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Studies in Robust Control of
Systems Subject to Constraints

by

Peter J. Campo

Abstract

Two approaches to control system design for constrained systems are studied.
The first involves theoretical investigations of constrained model predictive control
algorithms. The second involves extensions of robust linear control theory to handle
the nonlinear control schemes commonly used in practice for constrained systems.

A novel model predictive control algorithm, with attractive functional and nu-
merical characteristics is developed. This algorithm minimizes peak excursions in the
controlled outputs and is particularly suited to regulatory control problems commnon
in continuous process systems.

Model predictive control concepts are extended to uncertain linear systems. An
on-line optimizing control scheme (RMPC) is developed which has as its objective
the minimization of worst-case tracking error for an entire family of linear plants.
For model uncertainty descriptions which provide plant impulse response coeflicients
as affine functions of uncertain parameters, it is shown that the required minimax
optimization problem can be recast as a single linear program.

The discrete time optimal averaging level control problem is formulated and
solved. A finite horizon -approximation to the problem is introduced and analyti-
cal solutions are obtained in important special cases. A model predictive control
formulation is introduced which provides optimal flow filtering and integral action.
Analysis tools are provided to characterize the trade-off between flow filtering and

rapid integral action.
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A complete theory is developed for the multivariable anti-windup, bumnpless trans-
fer (AWBT) problem. The theoretical framework allows the consideration of any
linear time iﬁvariant (LTT) control system subject to plant input limitations and
substitutions. A general AWBT compensé,tion scheme, applicable to multivariable
controllers of arbitrary structure and order, is developed. Conditions are derived
under which this general AWBT method reduces to any one of several well-known
heuriétics for AWBT (e.g., PI anti-reset windup and IMC). The design issues which
affect AWBT performance are identified and quantitative analysis methods are devel-
oped. Sufficient conditions for nonlinear stability of the AWBT compensated system
are provided. These results are a generalization of, and are less conservative than,
those available in the AWBT literature. The definition of AWBT performance objec-
tives which are independent of controller structure allows the formulation of a general
AWBT synthesis problem. ’I;his formal synthesis problem addresses each of the iden-
tified performance objectives in a quantitative manner. The synthesis problem is
shown to be a special case of a constrained structure controller synthesis (CSCS)
problem. A solution method via reduction to static output feedback is presented and

the engineering trade-offs available in the AWBT design are discussed.
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Chapter 1
Introduction

The objective of this thesis is to develop practically motivated, theoretically rigorous,
analysis and synthesis tools for the study of feedback control of constrained systems.
The practical motivation requires that the theoretical results must be of value in
solving “real world” engineering problems and not rest on assumptions which are
unreasonable in practice. In particular two common assumptions regarding the system

to be controlled are explicitly relaxed in this work:

1. The controlled system operates over an infinite domain (is not subject to con-

straints).

2. A ma.thema_tica.l model is available which describes the behavior of the controlled

system ezactly.

1.1 Motivation

1.1.1 Constraints

All real world control systems must deal with constraints. These constraints arise

from a number of considerations including:

¢ Safety of plant, personnel, and environment. Above all else the control

system must avoid unsafe operating regimes. In process control these constraints



2

typically appear in the form of operating pressure or temperature limits.

¢ Performance spec‘iﬁcations. In many applications it is sufficient that the
control system maintain system variables within a range, rather than at a spe-
cific point. For example the product composition of specifications for a distil-
lation column are typically, total impurities less than x percent, as opposed to,

product composition precisely y.

¢ Physical limitations. The ultimate capacities of plant hardware are limited.
Valves can only operate between fully open and fully closed, pumps and com-
pressors have finite throughput capacity, surge tanks can only hold a certain

volume, etc.

It may be argued that l?y proper design of the controlled system the issue of
physical limitations, and perhaps safety considerations as well, could be minimized
(or effectively removed). For exammple, installing actuators and process equipment
able to handle operating conditions well beyond what is to be expected in normal
operation. While this is true in principle, it is impractical due to the costs associated
with the extra capacity built into the system which is used only infrequently. In fact
economic optimization of the system operating point typically drives the system to

one or more constraints. Lee and Weekman, [62], report

“ ... in the petroleum industry the optimal operating point commonly lies

beyond the range of practical constraints. This probably occurs because of

the savings incorporated into the design due to capital cost considerations.

Thus a well designed plant should operate at a constraint, or it is rcally
- overdesigned [emphasis added].”

While the specific examples presented here are from the process industries, these
economic and operational considerations are valid in other disciplines as well. These
include applications in aerospace, electrical, and mechanical engineering.

Given the universal nature of constrained operation, it is important that these
constraints be considered in feedback control system designs. In Section 2 we will

review the extent to which this has been achieved historically, and outline the specific

needs for new theory.



1.1.2 Model Uncertainty

In addition to dealing wit.h constraints at the design stage, it is important to recog-
nizé that any mathematical model used in controller design is necessarily an inexact
description of the true physical system. Even for extremely detailed and involved first
principles models this will be true and for the simple models commonly used in con-
troller design the plant-model mismatch, or model error, may be quite large. Detailed
models are typically difficult and costly to obtain; the costs associated with improved
modeling must be balanced against the promise of improved control. Since there are
diminishing returns in ‘terms of control performance from improved modelling, ezact
‘modelling is not economically feasible.

As a result of model error the performance of the closed loop system consisting of
the physical system and the designed controller will be different than that predicted
by the model used in the design. Since the controller will usually be “optimal” in
some sense for the given model, performance on the physical system is generally
poorer than for the design model. In fact the true performance can be arbitrarily bad
— the true system may be unstable — while the design model predicts a stable closed
loop.

An obvious practical concern is that the performance provided by the controller
be insensitive to the model of the system used in the design. In this case we say that
the controller (or controller design) is “robust,” i.e., small changes in the design data
(the model) result in only small changes in the resulting controller. Of course it is
only necessary that the controller be insensitive to perturbations of the design model
which give rise to physically plausible models. These concerns require that precise
notions of “insensitivity” and “structured model perturbations” be defined.

For linear time invariant systems a rich mathematical theory has been developed
to address these issues and provides nonconservative rcsults‘for robustness analysis.
Unfortunately constrained systems are necessarily nonlinear and this severely' limits

application of the theory.



1.2 Previous Work
1.2.1 Constraints

The traditional method for dealing with constraints has been to use simple static
nonlinear elements, selectors and overrides, in the control system. The purpose of
these selectors and overrides is to re-configure the control system when a constraint
is violated. In the terminology of Chapter 6 this corresponds to a control system
mode switch. In a typical example a single input is used to regulate a primary output
around a given setpoiﬁt, and to maintain a secondary output within a given range.
"The function of the selector is to change the controlled variable from the primary
to the secondary output when a constraint violation occurs. The secondary output
is controlled until it is, by action of the plant input, returned to the acceptable
range. Regulation of the primary output is interrupted and does not resume until the
secondary output is in the desired range. At this point the selector switches back to
regulation of the primary output.

Despite their considerable practical importance and extensive use, there is es-
sentially no general theory to guide the design and analysis of these selector and
override schemes. Furthermore, because they modify the control system configura-
tion dynamically, they often cause severe performance deterioration such as windup
and bumps when switching modes. For simple single loop control system designs,
using PID regulators, essentially ad hoc design methods for anti-windup bumpless
transfer (AWBT) compensation have been developed. These methods are based on
engineering intuition and an understanding of the action of the simple control laws
in the time domain. Due to their nonlinear nature the analysis of these systems has
been confined largely to simulation. Over the course of time a number of “standard”
applications (idioms in the language of [14]) have evolved, these having withstood
the test of practical application. Since these mode selection schemes are essehtially
application specific, new designs typically require a great deal of engineering effort,
simulation, and trial and error.

Preliminary steps to address the analysis of these nonlinear systems, in the sim-
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plest single inpﬂﬁ-single output (SISO) examples, are provided in [40,48,46]. The
analysis is restricted to the stability issue and no quantitative measures of perfor-
mance have been reported. The lack of a general theory, which subsumes the known
(SISO) techniques and extends to multivariable controllers of arbitrary order has
been a major impediment to the application of advanced control theory to real world

problems. As stated by Karl Astrom, [4],

“I would like to bring up some problems relating to the use of advanced
control algorithms which deserve attention. The development of modern
control theory has so far largely been concentrated on development of pure
control algorithms. Very little attention has been given to the operational
aspects of the algorithms.

To illustrate what I mean let us consider a simple PID algorithm. You
all know what the pure version of the algorithm looks like. You are also
well aware that it is necessary to consider a whole range of auxiliary issues
like mode switching, reset windup, saturation, limitation, gap, selectors,
operator interfaces, etc. After the simple three term controller was con-
ceived it took a considerable time before all these problems were fully
understood and solved. It is also well-known that a proper consideration
of these operational issues is at least as important for the performance of
the controller as the pure algorithm and its tuning.

There is clearly a need to consider the analogous problems for advanced
control algorithms. This does not seem too hard to do. I have seen good
solutions in specific cases. As far as I now very little has, however, been
published in this area. The problem of windup is, for example, clearly
related to the problem of resetting the state of the regulator. Concepts
and algorithms for doing this are available. The details should however
be worked out and published.”

The lack of adequate theory and the increasing effort required to develop and de-
bug mode selection and anti-windup mechanisms for increasingly sophisticated control
configurations spurred the development of an entirely different approach, known as
Model Predictive Control (MPC), by researchers in the process industries.

Early examples of MPC included Model Algorithmic Control, [82], and Dynamic
Matrix Control, [26]. The basic concept in MPC is that a discrete time control law is
obtained by solving an optimization problem, posed in the time domain, to determine
the value of the plant input. Using an estimate of disturbances acting on the plant and

‘a model of its input-output behavior, “optimal” current and future values of the input
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are obtained whi.;:h minimize tracking error, setpoint minus predicted output, over a
finite future horizon. The first of these inputs is implemented, new measurements are
ta.ken, the disturbance estimate is updated, and the optimization problem is resoclved
at each subsequent sampling time. The simplest of disturbance estimation schemes,
typically a special case of an open loop observer, has proven adequate in most reported
applications.

Although the early algorithms did not deal with constraints, it was soon realized
that a constrained optimization could be solved at each time step to handle input
and output constraints. It is now known, although probably not widely enough
appreciated, that the unconstrained MPC algorithms amount to nothing more than
a particular linear time invariant (LTI) controller design. As a result, unconstrained
MPC has nothing to offer over more conventional multivariable LTI controller designs
developed in the frequency d;)main (e.g., IMC, loopshaping, H? optimal, H* optimal,
etc.).

In constrained MPC, each set of active constraints in the optimization problem
gives rise to a particular LTI controller. The optimization scheme “selects” among
these controllers in an automatic fashion by adjusting the active constraint set in
such a w"a.y as to minimize the objective function. From this perspective constrained
MPC may be regarded as a rational design of a mode selection logic. The primary
advantage of the model predictive control formalism is that the mode selection scheme
arises naturally and its implementation is handled by the constrained optimization.

The biggest drawback of the MPC approach is that it is not amenable to anal-
ysis and quantitative synthesis procedures. Significant complication is caused by
the large number of “tuning parameters” intrinsic to the MPC controller (a typical
3 x 3 implementation can easily involve 50 weights and horizon length specifications).
Furthermore the effect of these tuning parameters on closed loop performance is gen-
erally indirect and unclear. Indeed many of the proposed schemes provide tuning
parameters with overlapping and contradictory effects.

In addition to these difficulties, essentially no analysis techniques, other than

simulation, are available for constrained MPC. Most significantly there is no technique



7

available for asseésing the effects of plant-model mismatch. Simulation and experience
from simple example systems indicate that there are no simple or direct connections
between the MPC tuning parameters and control system robustness.

Despite these limitations, MPC has had a significant impact in practical appli-
cations, especially in process control. In addition to its constraint handling ability,
the fact that it is formulated in the time domain, and is therefore more accessible to
process éngineers who lack traditional control backgrounds, probably accounts for its

widespread popularity in industry.

1.2.2 Model Uncertainty

In stark contrast to the problem of constraints, a rich and complete theory has been
developed for studying plant-model mismatch in LTT systems. Quantitative robust-
ness analysis results were first articulated by Doyle and Stein, [36], for unstructured
plant model perturbations, and by Doyle, [31], for structured plant model perturba-
tions. Introduction of the H* synthesis problem by Zames, [96], provided a conve-
nient framework for including these robustness issues in control system synthesis.

This theory has substantially improved the ability of control system designers to
develop robust multivariable designs for linear systems. It has not, however, been use-
ful in designing mode selection schemes, or anti-windup bumpless transfer (AWBT)
compensation schemes. This is because these systems include constraints and static
nonlinearities which are not admitted by the theory. It is a goal of this thesis work to
bring this powerful theory to hear on the AWBT problem. In particular, extensions
of the linear theory to handle the simple static nonlinearities involved in the AWBT
problem are to be developed.

It is clear that there have been two, essentially mutually exclusive, approaches to

the control of constrained systems:

¢ Frequency domain LTI controller synthesis coupled with application specific

constraint compensation.

o Constrained model predictive control.
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Each approa,ch enjoys specific advantages; the MPC approach handles constraints
in an optimal fashion but robustness analysis is impossible - the frequency domain
techniques lend themselves to robustness analysis but can only accommodate con-
straints in an ad hbc manner. Important contributions to the theory of each of these

approaches are made in this thesis.

1.3 Thesis Overview

In Part I the model predictive control approach to constrained systems is studied.
Chapter 2 provides a brief overview of MPC. A general setting for MPC problems is
developed in terms of the spatial and temporal norms chosen to measure the mag-
nitude of predicted tracking crrors. A novel modcl predictive control algorithm, the
oo — oo norm formulation, is outlined and studied in some detail. The advantages of
this algorithm are its smaller (although still large) number of tuning parameters and
significantly reduced on-line: computational burden.

In Chapter 3 the co — 0o norm formulation is used as a vehicle for introducing
robustness issues in MPC. An MPC control algorithm known as Robust Model Pre-
dictive Control (RMPC) is developed in which robust performance, i.e., worst-case
performance predicted by a set of plant models, is optimized. This is in contrast to
existing MPC algorithms which optimize nominal performance - that predicted by a
single nominal model. A novel class of plant models, characterized by uncertain im-
pulse response coefficients, is developed for use in the RMPC algorithm. This work
represents the first integration of robustness issues into a model predictive control
formulation.

In Chapter 4 a special topic, surge tank level control, is studied. The dominant
feature of this control problem is that the control system design is entirely driven
by the tank level constré.ints. The control objective is to minimize deviations in
the tank outlet flow rate while preventing high or low level constraint violations
in response to inlet flow variations. It is shown that this problem can be naturally

formulated as an co—oo norm MPC problem. The resulting control algorithm involves
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a single adjustable parameter which is directly related to closed loop performance.
A closed form solution for the constrained optimization is obtained which makes
implementation of the algorithm very simple.

In Chapter 5 a brief summary of conclusions, and suggestions for future work in
MPC for constrained control are provided. In addition some more recent results by
other researchers in this area are reviewed.

Pa‘rt IT of the thesis is devoted to the development of a truly general theory,
encompassing both stability and performance issues, for anti-windup and bumpless
transfer. The end result isa theoretica,l' framework, quantitative analysis and synthesis
results far beyond the, “working out of details”, suggested by Astrom.

In Chapter 6 a specific AWBT compensation strategy is studied. While multi-
variable in nature, it is a somewhat limited approach. For an important class of
problems, however, the tech£1ique is quite useful. In Chapter 7 the straightforward
ideas in Chapter 6 are formalized and a complete AWBT theory is introduced. These
results provide quantitative tools for the development of AWBT techniques for linear
controllers of arbitrary input, output, and state dimensions, and of arbitrary struc-
ture. The theoretical framework is used to study and understand the proven AWBT
techniques reported in the literature, as particular special cases.

A summary of the conclusions from Part II and additional suggestions for further
work are presented in Chapter 8.

A case study in constrained control system design is included as Appendix A.
This control problem was developed by practitioners at Shell Development Company
to be representative of “real world” control problems. As outlined in [79] constraints
play a major role in the functional specifications for the control system design. In
addition to motivating for the need for the type of theory outlined in this thesis,
a novel approach to determining achievable steady state performance under model

uncertainty is presented.
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Part I

The Model Predictive Control
Approach
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Chapter 2

co-INorm Formulation of Model
Predictive Control Problems

Abstract

A general mathematical programming framework for multivariable model predic-
tive control problems is presented. Existing model predictive formulations, based on
1 and 2-norms (Quadratic Dynamic Matrix, Linear Dynamic Matrix, and Model Al-
gorithmic Control) arc discussed within the general framework. A new formulation,
based on the co-norm, is introduced and developed. The characteristics of this for-
mulation, which make it particularly attractive for the control of chemical processes,
are discussed. A simple procedure for the design and implementation of constrained
control systems, based on the internal model control structure, is proposed. A simple

example is included to demonstrate this procedure.
2.1 Introduction

It is widely understood that economic optimization of processing plants dictates oper-
ating points which lie on one or more process constraints [62,3]. Furthermore, product
specifications and limitations on available control effort often prescribe hard bounds
on systerﬁ inputs and outputs. This situation has prompted the development of mul-
tivariable control algorithms which deal with constraints. Examples include Dynamic
Matrix Control [26] and Model Algorithmic Control [82].

These control algorithms are all based on model predictive concepts and therefore

share a common theoretical basis. In model predictive control, a discrete convolution
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Optimization) " M
Problem

0.

Figure 1: The model predictive control scheme.

model of the process is used to compute future input values which cause the plant
to track a reference trajectory in some “optimal” fashion while observing constraints.
The optimality of trajectory tracking is determined by the temporal and spatial norms
chosen to measure the magnitude of tracking errors.

In this paper we present a general mathematical programming approach to model
predictive control. A new formulation, based upon an objective function (oco-norm)
to minimize the maximum future error is introduced. This objective function leads to
a particularly simple linear programming formulation whose properties are attractive

for the control of chemical processes.

2.2 Model Prédictive Control

The model predictive control scheme is outlined in Figure 1. This algorithm involves
the on-line solution of a constrained optimization problem to determine a set of
piecewise constant (discrete), feasible future inputs, u, which will cause predicted
values of future plant outputs, Y, to track a prescribed trajectory, r. Feasible future

inputs are those which do not violate any input constraints and produce predicted

outputs which do not violate any output constraints. This optimization problem is
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solved using matﬁherlnatica.l programming techniques. This procedure amounts to an
“open loop” calculation of future inputs and does not involve feedback.

1In order to reject unmeasured disturbances, d, and to offset the effects of modelling
error, an inferred disturbance, i, is computed at each sample instant by subtracting
the current model output, g, from the actual plant output, y. In the absence of
information to support a more complex disturbance model, this inferred disturbance
is a,ssﬁmed constant over the future error horizon. The inferred disturbance is used
to modify the reference trajectory and to calculate a new set of optimal input values
which minimize future errors. Although several future input values are calculated at
each sample time, only the first of them is implemented. |

The minimization of tracking error, without regard to manipulated variable ac-
tion, often results in control schemes which take drastic control action to alleviate
relatively minor tracking er;'ors. This has prompted the introduction of weighted
penalties on control action into the optimization objective function. This gives rise
to many new “tuning parameters” in the form of weighting matrices, which allow the
designer to modify the characteristics of the model predictive controller. We feel that
it is important to determine the inherent characteristics of the control formulation
and have therefore made an effort to avoid the use of adjustable parameters whose
selection is not directly mandated by the physical situation. Although we omit in-
put weighting in the objective function (soft constraints), the analysis which follows
does not preclude their introduction. For the generic SISO model predictive control
problem, the following constrained optimization problem must be solved at each time

step:

min |z 5y )1 (21)
Subject to:

y_l

IA

IA

I
®

u

u

R~

¥ < ily,u) <

where the function §(y,,u) is evaluated using the system model and:
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indicates a measure of magnitude (norm) over an error horizon

—
.

r a P x 1 vector of desired future outputs

u a M x 1 vector of future inputs
g a P x 1 vector of future model outputs
Y the current state of the plant
_g‘g an M x 1 vector of lower bounds on future inputs
u* an M x 1 vector of upper bounds on future inputs
yt a P x 1 vector of lower bounds on future outputs
v a P x 1 vector of upper bounds on future outputs
P length of the output error horizon
M length of as the input horizon

This problem may, in general, include further constraints involving linear combi-
nations of the inputs and outputs (e.g., constraints on the size of plant input changes,
|u; — u;—1], or total control effort over the future horizon).

For all choices of the norm, ||-||, which are of interest, the constrained optimization
problem (1) can be recast as a linear or quadratic program. In either case well-known
solution techniques are available. In practice, M is usually chosen less than P in
order to reduce on-line computational requirements. In these cases, the calculation
of future plant outputs is based upon the assumption that the (M + 1)* through P*

inputs remain constant at the value calculated for the M* input.

2.3 Norms and Model Predictive Formulations

We now turn our attention to translation of control objectives into an appropriate
choice of objective function and constraints. This translation requires the definition

of a norm which defines the “size” of a vector valued error. The most common norms
used are defined by:
' ' P H 4

Izl = [ kit | | 22)

i=1

where p = 1, 2, or 00. A predicted error at some future time comprises a vector in R?,
where s is the number of system outputs. The functional chosen to map this vector
into a scalar measure of its magnitude is referred to as the spatial norm. The set of

these scalar errors over future time values constitutes a vector in RF. The functional
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Temporal Norm

1 2 -

1 LP | QP | LP

Spatial Norm 2 QP | QP QP

= LP QP LP

Table 1: Model predictive control algorithms.

which maps this vector into a single scalar measure of future error is referred to as
the temporal norm.

Independent selection of temporal and spatial norms (1, 2, or co) provide the
nine combinations shown in Table 1. Each of these combinations can be used in the
formulation of a model predictive control algorithm. We will refer to a formulation
as the m — n algorithm, where m is the spatial norm and n is the temporal norm.

Formulations denoted LP in Table 1 can be reduced to linear programs in the

following standard form:

min¢'z (2.3)
Subject to:

Az < b

z 20

Formulations which result in quadratic programs are denoted QP.
1-1 Algorithm. This algorithm corresponds to Linear Dynamic Matrix Control

(LDMC) [69] and uses an objective function of the form:
P s
min ) 3 wit)]ei(t)| (2.4)

t=1 1=1

where w; are weights on the individual elements of the error vector, and s is the
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number of system outputs. If w;(f) is constant for all ¢ = 1,..., P, this choice of
norm corresponds to the minimization of integral absolute tracking error. Although
this objectivé function is nonlinear, the resulting constrained optimization problem
can be cast as a linear programming problem in the standard form (3) [69,21)].
2-2 Algorithm. This is the most commonly used model predictive control al-
gorithm and is the basis of Dynamic Matrix Control (QDMC) [26,44], Model Algo-
rithmic Control [82], and their variants. These formulations add input weighting to

obtain an objective function of the form:

min 3¢ (Qe(t) +47(0) Ru(t) (25)

where @ and R are positive semi-definite weighting matrices. This formulation results
in a convex quadratic programming problem. Choosing Q = I and R = 0, corresponds
to the minimization of unweighted integral square error. |

1-co Algorithm. This algorithm results in the minimization of the maximum,
over the future horizon, of the sum of absolute values of the individual output errors.
This formulation can also be cast as linear program in the form (3), but does not
share the attractive features of the co-norm algorithms discussed below, since it uses
the spatial 1-norm.

co-1 Algorithm. This algorithm minimizes the sum, over the future horizon, of
absolute values of the largest output error at each time step. This objective amounts
to the minimization of the integral absolute error evaluated using the worst error at
each time step. Although it has not been studied extensively, it may have appeal
for systems which exhibit inverse response since time varying weights would not be
needed as they are in the co — co algorithm below. It is straightforward to cast this
problem as a linear program in the form (3).

co — 0o Algorithm. A new formulation has been developed which uses the co-
norm,

lz]lee = max || (2.6)

The use of this norm both spatially and temporally results in an objective function
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which minimizes the maximum element of the error vector over the projected horizon.
Specifically: |

min max max wilei(2)| (2.7)
1]

This formulation can also be cast as a linear programming problem in the form (3),
and has several advantages over the 1 and 2-norm based objectives presented to date.

The 0o — oo algorithm is a more direct mathematical representation of the pre-
dominate control objective in the process industries. The common industrial problem
is not one of good servo behavior, in the sense of minimum absolute or squared error,
but rather one of good regulatory behavior while keeping “reasonable” values for all
outputs.

Since this formulation does not attempt to minimize errors at all future sample
instants, but only at the future sample time in which the error is maximum, it gen-
erally does not require extreme control actions. Obviously, in the case where this
maximum error can be made zero by a set of feasible future inputs, the trajectory
will be tracked perfectly as in the 1 and 2-norm cases.

This algorithm also provides a very straightforward interpretation of weighting
parameters. These are simply determined by the relative scaling of the process vari-
ables. In situations where good control of certain outputs is required at the expense
of control quality of others, the weights can be varied accordingly. Normally these
weights would be chosen to penalize errors equally in all future time steps.

For systems exhibiting inverse response characteristics, this algorithm, using time
invariant weights, does not —reject persistent disturbances. Any control action to reject
the disturbance would result in a larger maximum predicted future error than if no
control action were taken (as a result of the initial inverse response). This difficulty
can be overcome by the specification of time varying weights on future errors such
that errors projected in the first few time steps are weighted less heavily than those
near the end of the error horizon. These time varying weights are easily speciﬁed to
produce an exponential return to setpoint.

Finally, as we will show in the next section, the co — oo algorithm shows significant
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computational advantages over the other algorithms presented.
Other Algorithms.  The remaining algorithms in Table 1 result in quadratic
programs. They do not appear to have features which justify the additional effort

required, in general, to solve quadratic programs versus linear programs.

2.4 Computational Aspects

Since model predictive control requires the solution of an optimization problem on-
line, an important consideration is the computational effort demanded by a particular
formulation. Although custom algorithms which take advantage of the structure of
a formulation may be available, we are concerned with the generic situation. The
Revised Simplex Method is a well-known algorithm which can be applied to general
problems in the standard form (3). Typically, this algorithm requires between v+c and
2(v + ¢) iterations to find a solution, where v is the number of variables (dimension
of z), and c is the number of constraints (row dimension of A). Each iteration of
this algorithm requires on the order of ¢® multiplications [81]. We can compare
the formulations which result in linear programs by examining the total number of
multiplications required by each.

For the SISO case with upper and lower bounds on both input and output, the
LP formulation (3) for the co — oo algorithm involves M + 2 variables and 4P+ M +1
constraints. The 1-1 algorithm requires 2P variables and 2P + 2M constraints. In
both cases the number of variables is less than the number of constraints so it is more

efficient to solve the dual ﬁnear program of (3):
min A" (2.8)

Subject to:

s
~
2
IN
i3}

A 20

'This linear program clearly involves ¢ variables and v constraints. We expect then,
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the co—o0 algori;:hm to require on the order of (4P +2M +3)(M +2)* multiplications
at each time step. The 1-1 algorithm requires approximately (4P + 2M)(2P)* mul-
tiplications at each time step. This indicates a significant computational advantage
for the new algorithm. Depending on the choice of spatial norm, the comparative
advantage of the temporal co-norm over the temporal 1-norm, may be even greater
in the MIMO case.

In-general, the linear programs derived from the translation of predictive control
problems have more constraints than variables. This suggests that the dual program,
(8), should be used for computation rather than the primal. The form of the linear
program (8), specifically that all constraints appear as ineq\iality constraints and all
elements of the right hand side vector, ¢, are positive, leads to further reduction in
computational effort. This structure insures that the slack variables form an initial
feasible solution. This mean's that Phase 1 of the general 2-phase simplex algorithm

is unnecessary.

2.5 Implementation of Model Predictive Control
in the Internal Model Control Structure

The Internal Model Control (IMC) [42,43] structure is shown in Figure 2, where
G is the plant, G the process model, and Q the IMC controller. Comparison of
Figures 1 and 2 indicates that the model predictive control scheme is achieved from
the IMC structure when Q is implemented as an optimization problem (mathematical
program).

Thg classical feedback structure, Figure 3, is related to the IMC structure through

the following equalities:

C = QU-GQ)™ - (29)
Q = cI+Go)! (2.10)

where C' is the classical feedback controller.
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Figure 2: The internal model control (IMC) structure.

1 C 16

Figure 3: The classical control structure.
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It can be shown that the IMC structure is internally stable when there is no

modelling error (G = G) if and only if:

1). G is stable

(2.11)
2). @ is stable

Thus any implementation of model predictive control which infers a disturbance signal
using the process model will be internally unstable if the plant is open loop unstable.

Control systems implemented in the classical structure, which are closed loop
stable in the absence of plant input constraints, may become unstable if inputs are
constrained. An IMC implementation, however, cannot be destabilized by input
saturation, since closed loop stability is guaranteed by conditions (11).

The IMC controller, @, generally consists of a low pass filter, F', and an approx-
imate model inverse, Q (ie, Q@ = QF) In general GQ = H, and the closed loop
transfer function is HF, i.e., y(s) = H(s)F(s)r(s). Ideally, we would like Q = G™!
so that H = I, and the designer has complete freedom to specify the closed loop
response with the filter F.

It is proposed to develop constrained control systems in the following manner:

1. Design a controller as for the unconstrained case. Design procedures which pro-

vide robust stability and performance for unconstrained problems are available,

e.g., Ho, p-synthesis, etc.

2. Implement the equivalent controller @ = C(I + GC)™Y, in the IMC control
stfucture, as a mathematical program. This provides a feasible approximation

to @ when constraints are active and is identical to () when constraints are not

active.

This procedure allows the implementation of controllers designed in the absence of
constraints and provides an “optimal” approximation to them in the presence of

constraints.
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variable | description steady state value
y1 | overheads composition | 96.25 mol % meth.
Yo bottoms composition 0.50 mol % meth.
m reflux flow rate 1.95 Ib/min
ma reboiler steam flow rate 1.71 Ib/min

Table 2: Wood-Berry column variables.

2.6 Example

A simulation study of a simple example was carried out to demonstrate the charac-
teristics of the MIMO oo — oo algorithm. Wood and Berry [91] proposed the following

2-input, 2-output model of a methanol-water distillation column.

- - X -3
vi(s) _ I%%-‘ﬁ 2118.3:-1 my(s)
T | 68e=7* —19.4e—3*

ya(s) 10.9541  14.ds+1 ma(s)

The physical significance of the model variables, and nominal operating conditions of
the column, are outlined in Table 2.
To reflect realistic industrial constraints, the reflux flow rate and reboiler steam

rate were constrained to lie within the ranges:

-195 € my < 025 = refluxrate < 2.201b/min
-1.71 £ my £ 029 = steamrate < 2.001b/min

To represent possible product purity specifications, overhead and bottoms composi-

tions were constrained to be lie in the ranges:

y1. > -0.25 = overheads comp. > 96 mol %

2 < 005 =  bottoms comp. < 0.55 mol %

The ideal controller, though not realizable, would be Q(s) = G(s)™" [42,68]. In this
example, we determine a feasible approximation to G(s)~! using the co — oo model
predictive algorithm. This approximation is augmented with a low pass, diagonal

filter, F(s), as suggested by Garcia and Morari [43]. For this example, the filter used
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i8:

F(s) = diag{1/6s+1, 1/6s+ 1}

This filter specifies an exponential response to step changes in setpoints or distur-
bances. The process model was discretized using a sampling time of 2.5 minutes, the
error horizon length, P, and number of future inputs calculated, M, were 5 time steps
(12.5 minutes). Time invariant weights penalizing errors in each output equally were
used (z.e., an error of 1 mol % in overheads composition is equivalent to 1 mol %
error in bottoms composition).

The closed loop response to a step setpoint change in overheads composition is
shown in Figure 4. The manipulated variable values implemented at each time step are
shown in Figure 5. While not comprehensive, this simple example demonstrates that

hard bounds on inputs and outputs are handled smoothly by the co — oo algorithm.
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Chapter 3

Robust Model Predictive Control

Abstract
Concepts of model predictive control are extended to uncertain linear systems. An
on-line optimizing control scheme is developed which has as its objective the mini-
mization of the worst-case tracking error for a family of linear plants. For uncertainty
descriptions which provide impulse response models as affine functions of uncertain
parameters, it is shown that the required minimax optimization can be recast as
a linear program. Situations which lead to such an uncertainty description are dis-
cussed. An example is presented to demonstrate the properties of the proposed control

scheme.

3.1 Introduction

Model Predictive Control (MPC) involves the solution of an optimization problem on-
line in order to determine optimal inputs over a future time horizon. The objective
of the optimization is generally a weighted measure of future tracking error, the
difference between‘predi:cted model outputs and desired setpoints. In each time step,
an estimate of current disturbances is updated, the optimization is solved based on
this new estimate (and an assumption regarding its future effect), and the first of
the resulting optimal inputs is implemented. Updating the disturbance estimate and

solving the optimization at each time step compensates for unmeasured disturbances



26

-«

and model inaccuré.cy (which cause actual system outputs to be different from the
model outputs). Usually the problem is formulated so that the objective is minimized
subject to certain system constraints, for example bounds on the magnitude of current
and future inputs or outputs. This ability to handle constraints in an optimal fashion
is the primary advantage of model predictive control over other (linear time invariant)
design schemes [45]. The primary disadvantage of MPC relative to other techniques
is its inability to deal with model uncertainty.

In every example of model predictive control presented to date, the assumption is
made that a single linear time invariant (LTI) model adequately describes the system
- behavior. It is well-known in the robust control community that this assumption is
never valid for physical systems (see, e.g., [67]). In addition, control systems which
provide “optimal” performance for a particular model may perform very poorly when
implemented on a physical syﬁtem which is not exactly described by the model. In this
paper we present an approach to Robust Model Predictive Control (RMPC) analogous
to that taken in the robust control community. Specifically, the assumption that
system behavior is exactly described by a single LTI model is to be replaced with the
assumption that system behavior is described by some member of a (possibly infinite)
set of LTI models. The optimization objective of the proposed RMPC algorithm is
the optimization of Robust Performance, i.e., minimize the worst-case tracking error
predicted by a model in the family of possible plants. In addition, system constraints

are enforced for all models in the set.

3.2 Formulation of the RMPC Problem

In order to define a scalar optimization objective, we need to define spatial and
temporal norms on the tracking error, which is a vector in R™ at each future time
k, k = 1,...,P. In this paper we will be concerned with the co — co norm model

predictive algorithm which uses the co-norm,

||Z]leo = max |z (3.1)



27

both spatially and temporally. For a complete discussion of spatial and temporal
norms and their role in the definition of MPC algorithms, see Campo and Morari
[18]. Thié formulation minimizes the wofst future tracking error over all outputs over
the time horizon. Thus large peak excursions are avoided for all outputs. A significant
advantage of this formulation is that in the nominal case (no model uncertainty), the
required on-line optimization can be formulated as a linear program (LP), for which
very efficient solution techniques are available.

We denote by II the family of possible models, an element of which is the nominal
model chosen to “best” describe the system behavior. Since each member of the set
II of n input m output models is assumed to be stable and LTI, we can introduce an
impulse response representation. Parametrizing II in terms of a vector of ¢ unknown

parameters, ©

-

with |©;| < ¢;, we can write:

M = {H(©)|8 exVi=1,...,00} (39
= {81]16;] < Vi=1,...,q} (3.3)

I

where H; is an n X m matrix valued function of © whose elements relate outputs at
time k£ to impulsive inputs at time & — i. The function H;(©) associates a particular
impulse response model with each point in the parameter space 7. We define the
nominal model as H;(0) (i.e., the nominal model corresponds to the origin in the
parameter space).

Adopting a truncated impulse response, for which H; =0V ¢ > N, and including
upper and lower bounds on future inputs and outputs, we can write the on-line

optimization of (0o — oo) Robust MPC as:

i g, fick ) — e+ 0 64)
Subject to:
a< uk+j) <8 35)
e< glk+4k) <d}VO e
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" where:
(4 , N
Gk +0k) = 3 Hi(@ulk +£—1) + Y Hi(@u(k+£—1)+ d(k + k) (3.6)
Coa=1 =041
N
d(k + £lk) = d(k|k) = y(k) — 3 Hi(Q)u(k — i) (3.7)
’ t=1

§(k + £}k)= predicted value of the output at time k& + £ based on information
available at time k

r(k+4¢) = setpoint at time k + ¢

d(k + £|k)= predicted value of additive disturbances at the output at time k + ¢
based on information available at time &

u(k+¢) = input at time k + £

p = tracking error horizon length

M = number of future inputs to be calculated, u(k + ¢) = u(k + M — 1)

VP>I>M '

As is standard in model predictive control we have evaluated the effects of distur-
bances on the output at time k, _(Z(k[k), by subtracting the output predicted by the
nominal model from the measured output, and assumed that this effect will remain
constant into the future. The constraints (5) are meant to be representative of those
used in a specific application. The development which follows is not restricted to con-
straints of this form. In general, bounds can be specified on any linear combination of
future inputs and outputs. It is common in practice to limit the magnitude of input
changes. Since this is simply a bound on the difference of two future input values it
can be handled in the general setting.

Defining:

[ o(k+1)—r(k+1) ] [ d(k+1)—r(k+1) ]
c(k+2) —r(k+2) d(k+2) —r(k+2)

|2
Il

ion
i

Lk + P) —r(k+ P) (d(k + P) —z(k + P) ]
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[ (k) (u(k =N +1)] [ r(k+1) —d(k+1) ]
u(k +1) u(k — N +2) | r(k42) —d(k+2)
u= . uht = . £= :
| u(k+M = 1) u(k—1) | Lz(k+ P) —d(k + P)]
[ Hy(9) 0 0
H,(©) H\(9) 0
H'=| Hy(®) Hum-1(9) H\(9)
Hu(Q) Hu(9) H\(8) + H2(9)
. ' ‘ PeM41
L Hp(@) Hp-1(9) ... z (9) |
[Hn(Q) Hn-1(8) Hy(8)
0 0 Hn(©) Hyn-1(9) Haf.@.)
0 Hn(©) Hp1(9) ]
and
f(©,u) = H'(Q)u + H(Q)u**" — s (3.8)
we can rewrite (4)-(5) as
min max max|fi(©, u)| (3.9)
Subject to:
a < u <8
| £ (3.10)
¥ < f(@Qu) < d}vOQ e

In general this problem is a nonlinear, non-convex minimax optimization for which

efficient solution techniques are not available. The nominal co — oo MPC problem (no

model uncertainty) can be formulated as a linear program (LP) which is easily solved

in real time with standard algorithms (e.g., simplex and its variants). We would like
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to investigate conditions under which the RMPC problem can be formulated as an
LP. This will require us to make (hopefully) mild assumptions about the functional
dependence of the impulse response coeflicients on the uncertain parameters Q.

Defining u*(y_)v as the solution to the sub-problem:
#*(u) = max max|f;(8, u)| - (3.11)

it is easy to see that any (9, u) which satisfies

Ly > f(O,u) } Ve € (3.12)
-lp <f(Qu

where

1

is an upper bound on u*(u). Problem (9)-(10) can then be interpreted as, find the
smallest upper bound x and some y which satisfy (10) and (12) for all @ € =. This

is equivalent to the following mathematical program:

min g (3.13)
Subject to: ‘
g > f(Q,u)
—lp < f(O,u) LVQ cx
7 £ f(Q,u) (3.14)
§ > f(Qu) |
a Su
B 2u

We now have an optimization whose objective is linear in the decision variables u
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and p, With an in}inite number (continuum) of nonlinear constraints. We will develop

conditions for which it is sufficient to consider a finite subset of these constraints. In

addition, each member of the finite subset will be linear in the decision variables.
The following‘ theorem will play a central role in the development. For a proof

see, for example, Luenberger [65].

