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ABSTRACT

This work is concerned with the resonant motlion exhibited by a
‘plasma colum which is excited by an osclllating electric field
transverse to the columm. A theory is considered which includes the
effects of electron temperature and of nonuniformities in the plasma
eiectron density. In order to have a quantitative theory, the non-
uniform electron densities used are calculated numerically using a

theory due to Tonks and Langmuir.

The theory yields a fourth order differential equation which
is integrated numerically to find the predicted resonant frequencies.
The predictions are compared with experiment and show excellent agree-
ment. It 1s concluded that the nonuniform electron density plays a
crucial role in determining the resonant frequencies.

The effect of an axlal magnetic field upon the resonances has
been investigated. It is shown that the field causes each resonance
to split into a right and left clrcularly polarized resonance whose
frequencies depend on the field strength. These preliminary calcu-
lations have been checked with experiment and they give good
qualitative agreement.

Possible dlagnostic uses of these results are considered.



-1-

SECTION T ~ INTRODUCTION TO PLASMA WAVE RESONANCES

1.1l ZExperimental Observations

Several investipgations of the response of a mercury positive
column to a radio frequency electric field were carried out during the
late 1920's and early 1930's. In 1931 Tonks (1,2) reported a series

of measurements demonstrating a resonant response associated with the

plasma. The occurrence of this resonance was not unexpected because
the simple theory describing the positive column as a gas of cold
electrons predicted that a resonance should occur. However, Tonks
also reported ovserving one or two additional resonances at higher
’frequencies. Tonks attempted to explaln these exlra resonances Lo
terms of magnetic effects or nonuniform effects but he was not suc-

cessful.

No further investigations were made of this phenomenon until
the early 1950's. A problem similar to the mercury positive column
was encountered in connection with the scattering of radio signals
from the ionized trails left by meteors entering the atmosphere. This
initiated several experimental investigations of scattering carried
out by Denno, et al (3) at 3 cm. wavelength and by Rommel (4) at 30 cm.
wavelength. The existence of the several additional resonances was
again reported but not explained. Dattner (5) conducted extensive
investigations of these additional resénances by observing the scat-
tering of microwave signals in a wavegulde which contained a mercury
discharge column. He reported not two, but a whole series of addi-
tional resonances, each successively higher freguency resonance heing

weaker until they could no longer be detected.



-

Because of the current interest in radio scattering in the
-ionosphere and the defense aspect of scattering from the reentry
trails of missiles, several attem@ts have been made to explain these
resonances. Particular interest has been directed toward determining
the physical parameters which affect the strength of each resonance,
the spacing of the resonant frequencies, and the number of cbservable
resonances. The next section will review the various theories which

have been advanced and their predictions.

1.2 Theoretical Investigations

The elementary theory used by Tonks to explain the occurrence
of the lowest frequency resonance neglects the effects of electron
temperature upon the plasma. The plasma is assumed to be a uniform
cold electron gas with a background of fixed ions to provide charge

neutrality. In this case the plasma behaves as a dielectric with a

permittivity
o2
€ = eo l - —-—-2—- (I -l)
W
where w2 =:ne? em and n_ 1s the electron density. Figure 1
po c! oe o

defines what will be called the cylindrical geometry problem in the
remainder of this paper. Because the resonances under investigation
occur when the electric field is transverse to the cylinder axis, the
problem is essentially a two~-dimensional one.

If lgapplied is the electric field of an electromagnetic wave
it will be assumed that the wavelength is much larger than the dimen-

sions of the cylinder so the §E

Eapplied may be taken to be a uniform
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Figure 1.

field®. 1If the plasma is treated as a dielectric with a permittivity
given by Eqn. I.1l and the giass tube is neglected, ro=T then the

electric field induced in the plasma is

2
'-E-applied

E = ———— N 102
~plasma 1+ e/eo ( )
A resonance occurs when € = =1 or when
2 2
= 2 . .
® abo/ (1.3)

This result will be modified if one takes into account the glass tube,

T # r, + In that case Eqn. I.3 becomes

2 2
® = wpo/(l+K

eff ) (T.4)

*Later Eapplied will be generalized to other inverse multipole fields

besides the dipole, but the restriction (wavelength) >> r, Will
always be assumed.
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o is the effective dielectric constant of the region

exterior to the plasma which depends upon the dielectric constant of

~ wWhere K
e

the glass and the dimensions r, and L

Following Tonks' suggestion that the additional resonances
might be due to some spatial nonuniformity of the electron density,
‘several workers have extended Eqn. I.4 to the case of a radially non-
uniform plasma. As before, only one resonance occurs®; its frequency
is glven by

2

w - wi/(l + K pp ) (1.5)

where mi =7 eeg/eome 5 n 1is the electron density at a point r and
the bar indicates an average over the cylinder. There is also some
enhancement in the scattering cross-section at other frequencies which
is related to the steepness of the electron density gradients in the
plasma but no other resonances are predicted. Herlofson (6) has
pointed out that the resonances with more rapid angular variation such
as quadrupole, etc. will occur at lower frequencies than the dipole
and hence cannot account for the additional rescnances. This was con-
firmed by Boley (7) who measured the angular dependence of the scat-
tered waves and found all resonances to be of dipole character. At
this point it was apparenf that some fundamental change or addition was

required if an explanation was to be found for the multitude of reso-

nances.

*Kaiser and Closs (17) consider a stepwise approximation to a nonuniform
plasma which showed additional resonances; however, it was later shown

that these resonances resulted from the discontinuities in the electron

density and that they did not occur for a smoothly nonuniform plasma.
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A basic property of the plasma which has been neglected to this
point is its ability to propagate longitudinal plasma waves. These
waves have not entered into the anélysis previously because they exist
only when the electron temperature is nonzero. Gould (8) proposed a
theory in which the effects of electron temperature are approximated
by ascribing a pressure to the electron gas, po = nkT , and a pressure
fluctuation which is connected to the electron density fluctuations by
an adiabatic law, Py = ykT n; . Gould's derivatlon is slwmllar Lo Lhe
one given in Section III with the exception that he treats a spatially
uniform plasma. The equation resulting from his analysis can be
obtained from Egn. III-26 by setting Vf =0 and f = 1 . This equa-

tion can be rewritten

2
ve(v2 + k )gﬁl = 0 (1.7)
2 o 2 2 2
where k = (a?— - l)/‘r )\DO s )LDU = €OkT/noe ig the square of
PO

the Debye length, and ¢l is the fluctuation in the electric potential
induced in the plasma. The solutions to Eqn. I.7 are obviously solu-

tions to

v2¢ = 0 (1.8a)
(v2 + IQ:‘?)ngZL = 0 . (1.8b)
The solutions to Eqn. I.8a show the dielectric response of the

plasma which exists here as well as in the cold plasma. Eqn. I.8b

describes the plasma’'s response as & wave-propagating medium with Xk



-6~

being the magnitude of the wave vector. When the plasma frequency

w§0 is less than the applied fregquency me then k2 >0 and longi-

tudinal plasma waves can propagate. Conversely, when wio >-m2 then
k2 <0 and only exponential decaying solutions of Egn. I.8b can exist.
Wllgn the solulions Lo Egus. I.0 are comblned with appropriate boundary
conditions, the plasma is found to exhibit an infinite® number of
resonances. This is in much better qualitative agreement with experi-
ment than the single resonance of the cold theorf. However, the spacing
of these resonances is in very poor agreement with experiment. Where

theory predicts one resonance at wg = ®§O(1'+ K and an infinite

eff)

number of closely spaced resonances beginning immediately above the
plasma frequency mpo’ the eﬁperimental observations indicated that
several resonances could occur below the plasma frequency and that the
spacing between resonances was many times that predicted. Gould (9)
suggested that better agreement might be obtained by taking into
account the nonuniformity in the electron density which 1s certain to
exist in experimental plasmas.

The complications of solving Egn. ITITI-26 for a nonuniform plasma
have led to several approximate attacks on the problem. Gould (27)
employed a WKB approach in treating the plane case and Vandenplas (28)
Tormulated a solution to the problem of a parabolic electron density
variation, n_ = no(l -xxrg), but did not obtain any results. Welsglas
(10) obtained analytic results for the resonances of a plane plasma by

assuming a very special electron density n(x) = no[l-+€-+cos(%§)]

for a slab of width 2a . The resulting equation can be transformed

*Presumably only a finite number would be observable if damping were
included in this theory.
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into a Mathieu equation and explicit solutions exhibited. He finds
that.the’splitting between resonances 1s much greater than 1s

obtained for a uniform plasma. His result 1s encouraging in this
respect but is far from providing a quantitative test of the validity
of the theory. Its greatest drawbacks are the limltatlons of plane
geometry, since all experiments to date have been performed on
cylindrical plasmas, and in failing to use an electron density profile

which ie physically reasonable.

1.3 OQutline of the Present Work

It is the purpose of this investigation to overcome the defi-
ciencies of the previous anélyses in two respects. First, to calcu-
late the electron density profiles based on a simple physical model
and, second, to integrate Eqn. III.26 in cylindrical geometry using
the previously calculated density profiles.

Section IT will be devoted to a description of the theory used
to describe the steady state behavior of the plasma column and a
description of the static electron density profiles which have been
found. Detalls of the technigues used in solving the integro-
differential equatibn vwhich describes the plasma will be given in an
appendix. Some results on the static electron density profile in
plane geometry from the work of Self (13) will also be presented
because they willibe needed in Section III.

Section TTT deals with the behavior of a plane or cylindrical
plasma when a transverse radio frequency electric field is applied.

The equation describing the perturbations induced in the plasma will
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be derived and then integrated numerically in both plane and cylindri-
cal geometry. The method of integration will be described. Finally,
the results will be compared with experiment to test the validity of
the theory. A short description will be glven of two alternate
assumptions ﬁhich can be made in deriving the theory and the effect
they have upon the agreement between theory and experiment. In this
way 1t will be shown that the approximation of & scalar electron
pressure is a reasonable one and cannot be improved upon in any simple
way.

The effect of a uniform axial magnetic field upon the spectrum
of resonant frequencles will be invecetigatced 1n Section IV. It will
be demonstrated that all of the rescnances of a cylindrical plasma
colum are split into two resonances by the magnetic field. The
behavior of the lowest resonance agrees qualitatively with the pre-
dictions obtainéd using a simple dielectric model of the plasma. The
higher resonances are shown to exhibit a behavior gqualitatively dif-
ferent from that of the lowest resonance.

The results and conclusions of this investigation are summarized
in Section V . The adequacy of the models employed in accounting for
the experimental observations is diséussed and various diagnostic uses

of the calculations are outlined.



-9~

SECTTION iI - STATIC ELECTRON DENSITY PROFILE

2.1 Theory

During their early work on the arc discharge Tonks and Langmuir
(11) developed a simple model for the steady state behavior of a col-
lisionless plasma. They reasoned as follows: Since the discharge is
contained within insulating walls the current flowing into the walls
must vanish. Because the thermal speed of the electrons is so much
greater than that of the ions, an electric field i1s created in the
plasma to impede the flow of electrons to the wall. This same electric
field accelerates the lons toward the wall and thereby increases the
ion current. A steady state is reached when the electric field
created by charge separation in the plasma is strong enough that the
reduced electron current is equal to the enhanced ion current at the
wall.

To cast this theory into mathemstical terms several simplifying
assumptions are made. The plasma is assumed to be only slightly
ionized and the neutral gas is assumed to be cold (i.e., room tempera-
ture). This implies that ions will be created at a rate proportional
to the local electron density (if binary collisions are the dominant
ionization mechanism) and that the ions will be created with zero
velocity. Next, one assumes that the ion-neutral mean-free path is
greater than the radius of the cylinder. As a result, an ion, once
created, moves radially under the influence of the internal electric
field until it reaches the wall. This allows the ion density at any

radius r +to be written as an integral over the number of ions created
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within that radius weighted by a factor inversely proportional to the
ion velocity at r . Finally it is assumed that the electrons possess
a Maxwellian velocity distributioﬁ. This allows the electron density
at any point to be related to the electric potential at that point.

One of the preceding assumptions is of questionable validity.
A Maxwellian velocity distribution is usually the result of thermal
equillibrium brought about by collisions in the plasma. This seems to
contradict the requirement that the plasma be essentially collision-
less. Evidence in favor of a Maxwellian velccity distribution can be
found, however, in the work of Langmuir and Mott-Smith, Jr. (12) who
report extensive probe measurements supporting the Maxwellian distri-
bution.

The mathematical expression of this theory follows directly
from the preceding assumptions. The electron density at any radius

is related to the electron density at the center, n_, 2 by

ne(r) = n_ exp(+ e@/kT) (11.1)

where @(r) 1is the electric potential at radius r and T 1is the
electron temperature. The number of ions created per second per unit

volume S(r) is proportional to the local electron density

s(r) = an, . (IT.2)

The number of ions per uwnit volume at radlus r can be related to the
number of ions created within that radius. An ion created at r' < r

will pass by the radius r wlth a velocity
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v = 28 - g

i

and its contribution to the ion density at r will be proportional to
the time it spends near r or inversely proportional to its velocity.
Hence

r

ni(r) _ S(r')r'dr’ ) (1I.3)
£J%Mwwwﬂ

The potential ¢(r) is then related to the ion and electron densities

by Poisson's equation

2 e
VY = — (n
€ e

- ;) . (IT.4)

Equations II.2 - IT.4 can be combined into a single integro-differential
equation for the potential @(r) . The resulting equation is most

clearly written by changing to dimensionless variables,

n(r) = - E% (11.5)

s = ar/\/2kT/mi . (I1.6)

The equation in terms of these variables is

2 [ % -
s _d_"l + dn = 52 hd gdag_. Se—n(s) (I1.7)
ds® ds { Vn(s) - n(o)

2 2 2
where = 2 m
B 2n_ e /eO N
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If the integral in Eqn. II.7 is to be integrated numerically,
then the solution tor n(s) must begin at the origin and proceed out-
ward until the boundary condition is satisfied. At any point s +the
current per unit area of ions is given by

]
3, (s) = f 8(0) < do (11.8)
o
since the total number of ions created per second within radius s
must cross the surface of a cylinder of radius s in one second. The
electron current density at s can be found by integrating 'eVr times
the Maxwellian velocity distribution function over all outward directed

velocities. This gilves

5 (8) = ne<s)\/;§e : (11.9)

The boundary condition of zero net current to the wall will be satis-

fied when the following dimensionless equation is satisfied.

