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Studies in Robust Control of 
Systems Subject to Constraints 

by 

Peter J. Campo 

Abstract 

Two approaches to control system design for constrained systems are studied. 

The first involves theoretical. investigations of constrained model predictive control 

algorithms. The second involves extensions of robust linear control theory to handle 

the nonlinear control schemes commonly used in practice for constrained systems. 

A novel model predictive control algorithm, with attractive functional and nu

merical characteristics is developed. This algorithm minimizes peak excursions in the 

controlled outputs a.nd is particularly suited to regulatory control problems common 

in continuous process systems. 

Model predictive control concepts are extended to uncertain linear systems. An 

on-line optimizing control scheme (RMPC) is developed which has a.s its objective 

the minimization of worst-case tracking error for a.n entire family of linear plants. 

For model uncertainty descriptions which provide plant impulse response coefficients 

as affine functions of uncertain para.meters, it is shown that the required minimax 

optimization problem can be recast as a single linear program. 

The discrete time optimal averaging level control problem is formulated and 

solved. A finite horizon approximation to the problem is introduced and analyti

cal solutions are obtained in important special cases. A model predictive control 

formulation is introduced which provides optimal flow filtering and integral action. 

Analysis tools are provided to characterize the trade-off between flow filtering and 

rapid integral action. 



vi 

A complete theory is developed for the multivariable anti-windup, bumpless trans

fer ( AWBT) problem. The theoretical framework allows the consideration of any 

linear time invariant (LTI) control system subject to plant input limitations and 

substitutions. A general AWBT compensation scheme, applicable to multivariable 

controllers of arbitrary structure and order, is developed. Conditions are derived 

under which this general AWBT method reduces to any one of several well-known 

heuristics for AWBT ( e.g., PI anti-reset windup and IMC). The design issues which 

affect AWBT performance are identified and quantitative analysis methods are devel

oped. Sufficient conditions for nonlinear stability of the AWBT compensated system 

are provided. These results are a generalization of, and are less conservative than, 

those available in the AWBT literature. The definition of AWBT performance objec

tives which are independent of controller structure allows the formulation of a general 

AWBT synthesis problem. This formal synthesis problem addresses each of the iden

tified performance objectives in a quantitative manner. The synthesis problem is 

shown to be a special case of a constrained structure controller synthesis ( CSCS) 

problem. A solution method via reduction to static output feedback is presented and 

the engineering trade-offs available in the AWBT design are discussed. 
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Chapter 1 

Introduction 

The objective of this thesis is to develop practically motivated, theoretically rigorous, 

analysis and synthesis tools ,for the study of feedback control of constrained systems. 

The practical motivation requires that the theoretical results must be of value in 

solving "real world" engineering problems and not rest on assumptions which are 

unreasonable in practice. In particular two common assumptions regarding the system 

to he controlled are explicitly relaxed in this work: 

1. The controlled system operates over an infinite domain (is not subject to con

straints). 

2. A mathematical model is available which describes the behavior of the controlled 

system exactly. 

1.1 Motivation 

1.1.1 Constraints 

All real world control systems must deal with constraints. These constraints arise 

from a number of considerations including: 

• Safety of plant, personnel, and environment. Above all else the control 

system must avoid unsafe operating regimes. In process control these constraints 
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typically appear in the form of operating pressure or temperature limits. 

• Performance specifications. In many applications it is sufficient that the 

control system maintain system variables within a range, rather than at a spe

cific point. For example the product composition of specifications for a distil

lation column are typically, total impurities less than x percent, as opposed to, 

product composition precisely y. 

• Physical limitations. The ultimate capacities of plant hardware are limited. 

Valves can only operate between fully open and fully closed, pumps and com

pressors have finite throughput capacity, surge tanks can only hold a certain 

volume, etc. 

It may be argued that by proper design of the controlled system the issue of 

physical limitations, and perhaps safety considerations as well, could be minimized 

( or effectively removed). For example, installing actuators and process equipment 

able to handle operating conditions well beyond what is to be expected in normal· 

operation. While this is true in principle, it is impractical due to the costs associated 

with the extra. ca.pa.city built into the system which is used only infrequently. In fact 

economic optimization of the system operating point typically drives the system to 

one or more constraints. Lee and Weekman, (62], report 

" ... in the petroleum industry the optimal operating point commonly lies 
beyond the range of practical constraints. This probably occurs because of 
the savings incorporated into the design due to capital cost considerations. 
Thus a well designed plant should operate at a constraint, or it is really 
overdesigned (emphasis added]." 

While the specific examples present·ed here are from the process industries, these 

economic and operational considerations are valid in other disciplines as well. These 

include applications in aerospace, electrical, and mechanical engineering. 

Given the universal nature of constrained operation, it is important that these 

constraints be considered in feedback control system designs. In Section 2 we will 

review the extent to which this has been achieved historically, and outline the specific 

needs for new theory. 
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1.1.2 Model Uncertainty 

fo addition to dealing with constraints at the design stage, it is important to recog

nize that any mathematical model used in controller design is necessarily an inexact 

description of the true physical system. Even for extremely detailed and involved first 

principles models this will be true and for the simple models commonly used in con

troller design the plant-model mismatch, or model error, may be quite large. Detailed 

models are typically difficult and costly to obtain; the costs associated with improved 

modeling must be balanced against the promise of improved control. Since there are 

diminishing returns in terms of control performance from improved modelling, exact 

· modelling is not economically feasible. 

As a result of model error the performance of the closed loop system consisting of 

the physical system and the•.designed controller will be different than that predicted 

by the model used in the design. Since the controller will usually be "optimal" in 

some sense for the given model, performance on the physical system is generally 

poorer than for the design model. In fact the true performance can be arbitrarily bad 

the true system may be unstable while the design model predicts a stable closed 

loop. 

An obvious practical concern is that the performance provided by the controller 

be insensitive to the model of the system used in the design. In this case we say that 

the controller (or controller design) is "robust," i.e., small changes in the design data 

(the model) result in only small changes in the resulting controller. Of course it is 

only necessary that the controller be insensitive to perturbations of the design model 

which give rise to physically plausible models. These concerns require that precise 

notions of "insensitivity" and "structured model perturbations" be defined. 

For linear time invariant systems a rich mathematical theory has been developed 

to address these issues and provides nonconservative results for robustness a.na.lysis. 

Unfortunately constrained systems are necessarily nonlinear and this severely limits 

application of the theory. 
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1.2 Previous Work 

1.2.1 Constraints 

The traditional method for dealing with constraints has been to use simple static 

nonlinear elements, selectors and overrides, in the control system. The purpose of 

these .selectors and overrides is to re-configure the control system when a constraint 

is violated. In the terminology of Chapter 6 this corresponds to a control system 

mode switch. In a typical example a single input is used to regulate a primary output 

around a given set point, and to maintain a secondary output within a given range. 

· The function of the selector is to change the controlled variable from the primary 

to the secondary output when a constraint violation occurs. The secondary output 

is controlled until it is, by .action of the plant input, returned to the acceptable 

range. Regulation of the primary output is interrupted and does not resume until the 

secondary output is in the desired range. At this point the selector switches back to 

regulation of the primary output. 

Despite their considerable practical importance and extensive use, there is es

sentially. no general theory to guide the design and analysis of these selector and 

override schemes. Furthermore, because they modify the control system configura

tion dynamically, they often cause severe performance deterioration such as windup 

and bumps when switching modes. For simple single loop control system designs, 

using PID regulators, essentially ad hoc design methods for anti-windup bumpless 

transfer. ( AWBT) compensation have been developed. These methods are based on 

engineering intuition and an understanding of the action of the simple control laws 

in the time domain. Due to their nonlinear nature the analysis of these systems has 

been confined largely to simulation. Over the course of time a number of "standard" 

applications (idioms in the language of [14]) have evolved, these having withstood 

the test of practical application. Since these mode selection schemes are essentially 

application specific, new designs typically require a great deal of engineering effort, 

simulation, and trial and error. 

Preliminary steps to address the analysis of these nonlinear systems, in the sim-
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plest single input-single output (SISO) examples, are provided in (40,48,46]. The 

analysis is restricted to the stability issue and no quantitative measures of perfor

mance have been reported. The lack of a general theory, which subsumes the known 

(SISO) techniques and extends to multivariable controllers of arbitrary order has 

been a major impediment to the application of advanced control theory to real world 

problems. As stated by Karl Astrom, [4], 

"I would like to bring up some problems relating to the use of advanced 
control algorithms which deserve attention. The development of modern 
control theory has so far largely been concentrated on development of pure 
control algorithms. Very little attention has been given to the operational 
aspects of the algorithms. 

To illustrate what I mean let us consider a simple PID algorithm. You 
all know what the pure version of the algorithm looks like. You are also 
well aware that it is necessary to consider a whole range of auxiliary issues 
like mode switching, reset windup, saturation, limitation, gap, selectors, 
operator interfaces, etc. After the simple three term controller was con
ceived it took a considerable time before all these problems were fully 
understood and solved. It is also well-known that a proper consideration 
of these operational issues is at least as important for the performance of 
the controller as the pure algorithm and its tuning. 

There is clearly a need to consider the analogous problems for advanced 
control algorithms. This does not seem too hard to do. I have seen good 
solutions in specific cases. As far as I now very little has, however, been 
published in this area. The problem of windup is, for example, clearly 
related to the problem of resetting the state of the regulator. Concepts 
and algorithms for doing this are available. The details should however 
be worked out and published.,, 

The lack of adequate theory and the increasing effort required to develop and de

bug mode selection and anti-windup mechanisms for increasingly sophisticated control 

configurations spurred the development of an entirely different approach, known as 

Model Predictive Control (MPC), by researchers in the process industries. 

Early examples of MPC included Model Algorithmic Control, [82], and Dynamic 

Matrix Control, [26]. The basic concept in MPC is that a discrete time control law is 

obtained by solving an optimization problem, posed in the time domain, to determine 

the va.lne of the plant input. Using an estimate of disturbances acting on the plant and 

a model of its input•outpµt behavior, "optimal" current and future values of the input 



are obtained which minimize tracking error, setpoint minus predicted output, over a· 

finite future horizon. The first of these inputs is implemented, new measurements are 

taken, the disturbance estimate is updated, and the optimization problem is resolved 

at each subsequent sampling time. The simplest of disturbance estimation schemes, 

typically a special case of an open loop observer, has proven adequate in most reported 

applications. 

Although the early algorithms did not deal with constraints, it was soon realized 

that a constrained optimization could be solved at each time step to handle input 

and output constraints. It is now known, although probably not widely enough 

appreciated, that the unconstrained MPC algorithms amount to nothing more than 

a particular linear time invariant (LTI) controller design. As a result, unconstrained 

MPC has nothing to offer over more conventional multivariable LTI controller designs 

developed in the frequency domain (e.g., IMC, loopshaping, H 2 optimal, H00 optimal, 

etc.). 

In constrained MPC, each set of active constraints in the optimization problem 

gives rise to a particular LTI controller. The optimization scheme "selects" among 

these controllers in an automatic fashion by adjusting the active constraint set in 

such a way as to minimize the objective function. From this perspective constrained 

MPC may be regarded as a rational design of a mode selection logic. The primary 

advantage of the model predictive control formalism is that the mode selection scheme 

arises naturally and its implementation is handled by the constrained optimization. 

The biggest drawback of the MPC approach is that it is not amenable to anal

ysis and quantitative synthesis procedures. Significant complication is caused by 

the large number of "tuning parameters" intrinsic to the MPC controller ( a typical 

3 x 3 implementation can easily involve 50 weights and horizon length specifications). 

Furthermore the effect of these tuning parameters on closed loop performance is gen

erally indirect and unclear. Indeed many of the proposed schemes provide ·tuning 

parameters with overlapping and contradictory effects. 

In addition to these difficulties, essentially no analysis techniques, other than 

simulation, are available for constrained MPC. Most significantly there is no technique 
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available for assessing the effects of plant-model mismatch. Simulation and experience 

from simple example systems indicate that there are no simple or direct connections 

between the MPC tuning parameters and control system robustness. 

Despite these limitations, MPC has had a significant impact in practical appli

cations, especially in process control. In addition to its constraint handling ability, 

the fact that it is formulated in the time domain, and is therefore more accessible to 

process engineers who lack traditional control backgrounds., probably accounts for its 

widespread popularity in industry. 

1.2.2 Model Uncertainty 

In stark contrast to the problem of constraints, a rich and complete theory has been 

developed for studying plant-model mismatch in LTI systems. Quantitative robust

ness analysis results were first articulated by Doyle and Stein, [36], for unstructured 

plant model perturbations, and by Doyle, (31 ], for structured plant model perturba

tions. Introduction of the H 00 synthesis problem by Zames, [96], provided a conve

nient framework for including these robustness issues in coll.trol system synthesis. 

This theory has substantially improved the ability of control system designers to 

develop robust multivariable designs for linear systems. It has not, however, been use

ful in designing mode selection schemes, or anti-windup bumpless transfer (AWBT) 

compensation schemes. This is because these systems include constraints and static 

nonlinearities which are not admitted by the theory. It is a goal of this thesis work to 

bring this powerful theory to hear on the AWBT problem. In particular, extensions 

of the linear theory to handle the simple static nonlinearities involved in the AWBT 

problem are to be developed. 

It is clear that there have been two, essentially mutually exclusive, approaches to 

the control of constrained systems: 

• Frequency domain LTI controller synthesis coupled with application specific 

constraint compensation. 

• Constrained model predictive control. 
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Each approach enjoys specific advantages; the MPC approach handles constraints 

in an optimal fashion but Tobustness analysis is impossible - the frequency domain 

techniques lend themselves to robustness analysis but can only accommodate con

straints in an ad hoc manner. Important contributions to the theory of each of these 

approaches are made in this thesis. 

1.3 Thesis Overview 

In Part I the model predictive control approach to constrained systems is studied. 

Chapter 2 provides a brief overview of MPC. A general setting for MPC problems is 

developed in terms of the spatial and temporal norms chosen to measure the mag

nitude of predicted tracking errors. A novel model predictive control algorithm, the 

oo - oo norm formulation, is outlined and studied in some detail. The advantages of 

this algorithm are its smaller {although still large) number of tuning parameters and 

significantly reduced on-line computational burden. 

In Chapter 3 the oo - oo norm formulation is used as a vehicle for introducing 

robustness issues in MPC. An MPC control algorithm known as Robust Model Pre

dictive Control (RMPC) is developed in which robust performance, i.e., worst-case 

performance predicted by a set of plant models, is optimized. This is in contrast to 

existing MPC algorithms which optimize nominal performance - that predicted by a 

single nominal model. A novel class of plant models, characterized by uncertain im

pulse response coefficients, _is developed for use in the RMPC algorithm. This work 

represents the first integration of robustness issues into a model predictive control 

formulation. 

In Chapter 4 a special topic, surge tank level control, is studied. The dominant 

feature of this control problem is that the control system design is entirely driven 

by the tank level constraints. The control objective is to minimize deviations in 

the tank outlet fl.ow rate while preventing high or low level constraint violations 

in response to inlet flow variations. It is shown that this problem can be naturally 

formulated as an 00-00 norm MPC problem. The resulting control algorithm involves 



a single adjustable parameter which is directly related to closed loop performance. 

A closed form solution for the constrained optimization is obtained which makes 

implementation of the algorithm very simple. 

In Chapter 5 a brief summary of conclusions, and suggestions for future work in 

MPC for constrained control are provided. In addition some more recent results by 

other researchers in this area are reviewed. 

Part II of the thesis is devoted to the development of a truly general theory, 

encompassing both stability and performance issues, for anti-windup and bumpless 

transfer. The end result is a theoretical framework, quantitative analysis and synthesis 

results far beyond the, "working out of details", suggested by Astrom. 

In Chapter 6 a specific AWBT compensation strategy is studied. While multi

variable in nature, it is a somewhat limited approach. For an important class of 

problems, however, the technique is quite useful. In Chapter 7 the straig~tforward 

ideas in Chapter 6 are formalized and a complete AWBT theory is introduced. These 

results provide quantitative tools for the development of AWBT techniques for linear 

controllers of arbitrary input, output, and state dimensions, and of arbitrary struc

ture. The theoretical framework is used to study and understand the proven AWBT 

techniques reported in the literature, as particular special cases. 

A summary of the couclusioms from Part II and additional suggestions for further 

work are presented in Chapter 8. 

A case study in constrained control system design is included as Appendix A. 

This control problem was developed by practitioners at Shell Development Company 

to be representative of "real world" control problems. As outlined in [79] constraints 

play a major role in the functional specifications for the control system design. In 

addition to motivating for the need for the type of theory outlined in this thesis, 

a novel approach to determining achievable steady state performance under model 

uncertainty is presented. 
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Part I 

The Model Predictive Control 
Approach 
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Chapter 2 

oo~N orm Formulation of Model 
Predictive Control Problems 

Abstract 

A general mathematical I?rogramming framework for multivariable model predic

tive control problems is presented. Existing model predictive formulations, based on 

1 and 2-norms ( Quadratic Dynamic Matrix, Linear Dynamic Matrix, and Model Al

gorithmic Control) arc discussed within the general framework. A new formulation, 

based on the oo-norm, is introduced and developed. The characteristics of this for

mulation, which make it particularly attractive for the control of chemical processes, 

are discussed. A simple procedure for the design and implementation of constrained 

control systems, based on the internal model control structure, is proposed. A simple 

example is included to demonstrate this procedure. 

2.1 Introduction 

It is widely understood that economic optimization of processing plants dictates oper

ating points which lie on one or more process constraints [62,3]. Furthermore, product 

specifications and limitations on available control effort often prescribe hard bounds 

on system inputs and outputs. This situation has prompted the development of mul

tivariable control algorithms which deal with constraints. Examples include Dynamic 

Matrix Control [26] and Model Algorithmic Control [82]. 

These control algorithms are all based on model predictive concepts and therefore 

share a common theoretical basis. In model predictive control, a. discrete convolution 
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Figure 1: The model predictive control scheme. 

model of the process is used to compute future input values which cause the plant 

to track a reference trajectory in some "optimal" fashion while observing constraints. 

The optimality of trajectory tracking is determined by the temporal and spatial norms 

chosen to measure the magnitude of tracking errors. 

In this paper we present a general mathematical programming approach to model 

predictive control. A new formulation, based upon an objective function ( oo-norrn) 

to minimize the maximum future error is introduced. This objective function leads to 

a particularly simple linear programming formulation whose properties are attractive 

for the control of chemical processes. 

2.2 Model Predictive Control 

The model predictive control scheme is outlined in Figure 1. This algorithm involves 

the on-line solution of a constrained optimization problem to determine a set of 

piecewise constant ( discrete), feasible future inputs, y, which will cause predicted 

values of future plant outputs, M_, to track a prescribed trajectory, z:.. Feasible future 

inputs are those which do not violate any input constraints and produce predicted 

outputs which do not violate any output constraints. This optimization problem is 
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solved using mathematical programming techniques. This procedure amounts to an 

"open loop" calculation of future inputs and does not involve feedback. 

In order to reject unmeasured disturbances, d., and to off set the effects of modelling 

error, an inferred disturbance, d,, is computed at each sample instant by subtracting 

the current model output, y_, from the actual plant output, 'H.: In the absence of 

information to support a more complex disturbance model, this inferred disturbance 

is assumed constant over the future error horizon. The inferred disturbance is used 

to modify the reference trajectory and to calculate a new set of optimal input values 

which minimize future errors. Although several future input values are calculated at 

each sample time, only the first of them is implemented. 

The minimization of tracking error, without regard to manipulated variable ac

tion, often results in control schemes which take drastic control action to alleviate 

relatively minor tracking errors. This has prompted the introduction of wPightPd 

penalties on control action into the optimization objective function. This gives rise 

to many new "tuning parameters" in the form of weighting matrices, which allow the 

designer to modify the characteristics of the model predictive controller. We feel that 

it is important to determine the inherent characteristics of the control formulation 

and have therefore made an e:ff ort to avoid the use of adjustable parameters whose 

selection is not directly mandated by the physical situation. Although we omit in

put weighting in the objective function (soft constraints), the analysis which follows 

does not preclude their introduction. For the generic SISO model predictive control 

problem, the following constrained optimization problem must be solved at each time 

step: 

min Ur. - Y(llc,, Y.) II 
1l 

(2.1) 

Subject to: 

.Y. 

where the function i(u.s,, y_) is evaluated using the system model and: 
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indicates a measure of magnitude (norm) over an error horizon 
a P x 1 vector of desired future outputs 
a M x l vector of future inputs . 
a P x 1 vector of future model outputs · 
the current state of the plant 
an M x 1 vector of lower bounds on future inputs 
an M x 1 vector of upper bounds on future inputs 
a P x 1 vector of lower bounds on future outputs 
a P x 1 vector of upper bounds on future outputs 
length of the output error horizon 
length of as the input horizon 

This problem may, in general, include further constraints involving linear combi

nations of the inputs and outputs ( e.g., constraints on the size of plant input changes, 

lui - Ui-i I, or total control effort over the future horizon). 

For all choices of the norlll, II· II, which are of interest, the constrained optimization 

problem (1) can be recast as a linear or quadratic program. In either case well-known 

solution techniques are available. In practice, M is usually chosen less than P in 

order to reduce on-line computational requirements. In these cases, the calculation 

of future plant outputs is based upon the assumption that the ( M + 1 )"t through P th 

inputs remain constant at the value calculated for the M th, input. 

2.3 Norms and Model Predictive Formulations 

We now turn our attention to translation of control objectives into an appropriate 

choice of objective function and constraints. This translation requires the definition 

of a norm which defines the "size" of a vector valued error. The most common norms 

used are defined by: 

where p = 1, 2, or oo. A predicted error at some future time comprises a vector-in R 11
, 

wheres is the number of system outputs. The functional chosen to map this vector 

into a scalar measure of its magnitude is referred to as the spatial norm. The set of 

these scalar errors over future time· values constitutes a vector in RP. The functional 
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Spatial Norm 2 

l.5 

Temporal Norm 

1 2 00 

LP QP LP 

QP QP QP 

LP QP LP 

Table 1: Model predictive control algorithms. 

which maps this vector into a single scalar measure of future error is referred to as 

the temporal norm. 

Independent selection of temporal and spatial norms (1, 2, or oo) provide the 

nine combinations shown in Table 1. Each of these combinations can be used in the 

formulation of a model predictive control algorithm. We will refer to a formulation 

as the m - n algorithm, where m is the spatial norm and n is the temporal norm. 

Formulations denoted LP in Table 1 can be reduced to linear programs in the 

following standard form: 

(2.3) 

Subject to: 

l. > 0 

Formulations which result in quadratic programs are denoted QP. 

1-1 Algorithm. This algorithm corresponds to Linear Dynamic Matrix Control 

(LDMC) [69] and uses an objective function of the form: 

(2.4) 

where Wi are weights on the individual elements of the error vector, and s is the 
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number of 5y5tem outputs. If wi( t) i:s con5tant for all t = 1, ... , P, this choice of 

norm corresponds to the minimization of integral absolute tracking error. Although 

this objective function is nonlinear, the resulting constrained optimization problem 

can be cast as a linear programming problem in the standard form (3) [69,21). 

2-2 Algorithm. This is the most commonly used model predictive control al

gorithm and is the basis of Dynamic Matrix Control (QDMC) [26,44}, Model Algo

rithmic Control [82], and their variants. These formulations add input weighting to 

obtain an objective function of the form: 

p 

mjn L!{(t)Q~(t) + 1l(t)Ry(t) (2.5) 
- t=l 

where Q and R are positive semi-definite weighting matrices. This formulation re:mlts 

in a convex quadratic progr~ming problem. Choosing Q = I and R = 0, corresponds 

to the minimization of unweighted integral square error. 

1-oo Algorithm. This algorithm results in the minimization of the maximum, 

over the future horizon, of the sum of absolute values of the individual output errors. 

This formulation can also be cast as linear program in the form (3), but does not 

share the attractive features of the oo-norm algorithms discussed below, since it uses 

the spatial 1-norm. 

oo-1 Algorithm. This algorithm minimizes the sum, over the future horizon, of 

absolute values of the largest output error at each time step. This objective amounts 

to the minimization of the_ integral absolute error evaluated using the worst error at 

each time step. Although it has not been studied extensively, it may have appeal 

for systems which exhibit inverse response since time varying weights would not be 

needed as they are in the oo - oo algorithm below. It is straightforward to cast this 

problem as a linear program in the form (3). 

oo - oo Algorithm. A new formulation has been developed which uses the oo

norm, 

(2.6) 

The use of this norm both spatially and temporally results in an objective function 
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which minimizes the maximum element of the error vector over the projected horizon. 

Specifically: 

min max m~x Wi lei ( t) I 
Y. t • 

(2.7) 

This formulation can also be cast as a linear programming problem in the form (3), 

and has several advantages over the 1 and 2-norm based objectives presented to date. 

The oo - oo algorithm is a more direct mathematical representation of the pre

dominate control objective in the process industries. The common industrial problem 

is not one of good servo behavior, in the sense of minimum absolute or squared error, 

but rather one of good regulatory behavior while keeping "reasonable" values for all 

outputs. 

Since this formulation does not attempt to minimize errors at all future sample 

instants, but only at the future sample time in which the error is maximum, it gen

erally does not require extreme control actions. Obviously, in the case where this 

maximum error can be made zero by a set of feasible future inputs, the trajectory 

will be tracked perfectly as in the 1 and 2-norm cases. 

This algorithm also provides a very straightforward interpretation of weighting 

parameters. These are simply determined by the relative scaling of the process vari

ables. In situations where good control of certain outputs is required at the expense 

of control quality of others, the weights can be varied accordingly. Normally these 

weights would be chosen to penalize errors equally in all future time steps. 

For systems exhibiting inverse response characteristics, this algorithm, using time 

invariant weights, does not reject persistent disturbances. Any control action to reject 

the disturbance would result in a larger maximum predicted future error than if no 

control action were taken ( as a result of the initial inverse response). This difficulty 

can be overcome by the specification of time varying weights on future errors such 

that errors projected in the first few time steps are weighted less heavily than those 

near the end of the error horizon. These time varying weights are easily specified to 

produce an exponential return to setpoint. 

Finally, as we will show in the next section, the oo - oo algorithm shows significant 
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computational advantages over the other algorithms presented. 

Other Algorithms. , The remaining algorithms in Table 1 result in quadratic 

programs. They do not appear to have features which justify the additional effort 

required, in general, to solve quadratic programs versus linear programs. 

2.4 Computational Aspects 

Since model predictive control requires the solution of an optimization problem on

line, an important consideration is the computational effort demanded by a particular 

formulation. Although custom algorithms which take advantage of the structure of 

a formulation may be available, we are concerned with the generic situation. The 

Revised Simplex Method is a well-known algorithm which can be applied to general 

problems in the standard form (3). Typically, this algorithm requires between v+c and 

2(v + c) iterations to find a solution, where vis the number of variables (dimension 

of ~), and c is the number of constraints ( row dimension of A). Each iteration of 

this algorithm requires on the order of 2 multiplications (81]. We can compare 

the formulations which result in linear programs by examining the total number of 

multiplications required by each. 

For the SISO case with upper and lower bounds on both input and output, the 

LP formulation (3) for the oo - oo algorithm involves M + 2 variables and 4P + M + l 
constraints. The 1-1 algorithm requires 2P variables and 2P + 2M constraints. In 

both cases the number of variables is less than the number of constraints so it is more 

efficient· to solve the dual linear program of (3): 

(2.8) 

Subject to: 

This linear program clearly involves c variables and v constraints. We expect then, 
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the 00-00 algorithm to reqllire on the order of (4P+2N/ +3)(M +2)3 multiplications 

at each time step. The 1-1 algorithm requires approximately ( 4P + 2M)(2P)3 mul

tiplications at each time step. This indicates a significant computational advantage 

for the new algorithm. Depending on the choice of spatial norm, the comparative 

advantage of the temporal oo-norm over the temporal 1-norm, may be even greater 

in the MIM O case. 

In general, the linear programs derived from the translation of predictive control 

problems have more constraints than variables. This suggests that the dual program, 

(8), should be used for computation rather than the primal. The form of the linear 

program ( 8), specifically that all constraints appear as inequality constraints and all 

elements of the right hand side vector, c, are positive, leads to further reduction in 

computational effort. This structure insures that the slack variables form an initial 

feasible solution. This means that Phase 1 of the general 2-phase simplex algorithm 

is unnecessary. 

2.5 Implementation of Model Predictive Control 
in the Internal Model Control Structure 

The Internal Model Control (IMC) [42,43] structure is shown in Figure 2, where 

G is the plant, G the process model, and Q the IMC controller. Comparison of 

Figures 1 and 2 indicates that the model predictive control scheme is achieved from 

the IMC structure when Q -is implemented as an optimization problem (mathematical 

program). 

The classical feedback structure, Figure 3, is related to the IMC structure through 

the following equalities: 

C - Q(I-GQt1 

Q - C(I +GCt1 

where C is the classical f~back controller. 

(2.9) 

(2.10) 
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Figure 2: The internal model control (IMC) structure. 
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Figure 3: The classical control structure. 
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It can be shown that the IMC structure is internally stable when there is no 

modelling error ( G = G) if and only if: 

1 ). G is stable 

2). Q is stable 
(2.11) 

Thus any implementation of model predictive control which infers a disturbance signal 

using the process model will be internally unstable if the plant is open loop unstable. 

Control systems implemented in the classical structure, which are closed loop 

stable in the absence of plant input constraints, may become unstable if inputs are 

constrained. An IMC implementation, however, cannot be destabilized by input 

saturation, since closed loop stability is guaranteed by conditions (11 ). 

The IMC controller, Q, generally consists of a low pass filter, F, and an approx

imate model inverse, Q ( i.e., Q = QF). In general GQ = H, and the closed loop 

transfer function is HF, i.e., y(s) ~ H(s)F(s)r(s). Ideally, we would like Q = a-1 

so that H = I, and the designer has complete freedom to specify the closed loop 

response with the filter F. 

It is proposed to develop constrained control systems in the following manner: 

1. Design a controller as for the unconstrained case. Design procedures which pro

vide robust stability and performance for unconstrained problems are available, 

e.g., H00 , µ-synthesis, etc. 

2. Implement the equi~alent controller Q = C(I + GC)-1
, in the IMC control 

structure, as a mathematical program. This provides a feasible approximation 

to Q when constraints are active and is identical to Q when constraints are not 

active. 

This procedure allows the implementation of controllers designed in the absence of 

constraints and provides an "optimal" approximation to them in the presence of 

constraints. 
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variable description steady state value 

Y1 overheads composition 96;25 mol % meth. 
Y2 bottoms composition 0.50 mol % meth. 
m1 reflux flow rate 1.95 lb/min 
m2 reboiler steam flow rate 1. 71 lb/min 

Table 2: Wood-Berry column variables. 

2.6 Example 

A simulation study of a simple example was carried out to demonstrate the charac

teristics of the MIMO 00-00 algorithm. Wood and Berry [91] proposed the following 

2-input, 2-output model of a methanol-water distillation column. 

-18 9e-
3

• ] [ ( ) ] 21.0a+l m1 s 

-19 4e-3
• ( ) 

14_4.,+1 m2 s 

The physical significance of the model variables, and nominal operating conditions of 

the column, are outlined in Table 2. 

To reflect realistic industrial constraints, the reflux flow rate and reboiler steam 

rate were constrained to lie within the ranges: 

-1.95 < m1 < 0.25 => reflux rate < 2.20 lb/min 

-1.71 < m2 < 0.29 => steam rate < 2.00 lb/min 

To represent possible product purity specifications, overhead and bottoms composi

tions were constrained to be lie in the ranges: 

Y1 > -0.25 => overheads comp. > 96 mol % 

Y2 < 0.05 => bottoms comp. < 0.55 mol % 

The ideal controller, though not realizable, would be Q(s) = G(st1 (42,68]. In this 

example, we determine a feasible approximation to G( s )-1 using the oo - oo model 

predictive algorithm. This approximation is augmented with a low pass, diagonal 

filter, F(s ), as suggested by Garcia and Morari (43]. For this example, the filter used 
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is: 

F(s) = diag{l/6s + 1, 1/6s + 1} 

This filter specifies an exponential response to step changes in setpoints or distur~ 

bances. The process model was discretized using a sampling time of 2.5 minutes, the 

error horizon length, P, and number of future inputs calculated, M, were 5 time steps 

(12.5 ·minutes). Time invariant weights penalizing errors in each output equally were 

used (i.e., an error of 1 mol % in overheads composition is equivalent to 1 mol % 

error in bottoms composition). 

The closed loop response to a step setpoint change in overheads composition is 

shown in Figure 4. The manipulated variable values implemented at each time step are 

shown in Figure 5. While not comprehensive,_ this simple example demonstrates that 

hard bounds on inputs and outputs are handled smoothly by the oo - oo algorithm. 
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Chapter 3 

Robust Model Predictive Control 

Abstract 

Concepts of model predictive control are extended to uncertain linear systems. An 

on-line optimizing control scheme is developed which has as its objective the mini

mization of the worst-case tracking error for a family of linear plants. For uncertainty 

descriptions which provide impulse response models as affine functions of uncertain 

parameters, it is shown that the required minimax optimization can be recast as 

a linear program. Situations which lead to such an uncertainty description are dis

cussed. An example is presented to demonstrate the properties of the proposed control 

scheme. 

3.1 Introduction 

Model Predictive Control (MPC) involves the solution of an optimization problem on

line in order to determine optimal inputs over a future time horizon. The objective 

of the optimization is generally a weighted measure of future tracking error, the 

rlifference between predicted model outputs and desired setpoints. In each time step, 

an estimate of current disturbances is updated, the optimization is solved based on 

this new estimate ( and an assumption regarding its future effect), and the first of 

the resulting optimal inputs is implemented. Updating the disturbance estimate and 

solving the optimization at each time step compensates for unmeasured disturbances 
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and model inaccuracy (which cause actual system outputs to be different from the 

model outputs). Usually the problem is formulated so that the objective is minimized 

subject to certain system constraints, for example bounds on the magnitude of current 

and future inputs or outputs. This ability to handle constraints in an optimal fashion 

is the primary advantage of model predictive control over other (linear time invariant) 

design schemes [45]. The primary disadvantage of MPC relative to other techniques 

is its inability to deal with model uncertainty. 

In every example of model predictive control presented to date, the assumption is 

made that a single linear time invariant (LTI) model adequately describes the system 

behavior. It is well-known in the robust control community that this assumption is 

never valid for physical systems (see, e.g., [67]). In addition, control systems which 

provide "optimal" performance for a particular model may perform very poorly when 

implemented on a physical system which is not exactly described by the model. In this 

paper we present an approach to Robust Model Predictive Control (RMPC) analogous 

to that taken in the robust control community. Specifically, the assumption that 

system behavior is exactly described by a single LTI model is to be replaced with the 

assumption that system behavior is described by some member of a (possibly infinite) 

set of LTI models. The optimization objective of the proposed RMPC algorithm is 

the optimization of Robust Performance, i.e., minimize the worst-case tracking error 

predicted by a model in the family of possible plants. In addition, system constraints 

are enforced for all models in the set. 

3.2 Formulation of the RMPC Problem 

In order to define a scalar optimization objective, we need to define spatial and 

temporal norms on the tracking error, which is a vector in nm at each future time 

k, k = l, ... , P. In this paper we will be concerned with the oo - oo norm model 

predictive algorithm which uses the oo-norm, 

(3.1) 
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both spatially and temporally. For a complete discussion of spatial and temporal 

norms and their role in the definition of MPC algorithms, see Campo and Morari 

[18]. This formulation minimizes the worst future tracking error over all outputs over 

the time horizon. Thus large peak excursions are avoided for all outputs. A significant 

aovantage of this formulation is that in the nominal case ( no model uncertainty), the 

required on-line optimization can be formulated as a linear program (LP), for which 

very efficient solution techniques are available. 

We denote by II the family of possible models, an element of which is the nominal 

model chosen to "best" describe the system behavior. Since each member of the set 

II of n input m output models is assumed to be stable and LTI, we can introduce an 

impulse response representation. Parametrizing II in terms of a vector of q unknown 

parameters, 0, with 10i I ~ fj, we can write: 

II = { Hi{ 0) I 0 E 1(' \:I i = 1, ... , 00} 

1r = {0 I 10i I ~ fj V j = 1, ... 'q} 

(3.2) 

(3.3) 

where Hi is an n x m matrix valued function of 0 whose elements relate outputs at 

time k to impulsive inputs at time k - i. The function Hi(0) associates a particular 

impulse response model with each point in the parameter space 1r. We define the 

nominal model as Hi(Q.) ( i.e., the nominal model corresponds to the origin in the 

parameter space). 

Adopting a truncated impulse response, for which Hi = 0 \:/ i > N, and including 

upper and lower hounds on future inputs a.nd outputs, we can write the on-line 

optimization of ( oo - oo) Robust MPC as: 

min max max lly(k + l(k) - r.(k + £)II 
1(1c+,) it E1r t=l, ... ,P - · oo 

jaO, ... ,M-1 

(3.4) 

Subject to: 

9. '5 !!( k + j) '5 (3 
(3.5) 

f ~ t( k + llk) ~ 4 } V 0 E 1r 
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where: 

t N 
u(k +ilk) = L H;(0)y(k + £ - i) + L Hi(0)y_(k + e - i) + 4(k + ilk) (3.6) 

i=1 i=l+l 

N 
4(k + tlk) = .il(klk) = u(k) - r; Hi(Q)y(k - i) (3.7) 

i=l 

fl_(k + £\k) = predicted value of the output at time k + l based on information 
available at time k 

z:(k + l) = 
fl(k + ilk)= 

setpoint at time k + l 
predicted value of additive disturbances at the output at time k + f 
based on information available at time k 

y_(k + I?) 
p 
M 

- input at time k + l 
- tracking error horizon length 
- number of future inputs to be calculated, y( k + f) = y_( k + M - 1) 

VP>i~M 

As is standard in model predictive control we have evaluated the effects of dist ur

bances on the output at time k, !i(klk), by subtracting the output predicted by the 

nominal model from the measured output, and assumed that this effect will remain 

constant into the future. The constraints (5) are meant to be representative of those 

used in a specific application. The development which follows is not restricted to con

straints of this form. In general, bounds can be specified on any linear combination of 

future inputs and outputs. It is common in practice to limit the magnitude of input 

changes. Since this is simply a bound on the difference of two future input values it 

can be handled in the general setting. 

Defining: 

1= 

~(k + 1) - !:(k + 1) 

~( k + 2) - z:( k + 2) 

~( k + P) - r.( k + P) 

.i. = 

4( k + 1) - d k + 1) 

d(k + 2) - r.(k + 2) 

4( k + P) - r.( k + P) 



y(k) 

14.( k + 1) 
y= 

y(k + M - I) 

Hl= 

H2= 

and 
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y(k - N + 1) 

'Y.po.,t = y_(k-N+2) 

y(k - 1) 

H1(0) 0 

H2(0) H1(0) 

HM(0) HM-1(0) 

HM+i(fl) HM(0) 

Hp(-0) HP-1(0) 

HN(fl) HN-1(9) 

0 HN(0) 

0 

we can rewrite ( 4 )-(5) as 

Subject to: 

Y. < I!.. 

r.( k + I) - d.( k + 1) 

z:(k + 2) -!l(k + 2) 
2= 

r.(k + P) - 4.(k + P) 

0 

0 

H1(0) 

H1(0) + H2(fl) 

(3.8) 

(3.9) 

(3.10) 

In general this problem is a nonlinear, non-convex minimax optimization for which 

efficient solution techniques are not available. The nominal oo - oo MPC problem ( no 

model uncertainty) can be formulated as a linear program (LP) which is easily solved 

in real time with standard algorithms ( e.g., simplex and its variants). We would like 
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to investigate conditions under which the RMPC problem can be formulated as an 

LP. This will require us to make (hopefully) mild assumptions about the functional 

dependence of the impulse response coefficients on the uncertain parameters 0. 

Defining µ*(y) as the solution to the sub-problem: 

it is easy to see that any µ( 0, y) which satisfies 

where 

l= 

1 

1 

1 

V 0 E 1r 

· · (3.11) 

(3.12) 

is an upper bound on µ*(y). Problem (9)-(10) can then be interpreted as, find the 

smallest upper bound µ and some y which satisfy (10) and (12) for all .e, E 1r. This 

is equivalent to the following mathematical program: 

minµ 
µ,.!! 

(3.13) 

Subject to: 

!µ '?. [_( e, .Y.) 

-!µ $ L(0,y) 
'v' .e_ E 1r 

1 -5 L(0,y) 
(3.14) 

.i. ?. L(fl, u) 

g_ :5 .Y. 

(3 ~ .Y. 

We now have an optimization whose objective is linear in the decision variables Y. 
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and µ, with an infinite number ( continuum) of nonlinear constraints. We will develop 

conditions for which it is ·sufficient to consider a finite subset of these constraints. In 

addition, each member of the finite subset will be linear in the decision variables. 

The following theorem will pla.y a. central role in the development. For a proof 

see, for example, Luenberger [65]. 