Theorem 3.1 Let g be a convez (concave) functional defined on Q, a closed convex

set. If g has @ mazimum (minimum) on Q, it is achieved at an extreme point of Q.

This result allows us to immediately develop the following theorem:

Theorem 3.2 If H;(Q) is an n X m matriz valued affine function of @ € =, then
fi(Q,u):

i). achieves its minimum at an eztreme point of v, ¥ u, uP*, s € R".

ii). achieves its mazimum ;zt an ertreme point of m, ¥V u, uP**, s € R".

Proof H; affinein © = HY(Q) = [h};(Q) ] and H*(Q) = [h%(Q) ] where Aj; and
h}; are affine in ©. Thus

Mn Nn
filQ,u) = 3 hL(Q)u; + 3 % (Q)ul™ — s (3.15)
j=1 i=1

is an affine function of @ Vi =1,..., Pm and V u, u?*, s. It follows immediately
that f; is simultaneously concave and convex on # Vi = 1,...,Pm and V u, uP**,
8. Since 7 is a polyhedron it is bounded, closed, and convex; it follows then from

Theorem 1 that f;(©,u) achieves its minimum and maximum at extreme points of r.

With an uncertainty description which yields impulse response coefficients as affine

functions of the uncertain parameters @, it is clear that

J

> f(©,u) | 1

-lp <f(Q,u) Vo es= -1p £ f(Q,u) L voer (3.16)
¥ < f(©,u) 7 < f(9,u)
§ > f(0,u) 8§ 2f(Ou) |
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where S, the set 6f extreme points of 7, is defined:
S={0|0€er,andIn0 90,0, erand 0<a <138 =a0,+(1-0)Q,} (3.17)

and contains the 27 vertices of the polyhedron 7 as its elements.

The infinite program (13)-(14) can then be written as:

I{}%pﬂ ' (3.18)
Subject to:
lp > HY(Qu+ H* Q)W —s
Ly > —HY(Q)u - H¥Q)uw
Lp 2 - 1(_)2 2(_)u ¢+§ veoes
— > -H — HY(Q)w>™
7 2 (Q)u (Q)uP* + 3 (3.19)
§ > HY (Qu+ HYQuw* —s |
-a 2 —u
B > u

Including constraints (19) for each of the 27 elements of S, we obtain a linear
program (the objective function and constraints are linear in the decision variables).

Putting this in standard form we obtain:

mgn Tz N (3.20)
Subject to:
ubject to Az >b |
(3.21)
20 '

where A € REVPm+Mu)x(Mntl) o o e RM™+1) and h € RZ™*PmMn)  Thig

program involves Mn + 1 variables and 29*2Pm + Mn constraints when upper and

lower bounds on all future inputs and outputs are included. The corresponding dual

LP:



min DN (3.22)
Subject to:
. ATA < ¢
(3.23)
A 20

involves 29%2Pm + Mn variables and Mn + 1 constraints. A solution to the dual
provides immediately a solution to the primal and vice versa.
The simplex method generally requires between c+v and 2(c+v) iterations to find
a solution, where c is the number of LP constraints and v is the number of variables.
Each simplex iteration requires on the order of ¢? operations. Thus there is significant
advantage in solving the dual program (22)-(23) which has fewer constraints than the
primal (20)-(21). Additionally since the constraints of the dual are constant, the
optimal solution at sample time k is always a feasible solution at sample time & + 1.
Thus by solving the dual we avoid, at each time step, the (non-trivial) calculation
associated with finding a basic feasible solution. In practice it has been observed
(with P, M =~ 20, ¢ £2, m, n = 1) that the optimal basis usually changes very little
from one sample time to the next so that usually less than ten simplex iterations are
required to find the optimal solution.
Although the program (22)-(23) is large, it is practical to solve it in real time with
standard methods when there are a modest number of uncertain parameters. No
doubt custom algorithms which make use of the structure of the constraint matrix

could do even better.

3.3 Impulse Response Uncertainty

Having developed an approach to solving the minimax problem of RMPC (9)-(10),
we turn our attention to the formulation of uncertainty descriptions to which we
can apply these techniques. Specifically we need to consider the speciﬁcaﬁion of
meaningful sets of models whose impulse response coefficients are affine functions of

a small number of uncertain parameters. These uncertainty descriptions are in the
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time domain and arc therefore fundamentally different than the frequency domain
norm bounds common in the robust control design paradigm. While the following
charactefization of uncertainties amenable to this framework is not complete, we
present some preliminary insights and examples.

The plant set IT with H; affine in © corresponds to an arbitrary linear combination

of known LTI plants. The z domain plant set,
» q
Il = {P(z)| P(z) = P(z) + ) _©OiF(z) 8 €} (3.24)
=1

corresponding to a parallel interconnection of the nominal plant P(z), and known
systems P;(z) with unknown weighting of each subsystem, has the equivalent impulse

response description,

= (H| H(Q) = £+ 3. 0:H; 8er) (3.25)

=1

Linearization of a nonlinear model at a number of points in the anticipated op-
erating regime gives rise to a set of known linear models for which an uncertainty
description such as this is applicable. It is reasonable to expect that a linear combi-
nation of linearized models would be representative of the actual system over a wider
range of conditions than the single nominal model.

Uncertain gain in the elements of multiple input-multiple output (MIMO) systems
can be handled exactly in the form (24). Correlations between the uncertain elements
can be preserved as well. For example the plant set:

ap11(z)  bp1a(2)

P(z) = P(z » a,be R[1,1.5 3.26
) =) [apzl(z) aPzz(‘-’)] =% ] ( )

is captured with two uncertain parameters as:

- hn‘ 0 0 h]z'-
Ht' =H, +a +b a,bE’R[l,l.5] (3.27)
ha,,  ha, 0 0

More complicated forms of uncertainty, such as in the coefficients of p;;(z) do not
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lead to affine cha;racterizations of the impulse response.

For sjngle input-single output (SISO) systems it is possible to specify approximate
gain and phase uncertainty bounds (square templates on a Nyquist diagram) as a
function of frequency, in the form of (24), with two parameters.

For systems described by

k+1 k) + Bu(k
2(k+1) = Ag(k) + Bu(k) 538)
y(k) = Cz(k) + Du(k)
the impulse response is given by
H;=CA"'B+D (3.29)

Linear uncertainties in the elements of B or C, and D, result in linear uncertainties in
the impulse response. It is straightforward to handle uncertainties such as actuator
positioning uncertainty, which appears as columnwise perturbations in B, in this
manner. For some ill-conditioned systems such as high purity distillation columns,
input uncertainty of this type is the dominant cause of poor performance of controllers
designed to optimize nominal performance [87).

The H; are nonlinear functions of the elements of 4 so that an affine characteriza-
tion of the impulse response is not available. First order effects of these uncertainties
can be captured by generating impulse response models with specific realizations of
A and adopting an uncertain linear combination of these realizations as the set II.

Finally it is anticipated that system identification techniques cdmmonly used to
identify process models can be extended to provide not only a nominal model in terms
of impulse response coefficients, but also confidence intervals for, and correlations

between, the coefficients.
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3.4 An Example

, A simple SISO example is presented to demonstrate the characteristics of the RMPC
algorithm relative to standard model predictive control. In order to focus on the
effect of optimizing robust performance, as opposed to nominal performance, we will
omit input and output constraints.

The nominal plant is given by:

1

P(s) = 15571

(3.30)

It is desired that the closed loop system be robust in the face of unmodelled dynamics
which introduce additional phase lag (arising perhaps from an unmodelled delay). The

set of plants to be considered is given by:

I = {P(s)| P(s) = P(s) + O(P'(s) — P(s)), 0 < © <1} (3.31)

where :
ooy 1 —2s+ 1)
Pls)= T 71 ( %5 + 1 (3.32)

P'(s) is simply the nominal model augmented with a first order Padé approximation
to introdnce a measure of phase lag. (This approximation corresponds to a delay of

4 minutes.) The corresponding impulse response description is:
11 = {H(9O)| H:(©) = H; + O(H! - H;), 0 <0 <1} (3.33)

The standard procedure for making model predictive controllers more robust,

filtering the desired trajectory, s, is adopted here. It can easily be shown that the

~ first order, low pass ﬁltet

1
_ . (3.34
F(s) = 5207 (3.34)

is sufficient to guarantee stability of the (unconstrained) closed loop system for all

plants in the set II.
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Figure 1: Unit step response for MPC when the true plant is P (© = 0).
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Figure 2: Unit step response for RMPC when the true plant is 2 (6 = 0).

From the preceding development, we know that the worst-case plants correspond
to extreme values of ©. In this case they are simply P and P’. Figures 1 and 2 show
simulated unit step responses for MPC and RMPC respectively when the nominal
model is exact (the true plant corresponds to © = 0). The more conservative RMPC
algorithm is slightly more sluggish than the MPC algorithm although both track the
filtered trajectory with very little error. |

Figures 3 and 4 show simulated step responses for the MPC and RMPC schemes
when the trﬁe plant is given by P’, (© = 1). In this case the MPC algorithm, opti-
mizing nominal performance, is only marginally stable while the RMPC algorithm,

optimizing robust performance, provides a very good response.
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Figure 4: Unit step response for RMPC when the true plant is P’ (@ =1).
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While this example is indicative of the properties of RMPC, it does not capture the
full advantage of optimizing robust performance. For SISO systems it is well-known
that robust stability along with good nominal performance implies reasonable robust
performance. For MIMO systems this is not the case. Certain ill-conditioned systems
which have good robust stability and nominal performance demonstrate very poor
robust performance [87]. It is for these MIMO systems that RMPC will prove most
valuable. In addition, while the standard MPC algorithms allow constraints to be
specified on predicted outputs, in practice (where the plant differs from the predictive
model) there is no guarantee that the actual outputs will obey the constraints. In the
RMPC algorithm, the output constraints are enforced for all plants in the uncertainty
set II. Thus, as long as the set I has been chosen to include the actual plant, output

constraint violations can not occur.

3.5 Conclusions

We have developed a model predictive control formulation which recognizes model
uncertainty explicitly and attempts to optimize performance for the worst-case plant
in an uncertainty set. The required on-line minimax optimization has been shown
to be tractable for an uncertainty set defined by a nominal model and linear pertur-
bations from that model. While certain meaningful uncertainties can be handled in
this framework, additional work is needed in the development of time domain uncer-
tainty descriptions. It is anticipated that for certain uncertainties (e.g., parametric
uncertainties in A) it will prove inadequate to consider only the extreme points of the
uncertainty set. A more sophisticated approach to the RMPC minimax problem will

be required. Current research efforts are focused in this direction.
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VChapter 4

Model Predictive Optimal
Averaging Level Control

Abstract

The infinite horizon discrete time optimal averaging level control problem for
surge tanks, with minimization of the rate of change of outlet flow as its objective, is
formulated and a solution is presented. A finite moving horizon approximation is in-
troduced and analytical solutions are obtained for two important special cases. These
results provide a quantitative measure of the impact of a secondary objective, inte-
gral action, on flow filtering. The problem is then generalized to include non-constant
level and outlet flow constraints. A model predictive control formulation is presented
which addresses the objectives of the generalized problem. The resulting controller
minimizes the maximum rate of change of outlet flow, provides integral action, and
handles constraints on the tank level and outlet flow rate. The proposed controller
includes a single adjustable parameter which directly effects the trade-off between
the incompatible objectives of good flow filtering and rapid settling time. Examples
are presented to demonstrate the properties of the model predictive controller. An
implementation, involving imbedded feedback, is developed which guarantees inter-
nal stability of the model predictive scheme for open 1oop-unsta,ble processes (such

as integrators).
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4.1 Introduction

I.n Model Predictive Control (MPC) future system inputs are selected which opti-
mize a performance objective over a finite future time horizon, subject to system
constraints. The performance objective is gencrally a wcightcd measurc of futurc
tracking error, the difference between predicted outputs and desired setpoints. In
each time step, an estimate of current disturbances is updated, the optimization is
solved based on this new estimate, and the first of the resulting optimal future inputs
is implemented. Updating the disturbance estimate and solving the optimization
at each time step compensates for unmeasured disturbances and model inaccuracies
| (which cause actual system outputs to be different from the predicted outputs). Many
objective functions and system constraints result in optimization problems which can
be formulated as linear or quadratic programs [18], for which efficient and reliable
solution techniques exist. Several such schemes have been advanced in the last ten
years. These include, among others, Model Algorithmic Control {82}, Dynamic Ma-
trix Control [26,44], and Internal Model Control [42]. The most significant feature of
these control algorithms is their ability to handle system constraints in an optimal
fashion. In this paper we apply these ideas to the solution of the so called “optimal
averaging level control” problem [66].

The objective in surge tank control is to effectively use the tank capacity to filter
inlet flow disturbances and prevent their propagation to downstream units. Tight
control around a specific level setpoint is usually unnecessary and is contrary to the
flow diéturbé.nce filtering objective. Tank level and outlet low constraints, however,
must not be violated and it is desirable to eventually return the tank inventory to its
nominal value so that capacity is available to filter future flow disturbances. Since
setpoint tracking and rapid integral action are only secondary objectives, level con-
straints dominate the problem. Indeed, if the tank had infinite capacity there would
be no need for control, the outlet flow could be held constant, achieving perfect flow
filtering.

The flow filtering objective is quantified by the Ma.ximum Rate of Change of
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Outlet flow (MRCO) for a given inlet flow disturbance. Traditionally, this objective
has been achieved by using proportional or proportional-integral level control, suf-
" ficiently detuned to bptovide reasonable flow filtering, [24], or by simple, intuitively
based, nonlinear schemes (e.g., [61]). More recently, an optimal averaging strategy
has been advanced {66]. This approach, which directly addresses the objective of op-
timal flow filtering subject to level constraints, has much appeal. The integral nature

of constraints in this optimal strategy suggests a model predictive implementation.

4.2 Continuous Time Optimal Averaging Level
Control

In this section we present a summary of ‘the work of McDonald et al. [66], who
first presented control scherﬁes to directly address the flow filtering objective. Using
a generalization of the derivative of outlet flow (MRCO) the flow filtering objective
is defined:

: go(t) — go(t')
g‘l(ltr)l e,fe‘(lfw t-—-t (4-1)
syt
Subject to:
hmin £ (1) £ Aoz t € (0,00) (4.2)
where:

qo(t) is the tank outlet flow at time ¢
h(t) is the tank level at time t

While the MRCO objective (1) addresses the primary flow filtering objective, it
does not address a number of secondary objectives. For example a solution to (1)
and (2) need not provide integral action and might result in outlet flows and tank
levels which are excessivély oscillatory. Indeed as we will see, (1) and (2) admit an
infinite number of solutions, many of which have one or more of these undesirable
properties. Nonetheless, by focusing attention directly on the flow filtering objective,

the synthesis of controllers for this ohjective (as opposed to tuning rules for controllers
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with some prescribed structure), and by providing a meaningful performance measure
for analysis, the MRCO objective is very useful.

Solutions to (1) and (2) depend upon the nature of the expected inlet flow distur-
bances. For a step disturbance of magnitude B entering a tank of constant area A,
at its nominal condition of g,, = 0, h, = 0, McDonald et al. show that (1)-(2) admits

the following solution:

B2t =
4 t € (0,t"]
2Ahhm )
o(1) = 4.3
9.(?) { B ‘> (4.3)
where:
P 2A)Riim|
_ - B
hlim
h,m',, if B<O0

For a given MRCO, the most effective way to increase (or decrease) ¢,(t) to offset
the flow imbalance, B — g,(t), is to increase (or decrease) g,(t) at a constant rate. It
is easy to verify that the solution (3) is a ramp of minimum slope which completely
offsets the flow imbalance just as the level reaches its limit (at time ¢*). A ramp of
lower slope would allow the level limit to be exceeded before the flow imbalance is
eliminated (and would therefore be infeasible); a ramp of greater slope would drive
the imbalance to zero before the level reached its limit (and would therefore be non-
optimal). Thus the solution is unique for ¢t € (0,t*]. For ¢ > t* any g¢,(¢) which

satisfies:
q0(t) — qo(t')
t—t

2
< B

~ Vit t>t 4.4

and
B(t - t') - A(hma: - hlim) < /t qo(t)dt < B(t - t.) - A(h"""‘ - h“”‘) | (4'5)
‘.

is also optimal. These conditions simply insure that for ¢ > t*, the rate of change of
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outlet flow is less than that for ¢t € (0,t*], (4), and that the level constraints are not
violated for t > t*, (5). In keeping with the desire to keep the outlet flow constant
‘subject to level constraints, it is set equal to the inlet flow, B, for t > t* to arrive
at the solution (3) Since the supremum in (1) is taken over all future time, we will
refer to (3) as the infinite horizon solution.

As shown by McDonald et al., the infinite horizon solution can be implemented as
a nonlinear proportional feedback. However, in order to insure that level constraints
are not violated, B must equal the magnitude of the largest anticipated step distur-
bance. This results in suboptimal performance for disturbances of lesser magnitude.
Indeed, in this scheme, MRCO is independent of the magnitude of the disturbances
which are realized. Additionally, since proportional feedback cannot eliminate steady
state offset, an integral term, detuned to minimize impact on the optimal MRCO,
is added. This detuned integral action provides a slow return to the nominal level.
Should additional disturbances occur before the nominal condition is attained, level
constraints could be violated.

When measurements of the inlet flow disturbances are available, McDonald et
al. propose a feedforward/feedback scheme, whose response is dependent on the
magnitude of the measured disturbance. Again, in order to eliminate steady state
offset, proportional and integral modes are added to the MRCO optimal controller
with an associated increase in MRCO. This “optimal predictive controller” (OPC) is
defined by:

o K,
%0 =G+ Ko+ 5 [ ht (6a)
-AAY
~ (Qt qo) (Gb)

%= 2A(hiim — h)

where:

g = MRCO optimal outlet flow rate
¢;i = measured inlet flow rate

K. = proportional gain
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1; = integral reset time
b = dz
dt

While this formulation provides better flow filtering for small disturbances (of
magnitude less than the maximum anticipated), it requires measurement of the inlet

~ flow rate and integral action is achieved at the expense of MRCO optimality.

4.3 Discrete Time Optimal Flow Filtering

With outlet flow constant between sample times, the discrete time infinite horizon

optimal flow filtering problem can be expressed, at time t, as:

. gtttk -1 4.7
Bin max |g,(t + k) — g, (t+ k= 1) (4.7)

Subject to:
hosin SR(E+k+1) < hmas k€K (4.8)

where K = {0,1,2,...}.

Defining nominal conditions ¢,, = 0, h, = 0, a simple mass balance provides,

T & . .
h(t+k+1) = h(t) — = > _{a(t +4) - d(t + )} (4.9)
=0
where d(t) is the inlet flow disturbance realized at time ¢, and T is the sampling time.
Since exact prediction of the future level using (9) requires knowledge of current
and future inlet flow disturbances, {d(t),d(t + 1)...}, we cannot solve (7) subject
to (8). Instead we will make assumptions which allow us to predict the future level

based on currently available information and solve instead,
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Figure 1: The internal model control (IMC) structure.

min max(as(t+£) = gt + k= 1) (4.10)
Subject to:
hmin Sh(t+k+ 1) < bpme, k€K (4.11)

where the notation A(t + k|t) indicates the estimate of h at time t + k based on
information available at time t.

We now turn our attention to the assumptions which allow us to evaluate the
future level estimates, h(¢ + k + 1|t). In this formulation we use a model of the plant
to infer inlet flow disturbances. With this approach it is unnecessary to measure
the inlet How rate explicitly. The formulation is based on the internal model control
(IMC) structure [42,68], shown in Figure 1.

The effect of inlet flow disturbances, d, on the output, A, is evaluated at each

sample time by subtracting the model ontput, A(t), from the measured output, A(¢).
di(t) = h(t) — A(t) (4.12)

It is assumed that d), represents only the effects of unmeasured disturbances on the

output (although it includes the effects of modelling errors as well). The internal
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model, felating tank level to outlet flow is

. . T

A(t) = it —1) - Sa.(t - 1) (4.13)
so that,

da(t) — dn(t — 1) h(t) — h(t) — h(t — 1) + h(t — 1)

h(t) = h(t —1) + %qo(t ~1) (4.14)

The assumption that dj represents only the effects of inlet flow disturbances allows
‘us to use dy(t) to estimate the inlet flow disturbance realized at time ¢ — 1. From (9)

we have,

d(t—1)= -;‘-,.{h(t) —h(t =1} + gt = 1) (4.15)

and from (14) we see that the right hand side of (15) is equal to £{d4(t) —dx(t —1)}.

Thus our estimate of the inlet flow disturbance which occurred at time ¢t — 1 is,

d(t —1jt) =

N

{dat) = du(t — 1)} (4.16)

Since the optimal averaging level control problem was originally defined for step inlet
flow disturbances, we assume that any inlet flow disturbance is which occurred at
time ¢t — 1 (the most recent we can detect using level measurements) is constant.
With the further assumption that no new disturbances will enter at time ¢ or in the

future, we have,
: A
dit+kjt)=d(t-1)t) = -:—i;{dh(t) —di(t —-1)} (4.17)
Using this result and (9) the prediction of future level is given by:

h(t + k + 11t) = A(t) + (k + 1)%1(1 + kft) — %}E gt + 7) (4.18)

=0

and our definition of the discrete time optimal flow filtering problem (10)-(11) is
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complete.
- With the following theorem we characterize all solutions to this problem. In order

to simplify the notation we define,
Q(t) = d(t — 1[t) — goft — 1) (4.10)

the estimated flow imbalance, inlet flow minus outlet flow, at time {—, immediately

before we implement g,(t).

Theorem 4.1 The sequence {g,(t + k),k € K} is a solution to the discrete time
infinite horizon optimal flow filtering problem, (10)-(11)-(18), if and only if:

1. qo(t+k)=q0(t+k'—l)+Aq; VkE[O,k*)
2. hmaz — hiim =TT {d(t 4 k[t) — go(t + B)} > hmin — hiim ¥ j > k°
8 le(t+ k) —qo(t+k-1)|<Ag; VEZE

where:

2Q(t) 2A[htim — h(t)]

Ag = (k*+1)  Tk(k"+1) (4.20)
. _ 2A[hiim — R(1)] o
k* = N { TOm (4.21)
A hmaz for Q(t) >0
fm = hmin for Q(t) <0
and N{z} indicates the smallest integer > z.
Proof See Appendix A. ' |

Condition 1. specifies that the solution is a ramp change in outlet flow which
completely offsets the flow imbalance just as the level reaches its limit (at time ¢+ 7).
As one might expect, k* decreases as the magnitude of the flow imbalance increases.
As for the continuous case, the optimal discrete time solution is non-unique (for

t > t+ k*). Conditions 2. and 3. are analogous to (5) and (4) from the continuous
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case and charactérize admissible outlet flow rates for ¢ > ¢t + k*. In particular 3.
insures that outlet flow rate changes for ¢t > ¢ + k* are smaller than for ¢ < t + k*.
Condition 2. insures that the level constraints are not violated for ¢t > ¢ + k*.
A particular solution to (10)-(11)-(18) is provided by:
Gt +k—1)+Ag ke[0,k)

go(t + k) = { et b e (4.22)

where we have resolved the non-uniqueness by making the outlet flow constant for
k> k*.
The MRCO given by (22) is:

. 20() 2A(hiim — h())

(4.23)

Since
v s 24[him — h(2)]
>
2 TQ(t)
where equality holds when the right hand side is an integer, we have (substituting

(24) into (23)):

(4.24)

,. 0
MRCO 2 ST =Ta0)

(4.25)
MRCO provided by the continuous time infinite horizon solution, (3), is given by:

B? .
MRCO = 5o (4.26)

Noting that B is the flow imbalance, §2(t), in the continuous case, and comparing
(26) with (25) we find an additional term in the denominator of (25) due to the lag
of T time units (one sample time) required to infer the flow imbalance using level
measurements. In the discrete implementation, we can only adjust the outlet flow
at the sample times and this causes MRCO to be greater than the bound in (25) in
general (whenever the right hand side of (24) is not an integer).

While this formulation is useful for discrete time level control when feedforward

measurements are not available, it has several drawbacks. Most significantly, there
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is no provision for integral action. The ramp solution (22) allows the tank level to
move to its constraint and remain there indefinitely. Subsequent disturbances result
in immediate level constraint violation. In addition no consideration has been given
to the effects of outlet flow rate constraints. In the subsequent sections we will show

how these issues can be addressed in the framework of model predictive control.

4.4 Model Predictive Formulation

In this section we will develop the optimal flow filtering objective as a model predictive

-control problem. This formulation is based on a finite horizon analog of the discrete
time flow filtering problem (10)-(11)-(18). As we will show in the next section, the
optimization can be recast as a linear prograni to be solved on-line. As is standard in
model predictive control, only the first of the optimal future inputs is implemented
and the optimization is resolved at each sample time.

With the restriction of a finite future horizon, P sample times in length, we can

write (10)-(11)-(18) as:

n&ion ”RQo - elQo(t - 1)”00 (4'27)
Subject to:
T R .
1lhnin < —Hq, + n—jd(t + k|t) + 1h(2) € Lhmas (4.28)

where: ||z|| = max|z;| is the co— norm on R7,
1

o(? .
/ zt(+)1) \ ! 0 0
9%
-1 1 0
Q= R=
0 -1 1

\qo(t+P_1))
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Note that H is the truncated impulse response matrix for the tank.

It should be stressed that d(¢ + k|t), the inferred inlet flow disturbance, is re-
evaluated at each sample time and the optimization is resolved based on the new
information. This approach mitigates the consequences of the restrictive assumptions
made about future disturbances.

In the MPC framework we are free to impose constraints more general than (28).
Constraints on any linear combination of future inputs and outputs can be handled
by the on-line optimization, '(nonline_ar constraints preclude the use of linear program-
ming to solve the optimization). In particular, upper and lower bounds on level can
be specified at each future time step independently. Constraints can also be specified
for the manipulated variable, insuring that the control algorithm will not demand
outlet flow rates which exceed actuator saturation. Defining «;, §;, as lower and up-

per bounds on the outlet flow rate at time ¢t +: — 1, and #;, §;, as lower and upper

bounds on level at time t + ¢, we can generalize (27)-(28) as:

min [[Rq, — e14;(t — 1){l (4.29)
Subject to:
-, < -
P = (30a)
® < B

Hq, < —y+nfd(t+kjt)+1h(t)
—Hq, < 6-—nZd(t+klt)—1h(t) ,

(300)

Usually the outlet flow rate constraints are specified by the capabilities of process

equipment and are the same in each future time step, i.e., @ = 1¢omin, 8 = 1¢omaz-
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For multiple tanks in series it may be desirable to define gsmin, gomasr to prevent large
flow overshoot which is magnified by each tank in the series (see [24]). Non-constant
future level constraints can be used to prescribe a future level trajectory which has
certain desired properties such as zero offset at some future time. Two simple forms
of level constraints, for which we can obtain analytical solutions to (29)-(30) in the

absence of outlet flow constraints, (i.e., neglecting (30a)) will be discussed in detail.

4.4.1 Constant Level Constraints

To evaluate the impact of the finite horizon on flow filtering we first define level con-
‘straints which are constant over the future horizon as in the infinite horizon problem.
Specifically we have: .

= 1hpaz

(4.31)
6 = 1hmin

The outlet flow given by solving (29)-(306)-(31) and implementing the first element

of q; at each sample time is:

q(t — 1) P < 517:'
B(t) =1 @t —1)+Agp" £ <P< kf (4.32)
%(t —1) + Ag,” P>k
where: -

p_ 20(t)  2A(him — h(t))
=P+1 TTP(P+1)

(4.33)

and k* is as defined in (21).

While notationally involved, this solution is easy to understand. Disturbances
which result in £ > P are of sufficiently small magnitude that even if no outlet flow
changes are made the predicted level will remain within the minimum and maximum
bounds over the future horizon. The optimal solution is to kecp the outlet flow
constant. For larger disturbances, which result in %‘- < P < k*, a non-zero change
in outlet flow is needed to insure that the level does not violate its bound. Since the

flow imbalance will never change sign, the level changes monotonically in time, and
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it is sufficient to \insure that the level is not violated at the end of the time horizon.
AgP is the smallest constant outlet flow change which satisfies this condition. For
large disturbances k* < P, the predicted future level will reach its bound at time k*,
and the optimal outlet flow change is the same as in the infinite horizon case, Ag}.
This provides several insights. For a disturbance observed at time ¢ (i.e., Q(t) # 0)
if P > k* the infinite horizon MRCO optimal solution (22) is realized. Thus filtering
of flow imbalances, )(t), whose magnitude is greater than Wﬂl is not impaired
by the finite horizon restriction. Equivalently, it is possible to achieve optimal flow
filtering of arbitrarily sméll flow imbalances by selecting P adequately large.

As in the infinite horizon case, integral action is not provided. The level moves
to its constraint and remains there in response to an arbitrarily small step inlet
disturbance. This lack of integral action prevents this formulation from being useful
in any practical situation. As in the definition of the OPC, an integral term could
be added to the optimal solution.- This approach results in an increase in MRCO
which is difficult to quantify. There is no clear method for selecting an integral
reset time which yields a good trade-off between the incompatible objectives of small
settling time and small MRCO. In the following we show how a modification of the
level constraints provides integral action and MRCO optimal filtering of disturbances

whose magnitude is above a specified threshold.

4.4.2 Box Level Constraints

Modifying the constant level constraints to include the fixed endpoint condition, h(t+

Pit) = 0, results in:

[1\ (1)
1 1
Y= . hma:z 6= . Amin (434)
1 1
\0/ \0/

which we will refer to as “box constraints.”
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With these constraints the optimization finds, at each sample time, future outlet
flow rates for which the predicted level reaches its nominal value in P time steps. The

“outlet flow giizen by solving (29)-(30b)-(34) at each sample time is given by:

%t —1)+ Aqd |Agd] > |Ag]]
%(t) = { . (4.35)
B(t-1)+A¢ |Ag| < |Ag
wheré:
A < 2001) | 24h(t) = by (4.36)

° P41 TP(P+1)
and Ag} is as defined in (20).

As in the constant level constraint case, this solution has a straightforward in-
terpretation. Agj} is the minimum magnitude change in outlet flow which prevents
constraint violation for times less than ¢+ k*; Aq? is the minimum magnitude change
in outlet flow which satisfies the fixed endpoint condition. The best feasible solution
is then clearly the larger of these flow changes. For a particular choice of P, large
flow imbalances result in |Ag®| < |Ag}| and the solution go(t) = go(t — 1) + Ag} is
implemented. Since this recovers the discrete time infinite horizon MRCO optimal
solution (22), the fixed endpoint condition has no effect on filtering performance. For
small imbalances, |Ag®| > |Agq;| and the solution g,(t) = g,(t — 1) + Aq? is imple-
mented. In this situation the fixed endpoint condition causes an increase in MRCO.
Theorem 2 provides a condition on the horizon length which insures that the fixed

endpoint condition does not interfere with flow filtering.

Theorem 4.2 For step inlet flow disturbances, the sequence g,(t + k), k € K deter-
mined by (85) salisfies the conditions of Theorem 1 if:

P2 Pi= i {21&\ + (g - 20007 + F 18 mqo\]’} -5 (@37

Proof See Appendix B. u

Thus whenever P > P.,;, the fixed endpoint condition has no impact on filtering

performance as measured by MRCO.
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It is easily vériﬁed that P, decreases as the flow imbalance increases and as

the level approaches its nominal value. This observation allows us to choose P to
‘guarantee optimal flow filtering for all disturbances above a particular magnitude

which occur while the level is within some .fange about its nominal value.

As stated (37) is a sufficient condition. However, as we discuss in the appendix,
it is only conservative when A(t) # h, and a flow imbalance }(t) occurs which is in
the dircction which tends to return the level to its nominal value. For example this
is the case when the tank level is above nominal and the inlet flow rate drops. In any
other situation, the condition (37) is necessary as well as sufficient.

The fixed endpoint condition is not sufficient to guarantee the realization of zero
offset in P time steps. Since the on-line optimization is resolved at each sample time,
the complete solution q(t), determined at time ¢, which provides zero offset in P
steps, is not implemented. I;lstea.d the “moving horizon” approach of implementing
only the first element of qZ(t), results in the realization of the sequence {¢,(t), ¢;,(t+
1), ¢5,(t+2), ...} (given by (35)) which need not provide zero offset in P steps. This

condition does however insure that there is no steady state level offset.

Theorem 4.3 The moving horizon model predictive controller defined by (29)-(30b)-

(34) achieves zero steady state level offset for constant inlet flow disturbances.
Proof See Appendix C. u

Simulation experience has shown that in general the level returns to within 5% of
its nominal value in between 2P and 2.5P sampling times for step inlet disturbances.
For small inlet disturbances the settling time is often smaller.

The significance of these results is that for any given flow imbalance, (2, there
exists a finite P for which the moving horizon model predictive controller with box
constraints achieves the minimum possible MRCO and intégral action. It follows
that by selecting P adequately large, optimal flow filtering and integral action can
be achieved for disturbances of arbitrarily small magnitude. Suboptimal filtering of
small disturbances (as determined by the selection of P) is not a practical concern

since these disturbances pose the least trouble for downstream equipment.



56

What we have achieved by introducing box constraints is to assure satisfaction
of the secondary objective of integral action With no adverse impact on the primary
'objéctive of flow filtering for large disturbances. The price we pay for integral action is
suboptimal filtering of small disturbances, but as we have argued, this is not significant
in practice. In contrast, the addition of an integral termm to an otherwise optimal
controller, as in the OPC, results in suboptimal performance whenever the integral
term is non-zero (essentially always). Interaction and in some cases competition
between the integral and optimal terms can significantly impact filtering performance
and settling time as we will see in the examples below.

The single “tuning parameter” of this algorithm is the horizon length, P, which
directly determines the trade-off between the incompatible objectives of good flow
filtering (requiring P large) and rapid integral action (requiring P small). The ap-
propriate value of P is determined by the characteristics of a specific implementation.
The operating conditions of the upstream equipment will dictate the magnitude and
frequency of expected inlet flow disturbances. The sensitivity of downstream equip-
ment will dictate the filtering performance required for the expected disturbances.
Ideally P is selected equal to or greater than P, for the smallest disturbance for
which optimal filtering is required. In general if rapid integral action is not required
(disturbances are infrequent) P should be large. If large disturbances occur frequently
it may be advantageous to reduce P so that tank volume is recovered rapidly to be
used to filter subsequent disturbances.

The effect of the horizon length is demonstrated in Figures 2a and b. The single
tank system used in this example is described in Table 1. Figure 2a shows the level
response to a 50% step change in inlet flow rate (for which P.;; = 14) for P =5, 8§,
14, 25, and oco. Figure 2b shows the corresponding outlet flow rates. For P < P
increasing P improves flow filtering from M RCO = 1.00 for P = 5 to MRCO = 0.36
for P = 14, at the cxpense of settling time. For P > P, no improvement in flow
filtering as measured by MRCO is possible and settling time increases.

Note that as P is increased, relaxing the desired settling time, the maximum

peak in outlet flow is reduced. For P infinite, the maximum peak is equal to the
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Figure 2a: Tank level resulting from a 50% inlet flow disturbance with the model
predictive controller with box constraints for P = 5 (1), P = 8 (2), P = 14 (3),

P =25 (4), and P = oo (5).
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Figure 2b: Outlet flow rates resulting from a 50% inlet flow disturbance with the
model predictive controller with box constraints for P =5 (1), P = 8 (2), P = 14

(3), P =25 (4), and P = o (5).



Cross Sectional Area, A 1.0 m*

Nominal Level, h, 1.0m

Maximum Level Constraint. 1.4 m

Minimum Level Constraint 0.6 m

Nominal Outlet Flow 1.0 m3/man
Tank Height 20 m

Outlet Flow Capacity 0.0 — 4.0 m3/min
Sampling Time, T 0.2 min

Table 1: Parameters of the example system.

steady state outlet flow. This demonstrates the general result that for step inlet flow
disturbances outlet flow constraints are not a problem unless rapid integral action is
required (P small). Of course outlet flow capacity must be at least as large as step
inlet disturbances to prevent level constraint violation at steady state.

The control algorithm resulting from box level constraints can be summarized as,

at each sample time:

1. Update the internal model output, A(t), based on g,(t — 1) using (13).

2. Evaluate the effect of disturbances on the level, d,(t), using (12).

3. Evaluate the inlet flow disturbance estimate, d(t — 1|t), using (17).

4. Evaluate the flow imbalance, Q(t), using (19).

5. Evaluate k™ using (21).

6. Evaluate Ag} using (20).

7. Evaluate Ag? using (36).

8. Change the tank outlet flow by Ag] or Aq) depending on which has the larger

magnitude (equation 35).

When outlet flow constraints are not present and internal stability problems are
not a practical concern (see below) this algorithm will provide optimal (low [iltering
with integral action. In the more general case, an analytical solution to the optimiza-

tion problem is not available. In the next section we show how the optimization can
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be recast as a linear program (for which a number of numerical solution techniques

are available) to be solved on-line.

4.4.3 Other Level Constraints

The linear program formulation outlined in the next section allows very general spec-
ification of future level constraints. For example, adopting the approach of Cutler
[25], the set of admissible predicted levels might be selected so that the future level
lies within a target area, centered at the nominal level, whose magnitude decreases
into the future. A fixed endpoint condition included in the definition of the target
area insures zero steady state offset. In general these more restrictive level constraints
result in poorer flow filtering and faster intcgral action rclative to box constraints,
(34). Since the moving horizon implementation does not guarantee that the level will
not leave the target area, it is unlikely that such constraint sets offer any additional

advantages.

4.5 Formulation as a Linear Program

With outlet flow constraints the closed form solutions (32) and (35) are not valid. In
this case (29)-(30) must be solved on-line at at each sample time. It remains to be
shown how this problem can be recast as a linear program.

Following the standard approach for solving Chebyshev approximation prablems

via linear programming, we define:

#(qo) = |[Rq, ~ e19o(t — 1)} (4.38)

Any p which satisfies,

IN

—1u —Rq, + e1go(t — 1)
~1g € Rag, —eqft — 1)

(1.39)
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represents an upper bound on g*. The task is now to find q, and g which satisfy
(30) and (39) and simultaneously minimize f(q,,px) = g. This problem is easily

formulated as:

min u (4.40)
Subject to:
Ra. —1p < eiq(t—1)
~Rq, —1pg £ —eyq(t—1)
-q, + & ..<‘_ 0
4 (1.41)
qQ < B
Hq, < —v+nZd(t+k|t) + 1)
~Hq, < &—nLd(t+k|t) - 1h(t)
Decfining
qo = qo - (442)
and
/-1 R e14,(t — 1) - Ra
) 1 -1 -R *elqo(t — 1) -+ Ro
c:(o) x:(f)A: 0 I b = 3 —a
b 0 H —v + n%d(t + k|t) + 1h(t) — Ha
\o -H/ § —nZd(t + k|t) - 1A(t) + Ha

we obtain the linear program in standard form,

min ¢7'x
X

Subject to:

>
"

IA
-

(4.43)
X 2

[n (42) we have employed the non-negativity condition x > 0 to enforce the lower
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bound on q,. The resulting linear program involves P+1 variables and 5/ constraints
(not counting the non-negativity constraints). As discussed in Campo and Morari
(18], it is more efficient computationally to solve the dual program:

LT
rrgnby

Subject. to:
_ATy
y =2 0

IA
n

(1.44)

which involves 5P variables and P + 1 constraints.