S
n(s ) rw m
W -n(0) 9 45 -/t
e [ e —do =\l - (I1.10)
W e
0
The radius 8, is then the radius at which the wall of the cylinder
will occur for that particular ion species. Because sw is a function
of the ion mass m; the solution to Egn. IT.7 1s not unlguely deter-
2
mined by £  but depends to a small extent upon the gas which is being

used.

Before proceeding to the solution of Egn. IT.7 a comment must be

2 2
made about the parameter B . Since B is a function of o and
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o is a very difficult quantity to measure experimentally, it appears
that comparison wlth experiment would be difficult. Actually 32
can be obtained without any knowledge of o . Using Egn. II.6 and

2
the definition of B it follows that

2 2

2 _ Teo® Wy Ty 2 1 Tw
B” = = (=) = = (=) (11.11)

mie kT Sw S2 2

© W XDO

2
where xgo = €okT/neoe is the Debye length at the center of the

column. Once the solution of Egqn. II.7 is accomplished for a certain

2 2 .2
gas, it is a simple matter to plot a graph of £  versus 8, B~ . To

2
obtain B  for an experimental plasma it is necessary to measure only

22

2,.2 2
and 1 at r /A =
neo T , calculate w/ DO swﬁ and read B off of the

graph.

2.2 Technique for Solving Equation II.7

In their original work on this problem Tonks and Langmuir (11)
solved Eqn. IT.7 for the special case 62 = c0o or equivalently,
n, = o . Their method involved & series expansion of s in powers
of n . By expanding the argument of the integral in powers of g
1t can be evaluated term by term and the coefficients of the power
series can be determined. This method can also be applied to the
more complicated problem when 62 is finite, however the recursion
formula for the power series coefficients becomes guite unmanageabie
and the number oflterms necessary for convergence of the series

2
increases very rapidly as B  decreases. A better method with the

advent of high speed computers is simply to integrate the equation
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numerically, point by point, from the center outward.
This methbd; vwhich is described in greater detail in Appendix
2, 1s simple in concept but requires some care in detall if it is to
yileld accurate results. The greatest source of error arises from the

singular nature of the integrand in the integral

s -n(o)
e o do
I(s) =[ (11.12)
) \/a(s) - n(0)
where the denominator vanishes when o = s . Numerical integration

at an interval h will moke an error ~ —S— (g)l/ 2 if the infinite
point at o = s 1s neglected. A more accurate éstimate of I(s)
can be obtained if the intégrand is divided into two terms, an
integrable function containing the singularity and a remainder which

ls non-singular. For example, Eqn. IL.12 can be written

-n(s) 7 y -n(a) -n(s)
I(s) = = cdg {, < - = g do . (IT.13)
Jn'<s>£\/s-o {\/H(S)-n(o) Jn'(s)[s - o]

The first integral in Egn. IT.13 is simply % 53/2. The integrand of
the second Integral is a function which goes to zero at o = 8
although its derivatives are still singular. The error now made by
ignoring the last point is less than

3G -5 a®ye

which represents an improvement of a factor of h . This process was

carried out twice for the integral in thils problem giving an error
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proportional to h5/2.

" The only ofher important sovurce of error 1s the numerical dif-
ferentiation necessary to evaluate n" and 7' . If the interval
used in differentigtion 1s too large then the approximation to the
actual derivative will be poor. Conversely, 1f the interval is too
small in comparison to the number of significant figures available,
then an error results from loss of significance. There is no way to
avold this type of error. The interval mﬁst be chosen carefully to
insure at least a tolerable error.

Numerical solution of Egn. II.7 1s accomplished using a
predictor-corrector method. Assume that the function n(s) has been
calculafed for the values s = nh (n = 0,1,2,-++,N), then a prediction
“§+1 of the value of 7 at s = (N+l1)h can be made using the known
values Ty? nN_l;--- . Using "§+1 and the table of 1 the integral
and deriﬁatives in Egqn. II.7 can be evaluated. The two sides of the
equation willl, in general, not be equal as they should because ﬂ§+l
is not the correct value for Tel

From the error between the two sides of the equation a correction
to the value of “§+1 can be derived. This corrected value is

cl cl P
nN+l -« The correction process used to derive TN+l from Tl can
be repeated to obtain n;il , etec. until the two sides of Egqn. II.7
are equal to within some preassigned tolerance. When this happens the
current value of ﬁ§+l is entered in the table as el and Eqn.
IT.10 is evaluated to find 1f the boundary conditlon is satisfied. If
it 1s, the calculation is complete; if not, the entire procedure 1s

repeated to find nN+2 .
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. What has been outlined is essentially an inductive procedure to
obtain n(s) at certain tabular points. As with all inductive pro-
cedures, the first one or two steps must be:considered separately.
Since the table of inN does not exist when N = 0 and is not
extensive enough for accurate numerical work when N < 5-10, the
first few values of Ty must be calculated by some independent
means. Since 0 < N< 10 represents small values of s , a power
series expansion of 7(s) has proven most convenient. Therefore the
calculation is begun by evalusting a simple two-term series for n(s)
at the first twelve points (N = 0,1,'°*,11) and the predictor-
corrector formula is applied beginning with N = 11 .

Detalils of the techniques described above are contalned in
Appendix 1. _This includes the formulas used for prediction, correc-
tion, differentiation and integration. The initial power series is
derived and, in addition, various minor points such as interval

sizes, testing tolerances and expected error are presented.

2.3 Electron Density Profile for Cylindrical Geometry

Solutions to Eqn. II.7 have been obtained for a series of values
of 62 between lO2 and @ . The solution for B2 = 0 Wwas checked
agulnst the solution of Tonks and Langmuir and was in good agreement.
Figure 2 shows the potential n(s) as a function of s for several
values of ﬁal. ﬁhe points merked on each curve indicate the location
of the wall for the indlcated lon specles. Both sw and n(sw) can
be easily obtained from this graph for the five gases shown. It is

interesting to note that the potential n(sw) necessary to satisfy
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the boundary conditions is relatively independent of the size of the
2

column compared to the Debye length (i.e., to B ) but is primarily a

function of the ion mass.

Figure 3 shows the electron density profiles

=]

(2) _ -2

€0

(IT.14)

jn}

il

where =z = s/sw r/rw is the radius of the column normalized to 1 at

the wall. The formation of a thin sheath region is quite apparent for
52 = lO6 and when 62 = lO2 the sheath has expanded to fill a large
fraction of the column. For computational use the functions n(s) ,
n(s)/neo, n'(s) and 17"(s) are tabulated in Appendix III.

kFrom the calculated electron density profiles a useful relaticn
concerning sheath thickness can be derived. Comparing the theoretical
sheath thickness to the Debye length an approximate rule can be derived
for estimating the sheath thickness. Thisc comparison has been carried
out in Table I. PFor the purposes of this analysis the edge of the
sheath was defined to be the point where charge neutrality was violated
by 1%.% Tt is apparent that the sheath thickness is eighteen times
the Debye length at the center of the column to within 3%. Note that
1t is the Debye length at the center of the column for which this
simple relation is obeyed and not the Debye length obtained from the

average electron density.

A
*For another relation involving sheath thickness which makes use of a
different definition, see Table III.
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In the following sections it will be necessary to compare
theoretical calculations based on these density profiles with experi-
ment. The parameters wio and xgo are inconvenient from an
experimental viewpoint because n_o is difficult to measure. Since
it is quite easy to measure n , the average electron density, we

shall give all theoretical results in terms of the followlng average

quantities.
2 - 2 2 _
w, = me /eome = o n/neo (IT.15)
2 - 2 2 =
Ay = eOkT/n e = Ay neo/n . (11.16)

To aid in making the connection between average quantities and their
on-axis values, Table II has been prepared. For each value of 62
which 15 used in this work the following quantities are given: 8., »

2,.2 _ 2 .2 .
rw/ADO R n/neo , and rw’/%DO . This table applies only to mercury

plasmas.
TABLE I -- SHEATH THICKNESS
52 Sheath 1ength/rw xDO/rw Sheath length/lDo
10° 2.28 x 1072 1.27 x 1072, 18.0
10° 7.18 x 1072 3.86 x 1073 18.6
10" 2.00 x 107 1.10 x 1077 18.4
103 .91 x 10T 2.76 x 1072 17.8
10° 1.00 : 5.60 x 1072 17.8
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TABLE II -- CONNECTION BETWEEN AVERAGE PARAMETERS AND THEIR

VAIUES AT THE ORIGIN

& o /25 L A

co 0.772 o .698 os)

10° 0.789 6.23 x 107 .678 4.22 x 10

105 0.822 6.75 x 10h .637 4.30 x 10lL

10” 0.910 8.28 x 10° .5k7 4.53 x 103
—l?; X 1oh 0.996 3.31 x 103 478 1.58 x 103

103 1.150 1.32 % 103 .389 5.15 x 102
% X 103 1.380 6.35 x 102 .305 1.94 x J.o2

102 1.790 3.21 x 102 224 7.19 x 10l

2.4 Electron Density Profiles for Slab Geometry

The theory outlined in Section 2.1 is also applicable to a slab
geometry, il1.e., a plasma infinite in the y and 2z directions and
bounded by insulating walls at x = +d . The nonuniformities of the
slab plasma will have the same characteristics as those of the cylinder
although the details will be different. The mathematical formulation

of the theory for slab geometry ylelds the following equation

]

2 -
g_g - 82 f e n(g) do - e"’](s) (IIvl7)
ds o Vnls) - n(o)

where the meaning of all symbols is the same as before with r

replaced by x . An extensive treatment of this equation and its
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solutions has been given by Self and Kino (13). The density profiles
for a‘slab plasma will be required in the next section, but the
‘resonances of a slab plasma are nof of sufficient interest to warrant
solving Egn. II.7 as was done for the cylindrical case. Therefore the
results given in Reference (13) have beeu used. Slnce Relference (13)
does not provide extensive numerical tables of the electron density
profiles, 1t was found most convenient to approximate their calculated
n(s) by a series of line segments. Let this approximation to n(s)

be called nappro , then the electron density in a slab plasma is
X

'“approx
n(z)/neo = e .

These electron density profiles are shown in Figure 4 as a function of
the parameter d2/kg . The slight discontinuities in the slopes of

the curves 1s the result of the method used in approximaeting n(s) .
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SECTION IIT - PLASMA WAVE RESONANCES IN A NONUNIFORM PLASMA

3.1 Theéry,
| Having determined the theoretical static electron density pro-
files in Section II the preparations are completed for the study of
small perturbations from this steady state. The purpose of this
study is to investigate the perturbations which are induced by an
electromagnetic wave incident perpendicular to the axis of the plasma
column and with its electric vector also transverse to the column
axis. In slab geometry the electrlc field is assumed to be normal to
the surface of the plaéma.

Certain assumptions will be made concerning the nature of the
plasma and the applied field which are well Jjustified for the labora-
tory plasmas investigated by Tonks (1), Dattner (5), Nickel et al (15)
and others. These assumptions are: (1) that the frequency of the
applied field is much greater than the electron-ion or electron-neutral
collision frequencies, (2) that the wavelength of the incident wave in
free space 1s much greater than any of the relevant physical dlmen-
sions, e.g., r_ or XDO , and (3) that the motion of the ions is
negligible. As a result of assumptions 1 and 3, only the motion of
the electrong will enter into the analysis and these motions may be

described by the collisionless Boltzmann eguation.

OF(r,v,t) OF(x,v,t) oF(r,v,t
W oy A g Flnd) (IIT.1)
ot a or. o ov_

where F(g,xgg) is the electron distribution function in r,v space

and r,v,A are position, velocity and acceleration respectively.
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Egn. ITI.l, together with Maxwell's equations, constitute a complete
set of equations describing the electrbn motion. In fact, the complete

Maxwell's equations are not needed if assumption 2 is used. The elec-
tric potential & obeys

2
Voo, € 9 le--2L (IIT.2)
uo o 2 €
ot o

which can be solved for ® by Fourier analysis (16) to give

o (r1) ot (E-EY) ;
1 w
%) = o f B a (111.3)

If kr~kr'<< 1 then ¢w(r) is given approximately by

p (r")
~ 1 W 3.
0 (r) ¥ = f o (TTI.1)
o< lg-x
or
@
&(r,t) = Jf o (r)e” aw = m = elrisb) g3 (III.5)
- w ‘ i Go ‘i_ivl

which implies that & at time t 1is the solution to the time inde-
pendent Maxwell's equations with the source function evaluated at t .

Therefore Maxwell's equatiors for the purposes of this analysis reduce
to

5 |
Vie(z,t) = -p(z,t)/eg (111.6)
and :
v Q(E:t) = - E_(E,:t)

(IT1.7)
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Regrettably, solutions for Fﬁgéxgt) are extremely difficult to
obtain for nonuniform plasmas (see Section 3.4). An alternative to
finding F 1is to solve for the veiocity moments of F .