TheQrem 3.1 Let g be a convex (concave) functional defined on !l, a closed convex 

set. If g has a maximum {minimum) on !l, it is achieved at an extreme point of fl. 

This result allows us to immediately develop the following theorem: 

Theorem 3.2 If Hi( 0) is an n x m matrix valued affine function of 0 E 1r, then 

li(e, y): 

i). achieves its minimum at an extreme point of 1r, V l!, l!pa.,t, ~ E nn. 
ii). achieves its maximum at an extreme point of 1r, V l!, upa,t, :1 E n,n. 

Proof Hi affine in .e_ => H 1(fl) = [h[;(fl) ] and H 2(fl) = [h~j(!i) ] where hf; and 

h73 are affine in 0. Thus 

Mn Nn 

fi(fl, !!) = I: hf;(fl)u; + I: h;;(fj,)uf"t - Si (3.15) 
j=l j=l 

is an affine function of 0 V i = 1, ... , Pm and V !!, ypa.,t, .§.. It follows immediately 

that Ji is simultaneously concave and convex on 1r V i = 1, ... , Pm and V 1!, ypast, 

.§.. Since 1r is a polyhedron it is bounded, closed, and convex; it follows then from 

Theorem 1 that /.(!:)., y) achieves its minimum and maximum at extreme points of 1r. 

■ 

With an uncertainty description which yields impulse response coefficients as affine 

functions of the uncertain parameters 0, it is clear that 

lµ '2:. [(0,y_) lµ '2:. L( e, Y.) 

-1µ $ L(tl,Y.) 
veeS=> 

-1µ $ [.(tl, Y.) 
V 0 E 1r (3.16) 

1 $ [(fl, Y.) 1 ~ l(fl, y) 

§_ '2:. [(0,y_) §_ '2:. l( e, Y.) 
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where S, the set of extreme points of 1r, is defined: 

s = {0 I e E 1r, and 3 no .0.1,fl.2 E 7(' and O <a< 1 3 fl= o:B.1 +(1-0:).6.2} (3.17) 

and contains the 2g vertices of the polyhedron 1r as its elements. 

The infinite program (13)-(14) can then be written as: 

minµ 
~,µ 

(3.18) 

Subject to: 

lµ > fll(S)y + H2(0)ypaat _ §. 

lµ > -H1(0)y _ fl2(0)y_Paat + §. 

V0ES 
-1 > -Hl(f>.)u _ H2(f>.)upaat + §. 

§_ > fll(S)y_ + H2(0)y_Pa•t _ §. 
(3.19) 

-g, > -y_ 

/3 > l! 

Including constraints (19) for each of the 2q elements of S, we obtain a linear 

program (the objective function and constraints are linear in the decision variables). 

Putting this in standard form we obtain: 

(3.20) 

Subject to: 

(3.21) 

where A E 'R,(2q+apm+Mn.)x(Mn+1), *' '- E 'R,(Mn+l), and b. E 'R,(2q+2Pm+Mn). This 

program involves Mn + 1 variables and 2q+2 Pm + Mn constraints when upper and 

lower bounds on all future inputs and outputs are included. The corresponding dual 

LP: 
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(3.22) 

Subject to: 

(3.23) 

involves 2q+2 Pm + Mn variables and Mn + 1 constraints. A solution to the dual 

provides immediately a solution to the primal and vice versa. 

The simplex method generally requires between c+ v and 2( c+ v) iterations to find 

a solution, where c is the number of LP constraints and v is the number of variables. 

Each simplex iteration requires on the order of c2 operations. Thus there is significant 

advantage in solving the dual program (22)-(23) which has fewer constraints than the 

primal (20)-(21 ). Additionally since the constraints of the dual are constant, the 

optimal solution at sample time k is always a feasible solution at sample time k + I. 

Thus by solving the dual we avoid, at each time step, the (non-trivial) calculation 

associated with finding a basic feasible solution. In practice it has been observed 

( with P, M ~ 20, q ~ 2, m, n = 1) that the optimal basis usually changes very little 

from one sample time to the next so that usually less than ten simplex iterations are 

required to find the optima.I :solution. 

Although the program {22)-(23) is large, it is practical to solve it in real time with 

standard methods when there are a modest number of uncertain parameters. No 

doubt custom algorithms which make use of the structure of the constraint matrix 

could do even better. 

3.3 Impulse Response Uncertainty 

Having developed an approach to solving the minimax problem of RMPC (9)-(10), 

we turn our attention to the formulation of uncertainty descriptions to which we 

can apply these techniques. Specifically we need to consider the specification of 

meaningful sets of models whose impulse response coefficients are affine functions of 

a small number of uncertain parameters. These uncertainty descriptions are in the 
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time domain and arc therefore fundamentally different than the frequency domain 

norm bounds common in the robust control design paradigm. While the following 

characterization of uncertainties amenable to this framework is not complete, we 

present some preliminary insights and examples. 

The plant set II with Hi affine in 0 corresponds to an arbitrary linear combination 

of known LTI plants. The z domain plant set, 

q 

TI= {P(z)I P(z) = P(z) + LeiPi(z) 52 E 1r} (3.24) 
i=l 

corresponding to a parallel interconnection of the nominal plant F(z), and known 

systems Pi(z) with unknown weighting of each subsystem, has the equivalent impulse 

response description, 

q 

TI= {Hil Hi(e) =iii+ Leini e E 1r} (3.25) 
i=l 

Linearization of a nonlinear model at a number of points in the anticipated op

erating regime gives rise to a set of known linear models for which an uncertainty 

description such as this is applicable. It is reasonable to expect that a linear combi

nation of linearized models would be representative of the actual system over a wider 

range of conditions than the single nominal model. 

Uncertain gain in the elements of multiple input-multiple output (MIMO) systems 

can be handled exactly in the form (24). Correlations between the uncertain elements 

r,a.n be preserved as well. For example the plant set: 

(3.26) 

is captured with two uncertain parameters as: 

(3.27) 

More complicated forms. of uncertainty, such as in the coefficients of Pij ( z) do not 
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lead to affine characterizations of the impulse response. 

For single input-single output (SISO) systems it is possible to specify approximate 

gain and phase uncertainty bounds (square templates on a Nyquist diagram) as a 

function of frequency, in the form of (24), with two parameters. 

For systems described by 

~(k + 1) = A~(k) + By(k) 

11..(k) = C~(k) + Dy(k) 

the impulse response is given by 

(3.28) 

(3.29) 

Linear uncertainties in the elements of B or C, and D, result in linear uncertainties in 

the impulse response. It is straightforward to handle uncertainties such as actuator 

positioning uncertainty, which appears as columnwise perturbations in B, in this 

manner. For some ill-conditioned systems such as high purity distillation columns, 

input uncertainty of this type is the dominant cause of poor performance of controllers 

designed to optimize nominal performance [87]. 

The Hi are nonlinear functions of the elements of A so that an affine characteriza

tion of the impulse response is not available. First order effects of these uncertainties 

can be captured by genera.ting impulse response models with specific realizations of 

A and adopting an uncertain linear combination of these realizations as the set II. 

Finally it is anticipated that system identification techniques commonly used to 

identify process models can be extended to provide not only a. nominal model in terms 

of impulse response coefficients, but also confidence intervals for, and correlations 

between, the coefficients. 
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3.4 An Example 

A simple· SISO example is presented to demonstrate the characteristics of the RMPC 

algorithm relative to standard model predictive control. In order to focus on the 

effect of optimizing robust performance, a.:s opposed to nominal performance, we will 

omit input and output constraints. 

The nominal plant is given by: 

,.. 1 
P(s) = 10s + 1 (3.30) 

· It is desired that the closed loop system be robust in the face of unmodelled dynamics 

which introduce additional phase lag (a.rising perhaps from a.n unmodelled delay). The 

set of plants to be considere4 is given by: 

II= {P(s)I P(s) = P(s) + 0(P'(s) - F(s)), 0 ~ 0 ~ 1} (3.31) 

where 

P' ( ) 1 (-2s + 1 ) 8 = 10s + 1 2s + 1 
(3.32) 

P' ( s) is simply the nominal model augmented with a first order Pade approximation 

to introduce a measure of phase lag. (This approximation corresponds to a delay of 

4 minutes.) The corresponding impulse response description is: 

(3.33) 

The standard procedure for making model predictive controllers more robust, 

filtering the desired trajectory, .ii, is adopted here. It can easily be shown that the 

first order, low pass filter 
1 

F(s) = 2.5s + 1 ·(3.34) 

is sufficient to guarantee stability of the (unconstrained) closed loop system for all 

plants in the set II. 
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Figure 1: Unit step response for MPC when the true plant is P (0 = 0). 
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Figure 2: Unit step response for RMPC when the true plant is P (0 = 0). 

From the preceding development, we know that the worst-case plants correspond 

to extreme values of 8. In this case they are simply P and P'. Figures 1 and 2 show 

simulated unit step responses for MPC and RMPC respectively when the nominal 

model is exact (the true plant correspo·nds to 8 = 0). The more conservative RMPC 

algorithm is slightly more sluggish than the MPC algorithm although both track the 

filtered trajectory with very little error. 

Figures 3 and 4 show simulated step responses for the MPC and RMPC schemes 

when the true plant is given by P', ( 8 = 1 ). In this case the MPC algorithm, opti

mizing nominal performance, is only marginally stable while the RMPC algorithm, 

optimizing robust performance, provides a. very good response. 
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Figure 3: Unit step response for MPC when the true plant is P' (0 = 1). 
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Figure 4: Unit step response for RMPC when the true plant is P' (0 = 1). 
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While this example is indicative of the properties of RMPC, it does not capture the 

full advantage of optimizing robust performance. For SISO systems it is well-known 

that robust stability along with good nominal performance implies reasonable robust 

performance. For MIMO systems this is not the case. Certain ill-conditioned systems 

which have good robust stability and nominal performance demonstrate very poor 

robust_ performance [87]. It is for these MIMO systems that RMPC will prove most 

valuable. In addition, while the standard MPC algorithms allow constraints to be 

specified on predicted outputs, in practice (where the plant differs from the predictive 

model) there is no guarantee that the actual outputs will obey the constraints. In the 

RMPC algorithm, the output constraints are enforced for all plants in the uncertainty 

set II. Thus, as long as the set II has been chosen to include the actual plant, output 

constraint violations can not occur. 

3.5 Conclusions 

We have developed a model predictive control formulation which recognizes model 

uncertainty explicitly and attempts to optimize performance for the worst-case plant 

in an uncertainty set. The required on-line minimax optimization has been shown 

to be tractable for an uncertainty set defined by a nominal model and linear pertur

bations from that model. While certain meaningful uncertainties can be handled in 

this framework, additional work is needed in the development of time domain uncer

tainty descriptions. It is anticipated that for certain uncertainties ( e.g., parametric 

uncertainties in A) it will prove inadequate to consider only the extreme points of the 

uncertainty set. A more sophisticated approach to the RMPC minimax problem will 

be required. Current research efforts are focused in this direction. 
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Chapter 4 

Model Predictive Optimal 
Averaging Level Control 

Abstract 

The infinite horizon discrete time optimal averaging level control problem for 

surge tanks, with minimization of the rate of change of outlet flow as its objective, is 

formulated and a solution ia presented. A finite moving horizon approximation is in-

troduced and analytical solutions are obtained for two important special cases. These 

results provide a quantitative measure of the impact of a secondary objective, inte

gral action, on flow filtering. The problem is then generalized to include non-constant 

level and outlet flow constraints. A model predictive control formulation is presented 

which addresses the objectives of the generalized problem. The resulting controller 

minimizes the maximum rate of change of outlet flow, provides integral action, and 

handles constraints on the tank level and outlet flow rate. The proposed controller 

includes a single adjustable parameter which directly effects the trade-off between 

the incompatible objectives of good flow filtering and rapid settling time. Examples 

are presented to demonstrate the properties of the model predictive controller. An 

implementation, involving imbedded feedback, is developed which guarantees inter

nal stability of the model predictive scheme for open loop unstable processes ( such 

as integrators). 
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4.1 Introduction 

In Model Predictive Control (MPC) future system inputs are selected which opti

mize a performance objective over a finite future time horizon, subject to system 

constraints. The performance objective is generally a weighted measure of future 

tracking error, the difference between predicted outputs and desired setpoints. In 

each time step, an estimate of current disturbances is updated, the optimization is 

solved based on this new estimate, and the first of the resulting optimal future inputs 

is implemented. Updating the disturbance estimate and solving the optimization 

at each time step compensates for unmeasured disturbances and model inaccuracies 

( which cause actual system outputs to be different from the predicted outputs). Many 

objective functions and system constraints result in optimization problems which can 

be formulated as linear or quadratic programs [18), for which efficient and reliable 

solution techniques exist. Several such schemes have been advanced in the last ten 

years. These include, among others, Model Algorithmic Control [82), Dynamic Ma

trix Control [26,44], and Internal Model Control [42]. The most significant feature of 

these control algorithms is their ability to handle system constraints in an optimal 

fashion. In this paper we apply these ideas to the solution of the so called "optimal 

averaging level control" problem (66]. 

The objective in surge tank control is to effectively us~ the tank capacity to filter 

inlet flow disturbances and prevent their propagation to downstream units. Tight 

control around a specific level setpoint is usually unnecessary and is contrary to the 

flow disturbance filtering objective. Tank level and outlet flow constraints, however, 

must not be violated and it is desirable to eventually return the tank inventory to its 

nominal value so that capacity is available to filter future flow disturha.ncP.s. Since 

setpoint tracking and rapid integral action are only secondary objectives, level con

straints dominate the problem. Indeed, if the tank had infinite capacity there would 

be no need for control, the outlet flow could be held constant, achieving perfect flow 

filtering. 

The flow filtering objective is quantified by the Maximum Rate of Change of 
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Outlet flow (MRCO) for a given inlet flow disturbance. Traditionally, this objective 

has been achieved by ~sing proportional or proportional-integral level control, suf

ficiently detuned to provide reasonable flow filtering, [24], or by simple, intuitively 

based, nonlinear schemes ( e.g., [61)). More recently, an optimal averaging strategy 

has been advanced (66]. This approach, which directly addresses the objective of op

timal flow filtering subject to level constraints, has much appeal. The integral nature 

of constraints in this optimal strategy suggests a model predictive implementation. 

4.2 Continuous Time Optimal Averaging Level 
Control 

In this section we present a summary of the work of McDonald et al. (66], who 

first presented control schemes to directly address the flow filtering objective. Using 

a generalization of the derivative of outlet flow (MRCO) the flow filtering objective 

is defined: 
. lqo(t) - qo(t') I mm sup 

Qo(t) t,t'E(O,eo) t - i1 

'"'' 

( 4.1) 

Subject to: 

tE(O,oo) (4.2) 

where: 

q0 ( t) is the tank outlet flow at time t 

h(t) is the tank level at time t 

While the MRCO objective (1) addresses the primary flow filtering objective, it 

does not address a number of secondary objectives. For example a solution to (1) 

and {2) need not provide integral action and might result in outlet flows and tank 

levels which are excessively oscillatory. Indeed as we will see, (1) and (2) admit an 

infinite number of solutions, many of which have one or more of these undesirable 

properties. Nonetheless, by focusing attention directly on the flow filtering objective, 

the synthesis of controllers for this ohjed.ive ( a.s opposed to tuning rules for controllers 
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with some prescribed structure), and by providing a meaningful performance measure 

for analysis, the MRCO objective is very useful. 

Solutions to ( 1) and (2) depend upon the nature of the expected inlet flow distur

bances. For a step disturbance of magnitude B entering a tank of constant area A, 

at it:s uuni.iual cuuditiuu of q011 = O, h 11 = O, McDonald et al. show that (1 )-(2) admits 

the following solution: 

t E (0, t•] 
(4.3) 

where: 

t· -

For a given MRCO, the most effective way to increase (or decrease) q0 (t) to offset 

the fl.ow imbalance, B - q0 (t), is to increase (or decrease) q0 (t) at a constant rate. It 

is easy to verify that the solution (3) is a ramp of minimum slope which completely 

offsets the flow imbalance just as the level reaches its limit ( at time t*). A ramp of 

lower slope would allow the level limit to be exceeded before the flow imbalance is 

eliminated ( and would therefore be infeasible); a ramp of greater slope would drive 

the imbalance to zero before the level reached its limit ( and would therefore be non

optimal).. Thus the solution is unique for t E (0, t"']. tbr t > t"' any q0 (t) which 

satisfies: 

I 
qo(t) - q0 (t') I < B2 

t - t' - 2Alh1im I Vt=, t', ( 4.4) 

and 

B(t - t*) -A(hmaz - h1im) :5 lt qo(t)dt :5 B(t - t*) -A(hmin - htim) (4.5) 
t• 

is also optimal. These conditions simply insure that for t > t"', the rate of change of 
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' 
outlet flow is less than that fort E (0,t*], (4), and that the level constraints are not 

violated for t > t*, (5). In keeping with the desire to keep the outlet flow constant 

· subject to level constraints, it is set equal to the inlet flow, B, for t > C' to arrive 

at the solution (3). Since the supremum in (1) is taken over all future time, we will 

refer to (3) as the infinite horizon solution. 

As shown by McDonald et al., the infinite horizon solution can be implemented as 

a nonlinear proportional feedback. However, in order to insure that level constraints 

are not violated, B must equal the magnitude of the largest anticipated step distur

bance. This results in suboptimal performance for disturbances of lesser magnitude. 

Indeed, in this scheme, MRCO is independent of the magnitude of the disturbances 

which are realized. Additionally, since proportional feedback cannot eliminate steady 

state offset, an integral term, detuned to minimize impact on the optimal MRCO, 

is a.drtP.rt. 1'his detnnP.d intP.gra.1 action provides a slow return to the nominal level. 

Should additional disturbances occur before the nominal condition is attained, level 

constraints could be violated. 

When measurements of the inlet flow disturbances are available, McDonald et 

al. propose a feedforward/feedback scheme, whose response is dependent on the 

magnitude of the measured disturbance. Again, in orrtP.r to eliminate steady state 

offset, proportional and integral modes are added to the MRCO optimal controller 

with an associated increase in MRCO. This "optimal predictive controller" (OPC) is 

defined by: 

(6a) 

(6b) 

where: 

q0 - MRCO optimal outlet flow rate 

qi - measured inlet fl.ow rate 

Kc - proportional gain 
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Ti integral reset time 
dx 

X - dt 

While this formulation provides better flow filtering for small disturbances ( of 

magnitude less than the maximum anticipated), it requires measurement of the inlet 

flow rate and integral ar.tion is achieved at the expense of MR.~O optimality. 

4.3 Discrete Time Optimal Flow Filtering 

With outlet flow constant between sample times, the discrete time infinite horizon 

optimal flow filtering problem can be expressed, at time t, as: 

Subject to: 

,, 

min max lq0 (t + k) - qo(t + k - 1)1 
qo(t+k) kEK . 

k EK 

where K = {0, 1, 2, ... }. 

Defining nominal conditions q0 a = 0, ha = 0, a simple mass balance provides, 

T k 
h(t + k + 1) = h(t) - A }:{q0 (t + j) -d(t + j)} 

j:O 

(4.7) 

(4.8) 

(4.9) 

where d(t) is the inlet flow disturbance realized at time t, and T is the sampling time. 

Since exact prediction of the future level using (9) requires knowledge of current 

and future inlet flow disturbances, {d(-t),d(t + 1) ... }, we cannot solve (7) subject 

to (8). Instead we will make assumptions which allow us to predict the future level 

based on currently available information and solve instead, 
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d 

Tank 

Model h 

Figure 1: The internal model control {IMC) structure. 

mirt max lqo(t + k) - qo(t + k - 1)1 
Qo(t+k) kEK 

h 

(4.10) 

(4.11) 

where the notation h(t + kit) indicates the estimate of h at time t + k based on 

information available at time t. 

We now turn our attention to the assumptions which allow us to evaluate the 

future level estimates, h(t + k + 1 It). In this formulation we use a model of the plant 

to infer inlet flow disturbances. With this approach it is unnecessary to measure 

the inlet flow rate explicitly. 'I' he formulation is based on the internal model control 

(IMC) structure (42,68], shown in Figure 1. 

The effect of inlet flow disturbances, d, on the output, h, is evaluated at each 

sample time by subtracting the model output, h(t), from the measured output, h(t) . 

. (4.12) 

It is assumed that dh represents only the effects of unmeasured disturbances on the 

output (although it includes the effects of modelling errors as well). The internal 
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model, relating tank level to outlet flow is 

{4.13) 

so that, 

dh(t) - d1i(t - 1) = h(t) - h(t) - h(t - 1) + h(t - 1) 
T = h(t)-h(t-1)+ Aq0 (t-l) (4.14) 

The assumption that dh represents only the effects of inlet flow disturbances allows 

us to use dh(t) to estimate the inlet flow disturbance realized at time t -1. From (9) 

we have, 
A 

d(t -1) = T {h(t) - h(t - l)} + q0 (t - 1) ( 4.15) 

and from (14) we see that the right ·hand side of (15) is equal to ~{ dh(t) -dh(t -1) }. 

Thus our estimate of the inlet flow disturbance which occurred at time t - 1 is, 

(4.16) 

Since the optimal averaging level control problem was originally defined for step inlet 

flow disturbances, we assume that any inlet flow disturbance is which occurred at 

time t - 1 (the most recent we can detect using level measurements) is constant. 

With the further assumption that no new disturbances will enter at time t or in the 

future, we have, 

( 4.17) 

Using this result and (9) the prediction of future level is given by: 

T T k 
h(t + k + llt) = h(t) + (k + 1) A d(t + kjt) - A~ q0 (t + j) (4.18) 

J=O 

and our definition of th~ discrete time optimal flow filtering problem ( 10 )-( 11) is 
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complete. 

With the following theorem we characterize all solutions to this problem. In order 

to simplify the notation we define, 

O(t) = d(t - lit) - qo(t - 1) (4.19) 

the estimated flow imbalance, inlet flow minus outlet flow, at time L, immediately 

before we implement q0 (t). 

Theorem 4.1 The sequence {q0 (t + k), k E K} is a solution to the discrete time 

infinite horizon optimal flow filtering problem, {10)-(11)-(18), if and only if: 

where: 

V k E [O, k*) 

Y k ~ k* 

2fl(t) 2A[hlim - h(t)] 
( k* + 1) T k* ( k* + 1) 

k* _ N { 2A[hlim - h(t)]} 
TO(t) 

htim 
= { hmo.x for O(t) > 0 

hmin for !l(t) < 0 

and N { x} indicates the smallest integer ~ x. 

Proof See Appendix A. 

( 4.20) 

( 4.21) 

■ 

Condition 1. specifies that the solution is a ramp change in outlet fl.ow which 

completely offsets the flow imbalance just as the level reaches its limit (at time t+k"'). 

As one might expect, k* decreases as the magnitude of the flow imbalance increases. 

As for the continuous case, the optimal discrete time solution is non-unique (for 

t 2 t + k*). Conditions 2. and 3. are analogous to (5) and (4) from the continuous 
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case and characterize admissible outlet flow rates for t ~ t + k*. In particular 3. 

insures that outlet flow rate changes for t ~ · t + k* are smaller than for t < t + k•. 

Condition 2. insures that the level constraints are not violated for t 2:: t + k*. 

A particular solution to (10)-(11)-(18) is provided by: 

( 4.22) 

where we have resolved the non-uniqueness by making the outlet flow constant for 

k ~ k*. 

The MRCO given by (22) is: 

Since 

M RCO* = 2n(t) 
T(k* + 1) 

2A(hlim - h(t)) 
T 2 k*(k* + 1) 

k* > 2A[hum - h(t)] 
- Tf2(t) 

( 4.23) 

( 4.24) 

where equality holds when the right hand side is an integer, we have (substituting 

(24) into (23)): 

M RCO* > n2
(t) 

- 2A[h1im - h(t)] -Tf2(t) 
( 4.25) 

MRCO provided by the continuous time infinite horizon solution, (3), is given by: 

B2 
MRCO = 2A[hum - h(t)) ( 4.26) 

Noting that B is the flow imbalance, f2(t), in the continuous case, and comparing 

(26) with (25) we find an additional term in the denominator of (25) due to the lag 

of T time units ( one sample time) required to infer the flow imbalance using level 

measurements. In the discrete implementation, we can only adjust the outlet flow 

at the sample times and this causes MRCO to be greater than the bound in (25) in 

general (whenever the right hand side of (24) is not an integer). 

While this formulation is useful for discrete time level control when feedforward 

measurements are not available, it has several drawbacks. Most significantly, there 
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is no provision for integral action. The ramp solution (22) allows the tank level to 

move to its constraint and remain there indefinitely. Subsequent disturbances result 

in immediate level constraint violation. In addition no consideration has been given 

to the effects of outlet fl.ow rate constraints. In the subsequent sections we will show 

how these issues can be addressed in the framework of model predictive control. 

4.4 Model Predictive Formulation 

In this section we will develop the optimal flow filtering objective as a model predictive 

·control problem. This formulation is based on a finite horizon analog of the discrete 

time flow filtering problem (10)-(11 )-(18). As we will show in the next section, the 

optimization can be recast a~ a linear program to be solved on-line. As is standard in 

model predictive control, only the first of the optimal future inputs is implemented 

and fhe optimization is resolved at each sample time. 

With the restriction of a finite future horizon, P sample times in length, we can 

write (10)-(11)-(18) as: 

( 4.27) 

Subject to: 

T . 
lhmin :5 -Hq, + n A d(t +kit)+ lh(t) :5 lhma:r: ( 4.28) 

where: -llxlloo = mµlxil is the oo- norm on 'R.P, 
' 

qo(t) 
1 0 0 

q0 (t + 1) 
-1 1 0 

qo = R= 

0 -1 1 
qv(t + P -1) 
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n= 

1 
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p 
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1= 

1 

1 

1 

H= 

T 0 A 
T T 
A A 

T T 
A A 

Note that H is the truncated impulse response matrix for the tank. 

0 

0 

T 
A 

It should be stressed that d(t + kit), the inferred inlet flow disturbance, is re

evaluated at each sample time and the optimization is resolved based on the new 

information. This approach mitigates the consequences of the restrictive assumptions 

made about future disturbances. 

In the MPC framework we are free to impose constraints more general than (28). 

Constraints on any linear combination of future inputs and outputs can be handled 

by the on-line optimization, (nonlinear constraints preclude the use of linear program

ming to solve the optimization). In particular, upper and lower bounds on level can 

be specified at each future time step independently. Constraints can also be specified 

for the manipulated variable, insuring that the control algorithm will not demand 

outlet flow rates which exceed actuator saturation. Defining ai, /3i, as lower and up

per bounds on the outlet flow rate at time t + i - l, and ii, Si, as lower and upper 

bounds on level at time t + i, we can generalize (27)-(28) as: 

Subject to: 

min IIRq, - e1qo(t - l)lloo 
qo 

-Qo < -a 

Qo < /3 

Hq, < -1' + nfd(t + kjt) + lh(t) 

-Hq, < 6 - nfd(t + kit) - lh(t) 

( 4.29) 

(30a) 

(30b) 

Usually the outlet flow rate constraints are specified by the capabilities of process 

equipment and are the same in each future time step, i.e., a = lqomin, /3 = lqomax· 
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For multiple tanks in series it may be desirable to define q~min, q0 max to prevent large 

flow overshoot which is magnified by each tank in the series (see [24]). Non-constant 

futnrP. level constraints can be used to prescribe a future level trajectory which has 

certain desired properties such as zero offset at some future time. Two simple forms 

of level constraints, for which we can obtain analytical solutions to (29 )-( 30) in the 

absence of outlet flow constraints, ( i.e., neglecting (30a)) will be discussed in detail. 

4.4.1 Constant Level Constraints 

To evaluate the impact of the finite horizon on :flow filtering we first define level con

. straints which are constant over the future horizon as in· the infinite horizon problem. 

Specifically we have: 

(4.31) 
8 = lhmin 

The outlet flow given by solving (29)-(306)-(31) and implementing the first element 

of q; at each sample time is: 

where: 

P<~ 
- 2 

~<P<k* 2 

p '?. k* 

d p _ 20(t) _ 2A(hiim - h(t)) 
_ q0 

- P + I T P( P + 1 J) -

and k* is as defined in (21 ). 

( 4.32) 

( 4.33) 

While notationally involved, this solution is easy to understand. Disturbances 

which result in 1e
2
• 2:: Pare of sufficiently small magnitude that even if no outlet flow 

changes are made the predicted level will remain within the minimum and maximum 

bounds over the future horizon. The optimal solution is to keep the outlet flow 

constant. For larger disturbances, which result in ;• < P < k*, a non-zero change 

in outlet :flow is needed to insure that the level does not violate its bound. Since the 

flow imbalance will never change sign, the level changes monotonically in time, and 
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it is sufficient to insure that the level is not violated at the end of the time horizon. 

D.q~ is the smallest constant outlet flow change which satisfies this condition. For 

large disturbances k* ~ P, the predicted future level will reach its bound at time k*, 

and the optimal outlet flow change is the same as in the infinite horizon case, .6.q;. 

This provides several insights. For a disturbance observed at time t ( i.e., O(t) =f 0) 

if P 2::: k* the infinite horizon MRCO optimal solution (22) is realized. Thus filtering 

of flow imbalances, fl(t), whose magnitude is greater than 2A[h,TP-h(t)] is not impaired 

by the finite horizon restriction. Equivalently, it is possible to achieve optimal flow 

filtering of arbitrarily small flow imbalances by selecting P adequately large. 

As in the infinite horizon case, iutegral a<..:tion is not provided. The level movt::s 

to its constraint and remains there in response to an arbitrarily small step inlet 

disturbance. This lack of integral action prevents this formulation from being useful 

in any practical situation. As in the definition of the OPC, an integral term could 

be added to the optimal solution.· This approach results in an increase in MRCO 

which is difficult to quantify. There is no clear method for selecting an integral 

reset time which yields a good trade-off between the incompatible objectives of small 

settling time and small MRCO. In the following we show how a modification of the 

level constraints provides integral action and MRCO optimal filtering of disturbances 

whose magnitude is above a specified threshold. 

4.4.2 Box Level Constraints 

Modifying the constant level constraints to include the fixed endpoint condition, h( t + 
Pit) = 0, results in: 

1 

1 

I 

0 

which we will refer to as "box constr.aints." 

1 

1 

1 

0 

(4.34) 
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With these constraints the optimization finds, at each sample time, future outlet 

flow rates for which the predicted level reaches its nominal value in P time steps. The 

outlet flow given by solving (29 )-(30b )-(34) at each sample time is given by: 

where: 

l~q~I > l~q;I 
l~q~I ~ l~q;I 

~ 0 _ 20(t) 2A[h(t) - h1 ] 

q0 
- P + I + T P( P + I) 

and ~q; is as defined in ( 20). 

(4.35) 

( 4.36) 

As in the constant level constraint case, this solution has a straightforward in

terpretation. ~q; is the minimum magnitude change in outlet flow which prevents 

constraint violation for times less than t + k*; ~q~ is the minimum magnitude change 

in outlet flow which satisfies the fixed endpoint condition. The best feasible solution 

is then clearly the larger of these flow changes. For a particular choice of P, large 

flow imbalances result in l~q~I < l~q;j and the solution qo(t) = qo(t - l} + ~q; is 

implemented. Since this recovers the discrete time infinite horizon MRCO optimal 

solution (22), the fixed endpoint condition has no effect on filtering performance. For 

small imbalances, l~q~I > l~q;I and the solution qo(t) = q0 (t - 1) + ~q~ is imple

mented. In this situation the fixed endpoint condition causes an increase in MRCO. 

Theorem 2 provides a condition on the horizon length which insures that the fixed 

endpoint condition does not interfere with flow filtering. 

Theorem 4.2 For step inlet flow disturbances, the sequence q0 ( t + k), k E K deter

rnined by {95) satisfies the conditions of Theorem 1 if: 

Proof See Appendix B. ■ 

Thus whenever P > Pcrit, the fixed_ endpoint condition has no impact on filtering 

performance as measured by MRCO. 
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It is easily verified tha.t Pcrit decreases as the fl.ow imbalance increases and as 

the level approaches its nominal value. This observation allows us to choose P to 

· guarantee optimal fl.ow filtering for all disturbances above a particular magnitude 

which occur while the level is within some range about its nominal value. 

As stated (37) is a sufficient condition. However, as we discuss in the appendix, 

it is only conservative when h(t) # h, and a fl.ow imbalance O(t) occurs which is in 

the direction which tends to return the level to its nominal value. For example this 

is the case when the tank level is above nominal and the inlet flow rate drops. In any 

other situation, the condition (37) is necessary as well as sufficient. 

The fixed endpoint condition is not sufficient to guarantee the realization of zero 

offset in P time steps. Since the on-line optimization is resolved at each sample time, 

the complete solution ~( t), determined at time t, which provides zero offset in P 

steps, is not implemented. Instead the "moving horizon" approach of implementing 

only the first element of q~(t), results in the realization of the sequence {q;1(t), q;1(t+ 

1), q;1(t + 2), ... } (given by (35)) which need not provide zero offset in P steps. This 

condition does however insure that there is no steady state level offset. 

Theorem 4.3 The moving horizon model predictive controller defined by (29)-(30b)

(34} achieves zero steady state level offset for constant inlet flow disturbances. 

Proof See Appendix C. ■ 

Simulation experience has shown that in general the level returns to within 5% of 

its nominal value in between 2P and 2.5P sampling times for step inlet disturbances. 

For small inlet disturbances the settling time is often smaller. 

The significance of these results is that for any given fl.ow imbalance, n, there 

exists a finite P for which the moving horizon model predictive controller with box 

constraints achieves the minimum possible MRCO and integral action. It follows 

that by selecting P adequately large, optimal flow filtering and integral action can 

be achieved for disturbances of arbitrarily small magnitude. Suboptimal filtering of 

small disturbances (as determined by the selection of P) is not a practical concern 

since these disturbances pose the least trouble for downstream equipment. 
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What we have achieved by introducing box constraints is to assure satisfaction 

of the secondary objective of integral action with no adverse impact on the primary 

objective of fl.ow filtering for large disturbances. The price we pay for integral action is 

suboptimal filtering of small disturbances, but as we have argued, this is not significant 

in practice. In contrast, the addition of an integral term to an otherwise optimal 

controller, as in the OPC, results in suboptimal performance whenever the integral 

term is non-zero ( essentially always). Interaction and in some cases competition 

between the integral and optimal terms can significantly impact filtering performance 

and settling time as we will see in the examples below. 

The single "tuning parameter" of this algorithm is the horizon length, P, which 

directly determines the trade-off between the incompatible objectives of good flow 

filtering ( requiring P large) _and rapid integral action ( requiring P small). The ap

propriate value of P is determined by the characteristics of a specific implementation. 

The operating conditions of the upstream equipment will dictate the magnitude and 

frequency of expected inlet flow disturbances. The sensitivity of downstream equip

ment will dictate the filtering performance required for the expected disturbances. 

Ideally P is selected equal to or greater than P crit for the smallest disturbance for 

which optimal filtering is required. In general if rapid integral action is not required 

( disturbances are infrequent) P should be large. If large disturbances occur frequently 

it may be advantageous to reduce P so that tank volume is recovered rapidly to be 

used to filter subsequent disturbances. 

The effect of the horizon length is demonstrated in Figures 2a and b. The single 

tank system used in this example is described in Table 1. Figure 2a shows the level 

response to a 50% step change in inlet flow rate (for which Pcrit = 14) for P = 5, 8, 

14, 25, and oo. Figure 2b shows the corresponding outlet flow rates. For P < Pcrit 

increasing P improves flow filtering from M RCO = 1.00 for P = 5 to M RCO = 0.36 

for P = 14, at the expense of settling time. For P > Pcrit no improvement in flow 

filtering as measured by MRCO is possible and settling time increases. 

Note that as P is increased, relaxing the desired settling time, the maximum 

peak in outlet flow is reduced. For P infinite, the maximum peak is equal to the 
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Figure 2a: Tank level resulting from a 50% inlet flow disturbance with the model 
predictive controller with box constraints for P = 5 {l ), P = 8 (2), P = 14 (3), 
P = 25 (4), and P = oo (5). 
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Figure 26: Outlet flow rates resulting from a 50% inlet flow disturbance with the 
model predictive controller with box constraints for P = 5 (1), P = 8 (2), P = 14 
(3), P = 25 (4), and P = oo (5). 
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Cross Sectional Area, A 
Nominal Level, h$ 
Maximum LPvPI Constraint. 

Minimum Level Constraint 
Nominal Outlet Flow 
Tank Height 
Outlet Flow Capacity 
Sampling Time, T 

1.0 m~ 
1.0 m 
1.4 m 

0.6 m 

1.0 m3 /min 
2.0 m 
0.0 - 4.0 m 3 /min 
0.2 min 

T::i.hlP 1: P;i.rnmPtPrs of thP P.x::i.mplP. syst.P.m. 

steady state outlet flow. This demonstrates the general result that for step inlet flow 

disturbances outlet flow constraints are not a problem unless rapid integral action is 

required (P small). Of course outlet flow capacity must be at least as large as step 

inlet disturbances to prevent level constraint violation at steady state. 

The control algorithm resulting from box level constraints can be summarized as, 

at each sample time: 

1. Update the internal model output, h(t), based on q0 (t - 1) using (13). 

2. Evaluate the effect of disturbances on the level, dh(t), using (12). 

3. Evaluate the inlet flow disturbance estimate, d( t - l It), using ( 1 7). 

4. Evaluate the flow imbalance, fl(t), using (19). 

5. Evaluate k .. using (21). 

6. Evaluate D.q; using (20). 

7. Evaluate D.q~ using (36). 

8. Change the tank outlet flow by ~q; or ~q~ depending on which has the larger 
magnitude ( equation 35 ). 

\iVhen outlet flow constraints are not present and internal stability problems are 

uot a practical concern (see below) this algorithm will provide optimal now fl!Leri11g 

with integral action. In the more general case, an analytical solution to the optimiza

tion problem is not available. In the next section we show how the optimization can 
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be recast as a linear program (for which a number of numerical solution techniques 

are available) to be solved on-line. 

4.4.3 Other Level Constraints 

The linear program formulation outlined in the next section allows very general spec

ification of future level constraints. For example, adopting the apprni:1d1 uf CuLler 

[25], the set of admissible predicted levels might be selected so that the future level 

lies within a target area, centered at the nominal level, whose magnitude decreases 

into the future. A fixed endpoint condition included in the definition of the target 

area insures zero steady state offset. In general these more restrictive level constraints 

result in poorer flow filtering nnd foster intcgrnl nction relative to box constraints, 

(34). Since the moving horizon implementation does not guarantee that the level will 

not leave the target area, it is unlikely that such constraint sets offer any additional 

advantages. 

4.5 Formulation as a Linear Program 

With outlet flow constraints the closed form solutions (02) and (::$5) are not valid. ln 

this case (29)-(30) must be solved on-line at at each sample time. It remains to be 

shown how this problem can be recast as a linear program. 

Following the standard approach for solving (;hAhyshPv approximation prnhlPms 

via linear programming, we define: 

(LJS) 

Any µ which satisfies, 

-1µ < -Rq0 +e1qo(t-l) 

-1µ < Rq0 - e1qo(t - 1) 
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represents an upper bound on µ*. The task is now to find q 0 and µ which satisfy 

(30) and (39) and simultaneously minimize J( q0 , µ) = µ. This problem is easily 

formulated as: 

minµ 
µ,qo 

(4AO) 

Subject to: 

Rq,, -1µ $ e1q,,(t 1 ) 

-Rqo 1µ < -eiqo(t - 1) 

-qo +o < 0 

9o < (3 

Hqo < -, + nfd(t +kit)+ Ih(t) 

-Hq.., $ 8 - n{d(t + kit) - lh(t) 

Defining 

( 4.42) 

and 

-1 R e1%(t 1)-Ro 

-1 -R -eiqo(t - 1) + Ra-

c= (~) x= (~) A= 0 I b= fJ - 0. 

0 H - 1 + ntd(t +kit)+ Ih(t) - Ha 

0 -H 6 - nfd(t + kit) - lh(t) + Ho: 

we obtain the linear program in standard form, 

Subject to: 

mincTx 
X 

Ax< b 

X 2: 0 
(4.-13) 

In ( 42) we have employed the non-negativity condition x ~ 0 to enforce the lower 
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bound on q 0 • The resulting linear program involves P + I variables and ,SP constraints 

(not counting the non-negativity constraints). As discussed in Campo and Ylorari 

[18], it is more efficient computationally to solve the dual program: 

min bT y 
y 

which involves .SP variables and P + l constraints. 

4.6 Implementation 

(4..14) 

Before implementing this model predictive scheme we must consider internal stability. 

It is well-known that controllers implemented in the internal model control structure 

are not internally stable when the plant is not stable. The proposed model predictive 

control algorithm is a special case of such an implementation and therefore deserves 

further analysis. For a general discussion of internal stability, the interested reader is 

referred to the book by Morari and Zafiriou [68]. 

