was hoped that
the effects of changing h; could be captured by perturbation uncertainty. The model
validation analysis sﬁggests that they cannot.

A more sophisticated nominal model, including the cross coupling, will now be

developed.
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9.5.1 A Nominal Linear Model

Consider a notation for incremental variable
Ey =0F, + Ey

where F) is the steady stale value of E,, and OF; is the incremental variable. The
nonlinear output equation for the temperature (Equation 9.9) can be rearranged to give
El +0E;, = ({1 + 0t1)(i_l1 + 3’11)
= 0t,0hy + 1,0k + h10t + 11 R4

Using the fact that

El = Fllt_l
and dropping the second order term gives the following incremental variable output
equation:

1. (e
ot =511 "l][ahl]'

This gives a more representative output equation. Now consider the state equation

for E; (Equation 9.8). Using incremental variables, this is now

d(0FE, + E Ohi + h _ _ _
A;- ( :1t+ 1) - ( 1 +a1 +ﬁ) (Ot + &)+ (Ofn + fu)tn + (Of. + f)t..
Note that
doF,
dt =0

and the steady state relationship is
—hity + fatn + fete = 0.

Again the higher order terms are dropped giving as a state equation for 4F;,

1

OF: = [m:';

] (aafht,, + adf.t. - ﬂatl).

The height model equations (Equations 9.6 and 9.7) are unchanged by introducing incre-

mental variables. The 8 notation will now be dropped. Substituting in the values for e,
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Ay, tg, and t. gives the new model. Note that the selected operating point is hy = 0.47

and #; = 0.5.
1.34
hy = [m] (fo+ fo)
1
= |~———](1.34f, - 0.
E [1+122.5s}( 34/h - 0.64)
1
t1, = m(El—O.E)hl).

Note the existence of a significant coupling between h; and ¢;. For h; = 0 (meaning
that the height is fixed), the temperature model equations reduce to those of the previous
model. The perturbation uncertainty and noise models have not been changed.

Appendix A contains a state space representation of this new model (Equations A.7,

A8, A.9, and A.10).

9.5.2 The Model Validation Analysis

The experiment considered in Section 9.4 will again be used as the datum. The previously
outlined prodedure was used to coustruct an equivalent digital proi)lem.

The optimization problem was again formulated and solved at each discrete frequency
point. Figure 9.12 gives the results of this optimization in both the frequency and time
domains. The scales used are the same as those in Figures 9.10 and 9.11.

The revised model has removed most of the noise component from w4 at 0.0049 Hz.
Consequently, the time domain noise signal, z(n), has a much lower peak to peak am-

plitude. The norm test gives

L/2-1 1/2
llw(t)llp~—,1;{lW(0)I’+2 > |W(k)|2+|W(L/2>P} = 0.5294.
k=1

This datum can be accounted for by the model with ||wj|p < 1.

9.6 A Discussion of the Example

The nonlinear tank problem has been considered in some detail. In any identifica-
tion/design problem the true system cannot be described by a nominal model. Robust

control models now give a means of including perturbation uncertainty, but it is still a
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matter of judgement whether or not the model with uncertainty is adequate to describe
the system. The model validation procedure gives a means of addressing this question
on an experiment by experiment basis.

The tank example illustrates typical steps in arriving at a suitable robust control
model. As with any other complex physical problem, other issues are invariably involved:
SISO versus MIMO considerations, saturation, nonlinear versus linear models, . ... These
have not been discussed in detail here, but it has been demonstrated, by example, how

one can address these issues by considering the more fundamental question, does the

model account for the datum?
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Chapter 10

Conclusions and Future

L

PDirections

Most engineers would be able to give some meaning to the term model validation.
However, this is the first attempt, as far as this author knows, at rigorously defining
the term and studying the resulting problems for robust control models.

The model validation question studied here provides a means of investigating the
ability of a robust control model to describe a physical system. As such, it can be
considered as the converse of the identification problem, the generation of a model from
experimental data. Identification methods rely on assumptions at some level. Even if
good identification tools were available for robust control models, the model validation
techniques discussed here would still be essential for gaining confidence in the model and
the validity of its underlying assumptions.

The results presented in this thesis have many similarities to those pertaining to u.
The introduction of the general interconnection structure in Chapter 7 shows why this
is the case: both problems can be considered as coming from a more general underlying
problem. The imposition of certain constraints, those arising from known inputs and
outputs, for example, changes the nature of the general problem. However, the convexity
properties and the relationship between Lagrange multipliers and an upper bound remain
relatively unchanged. Model validation can be considered as a more general form of

robust control analysis, one in which known components are also included.
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The current y analysis methods have been extended considerably to include systems
and assumptions beyond those examined here for the model validation problem. The
approach taken in this thesis strongly suggests that many of the same extensions can be
developed for the model validation theory.

Future research work should then include the following:

Extensions to the block structure. Currently, only complex full subblocks are
treated. Repeated scalars, and more generally repeated blocks, need to be added
to the range of structures that can be considered. The fact that the set D can be
defined for these block structures and an upper bound to u calculated suggests that
there exists an equivalent Lagrange problem. For repeated blocks the convexity
property (for three or fewer blocks) breaks down. A study of the equivalent model
validation problem from the geometric framework should shed further light on why

this is so.