The velocity moments about the mean of the function F are

defined to be

Q0
ne(}:)t) = IF(EQ{_}t)dSV
-00
(0.6
w () - [ v Pz, 6y
-0
CcOo
v = IEPRERTS F(r,v,t)d3v (111.8)
130D 157770 TN
-0
where c, = v,-u, and where the symbols M° and M' (the electron

i

density and the average electron velocity) have been replaced by their
conventional symbols.

If velocity moments of Egn. III.l are taken; that is,

@
d[. viqu-«vp (Ban III.l)d3v » an infinite set of coupled equations

-0
for the moments Mp results. The first two of these equations are
Bne
' = 0 —_—+V enu = 0 ITT.
(p = 0) St ns (I11.9)
1 aE'+ n [u V]u +nA+V M 0 (TIT.10
(P = ) ne at el Pyil e - - . M )
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Clearly, Egn. ITII.9 gives n, if u is known and Egns. IIT.9 and
IIT.10 give u if M2 is known, and so forth. To avoid solving an
infinite set of equations it is common practice to arbitrarily set

M9

=0 for some Jj . A discussion of the validity of this process
for the present problem is glven 1n Appendix 2. In this case J = 3
was chosen which leaves Eqns. ITI.9 and III.10 plus an additional
equation relating M2 to n, and u . This set of equations will be
discussed in Section 3.4 where it is called the tensor pressure theory.

For the present a simplification will be made by replacing V - M2 in

Egn. ITI.10 by a term —%T-VP . Physically M? is proportional to the

tensor electron pressure :nd the simplification replaces the divergence
of the tensor pressure by the gradient of a scalar pressure. This
approximation would be exact in the case of a uniform Maxwellian plasmsa
and seems to be adequate for the nonuniform plasma.

The final form of the equations describing the plasma are arrived

at by writing for the acceleration A the force acting on an electron

divided by its mass, A =e E/m . Then

d'ne
& 4+vV-:enu =0 . ITI.11
—= . ( )
du - e 1
—=ilu -Vu=-38- Vp (111.12)
dt {,““" i me mene

720 - 2 (ITT.13)

(s}

Vb = - E . (IIT.1k4)
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To solve for ﬁerturbaxions from the steady state each guantity
is written as a steady state term (subscript zero) and a small time-

dependent perturbation (subscript one).

ne(;,t) = n_ £(r) + nl(fh) g0t (11I.15)
wz,t) = u(r) o 1ot (ITI.16)
o(r,t) = B(r) + ¢1(£) g it (1II.17)
E(z,t) = E (1) + B (x) e " (I11.18)

f(sj describes the nonuniformity of the plasma, £(0) =1 .

Egns. IIT.11 through III.14 are not complete unless p 1is
related 1n some way to the other physical guantities. For a Maxwel-
lian electron gas it is simple to show that the static pressure P, is
proportional to the electron density neo f(r) . If a pressure disturb-
ance occurs in the electron gas it will be proportional to a density
disturbance but the proportionality constant depends upon the way in
which the disturbance is made. If a one-dimensional adiabatic varia-

tion is assumed, then the gradient of the pressure may be written

it

Vp(r,t) = KT n__ VE(r) + ykT V n, (r) e (III.19)

with v =3 .
Tnserting the definitions ITIT.15 through III.19 into Egns.

III.11 - ITI.1k gives two equations for the steady state*

*Note that Eqns. III.20-21 are identically satisfied for the steady

state solutions previously discussed; Egn. ITI.20 is derivable from
Eq_n’ II'l.n
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vV £(r) = - ' .
kT oV £(z) en  f(r) E(r) (II1.20)
. e
3 —3 —— - f w2
V- E . [nio n_ (E)J (111.21)

and four equations first order in the perturbation

= V.t .22
Lo, = 5,7 [£3,] (.22
i fu = f .
iomn fu =en B+ en_, El + YKT Vn, (111.23)

7° g. = Sn (ITT.2h)

1 e 1
o]
v ¢l =-E . (IIT.25)

Combining Egns. IITI-22-25 and using TIT.20 to define EO leads to a
single fourth order differential equation in ¢l » The perturbation

electric potential.

2 2 vt L1 2 VTt
VAl ¢1'E'Vv2¢1+[""§'(£§“f)’v'(;§} v2¢l

YXDO mpo
_lve.vg = 0 . (1IT.26)
T 1

It 1s convenient for numerical computation to have this equation in
dimensionlegs form. This' 1s accomplished by introducing a new inde-
peﬁdent variable z = E/rw or z =r/d in slab geometry. With this
change of variables the differential equation depends only upon the
two dimensionless parameters ri/xg

DO
to note that ri / )"I?;O is the same parameter which was derived from

and a)2/a)§o . It is important

2
B in Section 2.1. This makes it very easy to choose the correct
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density profile f(r) when integrating Eqn. III.26.

3.2 Numerical Solutions for a Slab Plasma

In its general form Eqn. I1II.26 is a fourth order partial dif-
ferential equation. Only in special geometries is the equation
separable into ordinary differential equations and of the separable
geometries only the one-dimensional problem of a slab reduces to a
simple differential equation. Although the slab plasma has never been
investigated experimentally, the theoretical predictions of the
resonant frequencies are of interest because they yield insight into
the solutions which will be obtained in more complicated geometries.
It is instructive therefore to calculate the solutions to Egn. III.26
for a slab plasmsa before proceeding to the more useful problem of a

cylindrical plasma.

Figure 5. The Slab Plasma
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The geometry of the slab plasma is shown in Figure 5 and the

1
of x only, the operator Vm-s dn/dzn so that Egn. ITI.26 becomes an

direction of the applied field is indicated. Since E, 1is a function

ordinary differential equation in the variable x (or z = x/d vhen
changed to dimensionless variables). It can be reduced to an ordinary

second order differential equation by two changes. First the dependent

varigble is changed from ¢l to By = - ¢i (* denotes d/dz) which
gives
2 2
11t 1 £ 1 da V] fro f!
Jifee 1 D _py - (2)"E - = 0 . (III.27
R A el <f)]ml Lx (rr1.27)
XDO jolo)

This can be written as a perfect differential

2 2
N IR L - A _
- J:El E; + - (— f)EJ =0 (111.28)

¥
"0 “po

vwhich yleldsupon integration the inhomogeneous equation

LI S d2 m2
El - ;; El + — (—2~ - f) El = C ‘ (III.29)
T)"DO wpo

The constant can be evaluated by using the boundary condition which is

discussed next.

Boundary Conditions. A unique solution El(Z) to Egn. III.29

requires the specification of two boundary conditions plus specifica-
tion of the integration constant C . One boundary condition is
clearly an arbitrary scale factor multiplying the solutiom. A second

condition can be derived from conservation of the electric displacement
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~ vector which requires that eOEl(l) - eOEl(—l) . Oince Egn. III.29 is
unchanged by the inversion z - -z , the solution El(z) must be
symmetric about the origin. Simply stated, the second boundary condi-
tion is therefore Ei(o) = 0 . Evaluation of the constant ¢

requires a knowledge of the left hand side of Egn. IIT.29 at some

point in the plasma. Referring back to Egn. ITII.20 which defines the
kT f!

velocity Uy and making the substitutions Eo == F and
€
n, = - TS'V . El , an expression similar to Egn. III.29 is obtained.
2 iwm 2
" f! 1 la e d
- a—_—— L B S — = - u L] L]
E, TfEl - f B — f — 1 (I11.30)
DO TApo

Gould (8) and Weisglas (10) have used the condition w =0 &t z=1
as a boundary condition. This boundary condition is based on the fol-
lowing argument: Since all laboratory plasmas are contained in vessels
with glass walls, there can be no current flow to the walls, but the
current is simply J = eneO ftﬁ. so J =0 1is equivalent to Uy = 0.
There is some gquestion about the validity of this boundary condition
(see Section 3.4 for a discussion of this point), but it will be used
here_because it is convenient and it appears to give good results.

BEvaluating Eqns. IIT.29-30 at z = 1 and using the condition

ul(l) = 0 an expression can be derived for C .

d2 2

® |
—— %5 E, (1) . (I11.31)

1
Y .2
XDO po

c =

£
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~ The nature of the slab resonance problem. The experimental

Quantity which is most easily measured in these experiments is the
frequency at which a resonance occurs. In a cylindrical plasma a
resonance is understood to mean & peak in the scattering or the
frequency at which motion is induced in the plasma with vanishingly
small applied field. The analog of this in slab geometry defines a
resonance as the freguency abl whlch motlon can occur in the plasma
with no applied field, i.e., El(l) = 0 . This is a convenient condi-
tlon because if only the resonant ffequencies are of interest, then
Egn. III.29 becomes a homogeneous eqﬁation and the problem becomes one
of determining the frequencies w, (i = 0,1,2,+-*) for which Eqn.
III.29 (with C = 0) has a solution that satisfies El(l) =0 and

E (0) =0 .

Although it appears simple enough to find cuch solutions by trial
and error,ythere is a complicating factor. In the introduction (Section
1.2) it was pointed out that the solutions to Eqn. I.7 were of an
exponential nature if mpﬁnso <1 . Similarly Egn. ITII.29 has exponen-
tial solutions whenever meﬁngo < £(z) and the exponential length Le

2/
(1.e., Ey e € ) is given by

-1 d / (1)2
ke = Le = ;]7-2—)‘])— f(Z) -0?— (IIIQ32)
0

PO
where d/yl/Q;Do varies between 7 and 40 in these calculations. Of

course the physical behavior of the plasma causes the fields to decay

as the negative exponential in the nonpropagating region (wg >»w2)



-3l
however, the positive exponential solution exists mathematically and
magnifies numerical errors untlil the correct solution is completely
hidden. The best way to overcome this difficulty is to begin the
numerical integration at z = 1 where the function El(z) is oscll-
létory and then stop when the solution begins to exhibit exponential
beﬁavior. Figure 6 shows the results of thls procedure carried out
for several different frequencies near a resonance. It is apparent
that the resonantifrequency lies between .612 and .614 because at other
frequencies there is a strong positive exponential behavior. The dotted
curve shows the actual function El(z) which would be obtained exactly

at resonance.

Y
N

0.61h4

2,2
Figure 8. Solutlions to Egqn. ITIT.29 for three values of ﬂnpo
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Numerical Integration. Inbtegration of Egn. IITI.29 has been per-

formed numerically using & fourth order Runge-Kutta (RK) integration
method. RK integration is normally applied to a system of N first

order differential equations of the form

ey s (3= 1,2,000,N) . (II1.33)

b
aqx gj(x,yl, N

The RK equation will give the value of the dependent variables y'j at
the point x = (k+l)h given the values Y5 at x = kh . Since Eqn.
I1T.29 is a second order differential‘equation it must be rewritten as

two first order equations.

2 2
1f’ 14~ _
Flo= 2 T F-= "‘é‘“'(;é— - 1), = g,(2,E,F) . (III1.35)
ADO jsle]

The RK integration formula is

k+1 k 1
Y = ¥y + -g-h(ﬁl3 + 2323 + 2333 + Ehj) (111.36)

: k
where y = y(kh)

13~ e "]

2
|

25 = [(k+ =)h, e % hzl]
£y = (DR ng,]
By = gJ[(k+l)h,y + hiy ]
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Errors. .The RK formula (Eqn. IIT.36) gives a fourth order
approximation to the correct solution.' That is, starting with the
correct solution yk = y(kh) at the point k , then the value of

k.
¥ +L computed from Egn. IIT.36 will differ from the correct value

v[{k+1)h] by an amount of order hh+l . This is called truncation
error. The total error after n steps will be the sum of the trun-
cation error in the last integration step plus some fraction of all
the error committed in previoue stcps. The fraction of the total
error at step n which is carried forward to step n+l 1s called the
propagating error and it depends strbngly on the form of the differen-

tial equation being integrated. Todd (14) gives an approximate

expression for these errors. Letting r(xn,h) denote the truncation

error and € = yn- y(nh) , the total error at point n 1is
€ . = |I+h % € +‘r(nh h) . (I11.37)
n+l dy | n ?
For a system of equations I + h %% is a matrix and ¢ 1is a vector
giving the error in each component. Whether the total error increases
depends on the eigenvalues of the matrix M =1 + hv%% . If all the

aeigenvalues are less than one, the error decreases; if any are greaterxr
than one, then some part of the error increases. For Egn. I1T1.29 the

eigenvalues are

Mox +hk (111.38)

at the point fh and the total error after n steps will be
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0 1 n-l : kg + k + ees 4 k n-1

. LI =2 h
D R L )

I

or

e = exp[nh'k']. (111.39)

The error grows exponentially at some average rate E; when Eé is
real. In the oscillatory region of the plasma E; is imaginary and
the error does not grow as rapidly. To illustrate this let hke= ihd

vwhere h® 1s a small, real constant. Then

22n/2 i
e~ (1+ 18n)" e~ (1+ n%s )n/ nd € (II1.k0)
and
2
‘e—: . ~ e € . (ITT.h1)
n Ke]

Since \k \0(5 >> (——)8 the error increases more slovwly in the oscil-
latory region.

Typical values of Ee range from 3 to 20 and nh varies from
.7 to .3 so that the worst error magnification is about z—:~lLF or about
lOG.V This illustrates the earlier remark that integration into the
exponentlal region is comebtimes prohibited by the errors involved. In
the oscillatory region, however, h5/2 < .02 and the errors are mul-
tiplied by vactors of e'h vhich is negligible.

The truncation error r(mh,h) can be estimated by noting that
Ean. ITT.36 reduces to Simpson's rule if g 1is independent of y .