The following analysis is based on Figure 3, where we have represented the on-line 

optimization as a mapping, f(q 0 (t - 1), h(t), dh(t)), which takes current values of the 

manipulated and controlled variables and the effect of disturbances on the level, and 

yields an new optimal value for the manipulated variable, q;( t). At steady state we 

have, q0 (t - 1) = h(t) = dh(t) = O, and the optimal :sulutiuu i:s 'l;(t) = 0. 

Suppose a step disturbance enters at d' immediately before the optimal solution, 

q;(t), is implemented, i.e., at time L. At the next sampling time we have, with 

perfect modeling: 
. Td' 

h(t+l)=h(t+l)=A (4.45) 

so that 
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d' d 

q 0 (t-1) - q ~ (t) , ... , qo(t) ~ , h(t) ... f{q 0 ,h,dh) ... ~ - - ... 
Tank ... - ... --+ 

~ 
h(t) dh(t) h (t) ~, 

- Model - ~ -- ... " -

Figure :3: Schematic view of the model predictive structure. 

The predicted level, with future outlet flows zero, is: 

Td' 
h(t +kit)= h(t + 1) = A V k = 1,2, ... P 

... 
--

(-1.4i) 

If this predicted future level is feasible for all O < k < P, (for example if constant 

level constraints with hmax > TJ' ha.ve been specified) then the solution q0 (t I l) = 0, 

is feasible ( and obviously optimal). Similarly, the controller will take no action in 

response to the disturbance d' at subsequent sample times, while the actual level, 

given by: 

h( k) 
kTd' 

t+ =-
A 

( 4.48) 

integrates away from its nominal value. In this sense, the algorithm is internally 

unstable. Although not identified as such, this internal instability was observed by 

McDonald et al. as drifting in the level as a result of constant bias between the inlet 

and outlet flow rate measurements of their ''optimal predictive controller~' (OPC). In 

fact any disturbance at d' will result in drifting of the level. 

Disturbances occur at d' whenever the output of the controller is not equal to 

the actual value implemented on the process and provided to the internal model. It 
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Fi.e;ure 4: Tank level changes resulting from actuator bias without embedded feedback 
( 1) and with embedded feedback (2). 

is common practice to "readback" the valve position from its actuator so that the 

value implemented on the process can be supplied to the internal model. Quite often 

the manipulated variable value realized by the actuator differs significantly from the 

value commanded. (It is this situation that makes readback necessary). This results in 

significant differences between the controller output and the readback signal provided 

to the internal model. Any such difference is effectively a disturbance at d' which will 

not be compensated for by the model predictive controller. Thus readback should 

not be used in the implementation of a model predictive controller when the plant 

includes an integrator. 

An example of the unstable response resulting from a disturbance d1 when read

back is used is shown in Figure 4 ( curve 1 ). Here we have simulated the sys

tem described in Table 1, using the model predictive controller with constant level 

constraints, and included a constant disturbance, d' = 0.1 m3 /min. This distur

bance could arise from a bias in the outlet flow actuator resulting in an outlet flow 

0.1 m3 
/ min greater than commanded. Since dh ( t) remains zero for all t, the controller 

takes no action as the level falls by 0.02 m at each sample time, eventually draining 

the tank completely. 
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'When readback is not used disturbances d' can arise from algorithmic (round-off) 

errors in the implementation of the optimal solution. In practice these errors would 

be expected to be small, and since for integrators the growth of the instability is only 

linear it is reasonable that in practice these errors could take a very long time to have 

a significant impact on the system. 

When level constraints include a fixed endpoint condition q0 ( t + 1) = 0 is not 

feasible since h(t + Pit) = A;' =/: 0. In this case, a non-zero response to disturbances 

d' is provided. However these disturbances still result in undesired drifting in the 

tank level. \Vhile it is reasonable to suggest that if readback is not used a direct 

implementation of the MPC scheme might be successful in practice, in the next 

section we discuss an implementation of the MPC controller which is guaranteed to 

be internally stable. 

4. 7 Stabilizing Embedded Feedback 

Assuming perfect modelling, internal stability of the model predictive control scheme 

is guaranteed if the plant is stable [68]. For unstable plants, we can first stabilize 

the plant with an internal feedback loop, as in Figure 5a. The embedded controller. 

I<( s ), is chosen to stabilize the plant, P( s) = - L- To apply model predictive control, 

we treat the embedded system as a stable 1 x 2 plant, p•, with the (unmeasured) 

disturbance, d, and a "setpoint," r, as inputs, and the tank level, h, as output, as 

shown in Figure 5b. The appropriate transfer matrices are: 

P* = [ (/ + p K )-1 p (I + p K )- l p l 

P· - [ (/ + p J( t l p] 

( .1, .19) 

(4.50) 

If the controller, K(s), internally stabilizes the plant, then P* is (necessarily) 

stable. It is then straightforward to use the on-line optimization of model predictive 

control to determine setpoints for the embedded system which provide the desired 
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Figure 5a: The model predictive structure with stabilizing embedded feedback. 
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Figure 5b: An equivalent representation for internal stability analysis. 
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performance subject to constraints on q0 (t + k) and h(t + kit). The stab1e response 

to disturbances, d', is now given by: 

h ( s) = (I + p I() - l pd' ( s) ( -1.51) 

The design of K(s) introduces no theoretical limitation on the achievable input 

output properties of the overall system ( i.e., the transfer functions :;:; and ~;;; of 

Figure 5) if I<(s) is stable (see (96)). Since a stable controller (e.g., K(s) = Kc) 1s 

adequate to stabilize P( s) this restriction poses no problem in this application. 

By proper selection of K(s), we can assure that signals entering at d1 are attenu

ated over a desired frequency range. In particular, it is clear from (51) that the steady 

state attenuation of step disturbances d' is inversely proportional to the steady state 

gain of K(s). 

Repeating the actuator bias example of the previous section with discrete time 

embedded feedback given by K(z) = z-~.6 results in the stable response shown in 

Figure 4 (curve 2). Although the model predictive controller takes no action, the 

embedded feedback prevents the level from violating its constraint. As expected from 

(51) the step disturbance d' of magnitude 0.1 m 3 /min produces a steady state offset 

in level of 0.04 m. 

'With embedded feedback, the decision variable of the on-line optimization is the 

setpoint to the embedded controller, r. Thus, the non-negativity conditions of the 

LP cannot be used to enforce bounds on the outlet flow rate as in ( 42). This results 

in an increase in the size of the linear program which must be solved on-line. The 

program corresponding to the model predictive algorithm with embedded feedback 

involves 2P + 1 variables and 6P constraints. The dual program (which would be 

solved in practice) involves 6P variables and 2P + 1 constraints. 

4.8 Examples 
A simulation study was carried out to demonstrate the performance of the model 

predictive scheme relative to the discrete infinite horizon and optimal predictive con-
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Figure 6a: Tank level resulting from a 100% inlet flow disturbance for the model 
predictive controller with box constraints (-) and OPC (- - -). 

trollers. The example system proposed by Cheung and Luyben [24], and adopted by 

McDonald et al. (66], is used here (Table l ). 

Figures 6a, b, and c show the level a.nd outlet flows corresponding to an inlet step 

disturbance of 100% of the nominal flow for the model predictive with box constraints 

and OPC schemes. The proportional gain and integral reset time for the OPC were 

0.046 and 3.0 as suggested by McDonald et al. In order to obtain optimal filtering 

for inlet flow disturbances larger than 25% of the nominal inlet flow, a horizon, P, 

of 35 sample times (7 minutes) was chosen for the model predictive controller. For 

the 100% disturbance, k* = 2, and Pcrit = 6. MRCO is 1.67 for the model predictive 

controller and 1.25 for the OPC. The OPC is able to achieve lower MRCO since it 

uses inlet flow measurements and can adjust the outlet flow immediately while the 

model predictive algorithm requires one sample time to infer the flow disturbance 

from level measurements. Note that since P > Pcrit, the fixed endpoint condition 

does not impact MRCO. The model predictive controller returns the level to within 

5% of nominal in 13.0 minutes, the OPC requires 46.8 minutes. 

Figures 7 a and b show the level and outlet flows corresponding to an inlet step 

disturbance of 10% for the model predictive (P = 35), discrete infinite horizon, and 
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Figure 6b: Outlet flow rate resulting from a 100% inlet flow disturbance for the model 
predictive controller with box constraints(-) and OPC (- - -). 
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Figure 6c: Detail of outlet flow rate resulting from a 100% inlet flow disturbance for 
the model predictive controller with box constraints (-) and OPC (- - · ). 
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OPC schemes. For this disturbance, k* = 38 and Per-it = 9:3. As expected, the 

model predictive scheme results in higher MRCO (0.0286) than the OPC (0.0175) for 

this disturbance. At the expense of increased settling time P could be made greater 

than Pcrit to achieve the best possible discrete time flow filtering (Af RCO = 0.0128) 

realized by the discrete infinite horizon controller. 

McDonald et al. suggest that the integral reset time of the OPC can be adjusted 

to achieve a desired settling time. Figures Sa and b show the impact of decreasing r, 

for the OPC to improve the settling time in response to a 50% step inlet disturbance. 

As shown in Figure Sa the model predictive controller with P = 35 returns the level 

to within 5% of norninal in 13.8 minutes with a MRCO uf 0.3.':JS. Tu uLLa.iu Lbis 

same settling time with the OPC (with Kc = 0.046) an integral reset time of 0.32 

minutes was required, resulting in a MRCO of 0.333. (Settling time and MR.CO 

for the OPC with the tuning parameters suggested by McDonald et al. were 60.0 

minutes and 0.327). Again the superior MR.CO performance of the OPC comes from 

the use of feedforward measurements. However the OPC has a much greater outlet 

flow overshoot and the level and outlet flow responses are much more oscillatory 

than for the model predictive controller. \Ve quantify this latter observation with the 

following definition. 

Defining 

(·L52) 

we introduce a generalization of MRCO. M RCO(t 0 ) is simply a measure of filtering 

performance for times after t0 • If we let t0 be the time at which the flow imbalance is 

offset (t* or k*), we can use (52) as a performance measure for the time period in which 

the controller returns the level to its nominal value. In the previous example (Figure 

8) 1 t 0 = 1.6 for the OPC and t0 = 1.4 for the model predictive controller. Af RCO(l.6) 

for the OPC is 0.0728 while lvf RCO(l.4) for the model predictive controller is O 0158 

After the flow imbalance has been offset, the model predictive controller returns the 

level to its nominal value with outlet flow changes one fifth as large as the OPC. 

The greater oscillation and flow overshoot demonstrated by the OPC when relatively 
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Figure 7a: Tank level resulting from a 10% inlet flow disturbance for the model 
predictive controller with box constraints, P = 35 (1 ), P = oo (3), and OPC (2). 
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Figure 7b: Outlet flow rate resulting from a 10% inlet flow disturbance for the model 
predictive controller with box constraints, P = 35 (1), P = oo (3), and OPC (2). 



il 

1.5 

1.4 
E 1.3 .. 

Q) 1.2 
i 1.1 

_J 

..:.:: 1 

at 0.9 
I- 0.8 

0.7 

0 5 10 15 20 25 

Time, minutes 

Figure Sa: Tank level resulting from a 50% inlet flow disturbance for the model 
predictive controller with box constraints, P = 35 (-), and the OPC tuned to achieve 
equivalent settling time (- - -). 
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Figure Sb: Outlet flow rate resulting from a 50% inlet flow disturbance for the model 
predictive controller with box constraints, P = 35 (-), and the OPC tuned to achieve 
equivalent settling time (- - -). 



small settling times are required are a result of non-cooperative interactions between 

the optimal and integral terms in (6). To achieve rapid settling the integral term 

must be made significant, and this negatively impacts flow filtering performance. 

4.9 Conclusions 

The discrete time analog of the optimal averaging control problem has been defined 

and solved. This solution provides the minimum achievable MRCO consistent with 

con:;tant level constraint::;. The use of the internal model control ::;tructure insures that 

flow disturbances are offset optimally without requiring feedforward measurements. 

Insight gained from the solution of the discrete time infinite horizon problem 

motivates the formulation of a finite horizon problem using the on-line optimization 

and "moving horizon'' ideas of model predictive control. An analytical solution to the 

finite moving horizon problem allows us to develop conditions under which the finite 

horizon solution recovers the infinite horizon solution. Specifically it is shown that 

this is the case for large disturbances for which optimal flow filtering is most critical. 

Introducing a fixed endpoint condition (box level constraints) we show that inte

gral action can be obtained without sacrificing optimal flow filtering for disturbances 

above a specified threshold magnitude. This formulation is an attractive alternative 

to control schemes which add integral action to an otherwise "optimaP' controller in 

an ad hoc fashion. Additionally, a single tuning parameter, the horizon length, simply 

a.ml directly efft::ct~ the trade-off between flow filtering and rapid integral a.ction. 

The new surge tank level controller is formulated as a model predictive control 

problem involving the solution of a linear program at each sample time. This appli

cation demonstrates the flexibility of MPC and the relative ease with which it can be 

applied to control problems with non-traditional objectives. The use of an embedded 

(local) stabilizing controller insures internal stability of the internal model structure 

(even though the plant, a pure integrator, is not asymptotically stable). 
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Appendix A - Proof of Theorem 1 

Proof The proof of Theorem 1 is straightforward but tedious. For simplicity many 

details have been omitted. Throughout the proof we assume that !1( t) ~ 0: the results 

for n( t) :S O follow in a parallel fashion. 

Forward direction ): We first show that 

is a feasible solution. By direct substitution into (18) it is easy to show that 

Clearly h*(t + kit) is non-decreasing in k fork :S k* and h*(t + k"lt) = hmax so that 

q;(t + k) is feasible. This implies Condition 3. of Theorem 1. 

Now we show that all solutions satisfying 3. but not 1. are infeasible. For any 

such solution, q0 there must exist some k < k* such that 

It follows that the corresponding predicted levels must obey, 

h(t + k + ljt) > h.(t + k + lit) Vk E [k,k*) 

but h*(t + k*Jt) = hmar so that h(t + k* It)> hmax which implies that (Jo is infeasible. 

Thus 1. is established. 

\Ve now show that. all f P.a.sih]P. solutions satisfying 1. must also satisfy f?. From 

(18) 
T j 

h(t + k* + jlt) = h(t + k*Jt) +AI: d(t + kit) - q0 (t + k* + i) (Al) 
i=O 
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As we have seen, h(t+k*lt) = h11m for any solution satisfying 1. so we have from (Al) 

hmin - h1im $ ~ t d(t + kit) - qo(t + k" + i) $ hmax - htim 
i=O 

V j 2: k* 

Thus for feasibility we must have 2. 

To show the reverse direction ({=:)we assume 1., 2., and 3. hold for some q0 (t+k), 

k E K. As we showed above, 1. and fl. arc necessary and sufficient for feasibility 

given .9. Thus feasibility of q0 is established. Since 1. implies 

min max lqo(t + k) - q0 (t + k - 1)1 2: ~q; 
tio(t+k) kEK 

any q0 satisfying 3. must be optimal and we have completed the proof. • 
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Appendix B - Proof of Theorem 2 

Proof In order to satisfy Condition 1. of Theorem l for a non-zero flow imbalance 

at time t0 we must implement b.i.q; Vt < t0 + k•. This is guaranteed by 

(Bl) 

since jAq~ I decreases monotonically while j.:'.).q; I is constant for t :s; t0 + k•. Thus 

j6.q~(t)1 remains less than 16.q;(t)I and 6.q; is implemented until t = t0 + k*. For 

t 2:: t + k*, ~q~(t + k*) is implemented guaranteeing feasibility ( Condition '!!. of 

Theorem 1). Condition 3. is satisfied by (Bl) since l~q~I is bounded by l~q:(to)I for 

all time. From the definitions (20) and (36) it is straightforward to verify that (Bl) 

is equivalent to 

P2 P -12TPn + 2A[h(t) -h.,]I > . + T~.. - 0 qo 
(B2) 

Since 

j2T Pf21 + l2A[h(t) - h.,]12:: l2T PO+ 2A[h(t) - h.,]j (B:3) 

(B2) is implied by 

(B4) 

By direct application of the quadratic formula it can be verified that (37) is equivalent 

to B4. • 
Note that the use of the triangle inequality (B3) results in a sufficient condition on 

P. In practice, however, we are certain to encounter situations where both terms of 

(B3) have the same sign so that equality holds and the sufficient condition is necessary 

as well. For example a step disturbance from the nominal steady state results is both 

terms of B3 having the same sign. In fact we do not have equality in (B3) only when 

the level is not at its steady state value and an imbalance occurs which is in the 

"good" direction ( i.e., tending to return the level to nominal). 
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Appendix C Proof of Theorem 3 

Proof At steady state we must have, 6.h 6.q0 = 0. Using (35) 6.q0 = 0 implies 

that 6.q; = 6.q~ == 0 at steady state. From (36), 6:..q~ = 0 implies, 

2!1 2A[h(k) - ha] 
O== P+l + TP(P+l) 

Clearly n = 0 at steady state since if there is a non-zero flow imbalance we cannot 

have b.h = 0. Thus 

which implies 

2A[h(k) - h,] -+ 0 as k-+ oo 
TP(P + 1) 

h(k) -+ h, as k-+ oo. 

■ 
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Appendix D - Notation 

d inlet flow disturbance 
h tank level 
K the set of non-negative integers { 0. 1, 2, ... } 
I<c proportional gain 
P model predictive control horizon length 
q flow rate 
t time 
T sampling time 
T; integral reset time 

Subscripts 

z inlet 
max maximum allowed value 
mm minimum allowed value 
o outlet 
s steady state 

Superscripts 

* 
plant model, or value determined by the plant model 
optimal value 
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Chapter 5 

Conclusions and Suggestions for 
Further Work - Part I 

5.1 Summary of Contributions 

A novel model predictive control formulation using the oo-norm both spatially and 

temporally has been developed. This formulation is an improvement over existing 

schemes in several re.spects. Of primary significance is that the formulation involves 

a reduced number of tuning parameters which must be specified by the designer. 

While not completely satisfactory, this reduction in complexity with no apparent loss 

of functionality is encouraging. In addition to simplified design, this formulation 

requires substantially le.ss on-line computational effort than other algorithms. While 

lliis is not particularly important for the small scale examples found in the literature, 

it is practically significant in two respects: 

1. It will allow larger scale applications of MPC, approaching plant-wide imple

mentations, which are not currently feasible. 

2. It will allow application of MPC to a wider range of small scale systems since 

the required computer hardware is more modest. 

The critical issue of robustness to plant-model mismatch is incorporated into an 

MPC formulation for the first time. The attractive numerical characteristics of the cx)

norm formulation are exploited in the derivation of Robust Model Predictive Control 
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(RMPC). In this formulation, the on-line constrained optimization has as its objec

tive robust performance, rather than nominal performance as in all existing ~1PC 

algorithms. 

In parallel with the development of RMPC, a novel time domain model uncertainty 

description is developed. Typical model uncertainties, arising for example from un

modelled dynamics, are relatively easily handled in the frequency domain. MPC is 

formulated in the time domain, however, and model uncertainty characterizations 

are therefore required in the time domain as well. The parametrization developed 

in Chapter 3, in terms of uncertain impulse response r:oefficients, is straightforward 

and leads to a tractable on-line optimization problem. Additional work is needed, 

however, to develop methods and insights which will allow the designer to formulate 

practically meaningful uncertainties in this framework. 

In Chapter 4 an important constrained control problem is addressed in detail. 

Again the oo-norm MPC formulation lends itself naturally to a practical problem -

surge tank level control. A significant result of this work is that a closed form solution 

of the constrained MPC optimization problem is provided. While this analytical so

lution does not extend to more general MPC problems, 1t makes practical application 

of the constrained optimal control policy for level control completely trivial. Instead 

of a large optimization problem to be solved on-line, application of the optimal policy 

only requires evaluation of a simple nonlinear relation between level and outlet flow. 

In addition to optimizing flow filtering, the surge level control algorithm provides 

integral action. A single tuning parameter directly affects the trade-off between opti

mal filtering and rapid integral action. Quantitative conditions are derived to evaluate 

the impact on flow filtering of the integral action requirement. 

5.2 Suggestions for Further Work 

While the work in constrained MPC in this thesis provides initial steps in the right 

direction, there is substantial work needed before a truly general theory of MPC can 

be outlined. The efforts suggested here are motivated by both practical significance 
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and the need to define such a general theory. 

Despite the claims of certain enthusiasts. e.g., [80,79], the current :VIPC formu

lations do not allow the control system designer to formulate all of the engineering 

objectives in a typical control system design problem as mathematical criteria in the 

MPC optimization. While MPC has made the translation of engineering objectives 

to mathematical criteria more direct, significant abstraction is still required and re

formulations are required to achieve certain design goals indirectly (probably the most 

obvious examples are in dealing with multiple conflicting objectives). 

As a result it is important that the complexity of the design be considered ex

plicitly. Funuulatium ~huul<l Le <levdupe<l with mathematical convenience in mind. 

For example minimizing integral square error is never of primary interest in practice. 

Regulation objectives are always much less precise, and can't be simply captured 

with a single mathematical figure of merit. If a (mathematically) more convenient 

objective can be formulated, so that design or implementation is made easier, with

out 5acrificing performance, then an improved MPC formulation will result. Since 

the current formulations contain many redundant and indirect tuning parameters. it 

seems clear that further progress in this direction can be made. A cn1cial consider

ation in this work is the extent to which simplification for the sake of mathematical 

convenience impacts achievable control performance. It is not suggested that simpli

fications be made which reduce the effectiveness of MPC in practical problerns, only 

that unnecessary complexity and redundancy be removed. 

With these complexity issues in mind, a redirection of effort with respect to MPC 

robustness research seems appropriate. Rather than adding complexity in order to 

solve a minimax problem on-line, effort should be concentrated on the analysis of 

available MPC algorithIIl.5. Recent work by Zafiriou indicates that optimizing robust 

performance need not guarantee robust stability [92,93]. Furthermore there are un

doubtedly sufficient degrees of freedom in the current MPC formulations to allow 

the designer to make these designs robust. The question is "How should these 

degrees of freedom be specified in order to improve robustness?" These questions are 

in general difficult and are (probably unnecessarily) complicated by the complexity of 



81 

current MPC formulations. With simplification it is hoped that more useful analysis 

results can be obtained. Other areas of interest include: 

• The effect of constraints on nominal stability. It is known that adding 

hard output constraints to an otherwise stable closed loop MPC formulation can 

lead to instability. This connection between constraints and stability should be 

investigated. Non-conservative conditions for nominal stability of constrained 

.MPC are required. 

• Formulations using parametric models. This area includes state-space for

mulations, more general disturbance models ( optimal filtering problems), and 

applications to open loop unstable plants. State-space formulations might sig

nificantly simplify the embedded feedback implementation in Chapter 4. 

• Time domain uncertainty descriptions. In addition to more general time 

domain uncertainty characterizations, simplification of the resulting minimax 

problems, and development of algorithmic solution techniques for the Robust 

Model Predictive Control formulation are required. For recent work in this area 

see [11]. 
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Part II 

The Linear Theory Approach 
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Chapter 6 

Robust Control of Processes 
Subject to Saturation 
Nonlinearities 

Abstract 

Motivated by current practice, a two-step design technique for saturating systems 

is studied. First an 11optimal" ( for example in the H 00 sense) linear controller is de

signed neglecting saturation. Then a saturation compensation scheme (anti-windup) 

is designed which provides graceful degradation of closed loop performance in the face 

of saturation. The focus in this paper is on the second stPp, and ohtaining gPnf'r;il 

results and insights applicable to any (linear) system subject to saturation. A design 

technique is developed which results in effective saturation compensation for a given 

multivariable plant and linear controller design. For particular controller choices the 

resulting saturation compensator is shown to be equivalent to proven techniques in

cluding anti-rffiP.t windup and internal model control (IMC). 

Tools are developed for robust stability and performance analysis of nonlinear 

systems. Well-known structured singular value robustness tests for linear systems are 

extended to a class of nonlinear systems. Sufficient conditions are developed which 

guarantee closed loop stability for all plants in a structured uncertainty set and for 

all nonlinearities of a specified form. 

These tests result in simple conditions on the initial linear controller design which 

must be satisfied in order to guarantee robust stability of the saturating plant. [n 
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some instances this requires that the original linear design be detuned. A procedure 

for performing this detuning is outlined. A promising single-step procedure for the 

synthesis of optimal robust linear controllers for saturating systems is also outlined. 

While this approach lacks the simplicity of the two-level decomposition, it appears to 

have promise for situations where the impact of the saturation on the closed loop is 

severe. 

6.1 Introduction 

We consider in this paper systems which are subject to actuator saturations 611t are 

otherwise linear. Such saturations are present in every physical system and are the 

<lumiuauL nonlinearity, in terms of closed loop performance limitations, in many prac

tical situations. While linear control theory is not formally applicable to saturating 

systems, the standard controller design procedure is to neglect the saturation, de

velop a linear design, and add some problem-specific scheme to deal with stability 

and performance degradation caused by actuator saturations ( e.g.) windup). For sin

gle input-single output (SISO) systems this approach ha.::i been quite successful and 

saturation compensation is relatively well understood. For multiple input-multiple 

output (MIMO) systems however, this is not the case and few workable schemes have 

been reported. 

Although optimal trajectories for saturating systems can be determined using non

linear optimal mntrol theory, the resulting bang-bang control laws involving compli

cated switching surfaces are very difficult to implement. In addition these systems 

can be very sensitive to model uncertainties. Since a full nonlinear robust control 

theory is not available, and actuator saturations are relatively simple nonlinearities, 

the two-level decomposition of the design problem seems justified. In this paper we 

generalize this approach and extend it to the MIMO case. Specifically we outline 

the performance and stability problems introduced by saturations, develop a general 

method for the design of saturation compensation, and use these results to quantify 

the limitations on the initial linear design imposed by saturations. Our focus in the 
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Figure 1: The classical feedback control structure with actuator saturation. 

development is on obtaining general results and insights which can be applied tu auy 

(linear) system subject to actuator saturation, as opposed to results for a specific 

problem or case study. 

Since we will be interested in obtaining global stability results we will for the 

most part restrict consideration to open loop stable plants. If the plant is not open 

loop stable, there is always an external input "large enough" to keep the system 

in saturation, effectively opening the feedback· loop. \Vith no feedback the plant will 

demonstrate its open loop characteristics, namely instability. With certain additional 

assumptions, e.g., on the size of external inputs to the system or on the size of certain 

internal signals, this condition can be relaxed. 

6.2 Windup 

A common performance degradation phenomenon in saturating systems is known as 

"windup" or "integrator windup." \Ve consider the system shown in Figure 1 where 

P(s) is the linear time invariant (LTI) plant, and K(s) is an LTI controller determined 

to be satisfactory in the absence of saturations. The block between the plant and the 

controller represents the actuator saturation and is modelled as 

u = sat(u) 
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where 

{ Uj iuil ::-; 1 
( 6.2) llj 

sign(ui) luil > 1 

Windup occurs when an actuator becomes saturated, effectively breaking the feed

back loop. \Vhile the controller output, u, remains above the saturation linut w~ have, 

u(s) = K(s)[r(s) - d(s) - P(s)u(s)] 

and the states (for example the integral term of a proportional-integral (PI) con

troller) "wind up;'~ i.e., for given external inputs, r(s) and d(s), they obtain values 

significantly different than they would in the absence of saturation when 

u(s) = I<(s)[I + P(s)I<(s)J- 1(r(s) - d(s)) ( 6.4) 

The effect of these "wound up" states is a significant transient which must decay 

( unwind) after the system returns from saturation. This transient is most pronounced 

when there are slow dynamics in the controller, driven by the error while the system 

is in saturation, which then unwind slowly after the return to the linear regime. 

While windup has been widely observed and discussed, it has rarely been defined. 

In its strictest sense (integrator) windup has been used to refer to windup of the 

integral term of classical single input-single output PI or PID controllers [15,5!). 

60,6,,j8]. In its broadest use windup has been used to describe any performance 

degradation which occurs as a result of saturation [35,7,78]. Motivated by the above 

discussion, we adopt for the purpose of this paper the following definition: 

Definition 6.1 Windup occurs when the states of the controller are driven by the 

error while the actuator is in saturation. 

While Lhis <ldlui~iou is certainly broader than strict integrator windup (windup of a 

single state in I<(s) corresponding to the integrator), it is not as all encompassing (as 

we will see) as the broadest possible definition suggested above. 

Before developing a general method for dealing with windup ( as defined) we review 
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Figure 2: The feedback system with saturation compensation. R. 

several standard approaches which have proven successful in some applications. 

6.2.1 Anti Windup 

The classical approach of "turning off," or modifying, error integration during satu

ration can be understood using Figure 2 where the anti-windup block, R(s), is given 

by 
1 

R(s) = -l 
as 

(6.,3) 

We note that the system shown in Figure 2 is not internally stable and therefore a 

realization of this configuration could not be used in practice. Equivalent configura

tions, which are internally stable, and give rise to somewhat more complicated block 

diagrams can be found in [15,5,7] .. for simplicity we will ignore this internal stability 

problem and refer to the otherwise equivalent Figure 2 in the following discussion. 

When the saturation is not active u = u and the additional block, R( s), has no 

effect so that closed loop performance (for small inputs) is determined by the design 

of K(s). During saturation we have, 

u(s) [J + R(s)J- 1 K(s)(r(s) - d(s)) +[I+ R(s)J- 1[R(s) - K(s)P(s)]tL(s)(6.6) 

as K(s)(r(s) - d(s)) + 1 
[/ - asJ<(s)P(s)]u(s) (6.i) 

as+ 1 , as+ 1 
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Figure 3: The internal model control (IMC) structure. 

and the effect of R(s) is to remove an integrator from K(s) and K(s)I'(s) and replace 

it with a first order lag. If the parameter o is small then this effectively removes slow 

dynamics (integrator) and replaces them with fast dynamics (high bandwidth lag) 

which are much less susceptible to windup. These fast dynamics are still driven by 

the error while the system is in saturation, but they unwind quickly when the system 

returns to the linear regime and therefore have a less adverse impact on the system 

response. 

While successful in preventing windup in its narrowest sense, this simple approach 

is not adequate in all cases. As demonstrated by Doyle et al. [35], the controller need 

not include an integrator for windup to be observed. Any relatively slow dynamics 

in /{ ( .s) will result in undesired effects on the response for a substantial period of 

time after the actuators have returned from saturation. Additional lirnitations of 

this approach are a lack of a general method for selecting the appropriate value of a 

([5] suggests making o ''proportional to the integral time''), and a lack of stability 

guarantees (it is not difficult to see from (6.7) that if K(s) has right half plane poles, 

the saturating system will be unstable). 

Another approach which has been suggested, and which guarantees closed loop 

stability when there is no model error, is the use of the Internal Model Control ([\IC) 

structure ( see [68] and references therein) shown in Figure 3. This corresponds to 
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selecting R(s) = K(.s)P(s) and we have from (6.6) (when P = ?) 

u(s) = K(s)(I + P(s)K(s)l- 1(r(s) d(s)) 

Q(s)(r(.s)-d(s)) 

where the IMC controller, Q(s ), is defined by, 

Thus 

Q(s) ~ I<(s)[I + P(s)K(s)J- 1 

y(s) P(.s)sat{u(s)} 

P(s)sat{Q(s)(r(s) - d(s))} 

(6.8) 

(6.9) 

( 6.10) 

(6.11) 

(6.12) 

With P(s) stable (by assumption), stability of Q(s) is necessary and sufficient for 

internal stability in the absence of saturation (see (68]). Consequently, stability of 

the linear system implies stability of the nonlinear system. Nonlinear performance 

however, is often excessively sluggish with the IMC implementation. This is clear from 

(6.9) which holds both in saturation and in linear operation. The IMC controller Q(s) 

never "sees:' the effect of the saturation on the plant output y( s ), and u( s) is only a 

function of the setpoint, r(~), awl disturbance, d(s). 

Other, more elaborate, nonlinear schemes to deal with saturations have been pro

posed ( e.g., model predictive control [45), which involves solving a (simplified) opti

mal control problem on-line, and the approach of Kapasouris [571). \Vhile some of 

these techniques have been successful in practical applications, they require extensive 

on-line computation and do not lend themselves to simple analysis. As such it is 

difficult to develop insight into the limitations posed by saturations on linear design 

by studying them. Indeed it is not clear at this point that it is necessary to introduce 

nonlinearities (in addition to the existing saturation) in the closed loop in order to 

provide adequate saturation compensation. 
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Figure 4: Block diagram of I<( s) without saturation compensation. 

6.2.2 Anti-Windup from a State Space Perspective 

In order to develop a general anti-windup scheme, which extends trivially to MIMO 

systems, we adopt a state space perspective. In this section we outline a state space 

construction of a linear saturation compensator designed to avoid windup (Defini

t,iuu 1). We begin with a minimal state space realization of the m x p transfer 

function matrix K(s) given by, 

v = Av+ Be 

u = Cv + De 

(6.1:3) 

(6.14) 

where v E R_nxt is the state vector of the controller. \Ve denote the transfer function 

matrix obtained from this realization as 

(6.1.5) 

which is represented in block diagram form in Figure 4. Clearly with this realization, 

the state of the controller, v, is driven (only) by the error signal and we can expect 

significant windup resulting from saturations whenever A includes slow dynamics. 

Following Astrom [7], we can restructure this realization to achieve a controller 

with anti-windup properties. By multiplying (6.14) by H E nnxm, and subtracting 
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Figure ,5: Block diagram of the closed loop system with saturation compensation. 

from (6.13) we obtain 

v - (A-HC)v+(B-HD)e+Hu 

u - Cv + De 

(6.16) 

(6.17) 

Now rather than using the controller output, u, to drive the states in (6.16) we use 

the actual plant input it. Thus we have (shown schematically in Figure ,5), 

v = (A HC)v + (B - H D)e + Hu 

u = Cv + De 

u = sat(u) 

(6.18) 

(6.19) 

(6.20) 

A:strum argues I.hat. by selection of H we can insure that A - HG has all of its 

eigenvalues in the open left half plane. In fact since ( A, C) is observable (by mini

mality) we can arbitrarily assign the eigenvalues of A - HG and make the dynamics 

driven by the error as fast as desired. This approach begs the question "What is 

the 'optimal' assignment of these eigenvalues ?" 

The unswcr to this question is very simple and comes directly from Definition l 
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which states: windup occurs when the states of the controller are d1·iven by the error 

while the system is in saturation. With the controller parametrization (6.18)-(6.19)

(6.20) it is clear that we can avoid windup by selecting H = B D- 1 so that 

v = (,4 - BD- 1C)v t BD- 1u (6.21) 

u Cv+De 

u = sat( u) (6.23) 

With this parametrization the error has no effect on the states of the controller. In

stead lhe sLales are updated based on u, the plant input. We note that the realization 

(6.21 )-(6.22)-(6.23) is only meaningful when a left inverse of D, denoted n- 1 exists. 

We will assume throughout the sequel the existence of such a n- 1
. In certain cir

cumstances this may require modification of a prespecifierl T< ( .'l) ~.t high frequency to 

insure a left invertible D term. 

The parametrization (6.21 )-(o.22)-(6.2:j) is exactly the "conditioned controller'' 

introduced by Hanus et al.: [53]. While we arrive at the same anti-windup com

pensation, our development and its interpretation are completely different than the 

treatment involving ''realizable references" they present. 

Example 1 

In order to demonstrate the effectiveness of the saturation compensator we will con

sider a simple SISO example. The plant is given by, 

1 P(s) = --e-to, 
,5s + 1 

(6.24) 

and the controller by, 

J( s = (5s + l)(6.3s + 1) 
( ) (s + 1)2 - (6.Js + l)e- 10

J 

(6.25) 
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Figure 66: Example 1 - Pulse disturbance response for the unconstrained system. 

This contrull~r wa:s obtained via the IMC design procedure (see Chapter 4 of [68]) and 

is based on an Integral Square Error optimal controller for the output disturbance 

d(s)- --
1

-
- s(lOs + 1) 

(6.26) 

The input constraints for this problem are lul :;; 1.2. The linear responses (no satu

ration) to the designed disturbance (6.26) and a pulse disturbance of magnitude 0.5 

and duration 10.0 a.re shown in figures 6a and 6b respectively. 

Without saturation compensation, the system limit cycles in response to both of 
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figure 6c; Example 1 - DislurLam:e response for the constrained system without 
saturation compensation, d(s) = s(lO~+I)' 
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Figure 6d: Example 1 Pube di:sturLam.:e:: respuuse fur Lhe constrained system with 
no saturation compensation. 

these disturbances as shown in Figures 6c and 6d. Instability with no saturation com

pensation is not unexpected and simply serves to underscore the dangers of ignoring 

the impact of saturations. 

The system also limit cycles when classical anti-windup, (6.5), is applied (for 

any a: 2:: 0). Inability of classical anti-windup to maintain stability demonstrates 

the limitations of a narrow definition of windup. Although an integrator in I{ ( s) 1s 

removed while in saturation, other dynamics in K ( s) cause instability. 

The IMC implementation is stable but somewhat sluggish as shown in Figures 6e 
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Figure 6e: Example 1 - Disturbance response for t.hP const.r,1.inPcl systP.m using the 

IMC structure, d( s) = .,(io~+l)" 

Output 
1 2 

Input 

0.5 1 

0 0 

-0.5 -1 

-1 -2 
0 10 20 30 40 0 10 20 30 40 

Figure 6f: Example 1 - Pul:se <listurLam::e re:spon:se for the constrained system using 

the IMC structure. 

and 6f. With IMC, the controller output, u, is given by (6.9) both in the linear 

regime and during saturation, and is independent of the plant output, y. Hence the 

controller does not "see" the effect of the saturation resulting in a sluggish response. 

This sluggishness is most pronounced when the unconstrained input has a large peak 

a.nd settle:s quickly. In this case the constrained system will come out of saturation 

quickly before the plant output has reached its steady state value. With the controller 

output essentially constant the plant output approaches steady state with the open 

loop dynamics of the plant. 
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Figure 6g: Example 1 Disturbance response for the constrained system using 
saturation compensation (6.27), d(s) = .,(io~+l}" 
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Figure 6h: Example 1 - Pulse disturbance response for the constrained system using 
saturation compensation (6.27). 

ThP. rf~sponsP. with the saJ.11ration r.ompP.nsator 011tlinP.cl in SP.rt.ion 2.2 is shown 

in Figures 6g and 6h. The system is stable (for any disturbance of bounded energy 

as we can show using results in Section 3) and provides a rapid response which 

closely resembles the unconstrained response (Figures 6a and 6b). The saturation 

compensator is able to preserve stability, as does IMC, but also keep the plant input 

saturated for a longer period than IMC allowing a faster response. 
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6.2.3 Relationship Between Saturation Compensators 

We now consider the proposed saturation compensator from an input-output point of 

view. This allows us, using the block diagram of Figure 2, to demonstrate that this 

anti-windup compensation is a generalization of both classical anti-windup and L\lC. 

As we saw in Section 2.1, the classical anti-windup scheme corresponds to R(s) = 
;$I. IMC corresponds to R(s) = K(s)P(s). From (6.21)-(6.22)-(6.23) and simple 

block diagram manipulations, it is easy to determ.ine that the proposed saturation 

compensator ( and the "conditioned controller" of Hanus et al.) correspond t.o 

R(s) = K(s)D- 1 
- I 

We note that for a purely proportional controller, J{ ( s) = D = constant, which has 

no states to wind up, ( 6.27) provides R( s) = 0 as we would expect. 

For the PI controller, 

K(s) = k(Tis + 1) 
• 'TiS 

the corresponding windup compensation given by (6.27) is 

1 
R(s) = -

TjS 

(6.28) 

(6.29) 

which is exactly the classic anti-windup strategy, "turn off the integrators during 

saturation," used successfully for decades for PI controllers and open loop stable 

plants [15,59,6,58). 

With P(s) stable, all controllers, K(s), which yield an internally stable closed 

loop system (in the absence of saturations) are given by 

K(s) = Q(s)[I - P(s)Q(s)J- 1 (6.:30) 

where Q( s) is an arbitrary proper, stable, transfer function matrix. With such a 
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I<(s), the (linear) closed loop transfer function(~ in Figure 1) is 

T(s) = P(s)Q(s) (6.31) 

Selecting Q(s) = p-1(0) = constant provides integral action (T(O) = I) and a closed 

loop bandwidth equal to the open loop bandwidth [68]. The corresponding windup 

compemsa.tion is (using (6.27)) R(s) = K(s)P(s) which corresponds exactly to the 

IMC structure of Figure 3. \Ve conclude then that the IMC structure, which guaran

tees stability with respect to saturation, is the appropriate windup compensation only 

in a special case, namely when we have not used K (s) to modify the plant dynamics 

(bandwidth) but only to achieve integral action. This is consistent with simulation 

results where it is observed that IMC is excessively sluggish when saturation occurs 

in systems where K ( s) is designed to speed up the closed loop. 

\Ve have seen then that the proposed windup compensator, (6.27), designed to 

avoid windup (Definition 1) is a generalization of well-known and successful strate

gies. Furthermore the limitations of these traditional measures are clear from this 

discussion. Classical anti-windup avoids windup only for PI controllers and is inad

equate when K(.s) has poles in the right half plane; IMC avoids windup only if the 

closed loop dynamics are the same as the open loop dynamics. 