Real valued A blocks. The p theory with regard to real valued perturbations is still
being developed. However, such perturbations can be a natural way to model some
‘systems, and the model validation theory should be able to address such models.
Doyle [35] has also pointed out that extending the model validation theory to real

perturbations would allow a direct means of doing robust parameter identification.

Time varying A blocks. Some nonlinear systems can be modeled by a linear inter-
connection structure with time varying perturbations. A more thorough consid-
tration of the consequences of the digital framework will be required before time
varying perturbations can be considered in the model validation framework. With
a finite amount of data, it might be possible, albeit extremely unattractive, to
generate a realization of the known inputs and known outputs. The time varying
case greatly complicates the model validation theory as it is no longer possible to

break a problem up into finite frequency by frequency constant matrix problems.

Time domain approaches. Transforming the system to the frequency domain intro-
duces periodicity assumptions on the unknown inputs. If the problem is left in

the time domain, such assumptions are no longer necessary. However, the choice
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of initial condition for the system introduces further degrees of freedom in the
optimization. It may be necessary to place assumptions on the initial conditions
in order to formulate a meaningful problem. Note also that the usual frequency
varying perturbation bound now has no real meaning and it is far from clear what
should be used in its place. Finally, the problem does not break down into a series
of constant matrix problems. This approach should be considered as a long term

v research problem.

The above suggestions for extensions apply to the model validation theory. Chapter 7
has introduced a more general analysis problem for robust control models. Further work
needs to be done in studying in detail each subproblem and its physical meaning.

It is the function of the control theorist to provide tools which allow the engineer to
understand the physical system and the tradeoffs involved in controlling it. H, theory
provides a means of generating controllers, and p provides a means of studying the robust
performance and robust stability properties of the system models. The model validation
theory now provides a means of studying the relationship between robust control models

and reality and, as such, is another tool that the engineer can add to her repertoire.
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Appendices

A State Space Realizations for the Experimental Example

1

State space realizations of the systems described in Chapter 9 are presented here. Con-

tinuous time representations are of the form

-

B
C|D

P(s)=C(sI-A)"'B+D =

and discrete time state space representations are of the form

P(z2) = Cy(zI - Ad)"le + Dy =

Cq

By
D,

Continuous Time Interconnection Structure (Section 9.3.2)

The state space representation of the interconnection structure presented in Section 9.3.2

’

is

[ 20000 0 0

0 —-20000 0
4 _ | 20000 20000 —0.0080
0 0 0.0110

20.000 0 0

0 0 0

0 0 0
0 0 0
0 0 0
(A
—4.0000 0 0
0  -0.018 0
0 0.0232 —5.0000 |



and

o O O o o o

o o o Q9

1.0000

o O o o o o

1.0000
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0 0 1.0000 0
0 0 0 1.0000
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0.0219 -—8.0000 0 0
0 0 1.9200 -—-412.00
0.0110 0 0 0
0 0 0.0232 0
0 0 0 0
0 0 0 0
0.0100 0 0 0
0 0.0300 0 0

(A.2)

(A.3)

(A.4)
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Discrete Time Interconnection Structure (Section 9.3.3)

The state space representation of the interconnection structure presented in Section 9.3.3

is given below. In this example T = 0.1 and A4, and By are given by

[ 0.1353 0 0 0 0 0 |
0 01353 0 0 0 0
0.8642 0.8642 0.9992 0 0 0
A = (A.5)
0.0005 0.0005 0.0009 0.6703 0 0
0.8636 0 0 0 09981 0
1 0.0011 0 ] 0 0.0018 0.6065 ]
and
[ 0.0432 0 |
0 0.0432
By = (A.6)

0.0000 0.0000
0.0567 0
0.0000 0

o O O O O ©

0
0
0
0
0
0

o o O O o o

0
0
0 0.0567 0.0567
0
0
0

The matrices Cg and D, are equal to their continuous time counterparts, Equa-

tions A.3 and A.4 respectively.
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Continuous Time Interconnection Structure (Section 9.5.1)

The continuous time state space representation of the interconnection structure presented

in Section 9.5.1 is given by

and

o

—20.0000

0
20.0000

0
26.8000

0

o O o o o o

o O O O

1.0000

0 0 0 0 0
~20.0000 0 0 0 0
20.0000 -—0.0080 0 0 0
, (A7)
0 0.0110 —4.0000 0.0000 0
0 0.0070  0.0000 —0.0186 0
0 ~0.0117  0.0000 0.0174 —5.0000 |
0 0 0 10000 0 |
0 0 0 0 1.0000
0 0 0 0 0
, (A.8)
0 0 0 0 0
0 0 0 0 0
0 0 0 0 o |
0 0.0219 —8.0000  0.0000 0
0  —00619 0.0000 1.4329 —412.0000
, (A9)
0 00110 0 0 0
0  —0.0117 0.0000 0.0174 0
0 0 0 0 0 |
0 0 0 0 0
(A.10)
0 0.0100 0 0 0
1.0000 0O 0.0300 0 0 |
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