The truncation error for Simpson's rule is
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| (L»)} 5
maxlg h .
}r(‘nh,h){ £ e (IIT.42)

and for the worst combination of parameters considered here gives
|r} £ 1077, Trial integrations of Eqn. III.29 for a uniform plasma
where the solutions are tabulated functions, indicate that the actual

truncation errors are of this mesgnitude.

Results. Calculations of the resocnant freguencies were carried
out for four values of the parameter dg/hgo . For each value of
dg/kio the four lowest resonant frequencies mi (1 =0,1,2,3) were
determined. The results are shown in Figure 7 where wi/';g is given
as a function of da/‘f;. The circled points indicate calculated
resonances; the connecting lines represent interpolation between these
points and not the results of calculation. As explained in Section 2.3
all parameters afe expressed in terms of the average electron density
because it is more eaéily measured. The average electron density is,
however, shown In Figure 7 so that either parameter may be éonverted
to its value at r = 0 with the aid of Egns. II.15-16.

The points marked by triangles in Figure 7 were obtalned by WKB
solutions. This was necessitated by the very large value of
d2/7%§0 ~ kL x }..O}+ which ﬁadc numecrical intcgration impractical. Egn.

IIT.29 can be put into standard WKB form, that is

A +‘ [1*12 -U(x)ly = o0 | (ITII.43)

1/2y
by the change of variables E f

1= ¥ . The function U(x) is
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x 2 ‘
’ 14 7 £r.2 1.£"
U(x) = == f + 7 (=) =« 5 — (IIT.h4)
T .2 L tyr 2 vf V
*po
and

2 2
K = %(.-Z-‘—)(%-) : (111.45)

00 “po

A straightforward application of the WKB method for boundary conditions
of VY(1) = 0 and decaying exponential in the cutoff region leads to
the results shown (see, for instance, Morse and Feshbach (18)). By
applying the WKB method for values of (dz/rxgo) already treated, it
was estimated that the error in the triangle points is within * 5% .
It 18 clear fronm Figuré 7 that the resonant frequencles are
gulte widely spaced which is in qualitative agreement with the experi-
ment. It is also notable that the spacing depends upon (de/xgo)
This is encouraging because measurements on cylindrical plasmas (15)
indicates that the relative spacings of the resonant freguencles are
- indeed functlons of the plasma density. A discussion of the physical
reasons for these effects will be deferred until the results have been

presented for the cylindrical plasma.

3.3 Numerical Solutions for a Cylindrical Plasma

The theory derived in Section 3.1 is, of course, valid in any
geoﬁetry. In particular Egn. ITI.26 describes the perturbations
induced in a cylindrical plasma if the various vector operators are
expressed in cylindrical coordinates. The difficulty of integrating
Egn. II1.26 to find the resonant frequencies, however, increases

enormnusly with this minor change in geomstry. The next few
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paragraphé will describe in more detall these added difficulties.

Most important, the reduction of Egn. ITI.26 to an ordinary
second order differential equation which was accomplished for a plasma
glab 1s impossible for the plasma column. This means that a more
complex system of four first order differential equations must be
integrated with an attendant increase in computational problems,
c.g., greater round-off errors, greater truncation errors, and
several new boundary conditions.

The four independent solutions to Egn. III.26 will certalnly
exhiblt some of Lhe characlerlstics of the solutlons to Egns. I.8a,Db
the uniform cylindrical plasma equations. Eqns. I.8 each have one
regular and one singular solution at the origin. Therefore two of the
boundary conditions in cylindrical geometry are simply the require-
ment that thé function ¢1(0) = 0 . The only convenient way to use

this condition is to begin the integration of Egn. III.26 at the

origin.

Integration was begun at the wall for the slab plasma because
the exponential nature of the solutions in the interior of the plasma
made integration outward impossible. Since boundary conditions at
the origin force the integration to go outward, it will be necessary
in some cases to use double precision (16 digit) calculations to pre-
gecrve accuracy. |

- In practice the numerical integration cannot begin at the
point z=0 becaﬁse the differential equation ITIT.26 has a singular

point there and the numerical integration formulas make large errors.

This requires that ¢l(z) be developed in & power series about the
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origin and evaluated at a point =z' far enough removed from z = O
to eliminate this source of error..
Finally, the condition for resonance to occur becomes more

complicated. In the region exterior to the plasma ¢l(z) obeys the

static Maxvell's equations with no sources.

2 ext
v e = o (III.}6)

the solution to Eqn. IIT.L6 is

B
¢iXtQa) = }; (Azzg + ;%)cos 40 (I11.47)

where £ = 1,2,°*" gives the dipole fields, quadrupole field, and so
forth. A third boundary condition for this problem is ¢l and ¢i

continuous (or equivalently @'/@ continuous) in the absence of sur-

£

face charges. A resonance occurs when the applied field AEZ cos( £0)

becomes zero while the scattered field B 2 %

p cos(40) remains finite.

This implies that

¢,ext' ¢,
;%;E‘ = ai = -0 (z = 1) (II1.48)
1 b

1s the condlitlon for resonance. Reference to Flgure 1 wlll qulckly
show that thls is not the most general resonance condition. It was
tacitly assumed above that the plasma was surrounded by a vacuum. If
& glass tube of arbitrary thickness and dielectric constant surrounds

the plasma, then the preceding analysis must be repeated. The effect



-43-

of the glass tube is to modify Egn. ITI.U8 to

5-’ == 4K | (ITI.49)

where Keff is an effective dielectric constant which depends on the

properties of the glass tube. Details of Ke are available in the

£f
works of Nickel (20)and Crawford (19). Because one boundary condition
depends upon the experimental apparatus, it is not possible to speak

of the resonant frequencles. The only remedy for this is to calculate
and plot ¢i/¢l versus <n27<n§) s0 that the resonant fregquencies for

& given value of Ke can be easlly determined.

ff

Numerical Treatment. Numerical integration is carried out

with the RK formula, Egn. III.36. The functions y and g are now
four component vectors rather than two component vectors. The system
of four first order differential equations will be derived directly
from Egns. IIT1.22 - III.25 rather than using the various derivatives of
¢l as dependent variables. These particular equations have the
advantage of using physically inferesting guantities for the dependent
variables, i.e., electron density, radial electron velocity, potential
and electric field. They also have the advantage of slightly greater
computational speed.

Egns. II1I.22-25 can be written in dimensionless form by

introducing the following variables

Nl(z) cos me = nl(fz/neof (II1.50)
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®(z)cos mo = e¢l(5)/kﬁ © 0*(z)cos me = e¢iQE). z/kT
vr(z)cos mo = ulr(z)/iwrﬁ , vg(z}sin me = ulg(i)/imrw

where z = L§J = Lg/rﬁ\ for the cylindrical problem. When the defini-
tions IIT.50 are substituted in Egns. III.22-25, it results in four
first order differential eguations and one algebraic equation. The

algebraic equation can be used to eliminate v, from the system,

=
 yielding
- 2 2] 2 2 1 £
v, = Nl[l-m /ABz" | + m~ ®/ABz" - &+ =5, (I11.51)
N = E[@*/z - ABv_ + (1 - «f) Iy ] (I11.52)
1 Y r ’ £f 1
%' 2
o% = Afz N, +m 0/z (I11.53)
o = 0%/z : (TII.54)

2,.2 2,2
vhere A= rw’/kno and B = ﬁbpo . Egns. IIT.51-54 are in the form
"of Egn. ITI.33 for RX integration if the vector variable y =
(vr, Ny o*, o) .

As mentioned earlier the singular point at 2z = 0 requires that
¥y be developed in a power serles about the origin. Since the differ-
ential equation is in the form of 4 linear equations, it is convenient

to derive a matrix power series for v . Assume a power series expan-

gion of the form
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1 k+t-l
Vi 2
: o yi Zk+t
y(z) = ), vy, £ 0 (111.55)
k=0 3 k+t
y. z
k
4 Zk+t
Tk

with an arbitrary index +t . Substitute definition III.55 into Egns.
IIT.51-54 and replace the electron density functions £(z) and

f'/f by the following approximations which are valid for small =z ,

f(z) =1 - az2 (I11.56)

i

2
- 207 - 20 z3

i

£1/f (II1.57)

Then collecting terms containing like powers of 2z gives a matrix

recuision formula for the coefficients yk .

Ky, = K2y, +Kby_, (k=0,1,2"") (T1.58)

The matrices K , K2 and K4 are

2
k+t Yo /AB 0 -mg/AB
AB/Y k+t -1/v 0
K = o
o] 0 k+t -m

0 0 -1 k+t
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2a 1 0 0
0 (v-1/y)2a 0 0

K2 =
0 A 0 0
0 0 0 0

2

20 0 0 0
0 (v- 1/y)eoz2 0 0

K4 =
0 - QA 0 0
0 0 0 0

It is assumed that yi =0 if 1 <0 so that Egn. III.58

for k =0 becomes
Ky, = O (v, #0) (111.59)

which does not have a solution unless Det K = O . This condition is
equivalent to the indicial equation for a single differential equa-
tion and serves to determine the allowed values of t . Egn. III.59

can be rewritten
(K - tI)'yo = -ty (k = 0) (I11.60)

showing that t 1s the negative of the elgenvalues of the matrix
(K - tI) . The four independent eigenvectors of (K - tI) are the
initial conditions for the four independent solutlions to Egns.

III.51-54.
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The eigenvalues are +t =+tm, *tm . The two eigenvalues
t = -m give solutions which are singular at z = O and are therefore
discarded. Since the eigenvectors +t = m are degenerate, there is
some choice in the eigenvectors Yo1 and Yo - The eigenvectors

used in the present work are

m/AB m/A
0 (1-B)/3
Voy = Yoo = (III.61)
m m
1 1

because they generate the functions ¢l(z)cx.z and ¢1(z) e
Jm(\/A(l—B) z} 1in the limit =0 (uniform plasma). Of course any
linear combination of yOl and y02 is also a valid eigenvector.
With this preliminary work accomplished the calculation of
¢i/¢l versus (D2/;;3 proceeds straightforwardly. For a given value
of A and B the recursion relation III.58 is used to generate two
sets of coefficlents ykl aﬁd yk2 for the power series IIT.55. The
two power serles are then evaluated at some point z' <far enough from
the origin to avoid numerical errors. Usually this was z' = 10h or
about z = .02. Stafting with yl(z’) and y2(z’) the RK integration
formula is used to carry out the integration of Egn. III.51-54 to
obtain yl(l) and yz(l) . At this point the remaining boundary con-

dition must be used to determine the linear combination of ¥y and

Yo which is a solution to the problem. That is,

v(z) = Byyi(2) + By, (2) (111.62)
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The discussion of boundary conditions for a slab plasma in Sectlon

3.2 is applicable here also. One condition is simply a scale factor
which is chosen to make @&(1) = 1 . The second boundary condition
requires that the radial component of the electron veloecity equal zero

at the wall, vr(l) = 0 . Therefore, solving
5l vrl(l) * B2 Vr2(l) =0
By ¢,(1) + B, 05(1) = 1 (I11.63)

for Bl and 52 and calculating

gl = = By @i(l) + ﬁe ¢Z(1) (III.64)
1

completes the solution. TFor certain combinations of large A and
small B some of these steps must be carried out in doublt precision
arithmetic for reasons already explained. In particular, the RK
integration and Egn. III.63 require double precision but the power

series calculations do not.

Errors. The discussion of truncation and propagation error
in Section 3.2 1s independent of geometry. However, the actual error
estimates become very complicéted as the number of equations increases.
Rather than estimating the errors analytically, sample calculations

vere made for a uniform plasma where the correct solutions are known,

L

Checks of this nature indicate a relative accuracy better than 10~

and usually 10*5. Errors committed in evaluating the power series

are completely negligible. An important potentlal source of error is
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the determination ofb By and 62 from Eqn. ITT.63. Because the
functions yl(z) and yg(z). both show strongly exponential behavior
in the cutoff region of the plasma and the correct solution y(z)
does not, it may happen that Y1 and Yo are not independent when
only eight significant figures are available. This will result in
incorrect values of Bl and ﬁz . A special check was made every
few calculations to avoid thls error. The check consisted of repeat-
ing the RK integration with the initial condition yc(z’) - Blyl(z‘) +
+ Bzyz(z’) - If B, end B, are correct, then yc(l) should have

=1 and v_=0.
r

Results. Numerical calculations were performed on the IBM70G0
computer. The program of calculation called for detailed curves of
¢i/¢l versus meﬁmio for both dipole and quadrupole modes at five
logarithmically spaced values of rs/xgo . In all cases values of
(naﬂngo ranged from O *to above the third resonance. These are
shown in Figures A3.1-10 (Appendix 3). The parameters we/wio and
ri/ Xi 0 have been converted to mg/ -:n-é:; and ri/ k——i- with the aid of
Table IT. Because the results presented in Figures A3.1-10 will be
useful to experimentalists and because they require considerable time
and expense to calculate®, the figures have been drawn in full detail
so that they may be read to 1% or better.

To obtain a theoretical resonance spectrum for a given experi;

mental plasme column the number K pe OF Eqn. IIT.49 must be known.

*The average time to compute one value of @'/¢ 1is 6 sec (single
precision) or 20 sec (double precision).
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Nickel (20) has derived formulas for X .. which include the

effects of the external exclting apparatus as wall as the effects of

the glass tube enclosing the plasma. If a line @'/¢ = -n K pr

drawn on any of the figures A3.1-10, it will intersect the curve

is

¢1/¢(m2/m§) at the resonant frequencies. This is illustrated in

Figure A3.1 for an assumed value of Ke =2.5 (m=1 since it is

£f

a dipole mode. Becsuse any value of Keff between 1 and o 1is

possible, the resonant frequencies can be varied over a range of
frequencies. In Figure 8 the resonant frequencies for Kops = 1

2 ———
and K_,, = 0 have been plotted as a function of rﬁ/’xg for both

ff
dipole and quadrupole resonances. The shaded areas belween Lhe
points indicate the range of resonant frequencies that can be
obtained for any plasma column by varylng the external conditilons.