6.2.4 Multivariable Issues - Directionality 

In Section 2.2 we outlined a general windup compensation scheme which avoids 

windup in the states of K ( s). For SISO plants this approach leads to graceful per

formance degradation when the system enters the nonlinear operating regime as a 

result of saturations. While our state space approach allows us to extend the windup 

compensation scheme to MIMO plants in a natural manner, windup compensation 

alone, is often not adequate to ensure graceful performance degradation in the MIMO 

case. We demonstrate this with a simple example. 
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Example 2 

We consider the 2 x 2 plant, 

( 6.32) 

with both inputs limited by ±15.0. The controller, selected on the basis of linear 

performance is, 

J((s)= 10s+l [4 5] 
8 3 4 

The linear response shown in Figure 7a for a setpoint change, r = [:~i], is 

decoupled with a first order response in each output with time constant of 1.0 and no 

overshoot. The nonlinear response to this same setpoint change is shown in Figure 76. 

Both outputs overshoot significantly {approximately 500% at t = 4) then overcorrect 

and m11-lershoot (approximately 100% at t = 8) before settling. 

With a broad definition this drastic performance deterioration would be assigned 

to "windup problems." In fact only the smaller undershoot problem is the result of 

windup. This can be seen in Figure 7c where we have included windup compensation, 

(6.27), in the nonlinear simulation. The large initial overshoot is still present and the 

smaller undershoot (around t = 8) ha..i;; b~n eliminate,L It. is clPa.r then that relative 

to the large initial overshoot, windup is a relatively minor problem in this example. 

The problem demonstrated in the preceding example is unique to MIMO systems 

and results from the directional nature of the plant. In MIMO systems the plant 

gain is a function of the input direction. Since the saturation operates element by 

element on u to generate u the direction of u is different than that of u. For example 

if u = [i:~], the resulting ft is ft = [i:~] and the direction of the controller output. 

u, is is different than the plant input, u. If the saturation error, u - u, corresponds 

to the high plant gain direction, the difference in plant outputs corresponding to u 

and u will be maximal. Correspondingly if u - u is aligned with the low plant gain 

direction, the effect on the output will be relatively modest. 
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Figure 7a.: Example 2 - Step response for the unconstrained :sy:slem. 
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Figure 7b: Example 2 - Step response for the constrained system with no saturation 
compensation. 
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Figure 7c: Example 2 - Step response for the constrained system with saturation 
compensation (6.27). 
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Figure 7d: Example 2 - Step response for the constrained system with saturation 
compensation (6.27) and directionality compensation (6.34). 
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d 

r K 
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R 

Figure 8: The feedback system with saturation compensation, R, and directionality 
compensation, R2• 

Since the saturation operator acts element by element on u its structure is di

agonal. It is well-known from robust linear control theory that some plant and 

controller combinations experience severe performance det.eriora.tion in the prPsPnre 

of diagonal input uncertainties. Specifically, ill-conditioned systems (those having 

large scaled condition numbers) together with mverse based ( and consequently ill

conditioned) compensators as in the current example, have this property (see for 

example (87]). Loosely speaking the diagonal operator disturbs the inversion so that 

P(.s)sF1.tK(s) ~ L(s) though P(s)K(s) ~ L(s), where L(s) is the desired loopshape. 

\Ve can eliminate the directionality problem by adjusting all of the elements in 

u when one of them becomes saturated so that u and u have the same direction ( a 

similar approach was adopted in [35l). This can be achieved by inserting an additional 

block in the loop as in Figure 8. Here the block R2 is a nonlinear operator described 

by 

u' - .H2u (6.3{) 

{ 11•;~ 
llulloo :S 1 

(G.:J,}) -
llulloo > l 
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where 

llulloo = max luil 
I 

(6.:36) 

The purpose of R2 is to scale back the controller output until its largest element 

has magnitude one. In this case the saturation will have no effect since its input, 

u', always has lui I :5 1 for all i. What we have effectively done then is replace the 

diagonal saturation operator by a scalar times identity operator. In this case, if we 

allow d2 to be the scalar valued describing function appropriate for the composite 

operator, satR2, we have 

(6.37) 

and we see that ( to a first approximation) the desired loop shape is only perturbed by 

a scalar facto,r. The impact on the closed loop is now not dependent on the direction 

of u but only on its magnitude. 

Using this approach to directionality compensation we return to Example :2 and 

simulate the response to the same setpoint change, r = [:1i]. The response, shown 

in Figure 7d, is well behaved with no over or undershoot characteristic of windup or 

directionality problems. 

It should be noted that this approach to directionality compensation is not neces

sarily optimal. Indeed it may happen that without directionality compensation u - u 
is in the low plant gain direction. If information is available regarding the directional 

characteristics of the plant a constrained optimization can be performed to find a u' 

which minimizes the input of the saturation on the output error ( e.g., minimizing the 

component of u. - u.' in the high gain plant direction). These schemes are typically very 

complicated and computationally intensive. We favor this simple scheme because it is 

insensitive to the directionality of the plant (and hence requires no such information), 

has provided very good results, is amenable to available analysis techniques, and is 

trivial to implement. Implicit in our assumption that I< ( s) is designed appropriately 

for the linear plant is the assumption that the output of K(s), u, is in the appropriate 

direction. \Vith this in mind the simple directionality approach seems justified. 
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6.3 Analysis Theory 

In this section we present an approach to nonlinear systems analysis applicable to 

saturating systems. Since the theory has general applicability we will not discuss 

saturation nonlinearities per se until the next section where we apply the general 

results to the saturation compensation problem. 

The approach taken here originated with the work of Zames in the early 1960's 

[94], and is applicable to systems which include nonlinearities for which conic sector 

bounds can be obtained. The basic approach is to approximate the nonlinear system 

components with linear ones and obtain norm bounds on the error involved in this 

approximation. The linear system is then studied subject to nonlinear perturbations 

within the specified norm bounds. If it can be shown that the linear system has 

certain properties ( e.g., stability) for all perturbations within the norm bounds, then 

it is certain that the original nonlinear system has these properties as well. 

\Ve begin with a few mathematical notions which are necessary for the subsequent 

development. In order to simplify the discussion we will present as few formal defini

tions and proofs as possible and refer the interested reader to relevant references (in 

particular, much of this material is covered in [29]). 

\Ve will be concerned with signals which remain finite for all finite values of time. 

A mathematical characterization of the set of such functions is given by: 

Definition 6.2 L2e is the extended space of vector valued functions, x( t), with the 

property 

llx(t)llr a [[ x"(t)x(t)dtr
2 

< 00 (6.38) 

for all T 2: 0. 

System elements (blocks) are represented mathematically as operators which take 

mputs (signals in L2e) and produce outputs (signals in L2e). The following is a formal 

definition of stability for system elements. 
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Definition 6.3 An operator, N, mapping L,e -+ L2e is said to be stable if there exist.; 

a constant k < oo such that 

(6.39) 

for all x E L 2e and for all T 2:: O. 

This corresponds to finite gain stability; input signals of bounded energy give rise to 

output signals of bounded energy. 

Definition 6.4 Given N, a possibly nonlinear and time varying operator! and two 

linear time invariant operators C and R, N i8 said to be inside Cone (C, fl) if 

IIN(x) - CxllT S IIRxllT (6.40) 

for all T 2: 0 and x E l2e• 

A conic sector provides an LTI approximation to the input-output behavior of 

.N. The cone center, C, provides an approximate output, Cx, for any input x. The 

cone radius, R, provides a measure of the error inherent in this approximation. For 

example the STSO memoryless nonlinearity N: x(t) - sat{x(t)} is inside Cone ( ½, ½ ). 

The operator C: x(t)--+ ½x(t) is our linear approximation to N and R: x(t)-+ ½x(t) 

gives us a measure of the error in this approximation ( as much as 100% in this case). 

We can replace any representation of all nonlinearities in Cone ( C', R) with an 

equivalent representation in terms of all nonlinearities in Cone ( 0 ,I). Specifically 

y = NT. with N E Cone( C, R), if and only if, y ( C + NR)x for some 1\! E 

Cone(O, I). This allows us to replace a nonlinear perturbation in Cone( C, R) with 

the LTI blocks C and Rand a cone bounded nonlinearity in Cone(O, I). As a result 

we can, without loss of generality, state all nonlinear stability results in terms of the 

Cone(O, I) and thereby simplify the notation. 

Giw~n these preliminaries we consider the general feedback interconnection of Fig

ure 9 where M is a linear time invariant operator with transfer function .M( s) and .3. 



l06 

~ 
--

--
M r - e -- -

Figure 9: The general feedback interconnection used for stability analysis. 

is a (possibly nonlinear) block diagonal opera.tor in a defined by, 

(6A 1) 

Any feedback interconnection of linear and cone bounded nonlinear blocks can be 

brought into this form. \Ve will see examples of this in the next section. 

\Vith these preliminaries we present the main result, a version of the multiloop 

circle criterion ( see for example [86]). 

Theorem 6.1 The system in Figure 9 is stable for all 6. E a if 

1. _l',f(s) is stable 

2. 3 /3 < 1 3 inf IITMu(s)T- 1 1100 < /3 
TET -

where 

IIP(s)lloo ~ supo-(P(jw)) 
c.J€'R. 

T ~ { T I T !:lr-1 E a v 6. E A.} 

(6.42) 

(6.43) 

Since a simple parametrization of the set T is not available, the optimization 
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problem implied in 2. is not tractable. We note however that the set 

T' 6 {T I TE T and TE cnxn} (6.H) 

is characterized only by the structure of T. S!Jecifk,dly, T' com,isLs of all block 

diagonal constant matrices whose block structure is compatible with A in the sense 

that for each diagonal block in A the corresponding block in T' is diagonal, and for 

each full block in ~ there is a corresponding scalar times identity block in T'. This 

simplification motivates: 

Corollary 6.1 The system in Figure 9 is stable for all .6. E A if 

1. AJ(s) is stable 

2. 3 ,B < 1 3 )~J,,IITlvf11 (s)T- 1
Jj 00 :::; /3 

This simplification is signific:ant ancl a c:omplet.e solution to f!. is available from state 

space structured singular value theory [34j. 

A significant advantage of this approach is that analysis of robustness with re

spect to uncertainties in the linear plant model is straightforward. As is standard 

in the robust control theory, we consider the nominal linear plant model subject to 

(possibly multiple) norm bounded LTT perturhat.ions_ ThP LTI nncertainty blocks 

are incorporated in the lvf - .6. framework (Figure 9) in exactly the same manner as 

the cone bounded nonlinearities so that .6. is then a block diagonal operator in the 

set A defined by 

where .6. 1 , ... .6.,,. are nonlinear operators each inside (; onP.( {), l) ancl l\,,. 1 1, . .\"' ,irP 

LTI operators satisfying i.7( .6.i) s; 1 V i = n + 1, ... m. A straightforward extension 

of the structured singular value results (which handle LTI perturbations) provides: 
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Theorem 6.2 The system in Figure 9 is stable for all perturbations Ci. E ~ if 

1. A:f(s) stable 

2. :3 .B < 1 3 in~ l)TAf11(s)T- 1
lf 00 :S /3 

TET 

where 

(6.46) 

with T1, ... T,,_ E T and Tn+i, ... Tm arbitrary LTI operators which satisfy T;!:1;1:- t = 
6; V a( 6i) ~ 1 and V i == n + 1, ... m. Again the simplification of T1, ••• Tn E T' 

allows (relatively) straightforward evaluation of 2. to assess robust stability. 

It should be noted that the conditions of Theorems 1 and 2 guaranteeing stability 

with respect to nonlinear perturbations are only sufficient, unlike the necessary and 

sufficient conditions provided by linear structured singular value theory. This conser

vatism and its impact on the analysis of saturation compensation are elaborated on 

in the next section. 

Before we move on to apply these analysis results to saturating systems we intro

duce the remaining definitions we will need. These are notions of passivity, or positive 

realness, for MIMO systems (see for example (29, 1 ]). 

Definition 6.5 A stable, proper, LT I system, Z ( s), is said to be strictly passive if 

3t>03 

(6.H) 

This is the standard notion of (strict) passivity which in the SISO case corresponds 

to the requirement that the Nyquist plot of Z ( s) must remain in the (open) right half 

plane. 

The following Lemma characterizes passivity in terms of an easily computed norm 

condition. 



109 

Lemma 6.1 Z ( .s) is strictly passive if and only 1f 3 /3 < 1 :? 

(6.48) 

and [I - Z(s)l[I + Z{s)J- 1 is stable. 

Further implications of passivity are: 

Lemma 6.2 Assuming that both Z(s) and z-1 (s) are proper, Z(s) is strictl.1/ passive 

if and only if z- 1(s) is strictly passive. 

Lemma 6.3 Z(s) strictly passive implies that Z(s) is minimum phase (MP) and 

8tablc. 

With these results we have completed the mathematical preliminaries necessary 

for robust stability analysis of general nonlinear systems. We now turn our attention 

to the particular nonlinearity of interest. 

6.3.1 Application of Analysis Theory 

We will use the stability results outlined in the previous section to analyze the sat

uration compensation scheme developed in Section 2.2. Specifically we consider the 

stability of the system in Figure 2. We stress again here that Figure 2 is not appro

priate for implementation, instead the system shown in Figure 5 should be used wtth 

H chosen to correspond to a particular choice of R( s ). 

The MIMO saturation nonlinearity u. = sat { u} is a diagonal operator 

(6.49) 

where each n1 E Cone(½,½), \Ve can represent such a diagonal cone bounded linearity 

with the linear blocks C = ½I and R = ½I and a cone bounded nonlinearity, /./, with 

diagonal structure, in Cone( 0, I). 
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Rearranging Figure 2 to obtain the standard framework of Figure 9 provides 

1'-:f(s) 
[ 

[21 + R + /{ P] l[R - I( P] [21 + R + [( PJ- 1 
[( l 

-2P[2I + R + K PJ- 1
[/ + R] / - P[2/ + R + f{ PJ- 1 I< 

(6 .. 50) 

We can now apply Corollary 1 and Theorem 2 to evaluate nominal (no model un

certainty) and robust stability of saturating systems with saturation compensation 

R(s). 

Condition 1. of Corollary 1 reqmres M ( .s) to be stable. Por fl 0, this i;; 

implied by stability of the linear (no saturation) closed loop when the controller gain 

is reduced by a factor of 2. 

Evaluating M11 ( s) when no compensation is used, R = 0, we have: 

M11N0Aw(s) = -[2I+KPJ-1KP 

-K P[21 + K PJ-1 

- [/ - (/ + KP)l[I +(I+ KP)J- 1 

(6.51) 

(6.52) 

(6.53) 

Condition 2. of Corollary 1 requires that infreT' IITJ\111 T- 1 jj 00 :::; 8 < 1 which in this 

case implies 

which is equivalent to 

T[I + K PJT-1 strictly passive for some T E T' (by Lemma l) ( 6.5,5) 

::;,. T + KP MP and stable (by Lemma 3) (6 56) 

{::} [J - QPJ-1 MP and stable (6.57) 

=} [/ -QPJ-lQ stable ( since Q stable) (6 .. 58) 

~ K(s) stable (6.59) 

Thus we see that if the closed loop system with no saturation compensation is to be 
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guaranteed stable with respect to saturation using Corollary 1, a necessary condition 

is that the controller be stable. This result is not surprising, as we pointed out 

in SP.ct.ion 2.1, K(s) stable is a necessary condition for closed loop stability if no 

saturation compensation is employed. 

Repeating this analysis for the proposed saturation compensation, R( s) = I( D- 1 -

I, we find: 

MnAw(s) = [I+ I<(P + D- 1 )J- 1
[/ - [((P - D- 1

)] 

= [D Q][D + QJ- 1 

= [I - QD- 1][1 + QD-1J-1 

(6.60) 

(6.61) 

(6.62) 

Stability of A1 ( s) requires that D + Q( s) be minimum phase. This requirement is not 

particularly restrictive. If we introduce a state space realization of Q( s) 

Q(s) = [-$-] (6.6:3) 

then (recall D = K( oo) = Q( oo) ), 

n + Q(.,;) = [Q] (6.6.t) 

cfw 

so that D + Q(s) minimum phase requires only that the eigenvalues of A ½BD- 1C 

lie in the left half plane. 

Condition 2. of Corollary 1 requires 

(6.66) 
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which is equivalent to 

TQ(s)D- 1T- 1 strictly passive (6.6i) 

by Lemma l. This implies (by Lemma 3) that Q(s) is minimum phase and stable. 

Since stability of Q( s) is necessary and sufficient for stability when there is no sat

uration, the only additional requirement is Q(s) MP (which implies K(s) MP for 

P(s) stable). In terms of the state space realization of Q(s), (6.63), this condition is 

equivalent to the eigenvalues of A - BD- 1C must lie in the left half plane. It is rarely 

desirable to make Q( s) NMP since this would imply nonminimum phase behavior in 

the complementary sensitivity function,~= P(s)Q(s) [68, pages 58-59]. 

While we require Q( s) minimum phase and D + Q( s) minimum phase for sta

bility with saturation compensation, these conditions are less restrictive than if no 

compensation is employed. In contrast, for IMC, R(s) = K(s)P(s), no requirements 

other than linear stability need be imposed. In this case M111Mc(.::;) i::s i<leutically :.:;ero 

and Theorem 1 is satisfied trivially. Unfortunately IMC generally results in sluggish 

performance when saturation occurs. 

\Ve consider next the impact on our stability analysis when directionality com

pensation is employed. The only modification to the above analysis involves the set 

of scaling matrices T'. When no directionality compensation is employed, the sat 

uration is a diagonal operator so that ~ has diagonal structure and T' consists of 

nonsingular diagonal matrices. When directionality compensation is used, the series 

interconnection of R2 and the saturation block is a scalar times identity operator and 

hence the corresponding ~ has scalar times identity structure. This implies that the 

set T' consists of arbitrary full invertible matrices in this case. Since we seek the 

infimum in Corollary 1 over a larger set when directionality compensation is used, a 

larger class of M 11 ( s) will satisfy the sufficient condition. This robustifying effect as 

a result of directionality compensation is not surprising. With directionality compen

sation we are guaranteed that the plant input will always be in the same direction as 

the controller output, only the magnitude of the actual plant input can be affected by 

saturation. With no directionality compensation both the direction and magnitude 



of the actual plant input are affected by saturation. 

To demonstrate the effect on the sufficiency test for nonlinear stability of the 

structure of elements in T' imposed by including or not including directionality com

pensation we consider the following example. 

6.3.2 Example 3 

In this example we consider the 2 x 2 plant 

1 [54 43] P(s) = lOs+ 1 (6.68) 

with inp,ut magnitude limitations ju 1 I < 3, ju2 I < 10. A decentralized controller 

I< ( s) = lOs + 1 [ 1 0 l 
8 0 -1 

(6.69) 

is designed for P( s) neglecting saturation. The unconstrained response to a pulse 

setpoint change of magnitude [~::] and duration 5.0 seconds is shown in Figure 10a. 

The constrained response with no saturation compensation is shown in Figure 106. 

The system is unstable; the manipulated variables are driven to their constraints and 

remain there indefinitely as the outputs move away from their setpoints. 

This is not surprising since 

inf IIT.A-111 T- 1 II = 2.54 
TET' 

( 6.70) 

violating Condition 2. of Corollary 1. Indeed since I<(s) is unstable (it includes an 

integrator), we cannot expect nonlinear stability with no saturation compensation 

( consider (6.6) with R = 0). 

Rather than modify the controller I< ( s) we attempt to add saturation compensa

tion and guarantee stability. Using the anti-windup compensator, R(s) = KD- 1 -I, 

with no directionality compensation we obtain an M(s) which is stable. unfortu-
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Figure 10a: Example 3 Pulse setpoint response for the unconstrained system. 
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Figure 10b: Example 3 - Pulse setpoint response for the constrained system with 

no saturation compensation. 
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nately for diagonal matrices, T, 

(6.71) 

so that Corollary 1 cannot be used to guarantee nonlinear stability. Indeed the pulse 

setpoint response, as shown in Figure 10c, is unstable. 

Adding directionality compensation completes our saturation compensator design. 

With this modification 

inf IIT Mur-1
11 = 0.91 

TET' 
(6.72) 

( where we now include all nonsingular constant matrices in T') so that by Corollary 1 

the system is guaranteed to be stable. This is confirmed for our pulse setpoint change 

by the response shown in Figure 10d. 

This example demonstrates an important point for the design of decentralized 

controllers for saturating systems. Computing the relative gain array ( RG A) for the 

plant in this example we find 

[

-15 
RGA= 

16 
16 l 

-15 
(6.73) 

anrl that thP variable pairings chosen correspond to negative RCA elements vVhile it 

is generally not a good idea to pair variables with negative RGA elements for reasons 

of failure tolerance and ease of on-line controller tuning (see [50]), there are situations 

where this is unavoidable ( e.g., some 3 x 3 and larger systems). Another example is 

provided by 

1 [ 15 12e-lOa l 
P(s) = --

10s + 1 40e-10a 30 
(6.74) 

which has the same RGA as the plant (6.68), but pairing to avoid negative RGA 

elements would result in poor (linear) performance due to the off diagonal delays in 

P(s). We generalize these observations with the following result. 
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Figure 10d: Example 3 - Pulse setpoint response for the constrained system with 
saturation compensation (6.27) and directionality compensation (G.34). 
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Theorem 6.3 With P(s) stable, saturation compensation R(s) = KD- 1 - !, no 

directionality compensation, and parings with negative diagonal RCA elements, no 

diagonal controller exists which provides integral action and satisfies the condition3 

of Corollary .1. 

Proof We adopt the notation A(P) to denote the RGA of P, and recall 

(6.75) 

where 0 denotes element by element multiplication of two matrices. Using (6.75) it 

is not difficult to verify that 

(6.76) 

and that 

(6.77) 

where S1 and S 2 are any diagonal matrices. The diagonal elements of A(P) satisfy 

(6.78) 

where Pii is the ith diagonal element of P and det(Pii) is the determinant of the 

principle submatrix of P obtained by deleting the ith row and ith column of P. 

With P(s) stable, Q(O) = P(0)- 1 is necessary and sufficient for integral action 

[68], so that 

A(P(O)) A(P(o)- 1f 
A(Q(O)f 

- A(TQ(O)D-1T- 1 f 

(6.79) 

(6.80) 

( 6 .81) 

where the last equality depends on both D = I<( oo) and T being diagonal. From 

(6. 78) and (6.81) it is clear that if any of the diagonal elements of A(P) are negative, 

then the determinant of some principle subrnatrix of TQ(O)D- 1T- 1 must be negative. 
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This implies that TQ(O)D- 1r- 1 cannot be positive definite, or 

( fi 8'2) 

so that (by Lemma 1) 

(6.83) 

which contradicts Condition 2. of Corollary 1. ■ 

We note that this proof does not go through if directionality compensation ( 6.34) 

is used since in this case the set of allowed scaling matrices, T E T', includes full, as 

well as diagonal constant matrices. This result simply adds another reason to avoid 

unfavorable pairings (corresponding to negative diagonal RGA elements), or employ 

multivariable controllers (for plants in which these parings cannot be avoided). 

While Example 3 demonstrates the utility of our nonlinear stability test, Corol

lary 1, it must be stressed that this condition is not necessary for stability. Conser

vatism arises from several sources. The most significant problem is that we guarantee 

stability for all cone bounded nonlinearities, 6. E A, in addition to saturation which 

is a single nonlinearity in this set. By doing so we ignore all information about the 

sa.tun:1.tiuu except. it.s structure ( diagonal) and its maximum and minimum gains ( 1 

and O respectively). Other information such as memorylessness ( a saturation pro

duces no phase lag) is lost. Current research in the computation of the structured 

sin.e;ular value for real perturbations promises to enable us to impose such a mern

orylessness constraint. Even if we were interested in guaranteeing stability for all 

such nonlinearities (perhaps to capture the effects of modelling errors for example) 

Corollary 2 remains conservative since we have used the set of constant scalings T' 

rather than the more general T. Nonetheless, these results have proven useful ( as in 

the previous example), are the least conservative for which computational methods 

are available, and have the important property that structured uncertainties in the 

linear plant can be handled as well. 
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6.4 Synthesis Methods for Saturating Systems 

With our saturation compensation results in hand and a measure of the impact of 

saturations on the design of K( s ), via the conditions elaborated in Section 3.1, we 

return to the general question of controller design for saturating systems. 

Ideally we would like to have a design procedure which produces a (generally) 

nonlinear controller for which some measure of nonlinear performance is guaranteed 

for all models in an uncertainty set of possible plants (Robust Performance). While 

recent advances in nonlinear analysis theory are promising, this synthesis problem 

remains unsolved. 

Relaxing our demands somewhat we might ask for a linear controller design which 

provides robust performance. The linear structured singular value (µ) synthesis pro

cedure could be employed using the M - ~ structure and including a performance 

block as is standard for linear systems. Unfortunately, since µ optimal controllers 

optimize performance for the worst~case perturbation, including zero gain for satura

tions: we can not expect to obtain performance better than open loop. Clearly such 

a design methodology is too conservative to be useful. 

Further relaxing our demands, we may wish to develop a linear design method 

which optimizes nominal (linear) performance while guaranteeing nonlinear stability. 

Corollary 1 provides computable conditions on K(s) (equivalently Q(s)) which guar

antee nonlinear stability. Here we adopt a weighted sensitivity performance measure 

as in H00 optima.I c.ont.roL With sat.11rat.ion c.ompP.nsat.ion, R(.q) K n- 1 - T, WP. c;in 

pose the following optimal design problem: 

(6.84) 

Subject to: 

J~t IIT[I + K(P + n-1 )t1 [I - K(P - n-1 )Jr-1 1100 ~ /3 < l (6.8.S) 
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Solutions to this problem would provide the optimal linear compensator f{ ( s) 

which when coupled with saturation compensation would be guaranteed stable in the 

face of saturation. This couples the initial linear design problem to the subsequent 

saturation compensation design. C" nfortunately this problem is intractable. Sim

plifying further by eliminating the infimum in the constraints, and introducing the 

definition, Q(8) = K(s)[I + P(s)K(s)J-1, we obtain: 

(6.86) 

Subject to: (6.87) 

This is a special case of a more general, and very meaningful, design problem, op

timal H 00 performance subject to H 00 constraints. A similar problem arises in the 

evaluation of the graph metric (see [89]). In the more general setting, constraints 

could be included to not only guarantee stability margins, but also minimum levels 

for secondary performance objectives. These problems remain the subject of ongoing 

research. 

While we do not have techniques to obtain the optimal solution to (6.84)-(6.85) 

we can generate suboptimal designs. The obvious method is to select a linear design 

technique (µ-synthesis, H 00
, IMC, loopshaping, LQG/LTR) and perform the following 

iteration: 
1. Select values for the free parameters of the design technique. (Performance 

weights, loopshape, etc.). 

2. Design K(s). 

3. Evaluate (6.85) for the given design. 

4. If ( 6.85) is satisfied stop, otherwise adjust free parameters and design a new 
K(s). 

We note that a feasible solution to (6.84)-(6.85) always exists since (with P(s) stable) 

K(s) = D[I - P(s)DJ- 1
, where D is any constant matrix, is stabilizing and in this 

case ( 6.85) is satisfied with /3 = 0. 

A similar approach was proposed in (22] using LQ optimal design, no saturation 

compensation, and evaluating the sufficient condition for nonlinear stability ( 6.54) 
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with no scaling T. Clearly the development of a less conservative stability result and 

an improved saturation compensator has advanced the utility of this technique. 

6.5 Conclusions 

ln this paper we have outlined the factors which cause performance deterioration in 

nominally linear feedback systems when actuator saturation occurs. We developed 

a systematic procedure for the design of MIMO saturation compensation. It was 

shown that a simple linear windup compensator ( a generalization of classical SISO 

integrator anti-windup, and IMC) coupled with a transparent ( although nonlinear) 

directionality compensator produces graceful degradation of linear performance when 

saturations occur. The simplicity of this formulation stands in contrast to other 

complex nonlinear schemes. The simple form of this saturation compensator allows 

us to apply extensions of linear system theory to saturating systems, including tools 

for stability and performance analysis in the face of model uncertainty. Applications of 

these extensions allows the development of relatively simple tests which can guarantee 

nonlinear stability. 

While these preliminary extensions of linear system theory to simple nonlinear 

systems are very promising, substantial further work is needed. In order to further 

reduce "over design" of the linear J( ( s) to insure robustness with respect to nonlin

earities such as saturation, the conservativeness of the stability tests in Section 3.1 

must be reduced. Promising approaches include, reducing the set of nonlinearities 

included in a particular norm bound, and increasing the set of allowable scalings, T. 

Developments in the calculation of the structured singular value for real perturbations 

will allow us to consider only memoryless nonlinearities, and attempts to parametrize 

T in (6.43) promise consideration of more general scalings in the computation of the 

sufficient condition for nonlinear stability. 

An additional area of future work is the application of the nonlinear analysis tools 

of Section 3 to other common actuator nonlinearities. These include dead bands, rate 

saturations, and hysteresis. 
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Chapter 7 

Multivariable Anti-Windup and 
Bumpless Transfer: A General 
Theory 

Abstract 

A general theory is developed for the anti-windup, bumpless transfer (AWBT) 

problem. The theoretical framework developed allows the consideration of any linear 

Lime invariant (LTI) control system subject to plant input limitations and substitu

tions. A general AWBT compensation scheme, applicable to multivariable controllers 

of arbitrary structure and order, is developed. Conditions are derived under which this 

general AWBT method reduces to any one of several well-known heuristics for AWBT 

( e.g. PI anti-reset windup and IMC). The design issues which affect control system 

performance when limitations and substitutions occur are identified and quantitative 

analysis methods are developed. Sufficient conditions for nonlinear stability of the 

AWBT compensated system are provided. These results are a generalization of, and 

are less conservative than, those presented in the AWBT literature. The definition of 

AWBT performance objectives which are independent of controller structure allows 

us to define a general AWBT synthesis problem. This formal synthesis problem may 

be applied to any LTI controller design and addresses each of the identified perfor

mance objectives in a quantitative manner. The synthesis problem is shown to be a 

special case of a constrained structure controller synthesis ( CSCS) problem. A solu

tion method via reduction to static output feedback is presented and the engineering 

trade-offs available in the AWBT design are discussed. 
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7 .1 Introduction 

Recent advances in multivariable control theory have brought powerful tools for the 

design of robust multivariable controllers to practicing engineers. Examples of these 

synthesis methods include singular value loopshaping, H 2 
/ H 00 theory, and LVIC. 

These tools represent a significant advance in the theory, particularly in dealing with 

model uncertainty in a quantitative manner, but share several limitations with their 

classical predecessors. These limitations include the ability to handle only fixed reg

ulation objectives, such as setpoint tracking and disturbance rejection, and the as

sumptions of linearity and time invariance of the plant. In contrast to classical design 

methods, the new techniques generally result in high order, multivariable (MIMO) 

controllers (as opposed to single input-single output (SISO) PI or PID controllers). 

In addition it is not uncommon for these techniques to produce controllers with poles 

in the open right half plane. As we will see this causes substantial performance 

degradation ( and often instability) when the plant input is limited. The apparent 

justification for this increased complexity is the performance improvement suggested 

for the multivariable designs by the linear theory. 

Application of these methods to "real world" control design problems is much more 

complicated than even the linear synthesis theory would suggest. These problems 

involve a primary regulation objective, but even moderately complex examples also 

include numerous operational and physical constraints. These constraints are usually 

stated as requirements that certain secondary variables be kept within predetermined 

bounds while the primary regulation objective is being carried out. In addition "real 

world" control systems are subject to physical limitations on sensors and ac• · ta tors. 

All physical systems are subject to actuator saturation and in many applications this 

is a dominant limitation on achievable closed loop performance. As control system 

performance requirements become more stringent, these operational constraints and 

physical limitations are encountered more frequently. The problem of transitioning 

smoothly to and from these limits becomes correspondingly more c::ignifirant 
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7.1.1 A Design Paradigm 

Since there is no available theory which addresses all of the issues which arise in 

practical problems, a top-down approach, simplifying the problem to the point where 

the available theory can be applied, has evolved (see, e.g., [73,17]). 

Decomposition 

In the first step, the overall control system performance requirements are decomposed 

into a number of operating modes, each defined by a particular regulation objective. 

Typically these modes correspond to changes in the the set of manipulated inputs 

or controlled outputs, structural changes in the controller resulting from change in 

overall mission objective, or qualitative changes in mntroller dynamics dictated by 

a new mission objective. Selectors are commonly used to override a primary control 

loop aud enforce constraints on a secondary output ( e.g., [14,15,16,40,46,541). These 

are the most common examples of control systems with multiple modes of operation. 

Qualitative changes in mission objectives include such examples as: automatic versus 

manual control, start-up or shutdown modes, cruise versus landing configurations, 

etc. In general operating modes are characterized by each requiring a different feed

back controller, designed to satisfy the performance requirement::s of that pat ticular 

operating mode. 

As the complexity of the plant increases and the system performance specifica

tions become more stringent the required number of operating modes increases. The 

simplest SISO control examples ( e.g., flow control) usually only require two modes, 

manual and automatic. On the other hand, more involved applications may involve 

many modes. In variable cycle turbine engine control, for example, these modes re

sult from overrides used to enforce temperature, pressure, and acceleration limits, anJ 

from distinct ignition and shutdown tasks. For other moderately complex examples 

in process control and aircraft engine control, the interested reader is referred to [ 1--1] 

and [54] respectively. 
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Linear Design 

Once the required operating modes are defined, linear time invariant (LTI) controllers 

a.rP. rle~ignPrl, nsing either classical or more advanced techniques, for each operating 

mode. By dealing with model uncertainty in a quantitative way, the recent robust 

control paradigm has significantly advanced this step of the overall design procedure. 

The effects of changes in operating modes are usually ignored at this stage since they 

introduce nonlinearities which cannot be handled by the linear theory. 

Mode Selection Design 

Once satisfactory linear designs have been obtained for each operating mode they are 

linked together by a supervisory scheme ( typically a selection logic) which monitors 

operating conditions and determines the appropriate operating mode. The switch 

between operating modes is usually manifested by a selection of the plant input 

from among the outputs of a number of parallel controllers, each corresponding to a 

particular mode. We will refer to such a mode switch as a plant input substitut10n 

since the output of one controller is replaced by that of another controller. 

The effect of plant input substitutions and physical limitations is that the output 

of a particular controller may be different than the actual input applied to the plant. 

This causes problems for the controllers whose output is not acting on the plant due 

to substitution or limitation. Because these controllers are effectively operating open 

loop ( they are not driving the plant), their states are improperly updated. This effect 

is known as controller "windup." Windup generally results in significant performance 

deterioration, typically large overshoots and slow settling, and in some cases insta

bility (see, e.g., (20]). When mode switches occur the differences between controller 

outputs results in a discontinuity in the plant input. This discontinuity causes unde

sirable "bumps" in the controlled variables. Windup of the states of controllers which 

are switched out often causes these bumps to be severe. The degradation of linear 

performance which occurs as a result of plant input limitations and substitutions is 

referred to as the "anti-windup/bumpless transfer" (A\VBT) problem. 
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AWBT Design 

At this stage of the design an AWBT scheme is developed to deal with the prob

lems posed by plant input limitations and substitutions. For SISO PID controllers, 

implementations which provide "anti-reset windup" and "bumpless transfer" are well

known [39,15,6]. These AWBT techniques, based on conditional integration, are spe

cific to PID controllers and are not readily extended to more general problems, even in 

the SISO case. AWBT methods applicable to multivariable controllers are proposed 

in [59,58,53], but these schemes are intuitively based, limited in their application, and 

lack a rigorous theoretical foundation. A somewhat more formal treatment is provided 

in [57] although the proposed AWBT compensation is tremendously involved, requires 

substantial on-line computation, and appears to provide performance no better than 

the simpler technique we will develop. The lack of general, quantitative AWBT de

sign methods for high order multivariable controllers which result from the advanced 

linear theory is a major impediment to their effective use in real engineering systems. 

Implementation 

Once a satisfactory mode selection and AWBT scheme has been developed, the com

ponents of the overall control system a.re combined and implemented. In complex 

systems extensive nonlinear simulation is used to verify the function of the integrated 

control system. Once satisfactory confidence in the design is obtained a physical re

alization is developed and implemented in hardware and/or software. The design is 

then commissioned. 

7.1.2 Contributions of This Work 

In this paper we address what we feel is a weak link in the above paradigm. Specifi

c.ally WP arP interested in studying the AWBT problem for multivariable controllers of 

arbitrary structure and order. In order to obtain results with general applicability we 

deviate from the existing AWBT literature and work in an abstract framework rather 

than discussing AWBT methods developed for a particular example. In order to make 
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Figure la: The idealized linear design problem error feedback example. 

the results more accessible to the practitioner we consider several important special 

cases1 but our main objective is to outline a workable theoretical framework. To this 

end we present a general statement of the problem, introduce quantitative A\VBT ob

jectives, analysis tools related to these objectives, and finally synthesis tools allowing 

us to realize these objectives. Along the way we will use the theoretical framework 

to better understand several of the AWBT methods proposed in the literature. 

7.1.3 The AWBT Problem Statement 

In this section we present an overview of the AWBT problem. Implicit in the discus

sion here are certain assumptions which we will relax in the general setup introduced 

in the next section. This discussion is intended to provide an overview of the problem 

without considering all the details required in the general treatment below. 

The problem considered in this paper can be understood with reference to Figure l. 

In Figure la we have an idealized linear problem which is the basis of the controllPr 

design for each operating mode. The linear plant model, G( s), is provided and an 

LTl controller, K(s), is designed to meet given performance spec1fications. These will 

typically be of the form, ''keep the output tracking error, e, small despite changes in 

the command, r, and disturbances, d." 

In Figure lb we introduce a nonlinear bloc.k, N, to model the effect of plant input 
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Figure 1 b; The AWBT design prublem - error feedback example. 

limitations and substitutions. As a result of limitations and substitutions the actual 

plant input, u', will in general not be equal to the controller output, u. We assume 

for this discussion that u' can be accurately measured or estimated (by passing u 

through a suitable model of N). The measured or estimated value of u' provides 

information regarding the action of limitations or substitutions and is fed back to 

the AWBT compensated controller K(s). The AWBT problem involves the design of 

k ( s) to meet the following criteria: 

1. The nonlinear closed loop system, Figure 1 b, must be stable. 

2. When there are no limitations or substitutions, N = I, the closed loop perfor

mance of the system in Figure 1 b should meet the specifications for the linear 

design in Figure la. 

3. The closed loop performance of the system in Figure 1 b should "degrade grace

fully" from the linear performance of Figure la when limitations and s11hst.it.11-

tions occur (N =/- I). 

The precise meaning of "graceful" performance degradation will be developed 

below. In loose terms we mean that the phenomena characteristic of windup and 

bumping, e.g., instability, large transients and/or slow settling as a result of input 

limitations and mude :switd1e:s, a.re a.voided. 
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Figure 2: The standard linear feedback problem. 

7.2 The General Formulation of the Problem 

7.2.1 The General Interconnection Structure 

The general problem is based on the idealized linear design given in terms of the stan

dard feedback problem shown in Figure 2 [32,41,12]. The interconnection structure, 

P( s ), is fixed and linear time invariant and describes the interconnection between ex

ogenous system inputs, outputs, and the controller. It includes a model of the plant, 

G( s ), and performance and noise weights. The individual blocks of P( s ), denoted 

PiJ ( .s ), a.re obtained by pa.rtitiouiug P( .s) to wrresµoml. Lo the <limeusium of w, z, u, 

and Ym• K(s) is the LTI controller produced in the linear controller synthesis step of 

the overall design. 

The exogenous input, w, includes all signals which enter the system from its 

environment including commands, disturbances, and sensor noises. The other inter

connection input, u, represents the control effort applied to the plant by the controller 

K(s). The interconnection outputs, z and Ym, represent the controlled output, con

sisting of signals which the controller is designed to keep small ( typically tracking 

errors and weighted control efforts), and all measurements available to the controller 

(including commands, measured disturbances, measured plant outputs) respectively. 

Any feedforward/feedback interconnection of linear system elements can be brought 
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into this general interconnection form. Examples include, but are not limited to, 

cascade, feedforward, and multiple degree of freedom structures in addition to the 

traditional error feedback configuration. 

As an example of the rearrangement of a particular feedback arrangement into the 

standard framework of Figure 2, we consider the error feedback system of Figure la. 

The exogenous inputs are the command, r, and output disturbance, d. Thus we define 

w = [d]. The controlled output is the tracking error, e, so we define z = e. The 

information made available to the controller, J<(s), is the tracking error, so Ym = e. 

The output of K(s) is the plant input, u. The interconnection corresponding to these 

definitions is given by 

[ 
J -I -G(s) l P(s) = 
I -I -G(.s) 

(7.1) 

The interested reader is encouraged to verify that with these definitions the input

output behavior, from exogenous input to controlled output, of the system in Figure 2 

is equivalent to that in Figure la. 