4.6 Implementation

Before implementing this model predictive scheme we must consider internal stability.
It is well-known that controllers implemented in the internal model control structure
are not internally stable when the plant is not stable. The proposed model predictive
control algorithm is a special case of such an implementation and therefore deserves
further analysis. For a general discussion of internal stability, the interested reader is
referred to the book by Morari and Zafiriou [68].

The following analysis is based on Figure 3, where we have represented the on-line
optimization as a mapping, f(q.(t —1),h(¢),dx(t)), which takes current values of the
manipulated and controlled variables and the effect of disturbances on the level, and
yields an new optimal value for the manipulated variable, ¢;(t). At steady state we
have, y,(t — 1) = h(t) = dp(t) = 0, and the optimal solution is ¢2(¢) = 0.

Suppose a step disturbance enters at d’ immediately before the optimal solution,
q;(t), is implemented, i.e., at time t_. At the next sampling time we have, with
perfect modeling:

Td

ht+1)=h(t+1) = - (4.45)

so that
di(t+1) =0 (1.46)
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Figure 3: Schematic view of the model predictive structure.

The predicted level, with future outlet flows zero, is:

h(t+k|t)=h(t+1)=%‘i Vi=1,2.. P (4.47)

If this predicted future level is feasible for all 0 < k < P, (for example if constant
level constraints with hpar > %i have been specified) then the solution ¢,(¢ | 1) = 0,
is feasible (and obviously optimal). Similarly, the controller will take no action in
response to the disturbance d’' at subsequent sample times, while the actual level,
given by:

_kTd

bt + k) = —— (4.48)

integrates away from its nominal value. In this sense, the algorithm is internally
unstable. Although not identified as such, this internal instability was observed by
McDonald et al. as drifting in the level as a result of constant bias between the inlet
and outlet flow rate measurements of their “optimal predictive controller” (OPC). In
fact any disturbance at d’ will result in drifting of the level.

Disturbances occur at d’ whenever the output of the controller is not equal to

the actual value implemented on the process and provided to the internal model. It



63

[y
[
i

Tank Level, m

o © o o
~
1

Time, minutes

Figure 4: Tank level changes resulting from actuator bias without embedded feedback
(1) and with embedded feedback (2).

is common practice to “readback” the valve position from its actuator so that the
value implemented on the process can be supplied to the internal model. Quite often
the manipulated variable value realized by the actuator differs significantly from the
value commanded. (It is this situation that makes readback necessary). This results in
significant differences between the controller output and the readback signal provided
to the internal model. Any such difference is effectively a disturbance at &’ which will
not be compensated for by the model predictive controller. Thus readback should
not be used in the implementation of a model predictive controller when the plant
includes an integrator.

An example of the unstable response resulting from a disturbance d' when read-
back is used is shown in Figure 4 (curve 1). Here we have simulated the sys-
tem described in Table 1, using the model predictive controller with constant level
constraints, and included a constant disturbance, d' = 0.1 m®/min. This distur-
bance could arise from a bias in the outlet flow actuator resulting in an outlet flow
0.1 m®/min greater than commanded. Since d;(¢) remains zero for all ¢, the controller
takes no action as the level falls by 0.02 m at each sample time, eventually draining

the tank completely.
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When readback is not used disturbances d' can arise frem algorithmic (round-off)
errors in the implementation of the optimal solution. In practice these errors would
be expected to be small, and since for integrators the growth of the instability is only
linear it is reasonable that in practice these errors could take a very long time to have
a significant impact on the system.

When level constraints include a fixed endpoint condition ¢,(t + 1) = 0 is not
feasible since h(t + P|t) = i":—ﬁ-'- # 0. In this case, a non-zero response to disturbances
d' is provided. However these disturbances still result in undesired drifting in the
tank level. While it is reasonable to suggest that if readback is not used a direct
implementation of the MPC scheme might be successful in practice, in the next
section we discuss an implementation of the MPC controller which is guaranteed to

be internally stable.

4.7 Stabilizing Embedded Feedback

Assuming perfect modelling, internal stability of the model predictive control scheme
is guaranteed if the plant is stable [68]. For unstable plants, we can first stabilize
the plant with an internal feedback loop, as in Figure 5a. The embedded controller,
K(s), is chosen to stabilize the plant, P(s) = —711-;. To apply model predictive control,
we treat the embedded system as a stable 1 x 2 plant, P*, with the (unmeasured)
disturbance, d, and a “setpoint,” r, as inputs, and the tank level, A, as output, as

shown in Figure 5b. The appropriate transfer matrices are:

P* = [(I+PK)'P (I+PK)'P] (4.49)

-~

P = [(I+PK)'P] (4.50)

If the controller, K(s), internally stabilizes the plant, then P* is (necessarily)
stable. It is then straightforward to use the on-line optimization of model predictive

control to determine setpoints for the embedded system which provide the desired
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Figure 5b: An equivalent representation for internal stability analysis.
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performance subject to constraints on g,(t + k) and h(t + k|t). The stable response
to disturbances, d’, is now given by:

h(s) = (I + PK) ' Pd'(s) (1.51)

/

The design of K(s) introduces no theoretical limitation on the achievable input
A{s) h(s

output properties of the overall system (i.e., the transfer functions Fo] and 3'(?)1 of
Figure 5) if K(s) is stable (see [96]). Since a stable controller (e.g., K(s) = K.) is
adequate to stabilize P(s) this restriction poses no problem in this application.

By proper selection of K(s), we can assure that signals entering at d’' are attenu-
ated over a desired frequency range. In particular, it is clear from (51) that the steady
state attenuation of step disturbances d' is inversely proportional to the steady state
gain of K(s).

Repeating the actuator bias example of the previous section with discrete time
embedded feedback given by K(z) = —% results in the stable response shown in
Figure 4 (curve 2). Although the model predictive controller takes no action, the
embedded feedback prevents the level from violating its constraint. As expected from
(51) the step disturbance d' of magnitude 0.1 m3®/min produces a steady state offset
in level of 0.04 m.

With embedded feedback, the decision variable of the on-line optimization is the
setpoint to the embedded controller, r. Thus, the non-negativity conditions of the
LP cannot be used to enforce bounds on the outlet flow rate as in (42). This results
in an increase in the size of the linear program which must be solved on-line. The
program corresponding to the model predictive algorithm with embedded feedback

involves 2P + 1 variables and 6P constraints. The dual program (which would be

solved in practice) involves 6P variables and 2P + 1 constraints.

4.8 Examples

A simulation study was carried out to demonstrate the performance of the model

predictive scheme relative to the discrete infinite horizon and optimal predictive con-
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Figure 6a: Tank level resulting from a 100% inlet flow disturbance for the model
predictive controller with box constraints (—) and OPC (- - -).

trollers. The example system proposed by Cheung and Luyben [24], and adopted by
McDonald et al. [66], is used here (Table 1).

Figures 6a, b, and ¢ show the level and outlet flows corresponding to an inlet step
disturbance of 100% of the nominal flow for the model predictive with box constraints
and OPC schemes. The proportional gain and integral reset time for the OPC were
0.046 and 3.0 as suggested by McDonald et al In order to obtain optimal filtering
for inlet flow disturbances larger than 25% of the nominal inlet flow, a horizon, P,
of 35 sample times (7 minutes) was chosen for the model predictive controller. For
the 100% disturbance, ¥* = 2, and P.;; = 6. MRCO is 1.67 for the model predictive
controller and 1.25 for the OPC. The OPC is able to achieve lower MRCO since it
uses inlet flow measurements and can adjust the outlet flow immediately while the
model predictive algorithm requires one sample time to infer the flow disturbance
from level measurements. Note that since P > P, the fixed endpoint condition
does not impact MRCO. The model predictive controller returns the level to within
5% of nominal in 13.0 minutes, the OPC requires 46.8 minutes.

Figures 7a and b show the level and outlet flows corresponding to an inlet step

disturbance of 10% for the model predictive (P = 35), discrete infinite horizon, and
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Figure 6b: Outlet flow rate resulting from a 100% inlet flow disturbancc for the model
predictive controller with box constraints (—) and OPC (- - -}.
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Figure 6ic: Detail of outlet flow rate resulting from a 100% inlet flow disturbance for

the model predictive controller with box constraints (—) and OPC (- - -)
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OPC schemes. For this disturbance, k* = 38 and P.; = 93. As expected, the
model predictive scheme results in higher MRCO (0.0286) than the OPC (0.0175) for
this disturbance. At the expense of increased settling time P could be made greater
than P to achieve the best possible discrete time flow filtering (M RCO = 0.0128)
realized by the discrete infinite horizon controller.

McDonald et al. suggest that the integral reset time of the OPC can be adjusted
to achieve a desired settling time. Figures 8a and b show the impact of decreasing
for the OPC to improve the settling time in response to a 50% step inlet disturbance.
As shown in Figure 8a the model predictive controller with P = 35 returns the level
to within 5% of nominal in 13.8 minutes with a MRCO of 0.338. To obtaiu this
same settling time with the OPC (with K. = 0.046) an integral reset time of 0.32
minutes was required, resulting in a MRCO of 0.333. (Settling time and MRCO
for the OPC with the tuning parameters suggested by McDonald et al. were 60.0
minutes and 0.327). Again the superior MRCO performance of the OPC comes from
the use of feedforward measurements. However the OPC has a much greater outlet
flow overshoot and the level and outlet flow responses are much more oscillatory
than for the model predictive controller. We quantify this latter observation with the
following definition.

Defining

MRCO(t,) = sup

t€(to,o0)
tye!

(4.52)

%o(t) = ¢o(t") ‘
t—t
we introduce a generalization of MRCO. M RCO(t,) is simply a measure of filtering
performance for times after ¢,. If we let ¢, be the time at which the flow imbalance is
offset (t* or k™), we can use (52) as a performance measure for the time period in which
the controller returns the level to its nominal value. In the previous example (Figure
8), t, = 1.6 for the OPC and t, = 1.4 for the model predictive controller. M RCO(1.6)
far the OPC is 0.0728 while M RCO(1.4) for the model predictive controller is 0.0158
After the flow imbalance has been offset, the model predictive controller returns the
level to its nominal value with outlet flow changes one fifth as large as the OPC.

The greater oscillation and flow overshoot demonstrated by the OPC when relatively
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Figure 7a: Tank level resulting from a 10% inlet flow disturbance for the model
predictive controller with box constraints, P = 35 (1), P = oo (3), and OPC (2).
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Figure 7b: Outlet flow rate resulting from a 10% inlet flow disturbance for the model
predictive controller with box constraints, P =35 (1), P = oo (3), and OPC (2).
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equivalent settling time (- - -).
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equivalent settling time (- - -).



72

small settling times are required are a result of non-cooperative interactions hetween
the optimal and integral terms in (6). To achieve rapid settling the integral term

must be made significant, and this negatively impacts flow filtering performance.

4.9 Conclusions

The discrete time analog of the optimal averaging control problem has been defined
and solved. This solution provides the minimum achievable MRCO consistent with
constant level constraints. The use of the internal model control structure insures that
flow disturbances are offset optimally without requiring feedforward measurements.
[nsight gained from the solution of the discrete time infinite horizon problem
motivates the formulation of a finite horizon problem using the on-line optimization
and “moving horizon” ideas of model predictive control. An analytical solution to the
finite moving horizon problem allows us to develop conditions under which the finite
horizon solution recovers the infinite horizon solution. Specifically it is shown that
this is the case for large disturbances for which optimal flow filtering is most critical.
Introducing a fixed endpoint condition (box level constraints) we show that inte-
gral action can be obtained without sacrificing optimal flow filtering for disturbances
above a specified threshold magnitude. This formulation is an attractive alternative
to control schemes which add integral action to an otherwise “optimal” controller in
an ad hoc fashion. Additionally, a single tuning parameter, the horizon length, simply
and directly eflects the trade-ofl between flow [illering and rapid integral action.
The new surge tank level controller is formulated as a model predictive control
problem involving the solution of a linear program at each sample time. This appli-
cation demonstrates the flexibility of MPC and the relative ease with which it can be
applied to control problems with non-traditional objectives. The use of an embedded
(local) stabilizing controller insures internal stability of the internal model structure

(even though the plant, a pure integrator, is not asymptotically stable).
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Appendix A — Proof of Theorem 1

Proof The proof of Theorem 1 is straightforward but tedious. For simplicity many

details have been omitted. Throughout the proof we assume that Q(¢) > 0: the results

for 2(t) < 0 follow in a parallel fashion.
Forward direction (==): We first show that

» Gt —=1)+(k+1)Aq; ke0,k7)
Gt+k) =
d(t + k|t) k> k"

is a feasible solution. By direct substitution into (18) it is easy to show that

ht +£_Z: O (1 — k;H + ‘k-tl Alhmaz=h{t)] ko< b=
h“(t+k|t)={() f“[()( k+1) R ) T } .

hma:r
Clearly h*(t + k|t) is non-decreasing in & for k£ < k* and A*(t + k™|t) = Amaes so that
q:(t + k) is feasible. This implies Condition 3. of Theorem 1.

Now we show that all solutions satisfying 3. but not I. are infeasible. For any

such solution, §, there must exist some k < k* such that
Lt +k) <gt+k) Ve ki)

[t follows that the corresponding predicted levels must obey,
h(t+k+1)t) > k™t + k+1Jt) Yk € [k, k")

but A*(t + k*|t) = hymas so that iz(t + k*|t) > hmaez which implies that ¢, is infeasible.

Thus I. is established.

We now show that all feasible solutions satisfying /. must also satisfy 2. From

(18) |
h(t+ k" + j|t) = h(t + k°|t) + %id(t + k) = qo(t + k™ + 1) (AL

1=0
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As we have seen, h(t+k*|t) = hy.,, for any solution satisfying /. so we have from (Al)

hmin S. h(t + k'- ’Y‘JIt) «.<.~ hmaz:

TJ'
hmin“’ha’m<“" dt kt - ot K . Shmax—him
! "A§(+ ft) = qo(t + k" + 1) 1

;
hma.t - hlim 2 —Zl_—, Z d(t + klt) - QO(t + k) 2 hrm’n - hh’m v] ?. k*

Lt
Thus for feasibility we must have 2.
To show the reverse direction {<=) we assume 1., 2., and 3. hold for some ¢,(t+k),
k € K. As we showed above, 1. and 2. arc nccessary and sufficient for feasibility
given 3. Thus feasibility of §, is established. Since 1. implies

' 5o (t + k) — g,(t - 1) 2 Ag;
,;fﬁﬁ)lfeaﬁ('q"(_}-) Go(t+k—1)| 2 Ag;

any g, satisfying 3. must be optimal and we have completed the proof. ||
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Appendix B — Proof of Theorem 2

Proof In order to satisfy Condition /. of Theorem 1 for a non-zero low imbalance

at time t; we must implement Aq, V¢ < tg + &*. This is guaranteed by
Ag;(to)| > |Ag5(to)] (B1)

since |Aq?| decreases monotonically while |Ag}| is constant for t < t, + &*. Thus
|Ag2(t)| remains less than |Ag:(t)| and Ag} is implemented until t = to + k*. For
t > t+ k*, Ag%(t + k*) is implemented guaranteeing feasibility (Condition 2. of
Theorem 1). Condition 3. is satisfied by (B1) since |Aq?| is bounded by [Aq:(t,)] for
all time. From the definitions (20) and (36) it is straightforward to verify that (B1)

is equivalent to

2T PQ + 2A[A(t) — h,]

2 > :
Py p TAg >0 (B2)
Since
2T PQ| + [2A[A(t) — h,)| = |2T P2 + 2A[A(t) — h,]] (B3)
(B2) is implied by
2|0 2A|R(t) — hy]
P2+P[1_ ]__ : 20 (B‘l)
|Ags] T|Ag;) '

By direct application of the quadratic formula it can be verified that (37) is equivalent

to B4. |

Note that the use of the triangle inequality (B3) results in a sufficient condition on
P. In practice, however, we are certain to encounter situations where both terms of
(B3) have the same sign so that equality holds and the sufficient condition is necessary
as well. For example a step disturbance from the nominal steady state results is both
terms of B3 having the same sign. In fact we do not have equality in (B3) only when
the level is not at its steady state value and an imbalance occurs which is in the

“good” direction (i.e., tending to return the level to nominal}.
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Appendix”C — Proof of Theorem 3

Proof At steady state we must have, Ak = Ag, = 0. Using (35) Ag, = 0 implies
that Ag; = Aq) = 0 at steady state. From (36), Aq? = 0 implies,

20 2A[L(k) — hy)

=t TR

Clearly 2 = 0 at steady state since if there is a non-zero flow imbalance we cannot

have Ak = 0. Thus
QA[h(k) '_ ha]
TP(P+1)

— 0 as k— o0

which implies

h{(k) — h, as k — oc.
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Appendix D — Notation

d inlet flow disturbance
h tank level
K the set of non-negative integers {0.1,2,...}
K, proportional gain
P model predictive control horizon length
q flow rate
t time
T sampling time
‘ integral reset time
Subscripts
1 inlet

maxr  maximum allowed value
min  minimum allowed value

0 outlet
s steady state
Superscripts
~ plant model, or value determined by the plant model

* optimal value



Chapter 5

Conclusions and Suggestions for
Further Work — Part 1

5.1 Summary of Contributions

A novel model predictive control formulation using the co-norm both spatially and
temporally has been developed. This formulation is an improvement over existing
schemes in several respects. Of primary significance is that the formulation involves
a reduced number of tuning parameters which must be specified by the designer.
While not completely satisfactory, this reduction in complexity with no apparent loss
of functionality is encouraging. In addition to simplified design, this formulation
requires substantially less on-line computational effort than other algorithms. While
this is not particularly important for the small scale examples found in the literature,

it is practically significant in two respects:

1. It will allow larger scale applications of MPC, approaching plant-wide imple-

mentations, which are not currently feasible.

2. It will allow application of MPC to a wider range of small scale systems since

the required computer hardware is more modest.

The critical issue of robustness to plant-model mismatch is incorporated into an
MPC formulation for the first time. The attractive numerical characteristics of the oco-

norm formulation are exploited in the derivation of Robust Model Predictive Control
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(RMPC). In this‘formulation, the on-line constrained optimization has as its objec-
tive robust performance, rather than nominal performance as in all existing MPC
algorithms.

In parallel with the development of RMPC, a novel time domain model uncertainty
description is developed. Typical model uncertainties, arising for example from un-
modelled dynamics, are relatively easily handled in the frequency domain. MPC is
formulated in the time domain, however, and model uncertainty characterizations
are therefore required in the time domain as well. The parametrization developed
in Chapter 3, in terms of uncertain impulse response roefficients, is straightforward
and leads to a tractable on-line optimization problem. Additional work is needed,
however, to develop methods and insights which will allow the designer to formulate
practically meaningful uncertainties in this framework.

In Chapter 4 an important constrained control problem is addressed in detail.
Again the co-norm MPC formulation lends itself naturally to a practical problem —
surge tank level control. A significant result of this work is that a closed form solution
of the constrained MPC optimization problem is provided. While this analytical so-
lution does not extend to more general MPC problems, 1t makes practical application
of the constrained optimal control policy for level control completely trivial. Instead
of a large optimization problem to be solved on-line, application of the optimal policy
only requires evaluation of a simple nonlinear relation between level and outlet flow.

In addition to optimizing flow filtering, the surge level control algorithm provides
integral action. A single tuning parameter directly affects the trade-off between opti-
mal filtering and rapid integral action. Quantitative conditions are derived to evaluate

the impact on flow filtering of the integral action requirement.

5.2 Suggestions for Further Work

While the work in constrained MPC in this thesis provides initial steps in the right
direction, there is substantial work needed before a truly general theory of MPC can

be outlined. The efforts suggested here are motivated by both practical significance
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and the need to define such a general theory.

Despite the claims of certain enthusiasts, e.g., [80,79], the current MPC formu-
lations do not allow the control svstem designer to formulate all of the engineering
objectives in a typical control systemn design problem as mathematical criteria in the
MPC optimization. While MPC has made the translation of engineering objectives
to mathematical criteria more direct, significant abstraction is still required and re-
formulations are required to achieve certain design goals indirectly (probably the most
obvious examples are in dealing with multiple conflicting objectives).

As a result it is important that the complexity of the design be considered ex-
plicitly. Formulations should be developed with mathermatical convenience in mind.
For example minimizing integral square error is never of primary interest in practice.
Regulation objectives are always much less precise, and can’t be simply captured
with a single mathematical figure of merit. If a (mathematically) more convenient
objective can be formulated, so that design or implementation is made easier, with-
out sacrificing performance, then an improved MPC formulation will result. Since
the current formulations contain many redundant and indirect tuning parameters. it
seems clear that further progress in this direction can be made. A crucial consider-
ation in this work is the extent to which simplification for the sake of mathematical
convenience impacts achievable control performance. It is not suggested that simpli-
fications be made which reduce the effectiveness of MPC in practical problems, only
that unnecessary complexity and redundancy be removed.

With these complexity issues in mind, a redirection of effort with respect to MPC
robustness research seems appropriate. Rather than adding complexity in order to
solve a minimax problem on-line, effort should be concentrated on the analysis of
available MPC algorithms. Recent work by Zafiriou indicates that optimizing robust
performance need not guarantee robust stability [92,93]. Furthermore there are un-
doubtedly sufficient degrees of freedom in the current MPC formulations to allow
the designer to make these designs robust. The question is — “How should these
degrees of freedom be specified in order to improve robustness?” These questions are

in general difficult and are (probably unnecessarily) complicated by the complexity of
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current MPC formulations. With simplification it is hoped that more useful analvsis

results can be obtained. Other areas of interest include:

e The effect of constraints on nominal stability. [t is known that adding
hard output constraints to an otherwise stable closed loop MPC formulation can
lead to instability. This connection between constraints and stability should be
investigated. Non-conservative conditions for nominal stability of constrained

MPC are required.

e Formulations using parametric models. This area includes state-space for-
mulations, more general disturbance models (optimal filtering problems), and
applications to open loop unstable plants. State-space formulations might sig-

nificantly simplify the embedded feedback implementation in Chapter 4.

¢ Time domain uncertainty descriptions. In addition to more general time
domain uncertainty characterizations, simplification of the resulting minimax
problems, and development of algorithmic solution techniques for the Robust
Model Predictive Control formulation are required. For recent work in this area

see [11].



82

Part 11

The Linear Theory Approach
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Chapter 6

Robust Control of Processes
Subject to Saturation
Nonlinearities

Abstract

Motivated by current practice, a two-step design technique for saturating systems
is studied. First an “optimal” (for example in the H* sense) linear controller is de-
signed neglecting saturation. Then a saturation compensation scheme (anti-windup)
is designed which provides graceful degradation of closed loop performance in the face
of saturation. The focus in this paper is on the second step, and obtaining general
results and insights applicable to any (linear) system subject to saturation. A design
technique is developed which results in effective saturation compensation for a given
multivariable plant and linear controller design. For particular controller choices the
resulting saturation compensator is shown to be equivalent to proven techniques in-
cluding anti-reset windup and internal model control (IMC).

Tools are developed for robust stability and performance analysis of nonlinear
systems. Well-known structured singular value robustness tests for linear systems are
extended to a class of nonlinear systems. Sufficient conditions are developed which
guarantee closed loop stability for all plants in a structured uncertainty set and for
all nonlinearities of a specified form.

These tests result in simple conditions on the initial linear controller design which

must be satisfied in order to guarantee robust stability of the saturating plant. In
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some instances this requires that the original linear design be detuned. A procedure
for performing this detuning is outlined. A promising single-step procedure for the
synthesis of optimal robust linear controllers for saturating systems is also outlined.
While this approach lacks the simplicity of the two-level decomposition, it appears to
have promise for situations where the impact of the saturation on the closed loop is

severe.

6.1 Introduction

We consider in this paper systems which are subject to actuator saturations hut are
otherwise linear. Such saturations are present in every physical system and are the
dominant nonlinearity, in terms of closed loop performance limitations, in many prac-
tical situations. While linear control theory is not formally applicable to saturating
systems, the standard controller design procedure is to neglect the saturation, de-
velop a linear design, and add some problem-specific scheme to deal with stability
and performance degradation caused by actuator saturations (e.g., windup). For sin-
gle input-single output (SISO) systems this approach has been quite successful and
saturation compensation is relatively well understood. For multiple input-multiple
output (MIMO) systems however, this is not the case and few workable schemes have
been reported.

Although optimal trajectories for saturating systems can be determined using non-
linear optimal contral theory, the resulting bang-bang control laws involving compli-
cated switching surfaces are very difficult to implement. In addition these systems
can be very sensitive to model uncertainties. Since a full nonlinear robust control
theory is not available, and actuator saturations are relatively simple nonlinearities,
the two-level decomposition of the design problem seems justified. In this paper we
generalize this approach and extend it to the MIMO case. Specifically we outline
the performance and stability problems introduced by saturations, develop a general
method for the design of saturation compensation, and use these results to quantify

the limitations on the initial linear design imposed by saturations. Our focus in the
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Figure 1: The classical feedback control structure with actuator saturation.

development is on obtaining general results and insights which can be applied to any
(linear) systemn subject to actuator saturation, as opposed to results for a specific
problem or case study.

Since we will be interested in obtaining global stability results we will for the
most part restrict consideration to open loop stable plants. If the plant is not open
loop stable, there is always an cxternal input “large enough” to kecp the system
in saturation, effectively opening the feedback-loop. With no feedback the plant will
demonstrate its open loop characteristics, namely instability. With certain additional
assumptions, e.g., on the size of external inputs to the system or on the size of certain

internal signals, this condition can be relaxed.

6.2 Windup

A common performance degradation phenomenon in saturating systems is known as
“windup” or “integrator windup.” We consider the system shown in Figure 1 where
P(3) is the linear time invariant (LTI) plant, and K(s) is an LTI controller determined
to be satisfactory in the absence of saturations. The block between the plant and the

controller represents the actuator saturation and is modelled as

& = sat(u) (6.1)



where
U u; | <1
i = £ (6.2)
sign(w;) Jui| > 1
Windup occurs when an actuator becomes saturated, effectively breaking the feed-

back loop. While the controller output, u, remains above the saturation linit we have,

u(s) = K(s)[r(s) — d(s) — P(s)i(s)] (6.3)

and the states (for example the integral term of a proportional-integral (PI) con-
troller) “wind up;” i.e., for given external inputs, r(s) and d(s), they obtain values

significantly different than they would in the absence of saturation when

u(s) = K(s)[I + P(s)K(s)]" (r(s) — d(s)) (6.4)

The effect of these “wound up” states is a significant transient which must decay
(unwind) after the system returns from saturation. This transient is most pronounced
when there are slow dynamics in the controller, driven by the error while the system
is in saturation, which then unwind slowly after the return to the linear regime.

While windup has been widely observed and discussed, it has rarely been defined.
In its strictest sense (integrator) windup has been used to refer to windup of the
integral term of classical single input-single output PI or PID controllers [15,59.
60,6,58]. In its broadest use windup has been used to describe any performance
degradation which occurs as a result of saturation [35,7,78]. Motivated by the above

discussion, we adopt for the purpose of this paper the following definition:

Definition 6.1 Windup occurs when the states of the controller are driven by the

error while the actuator is in saturation.

While this definition is certainly broader than strict integrator windup (windup of a
single state in K(s) corresponding to the integrator), it is not as all encompassing (as
we will see) as the broadest possible definition suggested above.

Before developing a general method for dealing with windup (as defined) we review
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Figure 2: The feedback system with saturation compensation, R.

several standard approaches which have proven successful in some applications.

6.2.1 Anti Windup

The classical approach of “turning off,” or modifying, error integration during satu-

ration can be understood using Figure 2 where the anti-windup block, R(s), is given
by

1 .

R(s) = —I (6.5)

as

We note that the system shown in Figure 2 is not internally stable and therefore a
realization of this configuration could not be used in practice. Equivalent configura-
tions, which are internally stable, and give rise to somewhat more complicated block
diagrams can be found in [15,5,7]. For simplicity we will ignore this internal stability
problem and refer to the otherwise equivalent Figure 2 in the following discussion.

When the saturation is not active @ = u and the additional block, R(s), has no
effect so that closed loop performance (for small inputs) is determined by the design

of K(s). During saturation we have,

u(s) = [T+ R(s)]TIK(s)(r(s) —d(s)) + [ + R(s)]"'[R(s) — K(s)P(s)]i(s)(6.6)

= —2 _K(s)(r(s) —d(s)) + as: o[ — asK (s)P(s)]a(s) (6.7)

as +1
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Figure 3: The internal model control (IMC) structure.

and the effect of /() is to remove an integrator from K (s) and K (s)’(s) and replace
it with a first order lag. If the parameter a is small then this effectively removes slow
dynamics (integrator) and replaces them with fast dynamics (high bandwidth lag)
which are much less susceptible to windup. These fast dynamics are still driven by
the error while the system is in saturation, but they unwind quickly when the system
returns to the lincar regime and thercfore have a less adverse impact on the system
response.

While successful in preventing windup in its narrowest sense, this simple approach
is not adequate in all cases. As demonstrated by Doyle et al. [35], the controller need
not include an integrator for windup to be observed. Any relatively slow dynamics
in K(s) will result in undesired cffects on the response for a substantial period of
time after the actuators have returned from saturation. Additional limitations of
this approach are a lack of a general method for selecting the appropriate value of o
(5] suggests making a “proportional to the integral time"), and a lack of stability
guarantees (it is not difficult to see from (6.7) that if K(s) has right half plane poles,
the saturating system will be unstable).

Another approach which has been suggested, and which guarantees closed loop
stability when there is no model error, is the use of the Internal Model Control (IMC)

structure (see [68] and references therein) shown in Figure 3. This corresponds to
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selecting R(s) = K(s)P(s) and we have from (6.6) (when P = P)

u(s) = KW+ P(s)K(s)]7Hr(s) — d(s)) (6.8)
= Q(s)(r(s) —d(s)) (6.9)

where the IMC controller, Q(s), is defined by,

Q(s) & K(s)[I + P(s)K(s)]™" (6.10)

Thus
y(s) = P(s)sat{u(s)} (6.11)
= P(s)sat{Q(s)(r(s) — d(s))} (6.12)

With P(s) stable (by assumption), stability of @Q(s) is necessary and sufficient for
internal stability in the absence of saturation (see [68]). Consequently, stability of
the linear system implies stability of the nonlinear system. Nonlinear performance
however, is often excessively sluggish with the IMC implementation. This is clear from
(6.9) which holds both in saturation and in linear operation. The IMC controller Q(s)
never “sees” the effect of the saturation on the plant output y(s), and u(s) is only a
function of the setpoint, r(s), and disturbance, d(s).

Other, more elaborate, nonlinear schemes to deal with saturations have been pro-
posed (e.g., model predictive control {45}, which involves solving a {simplified) opti-
mal control problem on-line, and the approach of Kapasouris [57]). While some of
these techniques have been successful in practical applications, they require extensive
on-line computation and do not lend themselves to simple analysis. As such it is
difficult to develop insight into the limitations posed by saturations on linear design
by studying them. Indeed it is not clear at this point that it is necessary to introduce
nonlinearities (in addition to the existing saturation) in the closed loop in order to

provide adequate saturation compensation.
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Figure 4: Block diagram of K{(s) without saturation compensation.

6.2.2 Anti-Windup from a State Space Perspective

In order to develop a general anti-windup scheme, which extends trivially to MIMO
systems, we adopt a state space perspective. In this section we outline a state space
construction of a linear saturation compensator designed to avoid windup (Defini-
tion 1). We begin with a minimal state space realization of the m x p transfer

function matrix K(s) given by,

v = Av+ Be (6.13)
u = Cv+ De (6.14)

where v € R™*! is the state vector of the controller. We denote the transfer function
matrix obtained from this realization as
i A| B .
K(s) = (6.15)
cC|D
which is represented in block diagram form in Figure 4. Clearly with this realization,
the state of the controller, v, is driven (only) by the error signal and we can expect
significant windup resulting from saturations whenever A includes slow dynamics.
Following Astrém [7], we can restructure this realization to achieve a controller

with anti-windup properties. By multiplying (6.14) by H € R™*™, and subtracting



91

~o—InB.-HD

=

[ D
; u
Vo 1 Vc»l—o_/‘,P Y

Y

A

A-HC

Figure 5: Block diagram of the closed loop system with saturation compensation.

from (6.13) we obtain

= (A—HC)v+(B—-HD)e+ Hu (6.16)

Now rather than using the controller output, «, to drive the states in (6.16) we use

the actual plant input .

£

Thus we have (shown schematically in Figure 5),

= (A-HCy+(B-HD)e+ Hi (6.13)
= Cuv+ De (6.19)
= sat(u) (6.20)

Astrom argues that by selection of H we can insure that A — HC has all of its

eigenvalues in the open left half plane. In fact since (A,C) is observable (by mini-

mality) we can arbitrarily assign the eigenvalues of A — HC and make the dynamics

driven by the error as fast as desired. This approach begs the question - “What is

the ‘optimal’ assignment of these eigenvalues ?”

The answer to this question is very simple and comes directly from Definition 1
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which states: windup occurs when the states of the controller are driven by the error
while the system is in saturation. With the controller parametrization (6.18)-(6.19)-

(6.20) it is clear that we can avoid windup by selecting H = BD™! so that

v = (A—BD'C)v+ BD'4 (6.21)
u = Cv+ De (6.22)
u = sat(u) (6.23)

With this parametrization the error has no effect on the states of the controller. In-
stead Lhe states are updated based on 7, the plant input. We note that the realization
(6.21)-(6.22)-(6.23) is only meaningful when a left inverse of D, denoted D! exists.
We will assume throughout the sequel the existence of such a D~!. In certain cir-
cumstances this may require modification of a prespecified K (s) at high frequency to
insure a left invertible D term.

The parametrization (6.21)-(6.22)-(6.23) is exactly the “conditioned controller”
introduced by Hanus et al., [53]. While we arrive at the same anti-windup com-
pensation, our development and its interpretation are completely different than the

treatment involving “realizable references” they present.

Example 1

In order to demonstrate the effectiveness of the saturation compensator we will con-

sider a simple SISO example. The plant is given by,

1
P(S) = me'—m’ ) (62“

and the controller by,

(5s +1)(6.3s + 1)

M) = i e s e
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Figure 6a: Example 1 — Disturbance response for the nneconstrained system,
R S
d(s) ~ 3(10s+1)"
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Figure 6b: Example 1 — Pulse disturbance response for the unconstrained system.

This contruller was obtained via the IMC design procedure (see Chapter 4 of {63]) and

is based on an Integral Square Error optimal controller for the output disturbance

1

= D (6.26)

d(s)
The input constraints for this problem are |u| < 1.2. The linear responses (no satu-
ration) to the designed disturbance (6.26) and a pulse disturbance of magnitude 0.5
and duration 10.0 are shown in [igures 6a and 6b respectively.

Without saturation compensation, the system limit cycles in response to both of
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Output Input
1.5 2
1 - 1 -
0.5 =~ 0~
0 -1 -
-0.5 T 1 T T -2 Y T T T
0 30 60 90 120 150 4] 30 60 90 120 150

Figure 6c: DExample 1 — Disturbance response for the constrained system without

saturation compensation, d(s) = L(x_ol?;“i“)”'

X Output , Input
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Figure 6d: Example 1 — Pulse disturbauce response for the constrained system with
no saturation compensation.

these disturbances as shown in Figures 6¢c and 6d. Instability with no saturation com-
pensation is not unexpected and simply serves to underscore the dangers of ignoring
the impact of saturations.

The system also limit cycles when classical anti-windup, (6.5), is applied (for
any « > 0). Inability of classical anti-windup to maintain stability demonstrates
the limitations of a narrow definition of windup. Although an integrator in A'(s) is
removed while in saturation, other dynamics in K'(s) cause instability.

The IMC implementation is stable but somewhat sluggish as shown in Figures te
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Figure 6e: Example 1 — Disturbance response for the constrained system using the
=t
IMC structure, d(s) = ICESVE
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Figure 6f: Example 1 — Pulse disturbance response for the constrained system using
the IMC structure.

and 6f. With IMC, the controller output, u, is given by (6.9) both in the linear
regime and during saturation, and is independent of the plant output, y. Hence the
controller does not “see” the effect of the saturation resulting in a sluggish response.
This sluggishness is most pronounced when the unconstrained input has a large peak
and settles quickly. In this case the constrained system will come out of saturation
quickly before the plant output has reached its steady state value. With the controller
output essentially constant the plant output approaches steady state with the open

loop dynamics of the plant.
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Figure 6g: Example 1 — Disturbance response for the constrained system using
saturation compensation (6.27), d(s) = 3('1'6153:'17‘
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Figure 6h: Example 1 — Pulse disturbance response for the constrained system using

saturation compensation (6.27).

The response with the saturation compensator ontlined in Section 2.2 is shown

in Figures 6g and 6h. The system is stable (for any disturbance of bounded energy

as we can show using results in Section 3) and provides a rapid response which

closely resembles the unconstrained response (Figures 6a and 6b). The saturation

compensator is able to preserve stability, as does IMC, but also keep the plant input

saturated for a longer period than IMC allowing a faster response.
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6.2.3 Relationship Between Saturation Compensators

We now consider the proposed saturation compensator from an input-output point of
view. This allows us, using the block diagram of Figure 2, to demonstrate that this
anti-windup compensation is a generalization of both classical anti-windup and IMC.
As we saw in Section 2.1, the classical anti-windup scheme corresponds to R(s) =
3-1;1. IMC corresponds to R(s) = K(s)P(s). From (6.21)-(6.22)-(6.23) and simple
block diagram manipulations, it is easy to determine that the proposed saturation

compensator (and the “conditioned controller” of Hanus et al.) correspond to
R(s) = K(s)D™' ~1 (6.27)

We note that for a purely proportional controller, K(s) = D = constant, which has
no states to wind up, (6.27) provides R(s) = 0 as we would expect.

For the PI controller,

k(m 1
K(s) = kns +1) (6.28)
, TS
the corresponding windup compensation given by (6.27) is
R(s) = ! (6.29)
B TS T

which is exactly the classic anti-windup strategy, “turn off the integrators during
saturation,” used successfully for decades for PI controllers and open loop stable
plants [15,39,6,58].

With P(s) stable, all controllers, K{s), which yield an internally stable closed

loop system (in the absence of saturations) are given by

K(s) = Q(s)[f = P(s)Q(s)]™ (6.30)

where (s) is an arbitrary proper, stable, transfer function matrix. With such a
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K(s), the (linear) closed loop transfer function (¥ in Figure 1) is
T(s) = P(s)Q(s) (6.31)

Selecting Q(s) = P~1(0) = constant provides integral action (T(0) = /) and a closed
loop bandwidth equal to the open loop bandwidth [68]. The corresponding windup
compensation is (using (6.27)) A(s) = KA (s)P(s) which corresponds exactly to the
IMC structure of Figure 3. We conclude then that the IMC structure, which guaran-
tees stability with respect to saturation, is the appropriate windup compensation only
in a special case, namely when we have not used K(s) to modify the plant dynamics
(bandwidth) but only to achieve integral action. This is consistent with simulation
results where it is observed that IMC is excessively sluggish when saturation occurs
in systems where K(s) is designed to speed up the closed loop.

We have seen then that the proposed windup compensator, (6.27), designed to
avoid windup (Definition 1) is a generalization of well-known and successful strate-
gies. Furthermore the limitations of these traditional measures are clear from this
discussion. Classical anti-windup avoids windup only for PI controllers and is inad-
equate when K(s) has poles in the right half plane; IMC avoids windup only if the

closed loop dynamics are the same as the open loop dynamics.