A convenlent analytlcal approximation exists for the fuﬁctions
¢'/¢ . It is apparent from Figures A3.1-10 that the function ¢'/¢
has a series of simple poles beginning at some low value of m2A;§
and comtinuing to infinity. It is also clear that the higher poles

have & small residue and hence will not affect the function @./¢,

except near the pole. If @'/¢# is represented by a series of the

form

(I11.65)

&
-
®
=
+
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where cn?/if ({ = 1,2,-++,N) are the location of the first N
poles, then the series will approximate ¢i/¢l accurately up to
the Nth pole and beyond with the exception of the vieinity of
doi (i = N+1, **+, ) . The constants A, and mi/;)‘i have been
evaluated for the dipole data presented in Figures A3.1-5 and are
presented in Figures 9 and 10. N has been taken equal to 3 which
prévides a reasonable fit since the residue of the higher poles
decreases rapidly. For the values of ri,/zg vhich are marked on
Figures 9 and 10, the expression III.65 fits ¢i/¢1 to within
1-2%, and there is reason to believe that the points on the inter-
polated curves will have similar accuracy. It should be noted
that the sum of the Ai‘s for any given ri /-):g is very nearly

equal to 1. Thils means that for mE >>£n2

1 the logarithmic

derivative obeys the relation

¢J‘L/ g, = 1- w;/me (T11.66)

This same relation can be derived by ignoring the effects of elec-
tron temperature which implies that at high frequencies the plasma

waves are very poorly coupled to the external flelds and the plasma



..55_

behaves primarily as’a dielectric.

\It has been pointed out by Gould~(21) that the plasma behaves
at low frequencies (w2 <<<g§) as a nearly perfect conductor except
in the sheath region where the electron density is very low. If the
plasma is represented as a conductor of radius z = 1~-0 and a
vacuum sheath of thickness o then the logarithmic derivative at

z =1 1s

2
o

1=

¢l l-0+

o

5 - (111.87)
l 0 =~ g

Ol

et L=¢'/¢§ (w =0) be the logarithmic derivative calculated
at zero frequency. Then an effective sheath thickness can be defined

from Eqn. ITI.67

g= 1- I . (111.68)

The numbers L and o are given in Table III for several values of
ri/’kio . Also given is o rW/XDO which measures the effective
sheath thickness in Debye lengths. Since ¢ rw/xDO is nearly con-
stant, the effective sheath thickness o 1s a measure of the Debye
length XDO . The effective sheath thickness defined by Eqn. III.68
differs by almost a factor of 3 from the sheath thickness defined in
Section 2.3 but this is not surprising since ¢ should measure the
thickness of the region where charge separationAis almost complete
where the definition of Section 2.3 includes the region from l% charge

separation on. If the values of f(1 - o) are compared for various
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Debye lengths, 1t is apparent that for the purposes of defining o

the beginning of the sheath could be defined as the point where the

-2
electron density had been reduced by a factor of e .
TABIE ITI -~ EFFECTIVE SHEATH THICKNESS
2,72

r, /g L o o 7 Mo
72 2.383 0.296 6.46
194 3.393 0.262 6.60
515 4,989 0.184 6.71
1580 8.073 0.117 6.73

Discussion. The primary purposc of thie investigation io
to test the valldity of the hypothesis that the observed spectrum
of resonances 1s the result of a nonuniform density distribution
in the plasma c&lumn. To this end a comparison has been made between
the theoretical predictions and the measurements of Nickel (20). Both
dipole (Figure 11) and quadrupole (Figure 12) exciting fields were
used and the resonant frequencies were determined by measuring the
energy absorbed from the exciting fields. In this manner the threc
lowest resconant frequencies for the dipole and quadrupole modes were
found as a function of the average electron density in the column.
In order to plot the experimental results versus ri/'xg the eléctfon

temperature must be known. The temperature was not measured by Nickel
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80 1t has been considered a disposable parameter and the best rit*
value of kT = 3 e.v. has been used. It is encouraging that this
best fit value is in good agreement with Langmuir probe measurements
made on similar mercury discharges.

The excellent quantitative agreement between theory and
experiment leaves no doubt that the wide spacing of the resonant
frequencles is really due to the nonuniform electron density. The
manner in which the nonuniform plasma causes such a large separation
of the resonant frequencies is illustrated in Figures 13 and 14 which
are plots of N, versus z . Figure 13 shows the density fluctuations

2
which occur at the lowest resonant frequencies, o, (1 =0,1,2,3) , for

i
a fixed value of ri / ;E = 1580. It cen be seen that each higher
resonance contains one more half-wavelength of the plasma wave. Since
1t requires greater radial distance in which to 11t this extra hali-
wave, one must raise the incident frequency until more of the plasma

can propagate waves (the point r, indicates the radius where wave
m2

D
trates the effect of sheath thickness upon a resonance. Here the

2
propagation ceases, il.e., w

[}

2
= f(reﬁgpo ) . Figure 14 illus-

electron density fluctuations are shown for the resonance @y for
various values of ri/’xg . As this parameter increases, the thick-
ness of the propagating region (the sheath region) decreases; this

does not, however, result in a compensating rise in the frequency

*Obta;ging a best fit temperature is particularly easy when
ré;’k% is plotted on a logarithmic scale because an increase

(decrease) in the kemperature simply displaces all the experimental
points to the left (right) an equal amount.
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‘ wz,/mg ; 8ince the wavelength of thevplasma wave also decreases as
ri/’zg increases. These two effects combine to hold the frequency
me/’gg nearly constant as the oscillation is restricted to an
increasingly narrow région near the wall.

In addition to verifying the importance of the electron density
profile, the excellent agreement also yields increased confidence in
the assumptions made in deriving both the theory of the static elec-
tron density and the theory of plasma-electromagnetic interaction.
Independent confirmation of the electron density profiles has come
from Crawford (22) who reports probe measurements of the density
prafiles which agree to about 10% with the calculated curves.

The results of this analysis will extend the usefulness of a

commonly used diagnostic method for determining average electron

density. In the past the relation

(Dg = m2/1+K
P e

) (FI1.69)

ff

has been used as a convenient means of determining the average elec-
tron density by a simple measurement of the lowest resonant frequency.

A line mz/g§==1/14-Ké is shown in Figure 11. It is apparent that

T
Egn. ITII.69 is not valid for small values of ri//zg , that is, for
low densities or high temperatures. By using the results of this
section it is possible to relate the frequency @y to the average
electron density over a much wider range of electron densities. In

fact, by using ., vrather than W it is possible to obtain the

1
average electron density quite accurately without knowlng 'Keff
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because the resonance ®y is not affected greatly by the surroundings
6f the plaema.
Analysis of the numerical computations has also shown that a

simple determination‘of sheath thickness and Debye length may be

. 2 2
possible if measurements of @'/@ for o << ®, are feasible.

3.4 Alternate Formulations of the Theory

Although the theory of Section 3.1 has been shown to predict
the resonant frequency spectrum with good results, some question can
nonetheless be raised concerning its validity. For example, the lack
of temperature measurements in the experimental work of Nickel leaves
open the possibility that a modification to the theory would yield
equally good agreement with experiment at a different electron tem-
perature. It is also interesting to know how sensitive the results
obtained here are to changes in some of the assumptions made in deriv-
ing the theory.

The ildeal test of the approximations made in deriving Eagn.
ITT.26 would be to solve the Boltzmann equation itself. This has
proven impossible to date for the cylindrical plasma. Gould (8) has
integrated the Boltzmann equation in slab geometry for the special
case of a uniform plasma. He solved the problem of boundary condi-
tidns by repeating the slab plasma throughout space and requiring that
the solutions to the full space problem had a periodilclty 24 . For a
nonuniform slab plasma, however, this procedure is not feasible
because the resulting full space problem is not a uniform plasma and

the Boltzmann equation cannot be integrated. This procedure is even
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- less effective in the cylindrical plasma where the generalization to
a full space prdblem is impossible._ Any attempt to solve the Boltz~
mann equation using orbit theory is complicated by the statlc poten-
tial in the plasms which causes a particle to change its velocity

class as 1t moves. Short of a completely new method of attack upon
the Boltzmann equation, the velocity moment approach seems the only

feasible.one.

Tensor Pressure Theory. Once the velocity moment approach is

adopted, the guestion of terminating the chain of moment equations
arises. It is shown in Appendix II that the use of successive moments
of the Boltzmann equation is équivalent to an expansion of the Landau
dlspersion equation in an asymptotic series and that for a strongly
nonuniform plasma the accuracy will not be improved by including
moments beyond the tensor pressure. It is possible, however, that
eliminating the approximstion made in Segtion 3.1, where the tensor
pressure was replaced by a scalar pressure, would improve the theory.
To determine whether this was the case, Eqns. III.9~10 were

combined with the third moment equation

Q-
= ij 2 * * -t.* * 2
(p=2) By —S¢- t L Vuj + (Mik Vuj) +u-V Mij
- Bne '
- Mij St U Vn, (111.70)

* The superscript + indicates the operation of transposition.
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in which the heat flux tensor Mg ik
the fesulting sixth order differential equation was integrated for a

has been set equal to zero and

few values of ri/ k‘; so that a ciomparison could be made with experi-
ment. Since the derlvation 1s rather involved, it will be omitted
here; reference can be made to the work of Vandenplas (23) for details.

The final set of six coupled first order differential equations is

' = 0%/z (IIT.71)
o*' = Afz Nl+m2d>/z (III.72)
v, = %[er - % v, - (v, + mve_)/z] (I1I.73)
vioo= Qg+ (mv_ + Vg)/ z (III.7h)
Qe = fi; (- Q) - (Q +m Qg -Quy - 0¥)/z - 4B v_ (TI1.75)
Qg = '%;Qre +l:ngg-m<D- QQ,rg]/Z - B v, (II1.786)

1
where Nl = v]; + -i:—- Vr + (Vr + mvg)/ z 1s no longer a dependent vari-

f
able and one of the components of the tensor equation III.70 yields a

simple algebraic relation for Qgg .

Qg = N + 2(v, + mvg)/z . (111.77)

The dimensionless variables (zﬁvr,vg, o, Cb*) have the same

definitions as before (Section 3.3) and the dimensionless pressure
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components @ are related to the pressure tensor by

mM,, = P,, = neof kT @ (111.78)

e iJ ij 1

Since this system of equations exhibits a singular point at
z = 0 a power series solution about =z = O 18 necessary. The same
matrix recursion method used on the fourth order equation in Section

3.3 can be applled here. Define the vector function

T
= * .7

y(z) = (8,8%,v ;v ,Q Q) (111.79)

and the power series
£t+l) © ;
v(z) = z Y, Az (111.80)
~ J
j=0

(t+1) )

where t© indicates that the variables vr and vQ should be

t t
multiplied by z( +1)and the others by 2z . The coefficlents Aj

are glven by the recursion relation

T Ay = J2A L Jh Ay ) (I11.81)

vwhere the matrices J , J2 , and J4 are determined by inserting
definitions IT.80 into Eqns. IIT.71-76 and using the small argument
expressions for f and f'/f given by Bgno. IIT.59-57. The

matrices are



J+t Co-l 0 0 0 0
--m2 J+t 0 0 0 0
0 0 3(J+t)+4 m -1 0
J = (111.82)
0] 0 -m Jj+t 0] -1
0 -1 -(j+t+) -3m  j+i+l m
n 0 -m(j+t+h) -3m> 0 Jeted
0 0 0 0 o 0
0 0 (J+t)A mA 0 0
o 0 20 0 0 0
J2 = ‘ IIT.83)
0 0 o} 0 0 0
-AB
- 2
0 0 -20f J+t+1) 2am a 0
0 0 - 20m - AB 0 2
0 0 0 0 0 0
0 0 -(j+t)aa - mA 0 0
0 .0 20:2 0 o} o}
Jh = (II1.84)
0 0 o} 0 0 0
Y- 2 2
0 0 -2a(j+t-3) -2am 2a 0
-2 2
0 0 -2 m 0 o] 2

The indicial equation for t 18 Det J =0 for Jj=0;
the roots arxe t =+m, +m, +m~-2 . The -m roots all correspond to
solutions of the differential equation singular at the origin and must
be discarded. For each of the roots % = m,m,m-2, there must be an

initial vector Ao which satisfies
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J A =0 (j.—.o)' (111.85)

and because t = m 1s a degenerate root, the choice of 'Ao's will

not be unique. A pair of simple vectors for t =m (m = 1 or 2) are

n Aoy Ao
11
1 0,0,0,1,1,1 1,1,5,@1,0
1
2 0,0,1,-5,0,-12 1}2J0)§’l’1

Determining the third initial vector for +t = m-2 1s complicated by

the fact that Det J vanishes not only for J =0 but also for

j = 2 . Besides the singular equation III.85 a second condition must

be satisfied
J A, = J2 AO (§ = 2 . (I11.86)

The initial conditions for the third solution require that both Ab

and A2 be specified.

m A3 Ao3

1{0,0,1,-1,0,0 -AB-2¢1, - AB-2at, - AB/4, -2, - TAB/4 - b, AB/U - 20

210,0,1,-1,2,-2 | -AB-2q, - AB-ha, -34B/20, a ,- —g- AB, 38B/10 + 2a

Integration of Eqns. III.71-76 is accomplished with the fourth order
RK formula, Egn. ITT.33. Each independent solution is evaluated at

z = .02 wusing the povwer series and integrated from there to the
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boundary at z = 1. After the three soclutions have been found the
boundary éonditions are applied to determine the correct linear com-
bination and @'/@ is calculated. Because there are now three
solutions, an extra boundary condition in addition to vr(l) =0 1is
needed. Since vr(l) =0 1is equivalent to a reflection of each
electron's radial velocity at the wall, a natural extension would be
to assume specular reflection. That is, in addition to Ve V. s

also vg - Vg In particular this means that at the wall there is

no force in the © direction on a surface whose normal 1s in the
radial direction. But this is the definition of the tensor pressure
component Pr@ so0 the extra boundary condition is simply Qr@ =0 .
Only dipole mode calculations have been carried out for the
tensor pressure theory. The difference between the tensor and scalar
pressure theories is shown graphically in Figure A3-4 where ¢'/¢
calculated for ri,/zg = 1580 wusing the tensor theory is shown as a
dashed line. In order to compare the tensor and scalar pressure
theories, the resonant frequencies predicted by the temsor theory for

X = 2,1 have been plotted in Figure 15 along with the experimental

el
data of Nickel used earlier. The best fit electron temperature is now
3.5 e.v. rather than 3 e.v. Comparison of Figures 1l and 15 seems to
imply that the tensor pressure theory is equally successful in pre-
dicting the resonant frequencles, but this is not completely true.
Experimental results for several more plasma colums with different

values of T, and Keff fit the scalar pressure theory noticeably

better. The only conclusions which can be reached from these data are
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these: (1) the tensor pressure theory does not agree with experiment
quite as well as the scalar theory, (2) the best fit electron tem-
perature is slightly higher than would be expected for a mercury dis-
charge and (3) any final choice between the two theoriecs must wait
until a measurement of electron temperature is made in conjunction
with measurements of the resonant frequencies. Even if more complete
measurements do not favor the scalar pressure theory, i1t will still

prove very useful because it is computationally faster and cheaper.