The distinction between the blocks P( s) and K ( s) is that the components in P( s) 

are assumed Lo be fixed a priori, i.e., they are realized in hardware which we are not 

free to modify. On the other hand, K(s) is the controller design we wish to implement 

and its physical realization is unspecified. 

It is assumed that both P(s) and K(s) are finite dimensional and that state space 

realizations for them are available. We will use the notation 

[ ; I;] ii, C(sl - At' B + D 

to represent the transfer function arising from the state space realization 

x = Ax+ Bu. 

y = Cx + Du. 

where x is the state, u the input, and y the output of the system of interest. 

(7 .2) 

(7.3) 

( 7.4) 
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The closed loop transfer function from w( s) to z( s) in Figure 2 is denoted T zw(s) 

an<l is given by the linear fractional transformation 

(7.5) 

We assume that performance specifications are provided for the linear design and 

that the controller design, K ( s ), meets these specifications in the absence of lim

itations and substitutions. For the purposes of this paper we assume that these 

specifications are of the form 

(7.6) 

where the norm, II • II, is either the H 00 norm, 

IIZ(s)lloo ~ supa-[Z(jw)] 
wen 

(7. 7) 

where a-(Z) represents the largest singular value of Z, or the H 2 norm, 

I 

JJZ(-,)Jl2 - Ll11" 1.: trace[Z*(jw)Z(jw)]Jw] 
2 

(7.8) 

These frequency domain performance specifications are standard in fl= and H 2 op

timal control theory. By including suitable weights in the interconnection structure 

P( s), the performance requirement ( 6) allows very general specification of the fre

quency domain characteristics of the closed loop transfer function. In the remainder 

of the paper we will use the notation II • ll 2 oroo in situations where either the H 2 or 

H 00 norm may be used. 

The general AWBT problem is based on Figure 3. The interconnection .P(s) is 

obtained from P( s) by adding an additional output Um. Thus 

Pu P12 

F(s) = P21 P22 (7 .9) 
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Figure 3: The standard AWBT design problem. 

and 

(7.10) 

The new signal, um, is the measured or estimated value of the actual plant input u'. 

We allow the general relation (10) so that measurement noises, entering through w 

(i.e., P31 ¥ 0) and non-trivial measurement dynamics ( P32 ¥ I) may be considered. 

The situation where a perfect estimate of u' is available corresponds to P31 = 0, P32 = 

I. As in the error feedback example (Figure lb), the plant input estimate is made 

available to the AWBT compensated controller k ( s), in this case as a component 

of the measurement vector y. Note that Um need not represent a raw measurement 

signal but may include appropriate pre-compensation and filtering. We do not address 

the design of this pre-compensation but will generally assume that it is such that 

P32 ( s) ~ / over the closed loop bandwidth of the idealized linear design. As we will 

see, if this is not the case achievable AWBT performance will be limited. 

Also included. in Figure 3 is the input limitation/substitution mechanism, repre

sented by the nonlinear block N. The nonlinear limitation/substitution map, N, is 

assumed to be cone bounded and of fixed structure. We will discuss the implica

tions of these assumptions, and the type of "real world" limitation and substitution 

mechanisms which admit such a description, in Section 7.6. 

Given this framework the general A\VRT problem amounts to the synthesis of 
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Figure 4: A general realization of AWBT compensation. 

k ( s) which renders the system in Figure 3 stable, meets our linear performance 

specifications when N = I, and exhibits graceful performance degradation in the face 

of plant input limitations and substitutions (N f:. I). 

7.2.2 Admissible AWBT 

We begin with the AWBT compensated controller, K(s) of Figure 3, represented in 

Figure 4 as a feedback interconnection of K,( s ), a controller interconnection block, and 

A, an AWBT operator. This linear fractional feedback representation is quite general 

since at this point we allow A to be any, perhaps nonlinear, relation. We assume that 

IC(.:s), which contains the linear de:sign K(:s), i:s LTI, Lut thi:s i:s uut, re:strictive ::;iuce 

any non-LTI components can be lumped in A. The AWBT operator uses information 

provided to or internal to k(s), denoted v, to generate an AWBT action, denoted~' 

which is fed back to .k( s ). In order to maintain complete generality, we provide the 

AWBT operator, A, with all available information including the controller intercon

nection state x, a.nu iuµut,, [e]. Pa.ititiuuiug the AWBT a.ctiuu a.:s e = [t] we iilluw 

it to act on the state of the controller interconnection via 6 and the output of the 
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controller interconnection via ~2 . This gives rise to the following realization 

A B 0 I 0 

C D 0 0 I X 

I 0 0 0 0 

[AI B] Ym 

k(s) = I where and 0 0 0 0 K(s)= o/ v= Um 

0 0 I 0 0 ~I 

0 0 0 I 0 ~2 

0 0 0 0 I 
(i.11) 

Since the interconnection state and input fully characterizes its output, we say that A 

i::; provided with full illfunrn:1.tiuu ( i.t:., we ma.kt: c:1.vailaule to A all information available 

in the control system). Similarly, since A can drive both the interconnection state 

and output, we say that it acts with full control. Note that for A= 0, i.e., no AWBT 

action, we have K(s) = K(s). 

Given this abstract specification of K( s ), we impose an admissibility constraint 

on A. This constraint is the only restriction on K(s) we shall require and, as we will 

see, it is satisfied by essentially all known AWBT techniques. 

Definition 7.1 The AWBT operator A is said to be admissible if it is such that: 

1. A : v - ~ is causal, linear, and time invariant. 

fl. U - Um = 0 ~ e = 0 1,/ i. 

The first condition insures that the AWBT compensated controller, k ( s), can be 

realized as a linear time invariant system. While this may seem arbitrary, essentially 

all proposed AWBT schemes satisfy this condition. (Notable exceptions are found in 

[35] and [57].) If we are to consider nonlinear design problems, it makes little sense 

to require the initial controller design, K(s), to be linear, so this assumption seems 

reasonable. The second condition enforces the notion that we do not want the AWBT 

block, A, to effect the linear closed loop performance achieved by the idealized design, 

K(s), when there is no limitation or substitution. Although we may wish to have 
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{ = O when u - u' = 0, this is not generally possible. Even when u - u' = 0 we will not 

have u - um = 0 due to measurement noise, nontrivial measurement dynamics, and 

model uncertainty. Since A is only provided with the estimate um, it is not possible to 

make ( = 0 whenever u - 1/ = 0 unless A is identically zero ( i.e., no AWBT action). 

It is strnightfurwanl tu <letermim::: that auy admissible J\ must be a memoryless 

linear transformation - equivalently a constant matrix - which has a representation 

as 

( = Av 

= [ :: ] [ -C -D I O -I ] v 

or, more simply 

(7.12) 

(7.13) 

(7.14) 

Incorporating the A \VBT block, A, into the controller interconnection, K( s), we 

obtain the standard setup of Figure 3 where an explicit realization for 

K(s) = [U(s) I V(s)] (7.15) 

is provided by 

V(s) [ A- H1C -H, l (7 .16) = 
H2C H2 

U(s) [ A- H1C B-H,D] (7.17) = 
H2C H2D 

with H1 and H2 defined by 

Il1 A1(/ + A2)- 1 (7.18) 

H2 = (I+ A2)- 1 (7.19) 



A necessary condition for well-posedness of the AWBT feedback loop (the lower feed

back path in Figure 4) is that I +i\2 must be nonsingular. An immediate consequence 

of this is that H2 must be nonsingular. L\ 1 and A2 , and consequently Hi and H2, are 

otherwise arbitrary constant matrices. 

The blocks U ( s) and V ( s) which define the AWBT compensated controller, k ( .s), 

comprise a factorization of the idealized linear design, ]{ ( s). It is easy to verify using 

(16) and (17) that 

(7.20) 

for any Hi and H 2 (see (72]). Thus we may regard the design of any AWBT scheme 

as selecting a factorization of the idealized design and implementing the factors, U ( s) 

and V ( s), in K ( s). 

We assume that the realization chosen for I<(s) is such that (A, C) is observable. 

In this case the eigenvalues of A - Hi C may be arbitrarily assigned by the selection 

of Hi. If Hi is chosen such that all the eigenvalues of A - Hi C are in the open left 

half plane, then U(s), V(s), and K(s) are stable. We will see later that making k(s) 

stable is essential in most applications. In this situation the AWBT design amounts 

to implementing the stable factors U(s) and V(s) in place of K(s), which need not 

be stable. To demonstrate this in the special case that P31 = 0, P32 I, we re-draw 

Figure 3 as shown in Figure 5. When N = I the feedback path around N generates 

the V(s)- 1 factor of K(s). Since V(s) need not be minimum phase, v- 1(s) need not 

be stable. The "controller" transfer function, from Ym to u' with N -= I, i:s given by 

Pxr1.rtly a.i;: in the idealized linear design. 

( 7 .21) 

,_ ')2) 
~I·-

In general, however, the AWBT implementation is not equivalent to the idealized 

linear design, even when there are no limitations and substitutions, since P:n =f O and 
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w z 

u' P<s) 
-1 • 

V (s); 
Ym 

u U<s> 

Figure 5: The special case, P31 = 0, P32 = I. 

P32 =/=I.To see this we evaluate Tzw(s) for the system in Figure 3 when N = I. 

(- ')3) '·-· 

Thus the performance of the AWBT implementation will be different than the ide

alized linear design for which T zw( s) is given by ( 5). When P31 = 0 and P32 = I so 

that u,.,.. = u' (perfect plant input estimation), (23) simplifies to 

Pu + P12[V - U A2t1U P21 

- P11 + Pi2I<[I - A2I<t 1 P21 

(- ')4' 
'·- I 

and the idealized linear performance, (5), is recovered. Note that the linear perfor

mance is recovered for arbitrary H1 and H2 as required by the admissibility criteria. 

7.3 Special Cases of the General Framework 

In order to demonstrate the generality of this framework and to make its applica

tion more apparent, we consider a number of known AWBT techniques in terms of 

admissible AWBT compensation. 
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Figure 6: The classic anti-reset windup PI implementation. 

7.3.1 Anti-Reset Windup 

The standard AWBT technique for SISO PI and PID controllers is known as anti-reset 

windup (39,15,6). The anti-reset windup PI implementation is shown schematically 

in Figure 6. The integral term of the PI controller is "reset" by feedback of u u' 

through the block ¼ (it is generally assumed in PI anti-reset windup design that 

the measurement of u.' is exact). The parameter Tr is referred to as the reset time 

constant. Rearranging Figure 6 into the standard configuration of Figure 3 we have 

I -I -G(s) 

z - r - Ym ?( s) - I -I G(s) (7.26) 

0 0 I 

and 

(7.27) 

Given the PI controller realization 
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u' 

Ym 

Figure 7: The two degree of freedom feedback structure. 

a realization of the anti-reset windup implementation is given by 

(7.29) 

Comparing (29) with ( 16) and (17) we see that anti-reset windup corresponds to the 

choices 

1 

in the general framework. 

7.3.2 Hanus' Conditioned Controller 

(7.30) 

(7.31) 

Hanus et al., (53), use the concept of "realizable references" to develop a.n A \VBT 

formulation for a reasonably general class of multivariable controllers. The method is 

applicable to the linear feedback system shown in Figure 7 and requires the assump

tions: 

1. K 1 ( oo) ~ D1 has full column rank. 
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2. u' can be measured or estimated exactly (i.e., Um= u'). 

Hanus' technique results in the implementation of a "conditioned controller" which 

in the general framework of Figure 3 corresponds to the definitions 

I -I -G(s) 

w = [: l r 

P(s) = 
I u u 

y= Ym z = r -ym 
0 I G(s) 

(7.32) 

Um 
0 0 I 

and 

(7.3:3) 

In terms of a state space realization of the linear design, 

(7.34) 

the conditioned controller is given by 

(7.35) 

By inspection of (35), (16) and (17) we see that the conditioned controller is a special 

case of the general AWBT formulation corresponding to H1 = B1D11, H2 I. 

7.3.3 Internal Model Control 

The control structure shown in Figure 8 is known as the internal model control (IMC) 

structure [68]. It was apparently first studied by Newton, Gould, and Kaiser, [74], 

and its AWBT properties first exploited by Debelle, (27]. Figure 8 represents the 

IMC implementation of the two degree of freedom design shown in Figure 7. This 
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Figure 8: The two degree of freedom IMC structure. 

implementation involves the so-called IMC controller given by, 

Q(s) = [Q1 Q2] 

= [I - K2GJ-1 [K1 - K2] 

Ym 

(7.36) 

(7.37) 

where G( s) is a model of the plant. Corresponding definitions for the general frame-

work of Figure 3 are (assuming that Um = u'), 

I -I -G(s) 

w; [: l r 

?(s) = 
I 0 0 

y= Ym z = r -ym 
0 I G(s) 

(7.38) 

Um 
0 0 I 

and 

( 7 .39) 

Introducing state space realizations for Q( s) and G( s ), 

(7.40) 



142 

G( s) = [ Ac Be ] 
Cc 0 

and using relations (37) and (39) we obtain realizations for K(s) and k(s) as, 

Ac+ BcD2QCc BcCQ BaD1Q -BcD2Q 

K(s) - B2qCc Aq B1Q -B2q 

D2aCa Co D10 -D20 

Ac 0 0 0 Be 

I<(s) = B2QCc AQ BiQ -B2q 0 

D2qCc CQ DiQ -D2Q 0 

(7.41) 

(7.42) 

(7.43) 

Again using the state space· realization of all admissible AWBT compensated con

trollers, (16)-(li), it is easy to verify that the IMC implementation corresponds to 

Hi = [ ~G] and H2 = I in the general formulation. 

7 .3.4 Extended Kalman Filter 

The final example considered here is an AWBT implementation applicable to ob

server based compensators. This implementation is developed to maintain valid state 

e:;tirnate:; iu the observer independent of limitation or substitution of the plant input. 

We consider the idealized linear design in terms of the general setup in Figure 2 

with the definitions w = [d] and y = [;m], and introduce the state space realization 

Ap B1P B2P 83p 

P(s) = Gip DuP D12p D13p 
( 7.4-!) 

0 I 0 0 

C3p D31P D32p 0 

Implicit in this realization are the assumptions that the command, r, is available to 

I<(s) and is not subject to noise, and that P22 (s) is strictly proper. The corresponding 



observer based compensator is of the form: 

[ 

Ap 
K(s) = 

F 0 
(7.45) 

where L is the observer gain and F is the state feedback gain. 

The state observation error, eoba ~ x - x, can be shown to obey the relation 

(when there is no model error) 

(7.46) 

The last term driving the estimator error results from plant input limitations and 

substitutions. Limitations and substitutions cause incorrect state update in the con

troller resulting in a poor estimate of the true plant state. This state estimate error 

can be reduced if instead of using the controller output, u, to drive the state esti

mator, the measured plant input, Um, is used. We refer to this AWBT scheme as 

an extended Kalman filter implementation since Um can be generated using a non

linear model of N. This model, together with the linear observer, comprise a simple 

nonlinear observer, or extended Kalman filter. 

Providing Um to the observer results in the realization 

This is equivalent to the general AWBT implementation ( 16)-( 17) when 

To see this, define 

(7.-17) 

(7.48) 

(i.-19) 

(7.50) 
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B = [B1P - LD31p L] ( 7 .51) 

C = F (- -')) I.::!-

D = [O 01 (7.53) 

corresponding to the realization of K(s) in (45), and substitute A, B, C, D, H1 = B3 p, 

and H2 = I into Equations (16)-(17) to arrive at (47). 

With this implementation the observer error obeys 

( 7 .54) 

If the measurement of the plant input is exact ( u' = Um), the observer error is not 

affected by limitations or substitutions. 

With these examples we have demonstrated that the degrees of freedom avail

able in admissible AWBT compensation, H 1 and H2 , allow the consideration of a 

wide variety of AWBT approaches. It is evident that the admissibility requirements 

introduced in Section 7.2.2 impose few practical restrictions on AWBT design. 

7.4 AWBT Objectives 

\Ve now turn our attention to the considerations which guide the selection of these 

design parameters. In this section we introduce the AWBT design objectives in a 

qualit~.tive way. In the following sections we will develop quantitative analysis mea

sures for each objective. These analysis tools allow us to assess A WBT performance 

quantitatively for any given H1 and H2. 

7.4.1 Stability 

Our first concern must be that the closed loop system remain stable when limitations 

and substitutions occur. It is well-known that introduction of a limitation or sub

stitution into a stable linear closed loop system can cause instability. In the case of 

limit.at.ions, typical instability mechanisms are that the plant input remains against 
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its constraint indefinitely or limit cycles across the linear regime. In the case of sub

stitutions instability appears as cycling between operating modes. It is precisely these 

stability problems which have motivated all of the AWBT analysis results available 

in the literature ( e.g., [40,48,46,47,90,20]). 

In Section 7.7.1 we derive certain necessary conditions for internal stability of the 

AWBT compensated system shown in Figure 3. These conditions are complemented 

by easily computed sufficient conditions (Section 7.7.2) which guarantee stability for 

all nonlinearities, N, within given mnir. sPctor honncis. The 11Pvelopment of these 

bounds for common limitation and substitution mechanisms is outlined in Section 7 .6. 

In addition to nominal stability results, we obtain sufficient conditions for robust 

stability with respect to uncertainties in the linear plant model, G( s ). 

7.4.2 Mode Switching Performance 

The performance objective of an AWBT design is to allow the system to transition 

smoothly to and from constraints and between operating modes. The problem of 

smooth transitions can be considered as a controller state initialization problem. In 

general a limitation or substitution of the output of a particular controller can be 

considered as a switch from open loop operation to clo5ed loop operation, i.e., a 

controller whose output is limited or switched out has no incremental effect on the 

true plant input - the system is effectively open loop. When the limitation is removed 

or the controller switched back in, linear closed loop operation is initiated. Since 

limitations and substitutions can occur at essentially arbitrary times, it is important 

that the controller be properly "initialized" at all times so that the transition is 

effected smoothly. 

Proper initialization of the controller requires that its state be correctly updated 

even when it is "off-line" or open loop. Since K(s) is designed based on the assumption 

that u.' = u. we cannot expect that the controller state will be updated correctly when 

u' =j:. u, i.e., when the controller thinks it is driving the plant but it is actually not. For 

linear designs in which the state of K ( s) has a direct physical interpretation it is often 
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clear how the state update should be modified during limitations and substitutions. 

For example the extended Kalman filter implementation was developed to insure 

that the controller states remain valid estimates of the plant states independent of 

limitations or substitutions. Similarly, PI anti-reset windup is based on maintaining 

llie proper value of the integrated error, the single controller state, during limitations 

and substitutions. 

In the general case the design of I< ( s) will not provide a physical interpretation 

of the controller states. K(s) is simply provided in the form of Laplace transform or 

a set of state space equations. As a result we cannot avoid state positioning errors 

due to limitations and substitutions. In this case we seek to minimize the impact 

of these errors. This can be achieved by finding a f< ( s) for which the current and 

future controller output, u, is relatively independent of past controller inputs, y, and 

the current (possibly incorrect) controller state. This independence is a function of 

the dynamic memory of k ( s ). For example, a pure integrator has infinite memory; 

any past input, resulting in a state positioning error, will effect the controller output 

for all future times. Such controllers are highly sensitive to state positioning errors 

resulting from limitations and substitutions. On the other hand, a purely proportional 

controller, with no states, is memoryless. Past inputs have no effect on current and 

future outputs. These controllers are insensitive to limitation and substitutions. In 

Section 7.8 we develop a quantitative measure of dynamic memory and show how it 

can be used to analyze AWBT performance. 

7.4.3 Recovery of Linear Performance 

Assuming that a perfect estimate of the plant input is available ( 'Um = u'), the 

admissibility requirements insure that when N = I the closed loop performance of the 

AWBT compensated system is identical to that of the idealized linear design. When 

this assumption is not satisfied, however, we do not have any guarantee regarding the 

linear (N = /) performance of the AWBT compensated system. 
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In general, for the AWBT compensated system we have 

while for the idealized linear design 

(7.,56) 

Since a perfect estimate of the actual plant input, at all frequencies, is never a realistic 

assumption, we must insure that when N = I the AWBT implementation meets the 

performance specifications given for the linear design. In Section 7.9 we outline 

an analysis which will allow us to determine if these specifications are met for a 

particular AWBT design. In addition we investigate the degree of deterioration in 

linear performance we can expect as the dynamic memory of f< ( s) is reduced to zero. 

7.4.4 Directional Sensitivity 

The switching performanr,e ohjed.ive ann linP,'H pPrformance objective consider the 

open loop (N = 0) and closed loop (N = /) situations. In the case of plant input 

substitutions these are the only situations which are realized. In the case of limita

tions, however, the plant input is modified rather than replaced. For multiple input 

plants, a limitation, acting on only some of the inputs, can change the direction of 

the plant input, i.e., the relative magnitudes of the elements in the plant input, u'(s), 

are different than in the controller output, u(s). This important effect, as originally 

pointed out by Doyle et al. [351, can Ci:I.U::se ::iiguifici:l.ut perfunui:l.uce <leteriuraLiuu. 

From the perspective of linear theory this effect may be regarded as a plant input 

perturbation with diagonal structure. In the linear case ( where the perturbation 

is unknown but bounded LTI operator) it is well-known that ill-conditioned plants 

coupled with inverse based controllers result in closed loop systems which are very 

sensitive to diagonal input uncertainty [87]. In Section 7.10 we outline an extension 

of the stability analysis methods to handle robust performance, i.e., to determine 
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what level of performance can be guaranteed for all nonlinear perturbations within 

given bounds. This result will allow us to determine whether or not the system is 

"directionally sensitive," i.e., whether or not modification of the plant input direction 

causes severe performance deterioration. 

7.5 Mathematical Preliminaries 

Before addressing the nonlinear stability problem we review a number of mathematical 

preliminaries. This material is standard and much of it may be found in [29]. 

System signals are modelled as vector valued functions of time, defined over R, a 

given sub-interval of the real numbers, n. Typically R = (-oo, ex::), R = (-oo, O], 

ur R = [O, ou). Fur auy such measurable interval, R, we define: 

Definition 7.2 L2 (R) is the space of vector valued functions, x : R---. 'R'I, with the 

properly 
l 

llx(t)II ~ [! x*(t)x(t)dt] i < 00 (7 .5 7) 

where the integral ia taken over the interval R. 

For example, x E L2( -oo, oo) if and only if 

l [1-: x*(t)x(t)dt] 
2 

< oo (7.,58) 

When we simply write £ 2, without explicitly denoting the range of x, we will imply 

L2 with R any measurable sub-interval of 'R. Readers uncomfortable with this may 

safely read this as L2 [0, oo). L2 consists of signals which are of finite energy. In order 

to consider signals which grow without bound as time increases we introduce the idea 

of a truncated function. 

Definition 7.3 Given x(t) : R-+ nn, and T E R, the truncated function, Xr(t) 

R _. nn, i.5 defined 
t '.ST 

t > T 

(7.59) 



149 

This allows us to define an extension of L 2 which admits signals which grow in time. 

Definition 7.4 L2e is the extended space) defined by 

x E L2 and V r E R, llx,,-11 < cc} (7.60) 

System elements (blocks) are represented mathematically as mappings which take 

inputs (signals in L2e) and produce outputs (signals in L2e)- The following is a formal 

definition of stability for system elements. 

Definition 7.5 A map, N : L2e - L2e, is said to be L2e-stable if there exists a 

constant k < oo such that 

(7.61) 

for all x E L2e and for all T 2:'. 0. 

This corresponds to finite gain stability; input signals of bounded energy give rise 

to output signals of bounded energy. For causal linear time invariant systems 

L2e-stability is equivalent to the requirement that all system poles must lie in the 

open left half plane. In the remainder of the paper we will simply say that a system 

element, or map, is stable and mean that it is L2e-stable. 

For interconnections of blocks which comprise a "system" we require the notion of 

internal stability. In words, a system is internally stable if bounded signals, injected 

at any point in the system, give rise to bounded signals at all other points in the 

system (28]. To define internal stability of the AWBT compensated system, Figure 3, 

we introduce the fictitious inputs n1 , n 2 and n3 to arrive at Figure 9. 

Definition 7 .6 The A WET compensated system is internally stable if the closed loop 

map 
w z 

T: 
Ym 

(7.62) 

u 

of Figure 9 is stable. 
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Figure 9: The standard problem for internal stability analysis. 

When we refer to a system as being stable, we will mean that it is internally stable 

( as in Definition 6) unless otherwise noted. 

In Section 7 .6 structured conic sector models are developed for nonlinear system 

elements. In the development we will require the notion of a map being inside a conic 

sector, or Cone. This concept is defined in the following way. 

Definition 7.7 Given N : L2e - L2e and the LT/ operators C and R, N is said to 

be inside Cone( C, R) if 

(7.63) 

for all x E L2e and for all T ~ 0. 

The operators C and Rare referred to as the cone center and radius respectively. 

The cone center provides an approximate output, Cx, for any input x. The cone 

radius provides a measure of the error inherent in this approximation. For example 

the SISO saturation nonlinearity N: x(t) - sat(x(t)) where 

sat(x(t)) = { 
x(t) 

.sign(x(t)) 

lx(t)I ::; 1 

lx(t)I > 1 
(7.64) 

is inside Cone(½,½). The operator C: x(t) - ½x(t) is our linear approximation to 
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N, and R : x(t) -i, ½x(t) gives us a measure of the error in this approximation (as 

much as 100% in this case in the limit as lx(t)I _. oo). 

In addition to the norm bounds on the input-output behavior of a nonlinea,1 1nap 

provided by a conic sector, we will be interested in the "structure" of a map. The 

structure of a MIMO map refers to the relationship between its inputs and outputs. 

\Ve identify three distinct classes, fulL diagonal, and scalar times identity, each a 

more restrictive class. A full nonlinear map may be written as 

y = N(p, u) (7.6,5) 

where y is the vector valued output, u is the vector valued input, and p represents 

other parameters or signals upon which N may be dependent. A diagonal map is any 

map which may be written as 

(7 .66) 

Finally a scalar times identity map is one for which 

y = n(p,u)u (7.67) 

where n(p, u) is a :scalar valued relation. The terminology, full, diagonal, and scalar 

times identity, is borrowed from the linear theory in which the identifier describes the 

structure of the matrix representation of the (linear) operator. 

With the definition of a conic sector, and the notion of a structured nonlinear 

map, we are in a position to introduce conic sector models. A conic sector model of 

a. nonlinea.i :sy:stem elemeut, N, com,ists of a linear interconnection and a structured, 

conic sector bounded nonlinear block, which together approximate the input-output 

behavior of N. In particular, the LTI interconnection J, together with the set of 

structured nonlinear maps 

- A ~ -r {r Ir E ConP(C, R)} ( 7 68) 
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Figure 10: A general model of a nonlinear map. 

T-~(x) J,r 

with f of specified structure, is said to model the nonlinear map, N, if 

for each x E L2e :l f' EI' such that N(x) = Tj,r•(x) (7.69) 

where Tj,t is the closed loop map from input x to output y in Figure 10. \Ve note 

that the f required to satisfy (69) may depend on x. 

Definition 7.8 Given the interconnection j and the set I', a conic sector model, 

lvf It, is defined to be the set of maps 

M - · = {T · · I f E I'} 1,r J,r (7 .70) 

Given this definition, it is meaningful to say "N lies in Af i,t" if j and I' model N. 

We will ofteu Le iutere:ste<l iu 11unua.li:1;e<l cuuk sector models, cuusisLiug of au 

LTI interconnection, J, and the set 

r ~ {f I r E Cone(O, I)} (7 .i 1) 

where r is of specified structure. The distinction here is that r is normalized to 

lie in Cone(O, /). A normalized model can always be obtained from any other conic 

sector model by extracting the cone center and radius and including them in the 
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interconnection J. vVe will see examples of this in the development below. 

In practical situations the functional dependence of a limitation/substitution 

mechanism may be quite involved (representative examples may be found in [14] 

and [54)). In addition to the controller output, u, the choice of actual plant input, 

u', llli:LY Jepeu<l uu uLher ::sy::-item signals (e.g., lhe values of secondary outputs). This 

complex dependence makes obtaining exact stability results very difficult. In essen

tially all situations the limitation/substitution mechanism is memoryless and bounds 

on its input-output behavior are relatively simple to obtain. In this case we can de

velop a conic sector model and use it, rather than the actual nonlinear map N, to 

obtain stability results. This approach greatly simplifie5 the nonlinear analysis. The 

price paid for this simplification 1s conservativeness. The conic sector model only 

depends upon bounds on the input-output behavior of N, and not on the details of 

its internal operation. Furthermore it includes all nonlinear maps which satisfy the 

given input-output norm bounds. Results which guarantee stability for all such maps 

are then obviously conservative. It is important to note that the structure of N, which 

can often be easily determined, is preserved in the conic sector model. 

7.6 Conic Sector Models of Limitations and Sub
stitutions 

In this section we derive conic sector models for common input limitation and sub

stitution mechanisms. The examples presented here demonstrate the modelling pro

cess and indicate the flexibility of the conic sector model paradigm. In applirntions, 

other conic sector models could be derived to incorporate the known characteristics 

of the particular limitations and substitutions involved. 

1.6.1 Limitations 

The most common input limitation mechanism arises from actuator saturations. We 

assume here that the plant has been scaled so that the actuators act linearly in the 

range ± 1.0. M 11 ltivariahlP ac:t11ator sat.11 r.tt.ions arP clP.sc.rihPcl hy a cl i ;i.gon~ 1 opPr::ltor 
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Figure 11: An equivalent model of the nonlinear map using a normalized nonlinearity. 

defined by 

( 7. 72) 

with ni(u) - sat(ui). It is very simple to verify that NE Cune(½In, ½In). Thus 

(7.73) 

and a diagonally structured map, f' E tv, with tv defined by 

(i.74) 

provides a conic sector model of N (Figure 10). In order to obtain a normalized model 

we extract the cone center, C = ½In, and radius, R = ½In, to obtain the equivalent 

model shown in Figure 11 where r E rD is a diagonally structured map and 

rD = {r I r E Cone(O, In)} (7.7,5) 

Absorbing the LTI blocks C and R into the interconnection J, we obtain the normal

ized model depicted in Figure 12 with 



15.5 

r ---

-,.... 
J -

X y= - -T J,rCx) - -

Figure 12: A general normalized model of a nonlinear map. 

Since 

we have for all u E L2e 

u' = N(u) 

= (}In +~Inf) U 

for some f Erv. 

(7.76) 

(7.77) 

(7.78) 

(7.79) 

We note that both the identity operator, I : u -+ u, and the zero operator, 

0 : u - 0, are contained in this conic sector model. In fact N = I corresponds 

to r = J, and N = 0 corresponds to r = -/. Inclusion of these limiting cases is 

required since for small signals ( those of magnitude less than 1) N has unity gain, i.e., 

N( u) = u, and for large signals (those of arbitrarily large magnitude) N has effectively 

zero gain. As pointed out by several authors [58,57 ,23], if from physical arguments 

the controller output can be bounded in magnitude, (for example by bounding the 

magnitude of exogenous inputs and system initial conditions) then the zero operator 
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need not be considered. This allows a tighter conic sector model to be dPrived 

Because the required a priori bounds are essentially application specific, we will not 

further investigate this straightforward extension here. 

7.6.2 Substitutions 

A common substitution mechanism arises from the use of logic schemes to select the 

current operating mode. Quite often these schemes are implemented by choosing the 

actual plant input, u', from among the outputs of several parallel controllers each 

providing different closed loop characteristics. In this case k ( s) of Figure :3 is of the 

form 

k(s) = (7.80) 

and u is of the form u = [J:]. The selection mechanism is described by N: u - u'. 

Simple logic blocks commonly employed are "min selectors," 

u'(t) = _min {u.(t)} 
1=1, ... k 

(7 .81) 

"max selectors," 

u' ( t) = max { ui ( t)} 
1=1, ... k 

(7.82) 

and hierarchies (series/parallel combinations) of min and max operations (see. e.g., 

[15,16,48,14,54]). These are all special cases of what we will refer to as a "selector'' 

which (by definition) satisfies 

u'(t) = ui(t) for some i E {1, 2, ... k} V t. 

This "generic" selector simply outputs one of its inputs at any g1 ven time t. The 

mechanism which determines which input is selected is completely unspecified. 

This allows us to use a generic selector to represent arbitrary switching from 
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automatic to manual control or to a fixed input schedule ( this is commonly used in 

engine control to limit turbine acceleration). In these situations an external command, 

r, is supplied directly to the actuator. In the framework of Figure :J we simply 111clude 

r in the exogenous input, w [d], and the measurement vector, y [i:l • Defining 

f<k(s) = [I O OJ we see that the actual plant input, u1
, is equal to the desired 

command, r, whenever the k 11
' output of k ( s) is selected. A generic selector can 

also be used to model arbitrarily complex logic schemes which may depend on system 

parameters other than the controller outputs u;. 

It is straightforward to verify that if N describes a generic selector with k = 2, 

( 7 .S-1) 

The corresponding normalized conic sector model is given by 

and r E rs defined by 

rs= {r I r E Cone(O,In)} (7.86) 

where r has scalar times identity structure, and n is the number of plant inputs (i.e., 

the dimension of u'). 

Selectors with k > 2 can be modelled by decomposing them into a series two input 

selectors. The combination of min and max selectors shown in Figure 13a is often used 

to enforce upper and lower bounds on a secondary output (see, e.g., [15,16,40,-18,47]). 

In order to obtain a normalized conic sector model of this scheme, we first approximate 

Lhe iuJiviJual miu aud max selectors using (85)-(86) as iu Figure 13L. Rearrn11g,i11g, 

the system to correspond to the standard normalized conic sector model we obtain 
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Uu -
~ . 

min 
I 

u u -- - -.... - .... 

max 
U1 -.... 

Figure 13a: A typical min-max hierarchy. 

½ - r2 -..... ""' 

~ ---- ~ -
,U 

Jl J2 - - I -- -- u 
Ul -

- - ,,,,,.. 

,,,,,.. ,,,,,.. 

Figure 13b: A model of the min-max hierarchy. 
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~ 
~ 
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... 
J -- ' u 

- .... 
-- ..... 

Figure 13c: A structured, normalized model of the min-max hierarchy. 

the interconnection 

0 0 ½In -1/ 2 n 0 

1= ½In 0 ¼In ¼In ½In (7.87) 

½In In ¼In ¼In ½In 
and the structured nonlinear map, ~ E A, shown in Figure 13c, where A is defined 

by 

(7.88) 

This example demonstrates the utility of a block diagonal nonlinear map, 6., 

each block of which is a structured nonlinear map. This block diagonal collection of 

structured nonlinear maps will appear whenever there is more than one nonlinearity 

in the closed loop system. Since we have decomposed the selector into two distinct 

nonlinearities, min and max, it is natural that we obtain a ~ with two blocks. 

In a similar way it is possible to construct models of other combinations of selectors 

and saturations. The development of the "best" model, in the sense that it generates 

the least conservative stability test is generally not obvious and is the subject of 

ongoing research. We have, however, found these simple models to be of great utility 

in studying examples of practical interest. 
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1.1 Stability Analysis 

7.7.1 Necessary Conditions for Nonlinear Stability 

In this section we develop a number of necessary conditions for internal slability of the 

AWBT compensated system of Figure 3. These results arise from direct applications 

of linear stabiiity theory for specific linear modes of operation. In particular we study 

in the special cases N = I, and N = 0. These special cases provide some insight 

on the choice of H 1 in the general AWDT de:sign and on the effect of measurement 

dynamics associated with Um ( i.e., P32 -::J I). 

We first consider the situation when no limitations and substitutions occur so 

that N = I. We assume that in the idealized linear design problem (Figure 2) P(s) is 

stabilizable and that in fact the design, I<(s), stabilizes P(s). Necessary and sufficient 

conditions for this to be true are provided by the following well known result. 

Lemma 7.1 Given left coprime factorizations K(s) = x- 1y and P22 (s) = M- 1 N, 

/( ( s) stabilizes P( s) if and only if 

[ 
X -Y i-1 
-N M 

( 7.89) 

is a stable transfer matrix. 

Proof See, for example, [41, p. 35). ■ 

We make the further assumption that F(s) is stabilizable (which is implied by P(s) 

stabilizable and P31 ( s) stable, for example). Introducing the co-prime factorizations, 

_ M_1 N = [ Mu 1'-112 ]-l [ N1 ] 
M21 M22 N2 

(7.90) 

k(s) = x-1 Y = x-1 [ Yi Yi ] (7.91) 

we have: 
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Theorem 7.1 The AWBT compensated system with N 

stabilizes F( s)) if and only if 

is a stable transfer matrix. 

X -Y1 -Y2 
-1V1 1"111 1\1112 

-N2 M21 Af22 

-1 

[ is stable (i.e .. K(s) 

(i.92) 

Proof This is simply a direct application of Lemma 1 with ?22 = • 
In the special case that P32 = I we have: 

Corollary 7.1 The AWBT compensated system with P32 = /, N = I is stable (i.e., 

k(s) = [U(s) I - V(s)] stabilizes ?(s)) if and only if I<(s) = v-1u stabilizes P(s). 

Proof Since P 32 = I we may take A112 = M21 = 0, A/22 = N2 = I. Applying 

Lemma 1 we have 

k ( s) stabilizes ?( s) ( 7 .93) 

-1 

X -Yi -Y:! 

-Ni M11 0 is stable (7.94) 

-I O I 

-1 

X -Yz -Yi -Y2 

-N1 Mu 0 is stable 

0 0 I 

(7.96) 

(7.97) 



But 

so that 

Thus 

16? 

!{ ( s) stabilizes P( s) 

k(s) = [U I - V] = x- 1[Yi Yi] 

K(s) (X - y2-
1)Y1 

= (X -X(I - v))- 1xu 

_ v- 1x-1xu 

and we have the desired result. 

(7.98) 

(7 .99) 

(7.100) 

(7.101) 

(7.102) 

(7.103) 

■ 

Tht> significance of Theorem 1 and its corollary is that stability of the idealized linear 

design need not imply stability of the AWBT implementation even when N = I. In 

fact this is the case only if we assume that a perfect measurement ( or estimate) of u' 

is available ( i.e., P32 = I). 
In the case that N is the zero operator, i.e., N(u) = O(u) = 0 Vu, we have: 

Theorem 7.2 The A WBT compensated system, with N = 0, is stable if and only if 

?( s) and K( s) are stable. 

Proof By definition we require the transfer function from w, n1 , n 2 , n3 to z, Ym, 

Um, u to be stable. Since for N = 0, 

z Pu Pu 0 0 w 

Ym Pi1 P22 0 0 n1 
= (7.104) 

Um /-'31 ?32 0 0 n2 

u P31U ?32(/ - V) u 1-V n3 
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where k(s) = [U I - V], the result is immediate. ■ 

This result states that if the limitation/substitution mechanism can break the feed

back loop ( N = 0) we cannot hope to stabilize an open loop unstable plant, P ( s). 

ln a completely dual fashion, without feedback, there is no hope that the plant will 

"stabilize" an open loop unstable controller, K( s ). An immediate implication is that 

if N = 0 can be realized we must choose H1 of t.hP AWBT <lPsign so that A - HJ:, 

and hence k ( s) is stable. In this case the stable factors U ( s) and V ( s) form a left 

co-prime factorization of the original idealized linear design, i.e., 

(7.105) 

with V(s) and U(s) left co-prime. 

In most practical situations N = 0 ancl N = T may hP rna.lizPrt at different times by 

the limitation/substitution mechanism. (Recall that this is the case for the saturation 

model developed in Section 7.6.1). In this case we require k(s) to simultaneously 

stabilize P( s) for N = 0 and N = I. Combining Theorems l and 2 we obtain: 

Theorem 7.3 The_AWBT compensated system is stable for all N E M1,r :) {O, I} 

only if 

1. ?( s) is stable. 

2. I<(s) = [U(s) I - V(s)] is stable. 

[ 
v -u -I~+ vl-1 

3. P I is a stable transfer matrix. 

/-~2 0 

Proof From Theorems 1 and 2 we have stability for both N = 0 and N = I only if 

l. P( s) and /{ ( s) are stable. 

[ 

X -Yi 
2. -Ni Mu 

-N2 M21 

Y 

l
-1 

- 2 

M12 is stable. 

M22 
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1. implies that ?22 , ?32 , U, and / - V are stable so we may take 

Mu I N1 = P22 

Af12 0 

1i-1i1 = 0 

lvf22 = I N2 = ?32 

X = I 

u 

Using these definitions 2. is equivalent to 

-1 

I -Tl -I+ V 

0 stable 

-1 

V -U -I+ V 

I 0 stable 

and we have Lhe desired result. 

In the special case tha.t P32 = I we ha.ve: 

(7.106) 

(7.l0i) 

(7.108) 

( 7.109) 

(7.110) 

(7.111) 

(7.112) 

(7.113) 

(7.114) 

■ 

Corollary 7.2 With A2 = I the AWBT compensated system is stable for all N E 

A1J,r :::i {O, J} only if 

1. ?( s) is stable. 

2. K(s) = [U(s) I - V(s)] is stable. 

3. I<(s) = v- 1u stabilizes P(s). 
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Proof From Theorem 3 we have stability only if 

1. P( s) is stable. 

2. K(s) = [U(s) 

-U 

I 

0 

I - V(s)] is stable. 