6.2.4 Multivariable Issues — Directionality

In Section 2.2 we outlined a general windup compensation scheme which avoids
windup in the states of K(s). For SISO plants this approach leads to graceful per-
formance degradation when the system enters the nonlinear operating regime as a
result of saturations. While our state space approach allows us to extend the windup
compensation scheme to MIMO plants in a natural manner, windup compensation
alone, is often not adequate to ensure graceful performance degradation in the MIMO

case. We demonstrate this with a simple example.
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Example 2

We constder the 2 x 2 plant,

1 4 -3

P(s) = (6.32)

with both inputs limited by %15.0. The controller, selected on the basis of linear

performance is,

10s+1] 4 5
K(s) = =2+ (6.33)
$ 3 4
The linear response shown in Figure 7a for a setpoint change, r = [%], is

decoupled with a first order response in each output with time constant of 1.0 and no
overshoot. The nonlinear response to this same setpoint change is shown in Figure Tb.
Both outputs overshoot significantly (approximately 500% at ¢ = 4) then overcorrect
and undershoot (approximately 100% at ¢t = 8) before settling.

With a broad definition this drastic performance deterioration would be assigned
to “windup problems.” In fact only the smaller undershoot problem is the result of
windup. This can be seen in Figure 7c where we have included windup compensation,
(6.27), in the nonlinear simulation. The large initial overshoot is still present and the
smaller undershoot (around ¢ = 8) has been eliminated. Tt is clear then that relative
to the large initial overshoot, windup is a relatively minor problem in this example.

The problem demonstrated in the preceding example is unique to MIMO systems
and results from the directional nature of the plant. In MIMO systems the plant
gain is a function of the input direction. Since the saturation operates element by
element on u to generate 4 the direction of @ is different than that of u. For example
if u= [%8], the resulting @ is ¢ = [% 8] and the direction of the controller output,
u, is is different than the plant input, 4. If the saturation error, u — u, corresponds
to the high plant gain direction, the difference in plant outputs corresponding to u
and 4 will be maximal. Correspondingly if u — @ is aligned with the low plant gain

direction, the effect on the output will be relatively modest.
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Figure 7a: Example 2 — Step response for the uncounstrained sysiei.
Outputs Inputs
5 20
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1 15 -~
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Figure 7b: Example 2 — Step response for the constrained system with no saturation
compensation.
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Outputs Inputs
5 20
3 15
2
1
10 —
-1 1 1
-3 5= 2
-5 1 | 1 0 ] 1
o 10 20 30 0 10 20 30

Figure 7c: Example 2 — Step response for the constrained system with saturation
compensation (6.27).

Outputs Inputs
1 20
0.8 = 2
15 =
0.6~
1
10 \
0. 4 ~ -ﬂ
1
0.2 5= 2
0 T T 0 I T
o 10 20 30 0 10 20 30

Figure 7d: Example 2 — Step response for the constrained system with saturation
compensation (6.27) and directionality compensation (6.34).
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Figure 8: The feedback system with saturation compensation, R, and directionality
compensation, R,.

Since the saturation operator acts element by element on u its structure is di-
agonal. It is well-known from robust linear control theory that some plant and
controller combinations experience severe performance deterioration in the presence
of diagonal input uncertainties. Specifically, ill-conditioned systems (those having
large scaled condition numbers) together with inverse based (and consequently ill-
conditioned) compensators as in the current example, have this property (see for
example [87]). Loosely speaking the diagonal operator disturbs the inversion so that
P(s)satK(s) s L(s) though P(s)K(s) =~ L(s), where L(s) is the desired loopshape.

We can eliminate the directionality problem by adjusting all of the elements in
u when one of them becomes saturated so that v and 4 have the same direction (a
similar approach was adopted in [35]). This can be achieved by inserting an additional

block in the loop as in Figure 8. Here the block R; is a nonlinear operator described

by

W o= Hyu (6.34)

u e <1

i Mulle > 1

[Tulfoo
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where

ulloo = ma ] (6.36)

The purpose of R, is to scale back the controller output until its largest element
has magnitude one. In this case the saturation will have no effect since its input,
u', always has |u;| < 1 for all 2. What we have effectively done then is replace the
diagonal saturation operator by a scalar times identity operator. In this case, if we
allow d, to be the scalar valued describing function appropriate for the composite

operator, satR,, we have
P(s)sat Ry K (s) = P(s)dyK(s) = dy L(s) (6.37)

and we see that (to a first approximation) the desired loop shape is only perturbed by
a scalar factor. The impact on the closed loop is now not dependent on the direction
of u but only on its magnitude.

Using this approach to directionality compensation we return to Example 2 and
simulate the response to the same setpoint change, r = [%] The response, shown
in Figure 7d, is well behaved with no over or undershoot characteristic of windup or
directionality problems.

It should be noted that this approach to directionality compensation is not neces-
sarily optimal. Indeed it may happen that without directionality compensation u — u
is in the low plant gain direction. If information is available regarding the directional
characteristics of the plant a constrained optimization can be performed to find a v’
which minimizes the input of the saturation on the output error (e.g., minimizing the
component of u—u’ in the high gain plant direction). These schemes are typically very
complicated and computationally intensive. We favor this simple scheme because it 1s
insensitive to the directionality of the plant (and hence requires no such information),
has provided very good results, is amenable to available analysis techniques, and is
trivial to implement. Implicit in our assumption that K(s) is designed appropriately
for the linear plant is the assumption that the output of K(s), u, is in the appropriate

direction. With this in mind the simple directionality approach seems justified.
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6.3 Analysis Theory

In this section we present an approach to nonlinear systems analysis applicable to
saturating systems. Since the theory has general applicability we will not discuss
saturation nonlinearities per se until the next section where we apply the general
results to the saturation compensation problem.

The approach taken here originated with the work of Zames in the early 1960’s
[94], and is applicable to systems which include nonlinearities for which conic sector
bounds can be obtained. The basic approach is to approximate the nonlinear system
components with linear ones and obtain norm bounds on the error involved in this
approximation. The linear system is then studied subject to nonlinear perturbations
within the specified norm bounds. If it can be shown that the linear system has
certain properties {e.g., stability) for all perturbations within the norm bounds, then
it is certain that the original nonlinear system has these properties as well.

We begin with a few mathematical notions which are necessary for the subsequent
development. In order to simplify the discussion we will present as few formal defini-
tions and proofs as possible and refer the interested reader to relevant references (in
particular, much of this material is covered in [29]).

We will be concerned with signals which remain finite for all finite values of time.

A mathematical characterization of the set of such functions is given by:

Definition 6.2 L, is the ertended space of vector valued functions, z(t), with the

property
1/2

< o (6.33)

A T -
leliz & | [ 2z (t)at
for alT > 0.
System elements (blocks) are represented mathematically as operators which take

inputs (signals in Lq.) and produce outputs (signals in L,.). The following is a tormal

definition of stability for system elements.
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Definition 6.3 An operator, N, mapping Ly — L, is said to be stable if there cxists
a constant k < oo such that

|Nz|lr < Kzl (6.39)
forallz € Ly, and for all T > 0.

This corresponds to finite gain stability; input signals of bounded energy give rise to

output signals of bounded energy.

Definition 6.4 Given N, a possibly nonlinear and time varying operator, and two

linear time invariant operators C and R, N is said to be inside Cone (C,R) if
|N(z) = Czllr < ||Rzllr (6.40)

for alT >0 and z € Lo,.

A conic sector provides an LTI approximation to the input-output behavior of
N. The cone center, C, provides an approximate output, Cz, for any input z. The
cone radius, R, provides a measure of the error inherent in this approximation. For
example the SISO memoryless nonlinearity N : 2(t) — sat{=z(t)} is inside Cone (1, ;).
The operator C : z(t) — 3z(t) is our linear approximation to N and R : z(t) — sx(t)
gives us a measure of the error in this approximation (as much as 100% in this case).

We can replace any representation of all nonlinearities in Cone (C, R) with an

equivalent representation in terms of all nonlinearities in Cone (O, ). Specifically

Cone(0,I). This allows us to replace a nonlinear perturbation in Cone(C, R) with
the LTI blocks C and K and a cone bounded nonlinearity in Cone(O, ). As a result
we can, without loss of generality, state all nonlinear stability results in terms of the
Cone(0, I) and thereby simplify the notation.

(Given these preliminaries we consider the general feedback interconnection of Fig-

ure 9 where M is a linear time invariant operator with transfer function M(s) and A
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Figure 9: The general feedback interconnection used for stability analysis.

is a (possibly nonlinear) block diagonal operator in A defined by,
A 2 (A = diag(Ay,...A,) | A; € Cone(0, 1)} (6.41)

Any feedback interconnection of linear and cone bounded nonlinear blocks can be
brought into this form. We will see examples of this in the next section.
With these preliminaries we present the main result, a version of the multiloop

circle criterion (see for example [86]).

Theorem 6.1 The system in Figure 9 is stable for all A € A if

1. M(s) is stable
2.38<153 }relfrllTMll(s)T"lilm <p

where

1P@)le & supa(P(jw)) (6.42)
T &2 (T|TAT'eA VAeA} (6.43)

Since a simple parametrization of the set 7 is not available, the optimization
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problem implied in 2. is not tractable. We uote however that the set
T 2 (T|TeT andT eC™)} (6.11)

is characterized only by the structure of T. Specifically, T’ cousists of all block
diagonal constant matrices whose block structure is compatible with A in the sense
that for each diagonal block in A the corresponding block in 77 is diagonal, and for
each full block in A there is a corresponding scalar times identity block in 7’. This

simplification motivates:

Corollary 6.1 The system in Figure 9 is stable for all A € A if

1. M(s) is stable

2. 38«15 Tigﬁt;,[[TMu(.s)T“Hoo < B

This simplification is significant and a complete solution to 2. is available from state
space structured singular value theory [34].

A significant advantage of this approach is that analysis of robustness with re-
spect to uncertainties in the linear plant model is straightforward. As is standard
in the robust control theory, we consider the nominal linear plant model subject to
(possibly multiple) norm bounded LTT perturbations. The LTI nncertainty hlocks
are incorporated in the M — A framework (Figure 9) in exactly the same manner as
the cone bounded nonlinearities so that A is then a block diagonal operator in the

set A defined by

A2 (A]A=diag(Ar... A Anpr ... AR)} (6.153)

[

-

it
—

where Ay, ... A, are nonlinear operators each inside Cone(O, I} and A, 1,... \,. are
LTI operators satisfying 6(4;) <1 Vi=n+1,...m. A straightforward extension

of the structured singular value results (which handle LTI perturbations) provides:
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Theorem 6.2 The system in Figure 9 is stable for all perturbations A € A if

{. M(s) stable

2.38<13 inf|TMu(s)T oo < 8
TeT

where

T 2 (T | T =diag(Ty,... Tn, Topr,---Tin)) (6.16)

7

with Th.... T € T and Tuyr, ... T\ arbitrary LTI operators which satisfy T:A 77! =
Ay VolA) € land Vi=n+1,...m. Again the simplification of 7y,... 7, € T’
allows (relatively) straightforward evaluation of 2. to assess robust stability.

It should be noted that the conditions of Theorems | and 2 guaranteeing stability
with respect to nonlinear perturbations are only sufficient, unlike the necessary and
sufficient conditions provided by linear structured singular value theory. This conser-
vatism and its impact on the analysis of saturation compensation are elaborated on
in the next section.

Before we move on to apply these analysis results to saturating systems we intro-
duce the remaining definitions we will need. These are notions of passivity, or positive

realness, for MIMQ systems (see for example [29,1]).

Definition 6.5 A stable, proper, LTI system, Z(s), is said to be strictly passive if
de>03
Z(jw)+ ZT(—jw) 2 el VY w € [0, o) (6.47)

This is the standard notion of (strict) passivity which in the SISO case corresponds
to the requirement that the Nyquist plot of Z(s) must remain in the (open) right half
plane.

The following Lemma characterizes passivity in terms of an easily computed norm

condition.
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Lemma 6.1 Z(s) is strictly passive if and only if 3 5 <12
NI = Z(HT + Z(s)] e <8 (6.43)

and [I — Z(8)][I + Z(s)]7} s stable.
Further implications of passivity are:

Lemma 6.2 Assuming that both Z(s) and Z~'(s) are proper, Z(s) is strictly passive
if and only if Z71(s) is strictly passive.

Lemma 6.3 Z(s) strictly passive implies that Z(s) is minimum phase (MP) and

stable.

With these results we have completed the mathematical preliminaries necessary
for robust stability analysis of general nonlinear systems. We now turn our attention

to the particular nonlinearity of interest.

6.3.1 Application of Analysis Theory

We will use the stability results outlined in the previous section to analyze the sat-
uration compensation scheme developed in Section 2.2. Specifically we consider the
stability of the system in Figure 2. We stress again here that Figure 2 is not appro-
priate for implementation, instead the system shown in Figure 5 should be used with
H chosen to correspond to a particular choice of R(s).

The MIMO saturation nonlinearity @ = sat{u} is a diagonal operator
N = diag(ny,...n,) (6.49)

where each n; € Cone(3, }). We can represent such a diagonal cone bounded linearity
with the linear blocks C' = 1] and R = 3/ and a cone bounded nonlinearity, N, with

diagonal structure, in Cone(O, I).
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Rearranging Figure 2 to obtain the standard framework of Figure 9 provides

21 + R+ KP]"'{R - KP] 21+ R+ KP]"'K
M(s) = (6.50)
—2P2I+ R+ KP)"'[I+R] IT-PR2I+ R+ KP|'K
We can now apply Corollary 1 and Theorem 2 to evaluate nominal (no model un-
certainty) and robust stability of saturating systems with saturation compensation
R(s).
Condition 1. of Corollary 1 requires M(s) to be stable. Tor R — 0, this is
implied by stability of the linear (no saturation) closed loop when the controller gain

is reduced by a factor of 2.

Evaluating M;,(s) when no compensation is used, R = 0, we have:

Munoaw(s) = —[2I+ KP}—IKP (6.51)
= —-KP@2I+ KP]™! (6.52)
= I-(I+KP)[I+{I+KP)! (6.53)

Condition 2. of Corollary 1 requires that infrer ||[TM11 77 |oo < 8 < 1 which in this

case implies

jof U =T+ EPYTI+ T+ KP)T™ | oo < A < 1 (6.54)

which is equivalent to

T[I + KP|T™! strictly passive for some T € 7' (by Lemma 1) (6.55)

= [+ KP MP and stable (hy Lemma 3) (6.56)
& [I-QP]"'  MP and stable (6.57)
= [[-QP]™'Q stable (since Q stable) (6.58)
o K(s) stable (6.59)

Thus we see that if the closed loop system with no saturation compensation is to be
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guaranteed stable with respect to saturation using Corollary 1, a necessary condition
is that the controller be stable. This result is not surprising, as we pointed out
in Section 2.1, K(s) stahle is a necessary condition for closed loop stability if no
saturation compensation is employed.

Repeating this analysis for the proposed saturation compensation, R(s) = K D~!—

I, we find:

Muaw(s) = [+ KP+D I -K(P-D1) (6.60)
= [D-QID+Q]" (6.61)
= [[-QD Y[I+QD ! (6.62)

Stability of M(s) requires that D + @(s) be minimum phase. This requirement is not

particularly restrictive. If we introduce a state space realization of ((s)

Al B o
Q(s) = {6.63)
C|D
then (recall D = K(o0) = Q(o0)),
Al B |
cl2n
., | A=3BD7'C | }BD"!
(D +QUa)™ = 1669
-iD-'C | D7

so that D + @Q(s) minimum phase requires only that the eigenvalues of A —1BD~'C
lie in the left half plane.

Condition 2. of Corollary 1 requires

Jnf Il - TQD?T I +TQD'T™ e < <1 (6.66)
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which is equivalent to

TQ(s)D™'T! strictly passive (6.67)

by Lemma 1. This implies (by Lemma 3) that Q(s) is minimum phase and stable.
Since stability of (Q(s) is necessary and sufficient for stability when there is no sat-
uration, the only additional requirement is @(s) MP (which implies A {(s) MP for
P(s) stable). In terms of the state space realization of @(s), (6.63), this condition is
equivalent to the eigenvalues of A — BD~'C must lie in the left half plane. It is rarely
desirable to make @(s) NMP since this would imply nonminimum phase behavior in
the complementary sensitivity function, i’-g% = P(s)Q(s) [68, pages 58-59].

While we require @(s) minimum phase and D + Q(s) minimum phase for sta-
bility with saturation compensation, these conditions are less restrictive than if no
compensation is employed. In contrast, for IMC, R(s) = K(s)P(s), no requirements
other than linear stability need be imposed. In this case Myyarc(s) is identically zero
and Theorem 1 is satisfied trivially. Unfortunately IMC generally results in sluggish
performance when saturation occurs.

We consider next the impact on our stability analysis when directionality com-
pensation is employed. The only modification to the above analysis involves the set
of scaling matrices 7'. When no directionality compensation is employed, the sat
uration i1s a diagonal operator so that A has diagonal structure and 7’ consists of
nonsingular diagonal matrices. When directionality compensation is used, the series
interconnection of K; and the saturation block is a scalar times identity operator and
hence the corresponding A has scalar times identity structure. This implies that the
set 7' consists of arbitrary full invertible matrices in this case. Since we seek the
infimum in Corollary 1 over a larger set when directionality compensation is used, a
larger class of Mj;(s) will satisfy the sufficient condition. This robustifying eftect as
a result of directionality compensation is not surprising. With directionality compen-
sation we are guaranteed that the plant input will always be in the same direction as

the controller output, only the magnitude of the actual plant input can be affected by

saturation. With no directionality compensation both the direction and magnitude
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of the actual plant input are affected by saturation.
To demonstrate the effect on the sufficiency test for nonlinear stability of the
structure of elements in 7' imposed by including or not including directionality com-

pensation we consider the following example.

6.3.2 Example 3

In this example we consider the 2 x 2 plant

_ 1 5 4
T 10s+ 1 4 3

P(s) (6.68)

with input magnitude limitations |u;] < 3, |uz| < 10. A decentralized controller

10s+1(1 O

K(s)= . 0 1

(6.69)

is designed for P{s) neglecting saturation. The unconstrained response to a pulse
setpoint change of magnitude [82] and duration 5.0 seconds is shown in Figure 10a.
The constrained response with no saturation compensation is shown in Figure 10b.
The system is unstable; the manipulated variables are driven to their constraints and
remain there indefinitely as the outputs move away from their setpoints.

This is not surprising since
R -1y _
T1‘1517f_’ ITMuT™ || = 2.54 (6.70)

violating Condition 2. of Corollary 1. Indeed since K(s) is unstable (it includes an
integrator), we cannot expect nonlinear stability with no saturation compensation
(consider (6.6) with R = 0).

Rather than modify the controller K (s) we attempt to add saturation compensa-
tion and guarantee stability. Using the anti-windup compensator, R(s) = KD~ -1,

with no directionality compensation we obtain an M(s) which is stable. Unfortu-
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Figure 10a: Example 3 — Pulse setpoint response for the unconstrained system.
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Figure 10b: Example 3 — Pulse setpoint response for the constrained system with

no saturation compensation.
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nately for diagonal matrices, T,
Ti&f_, NTMuT Y| = 2.56 (6.71)

so that Corollary | cannot be used to guarantee nonlinear stability. Indeed the pulse
setpoint response, as shown in Figure 10c, is unstable.
Adding directionality compensation completes our saturation compensator design.
With this modification
inf |TM,T7' =0.91 6.72
A0 I TMuT™| (6.72)

(where we now include all nonsingular constant matrices in 7') so that by Corollary 1
the system is guaranteed to be stable. This is confirmed for our pulse setpoint change
by the response shown in Figure 10d.

This example demonstrates an important point for the design of decentralized
controllers for saturating systems. Computing the relative gain array (RGA) for the

plant in this example we find

~-15 16
RGA = (6.73)
16 -15

and that the variahle pairings chosen correspond to negative RGA elements. While it
is generally not a good idea to pair variables with negative RGA elements for reasons
of failure tolerance and ease of on-line controller tuning (see [50]), there are situations
where this is unavoidable (e.g., some 3 X 3 and larger systems). Another example is

provided by
15 12¢~10¢
- 10s + 1 4[)6_103 30

P(s) (6.74)

which has the same RGA as the plant (6.68), but pairing to avoid negative RGA
elements would result in poor (linear) performance due to the off diagonal delays in

P(s). We generalize these observations with the following result.
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Figure 10c: Example 3 — Pulse setpoint response for the constrained system with
saturation compensation (6.27).
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Figure 10d: Example 3 — Pulse setpoint response for the constrained system with
saturation compensation (6.27) and directionality compensation (6.34).
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Theorem 6.3 With P(s) stable, saturation compensation R(s) = KD™' ~ I, no
directionality compensation, and parings with negative diagonal RGA elements, no
diagonal controller exists which provides integral action and satisfies the conditions

of Corollary 1.

Proof We adopt the notation A(P) to denote the RGA of P, and recall
A(P)=PQ (P YT (6.75)

where ® denotes element by element multiplication of two matrices. Using (6.75) it
is not difficult to verify that
A(P) = A(PHT (6.76)

and that
A(P) = A(S5:1PS,) (6.77)

where S; and S; are any diagonal matrices. The diagonal elements of A(P) satisfy

A;;‘(P) —p det(Pii)

“W Vi= 1,...,72 (678)

where P; is the i** diagonal element of P and det(P") is the determinant of the
principle submatrix of P obtained by deleting the :** row and ** column of P.

With P(s) stable, @(0) = P(0)~! is necessary and sufficient for integral action
[68], so that

A(P(0)) = A(P(0O)™HT (6.79)
= AQO)" (6.80)
= ATQ()D T HT (6.81)

where the last equality depends on both D = K(oo) and T being diagonal. From
(6.78) and (6.81) it is clear that if any of the diagonal elements of A(P) are negative,

then the determinant of some principle submatrix of TQ(0)D T~ must be negative.
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This implies that T7Q(0)D~*T~! cannot be positive definite, or
TQO)D'T-' + [TQ)D'T-T % 0 (6.82)
so that (by Lemma 1)
o ITMUT ™ oo = inf 7 = TQD'T-[1 + TQD™' T o £ 1 (6:83)

which contradicts Condition 2. of Corollary 1. n

We note that this proof does not go through if directionality compensation (6.34)
is used since in this case the set of allowed scaling matrices, T' € T, includes full, as
well as diagonal constant matrices. This result simply adds another reason to avoid
unfavorable pairings (corresponding to negative diagonal RGA elements), or employ
multivariable controllers (for plants in which these parings cannot be avoided).

While Example 3 demonstrates the utility of our nonlinear stability test, Corol-
lary 1, it must be stressed that this condition is not necessary for stability. Conser-
vatism arises from several sources. The most significant problem is that we guarantee
stability for all cone bounded nonlinearities, A € A, in addition to saturation which
is a single nonlinearity in this set. By doing so we ignore all information about the
saturation except its structure (diagonal) and its maximum and minimum gains (1
and 0 respectively). Other information such as memorylessness (a saturation pro-
duces no phase lag) is lost. Current research in the computation of the structured
singular value for real perturbations promises to enable us to impose such a mem-
orylessness constraint. Even if we were interested in guaranteeing stability for all
such nonlinearities (perhaps to capture the effects of modelling errors for example)
Corollary 2 remains conservative since we have used the set of constant scalings 7'
rather than the more general 7. Nonetheless, these results have proven useful (as in
the previous example), are the least conservative for which computational methods
are available, and have the important property that structured uncertainties in the

linear plant can be handled as well.
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6.4 Synthesis Methods for Saturating Systems

With our saturation compensation results in hand and a measure of the impact of
saturations on the design of K(s), via the conditions elaborated in Section 3.1, we
return to the general question of controller design for saturating systems.

Ideally we would like to have a design procedure which produces a (generally)
nonlinear controller for which some measure of nonlinear performance is guaranteed
for all models in an uncertainty set of possible plants (Robust Performance). While
recent advances in nonlinear analysis theory are promising, this synthesis problem
remains unsolved.

Relaxing our demands somewhat we might ask for a linear controller design which
provides robust performance. The linear structured singular value (u) synthesis pro-
cedure could be employed using the M — A structure and including a performance
block as is standard for linear systems. Unfortunately, since y optimal controllers
optimize performance for the worst-case perturbation, including zero gain for satura-
tions, we can not expect to obtain performance better than open loop. Clearly such
a design methodology is too conservative to be useful.

Further relaxing our demands, we may wish to develop a linear design method
which optimizes nominal (linear) performance while guaranteeing nonlinear stability.
Corollary 1 provides computable conditions on K(s) (equivalently Q(s)) which guar-
antee nonlinear stability. Here we adopt a weighted sensitivity performance measure
as in H* optimal control. With saturation compensation, R(s) = KD™! — ], we can

pose the following optimal design problem:

inf  [Wi(I + PK)"'Wa|e (6.84)

K {s)stabilizing

Subject to:

nf [T+ K(P+ DI = K(P =D )T < B<l  (635)
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Solutions to this problem would provide the optimal linear compensator K(s)
which when coupled with saturation compensation would be guaranteed stable in the
face of saturation. This couples the initial linear design problem to the subsequent
saturation compensation design. Unfortunately this problem is intractable. Sim-
plifying further by eliminating the infimum in the constraints, and introducing the

definition, Q(s) = K(s)[I + P(s)K(s)]™!, we obtain:

Q(si)rjtt-able HWI(I - PQ)W2”°‘° (686)
Subject to: (1 - QD“’l)(I-{-— QD—x)-xlloo <A<l (6.57)

This is a special case of a more general, and very meaningful, design problem, op-
timal H* performance subject to H> constraints. A similar problem arises in the
evaluation of the graph metric (see [89]). In the more general setting, constraints
could be included to not only guarantee stability margins, but also minimum levels
for secondary performance objectives. These problems remain the subject of ongoing
research.

While we do not have techniques to obtain the optimal solution to (6.84)-(6.85)
we can generate suboptimal designs. The obvious method is to select a linear design
technique (u-synthesis, H*, IMC, loopshaping, LQG/LTR) and perform the following

1teration:

1. Select values for the free parameters of the design technique. (Performance
weights, loopshape, etc.).

2. Design K(s).
3. Evaluate (6.85) for the given design.

4. If (6.85) is satisfied stop, otherwise adjust free parameters and design a new
K(s).

We note that a feasible solution to (6.84)-(6.85) always exists since (with P(s) stable)
K(s) = D[I — P(s)D]™', where D is any constant matrix, is stabilizing and in this
case (6.85) is satisfied with 3 = 0.

A similar approach was proposed in [22] using LQ optimal design, no saturation

compensation, and evaluating the sufficient condition for nonlinear stability (6.54)
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with no scaling 7'. Clearly the development of a less conservative stability result and

an improved saturation compensator has advanced the utility of this technique.

6.5 Conclusions

In this paper we have outlined the factors which cause performance deterioration in
nominally linear feedback systems when actuator saturation occurs. We developed
a systematic procedure for the design of MIMO saturation compensation. [t was
shown that a simple linear windup compensator (a generalization of classical SISO
integrator anti-windup, and IMC) coupled with a transparent (although nonlinear)
directionality compensator produces graceful degradation of linear performance when
saturations occur. The simplicity of this formulation stands in contrast to other
complex nonlinear schemes. The simple form of this saturation compensator allows
us to apply extensions of linear system theory to saturating systems, including tools
for stability and performance analysis in the face of model uncertainty. Applications of
these extensions allows the development of relatively simple tests which can guarantee
nonlinear stability.

While these preliminary extensions of linear system theory to simple nonlinear
systems are very promising, substantial further work is needed. In order to further
reduce “over design” of the linear K(s) to insure robustness with respect to nonlin-
earities such as saturation, the conservativeness of the stability tests in Section 3.1
must be reduced. Promising approaches include, reducing the set of nonlinearities
included in a particular norm bound, and increasing the set of allowable scalings, 7.
Developments in the calculation of the structured singular value for real perturbations
will allow us to consider only memoryless nonlinearities, and attempts to parametrize
T in (6.43) promise consideration of more general scalings in the computation of the
sufficient condition for nonlinear stability.

An additional area of future work is the application of the nonlinear analysis tools
of Section 3 to other common actuator nonlinearities. These include dead bands, rate

saturations, and hysteresis.
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Chapter 7

Multivariable Anti-Windup and
Bumpless Transfer: A General
Theory

Abstract

A general theory is developed for the anti-windup, bumpless transfer (AWBT)
problem. The theoretical framework developed allows the consideration of any linear
time invariant (LTI) control system subject to plant input limitations and substitu-
tions. A general AWBT compensation scheme, applicable to multivariable controllers
of arbitrary structure and order, is developed. Conditions are derived under which this
general AWBT method reduces to any one of several well-known heuristics for AWBT
(e.g. PI anti-reset windup and IMC). The design issues which affect control system
performance when limitations and substitutions occur are identified and quantitative
analysis methods are developed. Sufficient conditions for nonlinear stability of the
AWBT compensated system are provided. These results are a generalization of, and
are less conservative than, those presented in the AWBT literature. The definition of
AWBT performance objectives which are independent of controller structure allows
us to define a general AWBT synthesis problem. This formal synthesis problem may
be applied to any LTI controller design and addresses each of the identified perfor-
mance objectives in a quantitative manner. The synthesis problem is shown to be a
special case of a constrained structure controller synthesis (CSCS) problem. A solu-
tion method via reduction to static output feedback is presented and the engineering

trade-offs available in the AWBT design are discussed.



7.1 Introduction

Recent advances in multivariable control theory have brought powerful tools for the
design of robust multivariable controllers to practicing engineers. Examples of these
synthesis methods include singular value loopshaping, H2?/H> theory, and IMC.
These tools represent a significant advance in the theory, particularly in dealing with
model uncertainty in a quantitative manner, but share several limitations with their
classical predecessors. These limitations include the ability to handle only fixed reg-
ulation objectives, such as setpoint tracking and disturbance rejection, and the as-
sumptions of linearity and time invariance of the plant. In contrast to classical design
methods, the new techniques generally result in high order, multivariable (MIMO)
controllers (as opposed to single input-single output (SISO) PI or PID controllers).
In addition it is not uncommon for these techniques to produce controllers with poles
in the open right half plane. As we will see this causes substantial performance
degradation (and often instability) when the plant input is limited. The apparent
justification for this increased complexity is the performance improvement suggested
for the multivariable designs by the linear theory.

Application of these methods to “real world” control design problems is much more
complicated than even the linear synthesis theory would suggest. These problems
involve a primary regulation objective, but even moderately complex examples also
include numerous operational and physical constraints. These constraints are usually
stated as requirements that certain secondary variables be kept within predetermined
bounds while the primary regulation objective is being carried out. In addition “real
world” control systems are subject to physical limitations on sensors and ac':ators.
All physical systems are subject to actuator saturation and in many applications this
1s a dominant limitation on achievable closed loop performance. As control system
performance requirements become more stringent, these operational constraints and
physical limitations are encountered more frequently. The problem of transitioning

smoothly ta and from these limits becomes correspondingly more significant.
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7.1.1 A Design Paradigm

Since there is no available theory which addresses all of the issues which arise in
practical problems, a top-down approach, simplifying the problem to the point where

the available theory can be applied, has evolved (see, e.g., [73,17]).

Decomposition

In the first step, the overall control system performance requirements are decomposed
into a number of operating modes, each defined by a particular regulation objective.
Typically these modes correspond to changes in the the set of manipulated inputs
or controlled outputs, structural changes in the controller resulting from change in
overall mission objective, or qualitative changes in controller dynamics dictated by
a new mission objective. Selectors are commonly used to override a primary control
loop and enforce constraints on a secondary output (e.g., [14,15,16,40,46,54]). These
are the most common examples of control systems with multiple modes of operation.
Qualitative changes in mission objectives include such examples as: automatic versus
manual control, start-up or shutdown modes, cruise versus landing configurations,
etc. In general operating modes are characterized by each requiring a different feed-
back controller, designed to satisfy the performance requirements of that particular
operating mode.

As the complexity of the plant increases and the system performance specifica-
tions become more stringent the required number of operating modes increases. The
simplest SISO control examples (e.g., low control) usually only require two modes,
manual and automatic. On the other hand, more involved applications may involve
many modes. In variable cycle turbine engine control, for example, these modes re-
sult from overrides used to enforce temperature, pressure, and acceleration limits, and
from distinct ignition and shutdown tasks. For other moderately complex examples
in process control and aircraft engine control, the interested reader is referred to [14]

and [54] respectively.



Linear Design

Once the required operating modes are defined, linear time invariant (LTI) controllers
are designed, using either classical or more advanced techniques, for each operating
mode. By dealing with model uncertainty in a quantitative way, the recent robust
control paradigm has significantly advanced this step of the overall design procedure.
The effects of changes in operating modes are usually ignored at this stage since they

introduce nonlinearities which cannot be handled by the linear theory.

Mode Selection Design

Once satisfactory linear designs have been obtained for each operating mode they are
linked together by a supervisory scheme (typically a selection logic) which monitors
operating conditions and determines the appropriate operating mode. The switch
between operating modes is usually manifested by a selection of the plant input
from among the outputs of a number of parallel controllers, each corresponding to a
particular mode. We will refer to such a mode switch as a plant input substitution
since the output of one controller is replaced by that of another controller.

The effect of plant input substitutions and physical limitations is that the output
of a particular controller may be different than the actual input applied to the plant.
This causes problems for the controllers whose output is not acting on the plant due
to substitution or limitation. Because these controllers are effectively operating open
loop (they are not driving the plant), their states are improperly updated. This effect
is known as controller “windup.” Windup generally results in significant performance
deterioration, typically large overshoots and slow settling, and in some cases insta-
bility (see, e.g., [20]). When mode switches occur the differences between controller
outputs results in a discontinuity in the plant input. This discontinuity causes unde-
sirable “bumps” in the controlled variables. Windup of the states of controllers which
are switched out often causes these bumps to be severe. The degradation of linear
performance which occurs as a result of plant input limitations and substitutions 1s

referred to as the “anti-windup/bumpless transfer” (AWBT) problem.



AWBT Design

At this stage of the design an AWBT scheme is developed to deal with the prob-
lems posed by plant input limitations and substitutions. For SISO PID controllers,
implementations which provide “anti-reset windup” and “bumpless transfer” are well-
known [39,15,6]. These AWBT techniques, based on conditional integration, are spe-
cific to PID controllers and are not readily extended to more general problems, even in
the SISO case. AWBT methods applicable to multivariable controllers are proposed
in [59,58,53], but these schemes are intuitively based, limited in their application, and
lack a rigorous theoretical foundation. A somewhat more formal treatment is provided
in [57] although the proposed AWBT compensation is tremendously involved, requires
substantial on-line computation, and appears to provide performance no better than
the simpler technique we will develop. The lack of general, quantitative AWBT de-
sign methods for high order multivariable controllers which result from the advanced

linear theory is a major impediment to their effective use in real engineering systems.

Implementation

Once a satisfactory mode selection and AWBT scheme has been developed, the com-
poncnts of the overall control system are combined and implemented. In complex
systems extensive nonlinear simulation is used to verify the function of the integrated
control system. Once satisfactory confidence in the design is obtained a physical re-
alization is developed and implemented in hardware and/or software. The design is

then commissioned.

7.1.2 Contributions of This Work

In this paper we address what we feel is a weak link in the above paradigm. Specifi-
cally we are interested in studying the AWBT problem for multivariable controllers of
arbitrary structure and order. In order to obtain results with general applicability we
deviate from the existing AWBT literature and work in an abstract framework rather

than discussing AWBT methods developed for a particular example. In order to make
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Figure la: The idealized linear design problem — error feedback example.

the results more accessible to the practitioner we consider several important special
cases, but our main objective is to outline a workable theoretical framework. To this
end we present a general statement of the problem, introduce quantitative AWBT ob-
jectives, analysis tools related to these objectives, and finally synthesis tools allowing
us to realize these objectives. Along the way we will use the theoretical framework

to better understand several of the AWBT methods proposed in the literature.

7.1.3 The AWBT Problem Statement

In this section we present an overview of the AWBT problem. Implicit in the discus-
sion here are certain assumptions which we will relax in the general setup introduced
in the next section. This discussion is intended to provide an overview of the problem
without considering all the details required in the general treatment below.

The problem considered in this paper can be understood with reference to Figure 1.
In Figure 1a we have an idealized linear problem which is the basis of the controller
design for each operating mode. The linear plant model, G(s), is provided and an
LTI controller, K (s), is designed to meet given performance specifications. These will
typically be of the form, “keep the output tracking error, e, small despite changes in
the command, r, and disturbances, d.”

In Figure 1b we introduce a nonlinear block, N, to model the effect of plant input
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Figure 1b: The AWBT design problemn — error feedback example.

limitations and substitutions. As a result of limitations and substitutions the actual
plant input, v/, will in general not be equal to the controller output, u. We assume
for this discussion that u’ can be accurately measured or estimated (by passing u
through a suitable model of N). The measured or estimated value of u’ provides
information regarding the action of limitations or substitutions and is fed back to
the AWBT compensated controller £ (s). The AWBT problem involves the design of

K(s) to meet the following criteria:

1. The nonlinear closed loop system, Figure 1b, must be stable.

2. When there are no limitations or substitutions, N = I, the closed loop perfor-
mance of the system in Figure 1b should meet the specifications for the linear

design in Figure la.

3. The closed loop performance of the system in Figure 1b should “degrade grace-

fully” from the linear performance of Figure 1a when limitations and substitu-

tions occur (N # I).

The precise meaning of “graceful” performance degradation will be developed
below. In loose terms we mean that the phenomena characteristic of windup and
bumping, e.g., instability, large transients and/or slow settling as a result of input

limitations and mode switches, are avoided.
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Ks)

Figure 2: The standard lincar fcedback problem.

7.2 The General Formulation of the Problem

7.2.1 The General Interconnection Structure

The general problem is based on the idealized linear design given in terms of the stan-
dard feedback problem shown in Figure 2 [32,41,12]. The interconnection structure,
P(s), is fixed and linear time invariant and describes the interconnection between ex-
ogenous system inputs, outputs, and the controller. It includes a model of the plant,
G(s), and performance and noise weights. The individual blocks of P(s), denoted
P;;(s), are obtained by partitioning P(s) to correspond to the dimensions of w, z, u,
and y,,. K(s)is the LTI controller produced in the linear controller synthesis step of
the overall design.

The exogenous input, w, includes all signals which enter the system from its
environment including commands, disturbances, and sensor noises. The other inter-
connection input, u, represents the control effort applied to the plant by the controller
K(s). The interconnection outputs, z and y,,, represent the controlled output, con-
sisting of signals which the controller is designed to keep small (typically tracking
errors and weighted control efforts), and all measurements available to the controller
(including commands, measured disturbances, measured plant outputs) respectively.

Any feedforward/feedback interconnection of linear system elements can be brought
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into this generafinterconnection form. Examples include, but are not limited to,
cascade, feedforward, and multiple degree of freedom structures in addition to the
traditional error feedback configuration.

As an example of the rearrangement of a particular feedback arrangement into the
standard framework of Figure 2, we consider the error feedback system of Figure la.
The exogenous inputs are the command, r, and output disturbance, d. Thus we define
w = [2:] ‘T'he controlled output is the tracking error, e, so we define z = e. The
information made available to the controller, K(s), is the tracking error, so y,, = €.
The output of K(s) is the plant input, u. The interconnection corresponding to these

definitions is given by

P(s) =

I -1 —-G(s) (1.1)
3)

I -1 -G(
The interested reader is encouraged to verify that with these definitions the input-
output behavior, from exogenous input to controlled output, of the system in Figure 2
is equivalent to that in Figure la.

The distinction between the blocks P(s) and K(s) is that the components in P(s)
are assumed to be fixed a priori, i.e., they are realized in hardware which we are not
free to modify. On the other hand, K(s) is the controller design we wish to implement
and its physical realization is unspecified.