Energy Conservation. In the study of beam~plasma interactions

and coupled mode interactions in a uniform plasma, the concept of an
energy conservation theorem for the time-varying energies has proven

quite useful. Such a theorem has the form
7;5 [energy density] + V-[energy flux] = O (ITT.87)

and is usually derived by writing an equation for ’g_-lgl , the rate

at which the electric fileld E does vwork on the plasma, and then

1

applying Maxwell's eguations to obtain J - Ei as a time derivative.
Since J = enofligf it is simple to write the equation for J .E&L

for the scalar pressure theory by dotting E, dinto Eqn. III-23. The

1

regulting equation can be easily manipulated into the form of Eagn.

IIT.87 with the exception of one term.

Kl 2, lng
dt

1 2
meneof ’}'l"l * "5 nof nl] + Ve ( nl}'l-

o]

€ Eg
ol+

ol

1)

(v - Len; u, - B . (111.88)
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‘'he extraneous term which is evident on the r.h.s. of Egn. LL{1.88 cor-
responds to an energy source derived from the motion of the plasma
agailnst the static electric field®. A simple modification of the equa~
tions describing the plasma will cause this extra term to vanish and
leads to a description of the plasma which obeys an energy conservation
theorem. This modification, which sets the term (1-7) %% Nl =0 in
BEgn. ITT.52, was made, and the resulting equations were integrated as
before. The results were in poor agreement with experiment, indicating

that an energy conservation theorem is not possible for the nonuniform

plasma.

Bouudary Condillons. Having discussed the varlous approxima-

tions made in deriving the equations describing the response of the
plasma, the only remaining gquestion concerns the boundary conditions

to be used with those equations. Although superficilally the boundary
condition u?(l) = 0 seems to be well justified for an insulating
wall, it can be called into doubt. If, for example, the insulating
wall were to alternately accumulate and lose a surface charge on each
half-cycle, then the current at the wall would not necessarily be

zero. It has been argued on physical grounds that setting the accel-
eration equal to zero at the wall should be a better boundary condition.

However, in a linearized theory the acceleration 2, is glven by

(T77.89)

*Note that ‘Eo = O in a wiform plasma so that the conservation law

is valid in that case.



m73 -

and since (Eﬂ‘w VOEH, is a second order quantity, a, =0 Iimplies

w = 0 . It was pointed out by Leavens (24) that for the slab problem
another type of boundary condition is available. ILeavens argues as
follows: When the equations describing the electric field in a slab
plasma are put in WKB form the analog of the potential energy function

is (Eqn. ITI.kk)

2 '

1d 7 £0.2 1 ¢em
U(x) = ¥ ;g; £(x) + I (?f) iy . (111.90)

Near the wall the electron density and hence f 1is very small so that
£'/f becomes large and U(x) may exceed k° . This means that there
is anovther turning polunt in the problem besides lhe expecled one al
£(x) = meﬂwio and that the function Y(x) must have exponential
behavior near the wall. If this exponential region were infinitely
long there would be a second boundary condition requiring only the
decaying exponential solution to be present. Although the exponential
region is not infinitely thick, it may be several e-folding distances
thick so that the requirement of decaying exponential behavior 1s
still an approximate boundary condition.

This argument is probably invalid. The only equation which
can be put in WKB form is Eqn. III.29 with € = 0 . But specifying,
C = 0 1is a boundary condition in itself and uniquely determines the
resonant frequencies, thus the WKB boundary condition 1s redundant.
It appears therefore that ul = 0 1s the only boundary condition

which hac o rcagonoble justification. A more detailed study of the

sheath~wall region would certainly be required before any alternative
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boundary condition could be proposed.



-75-

SECTTON IV - PLASMA WAVE RESONANCES WITH AN AXTAL MAGNETIC FIELD

4.1 Comments

Tt hao becn well verified experimentally that an axial magnetic
field imposed upon a plasma column has the effect of splitting the
lowest frequency resonance W into two two distinct resonances whose
frequencies depend upon the strength of the magnetic field (29).
Several investigators (25,29), however, have failed to observe a
splitting of the higher resonances. Recently Nickel (20) has observed

such splittings in low density plasmas.

The splitting of the resonances is not unexpected because the
zero magnetic field problem exhibits a two-fold angular degeneracy,
i.e., vwhen the angular dependence of the various functions is
separated out by the substitutions Egn. III.50, the resulting coupled
equations ITI.51-54 are guadratic in m . Therefore the right and

iilm‘@ are

left handed modes of oscillation characterized by e
degenerate. Physically this results from the lack of a preferred
axls which would allow the sense of rotation to be defined. However,

when an axlal magnetic field is applied, a preferred direction is

defined and the degeneracy is broken.

Previous theoretical investigations of the effect of an axial

magnetic field have been limlited to the lowest frequency resonance
because electron temperatures have been ignored. Crawford (25), for

example, has assumed Te = 0 and used a tensor dielectric constant
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to describe the plasma. He finds two resonant frequencies, wo+(Bo>

and ® (BO) , which depend upon the magnetic field strength and obey

the relations

® = W .

“o+ “o- o (1Iv.1)

®woo-w =W (Iv.2)
o+ o= e

where wc = eBO/m is the electron cyclotron freguency. Nothing can
be learned about the higher resonances in this way since they exist
only when T % 0 . To predict the effects of a magnetic fleld upon
the higher resonances with reascnable accuracy requires that the
theory derived in Sections IT and III be modified to take account of

the magnetic field.

4,2 Effect of the Magnetic Field upon the Static Density Profile

If a strong axial magnetic fileld is imposed upon the plasma
column, most of the assumptions underlying the calculation of the
static electron density profiles in Section IT will be invalidated.
In particular, the electrons will be tied to magnetic field lines and
the electron current transverse to the field will be reduced. Also
the ions will be deflected from a straight line motion toward the
walls wnich will change the form of the integral expression for the
ion density. These facts seem to indicate that a new calculation of
the static electron density will be required before the resonances
can be investigated. In certain limits, however., the static density

profiles derived earlier are still approximately valid.



_77_

For example, it is experimentally observed that the resonances
of a low density plasma column subject to an axial magnetic field are
strongly damped when the magnetic field exceeds 50-100 gauss. If for
this reason investigations are restricted to fields of less than 50
gauss, the problem of lon trajectories is eliminated. The high mass
and low velocity of the ions require fields of kilogauss to appre-
ciably affect their motion.

The electron motion provides a more severe limitation. It is
reasonable to expect the transverse electron current to remain sub-
stantially unaffected as long as the cyclotron radius is larger than
the radius of the plasma column. This is the case 1if B < 10 gauss
for the experiments of Nickel (20). A more careful calculation of
the reduction 1ln the transverse electron current gives the following
results. IT JO is the current density at B = Q0 and the approxi-
mation r << r_ is made, then J ~ JO/3 at 40 gauss and for an

-3 -3

ion density of lOlO cm . At a lower density of np = 109 cm

current suffers a more drastic reduction; J = JO/GOO .

the

For small changes in the radiel current J the major modifi-

cation in the results of Section II is a change in the point .

where the ion and electron currents are equal. If n. ~ LLO:LO c:m-3

L
then 62 ~ 10 and a change of 3 in the current causes a change of

less than 1% in S, In summary, it can be expected that calculations

made using the static electron densities calculated for zero mag-

netic field will be wvalid for fields such that rL 3 rw and for

largcr ficlds when the ion densities are high enough. For example,
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experiments conducted on a mercury discharge with r,~ .5 cm will

have a range of validity of 0-10 gauss when oy ~ 109 cm"3 and
00 -

0-40 gauss when n, ~ 107 cm 3,

4.3 Theory

The equations developed in Section ITI to describe the res-
ponse of the plasma to an applied electromagnetic wave require only
a minor modification to include the effects of a magnetic field.
This modification adds to the acceleration A = neVE@?./me the effect

of the magnetic field:

¢4

A =

A

ne n
‘HE‘*‘E%X?,O R (IV-L")

Except for this change, the derivations in Section 3.1 and 3.3
follow exactly as before¥. A new dimensionless parameter C
related to the magnetic field is introduced into the problem. It is

defined as

2,2

The final dimensionless equations describing the plasma response are

2 2 ,
vl o= Nl{i - Tn12] . 5 0 - [-££~:~Ql + 25{] V., (1v.s)
r ABz ABz z

*The linearizing assumptions Eqn. III.15-18 are still valid in the
presence of a magnetic field. In particular there is no static
drift velocity in the © direction as might be expected from the
Ex }iﬁ/ﬂg drift. This drift i8 cancelled by an oppositely directed

velocity arising from the electron density gradient.
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1 £ yD D o
= Y S . - 1- . = .
N =7 [@ /z - A(B-C)V_ + {( Y= - L }Nl + @} (IV.7)

, 2
o = Az W +m o/z (1v.8)
o' = 0%/z (1V.9)

where D 1is a combination of the previously defined dimensicnless

parameters (The definitions of v, _, N, ¥, ® are similar to those
e

’t’
in Egqn. ITI.50 except cos mo - 110 and sin mo - —ielmg).
m ooy W
C\1/2
D = m(g)/ = = < . (1v.10)
w
PO

-

Note that Egqns. IV.6~9 depend upon m now as well as ma through the

factor D and that m occurs only in the combinsation n mc making
the equations invariant to rellections along the axis as they should
be. The boundary conditions used previously are unaffected by the
addition of a magnetic fileld and do not need to be discussed further.
Similarly, the numerical methods used to sclve Fgns. IV.6-9 are iden-
tical to those used before and the calculations proceed in the sanme
fashion: power series, numerical integration, and boundary conditions.
The results of the calculations are considerably more difficult to
present, however, because of the additional parameter wi/wgo .
Rather than attempting to give general curves of ¢i/¢l (wgﬂmi s
wiﬁmﬁ 3 ri/xg) which would allow the resonant frequencies to be deter-
mined for any experimental situation, a value of X will be assumed

Teff

which is typical of the values encountered in practice, and the
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resulting resonant frequencies mi/cng will be plotted as & function
of mc/\/we . This is done in Figures A3.11-13 for K_,, = 2.1 and

P —
for the values of ri,/xg indicated on each figure. The curves marked

+(-) correspond go the right (left) handed polarization or m=+1(-1).

L.} Results of Numerical Evaluation of the Theory

The lowest resonance behaves approximately in the manner pre-
dicted by the simple dielectric theory. The dependence of the
+ -
resonant frequencies @, and w, upon the magnetic field can be

expressed approximately by

- 2
o 0l = w (Iv.11)
.0 © o
4.. -
P D W (Iv.12)
Q O 64

The constant X depends upon the shape of the electron density profile
or equivalently upon ri,/xg . Values of )\ for the results shown in

Figures A3.11-13 are given in Table IV

TABLE IV
2, 2
rw/’kD 72 19k 515 1580 4530
A 0.89 0.83 0.79 0.76 0.7k4

It is somewhat surprising that X\ 1s not equal to 1 as Larmor's

theorem would seem to imply it should be. However, for perturbation in
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a plasma with finite electron temperature, Larmor's theorem is not
applicable. This follows from the fact that charge separation
(ne # ni) can take place and in particular can occur in both ways,
i.e., ne > ni and ne < n:_L . But this is equivalent in the pertur-
bation equations to having charges of both + i and - i whereas
Larmor's theorem assumes that sll particles have the same % ratio.
From a microscopic point of view the discrepancy is a result of the
positive ions whiqh have % different from the electrons. Examina-
tion of Figures A3.11-13 shows that the values of A are much less
than 1 for the higher resonances. This is in agreement with the above
argument, since the charge separation throughout the cutoff region
(m§ > mg) is always of the same sign and it is only in the propaga-
tion region where w2 > wi that any charge of opposite sign can
arise. The propagating region is, of course, much larger for the
higher resonances and hence the deviation from M\ = 1 is greater.
The higher resonances, only one of which is shown in Figures
A3,11-13, exhibit an unexpected behavior as a function of Bo . For
very weak magnetic fields a splitting results which is similar to
that observed for the lowest frequency resonance. At higher fields
however, the (-) polarized resonance begins to move to higher fre-
quencies until both (+) and (-) resonant frequencies are increasing
in frequency while maintaining nearly constant separation. That this

behavior is correct can be seen easily from the differential equation

in the limit of high magnetic field.