-I+ vl i 

0 is stable. 

I 

Since -I+ Vis stable (by Condition 2.), Condition 3. is equivalent to 

l
-1 

-U 

I 
stable (7.115) 

which is equivalent to I<(s) = v- 1u stabilizes P22(s) (by Lemma 4.1.1 of [41, p. 35]), 

which is in turn equivalent to I<(s) stabilizes P(s) (by Theorem 4.3.2 of [41, p. 33]). 

■ 

We can obtain one additional useful necessary condition applicable when N is re

garded as a generic selector. 

Theorem 7 .4 The AW B1' compensated system with N a generic selector and 

I<(s) = (7.116) 

is stable only if K;(s) stabilizes P(s) and ki(s) stable Vi= 1, ... , k. 

Proof Since N may select any of the controllers, ki( s ), it is obvious that each must 

stabilize P( s ). Similarly those controllers which are not selected must be stable. ■ 

An immediate consequence of this result is that P( s) must be stable if manual control, 

I<k(.s) = [J O], is a viable selection alternative. 

These results, providing necessary conditions for stability with respect to all non

linearities in a given conic sector model are complementary to the sufficient conditions 

developed in the next section. For the practitioner their greatest significance is: 
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1. To obtain global stability results when N = 0 may be realized as a result of 

limitations or substitutions, we must restrict our attention to open loop stable 

plants. 

2. If N = 0 may be realized or manual control can be selected, H 1 must be selected 

so that K ( s) is stable. 

3. If P32 ( s) is significantly different than the identity over the closed loop band

wi<ltli uf the i<leali;,1;eu li11ea.r <le:siga, :staoility cuu:siJenition:s may :significaatly 

restrict the choices of H1 and H2 and therefore achievable AWBT performance. 

7.7.2 Sufficient Conditions for Nonlinear Stability 

In addition to the necessary conditions outlined above, we would like results which 

will guarantee nonlinear stability of the AWBT compensated system. The sufficient 

conditions developed here provide such a guarantee for any given conic sector model 

of N. 

The approach adopted here originated with the work of Zames in the early 1960's 

[94,95]. The basic idea is to approximate nonlinear system components with linear 

ones and obtain norm bounds on the error involved in this approximation. The 

linear system is then studied subject to nonlinear perturbations within the specified 

norm bounds. If it can be shown that the linear system has certain properties ( e.g., 

st.ahilit.y) for all perturbations within the norm bounds, then it is certain that the 

original nonlinear system has these properties as well. In our application ./22 ( s) of 

the normalized conic sector model represents our linear approximation to N, and the 

normalized nonlinear map, r, a norm bounded nonlinear perturbation. 

We consider the system shown in Figure 14 where A1 is a linear time invariant 

operator with transfer function M(s), and 6. is a possibly nonlinear operator in the 

set .6.. defined by 

(7.117) 
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~ ~ 

~ 

-.,.. Mes) w z --.,.. ..... 

Figure 14: The standard problem for nonlinear stability analysis. 

with ili of specified structure. Any feedforward/feedback interconnection of linear 

blocks and conic sector models of nonlinear blocks can be brought into this form. In 

particular, this standard analysis structure can be achieved in the AWBT analysis 

problem by replacing N of Figure 3 with its normalized conic sector model. Combining 

the linear blocks, P(s), K(s) and J(s) provides Af(s) of Figure 14. The structured 

nonlinear map of the conic sector model becomes the "perturbation," il, of Figure 14. 

The following version of the small gain theorem forms the basis of the stability 

results to follow. More general statements are known [29], but we won't need them 

here. 

Theorem 7 .5 If the following conditions hold then the system shown in Figure 14 is 

stable. 

1. il and M are causal maps from L2e into itself. 

2. 3 constants 1 1::,. and ,M such that V x, y E L2e and V T E R 1 

a. llil(x)rll ~ ,1::.llxrll 

b. lllvf(y)rll ~ 1MIIYrll 

Proof See Desoer and Vidyasagar [29, p. 41]. ■ 
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T 

T 

w Mes) z 

Figure 15: The standard stability analysis problem with scalings to reduce conser
vatism. 

If in addition to the conditions of Theorem 5 we assume that the exogenous input, 

w, is in £2 then we are assured that the controlled output, z, is also in £2 . While in 

general z E L2 does not imply z( t) -+ 0 as t -+ oc, only mild smoothness conditions 

are required for this to be true (see, e.g., [77, p. 21]). Since these are certainly valid 

in any practical situation, this result indicates that any input of bounded energy will 

give ri:se tu output:; which go to zero a.:symptotically. In particular input:; of buun<le<l 

energy cannot give rise to limit cycles or sustained offsets. 

Introducing the scaling operator T E T as in Figure 15 with 

(7.118) 

we have: 

Theorem 7.6 The system shown in Figure 14 is stable for all~ E A if 

1. M is a stable, causal, LT/ system with transfer function, M(s). 

Proof \Ve do not effect the stability properties of the system in Figure 14 by 

introducing the multipliers T and r-1 as in Figure 15. From the definitions of T, A, 
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and Cone(O, I) we have 

(7.119) 

We can assume without loss of generality that T and r- 1 are stable so that 

(7.120) 

Direct application of Theorem 5 to the system in Figure 15 provides the desired result. 

■ 

Introducing scaling factors to reduce the conservatism of the small gain theorem 

is a standard approach (see, e.g., [38,21). Unfortunately a simple parametrization of 

the scaling set, T, is not available so that the optimization implied in Theorem 6 is 

not tractable. In practice the search for a minimizing T is carried out over a subset 

of T. Any such subset generates an obvious corollary to Theorem 6 which provides 

sufficient conditions for stability. A computationally tractable problem provided by: 

Corollary 7.3 The system in Figure 14 is stable for all~ E A if 

1. Af(s) is stable. 

2. 3 /3 < 1 such that inf IIT Mu ( s )T-1 lloo ~ /3 
TEI' 

where 

T' = {T I TE T and TE cnxn} (7.121) 

Here we have restricted consideration to scalings which are constant matrices. The 

set T' is completely characterized by the structure of~- Specifically for 

(7.122) 

with ~i of given structure, T E T' is of the form 

(7.123) 
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with Ti compatible with .6.i, Ti is said to be compatible with Ai if Ti is a scalar 

times identity matrix when Ai has full structure1 Ti is a diagonal matrix when ~i has 

diagonal structure, and Ti is a full matrix when .6.i has scalar times identity structure. 

As the blocks of A become more structured the set of allowed scalings becomes more 

general and the sufficient conditions for stability become less restrictive. lt 1s in this 

way that we can take advantage of knowledge of the structure of nonlinear system 

elements. 

A complete solution to the "optimal constant scaling" problem ( 2. of Corollary 

3) is available [34,75,76] and involves solving 

iIJf cr[i'iw'.t- 1
] (7.124) 

T 

where lvf is a constant matrix derived from a state space realization of A:f 11 ( s), and T 
is a constant matrix of specified structure. An alternative computational approach, 

in terms of structured Lyapunov stability, is found in [13]. 

Extension of these results to study nonlinear stability robustness, with respect to 

uncertainties in the linear plant model, is straightforward. As is standard in robust 

control theory, we consider the nominal linear plant model subject to (possibly multi

ple) norm bounded LTI perturbations. The LTI uncertainty blocks are incorporated 

in the M A framework (Figure 14) in exactly the same manner as the normalized 

nonlinear maps so that A becomes a block diagonal operator in the set A defined by 

(7.12,5) 

where 61, ... , An are nonlinear maps each inside Cone(O, I), and An+l, ... , Am are 

LTI operators satisfying o-(Ai) :5 1 Vi= n + 1, ... m. A straightforward extension of 

Theorem 6 provides: 

Theorem 7. 7 The system in Figure 14 is stable for all perturbations A E A if 

1. M(s) is stable. 

f!. 3 /3 < l such that in( JJTAf 11 ( s )T- 1 JI<.,.., :'.S: /3 
TET 
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where 

(7.126) 

with T1, ... , Tn E T and Tn+l, ... , Tm arbitrary LT[ operators which satisfy 

T;!:i,1~- 1 = 6.;, \;/ a-(6.;) ~ 1 and\:/ i = n + l, ... , m. 

Again the simplification of T1 , ..• , Tn E T' allows (relatively) straightforward evalu

ation of 2. to assess robust stability. 

7. 7.3 Application to the Multivariable Anti-windup Prob

lem 

In order to make the development in Sections 7. 7.1 and 7. 7 .2 concrete we consider an 

application of these results to the multivariable anti-windup problem in some detail. 

Since all physical systems have finite control authority, the problem of actuator sat

uration is, at lea.st in principle, universal. In addition, by making certain simplifying 

assumptions we are able to obtain some insights on how selecting H1 and H2 in the 

AWBT design effects nonlinear stability. 

In the course of this section we will encounter the concept of passivity, or positive 

realness, which we define here. 

Definition 7.9 A proper LTI system, Z(s), is said to be strictly passive if it 1s 

analytic for Re[s] > 0 and 3 t > 0 such that 

Z(s) + zT(-s) 2: d, 'i/ Re[s] > 0 (-- 1·r) , . _, 

This is the standard notion of (strict) passivity which in the SISO case corresponds 

to the requirement that the Nyquist plot of Z ( s) must remain in the (open) right half 

plane. The following well-known result (see, e.g., [l]) relates passivity to a small gain 

condition. 
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Lemma 7.2 Z(s) is strictly passive zf and only if 3 .B < 1 such that 

ll[l + Z(s)J- 1 [! - Z(s)]II= < f3 

and [I+ Z(s)J- 1[J - Z(s)] is stable. 

The anti-windup ( or saturation compensation) analysis problem we consider is 

based on the linear design, K(s), which stabilizes P(s) of Figure 2 and (by assump

tion) provides acceptable linear performance. \Ve assume that an AWBT compen

sated implementation, K(s) = [U I - V], has been obtained and are interested in 

studying the stability of the system in Figure 3 where N is a MIMO saturation oper

ator. For the purpose of this example we assume that ?( s) is stable, ?22 ( s) is strictly 

proper, and that P32 ( s) = I, i.e., there are no significant dynamics associated with 

measurements of the plant input. 

We adopt the conic sector saturation model, Af 1,r v, consisting of the interconnec

tion 

(7.129) 

and the diagonally structured map r E rD, 

(7.130) 

Application of Corollary 2 provides the following necessary conditions for stability of 

the system in Figure 3 for all N E M J,r D • 

1. P( s) stable. 

2. k ( s) stable. 

3. K ( s) stabilizes P( s ). 

Combining J(s), k(s), and ?(s) in order to obtain the standard AJ 6. analysis 
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structure (Figure 14) we find 

(7.l'.31) 

where Z ( s) is defined by 

Z ( s) = V - U P22 (7.1:32) 

Application of Corollary 3 to guarantee stability for all N E AfJ,fn provides the 

sufficient conditions 

l. Af(s) stable. 

2. .3 /3 s; 1 such that inf IIT Mu ( s )T- 1 lloo < /3. 
Tf:.T' 

Employing the necessary conditions P( s) stable, and k ( s) stable, we can simplify 

these sufficient conditions. In particular, with P( s) and R ( s) stable, stability of 

M ( s) is equivalent to stability of 

(7.13:3) 

Under these Conditions 1. and 2. are equivalent to (by Lemma 2) 

.3 T E T' such that T Z( s )T-1 is strictly passive (7.134) 

Summarizing we have: 

Theorem 7 .8 The A WB T compensated system with P32 = I is stable for all N E 

AfJ,rD if 

1. P( s) is stable. 

2. l<(:;) = [U I - V] is stable. 

3 . .3 T E T' such that T[V - U Pii]T- 1 is strictly passive. 

We now consider several specific realizations of ?(s) and K(s) corresponding to 

AWBT designs from the literature. 
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Internal Model Control 

We recall the definitions of ?(s) and k(s) corresponding to the IMC implementation 

derived in Section 7.3.3. 

I -I -G(s) 

P( ,5) 
I 0 0 

0 I G(s) 

0 0 I 

I<(s) = [ Q1 -Q2 Q26] 

where w = [J], y = [i:], and z = r-Yrn• 

Applying Theorem 8 we find the sufficient conditions for stability: 

1. G( s) stable. 

3. 3 T C T 1 such that T[I - Q"J,( G - G)JT-1 is strictly passive. 

In the case that the internal model, G(s), is identical to the plant, G(s), Conditions 1. 

and 2. are equivalent to I< ( s) stabilizes P( s ), and Condition 3. is satisfied trivially. 

Thus if P32 = I, G(-') = G(-'), and the idealized linear design is stabilizing, the IMC 

implementation will be stable for all NE M1,r
0

• In fact it can be shown that under 

these conditions the IMC implementation is stable for any stable N (see, e.g., [68]). 

Hanus' Conditioned Controller 

The conditioned controller AWBT implementation corresponds to 

I -I -G(a) 

?(s) 
I 0 0 

(7.137) 
0 I G(s) 

0 0 I 
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( 7.1'.38) 

with w = [~], y = [i:], and z = r - Ym· Application of Theorem 8 provides the 

sufficient conditions for stability: 

1. C( s) is stable. 

2. K 1(s) minimum phase, K 2(s) stable. 

Conditions 1. and 2. are in fact necessary (by Theorem 2) so that we may immedi

ately conclude that controller conditioning is not appropriate for linear designs with 

Ki(s) nonminimum phase. N'o general statement can be made regarding Condition 3. 

Whether or not it is satisfied will depend on the particular I<1 ( s) and I< 2( s) under 

study. 

Extended Kalman Filter 

for the extended Kaln1an filter implementatiuu we }1i:1,ve w = [ d], y = [i:] , :: = 
r-ym, 

Ap B1P B2P B3p 

C1p Dup D12P D13P 

P(s) = 0 I 0 0 

C3p D31p D32p 0 

C4p Dup D12p I 

k(s) [ Ap -/C3p B1P - LD31P L 
= 

0 0 

Application of Theorem 8 provides the sufficient conditions: 

1. Ap is a stable matrix. 

2. Ap - LC3p is a stable matrix. 

(7.139) 

B~p l ( 7.1°10) 
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3. :l T E T' such that T Z ( s )T- 1 is strictly passive. 

Condition 2. is implied by K ( s) stabilizes P( s). We will take 1. by assumption. 

Computing a state space realization for Z( s) we find 

0 0 

Z(s) = (7.141) 

F -F I 

Deleting the uncontrollable (stable) modes we have 

(7.142) 

If the state feedback, F, is chosen using H 2 
( equivalently LQ) theory then ( with 

certain other technical assumptions) Z( s) given by ( 142) will be strictly passive ( see 

Appendix A for details). As a result the extended Kalman filter implementation 

is guaranteed to be stable for all NE MJ,rv, including the multivariable saturation 

operator. We note, however, that this result is based on the guaranteed gain reduction 

margin of 2.0 provided by the H 2-optimal state feedback. It is known that no such 

guaranteed margin exists when the model of the physical plant is inexact [30]. 

7.8 Mode Switching Performance 

As argued in Section 7.4.2, in order to avoid performance deterioration when the 

control system switches modes, k(s) should (ideally) be memoryless. Unless the 

initial design, K(s), is itself memoryless, there will be no admissible K(s) which is 

memoryless. In this case we will want to design f<(s) with "as little memory as 

possible" so that the impact of state positioning errors will be minimized. In this 

section we introduce a quantitative measure of dynamic memory and demonstrate its 

use in A \VBT design. 

Loosely speaking, the dynamic memory of a linear system is the effect of past 
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inputs on future outputs. This definition will be made more rigorous in terms of the 

Hankel operator associated with an LTI system. We begin with some background 

material regarding the Hankel operator, much of which may be found in [49]. 

7.8.1 The Hankel Operator 

We consider the stable LTI system 

G(s) = [*l (7.H3) 

which has the impulse response 

(7.144) 

For any input u(t), defined on R E (-oo, oo), to the system G, the corresponding 

output, y(t), is given by (assuming causality), 

y( t) H(u(t)) 

= [
1

00 
CeA(t--r)Bu(r)dr+Du(t) t E (-00,00) 

(7.14.5) 

(7.146) 

If we regard t = 0 as the "current" time, the convolution operator, H: L2 ( cc, x) -+ 

L2 ( -oo, oo) defined by (146), maps "pa.st" and "future" inputs, defined on t E 

( -oo, 0) and t E [O, oo) respectively, into "pa.st" and "future" outputs, similarly 

defined on t E ( -oo, 0) and t E [O, oo ). 

We measure the size, or gain, of the system G( s) in terms of the induced L2 norm 

on its associated convolution operator. The following relations hold, 

JIGlloo sup u[G(jw )] 
wE'R. 

sup 
uEL,(-00,00} 

IIH(u)II 
llull 

(7.147) 

(7.148) 

In a similar way we may define a map from past inputs, 1t_(t) E T, 2 ( -ex:,, 0) to 
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future outputs Y+(t) E L 2 [0, oo). This map is known as the Hankel operator associated 

with G and is defined by 

Y+(t) = fc(u_(-t)) 

fo00 

CeA(t+-rl Bu_(-r)dr Vt E [O, oc) 

(7.149) 

(7.150) 

To understand how r c maps past inputs into future outputs, we introduce the con

trollability operator, \Ji c : L2( -oo, O) -+ nn 

(7.151) 

and the observability operator, '11 0 : nn--,. L2 [0,oo) 

(7.l,'52) 

If u_(t) is agam regarded as an input acting for all past (negative) time, then 

'1ic(u_(t)) E nn is the "current" state of the system, x(O). If this current state 

is operated on by W0 , the result is the future output Y+(t) generated by the initial 

condition x(O). It is easy to verify 

(7_ 153) 

which provides the following interpretation. The Hankel operator represents the effect 

of past inputs on future outputs as the composite map of past inputs to the current 

state together with the map from the current state to future outputs. Thus the 

Hankel operator associated with G( s) is intimately related to the system's memory. 

7.8.2 Properties of the Hankel Operator 

Because of its role in other applications, in particular model reduction and H 00 syn

thesis, much is known about the Hankel operator. The Hankel operator associated 

with the stable system, G(s), is of ~nite rank, equal to the McMillan degree (the 
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order of a minimal realization) of G(s). Its singular values are given by 

I 

(i;(f c) = ,\? (PQ) (7.1.54) 

where .\;(A) is the i th eigenvalue of A, and P and Q are the controllability and 

observability grammians associated with G(s ), 

p g fooo eA.tBBT eA.Ttdt 

Q g fooo eA.TtcT CeAtdt 

(7.155) 

(7.1,56) 

We will refer to the Hankel singular values with the implied ordering (i1 2: a 2 2: ... 2: 

Computation of ai( r G) is straightforward since P and Q satisfy the Lyapunov 

equations 

ATQ + QA +ere 0 

(7.1.57) 

(7.1.58) 

It should be noted that while the grammians, P and Q, depend on the realization 

chosen for G the eigenvalues of their product do not, i.e., >..i(PQ) are invariant under a 

change of state space coordinates. Thus the Hankel singular values are only functions 

of the system's input-output behavior, not its realization. 

using the Hankel singular values we can define the following norms on r c, 

n 

llfa[IN = I:ui(fa) 
i=l 

(7.159) 

( 7.160) 

These norms can be associated with the system, G( s), which generates l' G · While we 

will often use the notation 

IIG(s)IIH (7.161) 
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IIG(s)IIN (7.162) 

and refer to the Hankel or trace "norm of G( s )," these are of course only semi-norms 

on the space of real rational stable transfer functions. To see that this must be so, 

observe that IIG(s)IIH and IIG(s)IIN are independent of the feedthrough term, D, of 

G(s). 

The following result relates the Hankel singular values to the infinity norm of 

G(s). 

Theorem 7.9 Given any stable transfer matrix G(s), 

n 

1. O"k+1(f a) :S inf IJG(s) - G'(s)llco :SL O'i(fa) 
G( •) 61Able k+ 

1 
degree G(•)~k 

2. IIG(s) - G(oo)llco :S 2jjG(s)IIN 

Proof The lower bound in 1. follows directly from Theorem 7.2 and the upper 

bound from Theorem 9.2 of [49]. 2. is Corollary 9.3 of the same source. ■ 

By requiring G(s) to be of McMillan degree zero (i.e., static) we obtain the fol

lowing corollary. 

Corollary 7.4 Given G(s) stable, 

IIG(s)IIH :S . inf IIG(s) - G'lloo :S IIG(s)IIN 
G ltatic 

7 .8.3 Dynamic Memory 

The Hankel norm of G(s) is in fact the operator norm induced by the L2(-oc, 0) 

norm on inputs and L2(0, oo) norm on outputs, i.e., 

IIG(s)IIH = sup IIHullL2[0,co) 
uEL2(-co,O) llu lli2(-oo,O) 

(7.163) 

Thus IIG( s) IIH = o-1 (f G) represents the L2 gain from past inputs to future outputs. 

This leads us to define, 
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Definition 7.10 The dynamic memory of the system G(s), denoted lvf em(G(s)), is 

defined to be: 

1. IIG(s)IIH ifG(s) is stable. 

f.J. co if G( s) is unstable. 

Applying Corollary 4 we see that, in addition to being the induced norm on the 

map from past inputs to future outputs, M em( G( s)) is a lower bound on the H 00 

distance from G(s) to the nearest static operator. Furthermore since IIG(s)IIN is 

an upper bound on this distance, for low order systems the lower bound is tight. 

This relationship will allow us to formulate a synthesis problem in which the state 

positioning objective is enforced by minimizing the H 00 norm of a particular transfer 

function. 

For unstable systems non-trivial past inputs give rise to unbounded future outputs 

so that it is natural to define the memory of these systems as infinite. As we might 

expect, the Hankel operator associated with the static system, 

G(s) = D ( 7.164) 

where D is a constant matrix, is identically zero. Correspondingly the Hankel norm 

and Af em(G(s)) are zero as well. 

7.8.4 Application to the AWBT Problem 

Given the possibility of essentially arbitrary switches between modes (be they defined 

operating modes, or saturated/unsaturated modes) with linear controllers designed 

only for the current operating mode ( and not the history of modes which may have 

preceded it), we would like the AWBT implementation of K(s) to be memoryless so 

that current performance will be independent of the history which brought the system 

to its current condition. 

For the output of the AWBT compensated controller, k(s), to be independent of 

its past inputs, we require Af em(k(s)) = 0. Since this cannot generally be achieved 
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by an admissible k ( s), we seek 

(7.165) 

Recalling our state space realization of all admissible K(s), 

(7.166) 

we see that for ,\f em(K(s)) to be finite, we require that A - H 1C be stable. With 

Hi chosen such that A - Hi C is stable, we have in the limit H2 - 0, 

k ( s) = [ U ( s) I - V ( s)] -t [ o I] (7.167) 

The well-posedness requirement discussed in Section 7.2.2 prevents H2 = 0, (recall 

that H2 must be nonsingular). In principle, however, the memory of I<(s) can be made 

arbitrarily small by selecting Hi so that A - Hi C is stable and H 2 small enough. Not 

surprisingly with U(s) = V(s) = 0 we have 

u(t) = Um(t) for all t (7.168) 

This implies that there will be no bump associated with a mode switch. Since the 

output of all controllers are equal, there can be no discontinuity in u( t) as a result of 

a mode switch. 

As we will see in Section 7.9 it is not possible to make H 2 arbitrarily small in 

any realistic example. As H2 -t 0 the sensitivity of the controlled output, z, to 

differences between u' and Um becomes arbitrarily large. This means that any noise, 

measurement dynamics, or modeling error which causes u' to be different than Um will 

result in drastic degradation in closed loop performance. In Section 7.9 we introduce a 

rrn~asnre of this effect and outline the fundamental trade-off between noisP sensitivity 

and state positioning performance which governs the selection of H1 and H2 • 
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7.8.5 An Example 

A demonstration of the use of M em( f< ( s)) to analyze mode switching performance 

is provided by the anti•reset windup problem. Given the PI controller 

(i.169) 

a realization of all admissible k ( s) with a single state is given by, 

(7.170) 

where H1 is arbitrary and H2 =/- 0. Classical anti-reset windup corresponds to H1 = ..L, 
'Tr 

H2 = 1 so t.hat 

[

. _J.. k(.1.. - 1..) ..L ] K(s) = 'Tr 'T[ Tr Tr 

1 k 0 
(7.171) 

The problem is then to select 'Tr so as to minimize M em( k( s )). In this simple example 

we can obtain an analytical expression for the (single) Hankel singular value. In 

particular 

Afem(K(s)) = a 1(K(s)) ( ..,. 1-•)) J. , _ 

l 

_ [k2(rr rr)2 + rJ] i 

4rJ 
(7.1 i:3) 

It i.s not difficult to see that M eni( f< (:;)) is minimized for Tr rr. 

A simple simulation demonstrates the connection between A,f em( k ( s)) and 

AWBT performance. We consider the error feedback system in Figure la with the 

plant 

subject to input saturation, 

1 
G(s)= 10s+l 

lul < 2.0 

(i.l i-l) 

(7.175) 
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Figure 16: Step setpoint change responses, A plant outputs, B plant inputs, for 
various values of Tr: Tr= 2 (1), Tr= 10 (2), Tr= 30 (3), Tr= oo (4). 

and the PI controller design (k = 10, Tf = 10), 

lOs + 1 
K(s)= --

s 
(7.176) 

Unit step setpoint responses are shown in Figure 16 for several choices of Tr. For Tr > 

Tf the response demonstrates overshoot characteristic of classic integrator windup. 

For Tr < TJ, the response becomes quite sluggish. With Tr= TJ a rapid response, \vith 

no overshoot, is obtained. 

Since minimizing M em( k ( s)) amounts to minimizing the L2 norm of the future 

controller output for a worst-case past input, we cannot expect Mem(/{(s)) to corre

spond directly with the time domain response to any other specific input. We have, 

however, consistently observed a strong correlation between time domain performance 

shown in simulation and Mem(K(s)) in a large number of examples. 

7.9 Recovery of Linear Performance 

In addition to making K(s) memoryless, so that switches between modes are handled 

smoothly, we require that when no limitation or substitution occurs (N = I) the 

performance of the idealized linear design is recovered. As we will see there is a direct 

t.raclP.-off hP.t.WPP.n thPsP. ohjP.rtivPs which c!Pt.PrminPs the appropriate AWRT design. 

Linear performance is measured by a norm on the closed loop map from exogenous 

inputs, w, to controlled outputs, z. The norm chosen will depend upon the form of 
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the closed loop specifications in the original linear design. For the purposes of this 

paper we consider the specification to be given in terms of the H 2 or H 00 norm. 

When N = I the closed loop transfer function, Tzw : w(s) --+ z(s), for the AWBT 

compensated system is given by, 

(7.177) 

The A\VBT compensated system is said to recover the performance of the idealized 

design when N = I if it meets the performance specification, 

(7.178) 

imposed on the original linear design. Given (177) it is straightforward to evaluate 

the linear performance provided by the AWBT compensated system. In addition 

to recovering linear performance in the sense of IIT zw( s) II, we would also like to 

derive conditions under which linear performance is identical for both the AWB T 

compensated system and for the initial linear design. 

For the trivial AWBT design, H1 = 0, H2 = I, we have U(s) = K(s) and 

V(s) = I so that K(s) = [K(s) O]. In this case the estimated plant input is not 

used and the AWBT compensated controller, K( s ), is identical to the idealized linear 

design, K(s). As a result the linear (N = I) performance of the idealized design 

is recovered identically. This trivial AWBT design is generally unacceptable since 

lvfem(K(s)) = Mem(K(s)) is generally large (infiuiLe if K(s) is uoL sLaule). 

In the case that P31 = 0 and P32 = I, which implies that our plant input estimate 

is perfect, i.e., u' = um, (177) reduces to 

Tzw(s) = P11+Pi2[V-UP22t 1UP21 

Pu+ Al[! - I< Pn]-1 I< A.1 

(7.179) 

(7.180) 

for any U(s) and any invertible V(s). In this special case linear performance is 

recovered identically for any admissible AWBT design. This suggests that we may 
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take H2 d with t arbitrarily small so that AI em(!{ ( s)) is made arbitrarily small. 

Presumably then it is possible to obtain arbitrarily good switching performance and 

perfectly recover linear performance as well. In any practical example, however, this 

cannot be achieved because the assumption that u' = Um is not realistic. If um is 

obtained from a physical measurement of the plant input, some level of sensor noise 

P31 =j:. 0 and measurement dynamics ( P32 =j:. I) will be realized ( at least at high 

frequencies). If Um is obtained by passing u through a nonlinear model of N 

Um= N(u) (7.181) 

so that measurement noise is not a problem, we have 

u' - Um= (N - N)(u) ( 7.182) 

and u' - Um = 0 if and only if our model, N, is exact. If we consider the general case 

(7.183) 

and allow H2 -+ 0, so that U(s)-+ 0, V(s)-+ 0 we have 

( 7.184) 

With P32(s) :::::: I, the norm of Tzw becomes arbitrarily large as U, V -+ 0. Thus 

any non-zero difference between u.' and Um ( effectively a measurement noise) will be 

greatly amplified aml linear performance will nut U<:: recuvereJ. 

Thus we have a fundamental trade-off between the mode switching performance 

and linear performance recovery objectives. To minimize the dynamic memory of 

K(s) we require U(s) and V(s) to approach zero. To optimize linear performance 

recovery, we require U(s) --+- K(s), V(s) -+ I. In Section 7.11 we will outline a 

synthesis procedure to trade-off these objectives and generate an acceptable AWBT 

design. 
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7.10 Directional Sensitivity 

vVith the switching performance objective we consider the AWBT compensated sys

tem with N = 0. For the linear performance recovery objective we consider the 

AWRT r.ompP.nsatP.cl systP.m whP.n N = !. Tn thP. r.a.sP. of plant inp11t :mhst.it.11t.ions 

these performance objectives, together with a guarantee of nonlinear stability, are 

sufficient to insure graceful performance degradation ( i.e., reasonable nonlinear per

formance). In the case of plant input limitations, however, the nonlinearity N does 

not simply select open {N = 0) or closed (N = I) loop operation. Instead N modifies 

the output of a given controller. The most significant effect of this is that, for MIMO 

systems, limitations can modify the plant input direction. As a result acceptable 

mode switching performance ( corresponding to N = 0) and linear performance re· 

covery ( corresponding to N = I) is not, in general, sufficient to insure that nonlinear 

performance will be acceptable. Borrowing from the linear (robust) control theory, 

we say that the closed loop system must provide not only nominal performance and 

robust stability, but also robust performance. 

In thi5 5ection we develop upper bound5 on the norm of the nonlinear closed loop 

map, Tzw, for the worst-case nonlinearity in a given conic sector model, MJ,r- As for 

the nonlinear stability tests, the result is conservative, the upper bound may not be 

tight, but it is often useful nonetheless. 

As in the stability analysis section we consider the general analysis structure ( Fig

ure 14). Recall that Figure 14 is obtained by substituting the appropriate normalized 

conic sector model for N in Figure 3 and rearranging to isolate the normalized, struc

tured nonlinear map, ~, and the LTI interconnection .Af ( .s ). Introduction of the 

scalings, T and r-1 as in Figure 15, does not change the closed loop map from w 

to z. Furthermore, if we are interested in the set of all maps, Tzw, corresponding to 

~ E A, we may absorb T and r-1 into ~ as in Figure 17, i.e., for any T E T and 

~ E A we have by definition, T ~r-1 E A, so that any closed loop map which is 

achievable in Figure 15 with ~ E A is also achievable in Figure 17 with some other 

~ E A. With this set up we have the following theorem. 
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b a 

T 

w Mes) z 

Figure 17: The general problem for directional sensitivity analysis. 

Theorem 7.10 The induced L2e norm on Tzw : w -+ z of Figure 14 is bounded by 

µ = ½ for all structured nonlinear maps, 6. E .6., where (3 E R is such that 

(7.18,5) 

Proof For any value of (3 we have 

(7.186) 

in Figure 17. \,Vith /3 such that (185) is satisfied we have 

[ 
a ] < [ b ] for all w E L2e 

/3z - w 
(7.187) 

or 

(7.188) 

For any 6. E .6., llbll2 :5 llal!2 so that 

(7.189) 

and we have the desired result. ■ 
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In order to obtain a computable upper bound we can restrict the set of allowable 

scalings in ( 185) to be in T' rather than T. In general, since we bound the norm 

of T zw for all nonlinear maps admitted by a particula.r conic sector model, µ. is a 

conservative upper bound on the norm of Tzw corresponding to a specific nonlinear 

map, N. Furthermore, comparison of various designs using µ may be misleading since 

it is only an upper bound on !ITzwil• Meaningful conclusions may be drawn, however, 

whenµ is sufficiently small, i.e., when the worst-case performance, bounded by fl, is 

acceptable. 

We note that for N = 0, T zw is simply P11 ( s). Thus if the zero operator is 

contained in our conic sector model, as in the case of saturations, jjP11 ( s) lloo provides 

a lower bound on supAe.o. l!Tzwll- Since Pu(s) is the map from w(s) to z(s) when the 

system is open loop, we observe that worst-case performance can be no better than 

open loop performance. In some situations, however, worst-case performance can be 

much worse than open loop. In these situations µ will be several times larger than 

IIP11(<:i)lloo· 
The most important application of this result, in the context of the AWBT prob-

lem, is for :\1:IMO plants subject to input limitations. Typically these limitations act 

element by element on the controller output, u, so that N has diagonal structure. 

As a result of limitations the plant input, u', may not have the same direction as 

the controller output, u, i.e., the relative magnitudes of the elements in u1 may be 

different than in u. It is well-known from (linear) robust control theory that some 

MIMO plant and controller combinations experience severe performance deteriora

tion in the presence of (linear) diagonal plant input perturbations. These systems are 

sensitive to plant input direction. Examples include ill-conditioned plants together 

with inverse based controllers (see [87)). These designs, typically implemented as in 

Figure la, result in a loopshape, L( s ), which has scalar times identity structure, i.e., 

L(s) G(s)K(s) 

£(s)I 

(7.190) 

(7.191) 
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where £(s) is the desired scalar loopshape. Because limitations can effect the plant 

input direction, the inversion is disturbed and 

G(s)NK(s) 'I, f(s)I (7.192) 

In this case the nonlinear performance is qualitatively different than the linear, N = I, 

performance. 

Ill-conditioned systems are typically much less sensitive to plant input perturba

tions with scalar times identity structure. Since these perturbations do not affect 

the direction of the plant input, only its magnitude, we have (with N of scu.lar times 

identity structure) 

G(s)NK(s) ~ G(s)JNK(s) = JNG(s)K(s) 

= JN£(s)I 

(7.193) 

(7.194) 

where fN is the scalar times identity describing function appropriate for N. Thus, to 

a first approximation, the loopshape retains its scalar times identity structure. 

For systems with high directional sensitivity, a simple nonlinear technique has been 

shown to greatly improve performance. The technique is applicable to systems for 

which a model of the input limitation mechanism is available and based on the simple 

idea that the controller output should be adjusted so that plant input limitations do 

not affect its direction. This idea first appeared in [35] and is further developed in [20]. 

For simplicity we assume here that the limitation is such that each of the plant inputs 

saturates at ±1.0. Extensions to handle other limitations ( e.g., rate saturations) are 

straightforward. 

When one of the controller outputs exceeds 1.0 in magnitude all of the controller 

outputs are adjusted by the same factor so that u and u' have the same direction. This 

can be achieved by inserting an additional nonlinear block, S, between the controller 

output and the limitation mechanism, N, as in Figure 18. The block, S is defined 
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w z 

u' P<s) 
y 

u A 

K<s) 

Figure 18: A simple nonlinear directional sensitivity compensation scheme. 

u" - S(u) 

- { ll•;oo 
llulloo $ 1 

llu!l00 > 1 

(7.195) 

(7.196) 

By construction the elements of u"(t) have magnitude less than one. As a result 

the plant input limitation has no effect, i.e., u1(t) = u1'(t) V t. Thus we have 

effectively replaced the diagonal plant input perturbation, N, with the scalar times 

identity perturbation, S. 

Of course the nonlinear block S together with K ( s) do not comprise an ad

missible AWBT design (as defined in Section 7.2.2) for the plant F(s) and limi

tation/substitution N. If on the other hand we regard the composite map, 

N NS 

s 

(7.197) 

(7.198) 

as the limitation/ substitution mechanism then .k ( s) is an admissible AWBT design 

for P( s) subject to N. With this perspective we may regard S as a precompensa

tion which yields a more benign nonlinearity than the original limitation/substitution 

mechanism N. While we do not address the design of such a nonlinear compensation 
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in general, we present this simple technique because of its simplicity, proven effective

ness. and compatibility with nonlinear stability and performance tests (Theorems 6 

;:incl 10) 

In our experience the only AWBT compensated systems which show significant 

directional sensitivity are those for which the initial linear design, K(s), is sensitive 

to (linear) diagonal input perturbations. If the initial linear design is not robust 

with respect to linear perturbations with this structure1 we cannot expect the A\VBT 

design to recover the nominal performance of the initial design I<( s) and be insensitive 

to plant input limitations. This situation points out the need to better understand 

how the initial linear design, K(s), effects achievable A\VBT performance. \Vhile 

we have generally assumed that I< ( s) is designed ignoring the effects of limitations 

and substitutions, it seems clear that including simple considerations such as this in 

the initial linear design can significantly improve the AWBT performance which 1s 

subsequently achieved. 

7.11 AWBT Synthesis 

Having identified stability and performance issues for the general AWBT problem, 

and introduced quantitative analysis methods 1 we are in a position to consider the 

synthesis problem. In particular we would like to develop a procedure which will 

generate an AWBT design which meets given performance requirements, stated in 

terms of the analysis mPthorls prt=>vi011sly outlinP<l, or est.ablishPs t.hat no s11rh A \VRT 

design exists. 

We incorporate into the general synthesis problem the nonlinear stability1 linear 

performance recovery1 mode switching performance1 and directionality sensitivity ob

jectives in a quantitative manner. The approach is to state each of these objectives 

in terms of minimizing, or bounding, the H2 or H00 norm of a particular transfer 

function. With the AWBT objectives defined in this way the design problem can be 

formulated as a. constrained structure controller synthesis ( CSCS) problem. 

Adjustable weights are included for each of the synthesis objectives. These weights 
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11 ---- Q(s) ~2 ..... 

---

... 
-

l<s) .-
-

Figure 19: The standard constrained structure controller synthesis (CSCS) problem. 

allow us to exploit trade-offs between objectives. This results in an iterative design 

procedure in which the weights on the individual objectives are adjusted until the 

designer determines that AWBT performance is adequate and the design trade-offs 

are acceptable. 

Because it forms the basis of the iterative AWBT design procedure, we first con

sider the general CSCS problem and i~:s :suluLiuu viii re<luctiuu Lu :stiilic uutµut feeJ

back. 

7.11.1 Constrained Structure Controller Synthesis 

We present only the essential features of the CSCS problem here, for a more complete 

treatment the interested reader is referred to [70,9] and [71,10]. 

The general CSCS problem may be stated in terms of Figure 19. Given I E ·R, 

we wish to find a stabilizing LTI controller, T(s ), of constrained structure, such that 

the H00 norm of the transfer function from exogenous input, TJ, to output ( 1 is less 

than,, and the H 2 norm of the transfer function from T/ to output (2 is minimized. It 

should be noted that pure H 2 and pure H00 problems can be obtained as special cases 

of the general mixed-norm problem. For example the pure H 00 problem, minimize 

JJT(p1 JJ 00 , can be solved by neglecting the H 2 output, ( 2 , and solving the general 
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problem iteratively with decreasing values of I until a stabilizing solution can no 

longer be found. This technique, known as 1 -iteration, is standard in H00 synthesis. 

Similarly the pure H,. problem is obtained from the general problem in the limit 

i - 00. 

The key feature of this synthesis problem is that the controller, T(s), is of ·•con

strained structure." For the purposes of this paper we adopt the following definition 

Definition 7.11 T(s) is said to be of constrained structure if the matrices which 

make up a state space realization of i( s) are affine functions of constant real, pa ram-

eter matrices, ,\':'1 , .•. , .'.':'n, i.e., 

(7.199) 

where f A, JB, Jc, and Jo are matrix valued affine functions of Xi, i = l, ... , n. 

It can be shown (see [71]) that there exists a constant matrix, X, of the form 

(7.200) 

with Xi repeated vi times, and an LTI interconnection Y( s ), independent of X, such 

that i( s) is given as the transfer function from input, x, to output, y, of the feedback 

interconnection shown in Figure 20. Incorporating this representation of 1' ( s) in 

Figure 19, and absorbing the interconnection Y(s) into Q(s), we obtain the static 

output feedback problem shown in Figure 21. 

In order to solve the original CSCS problem we are now presented with the fol

lowing static output feedback problem. Given I E 'R find a constant matrix X of the 

form (200) which stabilizes Q(s), makes IIT(111 (s)lloo < 1 and minimizes IIT,21)(s)!l2-

This mixed-norm static output feedback problem can be addressed using the coupled 

Riccati equation approach of [8]. In general the solution of a set of three coupled Ric

cati equations provides a solution to the static output feedback problem. Although a 

number of outstanding numerical issues remain, mm:h progress has been made in the 
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Figure 20: A representation of the constrained structure controller. 