It is assumed that both P(s) and K(s) are finite dimensional and that state space
realizations for them are available. We will use the notation

A|B| , »
8 C(sI-A)"'B+D (7.2)
c|p

to represent the transfer function arising from the state space realization

y = Cz+ Du (7.4)

where z is the state, u the input, and y the output of the system of interest.
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The closed loop transfer function from w(s) to z(s) in Figure 2 is denoted T.,(s)

and is given by the linear fractional transformation

T.u(s) = Py + PuK(I - PoK)™" Py

—
73
(1]

pa—

We assume that performance specifications are provided for the linear design and
that the controller design, K(s), meets these specifications in the absence of lim-
itations and substitutions. For the purposes of this paper we assume that these
specifications are of the form

ITsw(s)ll < 1 (

~1
R

where the norm, || e ||, is either the H*° norm,

-1
-1
~—

12(5)lle 2 supalZ(si)] v

where 6(Z) represents the largest singular value of Z, or the H? norm,

12 = [5= [ tracelz () 2w )] (7.8)

These frequency domain performance specifications are standard in H> and H?* op-
timal control theory. By including suitable weights in the interconnection structure
P(s), the performance requirement (6) allows very general specification of the fre-
quency domain characteristics of the closed loop transfer function. In the remainder
of the paper we will use the notation || @ ||;orc0 in situations where either the A? or
H* norm may be used.

The general AWBT problem is based on Figure 3. The interconnection P(s) is
obtained from P(s) by adding an additional output w,,. Thus

-Pll P12
P(s)=| Py Py (7.9)
P31 P32
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Figure 3: The standard AWBT design problem.
and
Um = P31w+P32u’ (710)

The new signal, u,,, is the measured or estimated value of the actual plant input u'.
We allow the general relation (10) so that measurement noises, entering through w
(i.e., P3s; # 0) and non-trivial measurement dynamics (Ps; # I) may be considered.
The situation where a perfect estimate of u’ is available corresponds to P3; = 0, Ps, =
I. As in the error feedback example (Figure 1b), the plant input estimate is made
available to the AWBT compensated controller K(s), in this case as a component
of the measurement vector y. Note that u,, need not represent a raw measurement
signal but may include appropriate pre-compensation and filtering. We do not address
the design of this pre-compensation but will generally assume that it is such that
P;,(s) = I over the closed loop bandwidth of the idealized linear design. As we will
see, if this is not the case achievable AWBT performance will be limited.

Also included in Figure 3 is the input limitation/substitution mechanism, repre-
sented by the nonlinear block N. The nonlinear limitation/substitution map, N, is
assumed to be cone bounded and of tixed structure. We will discuss the implica-
tions of these assumptions, and the type of “real world” limitation and substitution
mechanisms which admit such a description, in Section 7.6.

Given this framework the general AWBT problem amounts to the synthesis of
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Figure 4: A general realization of AWBT compensation.

K (s) which renders the system in Figure 3 stable, meets our linear performance
specifications when N = I, and exhibits graceful performance degradation in the face

of plant input limitations and substitutions (N # I).

7.2.2 Admissible AWBT

We begin with the AWBT compensated controller, K(s) of Figure 3, represented in
Figure 4 as a feedback interconnection of K(s), a controller interconnection block, and
A, an AWBT operator. This linear fractional feedback representation is quite general
since at this point we allow A to be any, perhaps nonlinear, relation. We assume that
/AC(.S), which contains the linear design K(s), is LTI, but this is not restrictive siuce
any non-LTT components can be lumped in A. The AWBT operator uses information
provided to or internal to I@(s), denoted v, to generate an AWBT action, denoted &,
which is fed back to I@(s). In order to maintain complete generality, we provide the
AWBT operator, A, with all available information including the controller intercon-
nection state , and iuput, [g] Partitiouing the AWBT action as € = [g] we allow

it to act on the state of the controller interconnection via ¢; and the output of the
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controller interconnection via £,. This gives rise to the following realization

[ AlB 01 0]
- ;
c\D 0 0 [ T
110 0 00 Ym
- A|B
Ks)y=10{I 0 0 0 where K(s) = and v=| y,
CiD
00 7 00 3!
0({0 0 710 &
00 0 0 1]
(7.11)

Since the interconnection state and input fully characterizes its output, we say that A
is provided with full information (i.e., we make available to A all information available
in the control system). Similarly, since A can drive both the interconnection state
and output, we say that it acts with full control. Note that for A = 0, 7.e., no AWBT
action, we have K(s) = K{(s).

Given this abstract specification of K (s), we impose an admissibility constraint
on A. This constraint is the only restriction on K (s) we shall require and, as we will

see, it is satisfied by essentially all known AWBT techniques.
Definition 7.1 The AWBT operator A is said to be admissible if it is such that:

1. A v — ¢ is causal, linear, and time invariant.

2. u Uy =0=§=0V1¢.

The first condition insures that the AWBT compensated controller, K(s), can be
realized as a linear time invariant system. While this may seem arbitrary, essentially
all proposed AWBT schemes satisfy this condition. (Notable exceptions are found in
[35] and [57].) If we are to consider nonlinear design problems, it makes little sense
to require the initial controller design, K(s), to be linear, so this assumption seems
reasonable. The second condition enforces the notion that we do not want the AWBT
block, A, to effect the linear closed loop performance achieved by the idealized design,

K(s), when there is no limitation or substitution. Although we may wish to have
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¢ =0 when u -u" = 0, this is not generally possible. Even when u—u’' = 0 we will not
have u — u,, = 0 due to measurement noise, nontrivial measurement dynamics, and
model uncertainty. Since A is only provided with the estimate w,,, it is not possible to
make ¢ = 0 whenever u — v’ = 0 unless A is identically zero (i.e., no AWBT action).

It is straightforward to determine thal any admissible A must be a memoryless
linear transformation — equivalently a constant matrix — which has a representation

as

‘f = Av (712)
/\1
= [47-0 1 0 —I|v (7.13)
A,
or, more simply
Ay
= (Upy — u) (7.14)
A2

-

Incorporating the AWBT block, A, into the controller interconnection, X(s), we

obtain the standard setup of Figure 3 where an explicit realization for

K(s) =[U(s) 1-V(s)] (7.15)
is provided by
[ A-HC|-H, i
V(S) = ( f 16)
| H.C | A
[ A— H,C|B-HD i
U(s) = (7.17)
H,C H,D

with H; and H, defined by

N = Ay(I+A)70 (7.18)
Hy = (I+A)7" (7.19)
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A necessary condition for well-posedness of the AWBT feedback loop (the lower feed-
back path in Figure 4) is that 7+ A, must be nonsingular. An immediate consequence
of this is that H, must be nonsingular. A; and A,, and consequently H; and H,, are
otherwise arbitrary constant matrices.

The blocks U{s) and V(s) which define the AWBT compensated controller, /£(s),
comprise a factorization of the idealized linear design, K'(s). It is easy to verify using
(16) and (17) that

K(s) = V(s)"*U(s) (7.20)

for any H, and H, (see [72]). Thus we may regard the design of any AWBT scheme
as selecting a factorization of the idealized design and implementing the factors, U(s)
and V(s), in K (s).

We assume that the realization chosen for K(s) is such that (A, C) is observable.
In this case the eigenvalues of A — H;C may be arbitrarily assigned by the selection
of Hy. If H, is chosen such that all the eigenvalues of A — H,C are in the open left
half plane, then U(s), V(s), and K (s) are stable. We will see later that making K(s)
stable is essential in most applications. In this situation the AWBT design amounts
to implementing the stable factors U(s) and V(s) in place of K(s), which need not
be stable. To demonstrate this in the special case that P3; = 0, P3; = I, we re-draw
Figure 3 as shown in Figure 5. When N = [ the feedback path around N generates
the V(s)~! factor of K(s). Since V(s) need not be minimum phase, V~!(s) need not

be stable. The “controller” transfer function, from y,, to u’ with N = [, is given by

V(s)~*U(s) (7.21)
= K(s) (7.22)

i

exactly as in the idealized linear design.
In general, however, the AWBT implementation is not equivalent to the idealized

linear design, even when there are no limitations and substitutions, since P53, # 0 and
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Figure 5: The special case, Py; = 0, Py, = L.

Py # I. To see this we evaluate T,,(s) for the system in Figure 3 when N = [.
Tzw(s) = Pll + P12[I - [JPZZ’ - (I - V)P;az]—l[UPz] + (I - V)Pgl] (723)

Thus the performance of the AWBT implementation will be different than the ide-
alized linear design for which T,,(s) is given by (5). When P35, = 0 and Py, = [ so

that wu,, = v’ (perfect plant input estimation), (23) simplifies to

~1
o
g

T.u(s) = Pu+ Pp[V —UPn|"'UPy (

-1
o
(W1
-

poned Pl] + P‘[zI{[I - P22[(}~1P21 (

and the idealized linear performance, (5), is recovered. Note that the linear perfor-

mance is recovered for arbitrary H; and H; as required by the admissibility criteria.

7.3 Special Cases of the General Framework

In order to demonstrate the generality of this framework and to make its applica-

tion more apparent, we consider a number of known AWBT techniques in terms of

admissible AWBT compensation.
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Figure 6: The classic anti-reset windup PI implementation.

7.3.1 Anti-Reset Windup

The standard AWBT technique for SISO PI and PID controllers is known as anti-reset
windup [39,15,6]. The anti-reset windup PI implementation is shown schematically
in Figure 6. The integral term of the PI controller is “reset” by feedback of u — v’
through the block ;‘-— (it is generally assumed in PI anti-reset windup design that
the measurement of u’ is exact). The parameter 7, is referred to as the reset time

constant. Rearranging Figure 6 into the standard configuration of Figure 3 we have

I -1 —~G(s)
r T = Ym .,
w——}: } y-—-[ } z=r—yn Pls)=|1 -I - G(s) (7.26)

0 0 I

-1
[

f((s) = { kty(rrs+1) 1 }

Ti{rrs+1l) Trs+l

Given the PI controller realization
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Figure 7: The two degree of freedom feedback structure.

a realization of the anti-reset windup implementation is given by

(7.29)

Comparing (29) with (16) and (17) we see that anti-reset windup corresponds to the

choices

H,

i

E
——
TJ
<o
<
e

H =1 (7.31)

in the general framework.

7.3.2 Hanus’ Conditioned Controller

Hanus et al., {53], use the concept of “realizable references” to develop an AWBT
formulation for a reasonably general class of multivariable controllers. The method is
applicable to the linear feedback system shown in Figure 7 and requires the assump-

tions:

1. Ki(o0) 2 D, has full column rank.
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2. u' can be measured or estimated exactly (i.e., u,, = u’).

Hanus’ technique results in the implementation of a “conditioned controller” which

in the general framework of Figure 3 corresponds to the definitions

e

[ —I —G(s) |

r r I 0 U
w = Y= | Ym z=r—yn P(s)= (7.32)

d 0 I G(s)

Um
00 I
and

f((s)=[Dl DK K, I-D1K,‘“] (7.33)

In terms of a state space realization of the linear design,

| A|B, B,
K(s) = (7.34)
C|Dy D,
the conditioned controller is given by
R A-BD*'C| 0 By,-BD{'D, B D!
i(s) = 14y l 2 1y Yy Ol (7.35)
c |b D, 0

By inspection of (35), (16) and (17) we see that the conditioned controller is a special

case of the general AWBT formulation corresponding to Hy = B\ D7', Hy = [.

7.3.3 Internal Model Control

The control structure shown in Figure 8 is known as the internal model control (IMC)
structure [68]. It was apparently first studied by Newton, Gould, and Kaiser, [74],
and its AWBT properties first exploited by Debelle, [27]. Figure 8 represents the

IMC implementation of the two degree of freedom design shown in Figure 7. This
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Figure 8: The two degree of freedom IMC structure.

implementation involves the so-called IMC controller given by,

Q(s) = [ Q) (7.36)
= [I - KG™'K, - K, (7.37)

where G(s) is a model of the plant. Corresponding definitions for the general frame-

work of Figure 3 are (assuming that u,, = u’),

1 —1 —G(s) ]
r
T . I 0 0
w = Y= Ym z2=T—ym P(s)= (7.38)
d 0 I G(s)
Um
0 0 I
and
K(s) = [ @ —Q2 @G ] (7.39)
Introducing state space realizations for Q(s) and G(s),
Ag | Big Bxg

Qs) =

Cq | Dig Dag



and using relations (37) and (39) we obtain realizations for K(s) and K(s) as,

AG -+ BgD2QCG BGCQ B(;D1Q ~B(;D2Q
K(s) = B qCoq Ag Big —-Bag (7.42)
D2QCG CQ ‘ DlQ —DQQ

b

Az 0| 0 0 Bg
K(s) = | ByCs Ag|Big —Bwg 0 (7.43)
| D2gCe Cq|Dig ~Dig 0

Again using the state space realization of all admissible AWBT compensated con-
trollers, (16)-(17), it is easy to verify that the IMC implementation corresponds to

H, = [%G] and H, = I in the general formulation.

7.3.4 Extended Kalman Filter

The final example considered here is an AWBT implementation applicable to ob-
server based compensators. This implementation is developed to maintain valid state
estimates in the observer independent of limitation or substitution of the plant input.

We consider the idealized linear design in terms of the general setup in Figure 2

with the definitions w = [2] and y = yr ], and introduce the state space realization
m

Ap | B B Bop |
Crp | Dup Dizp Dusp
0 I 0 0
Csp | Dnp Danp 0

Implicit in this realization are the assumptions that the command, r, is available to

K (s) and is not subject to noise, and that Pj;(s) is strictly proper. The corresponding
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observer based compensator is of the form:

Ap = LCyp + BopF | Bip — LDyip L
F o 0

K(s) = (7.45)
where L is the observer gain and F is the state feedback gain.

. A " .
The state observation error, ¢s, = = — Z, can be shown to obey the relation

(when there is no model error)
€obs = (Ap — LCsp)e + (Byp — LDagp)d + Bap(u' — u) (7.46)

The last term driving the estimator error results from plant input limitations and
substitutions. Limitations and substitutions cause incorrect state update in the con-
troller resulting in a poor estimate of the true plant state. This state estimate error
can be reduced if instead of using the controller output, u, to drive the state esti-
mator, the measured plant input, u.,.. is used. We refer to this AWBT scheme as
an extended Kalman filter implementation since u,, can be generated using a non-
linear model of N. This model, together with the linear observer, comprise a simple
nonlinear observer, or extended Kalman filter.

Providing u,, to the observer results in the realization

. Ap—LCsp | Bip— LDsp L B
K(s) — P 3P ‘ 1P 31P 3P
F | 0 0 0

This is equivalent to the general AWBT implementation (16)-(17) when

Hy = Bsp (7.48)
Hy = I (7.49)

To see this, define

A = Ap—LCsp+ BspF (7.

~1
it
fa?
R’
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= [Bip — LDyp 1] (7.51)
= F (7.52)
= [0 0] (7.53)

corresponding to the realization of K(s)in (45), and substitute A, B, C, D, H, = Bsp,
and H, = [ into Equations (16)-(17) to arrive at (47).

With this implementation the observer error obeys
€obs = (Ap — LC3p)e + (Bap — LD3zp)d + Bsp(u' — ) (7.54)

If the measurement of the plant input is exact (v’ = u,,), the observer error is not
affected by limitations or substitutions.

With these examples we have demonstrated that the degrees of freedom avail-
able in admissible AWBT compensation, H, and H,, allow the considerafion of a
wide variety of AWBT approaches. It is evident that the admissibility requirements

introduced in Section 7.2.2 impose few practical restrictions on AWBT design.

7.4 AWBT Objectives

We now turn our attention to the considerations which guide the selection of these
design parameters. In this section we introduce the AWBT design objectives in a
qualitative way. In the following sections we will develop quantitative analysis mea-
sures for each objective. These analysis tools allow us to assess AWBT performance

quantitatively for any given H, and H,.

7.4.1 Stability

Our first concern must be that the closed loop system remain stable when limitations
and substitutions occur. It is well-known that introduction of a limitation or sub-
stitution into a stable linear closed loop system can cause instability. In the case of

limitations, typical instability mechanisms are that the plant input remains against
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its constraint indefinitely or limit cycles across the linear regime. In the case of sub-
stitutions instability appears as cycling between operating modes. It is precisely these
stability problems which have motivated all of the AWBT analysis rcsults available
in the literature (e.g., [40,48,46,47,90,20]).

In Section 7.7.1 we derive certain necessary conditions for internal stability of the
AWBT compensated system shown in Figure 3. These conditions are complemented
by easily computed sufficient conditions (Section 7.7.2) which guarantee stability for
all nonlinearities, N, within given conic sector honnds. The development of these
bounds for common limitation and substitution mechanisms is outlined in Section 7.6.
In addition to nominal stability results, we obtain sufficient conditions for robust

stability with respect to uncertainties in the linear plant model, G(s).

7.4.2 Mode Switching Performance

The performance objective of an AWBT design is to allow the system to transition
smoothly to and from constraints and between operating modes. The problem of
smooth transitions can be considered as a controller state initialization problem. In
general a limitation or substitution of the output of a particular controller can be
considered as a switch from open loop operation to closed loop operation, i.c., a
controller whose output is limited or switched out has no incremental effect on the
true plant input - the system is effectively open loop. When the limitation is removed
or the controller switched back in, linear closed loop operation is initiated. Since
limitations and substitutions can occur at essentially arbitrary times, it is important
that the controller be properly “initialized” at all times so that the transition is
effected smoothly.

Proper initialization of the controller requires that its state be correctly updated
even when it is “off-line” or open loop. Since K(s) is designed based on the assumption
that v’ = u we cannot expect that the controller state will be updated correctly when
u' # u, i.e., when the controller thinks it is driving the plant but it is actually not. For

linear designs in which the state of K'(s) has a direct physical interpretation it is often
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clear how the state update should be modified during limitations and substitutions.
For example the extended Kalman filter implementation was developed to insure
that the controller states remain valid estimates of the plant states independent of
liritations or substitutions. Similarly, Pl anti-reset windup is based on maintaining
the proper value of the integrated error, the single controller state, during limitations
and substitutions.

In the general case the design of K(s) will not provide a physical interpretation
of the controller states. K(s) is simply provided in the form of Laplace transform or
a set of state space equations. As a result we cannot avoid state positioning errors
due to limitations and substitutions. In this case we seek to minimize the impact
of these errors. This can be achieved by finding a K (s) for which the current and
future controller output, u, is relatively independent of past controller inputs, y, and
the current (possibly incorrect) controller state. This independence is a function of
the dynamic memory of K (s). For example, a pure integrator has infinite memory;
any past input, resulting in a state positioning error, will effect the controller output
for all future times. Such controllers are highly sensitive to state positioning errors
resulting from limitations and substitutions. On the other hand, a purely proportional
controller, with no states, is memoryless. Past inputs have no effect on current and
future outputs. These controllers are insensitive to limitation and substitutions. In
Section 7.8 we develop a quantitative measure of dynamic memory and show how it

can be used to analyze AWBT performance.

7.4.3 Recovery of Linear Performance

Assuming that a perfect estimate of the plant input is available (um = u’), the
admissibility requirements insure that when N = [ the closed loop performance of the
AWBT compensated system is identical to that of the idealized linear design. When
this assumption is not satisfied, however, we do not have any guarantee regarding the

linear (N = I) performance of the AWBT compensated system.
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In general, fof the AWBT compensated system we have

T.w(s) = Piy+ Pia[l = UPy ~ (I = V)Pa] " {UPn + (I = V) Py (7.53)
while for the idealized linear design
Tzw(.S) = Pll + Plg[l - I{PQ‘Z]_ll(PQI (756)

Since a perfect estimate of the actual plant input, at all frequencies, is never a realistic
assumption, we must insure that when N = [ the AWBT implementation meets the
performance specifications given for the linear design. In Section 7.9 we outline
an analysis which will allow us to determine if these specifications are met for a
particular AWBT design. In addition we investigate the degree of deterioration in

linear performance we can expect as the dynamic memory of K (s) is reduced to zero.

7.4.4 Directional Sensitivity

The switching performance ohjective and linear performance ohjective consider the
open loop (N = 0) and closed loop (N = I) situations. In the case of plant input
substitutions these are the only situations which are realized. In the case of limita-
tions, however, the plant input is modified rather than replaced. For multiple input
plants, a limitation, acting on only some of the inputs, can change the direction of
the plant input, i.e., the relative magnitudes of the elements in the plant input, u'(s),
are different than in the controller output, u(s). This important effect, as originally
pointed out by Doyle et al. [35], can cause siguificant perforinance deterioration.
From the perspective of linear theory this effect may be regarded as a plant input
perturbation with diagonal structure. In the linear case (where the perturbation
is unknown but bounded LTI operator) it is well-known that ill-conditioned plants
coupled with inverse based controllers result in closed loop systems which are very
sensitive to diagonal input uncertainty [87]. In Section 7.10 we outline an extension

of the stability analysis methods to handle robust performance, i.e., to determine
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what level of performance can be guaranteed for all nonlinear perturbations within
given bounds. This result will allow us to determine whether or not the system is
“directionally sensitive,” i.e., whether or not modification of the plant input direction

causes severe performance deterioration.

7.5 Mathematical Preliminaries

Before addressing the nonlinear stability problem we review a number of mathematical

preliminaries. This material is standard and much of it may be found in [29].
System signals are modelled as vector valued functions of time, defined over R, a

given sub-interval of the real numbers, R. Typically R = (—00,c), R = (—o0,0],

or R = [0, 00). For any such measurable interval, R, we define:

Definition 7.2 L,(R) is the space of vector valued functions, r : R — R", with the
property

=@l 2 |f x'(t)z(t)dt]% < o0 (757)

where the integral is taken over the intcrval R.

For example, € Ly(—o00,00) if and only if

1

[/m J:‘(t):c(t)dtr < oo (7.58)

hade ¢}

When we simply write Ly, without explicitly denoting the range of =, we will imply
L, with R any measurable sub-interval of R. Readers uncomfortable with this may
safely read this as L,[0,00). L, consists of signals which are of finite energy. In order
to consider signals which grow without bound as time increases we introduce the idea

of a truncated function.

Definition 7.3 Given z{t) : R — R", and 7 € R, the truncated function, z,(t) :
R — R", is defined

z,.(t) =

{I’(t) bsT (7.59)

0 t>r
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This allows us to define an extension of L, which admits signals which grow in time.

Definition 7.4 L, is the extended space, defined by
Le={z:R—=R" | z€LlyandV reR, |z.] <o} (7.60)

System elements (blocks) are represented mathematically as mappings which take
inputs (signals in L) and produce outputs (signals in Ls.). The following is a formal

definition of stability for system elements.

Definition 7.5 A map, N : Ly, — L., is said to be Ly.-stable if there ezists a
constant k < oo such that

IN(z)|| < k||l (7.61)
for all z € L4 and for all 7 > 0.

This corresponds to finite gain stability; input signals of bounded energy give rise
to output signals of bounded energy. For causal linear time invariant systems
L,.-stability is equivalent to the requirement that all system poles must lie in the
open left half plane. In the remainder of the paper we will simply say that a system
element, or map, is stable and mean that it is L.-stable.

For interconnections of blocks which comprise a “system” we require the notion of
internal stability. In words, a system is internally stable if bounded signals, injected
at any point in the system, give rise to bounded signals at all other points in the
system [28]. To define internal stability of the AWBT compensated system, Figure 3,

we introduce the fictitious inputs n;,n, and n3 to arrive at Figure 9.

Definition 7.6 The AWBT compensated system ts internally stable if the closed loop

map _ ) } .
w z
n Ym
T: — (7.62)
n2 Um
L 73 ] [ U]

of Figure 9 is stable.
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Figure 9: The standard problem for internal stability analysis.

When we refer to a system as being stable, we will mean that it is internally stable
(as in Definition 6) unless otherwise noted.

In Section 7.6 structured conic sector models are developed for nonlinear system
elements. In the development we will require the notion of a map being inside a conic

sector, or C'one. This concept is defined in the following way.

Definition 7.7 Given N : Ly, — L,. and the LTI operators C and R, N is said to
be inside Cone(C, R) if
|[[N(z) = Cz]-|| < ||[[Re] || (7.63)

for all z € Ly, and for all 7 > 0.

The operators C and R are referred to as the cone center and radius respectively.
The cone center provides an approximate output, Cz, for any input z. The cone
radius provides a measure of the error inherent in this approximation. For example
the SISO saturation nonlinearity N : z(t) — sat(z(t)) where

z(t)  Jz(t) <1

sai(xt)) = {sz’gn(x(m 2(t)] > 1 i

1s inside Cone(%, %) The operator  : z(t) — iz(t) is our linear approximation to
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N, and R : z(t) — $z(t) gives us a measure of the error in this approximation {as
much as 100% in this case in the limit as |z(t)] — o).

In addition to the norm bounds on the input-output behavior of a nonlinear map
provided by a conic sector, we will be interested in the “structure™ of a map. The
structure of a MIMO map refers to the relationship between its inputs and outputs.
We identify three distinct classes, full, diagonal, and scalar times identity, each a

more restrictive class. A full nonlinear map may be written as
y = N(p,u) (7.65)

where y 1s the vector valued output, u is the vector valued input, and p represents
other parameters or signals upon which N may be dependent. A diagonal map is any

map which may be written as
y;=N(py) V i=1,....n (7.66)
Finally a scalar times identity map is one for which

yxn(p,u)u (1.64‘)

where n(p,u) is a scalar valued relation. The terminology, full, diagonal, and scalar
times identity, is borrowed from the linear theory in which the identifier describes the
structure of the matrix representation of the (linear) operator.

With the definition of a conic sector, and the notion of a structured nonlinear
map, we are in a position to introduce conic sector models. A conic sector model of
a nonlinear system element, N, consists of a linear interconnection and a structured,
conic sector bounded nonlinear block, which together approximate the input-output
behavior of N. In particular, the LTI interconnection J, together with the set of

structured nonlinear maps

T2 (T'|T € Cone(C, R)} (7 68)



Figure 10: A general model of a nonlinear map.

with T’ of specified structure, is said to model the nonlinear map, N, if
for each € Ly. 3T € T such that N(z) = T () (7.69)

where T r is the closed loop map from input z to output y in Figure 10. We note

that the [ required to satisfy (69) may depend on z.

Definition 7.8 Given the interconnection J and the set ', a conic sector model,

My, is defined to be the set of maps
Mjs={T;p | [ eI} (7.70)

Given this definition, it is meaningful to say “N lies in M; " if J and I model N.
We will often be interested in normalized conic sector models, cousisting of an

LTI interconnection, J, and the set
[ 2 {I'|T € Cone(0,1)} (7.71)

where T is of specified structure. The distinction here is that I' is normalized to
lie in Cone(0,7). A normalized model can always be obtained from any other conic

sector model by extracting the cone center and radius and including them in the
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interconnection J. We will see examples of this in the development below.

In practical situations the functional dependence of a limitation/substitution
mechanism may be quite involved (representative examples may be found in [14]
and [54]). In addition to the controller output, u, the choice of actual plant input,
v/, may depeud on other systemn siguals (e.g., the values of secondary outputs). This
complex dependence makes obtaining exact stability results very difficult. In essen-
tially all situations the limitation/substitution mechanism is memoryless and bounds
on its input-output behavior are relatively simple to obtain. In this case we can de-
velop a conic sector model and use it, rather than the actual nonlinear map N, to
obtain stability rcsults. This approach greatly simplifies the nonlinear analysis. The
price paid for this simplification is conservativeness. The conic sector model only
depends upon bounds on the input-output behavior of N, and not on the details of
its internal operation. Furthermore it includes all nonlinear maps which satisfy the
given input-output norm bounds. Results which guarantee stability for all such maps
are then obviously conservative. It is important to note that the structure of N, which

can often be easily determined, is preserved in the conic sector model.

7.6 Conic Sector Models of Limitations and Sub-
stitutions

In this section we derive conic sector models for common input limitation and sub-
stitution mechanisms. The examples presented here demonstrate the modelling pro-
cess and indicate the flexibility of the conic sector model paradigm. In applications,
other conic sector models could be derived to incorporate the known characteristics

of the particular limitations and substitutions involved.

7.6.1 Limitations

The most common input limitation mechanism arises from actuator saturations. We
assume here that the plant has been scaled so that the actuators act linearly in the

range +1.0. Multivariable actuator saturations are descrihed hy a diagonal aperator
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Figure 11: An equivalent model of the nonlinear map using a normalized nonlinearity.

defined by
N = diag(n,,...,n,) (7.72)
with n;(u) = sat(yu;). It is very simple to verify that N € C'unc(%ln, %In). Thus
R 0 I,
J = (7.73)
I, 0
and a diagonally structured map, I € I'p, with I'p defined by
i‘D = {fD | fo € Cone(-;—ly., %In)} (7.74)

provides a conic sector model of N (Figure 10). In order to obtain a normalized model
we extract the cone center, C = %In, and radius, R = %In, to obtain the equivalent

model shown in Figure 11 where I' € I'p is a diagonally structured map and

I'p={l'|T € Cone(0,1,)} (7.

-1
-1
it
—

Absorbing the LTI blocks C and R into the interconnection J, we obtain the normal-

ized model depicted in Figure 12 with



0 LI,
J = 2 (7.76)
I 1,
Since
T -11 +11'F (7.77)
JIT — 2 n 2 n {1
we have for all u € Ly,
v = N(u) (7.78)
1 | N
- (§In+-é-]nl’)u (7.79)

for some I € I'p.

We note that both the identity operator, I : u — wu, and the zero operator,
0 : u — 0, are contained in this conic sector model. In fact N = I corresponds
toI’ = I, and N = 0 corresponds to I' = —/. Inclusion of these limiting cases is
required since for small signals (those of magnitude less than 1) N has unity gain, i.e.,
N(u) = u, and for large signals (those of arbitrarily large magnitude) IN has effectively
zero gain. As pointed out by several authors [58,57,23], if from physical arguments
the controller output can be bounded in magnitude, (for example by bounding the

magnitude of exogenous inputs and system initial conditions) then the zero operator
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need not be considered. This allows a tighter conic sector model to be derived.
Because the required a priori bounds are essentially application specific, we will not

further investigate this straightforward extension here.

7.6.2 Substitutions

A common substitution mechanism arises from the use of logic schemes to select the
current operating mode. Quite often these schemes are implemented by choosing the
actual plant input, v/, from among the outputs of several parallel controllers each

providing different closed loop characteristics. In this case K (s) of Figure 3 is of the

form
K,
K(s) = (7.80)
Ky
Uy
and u is of the form u = [ : |. The selection mechanism is described by N : © — u’.
Up,

Simple logic blocks commonly employed are “min selectors,”

-1
ole)
—
—

() = min, {u(®)} 7

1=1

“max selectors,”

w'(t) = max {ui(t)} (7.82)

and hierarchies (series/parallel combinations) of min and max operations (see, e.g.,

[15,16,48,14,34]). These are all special cases of what we will refer to as a “selector”

which (by definition) satisfies

o

u'(t) = ui(t) forsome i€ {1,2,...k} V ¢t (7.83)

This “generic” selector simply outputs one of its inputs at any given time t. The
mechanism which determines which input is selected is completely unspecified.

This allows us to use a generic selector to represent arbitrary switching from



automatic to ma.ﬁual control or to a fixed input schedule {this is commonly used in

engine control to limit turbine acceleration). In these situations an external command,

r, 1s supplied directly to the actuator. In the framework of Figure 3 we simply include

r in the exogenous input, w = [2] , and the measurement vector, y = Mm} . Defining
m

Ke(s) =[I 0 0] we see that the actual plant input, v’ is equal to the desired
command, 7, whenever the k** output of IA\"(s) is selected. A generic selector can
also be used to model arbitrarily complex logic schemes which may depend on system
parameters other than the controller outputs u;.

It is straightforward to verify that if N describes a generic selector with & = 2,

N € Cone([$m  §ia] [§1n  —31n])- (7.34)
The corresponding normalized conic sector model is given by
0 i1, -1iI,
J = 2 ? (7.85)
I, i1, LI,
and I' € I's defined by
Is={T|T € Cone(0,1,)} (7.36)

where I' has scalar times identity structure, and n is the number of plant inputs (z.e.,
the dimension of u').

Selectors with k& > 2 can be modelled by decomposing them into a series two input
selectors. The combination of min and max selectors shown in Figure 13a is often used
to enforce upper and lower bounds on a secondary output (see, e.g., [15,16,40,43,47]).
In order to obtain a normalized conic sector model of this scheme, we first approximate
the individual min and max selectors using (85)-(86) as in Figure 13b. Rearrangiug

the system to correspond to the standard normalized conic sector model we obtain



min

max

Figure 13a: A typical min-max hierarchy.

Figure 13b: A model of the min-max hierarchy.



Figure 13c: A structured, normalized model of the min-max hierarchy.

the interconnection

0 0 M, -L 0
J=|1r, o ir, i1, i (7.87)
I, L, i, i 1,

and the structured nonlinear map, A € A, shown in Figure 13c, where A is defined
by
A £ {A =diag[A, 0] | A; €T i =1,2} (7.

-1
o]
o
—

This example demonstrates the utility of a block diagonal nonlinear map, A,
each block of which is a structured nonlinear map. This block diagonal collection of
structured nonlinear maps will appear whenever there is more than one nonlinearity
in the closed loop system. Since we have decomposed the selector into two distinct
nonlinearities, min and max, it is natural that we obtain a A with two blocks.

In a similar way it is possible to construct models of other combinations of selectors
and saturations. The development of the “best” model, in the sense that it generates
the least conservative stability test is generally not obvious and is the subject of
ongoing research. We have, however, found these simple models to be of great utility

in studying examples of practical interest.
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7.7 Stability Analysis

7.7.1 Necessary Conditions for Nonlinear Stability

In this section we develop a number of necessary conditions for internal stability of the
AWBT compensated system of Figure 3. These results arise from direct applications
of linear stability theory for specific linear modes of operation. In particular we study
in the special cases N = I, and N = 0. These special cases provide some insight
on the choice of H; in the general AWDT design and on the effect of measurement
dynamics associated with u,, (i.e., Ps; # I).

We first consider the situation when no limitations and substitutions occur so
that N = /. We assume that in the idealized linear design problem (Figure 2) P(s) is
stabilizable and that in fact the design, K(s), stabilizes P(s). Necessary and sufficient

conditions for this to be true are provided by the following well known result.

Lemma 7.1 Given left coprime factorizations K(s) = X~'Y and Py(s) = M™'\V,
K(s) stabilizes P(s) if and only if

-1

X =Y
-N M

(7.89)

is a stable transfer matriz.
Proof See, for example, [41, p. 35]. |

We make the further assumption that P(s) is stabilizable (which is implied by P(s)

stabilizable and Pj;(s) stable, for example). Introducing the co-prime factorizations,

-1

P My M N
i I VALY VO B : (7.90)
P32 M21 lez 1V2

K(s) = X"l)/:)(—l[y1 1/2] (7.91)

we have:
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Theorem 7.1 The AWBT compensated system with N = [ is stable (i.e.. [;'(s)
stabilizes P(é)) if and only if

X -7 -Y
-~N1 A;{n ;"/[12 (792)
—Ng My My

is a stable transfer matriz.

P22

Proof This is simply a direct application of Lemma 1 with £y, = : [ |

32

In the special case that Pz, = I we have:

Corollary 7.1 The AWBT compensated system with Py = I, N = I is stable (i.e.,
K(s)=[U(s) [—=V(s)] stabilizes P(s)) if and only if K(s) = V=1U stabilizes P(s).

Proof Since P3;; = I we may take My, = My = 0, My, = N; = [. Applying

Lemma 1 we have

K(s) stabilizes P(s) (7.93)
>
-1
X - -n
-NM My 0 is stable (7.94)
-1 0 I
At -1
X-Y, -"h -I
-Ny My 0 is stable {7.95)
0 0 I
<~
-1
X-Y, -n . -
is stable (7.96)
*1\[1 lel
-

K(s) = (X = Yy) 'Y, stabilizes Py = M 'N, (7.97)



But

so that

Thus

K{(s) stabilizes P(s)

K(s)=[U I-V]=X"'Y, Yy

Y, Yi=X[U I-V]

K(s) = (X =YYy,
= (X -X(I-V)'XU
= VIIXTIXU

= Vv

and we have the desired result.

(7.98)

(7.99)

The significance of Theorem 1 and its corollary is that stability of the idealized linear

design need not imply stability of the AWBT implementation even when N = [. In

fact this is the case only if we assume that a perfect measurement (or estimate) of v’

is available (i.e., P3; = I).

In the case that N is the zero operator, i.e., N(u) = 0(u) =0 V u, we have:

Theorem 7.2 The AWBT compensated system, with N = 0, is stable if and only f
P(s) and K(s) are stable.

Proof By definition we require the transfer function from w, ny, nq, n3 to z, Ym,

Um, u to be stable. Since for N = 0,

-

W

Ym

Um

[ P, P, 0 0
| Pau Py, 0 0
- Fa P 0 0

| PuU Po(I-V) U 1-V

-

™
n2

n3

(7.104)
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where K(s) = [U I —V], the result is immediate. ||

This result states that if the limitation/substitution mechanism can break the feed-
back loop (N = 0) we cannot hope to stabilize an open loop unstable plant, P(s).
In a completely dual fashion, without feedback, there is no hope that the plant will

~

“stabilize” an open loop unstable controller, K(s). An immediate implication is that

if N = O can be realized we must choose H; of the AWBT design so that 4 — H, (7,
and hence K(s) is stable. In this case the stable factors [/(s) and V(s) form a left

co-prime factorization of the original idealized linear design, i.e.,
K(s)=V~'U (7.105)

with V(s) and U(s) left co-prime.

In most practical situations N = 0 and N = 7 may he realized at different times by
the limitation/substitution mechanism. (Recall that this is the case for the saturation
model developed in Section 7.6.1). In this case we require f{(s) to simultaneously

stabilize P(s} for N =0 and N = I. Combining Theorems | and 2 we obtain:

Theorem 7.3 The AWBT compensated system is stable for all N € M;r D {0,1}
only if
1. P(s) is stable.
2. K(s)=[U(s) I=V(s)] is stable.
Vv -U -I+V]™

3. Py 1 0 ts a stable transfer matriz.

I-Pp O I

Proof From Theorems 1 and 2 we have stability for both N = 0 and N = [ only if

1. P(s) and K(s) are stable.
X - -

2. | -N1 My My is stable.
—Ny Mxn My
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1. implies that P.n, Ps,, U, and [ — V are stable so we may take

My, = 1 N =P, (7.106)
My = 0 (7.107)
My = 0 (7.108)
My = 1 Ny= Py (7.109)
X = I (7.110)
Y, = U (7.111)
Y, = I-V (7.112)

Using these definitions 2. is equivalent to

-1
! —lJ ~I4+V

Py, I 0 stable (7.113)

"‘ng 0 I

<>
-1
1% -] ~I+V

— Py I 0 stable (7.114)

[—F3 0 1
and we have the desired result. |

In the special case that Py = I we have:

Corollary 7.2 With Py = [ the AWBT compensated sustem is stable for all N €
M;r D {0,1} only if

1. P(s) is stable.

2. K(s)=[U(s) I—V(s)] is stable.

3. K(s) = V=U stabilizes P(s).



165

Proof From Theorem 3 we have stability only if
1. P(s) is stable.
2. K(s)=[U(s) I—V(s)]is stable.
V. o -U -I+Vv]7!
3. | =Py I 0 is stable.

0 0 I
Since —I + V is stable (by Condition 2.), Condition 3. is equivalent to

~1

v U
—Pn I

stable (7.113)

which is equivalent to K(s) = VU stabilizes Py;(s) (by Lemma 4.1.1 of [41, p. 35]),
which is in turn equivalent to K (s) stabilizes P(s) (by Theorem 4.3.2 of [41, p. 33]).
N

We can obtain one additional useful necessary condition applicable when N is re-

garded as a generic selector.