If Egns. IV.6-9 are combined intc a single differential equation

for & and the limit w, >> Wpg 5 G >>® is taken, then o
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is found to satisfy the equation

o - » = 0 . (1v.13)

. 2
Eqn. IV.13 is a wave equation (92 +k )0 =0 where k2 is given by

the function

(Iv.1k)

Bk
|
BN

in which all the gquantities are positive numbers except m which 1s

+ |ml depending upon the polarization of the applied field. Ir

m = + \m] then k? is strictly negative for all 2z and the function
®(z) will have an exponential character, ®(z) ocexp(kz) , and hence
»* s

occur for m = + |m| and w << ®, which agrees with the numerical

k will be positive. This means that no resonances can

il

results. Tf m = - lm] the situation is more complicated. The mag-
nitudes of the various quantities are; Af = 5 - 5000 and

5 =5
Afz/|f'| ~ 1 - 150 depending on rw/)fﬁ and the value of =z consi-

dered. Now if

Ny
Afz S>> 1 m = -|m (Iv.15)
lfvl 2

mpo

“then
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K° = b —P% ||/ (1v.16)
(.D(.DCZ

1]
and although K°  is positive, it is so small (%; = 3) that it would
be impossible for ® to undergo even one half-wave of oscillation in
the region 0 € z £ 1 . There is, however, one exception to this

statement and that occurs if

afz %%
1L+o>75T15 > 1 m = -|m| (Iv.17)
@
po

2
for a range of values of z . Then k =~ Af/A which is a large
number. More detailed examination of the values of k2 obtainable
and the ranges of 2z where k 1s positive, show that it is possible

to obtain only a fraction of a wavelength of oscillation even though
ke io large so that o rcoonance occurring by this meons must be iden-

tified with the wg mode which has less than a half-wavelength of

oscillation. For this mode Eqn. IV.17 requires that

oW " £ W
— = ler] ~— (1v.18)
PO Afz Do

or that m;w;l which agrees with the calculated behavior of the
o mode.
O
Recent experiments by Nickel (20) have verified qualitatively
this theoretically predicted behavior. In particular he has observed
a splitting of the Wy resonance into two resonances whose spacing

depends upon the magnetic field for weak fields (0-10 Gauss) and

becomes independent ol the magnetic fleld as it 1s increased.
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SECTION V. - GSUMMARY AND CONCLUSIONS

It has been observed experimentally that if a beam of microwaves
is incident upon a plasma column perpendicular to its axis and with the
incident electric vector transverse to the column, a series of reson-
ances are observed in the scattering at frequencies near the plasma
frequency. Tt has been the purpose of this investigation to provide
a guantitative theory explaining the origin of the resonances and to
provide detailed calculations of the resonant frequencies. The theory
advanced here differs from previous work in taking into account the
variation of electron density with radius in the plasma column.

Since it is proposed that the radial varilations in electron
density are important to these resonances and the theory 1s expected to
provide guantitative information about the resonances, 1t is apparent
that some physically reasonable electron density profiles must be used.
This has been accomplished by numerically solving the cquation proposed
by Tonks and Langmuir as a description of the static behavior of a col-
lisionless plasma in an insulating cylinder. The equation describing
the static electron denelty takes inbo account the formation of a sheath
region near the wall vwhich depends upon the electron temperature. As a
result a family of curves 1s obtained which gives the variation of elec-
tron density with radius as a function of the parameter ri/kgo .

The electron density profiles are used in conjunction with the
first two velocity moments of the Bolbzmann equation to describe the
response of the static plasma column to a perturbing RF electric field

oriented transverse to the column. In deriving the equations
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describing the response of the plasma an assumption was made concern-
ing the electron pressure, namely, that it was a scalar quantity
related to the electron density. The equation derived in this manner
is a fourth order differential equation for the electric potential
¢l(r) . In its dimensionless form this equation depends upon the two
parameters ri/)\;O and wg/mio

Extensive numerical integration of the differential equation
for @,(r) was carried out and is presented in the form of curves of
¢i/¢l(rw) versus wQ/UZE for five valuco of the parameter ri/-k;‘?- .
In addition, comparisons have been made with the work of Nickel (20)
which have shown an excellent agreement between theory and experiment.
From this agreement several conclusions may be drawn. First, the non-
uniformity of the electron density in the plasma column is essential
in determining the spectrum of resonant frequencies observed. Second,
Lhie eleclron denslly proflles computed are 1n reasonable agreement with
the actual electron density profiles existing in mercury discharges.
Finally, the assumptions made in reducing the Boltzmann equation to a
soluble differential equation are approximately valid.

Whether the assumptions made in reducing the Boltzmann eguation
are the best that could be made was also investigated. For example,
trial computations were made using a theory which replaced the simple
scalar electron pressure with a more complicated tensor electron pres~
sure. It was concluded that the resonances predicted using the tensor
pressure are in nearly as good agreement as those predicted using the

scalar pressure except that a 15% higher electron temperature was
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needed to obtain a proper it to the experimental data. Measurements
of electron temperature in a mercury plasma tend to favor the lower
temperature given by the scalar pressure theory, but more extensive
experimental measurements need to be made before either assumption
can be discarded. An attempt was made to derive a theory which con-
tained an energy conservation theorem, but it was not successful.

In the last section the effects of an axial magnetic field
upon the resonant frequencies was studied. It was shown that weak
magnetic fields (BO < 40 Gauss) had little effect upon the static
electron density so that only the theory of the plasma response re-
guired modification. This modification was simply the addition of
the term gx X BO to the force acting on an electron. Preliminary
numerical solutions were obtained for this modified theory with the
following rcoulto. The lowest frequency resonance is split into two
resonances which move monotonically to higher and lower frequencies
ag the magnetic field is increased. This general behavior was expected
from a simplified theory due to Crawford (27). However, the delalls
of the amount of splitting as a function of BO do not agree with his

conclusions. In particular, his expression for the splitting of the

resonances @ - o - was found to be only an approximation to
c

+ - . . . 2 5.2

® -w = Ao, where XA 1is a slowly varying function of rw‘/XDO

The higher frequency rescnances exhibit a marked difference in
thelr behavior from the lowest resonances. Bach highcr rcoonancce
splits into two resonances at very weak fields, but as the magnetic

field is increased, the resonance which had begun to decrease in fre-
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quency reverses its behavior so that eventually both modes o' and
w  are increasing in frequency as the magnetic field increases. This
behavior has been shown to be consistent with the equations describing
the plasma response in the limit ®, >> W, ®, >> mpo . Physically,
it can be explained by noting that the motion of the plasma for the
two lowest frequency resonant modes m: and m; correspond to a
uniform right and left handed rotation, so that the magnetic field
affects them differently. Conversely, each higher resonant mode,
since it exhibits waves in the sheath region, is a mixture of right
and left handed rotation and hence is affected in the same manner by
the magnetic fileld.

In addition to demonstrating that the nonuniformity of the
plasma electron density is the cruclal factor in determining the
resonant scattering frequencies of a plasma column, the results pre-
sented in this work provide a wvaluable diagnostic tool for the rapid
determination of average electron density. With a simple measurement
of a dipole resonant frequency® and a knowledge of the electron tem-
perature, the average electron density can be obtained in the
following way. Using the graphs of @'/ versus wQ/;§ (Figures
A3.1-5), construct a figure similar to Figure 11. Since
ri /;g = (ri eg/eokT)H and wz/;g = (eom/ez)mz/ﬁ_, this plot is

essentially one of resonant frequencies over average density versus

* @ ie convenlent because it is usually easily observed and its

1

frequency is relatively independent of Keff .
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average density. If the measured resonant frequency is 1 then
the intersection of the curve wim/ n versus n will give the true
average electron density and also the eflfective Debye length

P
r;//xg . With this information and Tables I and IT it is also possible

to obtain n_ and the sheath thickness ( ~ 18 XDO) .

As 1s usually the case, this investigation has raised as many
new guestions as it has resolved. Certainly additicnal calculations
should be made in order to investigate the resonant scattering from
plasmas with different ionic species, for example H2 or He . It
was also poluted oub previously thet experlimental checks need to be
made into the agreement between best fit electron temperatures and
experimental electron temperatures. The most interesting theoretical
guestion raised concerns the effect of damping upon the resonances.
The experimentally observed resonances have a finite amplitude and
width and it would be interesting to know whether the major cause of
damping was collisional or Landau damping. In thig way the diagnostic
uses of the plasma wave resonances might be expanded to include
studies of Landau damping in nonuniform plasmas or measurements of the

electron collision frequency.
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APPENDIX I

DETATLS OF THE TECHNIQUES USED IN THE NUMERTCAL SOLUTION

OF EQUATTON II.7

As outlined in Sectlon 2.2, a predictor corrector method is used

to build a table of the function 7(s) at some interval h. This
table 1s begun at the origin by calculating the first 12 values of n
using a power series solution to Egn. IT.7.

The power series 1s derived in the following way. q(s) may be

*
expanded lnn a power serles aboul the origin as

a(s) = a82 + bs)Jr + c86 e . (A1)

Regrettably the integral in Eqn. II.7 cannot be evaluated when a power
series occurs within the square root. The alternative is to invert the
serles Al.l to obtaln a series expansion of s 1in powers of 1 . These
nev series are

MYE TP @IE, (AL.2)

S onLbmE L
8 = Py a(g) + » (Al.B)

The integral which must be done is

*The odd powers of s all vanlish because the square root in the
integral generates half integral powers of s when odd terms are

included and no half integral powers occur in the rest of the equa~
tion.



S
-n(0) 42
. % —[. e ™" ad _ (AL.4)
o Va(s) - (o)

If the definitions n(o) = and n(s) = n, are made and Eqn. Al.3

is substituted into Al.4, then

1 - ob
1 ® (1-q+ — - )(— - j;‘ﬂg «+)dn
I~ 3 (AL.5)
0 ng - 7
or
n1/2 . y
" _8 4 1,.3/2
I = —— - 3(a3 + =)0 -

2
A straightforward evaluation of sV Mg leads *o

2 _ LLa1/2 n2_/2

57 1, m( 5\3/2 ... (AL.6)

Inserting Al.5-6 into Egn. II.7 leads to the following relations for

a and b.
a = (1+ E%)—Z (AL.7)
B
. —%al/g
- o ——
3a372 2a, 62

Eon. Al.7 is cubic in a and can be solved most easily by iteration.

That is, assume a = 1, evaluate the r.h.s. of Eqn Al.7 to obtain a new

value of a and continue untlil the process converges. Once a 1is
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known, b can be calculated straightforwardly.

The resulting two-term power series has errors of the order
0(56) . If the initial values of 1 are desired to an accuracy of
10_6 then the restriction on s 1is s<0.03. If the power series
is used to evaluate the first 12 values of 17 then 11h < .03 or
h <.0027 . Once the initial values have been calculated, the
predictor corrector method can be used to obtain the remainder of
the solution.

The predictor formula 1s derived using finite difference
operators (1k4). For convenience let My = n(Nh) . Then the operator

Vd is defined as

Va el T wea T (41.9)
or rearrangling terms

1
Myl ~ 19, Ty (A1.10)

Expansion of the operator l/(l-Vd) leads to

_ I
Mpep = (2 + Vg # Vg H Vgt )y (A1.11)

which when truncated after the term ‘73 and applied to Ty glves

the predictor formula used.

“ffu = Oty = 10 g 100 o - DT o Ny, (A1.12)

p .
Using the value L and the table of ny (1 = 0,1,-++N) the

integral and derivatives cccurring in Egn. IT.7 can be evaluated. The
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derivatives dn/ds and d n/ds” are given by the formulas

' 25 L 1
Tyl 5i§ 1 ~ AﬂN * 3y T 3ot T ﬂN-H%]//h (A1.13)

Ml T (T2 el T3 W T2 el T3 ez T I8 ez /M
(AL.14)

The derivation of these equations is a direct result of the finite

difference ldentity

=n +hD +h2D2 +h3D3 ez D (AL.1
Tye1 T My T TET Yy T3 W Ee My +15)

where D 1s a symbolie operator for differentiation. From AL.15 and

Al.10 it follows

1 . D
el T Tow. W Ty
a
and hence
- 1 13
hD~~log(l-Va)qu+2V§+3Vd+ . (AL.16)

giving the operation of differentiation in terms of finite difference
operators. A simllar expression can be derived for Dg , The second
derivative.

For a functlion tabulated at constant intervals the process of
integration in its simplest approximation reduces to forming the sum

of all the table entries. A more accurate method of numerical
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integration is Gregory integration. The formula for Gregory integra-

tion of an arbitrary function F is given by Todd (1k) as

N
1 1
= = - oo F =
nfﬂ FNdN 5 FO + Fl + N-1 T 3 FN
0
1 1 2
15 (Aayo - vaFN) n (Ad F- V§ FN) (A1.16)
where A Mo = My = My This formula consists of a simple sum of

the table entries plus corrections involving differences in the table.
In the actual calculatlon correcllion terms through Vg have Vbeen

retained. Tt should be noted that to evaluste vg F, and AZ F

requires the values FO through F and FN through FN~5 , &

P,
minimum of 12 values of F . This is the reason for the seemingly
arbltrary choice to evaluate the first 12 points by n by powver
series.