1 .... 
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Figure 21: The standard static output feedback problem. 
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development of techniques to solve these coupled systems of equations. At this point 

solutions to non-trivial problems have been demonstrated although a truly general 

purpose algorithm is not yet available. The primary advantage of this numerical ap

proach, over other functional analytic ( e.g., [41]) or "full order" state space solutions 

([33,37]) to H 2 and H 00 optimal control problems is that these methods do not allow 

the consideration of constrained structure controllers. In fact the Riccati equation 

approach is the only solution method for constrained structure synthesis currently 

available. As we will see, a structural specification on the "controller" in the :\ \,YB T 

design is essential in order for us to consider all of the AWBT design objectives simul

taneously. To the extent that solutions to the required coupled Riccati equations can 

be found, we can solve the optimal static output feedback problem and as a result 

the CSCS problem as well. 

7.11.2 AWBT Synthesis as a CSCS Problem 

Given this overview of the CSCS problem and a proposed solution method via static 

output feedback, we turn our attention to the formulation of the AWBT synthesis 

problem. Our task is to derive a constrained structure controller synthesis problem 

which includes the AWDT objectives; 

1. Guarantee nonlinear stability ( Corollary 3). 

2. Achieve linear performance recovery (in the sense of (178)). 

3. Optimize mode switching performance (minimize M em[k(s )]). 

4. Minimize directional sensitivity (Theorem 10). 

In particular we must derive an interconnection, Q( s ), such that each of these 

objectives may be written in terms of the H 00 norm of T<111 (s) or the H 2 norm of 

T(211 (s) of Figure 19. In the development the definition of T(s) and the associated 

structural constraints on this "controller" will become apparent. The complete syn

thesis problem, involving all four objectives is built up stepwise by introducing the 

objectives one at a time_ 
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"" 

Figure 22: Step 1 m the formulation of the AWBT synthesis problem as a CSCS 
problem. 

Nonlinear Stability 

We begin with the AWBT compensated system shown in Figure 3 and replace N 

with an appropriate conic sector model, MJ,il.· Rearranging the block diagram and 

introducing scaling matrices T and r- 1 (with T E T') we arrive at Figure 22 where 

Q1(s) is determined by ?(s) and J(s). 

The nonlinear stability requirement (Condition 2. of Corollary 3) may be written 

as 

inf l!Tab(s)ll 00 < 1 
TET' 

("' ')01) \, __ 

where T ah( s), which depends on the scaling T, is the transfer function from b to a 

in Figure 22 when .6. = 0. Thus the nonlinear stability objective amounts to finding 

TE T' and an AWDT design k(s), such that (201) is satisfied. 

Directional Sensitivity 

The directionality sensitivity specification is given as a bound on the L2e norm of the 

closed loop map, T zw of Figure 22, for all .6. E a. In particular for a given scalar 
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b a 
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u y 
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Figure 23: Normalization of the directional sensitivity objective. 

an 1 the directionality sensitivity performance weight, we require 

1 
sup IITzwll < -
A-E~ an 

' z -... 

(7.202) 

This objective is normalized by introducing the scalings, -Jciij, as m Figure 23. 

Clearly, 

(7.203) 

in Figure 22 if and only if 

(7.204) 

in Figure 23. Applying Theorem 10 we see that the specification (204), and hence 

(202), will be met if 

where T [:,] [:,] ( s) is the transfer function from [~,] to [:,] with C. = 0 in Figure 23. 

Furthermore it is clear that when o:n = 0, (205) is equivalent to (201 ). Thus we 

may regard the nonlinear stability requirement as a limiting case of the directional 
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W1 - Z1 ..... 
-

Q2(s) 
-

..._ -

A 

K(s) 
~ 

-

Figure 24: An equivalent representation to Figure 23 with scalings absorbed into 
Q2(s). 

sensitivity performance requirement ( with aD = 0). Absorbing the scalings T, and 

-J<irj, into Qi(s) we may rewrite Figure 23 (with~= 0) as Figure 24 where w 1 = l~,j 
and z 1 = [ :,] . With this setup we have: 

Objective 7.1 The nonlinear closed loop system of Figure 22 is stable and 
1 A 

sup IITzwll < - if the AWBT design, K(s), is such that 
t.\E-6. 0.D 

in Figure 24 for some T E T'. 

Ideally we would like to obtain T and K(s) satisfying (206) simultaneously. While 

thi::; rema.iu::; all un::;ulve<l problem, it i:s nut <liflkult tu ubta.iu T au<l f<(.:;) iteratively. 

In this scheme, T is fixed and an H 00 optimal solution, k ( s), is found to solve 

( '7 ·)o-) 
I·- I 

The resulting K(s) is fixed and an optimal scaling, T, is found which solves 

inf JIT z1 w1 ( S) JJoo 
TET' 

(7.208) 
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This new scaling is then absorbed into the interconnection structure, Q 2 ( s) of Fig

ure 24, and a new H 00 optimal f< ( s) is obtained using the up<lated interconnection. 

The procedure continues in this fashion, alternately solving for k(s) and T, until 

there is no change in T from one iteration to the next. (Readers familiar with µ

synthesis will recognize this as "D - I< iteration.") At this point if 1: < 1 \Ve may 

conclude (by Objective 1) that the nonlinear closed loop system is stable and the 

directional sensitivity performance requirement (202), has been met. If 1: > 1 no 

immediate conclusion may be drawn regarding directional sensitivity or nonlinear 

stability. If infreT l!Tab(s)ll 00 < 1 for this design then nonlinear stability is guaran

teed, although we have no guarantee that directional sensitivity will be acceptable. If 

infreT IIT ab( s) JJ 00 > 1, we have no guarantee of stability and must relax the directional 

sensitivity performance specification (reduce the associated performance weight, av) 

and obtain a new design for the revised specification. 

Mode Switching Performance 

We assume that the mode switching performance specification is of the form 

• 1 
Af em(I<(s)) < -

as 
(i.209) 

where as is a given scalar. This objective cannot be formulated directly as an H 2 or 

H 00 norm specification. Instead we modify this specification using an upper bound 

on J\f em(k(s)). From Corollary 4 we have 

(7.210) 

Thus 

inf. IJo:s [k(s) - z] 11 < 1 
Z static oo 

implies that (209) will be satisfied. 

This infinity norm overbound on Af em(K(s)) is easily incorporated in the A\VBT 

synthesis problem. In particular, we introduce w2 , z2 , and the performance weight. 
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W1 ... Z1 ~ 
- -

Q2(s) 
.... -

" K(s) 0 ... 
--.... 

Z2 " ... as -- W2 -- 0 K(s) - Z - - ~ 

Figure 25: Introduction of the mode switching objective. 

a.s, as shown in Figure 25. In this arrangement we have: 

Objective 7.2 The mode switching performance objective will be satisfied if 

Rewriting Figure 25 to group the exogenous inputs, [~~], and controlled outputs 

[ ;~], we obtain Figure 26. With Q2(s) of Figure 24 given by, 

Q,(s) = [ Qn(s) Q12(s) l 
Q21 ( S) Q22(s) 

(7.213) 

Q3( s) of Figure 26 is given by 

Qu(s) 0 Q12(s) 0 

0 0 0 I 
Q3(s) = (7.214) 

Q2i(s) 0 Q22(s) 0 

0 I 0 0 



W1 - Z1 --- -
W2 -- Q3(s) 

Z2 ... 
- -
.. 
-

"' K(s) 0 
--

"' 
~ 

0 K(s) - Z 

Figure 26: Rearrangement to obtain a CSCS problem. 

By construction the closed loop map in Figure 26, T [::] [ ::] ( s ), is of the form 

(7.21,5) 

As a result 

( 7.216) 

if and only if 

(- ')1-) 1._ I 

We have now formulated three of the four AWBT design objectives as a bound on the 

H 00 norm of a closed loop map (217). This development requires that the "controller" 

[
k(s) 0 l 

o k(s)-Z 
(7.218) 

be of specified structure. In particular, J<(s) in the 1,1 and 2,2 blocks must be the 

same and the 1,2 and 2,1 blocks must be zero. We will show later that this controller 

is in fact of constrained structure in the sense of Definition 11. We first introduce the 
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- .... - -
- .... 
-

Q(s) 
-- .... 

- -
... 
-

""' K(s) 0 0 
""' 0 K(s) - Z 0 -- ~ 

,,.., 

0 0 K(s) 

Figure 27: The complete AWBT synthesis problem as a CSCS problem. 

remaining synthesis objective. 

Recovery of Linear Performance 

The linear performance recovery objective is given by ( 178) as 

(7.219) 

where Tzw is the closed loop map in Figure 3 with N = I (177). In keeping with our 

earlier practice we will generalize this specification by requiring, for a given scalar o:L, 

(..,. •)•JO) 
I•--

Defining an additional exogenous input, w3 , and weighted controlled output, z3 , we 

may incorporate this objective in the AWBT design problem as shown in Figure 2.T. 

By construction T z3 w3 ( s) in Figure 27 is given by 
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Recognizing that (221) is nothing more than a weighted version of the linear perfor

mance recovery objective (219) we have: 

Objective 7 .3 The linear performance recovery objective will be met if 

By construction the closed loop map in Figure 27 is of the form, 

0 0 

T ~2 w2 ( s) 0 

0 0 Tz3 w3 (s) 

We note that for Q3(s) of Figure 26 given by (214), the Q(s) and i(s) required to 

gem:rak c1, du:se<l luup map uf thi:s form in Figure 27 are gi veu l,y 

Q11 ( .5) 0 0 Q12(.5) 0 0 

0 0 0 0 I 0 

Q(s) 
0 0 P11 (s) 0 0 P12(s) 

= (7.224) 
Q21 ( S) 0 0 Q22( S) 0 0 

0 I 0 0 0 0 

0 0 P21 ( s) 0 0 P22(s) 

k(s) 0 0 

T(s) = 0 i<(s)-Z 0 

0 0 J<(s) 

If T( s) is of constrained structure (in the sense of Definition 11) then the AWBT 

synthesis problem, as developed in Figure 27, is a CSCS problem of the form discussed 

in Section 7.11.1. To demonstrate that this is indeed the case, we show that i(s) 

can be parametrized in terms of the constant matrices H 1, H2 , and Z, and show 

that a state space realization exists with state space matrices affine functions of these 

constant data matrices. 
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7.11.3 Parametrfaatiuu of 'T(s) 

Given a realization of the initial linear design, 

we may parametrize all admissible k ( s) in terms of the constant matrices H1 and H2 

as in (16) and (17). 

Generically k ( s) will be of the same order as the realization chosen for K ( s). 

\Vhile we do not require this realization to be minimal, intro<luciug ,u.lditiuual states 

in I< ( s) increases the order of k ( s). We have no formal result which relates achievable 

AWBT performance to the order of k(s), but minimizing the number of states in 

k(s) is consistent with our objective of minimizing A1em(K(s)). 

Using (16) and (17) it is easy to see that a state space realization of the constrained 

structure block, Y(s), is given by 

]{(s) 0 0 

Y(s) = 0 k(s) - z 0 (7.227) 

0 0 f<(s) 

.4.-H1C 0 0 B-H1D H1 0 0 0 0 

0 A-H1C 0 0 0 B-HiD Hi 0 0 

0 0 A-H1C 0 0 0 0 B-H1D Hi 
= ( (.228) 

H2C 0 0 H2D I-H2 0 0 D 0 

0 H2C 0 0 0 H,D-Z I-H2-Z 0 0 

0 0 H2C 0 0 0 0 H,D l-H, 

As desired the state space matrices in this realization are affine functions of the 

constant matrix design parameters H1, H2 , and Z. Thus the AWBT design problem 

of Figure 27, involving all four AWBT design objectives, amounts to a constrained 

structure controller synthesis problem. 
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If the H 00 norm is used in the linear performance recovery objective, we have a 

pure H 00 CSCS problem. In this case r, of Figure 19 is given by 

( 1 is given by 

and ( 2 is neglected (there are no H 2 objectives). 

With these definitions T,1,.,(s) is given by 

0 

so that 

if and only if 

1. IJT "1wJs) lloo < 1 

2. IIT z,U/2 ( S) !loo < 1 

3. l!Tz3w3(s)lloo < 1 

Thus a solution to the CSCS problem which provides 

0 

0 

generates a k ( s) which satisfies all of the AWBT design specifications. 

(7.229) 

(7.230) 

(7.231) 

(7.232) 

(7.2~~) 

(7.234) 

(7.235) 

(7.236) 
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In the case that the linear performance recovery speciticat10n is given in terms of 

the H 2 norm1 we obtain a mixed-norm CSCS problem. The appropriate definitions 

are, 

(7.237) 

The CSCS problem is then 

(7.238) 

Subject tu: 

(7.239) 

If the K(s) which solves this problem provides IIT,2.,(s)Jl 2 < 1 then we are assured 

that all of the AWBT performance specifications have been met. 

7.11.4 Summary of the Design Procedure 

At this point it is worthwhile to summarize the development of the AWBT synthesis 

problem. 

Overview of the Problem Formulation 

Given the performance weights an, as, aL, the nonlinear stability, directional sensi

tivity, mo<le :switching and linear performance recovery objectives are respectively, 

i). 
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Using the algebraic (block diagram) development in Section 7.11.2 these indiviclmd 

objectives are combined to yield the objectives 

(7.240) 

and 

(7.241) 

written solely in terms of the closed loop transfer functions from exogenous input, 77, 

to controlled outputs ( 1 and (2 in Figure 19. This development produces a mixed

norm constrained structure synthesis problem when the linear performance recovery 

objective is stated in terms of the H 2 norm, or an H= norm CSCS when the linear 

performance recovery objective is stated in terms of then= norm. 

Any design which satisfies (240) and provides t::2 < 1 is guaranteed to result in a 

stable closed loop system and to meet the weighted performance objectives stated for 

the design. 

Overview of the Solution Procedure 

In general an AWBT design will proceed through the following steps. 

1. Select performance weights, av, as, a£. 

2. Initialize the scaling matrix T (typically to the identity).-

3. Construct the CSCS problem (Figure 19), absorbing the performance weights 
and scaling matrices into the CSCS interconnection structure. 

4. Solve the appropriate CSCS problem (for fixed T). 

inf IIT(2T1ll2 
H1.H2.Z 

A 

Subject to: IIT(1T1II= < 1 

Ly re<luciiuu tu :siaiic feeJLack tu geuernie I<.(::s). 

5. Solve 

for fixed k ( s ). 

inf IIT z1 w1 II= 
TET' 

(7.242) 

(7.243) 

(7.244) 
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6. Return to 4. using the newly determined scaling matrix T. Iterate until T 
remains unchanged from one iteration to the next. 

7. If 1:2 < 1 (respectively 1:00 < 1) then the solution to the CSCS problem, I<(s), 
satisfies the imposed stability and performance specifications. In this case we 
may stop and adopt the current I< ( s). Alternately we may wish to impose 
tighter performance specifications by adjusting o.v, o.5 , and o.L and return to 
1. 

8. If €z 2: 1 (respectively €00 2: 1) then the given performance specifications arc 

too ambitious, i.e., either no admissible I<(s) exists which achieves the desired 
performance specifications or the conservatism of the directional sensitivity ob
jective prevents us from finding one. In this case we must relax some or all of 
the weights, o.v, o.s, Ct.£ and return to 2. 

The selection of o.v, o.5 , and O.£ is obviously central to this iterative procedure. 

The relative magnitudes of these weights determine the relative importance of the 

directional sensitivity, mode switching, and linear performance recovery objectives. 

It should be pointed out that nonlinear stability is guaranteed if e2 < 1 ( e00 < 1) for 

any value of the performance weights av, o.s and O.£, 

The "natural" choice for the linear performance recovery objective is o.L = 1.0. 

With this choice we meet the linear performance specifications stated for the initial 

design, (178). There are no corresponding "natural" choices for o.s and av. In general 

we will want to push the design as much as possible by increasing as and av in order 

to minimize Mem(K(s)) and directional sensitivity while maintaining stability and 

the desired linear performance. 

The directional sensitivity objective is enforced using the sufficient condition of 

Theorem 10. As discussed in Section 7.10 this result is conservative, i.e., 11Tz1 w 1 lloo 
represents only an upper bound on the worst-case performance admitted by the given 

conic sector model of N. As a result it is not necessarily a good idea to "push" the 

design too far using av. Doing so will reduce the upper bound, µ, on the worst-case 

L2e gain of the nonlinear closed loop system (Figure 3) 

(7.245) 

at the expense of the other performance objectives, but in fact may not necessarily 
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improve the nonlinear performance provided by the particular nonlinearity, N, in the 

given conic sector model. 

The mode switching objective, 

(7.246) 

derived for the AWDT synthesis problem also represe11ts a,H uµper buuuJ uu Lhe Lrue 

objective 

inf Mem(k(s)) 
K(.t) 

(7.24 7) 

We see from Corollary 4 however that this upper bound is relatively tight if k(s) is of 

low order or if o\(K ( s)) decrease rapidly with i. Given that our definition of dynamic 

memory was somewhat arbitrary - a reasonable alternative definition is given by 

Mem(K(s)) = IIK(s)IIN (7.248) 

for which (211) is a lower bound - this objective is easily justified. 

With these observations we recommend the following recipe for selecting a.D, as, 

and O.£. 

1. Start with av = 0, as ~ 1, aL = 1.0. This choice results in a design which 
provides nonlinear stability and linear performance recovery. The mode switch
ing and directional sensitivity performance may be poor. If with this choice 
of weights €2 > LO (respectively €00 > LO) we cannot guarantee stability even 
with relaxed mode switching and directional sensitivity requirements. In this 
case the initial linear design, /{ ( .5 ), should be reconsidered. 

2. Increase as until 1:2 = 1.0 (1:00 = LO). This pushes the mode switching objective 
as far as possible subject to stability a.nd linear performam:e recovery. 

3. Assess directional sensitivity of the resulting design. To do this we evaluate 
upper and lower bounds on the L2e norm of the nonlinear closed loop system. 
An upper bound is provided byµ= infreT' 11Tz1 w1 (s)lloo· An easily computed 
lower bound is provided by replacing N with any linear transformation in MJ,.6., 

e.g., if O E MJ,.6. a meaningful lower bound is provided by 

(7.249) 

as discussed m Section 7.10. If these bounds are close there 1s little to be 
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gained by trading off directional sensitivity against the other objectives. If these 
bounds are not close, and µ is unacceptably large, we may suspect a problem 
with directionality sensitivity. If nonlinear simulations confirm this sensitivity, 
c1,ml the Jirectiuu preserving iJec1, uf Section 7.10 ca1111ot be applied, we hc1,ve uu 

choice but to reduce o:s and/or o:i and increase o:n to generate a new design. 

7.12 Conclusions 

Beginning with a very general overview of the AWBT problem we have developed a 

complete theoretical framework for its study. The framework is sufficiently general to 

allow the consideration of multivariable controller designs of arbitrary dimension and 

order. This generality allows us to consider any control system structure, including 

feedforward, feedback, multiple degree of freedom, cascade, and general non-square 

controller designs. 

Given mild restrictions on the allowed AWBT compensation, that it not affect the 

linear design when the actual plant input is equal to its measured or estimated value, 

and linearity of the AWBT compensated controller, we provide a parametrization 

of all admissible AWBT designs in terms of the constant matrices H1 and H2 • It 

is shown that this formulation contains, as special cases, all of the (linear) AWBT 

schemes which appear in the literature. In addition, the general formulation allows 

us to relax an assumption which is universally adopted in previous work but never 

satisfied in practice. In particular we do not assume that a perfect measurement or 

estimate of the actual plant input is available. The most significant advantage of the 

general framework, however, is that it allows us to generalize the characteristics of 

proven AWBT schemes well beyond the narrow application oriented scope in which 

they were developed. 

To this end we have identified a number of design issues which enter the general 

AWDT problem. In particular we consider nonlinear stability, mode switching per

formance, linear performance recovery, and directional sensitivity issues. Analysis 

techniques are developed which generate quantitative measures of suitability in each 

of these areas. 
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Using come sector models of limitation and substitution mechanisms together 

with well-known small gain results, we derive an easily computed condition which 

guarantees nonlinear stability. The importance of exploiting known structure of the 

limitation/substitution mechanism in the stability results, by using block diagonal 

scaling matrices, is indicated. The stability result developed (Theorem 6 and its 

Corollary) represents a generalization of the hyperstability theory based results in 

the AWBT literature. In addition to addressing more general ( i.e., multivariable) 

problems, the results are less conservative than those which do not include structured 

scalings (multipliers). 

The concept of dynamic memory is introduced and its connection to mode switch

ing performance is demonstrated. This represents a first step in addressing general 

performance objectives in AWBT design rather than adopting a particular AWBT 

scheme and adjusting "tuning parameters" until nonlinear simulation suggests ac

ceptable performance will be realized. There appear to be advantages in minimizing 

controller memory in other contexts as well. In particular this can be viewed as a 

method for closed loop controller reduction and may allow simple (low order) linear 

cuutruller <le:sign:s tu be ubtaiue<l which med pre:scribe<l H 2 or H""" performance spec

ifications. Additional work in this general area, minimizing controller "complexity," 
. . 
1s on-gomg. 

We outline, for the first time in the AWBT literature, the importance of the 

linear performance recovery objective. The connection between this objective and 

the assumption that a perfect estimate of the plant input is available is considered in 

some detail. 

These analysis results lead naturally to a quantitative AvVBT synthesis proce

dure. Incorporating each of the four objectives outlined above, we show that the re

quired synthesis problem may be stated as a constrained structure controller synthesis 

( CSCS) problem. An iterative design procedure, involving adjustment of weights on 

each objective, is outlined. This procedure lets the designer obtain an AWBT design 

which represents an acceptable trade-off of the conflicting objectives. 

With these results a design engineer has a theoretically sound basis for the design 
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of AWDT compensation for MI.MO controllers of aruitrary order anJ complexity. 

Resolution of these "implementation issues" for controllers obtained using "optimal" 

multivariable synthesis theory should allow these design techniques to have some 

impact in practical applications. 

A number of areas remain the topics on on-going research. These include: 

• Methods which will allow us to obtain computable results in the nonlinear 

stability test with scalings, T, which are more general than the set of constant 

matrices, T'. 

• Improved methods for obtaining conic sector models of practically relevant lim

itation and substitution mechanisms. These methods would be improved in the 

sense that they result in less conservative analysis tests. 

• Improved techniques for solving the static output feedback problem which re

sults from the CSCS problem of Section 7.11.1. 

• Methods of assessing achievable AWBT performance and the effect of the initial 

linear design, K ( s), on achievable performance. 

• Methods for the design of mode selection mechanisms. Having addressed the 

issues involved in coupling these mechanisms to linear controller design, we are 

in a position to address the design of these schemes themselves. 

• Studies of systems which show drastic performance degradation which is not 

the result of controller state initialization errors. Examples include double and 

triple integrators. These plants do not exhibit graceful performance degradation 

even when Mem[K(s)] = 0. 
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Appendix A - Passivity of Z(s) for H2 Optimal 
State Feedback Design 

In this appendix we demonstrate that 

where F is an H 2 optimal state feedback gain, is strictly passive. The proof given 

here uses the notation of (33] which treats the ''standard" H 2 problem for the plant 

( 44 ). Au i::Llten1i::Lte pruuf, applici::LLle tu ::;c:1.turntiu11 uuuli11eariLie::; i::; pruvi<le<l iu [85]. 

We will need the following version of the positive real lemma (see [1]). 

Lemma 7.3 Z(s) = [~ I ~] with (A, B) stabilizable is {strictly} passive if and ·,ly 

if 3 P = pT 2: 0 (> 0), L, and W0 such that 

ATP+ PA = -LLT ("' 'Yl) I __ ::) 

PB = cT -LWo (- r·)) '·-0-, 
W[Wo = D+DT (- •Y'3) I -~O, 

Proof See [1]. • • 
We assume that Fis the optimal state feedback gain for the plant (44) given by 

(7.254) 

where X > 0 satisfies the Riccati equation 

(Note that (Ap, C1p) observable is sufficient to guarantee X > 0.) 
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Rewriting ( 255) we have 

or 

(- ')5-) I,_. I 

Since X > 0 and C[pC1p 2: 0 we conclude (by Lyapunov's Theorem) that Ap+½B3pF 

is stable (in the sense that any x(t) which satisfies x = (A+ ½B3pF)x 1s bounded tor 

any x(O)). In order to rule out the possibility of jw axis eigenvalues of A+ ½B3pF 

we assume that (Ap + ½B3pF,C1p) is observable. 

To show that Z(s) is strictly passive, we demonstrate the existence of W0 , L, and 

P which satisfy the conditions of the positive real lemma. Let 

Wo=v2 I (7.258) 

and 

(7.259) 

so that, (252) and (253) of Lemma 3 are satisfied. With these definitions (251) becomes 

(7.260) 

which is equivalent to 

(7.261) 

But Ap + ½ B3pF is stable and FT F + P B3pB5pP ~ 0. Assuming that ( Ap + 

½B3 pF, F) is observable this implies P = pT > 0. Thus, by the Lemma 3, Z(s) 

is strictly passive, and we are guaranteed that the extended Kalman filter AWBT 

implementation is stable for all N E lvf J,f O • 
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Chapter 8 

Conclusions and Suggestions for 
Further Work - Part II 

8.1 Summary of Contributions 

A general theoretical framework has been developed to treat the multivariable AWBT 

problem. This theory borrows heavily from known results in linear systems theory and 

provides the practitioner with quantitative analysis and synthesis tools for designing 

control systems which must deal with constraints. Relevant extensions of the linear 

results to handle conic sector bounded memoryless nonlinearities have been developed. 

A novel technique for modelling multivariable saturations and the nonlinear ele

ments used to provide mode selection, in terms of a linear fractional transformation 

on a conic sector bounded structured nonlinearity, has been developed. This class of 

models has been shown to be rich enough to include essentially all known mechanisms 

which result in plant input limitations or substitutions. 

A quantitative objective for mode switching performance, minimization of con

troller dynamic memory, has been developed for the MIMO AWBT problem. This 

quantitative objective allows designers, for the first time, to analyze and synthesize 

AWBT schemes with analytical, rather than heuristic, techniques. This analytic ap

proach is shown to reproduce the proven heuristics ( e.g., PI anti-reset windup) in 

simple examples. The most significant advantage of the analytic technique is that it 

quantitatively captures the essential factor in AWBT performance, controller memory. 

and extends trivially to complex (MIMO, high order) control systems. 
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The identified stability and performance objectives are brought together to formu

late the first theoretically justified optimal AWBT synthesis problem. The synthesis 

problem is shown to be a special case of a constrained structure controller synthe 

sis (CSCS) problem. While general methods for solving CSCS problems are not yet 

available, early results using a numerical approach are very encouraging. 

A directional sensitivity problem, for certain MIMO systems subject to actua

tor saturations, has been discussed and a simple and effective (if ad hoc) solution 

developed. It has been learned that ill-conditioned plants and certain decentralized 

control variable parings (in particular negative RGA pairings) introduce significant 

limitations on AWBT performance. 

8.2 Suggestions. for Further Work 

The directional sensitivity results provide the first hint of results which will quantify 

achievable AWBT performance. Now that quantitative performance analysis tools 

are available, it is important to understand the impact on achievable performance of: 

• Intrinsic characteristics of the plant. e.g., right half plane poles and zeros, 

or ill-conditioning. The discrete time AWBT problem should be studied m 

detail to identify any fundamental issues unique to the discrete time case. 

• The iuH..ial linear controller design. Tra<liLioually ihe linear <lel,igu, I< (::;), 

has been obtained ignoring limitations and substitutions. Then AWBT com

pensation is added. It is important to understand when this decomposition can 

be justified in terms of achievable AWBT performance. For example, certain 

characteristics of K(s) may severely limit achievable AWBT performance. 

• Model uncertainty. The tools for robustness analysis are in place but they 

have not yet been used to study the simultaneous impact of constraints and 

plant-model mismatch on closed loop stability and performance. 

In addition to these applications of the theoretical tools developed, the following 

refinements of the tools should be pursued. 
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• Real versus complex perturbations. The software tools used to evaluate 

nonlinear stability and performance currently treat the conic sector bounded 

nonlinear perturbations as complex. Since these nonlinearities are memoryless 

only real perturbations need to be considered. Improved methods for the com

putation of real-µ should allow significant reduction in the conservativeness of 

the analytical tools. 

• More general multipliers. It is known that scalings other than the constant 

matrices used in this work are allowed in the stability and performance tests. If 

a convenient parametrization of a more general class of scalings can be found, 

the analysis tests will be improved. 

• Direct synthesis for controller dynamic memory. The current AWBT 

synthesis problem uses an H 00 overbound to minimize Mem(J((s)). Since the 

controller memory is easily characterized in the time domain by the control

lability and observability grammians, and the optimal static output feedback 

problem is also solved in this domain, it may be possible, by augmenting the 

required Riccati/Lyapunov equations to minimize Mem(K(s)) directly. 

• Application to additional "real world" examples. The true test of the 

theory lies in applications to nontrivial examples. It is hoped that the theory 

will eventually provide enough insight that good designs can be obtained very 

simply. It is hoped that eventually the optimal synthesis problem need only be 

applied to problems with very stringent performance requirements. 

An entirely new line of investigation, using the Hankel norm as a measure of 

controller memory (and perhaps complexity as well) is justified. With the AWBT 

synthesis problem we have demonstrated how novel design objectives, such as min

imizing controller memory, can be incorporated in systematic synthesis procedures. 

To the extent that many important design issues in real world engineering problems 

cannot be incorporated in the current optimal synthesis theory, it is important to 

investigate these novel extensions. A particularly significant area of research is to 

understand the trade-off between controller complexity and achievable performance. 
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Appendix A 

Decentralized Control System 
Design for a Heavy Oil 
Fractionator - The Shell Control 
Problem 

Abstract 

A hierarchical control system is developed for the heavy oil fractionator described 

in [80]. A series of analysis and synthesis steps are presented which guide the design. 

The focus of the analysis steps is the evaluation of achievable closed loop performance, 

independent of controller design. The synthesis steps then produce a control system 

which (nearly) realizes this performance level. The design and analysis tools used are 

Pv.almi.t.Pcl in t.Prms of the insight they provicle in this applir.at.ion, .ancl t.hPir applir.ahil

ity to more general problems. Specific areas in which theoretical results are needed to 

complement the existing tools for solving practical design problems are identified. A 

solution to the design problem which addresses all control objectives and observes all 

control constraints is presented. Simulation studies are provided which demonstrate 

the characteristics of the closed loop system. 
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A.I Introduction 

A.1.1 Problem Overview 

The control system design problem addressed in this paper is based on the problem 

statement presented in The Shell Process Control Workshop [80]. 

Figure 1 shows a schematic diagram of the fractionating column and lists the 

abbreviations used throughout the paper. The block diagram in Figure 2 defines the 

signals referred to as disturbances, d, controlled variables, y, measured variables, Ym, 

and manipulated variables, u. In general, the controlled variables, y, will be a subset 

of the measured variables, Ym. 

The Shell Control Problem is an interesting benchmark problem, on which avail

able theoretical approaches can be tested, because it includes many features - model 

uncertainty, input and output constraints, and an economic performance objective 

( optimization) - each one of which is of significant importance. Existing theoretical 

frameworks can easily handle any one or two of these features - the problem becomes 

challenging only when all aspects are considered simultaneously, as must be done in 

any realistic setting. We regard this problem as an opportunity to apply whatever 

design and analysis techniques allow us to solve the entire problem with all ob

jectives considered - rather than as a chance to ''sell" a particular pet methodology 

which considers only a subset of the problem objectives. 

A.1.2 Problem Statement Interpretation 

While the problem statement is relatively complete, many issues are not sufficiently 

explicit or are subject to interpretation. In this section we outline all interpretations 

which we have adopted in our treatment of the problem. We recognize that the 

problem statement lends itself to other interpretations which are perhaps equally 

valid; we adopt the following specific clarifications for concreteness. 
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Figure 1: Schematic view of the fractionator identifying all measured variables 1 ma
nipulated variables, and unmeasured disturbances. 
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Figure 2: Block diagram of the overall system. 

Control Objectives 

We have prioritized the stated objectives as follows: 

1. Provide integral action on TEP and SEP. 

2. Maintain IT EPI ~ 0.5 at all times. 

Setpoints, s 

3. Achieve a closed loop speed of response for TEP and SEP between 0.8 and 

1.25 Lime8 that. of the open loop speed of response. We will w,e seLLliug Lime 

(5%) of the nominal plant for step setpoint changes as our measure of speed of 

response. 

4. Achieve steady state offset in TEP and SEP less than 0.5 Cur arbitrary l RD 

and U RD step disturbances of magnitude less than 0.5 in the event of endpoint 

analyzer failure. 

5. Maintain BRT 2:: -0.5 at all times. 

6. Minimize B RD. ( Maximize heat recovery.) 
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Constraints 

We recognize a number of physical limitations which are absolute and not subject to 

interpretation by the designer. These are 

1. Sampling time ~ 1 minute. 

2. ITDI S 0.5, ISDI S 0.5, IBRD\ :S 0.5. 

3 Maximum move--si7.P of O.OA/min for TD. SD, and BRD. 

We regard 2. and 3. as equipment limitations such that if the control system demands 

values outside this range, the limiting value is applied. 

Disturbances 

We consider disturbances d( t) = [ l ii] in the following class 

d E {d(t): Jld(t)lloo '.5 0.5 Vt} (A.1) 

where llxlloo = maxlxd is the infinity norm on nn. 
I 

We recognize that our control system must meet Control Objectives 1-6 in re

sponse to disturbances that consist of arbitrary combinations of I RD and U RD such 

that the magnitudes of / RD and U RD remain less than 0.5. We will primarily be 

concerned with low frequency (step like) disturbances but we will not limit ourselves 

to this in the design. 

We also recognize that the system will be subject to unmeasured disturbances 

other than I RD and U RD. The control system must be able to reject these distur

bances as well. It is understood that the physical measurements will be corrupted by 

"measurement noise" at high frequencies and the control system must be insensitive 

to these noises. 
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Uncertainty 

We acknowledge that the uncertain model parameters £i, i = 1, ... , 5 are independent 

and vary between ±1, i.e., the actual plant may correspond to any combination of E; as 

long as each Ei is less than 1.0 in magnitude. It is understood that the true plant may 

change during operation in the sense that the Ei need not be fixed ( although unknown) 

but may be time varying. We further recognize that, although this is not mentioned in 

the problem statement, these models are inaccurate at "high" frequencies (relative to 

the open loop bandwidth), and recognize that this uncertainty may limit our design. 

Throughout the paper references to the nominal plant imply c; = 0, i = 1, ... , 5. 

A.2 Design Philosophy 

Our design philosophy is to produce a solution which is as simple as possible and 

simultaneously satisfies all of the stated Control Objectives. The approach we take 

to obtain such a solution is to decompose the overall problem into a series of smaller 

problems, each addressed individually. The control blocks designed for these sub

problems are then combined to form the overall control :system. In adopting this 

approach, careful consideration is given to the combination of the control blocks into 

a complete solution. In particular, we are interested in performing the decomposition 

and individual designs in such a way as to minimize interaction between subproblems. 

This approach is contrasted with the alternate class of techniques which address 

the complete system and all objectives simultaneously. By decomposing the problem 

into smaller manageable pieces, valuable insight is obtained about trade-offs in ob

jectives. For example, how do reprioritizing, modifying, or deleting objectives affect 

the final solution? This question is addressed in detail throughout the remainder of 

the paper. 

In order to maintain simplicity, we restrict ourselves to using existing theoretical 

tools as much as possible. We also note that an explicit objective of this work is 

the assessment of existing theoretical tools and the identification of areas where new 

theoretical results are needed to complement the existing theory. 
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A.3 Achievable Steady State Performance 

A.3.1 General Methodology 

In this section we present a general analysis technique for determining the achievable 

steady state performance for a system described by a set of uncertain steady state 

models subject to steady state disturbances of bounded magnitude. We are interested 

in studying characteristics of the model, uncertainty, expected disturbances, and con

straints which limit steady state achievable performance independent of control system 

design. Application of this technique to the Shell Control Problem provides valuable 

insight regarding the trade-off between the optimization objective, constraints, and 

maximum disturbance magnitude which can be accommodated at steady state. 

We consider: 

1. A scalar performance objective in terms of the controlled variables, y, and 

manipulated variables, u, of the form 

min f( u, y) 
u 

(A.:2) 

2. Steady state performance objectives and constraints which can be stated m 

terms of equality or inequality constraints of the form 

g( u, y) :S 0 ( :-\.:3) 

3. A set of steady state models, G(c) (u., d) r-+ y, parametrized by uncertain 

parameters c, in the set 

(A.4) 

4. Disturbances, d, which obtain steady state values which satisfy 
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We wish to evaluate the optimum value of the performance objective (2) as a func

tion of the constraints (3)-(5). Formally we pose the following optimization problem: 

Subject to: 

min max f( u, y) 
u cEe,dED 

g(u, y) < 0 

y = G(t, u, d) 

(A.6) 

(A.7) 

(A.8) 

The solution to (6)-(8) provides the best performance possible for an "open loop'' 

control design which determines u without using feedback information about the true 

plant and realized disturbance. In writing min max f ( u, y) we imply that u is known 
u fEe,dED 

when t and dare selected. Clearly in the generic case, where we require integral action 

on some subset of y, and dma.x =/- 0, (6)-(8) has no feasible solution. (For any fixed u it 

is trivial to find ad and t which produces y =I- 0.) By convention, we define r/>oi = oo 

in this case. 

We can also pose the companion closed loop problem. In this formulation, we 

assume that by using feedback the control system can exactly determine the true 

plant (t) and realized disturbance (d), at steady state. We postulate values of tmax 

and dma.x and ask: 

1. Is there a feasible input, u, which meets the specifications, g, for every possible 

plant and disturbance? 

2. If so, what is the optimal performance, <PcL, for the worst-case plant and dis

turbance? 

In order to answer 1. we pose the optimization problem: 



Subject to: 

d>cr = max min b 
' ., ,J~a.oh-altt1,1 -,.- d -p b lf:::~, t::: u, 

g(u,y) < b 

b > 0 

y = G(c, u, d) 

(A.9) 

(A.10) 

(A.11) 

(A.12) 

The max min formulation: as opposed to min max for the open loop problem, implies 

that c and d are known when u and b are selected. Clearly if ¢cL1,a.,b.iuy = 0 the 

answer to 1. is yes and it is meaningful to ask 2. If <PcL,.a .. 1n1aey > 0 then there 

is a plant and disturbance for which the performance specifications and constraints, 

g( u, y) :S 0, cannot be satisfied and we assign <Pc L = oo. 

Assuming <i>cL1m,bthty = 0, we answer 2. by solving: 

Subject to: 

<PcL = max min J ( u, y) 
lE£,dE1' u 

g(u, y) < 0 

y - G(c, u,d) 

(A.13) 

(A.14) 

(A.15) 

Since <l>cr, 1..,.,b,h•~ = 0, this problem always has a feasible solution. In general, the 

converse is not true, i.e., existence of a feasible solution to (13)-(15) does not imply 

<PCLtea,ibility = 0. c/JcL defines the optimum worst-case performance we can expect for 

any control system design. As such it is a meaningful benchmark against which to 

evaluate the performance of various control system candidates. 

By solving the closed loop problem subject to various assumptions regarding dis

turbances (the value of dmax), uncertainty (cmax), and including and excluding various 

performance requirements and constraints, (g), we can evaluate the cost in terms of 

the objective function,(!), of individual constraints and specifications. 

For example we might evaluate <f>cL as a function of dmax, by solving (9)-(12) and 

(13)-(15) with increasing values of dmax until a point is reached where </>cL,.
0
,.b,i.ty :/= 0. 
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This tells us not only the sensitivity of ¢cL to dmax, but also the maximum distur

bance magnitude which can be handled subject to the performance requirements and 

constraints, g. Similar studies can be undertaken to study the effect of model uncer

tainty. 

Obviously these optimization problems may be difficult or impossible to solve 

in the most general case. However, this approach results in simple linear programs 

(LP's) when some common simplifying assumptions are adopted, as an application 

to the Shell Control Problem demonstrates. 