Theorem 7.4 The AWBT compensated system with N a generic selector and

K,
K(is)=1| : (7.116)
Ky

is stable only if Ki(s) stabilizes P(s) and K;(s) stable Vi =1,... k.

Proof Since N may select any of the controllers, I‘(;(s), it is obvious that each must

stabilize P(s). Similarly those controllers which are not selected must be stable. M

An immediate consequence of this result is that P(s) must be stable if manual control,
Ki(s) = [ 0], is a viable selection alternative.

These results, providing necessary conditions for stability with respect to all non-
linearities in a given conic sector model are complementary to the sufficient conditions

developed in the next section. For the practitioner their greatest significance is:
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1. To obtain global stability results when IN = O may be realized as a result of
limitations or substitutions, we must restrict our attention to open loop stable

plants.

(O]

[f N = 0 may be realized or manual control can be sclected, H; must be sclected

so that K (s) is stable.

3. If P;3y(s) is significantly different than the identity over the closed loop band-
width of the idealized linear design, stability cousiderations may siguificantly

restrict the choices of H, and H, and therefore achievable AWBT performance.

7.7.2 Sufficient Conditions for Nonlinear Stability

In addition to the necessary conditions outlined above, we would like results which
will guarantee nonlinear stability of the AWBT compensated system. The sufficient
conditions developed here provide such a guarantee for any given conic sector model
of N.

The approach adopted here originated with the work of Zames in the early 1960’s
[94,95]. The basic idea is to approximate nonlinear system components with linear
ones and obtain norm bounds on the error involved in this approximation. 'The
linear system is then studied subject to nonlinear perturbations within the specified
norm bounds. If it can be shown that the linear system has certain properties (e.g.,
stability) for all perturbations within the norm bounds, then it is certain that the
original nonlinear system has these properties as well. In our application Jy(s) of
the normalized conic sector model represents our linear approximation to N, and the
normalized nonlinear map, I', a norm bounded nonlinear perturbation.

We consider the system shown in Figure 14 where M is a linear time invariant

operator with transfer function M(s), and A is a possibly nonlinear operator in the

set A defined by

A2 {A = diag[Ay, ..., A | A € Cone(0,1)} (7.117)
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Figure 14: The standard problem for nonlinear stability analysis.

with A; of specified structure. Any feedforward/feedback interconnection of linear
blocks and conic sector models of nonlinear blocks can be brought into this form. In
particular, this standard analysis structure can be achieved in the AWBT analysis

problem by replacing N of Figure 3 with its normalized conic sector model. Combining

A

the linear blocks, P(s), K(s) and J(s) provides M(s) of Figure 14. The structured
nonlinear map of the conic sector model becomes the “perturbation,” A, of Figure 14.

The following version of the small gain theorem forms the basis of the stability
results to follow. More general statements are known {29], but we won’t need them

here.

Theorem 7.5 If the following conditions hold then the system shown in Figure [4 1s
stable.

1. A and M are causal maps from L. into itself.

2. 3 constants yo and yu such that ¥V z,y € Ly and V 7 € R,
. (@), < ala- |
b [IM(y)- |l < ymlly-||

3oy <1

Proof See Desoer and Vidyasagar [29, p. 41]. [
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T T

W M(S) zZ

> >

Figure 15: The standard stability analysis problem with scalings to reduce conser-
vatism.

If in addition to the conditions of Theorem 5 we assume that the exogenous input,
w, is in L, then we are assured that the controlled output, z, is also in L,. While in
general z € L, does not imply z(t) — 0 as ¢ — oc, only mild smoothness conditions
are required for this to be true (see, e.g., [77, p. 21]). Since these are certainly valid
in any practical situation, this result indicates that any input of bounded energy will
give rise to outputs which go to zero asymptotically. In particular inputs of bounded
energy cannot give rise to limit cycles or sustained offsets.

Introducing the scaling operator 7' € 7 as in Figure 15 with
TE2{T|TAT '€ AVAcA) (7.118)

we have:
Theorem 7.6 The system shown in Figure 1 is stable for all A € A if
1. M is a stable, causal, LTI system with transfer function, M(s).

2. 3 8 <1 such that %rég_HTzWu(s)T'l]]w <B8.

Proof We do not effect the stability properties of the system in Figure 14 by
introducing the multipliers T and T~! as in Figure 15. From the definitions of 7, A,
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and Cone(0, ]) we have
NTAT 'z),|| <llz.]] VTET, A€A, z€Ly,andTeER (7.119)
We can assume without loss of generality that T and 7! are stable so that
NT M ()T 2] || S | TMu(S)T Hellz-ll VT ER, 2 € Ly (7.120)

Direct application of Theorem 5 to the system in Figure 15 provides the desired result.

Introducing scaling factors to reduce the conservatism of the small gain theorem
is a standard approach (see, e.g., [38,2]). Unfortunately a simple parametrization of
the scaling set, T, is not available so that the optimization implied in Theorem 6 is
not tractable. In practice the search for a minimizing 7' is carried out over a subset
of T. Any such subset generates an obvious corollary to Theorem 6 which provides

sufficient conditions for stability. A computationally tractable problem provided by:
Corollary 7.3 The system in Figure 14 is stable for all A € A if

1. M(s) is stable.

2. 3 B <1 such that gg;HTMu(s)T'lllm <p

where

T'={T|T€Tand T €C™"} (7.121)

Here we have restricted consideration to scalings which are constant matrices. The

set 7' is completely characterized by the structure of A. Specifically for
A = diag(Ay, ..., AL) (7.122)
with A; of given structure, T € 7' is of the form

T = diag(Ty, ..., Tn) (7.123)
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with 7; compatible with A;. 7T; is said to be compatible with A; if T, is a scalar
times identity matrix when A, has full structure, 7; is a diagonal matrix when 2\, has
diagonal structure, and T; is a full matrix when A, has scalar times identity structure.
As the blocks of A become more structured the set of allowed scalings becomes more
general and the sufficient conditions for stability become less restrictive. 1t 1s in this
way that we can take advantage of knowledge of the structure of nonlinear system
elements.

A complete solution to the “optimal constant scaling” problem (2. of Corollary

3) is available [34,75,76] and involves solving

inf G[TMTY] (7.124)
T

where M is a constant matrix derived from a state space realization of M,(s), and T
is a constant matrix of specified structure. An alternative computational approach,
in terms of structured Lyapunov stability, is found in {13].

Extension of these results to study nonlinear stability robustness, with respect to
uncertainties in the linear plant model, is straightforward. As is standard in robust
control theory, we consider the nominal linear plant model subject to (possibly multi-
ple) norm bounded LTI perturbations. The LTI uncertainty blocks are incorporated
in the M — A framework (Figure 14) in exactly the same manner as the normalized

nonlinear maps so that A becomes a block diagonal operator in the set A defined by
A 2 (A|A=diag(A1,... AnyDryr ... An)) (7.125)

where Ay, ..., A, are nonlinear maps each inside Cone(0,7), and Apyq,..., A, are
LTI operators satisfying 6(4;) <1Vi=n+1,...m. A straightforward extension of

Theorem 6 provides:
Theorem 7.7 The system in Figure 14 is stable for all perturbations A € A if
1. M(s) is stable.

2. 3 B < 1 such that inf |TMy,(s)T" e < B
TeT



where

T 2T | T =diag(Ty,...,Tn,Tut1,..., Ton)} (7.126)

with Ty,..., T, € T and T,yy,..., T, arbitrary LTI operators which satisfy
T,‘A;T;_l =A; V 5’(A.’) < landVi=n+ I,...,m.

Again the simplification of T1,..., T, € 7' allows (relatively) straightforward evalu-

ation of 2. to assess robust stability.

7.7.3 Application to the Multivariable Anti-windup Prob-

lem

In order to make the development in Sections 7.7.1 and 7.7.2 concrete we consider an
application of these results to the multivariable anti-windup problem in some detail.
Since all physical systems have finite control authority, the problem of actuator sat-
uration is, at least in principle, univérsal. In addition, by making certain simplifying
assumptions we are able to obtain some insights on how selecting H; and H, in the
AWBT design effects nonlinear stability.

In the course of this section we will encounter the concept of passivity, or positive

realness, which we define here.

Definition 7.9 A proper LTI system, Z(s), is said to be strictly passive if it is
analytic for Re[s] > 0 and 3 € > 0 such that

Z(s)+ ZT(—s) > eI, Y Rels]>0 (7.127)

This is the standard notion of (strict) passivity which in the SISO case corresponds
to the requirement that the Nyquist plot of Z(s) must remain in the (open) right half
plane. The following well-known result (see, e.g., [1]) relates passivity to a small gain

condition.
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Lemma 7.2 Z(s) is strictly passive if and only if 3 3 < 1 such that

NI+ Z(s)™H = Z(s)]lloe < B

—
-1
—
[N
[0 2]

~—

and [I + Z(s)]7I — Z(s)] is stable.

The anti-windup (or saturation compensation) analysis problem we consider is
based on the linear design, K(s), which stabilizes P(s) of Figure 2 and (by assump-
tion) provides acceptable linear performance. We assume that an AWBT compen-
sated implementation, K(s) = [ I — V], has been obtained and are interested in
studying the stability of the system in Figure 3 where N is a MIMO saturation oper-
ator. For the purpose of this example we assume that P(s) is stable, P,(s) is strictly
proper, and that P3(s) = I, i.e., there are no significant dynamics associated with
measurements of the plant input.

We adopt the conic sector saturation model, M, consisting of the interconnec-

tion
0 i1
J= L (7.129)
I, i,
and the diagonally structured map I' € I'p,
Tp & (T'|T € Cone(0,1)} (7.130)

Application of Corollary 2 provides the following necessary conditions for stability of
the system in Figure 3 for all N € M;r,.

1. P(s) stable.

2. K(s) stable.

3. K(s) stabilizes P(s).

Combining J(s), K(s), and P(s) in order to obtain the standard M — A analysis
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structure (Figure 14) we find

(I+2)YI-2) (I+ Z) YUPy + (I — V) Psy] o
M(s) = (7.131)
2P12(I + Z)-l Pll + Pm[] + Z]«-l[UP‘zl + (1 et V)P:n]

where Z(s) is defined by
Z(s) =V =UPy (7.132)

Application of Corollary 3 to guarantee stability for all N € M, provides the

sufficient conditions
1. M(s) stable.
2. 3 B <1 such that ljél;:,“TMu(S)T-llloo < 3.

Employing the necessary conditions 13(‘3) stable, and K(s) stable, we can simplify
these sufficient conditions. In particular, with P(s) and K(s) stable, stability of

M(s) is equivalent to stability of
Mu(sy=UI+2)YI-2) (7.133)
Under these Conditions 1. and 2. are equivalent to (by Lemma 2)
3T € T such that TZ(s)T™" is strictly passive (7.134)

Summarizing we have:

Theorem 7.8 The AWBT compensated system with Psy = [ is stable for all N €
M;r, if

1. P(s) is stable.

53

K(s) =1/ I —V)]is stable.

3. 3T € T' such that T[V — UPy»]T™! is strictly passive.

We now consider several specific realizations of P(s) and K(s) corresponding to

AWBT designs from the literature.
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Internal Model Control

We recall the definitions of P(a) and [;(b) corresponding to the IMC implementation

derived in Section 7.3.3.

[ -1 -G(s)
. I 0 0
P(s) — (7.133)
0 I G(s)
|0 0 r
K(is) = |0, -0Q QQC;] (7.136)
r r
where w = [d],y: Yml,and z = r — y,..
Um

Applying Theorem 8 we find the sufficient conditions for stability:
1. G(s) stable.

2. Q1(s), Qa(s) and G(s) stable.

3. 3T ¢ T’ such that T[] — Q,(G' — G)]JT~! is strictly passive.

In the case that the internal model, G(s), is identical to the plant, G(s), Conditions 1.
and 2. are equivalent to K(s) stabilizes P(s), and Condition 3. is satisfied trivially.
Thus if P3; = I, G(s) = G(s), and the idealized linear design is stabilizing, the IMC
implementation will be stable for all N € M;p,. In fact it can be shown that under

these conditions the IMC implementation is stable for any stable N (see, e.g., [68]).

Hanus’ Conditioned Controller

The conditioned controller AWBT implementation corresponds to

(1 I —G(s) ]

P(s) = oo (7.137)
0 I G(s)
(00 I
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K(s) = [ Dy, D\K7'K, I - DK;{! (7.138)
”

with w = [Z}, y = [ym], and z = r — y,,. Application of Theorem 8 provides the
Up

sufficient conditions for stability:
1. G(s) is stable.
2. K;(s) minimum phase, K(s) stable.
3. 3T € T’ such that =T D, K7 (I + K;G)T ! is strictly passive.

Conditions 1. and 2. are in fact necessary (by Theorem 2) so that we may immedi-
ately conclude that controller conditioning is not appropriate for linear designs with
K, (s) nonminimum phase. No general statement can be made regarding Condition 3.
Whether or not it is satisfied will depend on the particular K;(s) and K5(s) under
study.

Extended Kalman Filter

r
['or the extended Kalman filter implementation we have w = [2], y = [ym} , £ =
T = Ym,

Ap | Bip By Bap
Cip | Dup Dizp Disp
P(s) = 0| I 0 0 (7.139)
Csp | Dnp Dxnp 0
Cap | Dup Digp I

: Ap~LCy | Bip ~ LDsp L Byp

(7.140)
F ‘ 0 0 0

L.

Application of Theorem 8 provides the sufficient conditions:

1. Ap is a stable matrix.

2. Ap — LC4p is a stable matrix.
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3. 3T € T’ such that TZ(s)T} is strictly passive.

Condition 2. is implied by K(s) stabilizes P(s). We will take 1. by assumption.

Computing a state space realization for Z(s) we find

Ap—LCsp 0 0
Z(s) = 0 Ap | Byp (7.141)
F mFl I

Deleting the uncontrollable (stable) modes we have

Z(s) = (7.142)

Ap | Bsp
-F| I

If the state feedback, F, is chosen using H? (equivalently LQ) theory then (with
certain other technical assumptions) Z(s) given by (142) will be strictly passive (see
Appendix A for details). As a result the extended Kalman filter implementation
is guaranteed to be stable for all N € M, 1, including the multivariable saturation
operator. We note, however, that this result is based on the guaranteed gain reduction
margin of 2.0 provided by the H?-optimal state feedback. It is known that no such

guaranteed margin exists when the model of the physical plant is inexact [30].

7.8 Mode Switching Performance

As argued in Section 7.4.2, in order to avoid performance deterioration when the
control system switches modes, K (s) should (ideally) be memoryless. Unless the
initial design, K (s), is itself memoryless, there will be no admissible K (s) which is
memoryless. In this case we will want to design [‘((s) with “as little memory as
possible” so that the impact of state positioning errors will be minimized. In this
section we introduce a quantitative measure of dynamic memory and demonstrate its
use in AWBT design.

Loosely speaking, the dynamic memory of a linear system is the effect of past
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inputs on future outputs. This definition will be made more rigorous in terms of the
Hankel operator associated with an LTI system. We begin with some background

material regarding the Hankel operator, much of which may be found in [49].

7.8.1 The Hankel Operator

We consider the stable LTI system

AlB
G(s) = (7.143)
C|D
which has the impulse response
g(t) = CeB + Dé(t) (7.144)

For any input u(t), defined on R € (—o00, 00}, to the system G, the corresponding

output, y(t), is given by (assuming causality),

y(t) = Hu(?)) (7.145)
= /t Ce*=7) Bu(7)dr + Du(t) t € (—o0,o0) (7.146)

If we regard t = 0 as the “current” time, the convolution operator, H: L,(—oc, o) —
Ly(—00,00) defined by (146), maps “past” and “future” inputs, defined on t €
(=20,0) and t € [0,00) respectively, into “past” and “future” outputs, similarly
defined on ¢ € (—00,0) and t € [0, c0).

We measure the size, or gain, of the system G(s) in terms of the induced L, norm

on its associated convolution operator. The following relations hold,

Gl 2 sup a[G(jw)] (7.147)
= sup w (7.148)
u€ L {—00,00) [lu|

In a similar way we may define a map from past inputs, u_(t) € Ly(—0c,0) to
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future outputs v, (#) € L;[0,00). This map is known as the Hankel operator associated

with ¢ and is defined by

yo(t) = Tolu(~t)) (7.149)
- /mCe“‘(‘*T)Buw(Mr)dT Vte0,o00) (7.150)
4]

To understand how 'z maps past inputs into future outputs, we introduce the con-
trollability operator, ¥, : L,(—o00,0) — R*

U (u.(t)) = /w e Bu_(—7)dr (7.151)

0

and the observability operator, ¥p: R™ — L4[0, o)
Yo(z) = Cet'z (7.152)

If u_{t) is again regarded as an input acting for all past (negative) time, then
U (u-(t)) € R* is the “current” state of the system, z(0). If this current state
is operated on by Wy, the result is the future output y,(t) generated by the initial

condition z(0). It is easy to verify
Ty = UoW, (7.153)

which provides the following interpretation. The Hankel operator represents the effect
of past inputs on future outputs as the composite map of past inputs to the current
state together with the map from the current state to future outputs. Thus the

Hankel operator associated with G(s) is intimately related to the system’s memory.

7.8.2 Properties of the Hankel Operator

Because of its role in other applications, in particular model reduction and H* syn-
thesis, much is known about the Hankel operator. The Hankel operator associated

with the stable system, G(s), is of “nite rank, equal to the McMillan degree (the
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order of a minimal realization) of G(s). Its singular values are given by
oi(la) = A (PQ) (7.154)

where \;(A) is the :* eigenvalue of A, and P and ) are the controllability and

observability grammians associated with G(s),

pa / 4t B BT ATt gy (7.155)
)]

Q4 /m ATt CT Cetdt (7.156)
Q

We will refer to the Hankel singular values with the implied ordering oy 2 0, 2> ... >
Tn-
Computation of ¢;(I'g) is straightforward since P and () satisfy the Lyapunov

equations

AP + PAT + BBT = ¢

——
-1
—
ot
-1

N

ATQ+QA+CTC = 0 (7.158)

It should be noted that while the grammians, P and @, depend on the realization
chosen for G the eigenvalues of their product do not, i.e., A;( PQ) are invariant under a
change of state space coordinates. Thus the Hankel singular values are only functions
of the system’s input-output behavior, not its realization.

Using the Hankel singular values we can define the following norms on ['s,

ITslls = o1(Te) (7.159)
ITellv = 3 0i(la) (7.160)

=1

These norms can be associated with the system, G(s), which generates I'¢. While we

will often use the notation

G\ & ou(la) (7.161)
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IGs)Iv 2 Y au(le) (7.162)
1=1

and refer to the Hankel or trace “norm of GG(s),” these are of course only semi-norms
on the space of real rational stable transfer functions. To see that this must be so,
observe that ||G(s)||# and ||G(s)||n are independent of the feedthrough term, D, of
G(s).

The following result relates the Hankel singular values to the infinity norm of

G(s).
Theorem 7.9 Given any stable transfer matriz G(s),

L oi1(Tg) < _inf  ||G(s) = G(s)|leo < 3" 0i(T)
G(s) stable k1
degree G(J)Sk

2. 1G(s) = G(o0)leo < 2[|G(s)IN

Proof The lower bound in I. follows directly from Theorem 7.2 and the upper

bound from Theorem 9.2 of [49]. 2. is Corollary 9.3 of the same source. n

By requiring G(s) to be of McMillan degree zero (i.e., static) we obtain the fol-

lowing corollary.

Corollary 7.4 Given G(s) stable,

|Gl < inf[IG(s) = Glleo < IG(s) [

7.8.3 Dynamic Memory

The Hankel norm of G(s) is in fact the operator norm induced by the L;(—oc,0)

norm on inputs and L,{0, c0) norm on outputs, i.e.,

IG(s)|lg = sup [Hullzsp0.00) (7.163)

u€L2{-00,0) “u”L'z(—OOvO)

Thus ||G(s)||lg = 01(T's) represents the L, gain from past inputs to future outputs.
This leads us to define,
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Definition 7.10 The dynamic memory of the system (G(s), denoted Mem((G(s)), is
defined to be:

L ||G(s)||lg if G(s) is stable.

2. oo if ((s) is unstable.

Applying Corollary 4 we see that, in addition to being the induced norm on the
map from past inputs to future outputs, Mem(G(s)) is a lower bound on the H™
distance from G(s) to the nearest static operator. Furthermore since ||G(s)||y is
an upper bound on this distance, for low order systems the lower bound is tight.
This relationship will allow us to formulate a synthesis problem in which the state
positioning objective is enforced by minimizing the H* norm of a particular transfer
function.

For unstable systems non-trivial past inputs give risc to unbounded futurc outputs
so that it is natural to define the memory of these systems as infinite. As we might

expect, the Hankel operator associated with the static system,
G(s)=D (7.164)

where D is a constant matrix, is identically zero. Correspondingly the Hankel norm

and Mem(G(s)) are zero as well.

7.8.4 Application to the AWBT Problem

Given the possibility of essentially arbitrary switches between modes (be they defined
operating modes, or saturated/unsaturated modes) with linear controllers designed
only for the current operating mode (and not the history of modes which may have
preceded it), we would like the AWBT implementation of K(s) to be memoryless so
that current performance will be independent of the history which brought the system
to its current condition.

For the output of the AWBT compensated controller, 1;'(3), to be independent of

its past inputs, we require 1\/[em(1;'(s_)) = 0. Since this cannot generally be achieved



by an admissible K(s), we seek
Milrvllfi2 Mem(K(s)) (7.163)
Recalling our state space realization of all admissible 1;’(3),

A~—H,C|B~H1D H,

K(s) =
H,C | H,D - H,

(7.166)

~

we see that for Mem (K (s)) to be finite, we require that A — H,;C be stable. With
H, chosen such that A — H,C is stable, we have in the limit H, — 0,

K(s)=[U(s) T-V(s)] =0 I (7.167)

The well-posedness requirement discussed in Section 7.2.2 prevents H; = 0, (recall
that H, must be nonsingular). In principle, however, the memory of I;’(.s) can be made
arbitrarily small by selecting H, so that A — H;C is stable and H, small enough. Not
surprisingly with U(s) = V(s) = 0 we have

u(t) = um(t) for all ¢ (7.168)

This implies that there will be no bump associated with a mode switch. Since the
output of all controllers are equal, there can be no discontinuity in u(t) as a result of
a mode switch.

As we will see in Section 7.9 it is not possible to make H, arbitrarily small in
any realistic example. As H, — 0 the sensitivity of the controlled output, z, to
differences between u’ and u,, becomes arbitrarily large. This means that any noise,
measurement dynamics, or modeling error which causes u’ to be different than u,, will
result in drastic degradation in closed loop performance. In Section 7.9 we introduce a
measnure of this effect and outline the fundamental trade-off hetween noise sensitivity

and state positioning performance which governs the selection of H; and H,.



7.8.5 An Example

A demonstration of the use of Mem(K (s)) to analyze mode switching performance

is provided by the anti-reset windup problem. Given the PI controller

0l £
K(s) = A (7.169)
1] k%

a realization of all admissible K (s) with a single state is given by,

—H | KL -H) H
sz Hk  1-H,

K(s) = (7.170)

where H, is arbitrary and H, # 0. Classical anti-reset windup corresponds to H, = ;1—

H, =1 so that

L gl_1y 1
ff(s)::|: B S, J (7.171)

1] ko
The problem is then to select 7, so as to minimize Mem(f{(s)). In this simple example

we can obtain an analytical expression for the (single) Hankel singular value. In

particular

Mem(K(s)) = o1(K(s)) (7.

k*(t, — 71)2 + 'r12 3
47}

-1
-
-~}
bo

(7.173)

It is not difficult to see that Mem(f{(.s)) is minimized for 7, = rp.
A simple simulation demonstrates the connection between M em(f&'(s)) and
AWBT performance. We consider the error feedback system in Figure la with the

plant
1

Gls) = 10s +1

—~
~1
—
-1
—

~

subject to input saturation,

lu] < 2.0

,-—\
=1
—
-1
it
-
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Figure 16: Step setpoint change responses, A plant outputs, B plant inputs, for
various values of 7,.: 7, =2 (1), 7, =10 (2), = = 30 (3), 7 = o0 (4).

and the PI controller design (k£ = 10, 7; = 10),

10s +1
s

K(s)=

(7.176)

Unit step setpoint responses are shown in Figure 16 for several choices of r.. For 7, >
7 the response demonstrates overshoot characteristic of classic integrator windup.
For 7, < 71, the response becomes quite sluggish. With 7, = 77 a rapid response, with
no overshoot, is obtained.

Since minimizing Mem(K (s)) amounts to minimizing the L, norm of the future
controller output for a worst-case past input, we cannot expect Mem(K(s)) to corre-
spond directly with the time domain response to any other specific input. We have,

however, consistently observed a strong correlation between time domain performance

shown in simulation and Mem(K(s)) in a large number of examples.

7.9 Recovery of Linear Performance

In addition to making K (s) memoryless, so that switches between modes are handled
smoothly, we require that when no limitation or substitution occurs (N = [) the
performance of the idealized linear design is recovered. As we will see there is a direct
trade-off between these objectives which determines the appropriate AWBT design.
Linear performance is measured by a norm on the closed loop map from exogenous

inputs, w, to controlled outputs, z. The norm chosen will depend upon the form of
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the closed loop specifications in the original linear design. For the purposes of this
paper we consider the specification to be given in terms of the H* or H* norm.

When N = [ the closed loop transfer function, T,, : w(s) — z(s), for the AWBT

compensated system is given by,
Tzw(s) = Pu -+ Plz[l e UPzg - (I - V)Pyz]_l[UPgl -+ (I - V)Pgl] (7177)

The AWBT compensated system is said to recover the performance of the idealized

design when N = [ if it meets the performance specification,
”Tzw(s)“2oroo <l (7178)

imposed on the original linear design. Given (177) it is straightforward to evaluate
the linear performance provided by the AWBT compensated system. In addition
to recovering linear performance in the sense of ||T..(s)||, we would also like to
derive conditions under which linear performance is identical for both the AWBT
compensated system and for the initial linear design.

For the trivial AWBT design, H, = 0, H; = I, we have U(s) = K(s) and
V(s) = I so that K(s) = [K(s) 0]. In this case the estimated plant input is not
used and the AWBT compensated controller, K (s), is identical to the idealized linear
design, K(s). As a result the linear (N = [) performance of the idealized design
is recovered identically. This trivial AWBT design is generally unacceptable since
Mem(K(s)) = Mem(K(s)) is generally large (infinite if K(s) is uot stable).

In the case that P3; = 0 and P, = I, which implies that our plant input estimate

is perfect, i.e., v’ = up,, (177) reduces to

Tzw(S) = Pn + P12[V - UPQQ}“lUle (7179)
—_— Pu + Pm[] -— I\/PQQ]—II{P21 (7180)

for any U(s) and any invertible V(s). In this special case linear performance is

recovered identically for any admissible AWBT design. This suggests that we may



186

take H, = el with e arbitrarily small so that Mem(K(s)) is made arbitrarily small.
Presumably then it is possible to obtain arbitrarily good switching performance and
perfectly recover linear performance as well. In any practical example, however, this
cannot be achieved because the assumption that v’ = w,, is not realistic. If u,, is
obtained from a physical mecasurcment of the plant input, some level of sensor noisc
P3; # 0 and measurement dynamics (FPa, # [) will be realized (at least at high

frequencies). If u,, is obtained by passing u through a nonlinear model of N
U, = N(u) (7.181)
so that measurement noise is not a problem, we have
U = Uy = (N = N)(u) (7.182)
and 4’ — u,, = 0 if and only if our model, N, is ezact. If we consider the general case
T,u(s) = Py + Pia[l = UPyy — (I = V)P ' [{UPy 4+ (I + V) Py] (7.183)
and allow H; — 0, so that U(s) — 0, V(s) — 0 we have
T.w(s) = Pu + Pig[l — P} ™' Py (7.184)

With Psy(s) =~ I, the norm of T,, becomes arbitrarily large as U/, V — 0. Thus
any non-zero difference between v’ and u,, (effectively a measurement noise) will be
greatly amplified aud linear performance will not be recovered.

Thus we have a fundamental trade-off between the mode switching performance
and linear performance recovery objectives. To minimize the dynamic memory of
K(s) we‘ require U(s) and V(s) to approach zero. To optimize linear performance
recovery, we require U(s) — K(s), V(s) — I. In Section 7.11 we will outline a
synthesis procedure to trade-off these objectives and generate an acceptable AWBT

design.
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7.10 Directional Sensitivity

With the switching performance objective we consider the AWBT compensated sys-
tem with N = 0. For the linear performance recovery objective we consider the
AWRT compensated system when N = [. Tn the case of plant input anhstitutions
these performance objectives, together with a guarantee of nonlinear stability, are
sufficient to insure graceful performance degradation (i.e., reasonable nonlinear per-
formance). In the case of plant input limitations, however, the nonlinearity N does
not simply select open (N = 0) or closed (N = I) loop operation. Instead N modifies
the output of a given controller. The most significant effect of this is that, for MIMO
systems, limitations can modify the plant input direction. As a result acceptable
mode switching performance (corresponding to IN = 0) and linear performance re-
covery (corresponding to N = [) is not, in general, sufficient to insure that nonlinear
performance will be acceptable. Borrowing from the linear (robust) control theory,
we say that the closed loop system must provide not only nominal performance and
robust stability, but also robust performance.

In this section we develop upper bounds on the norm of the nonlinear closed loop
map, T, for the worst-case nonlinearity in a given conic sector model, M. As for
the nonlinear stability tests, the result is conservative, the upper bound may not be
tight, but it is often useful nonetheless.

As in the stability analysis section we consider the general analysis structure (Fig-
ure 14). Recall that Figure 14 is obtained by substituting the appropriate normalized
conic sector model for N in Figure 3 and rearranging to isolate the normalized, struc-
tured nonlinear map, A, and the LTI interconnection M(s). Introduction of the
scalings, T and T~! as in Figure 15, does not change the closed loop map from w
to z. Furthermore, if we are interested in the set of all maps, T,,, corresponding to
A € A, we may absorb T and T-! into A as in Figure 17, i.e., for any T € 7 and
A € A we have by definition, TAT™! € A, so that any closed loop map which is
achievable in Figure 15 with A € A is also achievable in Figure 17 with some other

A € A. With this set up we have the following theorem.
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Figure 17: The general problem for directional sensitivity analysis.

"

po= % for all structured nonlinear maps, A € A, where 8 € R is such that

T-1 0
0 I
Proof For any value of 3 we have

{ a } [T o} {Mu(s) Muy(s) | [ 7 o} [ b} )
- (7.186)
ﬁz 0 I 1"121(8) MQQ(S) 0 I w

in Figure 17. With 8 such that (185) is satisfied we have

T 0
0 I

=1 7.185)

inf
TeT

—

My(s)  Mya(s)
BMy (s) BMy(s)

b
‘ < for all w € Ly, (7.187)
Bz w
or
lall* + 8%[1z)1* < [1BIf* + [fw]® (7.188)
For any A € A, ||b]|* < ||a|]? so that
1 [ o
l2|* < '6'5 |w|l? V we L (7.189)

and we have the desired result. |
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In order to obtain a computable upper bound we can restrict the set of allowable
scalings in (185) to be in 7' rather than 7. In general, since we bound the norm
of T,y for all nonlincar maps admitted by a particular conic sector model, u is a
conservative upper bound on the norm of T,, corresponding to a specific nonlinear
map, N. Furthermore, comparison of various designs using u may be misleading since
it is only an upper bound on ||T., ). Meaningful conclusions may be drawn, however,
when p is sufficiently small, i.e., when the worst-case performance, bounded by u. is
acceptable.

We note that for N = 0, T,, is simply Py;(s). Thus if the zero operator is
contained in our conic sector model, as in the case of saturations, ||P11(8)]|c provides
a lower bound on supsea || T.wl|- Since Piy(s) is the map from w(s) to z(s) when the
system is open loop, we observe that worst-case performance can be no better than
open loop performance. In some situations, however, worst-case performance can be
much worse than open loop. In these situations g will be several times larger than
1£11(5) oo

The most important application of this result, in the context of the AWBT prob-
lem, 1s for MIMO plants subject to input limitations. Typically these limitations act
element by element on the controller output, u, so that N has diagonal structure.
As a result of limitations the plant input, u’, may not have the same direction as
the controller output, u, i.e., the relative magnitudes of the elements in w’ may be
different than in u. It is well-known from (linear) robust control theory that some
MIMO plant and controller combinations experience severe performance deteriora-
tion in the presence of (linear) diagonal plant input perturbations. These systems are
sensitive to plant input direction. Examples include ill-conditioned plants together
with inverse based controllers (see [87]). These designs, typically implemented as in

Figure la, result in a loopshape, L(s), which has scalar times identity structure, i.e.,

L(s) & G(s)K(s) (7.190)
= ﬁ(s)[ (TIQU
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where €(s) is the desired scalar loopshape. Because limitations can effect the plant

input direction, the inversion is disturbed and
G(s)NK(s) % {(s)] (7.192)

In this case the nonlinear performance is qualitatively different than the linear, N = [,
performance.

[ll-conditioned systems are typically much less sensitive to plant input perturba-
tions with scalar times identity structure. Since these perturbations do not affect
the direction of the plant input, only its magnitude, we have (with N of scalar times

identity structure)

G(s)NK(s) = G(s)fnK(s) = fnG(s)K(s) (7.193)
= fwl(s)] (7.194)

where fy is the scalar times identity describing function appropriate for N. Thus, to
a first approximation, the loopshape retains its scalar times identity structure.

For systems with high directional sensitivity, a simple nonlinear technique has been
shown to greatly improve performance. The technique is applicable to systems for
which a model of the input limitation mechanism is available and based on the simple
idea that the controller output should be adjusted so that plant input limitations do
not affcct its dircction. This idea first appeared in [35] and is further developed in [20].
For simplicity we assume here that the limitation is such that each of the plant inputs
saturates at £1.0. Extensions to handle other limitations {e.g., rate saturations) are
straightforward.

When one of the controller outputs exceeds 1.0 in magnitude all of the controller
outputs are adjusted by the same factor so that v and v’ have the same direction. This
can be achieved by inserting an additional nonlinear block, S, between the controller

output and the limitation mechanism, N, as in Figure 18. The block, § is defined
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u u A

K)

Figure 18: A simple nonlinear directional sensitivity compensation scheme.

by
u' = S(u) {7.195)
{ u  fufle <1 ;
= {7.196)
ﬂ'ﬂ“];: flullo > 1

By construction the elements of u”(¢) have magnitude less than one. As a result
the plant input limitation has no effect, i.e., v/(t) = u"(t) V t. Thus we have
effectively replaced the diagonal plant input perturbation, N, with the scalar times
identity perturbation, S.

Of course the nonlinear block S together with K(s) do not comprise an ad-
missible AWBT design (as defined in Section 7.2.2) for the plant P(s) and limi-

tation/substitution IN. If on the other hand we regard the composite map,

-

N

e

NS (7.197)
= S (7.198)

as the limitation/substitution mechanism then K(s) is an admissible AWBT design
for P(s) subject to N. With this perspective we may regard S as a precompensa-
tion which yields a more benign nonlinearity than the original limitation/substitution

mechanism N. While we do not address the design of such a nonlinear compensation
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in general, we présent this simple technique because of its simplicity, proven effective-
ness. and compatibility with nonlinear stability and performance tests (Theorems 6
and 10).

In our experience the only AWBT compensated systems which show significant
directional sensitivity are those for which the initial linear design, K'(s), is sensitive
to (linear) diagonal input perturbations. If the initial linear design is not robust
with respect to linear perturbations with this structure, we cannot expect the AWBT
design to recover the nominal performance of the initial design K (s) and be insensitive
to plant input limitations. This situation points out the need to better understand
how the initial lincar design, K (s), cffects achicvable AWBT performance. While
we have generally assumed that K(s) is designed ignoring the effects of limitations
and substitutions, it seems clear that including simple considerations such as this in
the initial linear design can significantly improve the AWBT performance which is

subsequently achieved.

7.11 AWBT Synthesis

Having identified stability and performance issues for the general AWBT problem,
and introduced quantitative analysis methods, we are in a position to consider the
synthesis problem. In particular we would like to develop a procedure which will
generate an AWBT design which meets given performance requirements, stated in
terms of the analysis methads previonsly outlined, or establishes that no such AWRT
design exists.

We incorporate into the general synthesis problem the nonlinear stability, linear
performance recovery, mode switching performance, and directionality sensitivity ob-
jectives in a quantitative manner. The approach is to state each of these objectives
in terms of minimizing, or bounding, the H? or H® norm of a particular transfer
function. With the AWBT objectives defined in this way the design problem can be
formulated as a constrained structure controller synthesis (CSCS) problem.

Adjustable weights are included for each of the synthesis objectives. These weights
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Y(s)

Figure 19: The standard constrained structure controller synthesis (CSCS) problem.

allow us to exploit trade-offs between objectives. This results in an iterative design
procedure in which the weights on the individual objectives are adjusted until the
designer determines that AWBT performance is adequate and the design trade-offs
are acceptable.

Because it forms the basis of the iterative AWBT design procedure, we first con-

sider the general CSCS problem and its solution via reduction Lo static output feed-

back.

7.11.1 Constrained Structure Controller Synthesis

We present only the essential features of the CSCS problem here, for a more complete
treatment the interested reader is referred to [70,9] and [71,10].

The general CSCS problem may be stated in terms of Figure 19. Given vy € R,
we wish to find a stabilizing LTI controller, T(s), of constrained structure, such that
the H* norm of the transfer function from exogenous input, 5, to output (; is less
than v, and the H? norm of the transfer function from 7 to output {; is minimized. It
should be noted that pure H? and pure H* problems can be obtained as special cases
of the general mixed-norm problem. For example the pure H* problem, minimize

IT¢inlloo, can be solved by neglecting the H? output, (;, and solving the general
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problem iteratively with decreasing values of ~ until a stabilizing solution can no
longer be found. This technique, known as ~-iteration, is standard in > synthesis.
Similarly the pure H* problem is obtained from the general problem in the limit
v — 00.

The key feature of this synthesis problem is that the controller, T{s), is of “con-

strained structure.” For the purposes of this paper we adopt the following definition

Definition 7.11 Y(s) is said to be of constrained structure if the matrices which

make up a state space realization of T(s) are affine functions of constant real, param-

eter matrices, Xq,...,X,, le,
.X" .X,'
Yo = | L2 o) 7199)
fo(X:) | folX.)
where fa, fB, fc, and fp are matriz valued affine functions of X;, 1 =1,...,n.
It can be shown (see [71]) that there exists a constant matrix, X, of the form
X =diag{Xy,..., X1, X2, ... X0y, Xy oo, Xi} (7.200)

with X; repeated v; times, and an LTI interconnection T(s), independent of X, such
that T(s) is given as the transfer function from input, z, to output, y, of the feedback
interconnection shown in Figure 20. Incorporating this representation of T(s) in
Figure 19, and absorbing the interconnection T(s) into Q(s), we obtain the static
output feedback problem shown in Figure 21.

In order to solve the original CSCS problem we are now presented with the fol-
lowing static output feedback problem. Given v € R find a constant matrix .X of the
form (200) which stabilizes Q(s), makes ||T¢,(s)[lo < 7 and minimizes || T¢,,(s)]l2-
This mixed-norm static output feedback problem can be addressed using the coupled
Riccati equation approach of [8]. In general the solution of a set of three coupled Ric-
cati equations provides a solution to the static output feedback problem. Although a

number of outstanding numerical issues remain, much progress has been made in the
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Figure 20: A representation of the constrained structure controller.

Figure 21: The standard static output feedback problem.
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development of techniques to solve these coupled systems of equations. At this point
solutions to non-trivial problems have been demonstrated although a truly general
purpose algorithm is not yet available. The primary advantage of this numerical ap-
proach, over other functional analytic (e.g., [41]) or “full order” state space solutions
([33,37]) to H? and H* optimal control problems is that these methods do not allow
the consideration of constrained structure controllers. In fact the Riccati equation
approach is the only solution method for constrained structure synthesis currently
available. As we will see, a structural specification on the “controller” in the AWBT
design is essential in order for us to consider all of the AWBT design objectives simul-
taneously. To the extent that solutions to the required coupled Riccati equations can

be found, we can solve the optimal static output feedback problem and as a result

the CSCS problem as well.

7.11.2 AWBT Synthesis as a CSCS Problem

Given this overview of the CSCS problem and a proposed solution method via static
output feedback, we turn our attention to the formulation of the AWBT svnthesis
problem. Our task is to derive a constrained structure controller synthesis problem

which includes the AWDT objectives:

1. Guarantee nonlinear stability (Corollary 3).
2. Achieve linear performance recovery (in the sense of (178)).
3. Optimize mode switching performance (minimize Mem[K (s)]).

4. Minimize directional sensitivity (Theorem 10).

In particular we must derive an interconnection, Q(s), such that each of these
objectives may be written in terms of the H* norm of T, ,(s) or the H* norm of
T¢,4(s) of Figure 19. In the development the definition of T(s) and the associated
structural constraints on this “controller” will become apparent. The complete syn-
thesis problem, involving all four objectives is built up stepwise by introducing the

objectives one at a time.
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Figure 22: Step 1 in the formulation of the AWBT synthesis problem as a CSCS

problem.

Nonlinear Stability

We begin with the AWBT compensated system shown in Figure 3 and replace N
with an appropriate conic sector model, M ;ao. Rearranging the block diagram and
introducing scaling matrices T and T~! (with T € T') we arrive at Figure 22 where
Q1(s) is determined by P(s) and J(s).

The nonlinear stability requirement (Condition 2. of Corollary 3) may be written

~

inf [Tas(s)oo < 1

7.201)

e

where T,.(s), which depends on the scaling T, is the transfer function from b to a
in Figure 22 when A = 0. Thus the nonlinear stability objective amounts to finding

T € 7' and an AWDT design f((s), such that (201) is satisfied.

Directional Sensitivity

The directionality sensitivity specification is given as a bound on the L,, norm of the

closed loop map, T,,, of Figure 22, for all A € A. In particular for a given scalar
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K(s)

Figure 23: Normalization of the directional sensitivity objective.

ap, the directionality sensitivity performance weight, we require

1
aed ap

This objective is normalized by introducing the scalings, \/ap, as in Figure 23.

Clearly,
1
sup [Tl < — (7.203)
AedA ap
in Figure 22 if and only if
Sup ”TZ'W'” <1 (7204)
A€l

in Figure 23. Applying Theorem 10 we see that the specification (204), and hence
(202), will be met if

TeT'
!

z '

w

inf “T[a] [b](s)ﬂm <1 (7.203)

al} with A = 0 in Figure 23.

z

where T[a} [b (s) is the transfer function from [12;] to [

!

z L3

w

Furthermore it is clear that when ap = 0, (203) is equivalent to (201). Thus we

may regard the nonlinear stability requirement as a limiting case of the directional
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K(s)

Figure 24: An equivalent representation to Figure 23 with scalings absorbed into

Q2(s)-

sensitivity performance requirement (with ap = 0). Absorbing the scalings T, and

Jap, into @, (s) we may rewrite Figure 23 (with A = 0) as Figure 24 where w; = Lﬁ;J

and z; = [g,]. With this setup we have:

Objective 7.1 The nonlinear closed loop system of Figure 22 is stable and
1 .

| < — if the AWBT design, K(s), is such that
D

sup || Tzw
Aed
HT21W1(3)”°° <1 (7.206)

in Figure 24 for some T € T'.

Ideally we would like to obtain T and K(s) satisfying (206) simultaneously. While
this remains au unsolved problem, it is not difficult to obtain T aud K (s) iteratively.

In this scheme, T is fixed and an H* optimal solution, K (s), is found to solve
inf | T2y (8)]|oo = € (7.207)
K(as)

The resulting K(s) is fixed and an optimal scaling, T', is found which solves

732,;, 1T 25w, (8) oo (7.

~1
[1N]
o
o0
s
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This new scaling‘is then absorbed into the interconnection structure, (J;(s) of Fig-
ure 24, and a new H> optimal IA{(S) is obtained using the updated interconnection.
The procedure continues in this fashion, alternately solving for IA{(S) and T, until
there is no change in T' from one iteration to the next. (Readers familiar with u-
synthesis will recognize this as “D — K iteration.”) At this point if ¢ < | we may
conclude {by Objective 1) that the nonlinear closed loop system is stable and the
directional sensitivity performance requirement (202), has been met. If ¢ > | no
immediate conclusion may be drawn regarding directional sensitivity or nonlinear
stability. If infrez ||Tas(8)|lo < 1 for this design then nonlinear stability is guaran-
teed, although we have no guarantee that directional sensitivity will be acceptable. If
infrer | Tas(s)]|eo > 1, we have no guarantee of stability and must relax the directional
sensitivity performance specification (reduce the associated performance weight, ap)

and obtain a new design for the revised specification.

Mode Switching Performance

We assume that the mode switching performance specification is of the form

Mem(K(s)) < L (7.209)

Qg

where ag is a given scalar. This objective cannot be formulated directly as an H? or
H*® norm specification. Instead we modify this specification using an upper bound

on Mem(K(s)). From Corollary 4 we have

Mem(K(s)) < inf [[K(s) = Z||e (7.210)
Thus
Jinf_|as [&(s) - 2] k[oo <1 (7.211)

implies that (209) will be satisfied.
This infinity norm overbound on ]\/Iem(]i’(s)) is easily incorporated in the AWBT

synthesis problem. In particular, we introduce wy, z3, and the performance weight,



Figure 25: Introduction of the mode switching objective.
ag, as shown in Figure 25. In this arrangement we have:

Objective 7.2 The mode switching performance objective will be satisfied if

inf [ Tspun ()]0 < 1 (7.21

Z static

-1
o
[y
o
R

Rewriting Figure 25 to group the exogenous inputs, {g;], and controlled outputs

{z‘}, we obtain Figure 26. With Q2(s) of Figure 24 given by,

<2

Qus) = | ) Quld) (7.213)
QQI(S) Q?Q(s)
@3(s) of Figure 26 is given by
[ Qu(s) 0 Qus) O -
0 0 0 1
Qa(s) = (7.214)
Q(s) 0 Qxn(s) O
0 I 0 o]




202

Figure 26: Rearrangement to obtain a CSCS problem.

By construction the closed loop map in Figure 26, T[ZI] [Wl] (s), is of the form
2 w2

Tz w 0
Tr1[w1(8) = u (9) (7.215)
Bl N IE
As a result

”Tzlwl (S)HOO < 1 a'nd ”ngwz(s)“oo < l (7216)

if and only if
1T, 1700l <1 (7.217)

Ml

We have now formulated three of the four AWBT design objectives as a bound on the

H® norm of a closed loop map (217). This development requires that the “controller”

(7.218)

K(s) 0
0 K(s)-2Z2

be of specified structure. In particular, 12'(3) in the 1,1 and 2,2 blocks must be the
same and the 1,2 and 2,1 blocks must be zero. We will show later that this controller

is in fact of constrained structure in the sense of Definition 11. We first introduce the
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Wl“"—"""‘“.' Zl

Wz'm’ 22

A7 S Q (s) Z3
P

Figure 27: The complete AWBT synthesis problem as a CSCS problem.

remaining synthesis objective.

Recovery of Linear Performance

The linear performance recovery objective is given by (178) as
“Tzw('s)HZm'oo < 1 (7219)

where T,,, is the closed loop map in Figure 3 with N = I (177). In keeping with our

earlier practice we will generalize this specification by requiring, for a given scalar oy,
1 - f);’)
”Tzw(s)“2oroo L e (t.._..O)
ar

Defining an additional exogenous input, w3z, and weighted controlled output, z3, we
may incorporate this objective in the AWBT design problem as shown in Figure 27.

By construction T,,,,(s) in Figure 27 is given by

Topun(s) = ag [Puy + Pall = UPn = (I = V)P [UPn + (I~ V)Py]]  (T221)
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Recognizing that (221) is nothing more than a weighted version of the linear perfor-

mance recovery objective (219) we have:

Objective 7.3 The linear performance recovery objective will be met if
1T (8) oo < 1 (7.222)

By construction the closed loop map in Figure 27 is of the form,

T31w1(‘5) 0 0
TH [ wl} (s) = 0 Tau(s) 0 (7.293)
‘z “‘j 0 0 ngum(s)

We note that for @Q3(s) of Figure 26 given by (214), the @(s) and Y(s) required to

generate a closed loop map of this form in Figure 27 are given by

[ Qu(s) 0 0 Qus) 0 0

0 0 0 0 I 0

20 = 0 0 Pu(s) O 0 Pus) —
Q;l(s) 0 0 Q‘ZQ(S) 0 O
0 1 0 0 0 0

0 0 PQI(S) 0 0 P-ZQ(S) |

K(s) 0
T(s) = 0 K(s)-2Z 0 (7.223)
0 0 K(s)

If T(s) is of constrained structure (in the sense of Definition 11) then the AWBT
synthesis problem, as developed in Figure 27, is a CSCS problem of the form discussed
in Section 7.11.1. To demonstrate that this is indeed the case, we show that T(s)
can be parametrized in terms of the constant matrices H,, H;, and Z, and show
that a state space realization exists with state space matrices affine functions of these

constant data matrices.
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7.11.3 Parametrization of Y (s)

Given a realization of the initial linear design,

A|B
K(s) = (7.226)
C|D

we may parametrize all admissible I;’(s) in terms of the constant matrices H; and H,
as in (16) and (17).

Generically K (s) will be of the same order as the realization chosen for K (s).
While we do not require this realization to be minimal, introducing additional states
in K (s) increases the order of K (s). We have no formal result which relates achievable
AWBT performance to the order of f((s), but minimizing the number of states in
K(s) is consistent with our objective of minimizing Mem(K(s)).

Using (16) and (17) it is easy to see that a state space realization of the constrained

structure block, T(s), is given by

K(s) 0 0
T(s) = 0 K(s)—Z 0 (7.227)
0 0 K(s)
PA-—H;C 0 0 |B-HD H 0 0 0 0 ]
0 A-H\C 0 0 0 B-H\D H, 0 0
0 0 A-HiC| o 0 0 0 B-H\D H -
= (7.228)
H,C Q 0 H,D  I-H; 0 0 0 0
0 HaC 0 a 0 HD-Z I~-Hy~Z 0 )
| o 0 HC | 0 0 0 0 HD  [-Hy |

As desired the state space matrices in this realization are affine functions of the
constant matrix design parameters H,, H,, and Z. Thus the AWBT design problem
of Figure 27, involving all four AWBT design objectives, amounts to a constrained

structure controller synthesis problem.
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If the H* norm is used in the linear performance recovery objective, we have a

pure H* CSCS problem. In this case n of Figure 19 is given by

wy
M= 1 wy (7.229)
Ws
(y is given by
21
G1=| z (7.230)
23 |

and (, is neglected (there are no H? objectives).

With these definitions T¢,,(s) is given by

T w (8) 0 0
Tea(s) = 0 T.,u,(s) 0 (7.231)
0 0 T23w3(3)
so that

[Tein(s)]leo <1 (7.232)

if and only if
L Taun ()]l < 1 (7.233)
2. Taw(s)le < 1 (7.234)
3. [ Taus(s)ll < 1 (7.235)

Thus a solution to the CSCS problem which provides
[Tein($)loo < 1 (7.236)

generates a K (s) which satisfies all of the AWBT design specifications.
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In the case that the linear performance recovery specification is given in terms of

the H? norm, we obtain a mixed-norm CSCS problem. The appropriate definitions

are,
wy
5
n=|w | G= =1z (7.237)
22
Wy
The CSCS problem is then
inf ||T 7.238
2t [ Tezn(s)ll2 (7.238)
Subject to:
ITein(8)lloo < 1 (7.239)

If the K(s) which solves this problem provides ||T¢,,(s)||l2 < 1 then we are assured

that all of the AWBT performance specifications have been met.

7.11.4 Summary of the Design Procedure

At this point it is worthwhile to summarize the development of the AWBT synthesis

problem.

Overview of the Problem Formulation

Given the performance weights ap, as, ar, the nonlinear stability, directional sensi-

tivity, inode switching and linear performance recovery objectives are respectively,

). Taian (9)lleo < 1 (with ap = 0)

i), inf [ Tayu (5)]leo < 1

TeT

). [/ Tepu ()]oe < 1

iV). ”mes(s)HL’orm <1
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Using the algebraic (block diagram) development in Section 7.11.2 these individual

objectives are combined to yield the objectives
ITein(s)lleo < 1 (7.240)

and

inf [ Ten(s)ll £ o (7.241)

written solely in terms of the closed loop transfer functions from cxogenous input, 7,
to controlled outputs ¢; and (; in Figure 19. This development produces a mixed-
norm constrained structure synthesis problem when the linear performance recovery
objective is stated in terms of the H? norm, or an H* norm CSCS when the linear
performance recovery objective is stated in terms of the H*® norm.

Any design which satisfies (240) and provides €, < 1 is guaranteed to result in a
stable closed loop system and to meet the weighted performance objectives stated for

the design.

Overview of the Solution Procedure

In general an AWBT design will proceed through the following steps.
1. Select performance weights, ap, as, ar.
2. Initialize the scaling matrix T (typically to the identity).

3. Construct the CSCS problem (Figure 19), absorbing the performance weights
and scaling matrices into the CSCS interconnection structure.

4. Solve the appropriate CSCS problem (for fixed T').

. A . JaY c
gitf NTaollz = @ pinf |Tepfle = e (7.242)

Subject to : ITeinlle < 1 (7.243)
by reduction to static {eedback to generate IA{(.‘S).
5. Solve
1!2';' 1T 2w ||oo (7.244)
for fixed K(s).
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6. Return to 4. using the newly determined scaling matrix T. Iterate until T
remains unchanged from one iteration to the next.

7. If €, < 1 (respectively €5 < 1) then the solution to the CSCS problem, K (s),
satisfies the imposed stability and performance specifications. In this case we
may stop and adopt the current K(s). Alternately we may wish to impose
tighter performance specifications by adjusting ap, as, and af and return to

1.

too ambitious, i.e., either no admissible K (s) exists which achieves the desired
performance specifications or the conservatism of the directional sensitivity ob-
jective prevents us from finding one. In this case we must relax some or all of
the weights, ap, ag, ar and return to 2.

8. If €2 > 1 (respectively €x => 1) then the given performance spccifications arc

The selection of ap, ag, and «f, is obviously central to this iterative procedure.
The relative magnitudes of these weights determine the relative importance of the
directional sensitivity, mode switching, and linear performance recovery objectives.
It should be pointed out that nonlincar stability is guaranteed if ¢; < 1 (e < 1) for
any value of the performance weights ap, as and ay,.

The “natural” choice for the linear performance recovery objective is oy = 1.0.
With this choice we meet the linear performance specifications stated for the initial
design, (178). There are no corresponding “natural” choices for s and ap. In general
we will want to push the design as much as possible by increasing as and ap in order
to minimize Mem(K (s)) and directional sensitivity while maintaining stability and
the desired linear performance.

The directional sensitivity objective is enforced using the sufficient condition of
Theorem 10. As discussed in Section 7.10 this result is conservative, i.e., ||T;,y, |lco
represents only an upper bound on the worst-case performance admitted by the given
conic sector model of N. As a result it is not necessarily a good idea to “push” the
design too far using ap. Doing so will reduce the upper bound, g, on the worst-case

L. gain of the nonlinear closed loop system (Figure 3)

p > sup [Tl (7.245)
Aed

at the expense of the other performance objectives, but in fact may not necessarily
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improve the nonlinear performance provided by the particular nonlinearity, N, in the
given conic sector model.

The mode switching objective,
inf [T, (5)loo (7.246)
K(s)

derived for the AWDT synthesis problem also represents an upper bouud ou the true
objective

inf Mem(K(s)) (7.247)
K(s)

We see from Corollary 4 however that this upper bound is relatively tight if Ii’(s) is of

-

low order or if 0;(K(s)) decrease rapidly with i. Given that our definition of dynamic

memory was somewhat arbitrary — a reasonable alternative definition is given by
Mem(K (s)) = |IK (s)lln (7.248)

for which (211) is a lower bound - this objective is easily justified.
With these observations we recommend the following recipe for selecting ap, as,

and af.

1. Start with ap = 0, ag < 1, ar, = 1.0. This choice results in a design which
provides nonlinear stability and linear performance recovery. The mode switch-
ing and directional sensitivity performance may be poor. If with this choice
of weights e; > 1.0 (respectively e, > 1.0) we cannot guarantee stability even
with relaxed mode switching and directional sensitivity requirements. In this
casc the initial linear design, K (s), should be reconsidered.

2. Increase ag until ¢; = 1.0 (€ = 1.0). This pushes the mode switching objective
as far as possible subject to stability and linear performance recovery.

3. Assess directional sensitivity of the resulting design. To do this we evaluate
upper and lower bounds on the L;, norm of the nonlinear closed loop system.
An upper bound is provided by pu = infrez || T;,u, (8)|lco- An easily computed
lower bound is provided by replacing N with any linear transformation in M A,
e.g., if 0 € M; o a meaningful lower bound is provided by

pLe = || Pu(s)lleo (7.249)

as discussed in Section 7.10. If these bounds are close there is little to be
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gained by trading off directional sensitivity against the other objectives. If these
bounds are not close, and g is unacceptably large, we may suspect a problem
with directionality sensitivity. If nonlinear simulations confirm this sensitivity,
and the direction preserving idea of Section 7.10 cannot be applied, we have no
choice but to reduce as and/or ay, and increase ap to generate a new design.

7.12 Conclusions

Beginning with a very general overview of the AWBT problem we have developed a
complete theoretical framework for its study. The framework is sufficiently general to
allow the consideration of multivariable controller designs of arbitrary dimension and
order. This generality allows us to consider any control system structure, including
feedforward, feedback, multiple degree of freedom, cascade, and general non-square
controller designs.

Given mild restrictions on the allowed AWBT compensation, that it not affect the
linear design when the actual plant input is equal to its measured or estimated value,
and linearity of the AWBT compensated controller, we provide a parametrization
of all admissible AWBT designs in terms of the constant matrices H; and H,. It
is shown that this formulation contains, as special cases, all of the (linear) AWBT
schemes which appear in the literature. In addition, the general formulation allows
us to relax an assumption which is universally adopted in previous work but never
satisfied in practice. In particular we do not assume that a perfect measurement or
estimate of the actual plant input is available. The most significant advantage of the
general framework, however, is that it allows us to generalize the characteristics of
proven AWBT schemes well beyond the narrow application oriented scope in which
they were developed.

To this end we have identified a number of design issues which enter the general
AWDBT problem. In particular we consider nonlinear stability, mode switching per-
formance, linear performance recovery, and directional sensitivity issues. Analysis
techniques are developed which generate quantitative measures of suitability in each

of these areas.
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Using conic séctor models of limitation and substitution mechanisms together
with well-known small gain results, we derive an easily computed condition which
guarantees nonlinear stability. The importance of exploiting known structure of the
limitation/substitution mechanism in the stability results, by using block diagonal
scaling matrices, is indicated. The stability result developed (Theorem 6 and its
Corollary) represents a generalization of the hyperstability theory based results in
the AWBT literature. In addition to addressing more general (i.e., multivariable)
problems, the results are less conservative than those which do not include structured
scalings (multipliers).

The concept of dynamic memory is introduced and its connection to mode switch-
ing performance is demonstrated. This represents a first step in addressing general
performance objectives in AWBT design rather than adopting a particular AWBT
scheme and adjusting “tuning parameters” until nonlinear simulation suggests ac-
ceptable performance will be realized. There appear to be advantages in minimizing
controller memory in other contexts as well. In particular this can be viewed as a
method for closed loop controller reduction and may allow simple (low order) linear
controller desigus to be obtained which meet prescribed H? or H® performance spec-
ifications. Additional work in this general area, minimizing controller “complexity,”
1s on-going.

We outline, for the first time in the AWBT literature, the importance of the
linear performance recovery objective. The connection between this objective and
the assumption that a perfect estimate of the plant input is available is considered in
some detail.

These analysis results lead naturally to a quantitative AWBT synthesis proce-
dure. Incorporating each of the four objectives outlined above, we show that the re-
quired synthesis problem may be stated as a constrained structure controller synthesis
(CSCS) problem. An iterative design procedure, involving adjustment of weights on
each objective, is outlined. This procedure lets the designer obtain an AWBT design
which represents an acceptable trade-off of the conflicting objectives.

With these results a design engineer has a theoretically sound basis for the design
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of AWBT COlllpéllsatiOII for MIMO controllers of arbitrary order and complexity.
Resolution of these “implementation issues” for controllers obtained using “optimal”
multivariable synthesis theory should allow these design techniques to have some
impact in practical applications.

A number of areas remain the topics on on-going research. These include:

o Methods which will allow us to obtain computable results in the nonlinear
stability test with scalings, T', which are more general than the set of constant

matrices, 7.

¢ Improved methods for obtaining conic sector models of practically relevant lim-
itation and substitution mechanisms. These methods would be improved in the

sense that they result in less conservative analysis tests.

e Improved techniques for solving the static output feedback problem which re-

sults from the CSCS problem of Section 7.11.1.

e Methods of assessing achievable AWBT performance and the effect of the initial

linear design, K(s), on achievable performance.

e Methods for the design of mode sclection mechanisms. Having addressed the
issues involved in coupling these mechanisms to linear controller design, we are

in a position to address the design of these schemes themselves.

o Studies of systems which show drastic performance degradation which is not
the result of controller state initialization errors. Examples include double and
triple integrators. These plants do not exhibit graceful performance degradation

even when Mem[K(s)] = 0.
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Appendix A — Passivity of Z(s) for H?> Optimal
State Feedback Design

In this appendix we demonstrate that

Ap | Bsp
-F| I

Z(s) =

where F is an H? optimal state feedback gain, is strictly passive. The proof given

here uses the notation of [33] which treats the “standard” H? problem for the plant

(44). An alternate proof, applicable to saturation nonlinearities is provided in [85].
We will need the following version of the positive real lemma (see [1]).

Lemma 7.3 Z(s) = [g—%] with (A, B) stabilizable is (strictly) passive if and nly
if 3P =PT >0 (>0), L, and Wy such that

ATpyPA = —LIT (7.251)

PB = CT-LW, (7.252)

WIW, = D+ DT (7.253)

Proof Seel[l]. , n

We assume that F' is the optimal state feedback gain for the plant (44) given by
F=-BILX (7.254)

where X > 0 satisfies the Riccati equation
ALX + XAp — XBypBL, X +CL.Cip =0 (7.255)

(Note that (Ap,C,p) observable is sufficient to guarantee X > 0.)
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Rewriting {255) we have

1 1 ;
(Ap — §BsPB§PX)TX + X (Ap = 5B3pBipX) = —C{pCip (7.256)
or
1 1 - o
(Ap + -éngF)TX + X(Ap + 5B3pF) = —=C{pCip (7.257)

Since X > 0 and C{pC1p > 0 we conclude (by Lyapunov’s Theorem) that Ap+1Bsp F
is stable (in the sense that any z(t) which satisfies ¢ = (A + 3 Bsp F')z 15 bounded for
any z(0)). In order to rule out the possibility of jw axis eigenvalues of A + %B;}PF
we assume that (Ap + %B3pF, Cip) is observable.

To show that Z(s) is strictly passive, we demonstrate the existence of Wy, L, and

P which satisfy the conditions of the positive real lemma. Let
Wo= V21 (7.258)

and
_l
V2

so that (252) and (253) of Lemma 3 are satisfied. With these definitions (251) becomes

L = —=(FT + PBsp) (7.259)

ALP + PAp = --;-(FT + PBap)(FT + PBsp)T (7.260)
which is equivalent to
1 1 1
(Ap + 'Z'BaPF)TP + P(Ap + ;ngF) = ”§(FTF + PB3p B P) (7.261)

But Ap + 1B;pF is stable and FTF + PB3pBipP > 0. Assuming that (Ap +
%BaPF, F) is observable this implies P = PT > 0. Thus, by the Lemma 3, Z(s)
is strictly passive, and we are guaranteed that the extended Kalman filter AWBT

implementation is stable for all N € M;r,.



Chapter 8

Conclusions and Suggestions for
Further Work — Part II

8.1 Summary of Contributions

A general theoretical framework has been developed to treat the multivariable AWBT
problem. This theory borrows heavily from known results in linear systems theory and
provides the practitioner with quantitative analysis and synthesis tools for designing
control systems which must deal with constraints. Relevant extensions of the linear
results to handle conic sector bounded memoryless nonlinearities have been developed.

A novel technique for modelling multivariable saturations and the nonlinear ele-
ments used to provide mode selection, in terms of a linear fractional transformation
on a conic sector bounded structured nonlinearity, has been developed. This class of
models has been shown to be rich enough to include essentially all known mechanisms
which result in plant input limitations or substitutions.

A quantitative objective for mode switching performance, minimization of con-
troller dynamic memory, has been developed for the MIMO AWBT problem. This
quantitative objective allows designers, for the first time, to analyze and synthesize
AWBT schemes with analytical, rather than heuristic, techniques. This analytic ap-
proach is shown to reproduce the proven heuristics (e.g., Pl anti-reset windup) in
simple examples. The most significant advantage of the analytic technique is that it
quantitatively captures the essential factor in AWBT performance, controller memory.

and extends trivially to complex (MIMO, high order) control systems.
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The identiﬁed-stability and performance objectives are brought together to formu-
late the first theoretically justified optimal AWBT synthesis problem. The synthesis
problem is shown to be a special case of a constrained structure controller synthe
sis (CSCS) problem. While general methods for solving CSCS problems are not yet
available, early results using a numerical approach are very encouraging.

A directional sensitivity problem, for certain MIMO systems subject to actua-
tor saturations, has been discussed and a simple and effective (if ad hoc) solution
developed. It has been learned that ill-conditioned plants and certain decentralized
control variable parings (in particular negative RGA pairings) introduce significant

limitations on AWBT performance.

8.2 Suggestions for Further Work

The directional sensitivity results provide the first hint of results which will quantify
achievable AWBT performance. Now that quantitative performance analysis tools

are available, it is important to understand the impact on achievable performance of:

¢ Intrinsic characteristics of the plant. e.g., right half plane poles and zeros,
or ill-conditioning. The discrete time AWBT problem should be studied in

detail to identify any fundamental issues unique to the discrete time case.

e The initial linear controller design. Traditionally the linear design, K (s),
has been obtained ignoring limitations and substitutions. Then AWBT com-
pensation is added. It is important to understand when this decomposition can
be justified in terms of achievable AWBT performance. For example, certain

characteristics of K(s) may severely limit achievable AWBT performance.

e Model uncertainty. The tools for robustness analysis are in place but they

have not yet been used to study the simultaneous impact of constraints and

plant-model mismatch on closed loop stability and performance.

In addition to these applications of the theoretical tools developed, the following

refinements of the tools should be pursued.
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e Real versus complex perturbations. The softwarc tools uscd to evaluate
nonlinear stability and performance currently treat the conic sector bounded
nonlinear perturbations as complex. Since these nonlinearities are memoryless
only real perturbations need to be considered. Improved methods for the com-
putation of real-p should allow significant reduction in the conservativeness of

the analytical tools.

¢ More general multipliers. It is known that scalings other than the constant
matrices used in this work are allowed in the stability and performance tests. If
a convenient parametrization of a more general class of scalings can be found,

the analysis tests will be improved.

e Direct synthesis for controller dynamic memory. The current AWBT
synthesis problem uses'an H* overbound to minimize Mem(K(s)). Since the
controller memory is easily characterized in the time domain by the control-
lability and observability grarﬁmians, and the optimal static output feedback
problem is also solved in this domain, it may be possible, by augmenting the

required Riccati/Lyapunov equations to minimize Mem(K (s)) directly.

e Application to additional “real world” examples. The true test of the
theory lies in applications to nontrivial examples. It is hoped that the theory
will eventually provide enough insight that good designs can be obtained very
simply. It is hoped that eventually the optimal synthesis problem need only be

applied to problems with very stringent performance requirements.

An entirely new line of investigation, using the Hankel norm as a measure of
controller memory (and perhaps complexity as well) is justified. With the AWBT
synthesis problem we have demonstrated how novel design objectives, such as min-
imizing controller memory, can be incorporated in systematic synthesis procedures.
To the extent that many important design issues in real world engineering problems
cannot be incorporated in the current optimal synthesis theory, it is important to
investigate these novel extensions. A particularly significant area of research is to

understand the trade-off between controller complexity and achievable performance.



Appendix A

Decentralized Control System
Design for a Heavy Oil

Fractionator — The Shell Control
Problem

| Abstract

A hierarchical control system is developed for the heavy oil fractionator described
in [80]. A series of analysis and synthesis steps are presented which guide the design.
The focus of the analysis steps is the evaluation of achievable closed loop performance,
independent of controller design. The synthesis steps then produce a control system
which (nearly) realizes this performance level. The design and analysis tools used are
evalnated in terms of the insight they provide in this application, and their applicahil-
ity to more general problems. Specific areas in which theoretical results are needed to
complement the existing tools for solving practical design problems are identified. A
solution to the design problem which addresses all control objectives and observes all
control constraints is presented. Simulation studies are provided which demonstrate

the characteristics of the closed loop system.
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A.1 Introduction

A.1.1 Problem Overview

The control system design problem addressed in this paper is based on the problem
statement presented in The Shell Process Control Workshop [80].

Figure 1 shows a schematic diagram of the fractionating column and lists the
abbreviations used throughout the paper. The block diagram in Figure 2 defines the
signals referred to as disturbances, d, controlled variables, y, measured variables, y,,,
and manipulated variables, u. In general, the controlled variables, y, will be a subset
of the measured variables, y,,.

The Shell Control Problem is an interesting benchmark problem, on which avail-
able theoretical approaches can be tested, because it includes many features — model
uncertainty, input and output constraints, and an economic performance objective
(optimization) — each one of which is of significant importance. Existing theoretical
frameworks can easily handle any one or two of these features — the problem becomes
challenging only when all aspects are considered simultaneously, as must be done in
any realistic setting. We regard this problem as an opportunity to apply whatever
design and analysis techniques allow us to solve the entire problem - with all ob-
jectives considered - rather than as a chance to “sell” a particular pet methodology

which considers only a subset of the problem objectives.

A.1.2 Problem Statement Interpretation

While the problem statement is relatively complete, many issues are not sufficiently
explicit or are subject to interpretation. In this section we outline all interpretations
which we have adopted in our treatment of the problem. We recognize that the
problem statement lends itself to other interpretations which are perhaps equally

valid; we adopt the following specific clarifications for concreteness.
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Measurements
TEP Top endpoint
SEP Side endpoint
TT Top temperature
URT Upper reflux temperature
spT Side draw temperature
IRT Intermediate reflux temperature
BRT Bottoms reflux temperature
Manipulated Variables
D Top draw
SD Side draw
BRD Bottoms reflux duty
Disturbances
URD Upper reflux duty
IRD Intermediate reflux duty

Figure 1: Schematic view of the fractionator identifying all measured variables, ma-
nipulated variables, and unmeasured disturbances.
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Disturbances,

w [22]

Controlled
Variables, y Setpoints, 8
- Control
Plant B
Manipulated System
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™
URT
Ym = SDT
IRT
BRT

Figure 2: Block diagram of the overall system.

Control Objectives

We have prioritized the stated objectives as follows:

L.

Provide integral action on TEP and SEP.
Maintain {TEP| < 0.5 at all times.

Achieve a closed loop speed of response for TEP and SEP between 0.8 and
1.25 times that of the open loop speed of response. We will use settling time
(5%) of the nominal plant for step setpoint changes as our measure of speed of

response.

Achieve steady state offset in TEP and SEP less than 0.5 {or arbitrary {RD
and URD step disturbances of magnitude less than 0.5 in the event of endpoint

analyzer failure.
Maintain BRT > —0.5 at all times.

Minimize BRD. (Maximize heat recovery.)
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Constraints

We recognize a number of physical limitations which are absolute and not subject to

interpretation by the designer. These are

1. Sampling time > 1 minute.

2. |TD| <0.5,

S$D| <0.5, [BRD| < 0.5.

3. Maximum move-size of 0.05/min for TD, SD, and BRD.

We regard 2. and 3. as equipment limitations such that if the control system demands

values outside this range, the limiting value is applied.

Disturbances

We consider disturbances d(t) = [é%%] in the following class

d e {d(t) : |d(t)]|e <05V t) (A1)

where ||z|| = max|z;| is the infinity norm on R".

We recognize that our control system must meet Control Objectives 1-6 in re-
sponse to disturbances that consist of arbitrary combinations of JRD and U RD such
that the magnitudes of IRD and URD remain less than 0.5. We will primarily be
concerned with low frequency (step like) disturbances but we will not limit ourselves
to this in the design.

We also recognize that the system will be subject to unmeasured disturbances
other than IRD and URD. The control system must be able to reject these distur-
bances as well. It is understood that the physical measurements will be corrupted by
“measurement noise” at high frequencies and the control system must be insensitive

to these noises.
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Uncertainty

We acknowledge that the uncertain model parameters ¢;, 1 = 1,...,5 are independent
and vary between 1, i.e., the actual plant may correspond to any combination of ¢; as
long as each ¢; is less than 1.0 in magnitude. It is understood that the true plant may
change during operation in the sense that the ¢; need not be fixed (although unknown)
but may be time varying. We further recognize that, although this is not mentioned in
the problem statement, these models are inaccurate at “high” frequencies (relative to
the open loop bandwidth), and recognize that this uncertainty may limit our design.

Throughout the paper references to the nominal plant imply ¢; =0, : =1,...,5.

A.2 Design Philosophy

Our design philosophy is to produce a solution which is as simple as possible and
simultaneously satisfies all of the stated Control Objectives. The approach we take
to obtain such a solution is to decompose the overall problem into a series of smaller
problems, each addressed individually. The control blocks designed for these sub-
problems are then combined to form the overall control system. In adopting this
approach, careful consideration is given to the combination of the control blocks into
a complete solution. In particular, we are interested in performing the decomposition
and individual designs in such a way as to minimize interaction between subproblems.

This approach is contrasted with the alternate class of techniques which address
the complete system and all objectives simultaneously. By decomposing the problem
into smaller manageable pieces, valuable insight is obtained about trade-offs in ob-
jectives. For example, how do reprioritizing, modifying, or deleting objectives affect
the final solution? This question is addressed in detail throughout the remainder of
the paper.

In order to maintain simplicity, we restrict ourselves to using existing theoretical
tools as much as possible. We also note that an explicit objective of this work is
the assessment of existing theoretical tools and the identification of areas where new

theoretical results are needed to complement the existing theory.
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A.3 Achievable Steady State Performance

A.3.1 Gencral Methodoelogy

In this section we present a general analysis technique for determining the achievable
steady state performance for a system described by a set of uncertain steady state
models subject to steady state disturbances of bounded magnitude. We are interested
in studying characteristics of the model, uncertainty, expected disturbances, and con-
straints which limit steady state achievable performance independent of control system
design. Application of this technique to the Shell Control Problem provides valuable
insight regarding the trade-oft between the optimization objective, constraints, and
maximum disturbance magnitude which can be accommodated at steady state.

We consider:

1. A scalar performance objective in terms of the controlled variables, y, and

manipulated variables, u, of the form
min f(u,y) (A.2)

2. Steady state performance objectives and constraints which can be stated in

terms of equality or inequality constraints of the form

glu,y) SO (A.3)

3. A set of steady state models, G{e¢) : (u.d) — y, parametrized by uncertain

parameters ¢, in the set

e€€ 2 {e:lelloo < €maz} (A.4)

4. Disturbances, d, which obtain steady state values which satisfy

(@1}
~——

deD 2 {d:||d|lo < dmas) (A
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We wish to evaluate the optimum value of the performance objective (2) as a func-

tion of the constraints (3)-(3). Formally we pose the following optimization problem:

doL = min max flu,y) (A.6)

Subject to:
glu,y) < 0 (A7)
y = Gleu,d) (A.8)

The solution to (6)-(8) provides the best performance possible for an “open loop”
control design which determines u without using feedback information about the true
plant and realized disturbance. In writing muin Jax, (u,y) we imply that u is known
when ¢ and d are selected. Clearly in the generic case, where we require integral action
on some subset of y, and dms, # 0, (6)-(8) has no feasible solution. (For any fixed u it
is trivial to find a d and € which produces y # 0.) By convention, we define ¢o; = o
in this case.

We can also pose the companion closed loop problem. In this formulation, we
assume that by using feedback the control system can eractly determine the true

plant (¢) and realized disturbance (d), at steady state. We postulate values of €,

and d,,,. and ask:

1. Is there a feasible input, u, which meets the specifications, g, for every possible

plant and disturbance?

2. If so, what is the optimal performance, ¢cr, for the worst-case plant and dis-

turbance?

In order to answer 1. we pose the optimization problem:
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A = i (4 (
OCL pranminey = DX TN D (A.9)

Subject to:
g(u,y) < b (A.10)
b > 0 (A.11)
y = G(e u,d) (A.12)

The max min formulation, as opposed to min max for the open loop problem, implies
that € and d are known when u and b are selected. Clearly if ¢cr,,,, ., = 0 the
answer to 1. is yes and it is meaningful to ask 2. If ¢cr,,,,40., > O then there
is a plant and disturbance for which the performance specifications and constraints,
g(u,y) <0, cannot be satisfied and we assign ¢cp = oo.

AsSuming écr .., = 0, We answer 2. by solving:

¢cr = max min f(u,y) (A.13)

Subject to:
g(w,y) < 0 (A.14)
y = G(eu,d) (A.13)

Since écr,, ..o, = 0, this problem always has a feasible solution. In general, the
converse is not true, i.e., existence of a feasible solution to (13)-(15) does not imply
DCL jeamvitizy = 0- $cr defines the optimum worst-case performance we can expect for
any control system design. As such it is a meaningful benchmark against which to
evaluate the performance of various control system candidates.

By solving the closed loop problem subject to various assumptions regarding dis-
turbances (the value of dyn4z), uncertainty (€mqz), and including and excluding various
performance requirements and constraints, (g), we can evaluate the cost in terms of
the objective function,(f), of individual constraints and specifications.

For example we might evaluate ¢¢y as a function of d,4z, by solving (9)-(12) and

(13)-(15) with increasing values of dpnaz until a point is reached where ¢cr,,.., 00, 7 0



228

This tells us not .only the sensitivity of d¢cp to dpmasz, but also the maximum distur-
bance magnitude which can be handled subject to the performance requirements and
constraints, g. Similar studies can be undertaken to study the effect of model uncer-
tainty.

Obviously these optimization problems may be difficult or impossible to solve
in the most general case. However, this approach results in simple linear programs
(LP’s) when some common simplifying assumptions are adopted, as an application

to the Shell Control Problem demonstrates.