A.3.2 Application to the Shell Control Problem 

For the Shell Problem, we have: 

1. The economic objective, 

min BRD 
TD,SD,BRD 

2. The steady state specifications, 

IT EPJ < 0.005 

ISEPI < 0.005 

BRT > -0.5 

and manipulated variable constraints, 

3. Models of the form, 

ITDI < 0.5 

ISDI < 0.5 

IBRDI < 0.5 

5 

G= Gu+ LciEi 
i=l 

(A.16) 

(A.17) 

(A.18) 

(A.19) 

(A.20) 

(A.21) 

( .\ .22) 

(A.:2:3) 
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where G0 is the nominal steady state gain matrix, E; are fixed perturbation 

matrices, and t E £ with Emax = 1.0, 

4. Disturbances defined by, 

(A.24) 

Because the system is subject to unmeasured disturbances and the model is not 

exact, we cannot hope to satisfy the integral action requirements for TEP and SEP 

by selecting TD, SD, and BRD in an open loop fashion. That is d>oL = oo for this 

problem. 1 

We next study the closed loop problem: 

<PcL = max min BRD 
c€l',d€1' TD,SD,BRD 

(A.25) 

Subject to: ITEPI < 0.005 

ISEPI < 0.005 

BRT > -0.5 
(A.26) 

ITDI < 0.5 

!SDI < 0.5 

IBRDI ::; O .• ~ 

Since the objective (25) and all constraints (26) are affine functions oft and d, it is 

sufficient (see [19]) to consider only the extreme values of the allowed disturbances, 

I RD, U RD, and the uncertain parameters E; (in all combinations). Furthermore, 

existence of a feasible solution to (25)-(26) implies </>ci,ec..,,,.litw = 0. This allows us 

to dispense with the general feasibility problem (0)-(12) and address <Pc£ directly via 

(25)-(26). 

1This is obvious ifwe require TEP= SEP= 0, and also holds for jTEPI '.S .005. ISEPI :S .005. 
In order to simplify the presentation we will often require true integral action, TEP= SEP= 0. 
although the analysis does not require this. 
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Defining the set 0 as the 27 corner points of the hypercube defined by E E £, d E V, 

we can rewrite (25)-(26) as: 

dJcL = max \V( E, d) 
[:]Ee 

(A.27) 

Subject to: 
\V(c,d) = min BRD 

TD,SD,BRD 

Subject to: ITEPI < 0.005 

ISEPI < 0.005 

BRT > -0.5 
( A.29) 

JTDI ~ 0.5 

ISDI < 0.5 

IBRDI < 0.5 

The subproblem (28)-(29) is simply a linear program (with £ and d fixed) so the 

evaluation of <PcL involves the solution of a finite number (27 in this case) of LP's. 

Actually some simple physical insights allowed us to solve far fewer problems than 

this. 

The results of this computation are shown in Figure 3. Here we have plotted <Pei 

as a function of dmax• The values of ci corresponding to the worst-case plant, and the 

worst-case disturbances are indicated as well. 

The largest value of d.,,.ar for which feasible solution can be found is 0.932, in

dicating that for all expected disturbances (dmax = 0.5) a combination of TD. SD, 

and B RD exists for which all specifications and constraints ( 1 7)-( 22) are met for all 

plants and disturbances. For the worst-case plant, with no disturbance ( dmax = 0) 

we can obtain a steady state BRD value of -0.135. For the worst-case disturbance 

of magnitude 0.5 or less we can obtain BRD = 0.078 at steady state. 

Conclusion A.l The steady state specifications can be met, for allowed models tn 

£, and all allowed disturbances in D with dmax = 0.5, if TD, SD, and BRD are 

adjusted on-line. 
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Minimum Achievable 
BRO at steady-state 

- 0.2179 

0.0782 

- 0.2146 

- 0.3407 

0.0386 

Table 1: Minimum achievable steady state B RD for each of the prototype test cases. 

Conclusion A.2 Simultaneous negative I RD and U RD disturbances most limit 

BRD minimization. 

For all plants and disturbances the limiting constraint at steady state is either 

TD saturation or the minimum BRT specification. In fact it can be shown that SD 

saturation is never active at steady state unless TD saturation is as well. 

Conclusion A.3 In operation TD will approach its upper limit and BRT its lower 

limit as BRD approaches its minimum achievable value. 

We have shown in Table 1 the minimum achievable steady state B RD for the 

specific plant and disturbance given for the 5 prototype outlined in the problem 

statement. These values are useful in assessing the performance of various control 

system designs. 

Using all three available manipulated variables, we can meet the steady state 

objectives. We next consider the possibility of setting BRD to a fixed value (the 

simplest possible heat recovery maximization scheme) and using TD and 5 D to meet 

the other control objectives. This corresponds to a mixed problem in which TD and 

SD are used in closed loop to attain integral action on TEP and SEP while B RD 

is selected off-line. In other words we ask: 



" What is thP minim11m fiud w1li1P of R Rn whirh is mnsistent with thP 

steady state specifications for all possible plants and all possible distur

bances?'1 

We require true integral action so that at steady state: 

[
TEP] [TD] 0 = = Gyu + Gyd 
SEP SD 

and TD and SD are uniquely determined by 

We then pose 

Subject to: 

[ 
TD l -1 SD = -GyuGyd 

!RD 

URD 

BRD 

<I> fixed BRD = min max B RD 
BRD (€e,de!> 

BRT > -0.5 

jTDI < 0.5 

ISDI < 0.5 

IBRDI < 0.5 

where TD a.nd SD a.re given by (31). 

!RD 

URD 

BRD 

( A.30) 

( A .31) 

(A.32) 

( A.33) 

Here the objective function is independent of c and d so we can rewrite (32)-(33) 

as the semi-infinite LP: 

<PJixed BRD = min BRD 
BRD 

(A.:34) 

Subject to: BRT > -0.5 

jTDI < 0.5 
V d E I) and V c E E (A.:35) 

ISDI < 0.5 

IBRDI < 0.5 
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<pfixed BRD 

0. 0 0 - 5 1 4 3 

- 0. 1 0 

- 0. 2 0 

- 0. 3 0 

- 0. 4 0 

0.00 0. 25 0. 50 0.75 1. 00 1. 25 dmax 
Figure 4: Solution to the optimal closed loop steady state performance problem ( *) 
and limiting curves for the five prototype test cases. 

Using the fact that the constraints are affine in t: and d allows us to obtain the finite 

LP: 

<PJixed BRD = min BRD 
BRD 

(A.36) 

Subject to: BRT > -0.5 

ITDI < 0.5 
V [:] E0 ISDI < 0.5 

(A.37) 

IBRDI < 0.5 

We plot ¢>fixed BRD as a function of dmax as curve* in Figure 4. Table 2 indicates 



Case 

Worst 
Case ('1f) 

(-1, -1. I, !, I) 

( 0. 0, 0, 0, 0) 

2 (-1, -1, -1, 1, 1) 

3 ( I, -1, 1, I, 1) 

4 ( l, l, 1, 1, 1) 

5 (-1, 1, o. o. 0) 
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Active 

Constraint as 
dmax increases 

BRT = -0.5 
TD= 0.5 

TD= 0.5 

TD= 0.5 

BRT = -0.5 
TD= 0.5 

BRT = -0.5 
1D = 0.5 

BRT = -0.5 
TD= 0.5 

Largest 

Feasible $fixed BRD 

dmax dmax = 0 

0.135 
0.353 

0.743 -0.318 

0.353 0.187 

-0.33,1 
0.982 

-0.295 
0.946 

-0.138 
0.402 

Table 2: Active constraint in the optimal open loop steady state performance problem 
(*) and for each of the prototype test cases. 

the active constraint limiting a reduction of BRD and the maximum value of drnax for 

which a feasible solution exists. These results indicate that we cannot meet the given 

steady state performance objectives for all models (23) and all disturbances (24) with 

dmax = 0.5 with any fixed value of BRD. In fact the maximum magnitude of an 

arbitrary disturbance which can be handled for all models is 0.35, and the minimum 

possible value for BRD even when there is no disturbance is -0.135. The worst-case 

plant is given by e1 = -1, e2 = -1, e3 = 1, e4 = 1, es= 1. 

For comparison we have plotted the minimum achievable BRD a.s a function of 

dmax for the models corresponding to the 5 prototype test cases suggested in the 

problem statement. 

Conclusion A.4 BRD must be adjusted on-line. The strong dependence of the optz

mal BRD on the plant indicates that even if disturbance measurements were available. 

BRD could not be selected via off-line model based optimization. 
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A.4 Preliminary Control Structure Analysis 

In this section we are interested in studying the ::;tead.:,, ::;tdte and <lynarnic d1ara,c

teristics of the system model and performance objectives which influence the choice 

of controller structure. We approach the analysis seeking results which will reject 

possible control structure options, independent of the choice of a controller design 

method. 

A.4.1 Measurement Selection 

In general we have available 7 measurements and 3 manipulated variables as shown 

in Figure 2. We are motivated by a desire to minimize controller complexity to reject 

the possibility of using all 7 measurements to determine the 3 manipulated variables, 

i.e., implementing a single 3 x 7 transfer matrix for the block labeled control system 

in Figure 2. This leads us to ask the question: \Vhich measurements are essential to 

meeting the stated Control Objectives? 

Time Delay Considerations 

Clearly the objective with highest priority, integral action for the endpoints, requires 

that endpoint measurements be used. It can be shown that using only TEP and 

SEP measurements, i.e., Ym = [~j :] , it is impossible to satisfy the jT EPI :$ O .. j 

constraint due to the large measurement delays associated with the endpoint ana

lyzers. A step disturbance, [tii] = [i:~], will cause TEP to reach 0.62 (based 

on the nominal model) before any control action based only on [~i:] can take 

effect. Control action must be taken before the effects of disturbances appear in the 

endpoints. 

Conclusion A.5 Any control system which is to satisfy the problem objectives must 

employ secondary (temperature) measurements to achieve adequate endpoint distur

bance rejection. 
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In order to guarantee the B[if plonstraint, B RT measurements must be used. 

Is the measurement set Ym = SEP adequate'? Since B RT measurements signal 
BRT 

the effect of disturbances without delay, TEP constraint satisfaction is at least the-

oretically possible. It is not clear, however, that the endpoint specifications can be 

met in the event of analyzer failure. In the next section we investigate the possibil

ity of meeting the failure tolerance objective by enforcing integral action on column 

temperatures. 

Offset in the Event of Analyzer Failure 

In the most general case we could use the three available manipulated variables to 

achieve zero offset in three linearly independent "measurements," each consisting of 

some linear combination of the five available temperatures. The appropriate analysis 

of this problem is as follows. 

We denote the computed "measurements," y~, and introduce the 3 x ,5 matrix, 

1'11, relating y~ to the physical measurements, Ym, that is, 

(A.38) 

Introducing the notation Gab to denote the steady state gain between input b and 

output a, we have 

(A.39) 

(A.40) 

where y = [I ft]. Note that the steady state gain matrices are a function of the 

uncertain parameters, €. Substituting (39) into (38) we have 

(A.41) 
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By assumption y~ = 0 at steady state. Therefore 

(A.42) 

Substituting ( 42) into (40) yields 

(A.-13) 

We are then interested in solving 

(A.--1:4) 

where II · 11 00 is the matrix norm induced by the infinity norm on R}. 

While we can not suggest a technique for solving this general problem we have 

studied a simpler approach in detail. Choosing to control the available measurements 

directly, rather than some arbitrary linear combination, significantly simplifies the 

analysis. 

It can be shown (numerical results are in Table 3) that by using any two ma

nipulated variables and selecting any two physical measurements (temperatures) the 

minimum steady state endpoint offset is 0.41 for the worst-case plant and disturbance 

bounded in magnitude by 0.5. Achieving integral action in any 3 of the 5 temperature 

measurements results in a larger worst-case offset. It is clear that even considering 

linear combinations of the available measurements we will not be able to obtain steady 

state offsets anywhere near 0.005 as specified in the problem statement. 

Conclusion A.6 The stated steady state offset specification, 0.005 maximum, cannot 

be met in the event of analyzer failure. A realistic specification in the event of analyzer 

failure is steady state offset :5 0.5. 

We note that this conclusion implies that the TEP constraint (Objective 2) 1s 

feasible ( at least at steady state) in the event of analyzer failure. 



Measured Manipulated Worst Case 
Variables Variables RGA11 l~T:p1l Plant 

(Ej) 

TI, SDT TD,SD 4.6 23.53 (0,0,0,0,0) 
SD,BRD 4.6 ~3.81 (0,0,0,0,0) 

'IT, IRT TD,SD 1.8 0.49 (•l,l,0,0,0) 
SD,BRD 1.9 ~ 0.58 (0,0,0,0,0) 

'IT,BRT TD,SD 1.8 0.41 (•l,•l,1,1,1) 
SD,BRD 1.9 ~0.77 (0,0,0,0,0) 

URT,SDT TD.SD 3.9 4.90 (-1.-1.1.1.1) 
SD,BRD 5.6 ~0.74 (0,0,0,0,0) 

URT, IRT TD,SD 2.0 0.47 (-1,-1,1,1,1) 
TD,BRD 6.7 ~ 0.89 (0,0,0,0,0) 
SD,BRD 2.0 ~0.62 (0,0,0,0,0) 

URT, BRT, TD,SD 1.7 0.45 (-1,•l,l,l,l) 
TD,BRD 6.0 ~1.09 (0,0,0,0,o) 
SD,BRD 2.0 ~0.77 (0,0,0,0,0) 

SDT, IRT TD,SD 2.3 0.48 (-1,l ,l ,l ,l) 
SD,BRD 2.5 ;;;:0.55 (0,0,0,0,0) 

SDT,BRT TD,SD 2.3 ~0.51 (-1,1,l,1,1) 
TD,BRD 2.6 ~l.20 (0,0,0,0,0l 

SD,BRD 2.6 ~0.78 (0,0,0,0,0) 

Table 3: Secondary measurement selection data for all pairings with RGA11 ::S 10. 
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Another possible approach to reducing steady state offset is to construct an es

timator ( e.g., Kalman filter) to estimate disturbances, I RD and U RD. Csing this 

estimate, inputs can be calculated which would eliminate endpoint offset for the 

nominal model. To determine the feasibility of this approach we assume that the 

disturbances can be estimated perfectly at steady state, and study the offset which 

results for the worst-case plant. We have, 

(A.4.S) 

where u represents any two of the three available manipulated variables, and where 

we assume d to be known. Then y, the endpoints predicted by the nominal model, 

Fyu, Fyd, is simply 

(A.46) 

Selecting u to make fj = 0 implies 

(A.47) 

The corresponding steady state endpoint values are given by 

(A.48) 

As expected y vanishes if there is no model uncertainty (Pyu = Fyu, Pyd = ?yd). 

Unfortunately for the best choice of two manipulated variables, and the worst-case 

plant and disturbance, the steady state endpoint offset is 0.34. 

Conclusion A. 7 Even if we know the disturbances exactly we cannot meet the stated 

performance requirements because of model uncertainty. Construction of an elaborate 

disturbance estimator provides steady state performance little better than simply con

trolling column temperatures with integral action. 
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A.4.2 Evaluation of Potential Control Structures 

The analysis in Section 4.1 indicates that the control system will necessarily have 

at least four measurements (TEP, SEP, and BRT, plus another temperature for 

control in the event of t>nclpoint. an;:iJyzPr faihm~) ancl thrPe manip11lr1.te<1 vr1.riah]Ps 

(TD, SD, and BRD). Two obvious possibilities present themselves for designing a 

nonsquare controller for this application. 

The first option is to use model predictive control. It has the advantage that it can 

handle the BRT constraint, as an associated variable, in a straightforward manner. 

Unfortunately current M PC formulations such as QDMC [44] which assume that 

the future effects of disturbances on the outputs will be equal to the current difference 

between measurements and outputs predicted by the nominal model, cannot not sat

isfy the TEP constraint. With the current formulation the disturbance information 

which appears m the BRT measurement 1s not used to predict that the endpomts 

will be affected in the future. Control actions to keep the endpoints at the setpoint 

will not begin until the effect of the disturbance appears in the endpoints which is 

too late to meet the TEP constraint as argued in Section 4.1. 

The second possibility is to apply linear optimal control theory ( H2 or H 00 for 

example). \Vhile a controller designed in this fashion would indeed use the temper

ature measurements in a meaningful way, and could incorporate model uncertainty 

( e.g., µ-synthesis), no provision for the BRT and TEP constraints could be explicitly 

incorporated. In addition, such a design requires the specification of a large number 

of performance and uncertainty weights, provides little insight about the trade-offs 

between competing performance objectives, and provides no means for on-line con

troller adjustment. Rather than apply either of these techniques immediately, we 

choose to make use of the insight gained from our simple time delay analysis. 

There appears to be a natural decomposition between measurements which we 

can affect rapidly (temperatures) and those we cannot (endpoints). This division 

suggests a cascade decomposition of the control system block of Figure 2 as depicted 

in Figure 5. The attractiveness of this decomposition is that we are faced with two 
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independent controller design problems of low dimension rather than a single large 

controller design problem. The secondary controller could be designed to achieve 

high closed loop bandwidth since the delays in Gs are small. The large delays in Gp 

would limit the achievable bandwidth for the primary system. Since these bandwidth 

limitations are inherent in the plant, it would be expected that the linear optimal 

control approach would result in a controller in which this decomposition was implicit 

(and obscured). 

A.5 Secondary Control System Design 

Adopting the cascade decomposition shown in Figure 5 we turn our attention to the 

design of the secondary ( temperature) control system. After the design and analysis 

of the secondary loops are complete we will consider the primary controller design 

problem. 

The objective of the secondary control system is to control some set of column 

temperatures with relatively high bandwidth in order to reduce the effect of distur

bances on the endpoints. We will also be concerned with controlling the temperatures 

at steady state in such a way as to minimize endpoint offset in the event of analyzer 

failure. 

A.5.1 Preliminary Uncertainty Analysis 

The transfer function matrix of interest for the seco[ndrt delsign is from available ma-

TD URT 
nipulated variables, [ SD ] , to measurements, SDT . The model uncertainty 

BRD !RT 
BRT 

associated with this transfer matrix is structured as diagonal input uncertainty, i.e., 

we can write 

(A.-19) 

where G is the true plant, G the nominal model, Ea is a constant matrix, and 

6. = diag{c1 , c2 , c3 }. It is well-known [87,88] that for model uncertainties of this form, 
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large Relative Gain Array ( RG A) elements in the plant severely limit closed loop ro

bust performance. Since the input uncertainties are independent of frequency, the 

steady state RG A is a good measure of model uncertainty sensitivity in this problem. 

Conclusion A.8 For good robustness properties, controlled and manipulated vari

ables for the secondary control system should be chosen such that the RG A is small. 

A.5.2 Controller Design 

Recall from Section 4.1 that in order to minimize endpoint offset when the analyzers 

fail it is sufficient to control two temperatures. Since there is nothing obvious to be 

gained from a more complicated secondary control system, we choose a 2 x 2 structure. 

Controlled and Manipulated Variable Selection 

:o::::l:: :::a:l::l: ,2 f ~o: c::: fo[rn~ise:::d:r::~:::~t:~u:::::l~:le~'ti::: 
/RT 
BRT 

among [ JJD] ). Based on Conclusion 8, regarding model uncertainty sensitivity, 
we reject any such choices which have a ( 1, 1) RG A element greater than 10. This 

elim.inaLes 11 possible choices, leaving the 19 possible choices outlined in Table 3. 

Among the remaining possibilities we wish to select temperatures which are most 

sensitive to endpoint changes. C'sing our steady state results we reject any selections 

which result in endpoint offset for the worst-case plant greater than 0.5 for jjdli= :::; 

0.5. This leaves 5 viable candidates, all of which have manipulated variables, u = 
[IE] . The steady state analysis indicates that ( at low frequencies) each of these 

choices is comparable in terms of endpoint sensitivity ( offsets range from 0.41 to 

U.4~ ). 

Dynamic considerations are used to make the final selection. Examining achievable 

performance in terms of the limitations caused by time delays clearly differentiates 

the remaining choices. Performing a minimum time delay factorization [56], and ex-
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amining the minimum resulting closed loop delays, clearly identifies y = [ 11;[r] and 

tl = [I£] as the optimal controlled and manipulated variable choices. 

Conclusion A.9 The measurement set Ym = [{lr] and manipulated variable set 

u = [ 1£ ] poses little robustness problems (RGA 11 = 1.8) and provides reasonable 

control in the event of endpoint analyzer failure (endpoint offsets less than 0.5 for any 

l!dlJoo ~ 0.5 and llc:lloo :S 1.0). 

Controller Structure 

There are two obvious choices for the 2 x 2 controller design. These are a MI 1~[ 0 

design ( e.g., Af PC, H2 , H00 ) or a decentralized design. To minimize control system 

complexity we will only consider the Af IA10 alternative if the simpler decentralized 

approach can be shown to be inadequate. 

In order to determine the degree to which the secondary plant, 

(A.50) 

is decoupled we evaluate the µ-interaction measure [51,52] as a function of frequency, 

Figure 6. Closed loop stability is guaranteed for the 2 x 2 system if single loop 

designs result in complementary sensitivity functions Ti(s) = G1iCii(l + Gi1 Cii)- 1
, 

which lie below the µ-interaction measure sufficiency constraint. Since the constraint 

lies above 1 in the frequency range over which we are interested in achieving good 

control, stability problems due to interactions will not limit our design. 

Conclusion A.10 Single loop design of a decentralized secondary controller should 

provide adequate closed loop per/ ormance. 

The sum of the absolute values of the elements of the RC A ( a lower bound on the 

minimized condition number) as a function of frequency is also shown in Figure 6. 

Since we know that large RG A elements indicate sensitivity to diagonal input uncer

tainty, and this value is modest in the range of frequencies over which we desire tight 
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Figure 6: µ-interaction measure constraint and the sum of the absolute values of the 
RG A elements for the secondary control loop. 
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control, we conclude that model uncertainties will not severely impact the control 

system design. 

Conclusion A. I I Good nominal performance for the decentralized controller will 

imply good robust performance as well. 

SISO Controller Design 

Both time delay and steady state RG A analysis suggest pairing TT with TD and 

I RT with SD. We are therefore interested in designing SISO controllers for: 

G11 (s) 
3.66 ± 2.29 -9s (A.51) 

9s + 1 
e -

G22 (s) 
4.18 ± .35 -4s (A.52) = e 

33s + 1 

For simplicity we will use PI controllers ( unless they prove to be inadequate). \Ve 

adopt the IA1C tuning procedure (Appendix A) (84] to determine PI settings which 

provide robust stability and performance. This procedure involves a single adjustable 

tuning parameter,.\, which is directly related to the closed loop speed of response. Cs

ing the program ROBEX [63,64] we determine a value of,\ for each controller which 

guarantees robust stability and performance. The resulting .\ and corresponding PI 

settings a.re summarized in Table 4. 

A.5.3 Control System Analysis 

We first verify closed loop stability with the µ-interaction measure for the given 

controller designs. The sufficiency condition and individual loop complementary sen

sitivity functions are shown in Figure 7. Since the bound is (easily) satisfied at all 

frequencies we are assured that the nominal 2 x 2 system will be stable. 

The single loop complementary sensitivity functions plotted in Figure 7 indicate 

that the nominal performance should be adequate. We verify this by simulating the 

2 x 2 system for a step disturbance, d = [tii] = [~j] as shown in Figure 8. The 
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Closed Loop 
Controller Speed of 1/ti td tf 

Response ()..) 

TT 4 0.43 0.12 0.95 

IRT 4 0.30 0.045 1.53 

TEP 00 2.23 0.0108 5.90 3.67 

SEP 50 0.407 0.025 9.46 12.5 

BRT 3 1.16 0.0344 5.50 5.55 

~h,12~rvia20: C!mtmll~[ 

Priority 1 &) 0.612 6.8 E-3 2.3 
(TEP) 

Priority 2 25 0.712 0.022 3.16 
(TD) 

Priority 3 25 0.0736 0.0187 11.6 
(SD) 

Priority 4 100 O.o128 0.0100 79.3 
(BRT) 

Priority 5 1.25E-4 
( Optimization) 

Table 4: Summary of all control system parameters. 

temperatures settle in less than 100 minutes, verifying that the secondary loops are 

fast relative to the primary (endpoint) loops for which our settling time specification 

is approximately 600 minutes. TEP and SEP are shown in Figure 8 and indicate 

that temperature control is effective in attenuating the effect of disturbances on the 

endpoints. 

We also observe in Figure 8 that BRT, which is not controlled, exhibits large 

excursions for a short time in response to U RD and / RD disturbances ( the ::;tcu.dy 

state deviation is relatively small). Since these rapid transients might easily violate 

the BRT ~ -0.5 constraint, the primary controller must act to attenuate them. 

While µ-analysis theory could be applied to assess robust stability and perfor

mance, based on our earlier results (Conclusions 9 and 11) we omit this invol\'ed 
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Sufficient Condition for Stablility 

µ 

Complementary 
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1 TT /TD 
2 IRT/SD 

0.01 1.0 

Frequency 

10.0 

Figure i: Verification of closed loop stability for the secondary controi system. 

analysis. If the designer is not persuaded by our earlier analysis or would like to 

increase confidence that robustness will not be a problem here, we suggest that a 

complete µ-analysis, for real perturbations, be carried out. 

A.6 Primary Control System Design 

Having completed the secondary controller design, we now study the effective plant, 

with the secondary loops closed, relating [ {frir] to the available primary measure-

~

F', Pl EP 
ments U RT as shown in Figure 9. In this section we will develop a primary control 

DT 
BRT 

system design with the following objectives: 

1. Achieve integral action for TEP and SEP. 
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Figure 9: Block diagram for design of the primary controller. 

2. Achieve a closed loop speed of response for TEP and 5 E P between 0.8 and 
1.2,5 times that of open loop. 

3. Attenuate rapid large magnitude excursions in BRT observed in the secondary 
control system simulation. 

A.6.1 Controller Structure 

:: o:der[f if]eet :::o::j:::v:i:~~:ecl:~ ,::::,:h:d:::~:;: :•:;:m.:;it~:::; 
BRT 

:::::e:~1n~e :• x w~llw~:~y ,::n:::::o::: ~~~::: :t~ T[il i]he .::i:::,:::::reo~ 
BRT 

variables u = [ }f fn] 
We are again presented with a choice between Af IMO (e.g., Af PC, H2 , H00 ) and 

decentralized controller designs. For ease of design, understanding, on-line adjust

ment, and implementation, we consider first the fully decentralized option. 

Variable Pairings 

In order to develop a decentralized design we must determine the best pairing between 

manipulated and controlled variables. The RG.4 of the effective plant, GeJ 1 , 1,vith the 
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suggesting the pairing, 
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TTsp IRTsp BRD 

TEP .986 0 .014 

SEP .008 .117 .875 

BRT .007 .882 .111 

TEP - TT$p 

SEP - BRD 

BRT - IRT$p 

(A.53) 

(A.54) 

(A.55) 

(A.56) 

Dynamic considerations indicate that BRT must be paired with BRD. We note 

that G ef f has the following time delay structure, 

TT$p I RT$p B RD 

TEP 27 

SEP 18 

BRT 20 

28 

14 

22 

27 

15 

0 

(A.57) 

The only manipulated variable which can be used to effect the BRT within the first 

20 minutes following a disturbance is BRD. BRT excursions observed in simulations 

of the secondary control system are often on the order of 0.5 within 20 minutes. This 

suggests that with any other pairing, BRT would have to be held above zero at steady 

state in order to avoid transient BRT constraint violations. This severely limits heat 

recovery (the minimum value which BRD can assume at steady state). Incorporating 

;:i, BRT > 0 r.onst.ra.int in (26)-(27), ancl solving we find that even with no disturbance, 

BRD must be greater than 0.0 at steady state for the worst-case plant. 

Conclusion A.12 BRT must be paired with BRD. 

Referring to the steady state RG A, the only reasonable pairing which includes 
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TEP - TTsp 

SEP - IRTsp 

BRT - BRD 

(A.58) 

(A .. 59) 

( A.60) 

The µ-interaction measure for the pairings above is shown in Figure 10. It is imrnedi

n.t.Ply c:Jpar that int.Prad.iom; ;:i,rP signific:a.nt at all frP<JnP.nriPs, inc.lmling st.Pacly st;:it.p_ 

Since the constraint lies significantly below 1 at steady state, we will not be able to 

perform independent designs and guarantee MI l'vf O stability. Thus, the only viable 

fully decentralized pairing demonstrates severe interactions. 

Conclusion A.13 A fully decentralized primary controller is infeasible. 

Decoupling 

Rather than abandoning the decentralized approach we build on our accumulated 

insight. From the steady state RG A (53) it is clear that the major interactions 

which occur at low frequencies are between the / RTsp +-+ SEP and B RT +-t B RD 

loops. The BRT +-+ BRD pairing, determined necessary to achieve sufficiently high 

bandwidth to reject BRT transients, is obviously poor at low frequencies. To deal 

with these low frequency issues we propose a steady state decoupler to be used in 

conjunction with diagonal PI D controllers. The primary controller will then be of 

the form 

(A.61) 

where D is the constant matrix 

.870 -.097 .150 

-.026 .084 .848 

-0.59 -.487 .643 
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Figure 10: it-interaction measure constraint and the sum of the absolute valnP-: of 
the RG A elements for the primary control loop. 
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Figure 11: µ-interaction measure constraint and the sum of the absolute values of 
the RGA elements for the primary control loop with the steady state decoupler. 

Examining the µ-interaction measure for the decoupled plant, GD = C ef 1 D, 

shown in Figure 11, we see that interactions are not a problem for frequencies less 

than w ~ .02 rad/minute. If we are to push the closed loop bandwidth much past 

this range, we will have to use "dynamic decoupling," i.e., a full M IAfO design. 

Conclusion A.14 A steady state decoupler should adequately decouple the plant over 

the desired clo:5ed loop bandwidth. 

A.6.2 Controller Design with Decoupler 

PI D controllers were designed for the diagonal elements of the decoupled plant, CD~ 

using the I MC - PI D tuning procedure (Appendix A). The closed loop speed of 

response for the endpoint loops was selected to satisfy the endpoint speed of response 
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Figure 12: Verification of closed loop stability for the primary control system with 
steady state decoupler. 

specification. The DRT _, DRD loop was tuned aggressively in order to provide 

attenuation of B RT excursions. 

A.6.3 Control System Analysis 

The nominal stability test based on the µ-interaction measure is demonstrated rn 

Figure 12. Although the current design does not pass the sufficient condition at 

high frequencies, the system is stable. Detuning the BRT - BRD loop to satisfy 

the µ-interaction measure constraint would allow large BRT transients. These large 

transients would require steady state operation with BRT relatively high in order to 

avoid constraint violation when disturbances occur. This precludes reducing B RD 

to achieve heat recovery. If transient B RT violations are allowed, then the B RT -

BRD loop could be detuned, significantly reducing high frequency interactions. 

The response of the closed loop system, consisting of both the primary and sec-
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ondary controllers, to a disturbance d = [bi~] = [~J] is shown in Figure 13. 

All control objectives are satisfied except for optimization. We note that arbitrarily 

selecting a BRT setpoint of 0.0 results in a steady state constraint violation in TD. 

A.1 Supervisory Controller 

>l"othing in our current control system design explicitly deals with the output con-

strain ts 

ITEPI < 0.5 

BRT > -0.5 

or input constraints 

ITDI ~ 0.5 

!SDI < 0.5 

IBRDI < 0.5 

Furthermore we have not outlined a procedure for optimizing heat recovery. 

(A.63) 

(A.64) 

(A.65) 

(A.66) 

(A.67) 

In principle we could resolve these issues by discarding our primary controller 

design and replacing it with a model predictive control scheme. Such a controller 

would seek to minimize some combination of endpoint offsets and BRD. While this 

approach might work, it would require the specification of a large number of tuning 

parameters (objective function weights, horizon lengths, etc.) whose effect on closed 

loop performance is indirect and unclear. In addition, while predicted outputs would 

satisfy the constraints, there is no guarantee that actual outputs would do so. With 

the uncertainty present in this problem this is not an insignificant issue. We saw in 

section 4.1 that even if the disturbances are known exactly, the difference between 

endpoints predicted by the nominal model (0.0) and resulting from the worst-case 

model (0.34) can be large. Instead we develop a supervisory controller which adjusts 
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Figure 14: Block diagram of the supervisory controller. 

the B RT$p to prevent constraint violations and achieve optimization. 

A.7.1 Controller Objectives 

The supervisory controller has the following objectives: 

1. Maintain IT EPI ~ 0.5 

2. Maintain IT DI $ 0.5 

3. Maintain JSDI ~ 0.5 

4. Maintain BRT ~ -0.5 

5. Minimize BRD (Maximize heat recovery). 

BRT sp 

These objectives parallel the control objectives of Section 1.2. The TD and 5 D 

saturation objectives are prioritized above the BRT constraint and optimization ob

jectives to guarantee that integral action of TEP and SEP is achieved. 

A. 7.2 Controller Design 

The supervisory controller is shown schematically in Figure 14. lt consists of a d1-

agonal block of four PD controllers, a logic block, and a SISO integrator. Each of 



260 

the PD controllers is designed to determine the rate at which the BRTsp should be 

:ha::::e ;n ::d::yt:;:::e:e::r: t::r:::::iso[Yl]nt::~::, o::e::i:e::::d, t~
1
::u,:h 

BRT 
perviwry cu11Lruller acLts ats a PI conLroller (PD Lhrough I ey_uals PI) to return the 

variable with highest priority to its threshold value. 

These PI controllers are designed using the I AJC tuning rules. Again a single 

tuning parameter, >., directly effecting the closed loop speed of response, is specified 

for each PI controller. 

Thresholds 

The logic portion of the supervisory controller uses threshold values for IT EPI, 17'D1, 
ISDI, and BRTmin to determine whether or not to activate the corresponding objec

tive. These threshold values are selected to be more conservative than ±0.5 in order 

to avoid operating the plant on an active constraint at steady state. For IT E PI, 

iTDI, and ISDI these thresholds are ±0.45 (90% of range). Since BRT is subject to 

short time transients in response to disturbances, the BRT threshold is selected to 

be more conservative, -0.20. If ITEPI, ITDI, ISDI, and BRT do not exceed their 

thresholds then the active priority is maximization of heat recovery. To achieve this 

the BRTsp is reduced by a constant amount at any sampling time in which no higher 

priority objective is active. This structure assures that the heat recovery is increased 

until a limiting constraint (generally TD ~ 0.45 or BRT :s; -0.20) becomes active. 

The constant optimization rate is chosen to be slow enough to not interfere with 

the higher priority objectives. Specifically we set 6BRT3 P = l.25X10-4
) the maxi

mum rate ramp change in BRT8p which results in ITEPI :5 .005 and ISEPI :5 .005 

at steady state. Clearly we could optimize faster but this would interfere with the 

higher priority endpoint objective. 

In simulations with step disturbances, ITEPI and !SDI have never exceeded their 

thresholds. 
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A. 7.3 Controller Implementation 

The logic block computes its scalar output using the following algorithm: 

If ITEPI 2: 0.45 
then 6. BRT3P = V1 

Else if ITDI 2: 0.45 
then 6. B RT3p = v2 

Else if !SDI 2: 0.45 (A.68) 
then 6. B RT3p = V3 

Else if BRT ~ -0.20 
then 6. BRT3p = V4 

Else 6.BRTap = 1.25 X 10-4 

where V = ml is the output of the p D block. The advantage of using a p D 

controller for each objective and a single integrator is that this structure provides 

bumpless transfer when the logic block switches objectives. 

A.8 Control System Overview 

The complete control system, comprised of primary, secondary, and supervisory con

trollers is outlined in Figure 15. The overall system includes only nine adjustable 

tuning parameters, ,\i, i = 1, .... , 9 which correspond to desired closed loop speeds 

of response. The parameters selected ( and the corresponding PI D parameters) are 

summarized in Table 4. 

The decomposition of the control systems into the hierarchy 

Supervisor ---+ Primary ---+ Secondary (A.69) 

provides several advantages. First the effectiveness of each level of the hierarchy can 

be independently determined by comparing the performance of each level with its 
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design objectives. This allows for simple commissioning and debugging. The levels in 

the control system hierarchy can be brought on-line, tested, and tuned sequentially. 

Adjustment ot any controller in the hierarchy does not require re-tuning of any con

troller lying belov,' it. Failure of any level of the system requires only the levels above 

it be taken off-line, with predictable impact on system performance. 

A.9 Prototype Test Cases 

The simulation studies suggested in the problem statement are summarized in Fig

ures 16-20. For each test case we demonstrate the performance of each level of the 

hierarchy including temperature control, endpoint control, constraint handling and 

opt;:i:l:~=~lations the system was.brought to steady state with [If :i = [ ~:~] 
BRT -0.20 

before the introduction of the specified disturbance at time zero. This allows us to 

demonstrate disturbance rejection from an optimized steady state condition. 

All simulations meet all specifications stated in the problem statement at all times. 

A.IO Conclusions 

A.10.1 Control System Design 

A successful control system design has been completed. The control system has a 

small number of physically meaningful tuning parameters. With the specified values 

of these parameters, the control system meets all of the control objectives, is failure 

tolerant, and has an easily understood hierarchical structure. 

A.10.2 Possible Additional Analysis 

We have not completed an elaborate robustness analysis of the closed loop system. 

Instead we have used a priori analysis to guide the design of a control system which 

is insensitive to model uncertainties. Certainly structured singular value theory could 
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be used to guarantee robust stability, and with appropriately chosen weights robust 

performance of the primary and secondary control loops. In order to be meaning

ful the model uncertainty description provided in the problem statement should be 

augmented with unstructured "high frequency'' uncertainty to capture the effects of 

unmodelled dynamics. 

\Ve have not provided any analysis of the supervisory controller. Specifically we 

cannot absolutely guarantee that in practice all objectives would be met at all times. 

Instead we have developed a simple system, whose operation is easy to understand. 

which is amenable to on-line adjustment, and which meets all control objectives in 

simulation. 

A.10.3 Identified Limitations of Existing Theory 

Assessment of Achievable Performance 

We have made heavy use of the feasibility results of Section 3. Generalization of 

these methods to handle more complicated uncertainty descriptions, and perhaps 

dynamic performance specifications, would be of great use to control system designers. 

Without accurate information about achievable performance, independent of control 

system design, it is impossible to assess the success of any particular design. 

Interaction Analysis 

Generalization of existing tools for interaction analysis ( e.g., RC A) to nonsquare sys

tems would be very beneficial. For example we have no methodology for analyzing 

:::~:c:i:::.b:•:: ::,::::::a:i:~•::::~:::nct:uL,fs fr]' .::e ::n:::::::: t~~,::• 
ltRT 

ables [ I£ ] , but we have no available tools to analyze steady state and dynamic 
BRD 

interactions for the corresponding 5 x 3 plant. 
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Analysis of Simple Nonlinearities 

Development of nnnlysis tools which can handle simple memoryless nonlinearities such 

as input saturations, rate saturations, min-max selectors, and simple logic schemes 

is needed. These static nonlinearities, widely encountered in practice, fall outside 

the scope of current linear systems theory. Nonconservative methods for assessing 

stability and performance of control systems incorporating these nonlinearities, in 

t.he presence of model uncert.aint.y, wo11l<l signific:ant.ly exten<l the nsefnlness of t.hP 

available results. \Vhile a complete nonlinear robust control theory is obviously years 

away, extensions of linear analysis to specific nonlinearities seems feasible ( see for 

example [20,40,47]). 

Acknowledgement: The research reported here was undertaken in conjunction with 

T. Holcomb and M. Gelormino of Caltech. Without their significant efforts, this work 

would not have been possible. 



271 

Appendix A: The Ilv!C - PID Controller Design 
Method 

In this Appendix we provide an overview of the I A! C - PI D design method. For 

full details the interested reader is referred to [68,84,83]. 

The [}.;f C-P ID tuning procedure is a straightforward SI SO robust controller 

design method for obtaining a PI D plus first order lag controller of the form: 

(A.70) 

Central to the design of these controllers is a single adjustable tuning parameter, 

.\ which effects 'TF, r1 and rn in a coordinated fa.shion. 

For simple rational models of the form, 

(A.71) 

and step disturbances, d = ¼, the UJC design procedure [68] generates H2 opti

mal controllers, augmented with a low pass robustness filter, which are of the form 

(70 ). The robustness filter parameter, ,\, determines the trade-off between speed of 

response, (). small) and robustness with respect to model uncertainties ( ,\ large). 

In order to design PI D controllers for systems more general than (71 ), the actual 

transfer function, P( s), is approximated by a reduced order model of the form ( 71) 

over the frequency range corresponding to the desired closed loop bandwidth, r...'c• In 

addition to identifying an approximate model, a bound on the additive error, la(s), 

associated with the approximation obtained. 

Thus we have 

P(jw) ~ F(jw) Vw E [O, we] 

IP(jw) - .P(jw)I :S la(jw) Yw. 

(A.72) 

(A.7:3) 

The IMC design procedure is then applied to .P(s) resulting in a PID controller with 
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parameters given as a function of A. The filter parameter is selected to guarantee 

robustness with respect to the uncertainty introduced by the reduced order model 

approximation. The resulting controller is guaranteed to be stable for the original 

plant P(s). 

To obtain a PI controller a first order approximate model, ?( s ), is used. For a 

I' ID cuntrnller ii ::secuml unler dpp1uxirm1.tiuu i::s u::seu. If i:L fir::st uruer numerator is 

included in P( s) a first order lag is added to the corresponding PI or PI D controller. 

'vVe note that generalizations of this technique, to handle uncertainties in the 

full order model, P(s ), and disturbances other than steps, are available. The entire 

design procedure, including low order model approximation and robustness analysis 

is provided by the program TUNE in the CON SYD computer aided control system 

design package, [55], and ROBE X, an expert system for robust control synthesis 

[63,64]. 
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