A.3.2 Application to the Shell Control Problem

For the Shell Problem, we have:

1. The economic objective,

min  BRD (A.16)

TD,SD,BRD

2. The steady state specifications,
ITEP| < 0.005 (A.17)
|[SEP| < 0.005 (A.18)
BRT > -0.5 (A.19)
and manipulated variable constraints,

ITDl < 0.5 (A.20)
|SD| < 0.5 (A.21)
|BRD| < 0.5 (A.22)

3. Models of the form,
5
G =Gyt aE (A.23)

t=x]
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where GGy is the nominal steady state gain matrix, £; are fixed perturbation

matrices, and € € & with €,,,. = 1.0,

4. Disturbances defined by,
IRD
d= eD (A.24)
URD
Because the system is subject to unmeasured disturbances and the model is not
exact, we cannot hope to satisfy the integral action requirements for TE'P and SEP
by selecting TD, SD, and BRD in an open loop fashion. That is ¢or = oo for this

problem. !

We next study the closed loop problem:

$¢cr = max min BRD (A.25)

€&,deD TD,5D,BRD

Subject to: ITEP| < 0.005
[SEP| < 0.005
BRI 2> -0.5 )
(A.26)
ITD] < 0.5
ISD| < 0.5
IBRD| < 0.5

Since the objective (25) and all constraints (26) are affine functions of € and d, it is
sufficient (see [19]) to consider only the extreme values of the allowed disturbances,
IRD, URD, and the uncertain parameters ¢; (in all combinations). Furthermore,
existence of a feasible solution to (25)-(26) implies ¢cr,., i, = 0- This allows us

to dispense with the gencral fecasibility problem (9)-(12) and address ¢cp directly via
(25)-(26).

1This is obvious if we require TEP = SEP = 0, and also holds for |TEP| < .005. |[SEP| < .005.
[n order to simplify the presentation we will often require true integral action, TEP = SEP = 0.
although the analysis does not require this.
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Defining the set © as the 27 corner points of the hypercube defined by e € £,d € D,

we can rewrite (25)-(26) as:

ocr = max V(e d) (A.27)
[;]ee
Subject to: ¥(e,d)= min_BRD (A.28)
TD,SD,BRD
Subject to: ITEP| < 0.005
|ISEP| < 0.005
BRT > -0.5 ,
(A.29)
ITD| < 0.5
ISD| < 0.5
|[BRD| < 0.5

The subproblem (28)-(29) is simply a linear program (with € and d fixed) so the
evaluation of ¢¢r involves the solution of a finite number (27 in this case) of LP’s.
Actually some simple physical insights allowed us to solve far fewer problems than
this.

The results of this computation are shown in Figure 3. Here we have plotted ¢¢
as a function of d,,,,. The values of ¢; corresponding to the worst-case plant, and the
worst-case disturbances are indicated as well.

The largest value of d.... for which feasible solution can be found is 0.932, in-
dicating that for all expected disturbances (dma: = 0.5) a combination of TD. SD,
and BRD exists for which all specifications and constraints (17)-(22) are met for all
plants and disturbances. For the worst-case plant, with no disturbance (d,.,x = 0)
we can obtain a steady state BRD value of —0.135. For the worst-case disturbance

of magnitude 0.5 or less we can obtain BRD = 0.078 at steady state.

Conclusion A.1 The steady state specifications can be met, for allowed models in
E, and all allowed disturbances in D with dpe, = 0.5, f TD, SD, and BRD are

adjusted on-line.
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Minimum Achievable

Case BRD at steady-state
1 - 0.2179

2 0.0782

3 - 0.2146

4 - 0.3407

5 0.0386

Table 1: Minimum achievable steady state BRD for each of the prototype test cases.

Conclusion A.2 Simultaneous negative IRD and URD disturbances most limit

BRD minimization.

For all plants and disturbances the limiting constraint at steady state is either
T D saturation or the minimum BRT specification. In fact it can be shown that SD

saturation is never active at steady state unless 7D saturation is as well.

Conclusion A.3 In operation T D will approach its upper limit and BRT its lower

limit as BRD approaches its minimum achievable value.

We have shown in Table 1 the minimum achievable steady state BRD for the
specific plant and disturbance given for the 5 prototype outlined in the problem
statement. These values are useful in assessing the performance of various control
system designs.

Using all three available manipulated variables, we can meet the steady state
objectives. We next consider the possibility of setting BRD to a fixed value (the
simplest possible heat recovery maximization scheme) and using 7D and SD to meet
the other control objectives. This corresponds to a mixed problem in which 7D and
SD are used in closed loop to attain integral action on TEP and SEP while BRD

1s selected off-line. In other words we ask:
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“ What is the minimum fired value of BR D which is consistent with the
steady state specifications for all possible plants and all possible distur-

bances?”

We require true integral action so that at steady state:

IRD
TEP TD
= = Gy, + Gy | URD (A.30)
SEP SD
BRD
and TD and SD are uniquely determined by
IRD
TD . .
=—~G,,Gya | URD (A.31)
SD o
BRD
We then puse
o . A 19
@fized BRD = IR MAX BRD (A.32)
Subject to: BRT > —-05
D] < 0.5 ;
(A.33)
|ISD| <€ 0.5
|[BRD| < 0.5

where T'D and SD are given by (31).
Here the objective function is independent of ¢ and d so we can rewrite (32)-(33)

as the semi-infinite LP:

fized BRD = N BRD (A.34)
Subject to: BRT > —05 )
ITD| < 0.5 o
b VdeD and Vee & (A.35)
ISD] < 0.5
IBRD| < 0.5
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Figure 4: Solution to the optimal closed loop steady state performance problem (*)
and limiting curves for the five prototype test cases.

Using the fact that the constraints are affine in € and d allows us to obtain the finite

LP:

@fized BRD = glég BRD (A.36)
Subject to: BRT > -05 )
ITD| £ 0.5 €
vV €0 (A.37)
ISD| £ 0.5 d
|BRD| < 0.5

We plot @fized BRD as a function of dy,,, as curve * in Figure 4. Table 2 indicates
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Active Largest
Constraint as Feasible Ofixed BRD
Case (€1, €7, €3, €4, €s) dmayx increases dmax dmax =0
Worst -1, -1, 1, 1, D BRT = 0.5 -0.135
Case (%) TD =0.5 0.353
1 (0. 0, 0, 0, O) TD =0.5 0.743 -0.318
2 -1, -1, -1, 1, D D =0.5 0.353 -0.187
3 (1,-1, 1. 1, 1) BRT = 0.5 -0.334
D =05 0.982
4 (L L, L LD BRT = -0.5 -0.295
™D =0.5 0.946
5 (-1, 1, 0, 0, 0 BRT = -0.5 -0.138
TD =0.5 0.402

Table 2: Active constraint in the optimal open loop steady state performance problem
(*) and for cach of the prototype test cases.
the active constraint limiting a reduction of BRD and the maximum value of d,,,, for
which a feasible solution exists. These results indicate that we cannot meet the given
steady state performance objectives for all models (23) and all disturbances (24) with
dmez = 0.5 with any fized value of BRD. In fact the maximum magnitude of an
arbitrary disturbance which can be handled for all models is 0.35, and the minimum
possible value for BRD even when there is no disturbance is —0.135. The worst-case
plant is given by ¢ = —1,¢6; = —1,e3 = 1,64 = 1,65 = 1.

For comparison we have plotted the minimum achievable BRD as a function of
dmar for the models corresponding to the 5 prototype test cases suggested in the

problem statement.

Conclusion A.4 BRD must be adjusted on-line. The strong dependence of the opti-
mal BRD on the plant indicates that even if disturbance measurements were available.

BRD could not be selected via off-line model based optimization.



236

A.4 Preliminary Control Structure Analysis

In this section we are interested in studying the steady state and dynamic charac-
teristics of the system model and performance objectives which influence the choice
of controller structure. We approach the analysis seeking results which will reject
possible control structure options, independent of the choice of a controller design

method.

A.4.1 Measurement Selection

In general we have available 7 measurements and 3 manipulated variables as shown
in Figure 2. We are motivated by a desire to minimize controller complexity to reject
the possibility of using all 7 measurements to determine the 3 manipulated variables,
i.e., implementing a single 3 x 7 transfer matrix for the block labeled control system
in Figure 2. This leads us to ask the question: Which measurements are essential to

meeting the stated Control Objectives?

Time Delay Considerations

Clearly the objective with highest priority, integral action for the endpoints, requires
that endpoint measurements be used. It can be shown that using only TEP and
SEP measurements, i.e., Y, = [ggf;], it is impossible to satisfy the [TEP| < 0.5
constraint due to the large measurement delays associated with the endpoint ana-

lyzers. A step disturbance, [IIJI};%] = [8?], will cause TEP to reach 0.62 (based

on the nominal model) before any control action based only on [gg}f;} can take
effect. Control action must be taken before the effects of disturbances appear in the

endpoints.

Conclusion A.5 Any control system which is to satisfy the problem objectives must
employ secondary (temperature) measurements to achieve adequate endpoint distur-

bance rejection.
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In order to guarantee the BRT constraint, BRT measurements must be used.
TEP
Is the measurement set y,, = |SEP| adequate? Since BRT measurements signal

BRT

the effect of disturbances without delay, TEP constraint satisfaction is at least the-
oretically possible. It is not clear, however, that the endpoint specifications can be
met in the event of analyzer failure. In the next section we investigate the possibil-
ity of meeting the failure tolerance objective by enforcing integral action on column

temperatures.

Offset in the Event of Analyzer Failure

In the most general case we could use the three available manipulated variables to

"

achieve zero offset in three linearly independent “measurements,” each consisting of
some linear combination of the five available temperatures. The appropriate analysis
of this problem is as follows.

We denote the computed “measurements,” y,., and introduce the 3 x 5 matrix,

M, relating y,, to the physical measurements, y,,, that is,
vy = My, (A.38)

Introducing the notation G,; to denote the steady state gain between input b and

output a, we have
Ym = vauu + Gymdd (A.39)
y = Gyuu + Gydd ('\4U)

where y = TEP . Note that the steady state gain matrices are a function of the
SEP y &

uncertain parameters, €. Substituting (39) into (38) we have

ym = MGy u+ MG, .d (A.41)
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By assumption g, = 0 at stcady statc. Thercfore
u= ~(MG, ) MG, 4d (A.42)
Substituting (42) into (40) yields
y = [Gya — Gu(MG,,.) "MG,, Jld (A.43)

We are then interested in solving

mA,i!n max 1Gya = Gyu(MGypa) ' MGyl (Ad4)
where || - || is the matrix norm induced by the infinity norm on R

While we can not suggest a technique for solving this general problem we have
studied a simpler approach in detail. Choosing to control the available measurements
directly, rather than some arbitrary linear combination, significantly simplifies the
analysis.

It can be shown (numerical results are in Table 3) that by using any two ma-
nipulated variables and selecting any two physical measurements (temperatures) the
minimum steady state endpoint offset is 0.41 for the worst-case plant and disturbance
bounded in magnitude by 0.5. Achieving integral action in any 3 of the 5 temperature
measurements results in a larger worst-case offset. It is clear that even considering
linear combinations of the available measurements we will not be able to obtain steady

state offsets anywhere near 0.005 as specified in the problem statement.

Conclusion A.6 The stated steady state offset specification, 0.005 mazimum, cannot

be met in the event of analyzer failure. A realistic specification in the event of analyzer

faiure is steady state offset < 0.5.

We note that this conclusion implies that the TEP constraint (Objective 2) is

feasible (at least at steady state) in the event of analyzer failure.



Measured ‘Mam'pulated Worst Case
Variables Variables RGA1 1 TE Plant
EP (&;)
TT, SDT TD, SD 4.6 23.53 (0,0,0,0,0)
SD, BRD 4.6 23.81 (0,0,0,0,0)
TT, IRT TD, SD 1.8 0.49 (-1,1,0,0,0)
SD, BRD 1.9 20.58 {0,0,0,0,0)
TT, BRT TD, 8D 18 041 1-1,1,1,1)
SD, BRD 19 >20.77 (0,0,0,0,0)
1IRT, SDT TD. SD 39 4.90 (-1,-1.1,1.1)
SD, BRD 5.6 20.74 (0,0,0,0,0)
URT, IRT TD, SD 2.0 0.47 (-1,-1,1,1,1)
TD, BRD 6.7 >0.89 (0,0,0,0,0)
SD, BRD 2.0 20.62 {0,0,0,0,0)
URT, BRT, D, 8D 1.7 . 0.45 (-1,-1,1,1,1)
TD, BRD 6.0 21.09 (0,0,0,0,0)
SD, BRD 2.0 20.77 (0,0,0,0,0)
SDT, IRT D, SD 2.3 0.48 (-1,1,1,1,1)
SD, BRD 25 20.55 (0,0,0,0,0)
SDT, BRT TD, SD 2.3 20.51 -1,1,1,1,1)
TD, BRD 2.6 >1.20 {0,0.0,0,0)
SD, BRD 2.6 20.78 (0,0,0,0,0)

Table 3: Secondary measurement selection data for all pairings with RGA;; < 10.
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Another possible approach to reducing steady state offset is to construct an es-
timator (e.g., Kalman filter) to estimate disturbances, /RD and URD. Using this
estimate, inputs can be calculated which would eliminate endpoint offset for the
nominal model. To determine the feasibility of this approach we assume that the
disturbances can be estimated perfectly at steady state, and study the offset which

results for the worst-case plant. We have,
y = Ppu+ Pyd (A.45)

where u represents any two of the three available manipulated variables, and where

we assume d to be known. Then §, the endpoints predicted by the nominal model,

Pyu: Py, is simply

j = Ppu + Ppd. (A.46)

Selecting u to make § = 0 implies
u=—F; Pyd (A.47)
The corresponding steady state endpoint values are given by
y =[Py — P Pl Py)d (A.48)

As expected y vanishes if there is no model uncertainty (P,, = f’yu, Py = Pyd).
Unfortunately for the best choice of two manipulated variables, and the worst-case

plant and disturbance, the steady state endpoint offset is 0.34.

Conclusion A.7 FEven if we know the disturbances exactly we cannot meet the stated
performance requirements because of model uncertainty. Construction of an elaborate
disturbance estimator provides steady state performance little better than simply con-

trolling column temperatures with integral action.
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A.4.2 Evaluation of Potential Control Structures

The analysis in Section 4.1 indicates that the control system will necessarily have
at least four measurements (TEP, SEP, and BRT, plus another temperature for
control in the event of endpoint analyzer failure) and three manipulated variahles
(TD, SD, and BRD). Two obvious possibilities present themselves for designing a
nonsquare controller for this application.

The first option is to use model predictive control. It has the advantage that it can
handle the BRT constraint, as an associated variable, in a straightforward manner.
Unfortunately current M PC formulations such as QDMC [44] which assume that
the future effects of disturbances on the outputs will be equal to the current difference
between measurements and outputs predicted by the nominal model, cannot not sat-
isfy the TEP constraint. With the current formulation the disturbance information
which appears in the BRT measurement 1s not used to predict that the endpoints
will be affected in the future. Control actions to keep the endpoints at the setpoint
will not begin until the effect of the disturbance appears in the endpoints which is
too late to meet the TE P constraint as argued in Section 4.1.

The second possibility is to apply linear optimal control theory (H, or H,, for
example). While a controller designed in this fashion would indeed use the temper-
ature measurements in a meaningful way, and could incorporate model uncertainty
(e.g., u—synthesis), no provision for the BRT and T E P constraints could be explicitly
incorporated. In addition, such a design requires the specification of a large number
of performance and uncertainty weights, provides little insight about the trade-offs
between competing performance objectives, and provides no means for on-line con-
troller adjustment. Rather than apply either of these techniques immediately, we
choose to make use of the insight gained from our simple time delay analysis.

There appears to be a natural decomposition between measurements which we
can affect rapidly (temperatures) and those we cannot (endpoints). This division
suggests a cascade decomposition of the control system block of Figure 2 as depicted

in Figure 5. The attractiveness of this decomposition is that we are faced with two



‘weysAs (013000 Y3 Jo uoIISodUIOdIP SPRISE)) G N1

Primary
Measurements

it

T

Secondary | URT

Measuremen SDT
urements IRT

BRT

Secondary
Controller

- Secondary

Setpoints
=
+

Primary
Controller

Setpoints

*@‘f—‘

Ghé



243

independent controller design problems of low dimension rather than a single large
controller design problem. The secondary controller could be designed to achieve
high closed loop bandwidth since the delays in G, are small. The large delays in G,
would limit the achievable bandwidth for the primary system. Since these bandwidth
limitations are inherent in the plant, it would be expected that the linear optimal
control approach would result in a controller in which this decomposition was implicit

(and obscured).

A.5 Secondary Control System Design

Adopting the cascade decomposition shown in Figure 5 we turn our attention to the
design of the secondary (temperature) control system. After the design and analysis
of the secondary loops are complete we will consider the primary controller design
problem.

The objective of the secondary control system is to control some set of column
temperatures with relatively high bandwidth in order to reduce the effect of distur-
bances on the endpoints. We will also be concerned with controlling the temperatures
at steady state in such a way as to minimize endpoint oftset in the event of analyzer

failure.

A.5.1 Preliminary Uncertainty Analysis

The transfer function matrix of interest for the secondary design is from available ma-

TT
TD URT

nipulated variables, | SD |, to measurements, | SDT |. The model uncertainty
b

associated with this transfer matrix is structured as diagonal input uncertainty, i.e.,

we can write

G =G+ E,A (A.49)

where G is the true plant, G the nominal model, E, is a constant matrix, and

A = diag{e, €, €2}. It is well-known [87,88] that for model uncertainties of this form,
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large Relative Gain Array (RG A) elements in the plant severely limit closed loop ro-
bust performance. Since the input uncertainties are independent of frequency, the

steady state RG'A Is a good measure of model uncertainty sensitivity in this problem.

Conclusion A.8 For good robustness properties, controlled and manipulated vari-

ables for the secondary control system should be chosen such that the RGA is small.

A.5.2 Controller Design

Recall from Section 4.1 that in order to minimize endpoint offset when the analyzers
fail it is sufficient to control two temperatures. Since there is nothing obvious to be

gained from a more complicated secondary control system, we choose a 2 x2 structure.

Controlled and Manipulated Variable Selection

There are 30 possible 2 x 2 choices for the secondary control structure (selecting 2

TT
URT
controlled variables, y, from among %’11%]7: and 2 manipulated variables, u, from
BRT
TD
among BSRDD ). Based on Conclusion 8, regarding model uncertainty sensitivity,

we reject any such choices which have a (1,1) RGA element greater than 10. This
eliminates 11 possible choices, leaving the 19 possible choices outlined in Table 3.
Among the remaining possibilities we wish to select temperatures which are most
sensitive to endpoint changes. Using our steady state results we reject any selections
which result in endpoint offset for the worst-case plant greater than 0.5 for ||d],, <
0.5. This leaves 5 viable candidates, all of which have manipulated variables, u =
{gg] The steady state analysis indicates that (at low frequencies) each of these
choices is comparable in terms of endpoint sensitivity (offsets range from 0.41 to
0.49).

Dynamic considerations are used to make the final selection. Examining achievable

performance in terms of the limitations caused by time delays clearly differentiates

the remaining choices. Performing a minimum time delay factorization {56}, and ex-
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and

amining the minimum resulting closed loop delays, clearly identifies y = [Egr}

U = [gg] as the optimal controlled and manipulated variable choices.

Conclusion A.9 The measurement set y, = [[71127%] and manipulated variable set

poses little robustness problems (RGA;; = 1.8) and provides reasonable

_ | TD
“"=18D
control in the event of endpoint analyzer failure (endpoint offsets less than 0.5 for any

d]lo < 0.5 and ||e]lo < 1.0).

Controller Structure

There are two obvious choices for the 2 x 2 controller design. These are a MIMO
design (e.g., MPC, Hy, Hy,) or a decentralized design. To minimize control system
complexity we will only consider the M TMQ alternative if the simpler decentralized
approach can be shown to be inadequate.

In order to determine the degree to which the secondary plant,

3.66 e-—-2s 1.65 _~20s

€

GS(S) - 9341 30541 (A\BO)
4.06 83 418  ,—4s
13s+1 33s+1

is decoupled we evaluate the y-interaction measure [51,52] as a function of frequency,
Figure 6. Closed loop stability is guaranteed for the 2 x 2 system if single loop
designs result in complementary sensitivity functions Ti(s) = G;Cu(I + G,Cy) 71,
which lie below the u-interaction measure sufficiency constraint. Since the constraint
lies above 1 in the frequency range over which we are interested in achieving good

control, stability problems due to interactions will not limit our design.

Conclusion A.10 Single loop design of a decentralized secondary controller should

provide adequate closed loop performance.

The sum of the absolute values of the elements of the RGA (a lower bound on the
minimized condition number) as a function of frequency is also shown in Figure 6.
Since we know that large RG A elements indicate sensitivity to diagonal input uncer-

tainty, and this value is modest in the range of frequencies over which we desire tight



246

= | 5] =kl

10

P |

RGA

i

0.2

™ LA N S S T T T '3 T Y T TSP

0.001 0.01 01 10 10.0

Frequency

Figure 6: u-interaction measure constraint and the sum of the absolute values of the
RG A elements for the secondary control loop.
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control, we conclude that model uncertainties will not severely impact the control

system design.

Conclusion A.11 Good nominal performance for the decentralized controller will

imply good robust performance as well.

SISO Controller Design

Both time delay and steady state RG A analysis suggest pairing 77 with T'D and

ITRT with SD. We are therefore interested in designing SISO controllers for:

3.66 £2.29 _o
Esw—— 1

Gu(s) 95 7 1 (A1)
4.18+ .35 _ -
GQQ(S) m’e 4s ('\{)2)

For simplicity we will use PI controllers (unless they prove to be inadequate). We
adopt the IMC tuning procedure (Appendix A) [84] to determine P settings which
provide robust stability and performance. This procedure involves a single adjustable
tuning parameter, A, which is directly related to the closed loop speed of response. Us-
ing the program ROBE X [63,64] we determine a value of A for each controller which
guarantees robust stability and performance. The resulting A and corresponding P/

settings arc summarized in Table 4.

A.5.3 Control System Analysis

We first verify closed loop stability with the u-interaction measure for the given
controller designs. The sufficiency condition and individual loop complementary sen-
sitivity functions are shown in Figure 7. Since the bound is (easily) satisfied at all
frequencies we are assured that the nominal 2 x 2 system will be stable.

The single loop complementary sensitivity functions plotted in Figure 7 indicate
that the nominal performance should be adequate. We verify this by simulating the

2 % 2 system for a step disturbance, d = [(IJI}%%} = [8?] as shown in Figure 8. The



Closed Loop

Controller Speed of Ke 1/14 £ T

Response (A)
TT 4 0.43 012 - 0.95
IRT 4 0.30 0.045 - 1.53
TEP 0 223 00108 590 3.67
SEP 50 0.407 0.025 9.46 125
BRT 3 116 0.0344 5.50 5.55
Supervisory Controller
Priority 1 50 0.612 68E-3 - 2.3
(TEP)
Priority 2 2% 0.712 0.022 - 316
(TD)
Priority 3 25 0.0736 0.0187 - 11.6
(SD)
Priority 4 100 00128 0.0100 - 79.3
(BRT)
Priority 5 - 1.25E-4 - -
(Optimization)

Table 4: Summary of all control system parameters.

temperatures settle in less than 100 minutes, verifying that the secondary loops are
fast relative to the primary (endpoint) loops for which our settling time specification
is approximately 600 minutes. TEP and SEP are shown in Figure 8 and indicate
that temperature control is effective in attenuating the effect of disturbances on the
endpoints.

We also observe in Figure 8 that BRT, which is not controlled, exhibits large
excursions for a short time in responsc to URD and IRD disturbances (the steady
state deviation is relatively small). Since these rapid transients might easily violate
the BRI > —0.5 constraint, the primary controller must act to attenuate them.

While p-analysis theory could be applied to assess robust stability and perfor-

mance, based on our earlier results (Conclusions 9 and 11) we omit this invoived
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Figure 7: Verification of closed loop stability for the secondary control system.

analysis. If the designer is not persuaded by our earlier analysis or would like to
increase confidence that robustness will not be a problem here, we suggest that a

complete u-analysis, for real perturbations, be carried out.

A.6 Primary Control System Design

Having completed the secondary controller design, we now study the effective plant,

TT,
with the secondary loops closed, relating % Rg% to the available primary measure-
EP
SEP
ments (5{ g; as shown in Figure 9. In this section we will develop a primary control
BRT

system design with the following objectives:

1. Achieve integral action for TEP and SEP.
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Figure 8: Performance of the secondary control system.
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Figure 9: Block diagram for design of the primary controller.

o

. Achieve a closed loop speed of response for TEP and SEP between 0.8 and
1.25 times that of open loop.

3. Attenuate rapid large magnitude excursions in BRT observed in the secondary
control system simulation.

A.6.1 Controller Structure

In order to meet these objectives it is clear that the minimum measurement set is

TEP
Ym = g%{; . Without any evidence to suggest advantages to using additional
measurements we will only consider this minimum set. Thus the primary control
TEP
system will be 3 x 3 with the controlled variables y = [QF;} and manipulated
BR

TT,
variables u = IRT{)
BRD

We are again presented with a choice between MIMO (e.g., MPC, H,, H,,) and

decentralized controller designs. For ease of design, understanding, on-line adjust-

ment, and implementation, we consider first the fully decentralized option.

Variable Pairings

In order to develop a decentralized design we must determine the best pairing between

manipulated and controlled variables. The RG A of the effective plant, G.;y, with the



secondary loops closed s,

TT,, IRT,, BRD
TEP 98 0  .0l4

(A.53)
SEP 008 .117 .875
BRT 007 .882 .111
suggesting the pairing,
TEP «— 1T, (A.54)
SEP «—— BRD (A.55)
BRT «— IRT,, (A.56)

Dynamic considerations indicate that BRT must be paired with BRD. We note

that G.;; has the following time delay structure,

TT,, IRT,, BRD
TEP 21 28 27
SEP 18 14 15
BRT 20 22 0

The only manipulated variable which can be used to effect the BRT within the first
20 minutes following a disturbance is BRD. BRT excursions observed in simulations
of the secondary control system are often on the order of 0.5 within 20 minutes. This
suggests that with any other pairing, BRT would have to be held above zero at steady
state in order to avoid transient BRT constraint violations. This severely limits heat
recovery (the minimum value which BRD can assume at steady state). Incorporating
a BRT > 0 constraint in (26)-(27), and solving we find that even with no disturbance,

BRD must be greater than 0.0 at steady state for the worst-case plant.
Conclusion A.12 BRT must be paired with BRD.

Referring to the steady state RG A, the only reasonable pairing which includes



BRT «— BRD is,
TEP & TT,, (A.58)
SEP «— IRT,, (A.59)
BRT «— BRD (A.60)

Interaction Analysis

The p-interaction measure for the pairings above is shown in Figure 10. It is immedi-
ately clear that interactions are significant at all frequencies, including steady state.
Since the constraint lies significantly below 1 at steady state, we will not be able to
perform independent designs and guarantee M IMO stability. Thus, the only viable

fully decentralized pairing demonstrates severe interactions.

Conclusion A.13 A fully decentralized primary controller is infeasible.

Decoupling

Rather than abandoning the decentralized approach we build on our accumulated
insight. From the steady state RGA (53) it is clear that the major interactions
which occur at low frequencies are between the /RT,, «— SEP and BRT « BRD
loops. The BRT « BRD pairing, determined necessary to achieve sufficiently high
bandwidth to reject BRT transients, is obviously poor at low frequencies. To deal
with these low frequency issues we propose a steady state decoupler to be used in
conjunction with diagonal PID controllers. The primary controller will then be of

the form

C(s) = D diag{ci(s),c2(s), c3(s)} (A.61)

where D is the constant matrix

870 —.097 .150
—.026 .084 .843 (A.62)
—0.59 —.487 .643
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Figure 10: p-interaction measure constraint and the sum of the absolute values of
the RGA elements for the primary control loop.
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Figure 11: u-interaction measure constraint and the sum of the absolute values of
the RG A elements for the primary control loop with the steady state decoupler.

Examining the p-interaction measure for the decoupled plant, Gp = G.; 4D,
shown in Figure 11, we see that interactions are not a problem for frequencies less

than w & .02 rad/minute. If we are to push the closed loop bandwidth much past

this range, we will have to use “dynamic decoupling,” i.e., a full MIMO design.

Conclusion A.14 A steady state decoupler should adequately decouple the plant over
the desired closed loop bandwidth.

A.6.2 Controller Design with Decoupler

PID controllers were designed for the diagonal elements of the decoupled plant, G/,
using the IMC — PID tuning procedure (Appendix A). The closed loop speed of

response for the endpoint loops was selected to satisfy the endpoint speed of response
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Figure 12: Verification of closed loop stability for the primary control system with
steady state decoupler.

specification. The BRT « DD loop was tuned aggressively in order to provide

attenuation of BRT excursions.

A.6.3 Control System Analysis

The nominal stability test based on the p-interaction measure is demonstrated in
Figure 12. Although the current design does not pass the sufficient condition at
high frequencies, the system is stable. Detuning the BRT « BRD loop to satisty
the u-interaction measure constraint would allow large BRT transients. These large
transients would require steady state operation with BRT relatively high in order to
avoid constraint violation when disturbances occur. This precludes reducing BRD
to achieve heat recovery. If transient BRT violations are allowed, then the BRT «
BRD loop could be detuned, significantly reducing high frequency interactions.

The response of the closed loop system, consisting of both the primary and sec-
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ondary controllers, to a disturbance d = [(5%%] = {gg} is shown in Figure 13.
All control objectives are satisfled except for optimization. We note that arbitrarily

selecting a BRT setpoint of 0.0 results in a steady state constraint violation in T D.

A.7 Supervisory Controller

Nothing in our current control system design explicitly deals with the output con-

straints

[TEP| < 0.5 (A.63)
BRT > -05 (A.64)
or input constraints
ITD| < 05 (A.63)
ISD|] < 0.5 (A.66)
|[BRD| < 0.5 (A.67)

Furthermore we have not outlined a procedure for optimizing heat recovery.

In principle we could resolve these issues by discarding our primary controller
design and replacing it with a model predictive control scheme. Such a controller
would seek to minimize some combination of endpoint offsets and BRD. While this
approach might work, it would require the specification of a large number of tuning
parameters (objective function weights, horizon lengths, etc.) whose effect on closed
loop performance is indirect and unclear. In addition, while predicted outputs would
satisfy the constraints, there is no guarantee that actual outputs would do so. With
the uncertainty present in this problem this is not an insignificant issue. We saw in
section 4.1 that even if the disturbances are known exactly, the difference between
endpoints predicted by the nominal model (0.0) and resulting from the worst-case

model (0.34) can be large. Instead we develop a supervisory controller which adjusts
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Figure 13: Performance of the primary control system.
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Figure 14: Block diagram of the supervisory controller.

the BRT,, to prevent constraint violations and achieve optimization.

A.7.1 Controller Objectives

The supervisory controller has the following objectives:
1. Maintain [TEP| <0.5
2. Maintain [TD| £ 0.5
3. Maintain |[SD| <0.5

4. Maintain BRT > -0.5

5. Minimize BRD (Maximize heat recovery).

BRT sp
e

These objectives parallel the control objectives of Section 1.2. The TD and SD

saturation objectives are prioritized above the BRT constraint and optimization ob-

jectives to guarantee that integral action of TEP and SEP is achieved.

A.7.2 Controller Design

'I'he supervisory controller is shown schematically in Figure 14. It consists of a di-

agonal block of four PD controllers, a logic block, and a SIS0 integrator. Each of
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the PD controllers is designed to determine the rate at which the BRT,, should be

changed in order to achieve one of the supervisory controller’s objectives (1. through

TEP

4. above). If any of the measured variables fng) exceeds its threshold, the su-
BRT

pervisory conbroller acts as a PI controller (PD through [ equals PI) to return the
variable with highest priority to its threshold value.

These PI controllers are designed using the IMC tuning rules. Again a single
tuning parameter, A, directly effecting the closed loop speed of response, is specified

for each PI controller.

Thresholds

The logic portion of the supervisory controller uses threshold values for [T EP|, |T'D|,
|SD|, and BRT;n to determine whether or not to activate the corresponding objec-
tive. These threshold values are selected to be more conservative than +0.5 in order
to avoid operating the plant on an active constraint at steady state. For |TEP]|,
iT'D|, and |SD)| these thresholds are +0.45 (90% of range). Since BRT is subject to
short time transients in response to disturbances, the BRT threshold is selected to
be more conservative, —0.20. If |TEP|, [TD|, |SD|, and BRT do not exceed their
thresholds then the active priority is maximization of heat recovery. To achieve this
the BRT;, is reduced by a constant amount at any sampling time in which no higher
priority objective is active. This structure assures that the heat recovery is increased
until a limiting constraint (generally 7D > 0.45 or BRT < —0.20) becomes active.

The constant optimization rate is chosen to be slow enough to not interfere with
the higher priority objectives. Specifically we set ABRT,, = 1.25X107*, the maxi-
mum rate ramp change in BRT,, which results in |[TEP| < .005 and |SEP| < .005
at steady state. Clearly we could optimize faster but this would interfere with the
higher priority endpoint objective.

In simulations with step disturbances, [T'EP| and |SD| have never exceeded their

thresholds.



261

A.7.3 Controller Implementation

The logic block computes its scalar output using the following algorithm:

If |ITEP| > 0.45
then A BRT,, = v

Else if |TD| > 045
then A BRT,, = v,

Else if |SD|> 0.45 {A.68)
then A BRT,, = v3

Else if BRT < —-0.20
then A BRT,, = vy

Else  ABRT,, =125 x10"*
!

where v = g;} is the output of the PD block. The advantage of using a PD

V4
controller for each objective and a single integrator is that this structure provides

bumpless transfer when the logic block switches objectives.

A.8 Control System Overview

The complete control system, comprised of primary, secondary, and supervisory con-
trollers is outlined in Figure 15. The overall system includes only nine adjustable
tuning parameters, A;, ¢ = 1,....,9 which correspond to desired closed loop speeds
of response. The parameters selected (and the corresponding PID parameters) are
summarized in Table 4.

The decomposition of the control systems into the hierarchy
Supervisor — Primary — Secondary (A.69)

provides several advantages. First the effectiveness of each level of the hierarchy can

be independently determined by comparing the performance of each level with its
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Figure 15: Overview of the complete control system.
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design objectives.‘ This allows for simple commissioning and debugging. The levels in
the control system hierarchy can be brought on-line, tested, and tuned sequentially.
Adjustment of any controller in the hierarchy does not require re-tuning ot any con-
troller lying below it. Failure of any level of the system requires only the levels above

it be taken off-line, with predictable impact on system performance.

A.9 Prototype Test Cases

The simulation studies suggested in the problem statement are summarized in Fig-
ures 16-20. For each test case we demonstrate the performance of each level of the
hierarchy including temperature control, endpoint control, constraint handling and
optimization.

In all simulations the system was brought to steady state with |SEP| = 0.0

BRT -0.20
before the introduction of the specified disturbance at time zero. This allows us to

TEP [ 0 0]

demonstrate disturbance rejection from an optimized steady state condition.

All simulations meet all specifications stated in the problem statement at all times.

A.10 Conclusions

A.10.1 Control System Design

A successful control system design has been completed. The control system has a
small number of physically meaningful tuning parameters. With the specified values
of these parameters, the control system meets all of the control objectives, is failure

tolerant, and has an easily understood hierarchical structure.

A.10.2 Possible Additional Analysis

We have not completed an elaborate robustness analysis of the closed loop system.
Instead we have used a priori analysis to guide the design of a control system which

1s insensitive to model uncertainties. Certainly structured singular value theory could
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be used to guaraﬁtee robust stability, and with appropriately chosen weights robust
performance of the primary and secondary control loops. In order to be meaning-
ful the model uncertainty description provided in the problem statement should be
augmented with unstructured “high frequency” uncertainty to capture the effects of
unmodelled dynamics.

We have not provided any analysis of the supervisory controller. Specifically we
cannot absolutely guarantee that in practice all objectives would be met at all times.
Instead we have developed a simple system, whose operation is easy to understand.
which is amenable to on-line adjustment, and which meets all control objectives in

simulation.

A.10.3 Identified Limitations of Existing Theory

Assessment of Achievable Performance

We have made heavy use of the feasibility results of Section 3. Generalization of
these methods to handle more complicated uncertainty descriptions, and perhaps
dynamic performance specifications, would be of great use to control system designers.
Without accurate information about achievable performance, independent of control

system design, it is impossible to assess the success of any particular design.

Interaction Analysis

Generalization of existing tools for interaction analysis (e.g., RGA) to nonsquare sys-
tems would be very beneficial. For example we have no methodology for analyzing

interactions between the primary aund secoudary coutrol loops. We can combine them

SEP
into a single 3 x 5 controller with measurements I:[}‘%jf;’ and manipulated vari-
BRT
TD
ables BS I?D , but we have no available tools to analyze steady state and dynamic

interactions for the corresponding 5 x 3 plant.
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Analysis of Simple Nonlinearities

Development of analysis tools which can handle simple memoryless nonlinearities such
as input saturations, rate saturations, min-max selectors, and simple logic schemes
is needed. These static nonlinearities, widely encountered in practice, fall outside
the scope of current linear systems theory. Nonconservative methods for assessing
stability and performance of control systems incorporating these nonlinearities, in
the presence of model uncertainty, wounld significantly extend the usefulness of the
available results. While a complete nonlinear robust control theory is obviously years
away, extensions of linear analysis to specific nonlinearities seems feasible (see for

example [20,40,47)).

Acknowledgement: The research reported here was undertaken in conjunction with
T. Holcomb and M. Gelormino of Caltech. Without their significant efforts, this work

would not have been possible.
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Appendix A: The IMC — PID Controller Design
Method

In this Appendix we provide an overview of the IMC - PID design method. For
full details the interested reader is referred to [68,84,83].
The IMC-PID tuning procedure is a straightforward SISO robust controller

design method for obtaining a PID plus first order lag controller of the form:

1 L C
C(s) = —— (1 + ---+7'Ds> (A.T0)

Central to the design of these controllers is a single adjustable tuning parameter,
A which effects 7, 77 and 7p in a coordinated fashion.

For simple rational models of the form,

5 ap + 1
Fis) = ————— ATl
(s) bys? 4+ bys + 1 ( )
and step disturbances, d = %, the IMC design procedure [68] generates H, opti-

mal controllers, augmented with a low pass robustness filter, which are of the form
(70). The robustness filter parameter, A, determines the trade-off between speed of
response, (A small) and robustness with respect to model uncertainties (A large).

In order to design PID controllers for systems more general than (71), the actual
transfer function, P(s), is approximated by a reduced order model of the form (71)
over the frequency range corresponding to the desired closed loop bandwidth, «.. In
addition to identifying an approximate model, a bound on the additive error, [,(s),
associated with the approximation obtained.

Thus we have

P(jw) = P(jw) VYw € [0,w,] (A.72)
|P(jw) = P(jw)| € L(jw) V. (A.73)

The IMC design procedure is then applied to P(s) resulting in a PID controller with
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parameters given as a function of A. The filter parameter is selected to guarantee
robustness with respect to the uncertainty introduced by the reduced order model
approximation. The resulting controller is guaranteed to be stable for the original
plant P(s).

To obtain a PI controller a first order approximate model, P(s), is used. For a
PID countroller a second order approxiwation is used. If a first order numnerator is
included in P(s) a first order lag is added to the corresponding P or PID controller.

We note that generalizations of this technique, to handle uncertainties in the
full order model, P(s), and disturbances other than steps, are available. The entire
design procedure, including low order model approximation and robustness analysis
is provided by the program T'UNE in the CONSY L) computer aided control system
design package, [55], and ROBEX, an expert system for robust control synthesis
(63,64].
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