Equation II.13 illustrates a way of eliminating the singu-
larity in the function which must be integrated. In the actual
calculation the subtraction discussed was carried out twice to

reduce the error. The actual calculations were performed with the

formula

=3 =T 1
~N 8 7

f 0d L se [l-*}—’ﬁ(n'“*ws)}
Jig- a2 Jay/e o b

~rjr e lo e—ns ° {l + (ﬂé + "s )(5”0{]} do (AL.17)
Ny 1 \/ ng(s-0) g

where the integral on the r.h.s. was evaluated using the previcusly
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described Gregory formula.

When the two sides of equation II.7 are evaluated they will not,

P .
in general, be equal because nN+l is not the correct value of nN+l .

P
To find a correction to the value of nN+l we define the ervor

WO = 1l.h.s. Egn. IT1.7 - r.h.s. Bgn. IT1.7 . An approximate correction to

P

Myel is given by the empirical formula

.02 ¥
@]

(1 + 1ous/52)

An = (A1.18)

. cl P
Using the new value Tyal = el + A1 , the evaluation of Egn. II.7
is repeated and a new error is defined Wl . Using Newtonian inter-

. cl
polation on the two points (nN+l’wo) and (nN+l’Wl) a new guess

c2 cl c2
. - th i i -
Nygyp 1S made If (nN+l nN+l) < T en the iteration has con
verged and the calculation proceeds to the point 'nN+2 . If the test

is not satisfied then Wg is calculated using 'q§il and the iteration

is repeated until it converges.

In all calculations 7T = 2 x 10_8 so that the only errors in
the calculation are caused by errors in the numerical formulas. These
errors depend upon the interval size and for best results the interval
should be small; however, the calculation time depends upon (l/h)2 S0
that too small an interval is costly in computational time. The best
compromise was found to be h = 0.002. The errors in integration are
estimated to be less than 10—6 and by using only every other point

(h = .00L4) for differentiation, the error there has been kept less than

-7
5 x 10 . Even allowing for accumulation of error during the calculation
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p)

the results should be accurate to 1 or 2 parts in 10 (for random
errors of size A committed n +times, the total error grows as \/n

which is about 25 times for a typilcal calculation.)
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APPENDIX IT

JUSTIFICATION OF THE TERMINATION OF THE

VELOCITY MOMENT EQUATIONS

Whether termination of the chain of coupled equations III.8 is
Justified is logically connected to the question "to what extent are
the coupled moment equations equivalent to the Boltzmann equation?"
This guestion can be answered approximately by investigating a uniform
plasma for which the Boltzmann equation is soluble by analytic tech-
nigues. The results derived by examining the uniform plasma will be
approximately valid from point to point in a nonuniform plasma.

The conductivity of a uniform plasma can be found directly from
the Boltzmann equation in terms of the well known plasma dispersion

function (26).

o) 2

L ot at (82.1)
w
VT e kv
e

where Kk 18 the magnitude of the wave vector for some wave in the

[4V]
2lgr) -
€

plasma, o is its angular freguency and Ve ig the mean thermal
velocity. The dispersion relation for longitudinal waves in a uniform

plagma can also be written in terms of this function as

) .
l-—=55%2 (Ev*) = 0 (A2.2)
k Ve e

where Z' denotes differentiation with respect to the argument. The

function Z' can be expanded for large arguments and Eqn. A2.2 can
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be rewritten as

Lo 4

kv
wggw2+§-kevg+}é <
P e 2

5 L Foeee (A2.3)

W
P
If the same problem of longitudinal plasma oscillations is now
considered from the point of view of the coupled moment equations, an

interesting comparison can be made to Egn. A2.3. Referring to Egn.

IIT.8 if M2 = 0 then the resulting equations can be solved with
the result
2 2
T SO (A2.14)

If M, #0 but M_ = 0 then the resulting dispersion equation is

3

W o wp+-—2~k \ (A2.5)

and if ME#O,M3;4O but M) = O then

bk

kV

2 3,22 15 e
w _0)+'2‘k V6+)+ -—(D'"g—-“ . (A2~6>

P

Note that each additional moment Mi adds an additional term to the
dispersion equation for m2 and that this series agrees term by term
with the result, Egqn. A2.3, derived by expanding the plasma dispersion

function.

It can be shown, however, that the expansion of the plasma dis-
perslon functlon used to derive #Hgn. AZ.3 is an asymptotlc expansion

and by convention should be terminated when the terms begin to
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increase. The general formula for Eqn. A2.3 is

e

1°3°5 vee 2myl (Kve)Qm

(A2.7)
P u=o 2" @

s , th
and if the ratio of the m tern to the m—lth term 1s to be less than

L, then

1
m £ 0 -3 . (A2.8)

2 2
Tn a nonuniform plasma the quantity /kgve is, of course, a

function of position and the number of terms justifiable in the moment

equablons wlll depend upon Lhe smallest value ol wg/kevg « This can
be estimated as follows:
1 ;T
5 % 575 (A2.9)
k w - o
P
w2 3 w2
S =2 . (A2.10)
k2V2 2 w2* w2
€ b

Oince only the propagating reglon w 2> w is ol coucern, Lle

fos 13

smallest value of Eqn. A2.10 me/kgvi =2 or m=1. This corres-

2
ponds to retaining moments as high as the pressure tensor in the
wmoment equations, but any higher moments will not necessarily increase

the accuracy of the results.
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APPENDIX TII

GRAPHS AND TABLES OF NUMERICAL RESULTS

logarithmic Derivative - Dipole A3.1 - 5
Quadrupole A3.6 - 10
Magnetic Field Resonances A3.11 - 13

Tables of Density Profiles A3.14 - 19
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0.2

0.4 0.6 0.8 1.0 [.2
we / /wpz
0  ———
'w /N2 =72




0.2

We, K7 25%;

Fig.A312 Tw/\2 =194

04

~TTT-



Fig.A3.13

0.2 04

ré/ '):—g = 1580

0.2 —




~1132-

8 n(s) n{s)/n_ n'(s) n"(s)
0.00 C.0000 . 1.0000 0.0000 2.000
0.05 0.0025 0.9975 0.1002 2.012
0.10 0.0100 D.9900 0.2016 2.049
0.15 0.0227 0.9776 0.3056 2.113
0.20 0.0407 0.9602 0.4135 2.210
0.25 0.0641 0.9379 0.5271 2.344
0.30 0.0935 0.9107 0.6LB7 2.532
0.35 0.1292 0.8788 0.7812 2.784
0.40 0.1719 0.8L21 0.9288 3.1khk2
0.45 0.2224 0.8006 1.0974 3.636
0.50 0.2821 0.7542 1.2968 4,385
0.55 0.3529 0.7027 1.543 5.592
0.60 0.4378 0.6455 1.8698 7.689 1
0.65 0.5424 0.5814 2.3490 1.207 lOl
0.70 0.6187 0.5073 3.2105 2.513 102
0.75 0.8901 0.4106 6.0337 1.378 10
0.76 0.9598 0.3830 8.2056 1 3.229 102
0.77 1.0790 0.3399 1.9443 10 2.579 10
Ton Species He e Ar Cs Hg

8 0.772 0.772 0.772 0.772 0.772

wall
fe

0.698 0.698 0.698 0.698 0.698
n

O

fig. As.1k
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8% = 10°
s n(s) n(s)/n,
0.00 0.0000 1.0000
0.05 0.0025 0.9975
0.10 0.0100 0.9900
0.15 0.0227 0.9776
0.20 0.0407 0.9602
0.25 0.0641 0.9379
0.30 0.0935 0.9107
0.35 0.1292 0.8788
0.40 0.1719 0.8421
0.45 Q.2224 0.8006
0.50 0.2821 0.7541
0.55 0.3529 0.7027
0.60 0.4378 0,6U455
0.65 0.5423 0.581k4
0.70 0.6787 0.5073
0.75 0.8897 0.4108
0.76 0.9585 0.3835
0.77 1.0649 0. 3447
0.78 1.6740 0.1875
0.79 7.8272 0.0004
Ton Specles He Ne Ar
§ a1l 0.787 0.788 0.788
-
e
" 0.681 0.679 0.679
(0]

Fig. A%.15

RO VWO HERFRFRFOOOOOOOOD

0000
. 1002
. 2016
. 3056
41735
.5271
6487
. 7812
.9287
.0974h
.2967
Sk35
.8696
.3Lk87
. 2089
-9958

030k

4897 10
. 2035 103
.0861 10

1
2

Cs

0,788

0.679

7"(s)

2.000
2.012
2.0k9
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ﬁ2 = 105

8 n(s) n(s)/n n(s) 1" (s)
0.00 0.0000 1.0000 0.0000 2.000
0.05 0.0025 0.9975 0.1002 2.012
0.10 0.0100 0.9900 0.2016 2.0k9
0.15 0.0227 0.9776 0.3055 2.113
0.20 0.0407 0.9602 C.h13k 2.209
0.25 0.0641 0.9379 0.5271 2.344
0.30 0.0935 0.9107 0.6L487 2.528
0.35 0.1292 0.8788 0.7811 2.786
0.40 0.1719 0.8k21 0.9286 3.136
0.45 0.2224 0.8006 1.0971 3.640
0.50 0.2821 0.7542 1.296k 4.383
0.55 0.3528 0.7027 1.5429 5.577
0.60 0.4377 0.6U455 1.8685 7.663
0.65 0.542]1 0.5815 2.3457 1.203
0.70 0.6782 0.5076 3.1961 2.458
0.75 0.8859 0.h124 5.7419 1.099
0.76 0.9500 0.3867 7.2123 1.918
0.77 1.03ks6 0.3554 1.0057 101 3.998
0.78 1.1638 0.3123 1.6805 10+ 1.026
0.79 1.4109 0.2439 3.5808 101 3.006
0.80 1.9892 0.1368 8.7328 10% 7.630
0.81 3.3160 0.0363 1.8502 102 1.170
0.82 5.7393 0.0032 2.9878 10 1.066
Ton Species He Ne Ar Cs Heg

8 vall 0 816 0.819 0.820 0.822 0.822

e

e

0.648 0.643 0.641 0.638 0.637

n
O

Fig. A3.186



s n(s)
0.00 0.0000
0.05 0.0025
0.10 0.0100
0.15 0.0227
0.20 0.0406
0.25 0.0641
0.30 0.0934
0.35 0.1291
0.40 0.1717
0.45 0.2221
0.50 0.2817
0.55 0.3522
0.60 0.4366
0.65 0.5402
0.70 0.6734
0.75 0.8643
0.76 0.9157
0.77 0.974k
0.78 1.0429
0.79 1.1245
0.80 1.2243
0.81 1.3491
0.82 1.5084
0.83 1.7147
0.84 1.9828
0.85 2.3290
0.86 2.7685
0.87 3.3130
0.88 3.9681
0.89 4,7333
0.90 5.6034
0.91 6.5705

«1186-

n(s)/nO

1.0000
0.9975
0.9900
0.9776
0.9602
0.9379
0.9108
0.8789
0.8L422
00&08
0.75u45
0.7031
0.6462
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0.k213

0.4002
0.377h4
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L1377
.097h
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g™ = 10

8 n(s) n(s)/n n'(s) 7"(8)
0.00 0.0000 1.0000 0.0000 1.984
0.05 0.0025 0.9975 0.099k4 1.996
0.10 0.0100 0.9901 0.2000 2.031
0.15 0.0225 0.9777 0.3029 2.092
0.20 0.0403 0.9605 0.4097 2.183
0.25 0.0636 0.9384 0.5218 2:310
0.30 0.0926 0.9115 0.6413 2.482
0.35 0.1279 0.8800 0.7709 2.715
0.40 0.1699 0.8437 0.9140 3.032
0.45 0.2196 0.8028 1.0756 3.h6L
0.50 0.2779 Q.7T57h 1.2630 L.,076
0.55 0.3465 0.7072 1.4875 4.966
0.60 0.4276 0.6521 1.7671 6.322
0.65 0.5246 0.5918 2.1329 8.490
0.70 0.6432 0.5256 2.6394 1.209
0.75 0.7925 0.4527 3.3854 1.832
0.80 0.9886 U.3721 4 .5452 2.901
0.85 1.2585 0.2841 6.3932 4.607
0.90 1.64L8 0.1931 9.2490 6.875
0.95 - 2.2027 0.1105 1.3249 101 9.01k
1.00 2,983k 0.0506 1.8059 10% 9.96k
1.05 4.0098 0.0181 2.2947 10t 9.367
1.06 L.2440 0.01h44 2.3870 10t 9.108
1.07 4. 4871 0.0112 2.5767 10% 8.822
1.08 4.7392 0.0087 2.5634 10+ 8.51k4
1.09 4.9997 0.0067 2.6469 101 8.196
1.10 5.2685 0.0052 2.7272 10% 7.868
1.11 5,5451 0.0039 2.8042 10T 7.534
1.12 5.8292 0.0029 2.8779 10t 7.203
1.13 6.1205 0.0022 2.9482 1oi 6.875
1.1h4 6.4188 0.0016 3.0154% 10 6.556

Ion Species He Ne Ar Cs Hg

8 a1l 1.075 1.107 1.119 1.1k0 1.147

0.L45 0.420 0.411 0.396 0.392

Fig. A3.18
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32_= l02
8 n(s) n(s)/n 1'(s) n"(s)
.00 0.0000 1.0000 0.,0000 1.860
.05 0.0023 0.9977 0.0931 1.867
.10 0.0093 0.9907 0.1870 1.891
.15 0.0210 0.9792 0.2825 1.932
.20 0.0376 0.9631 0.3805 1.991
.25 0.0591 0.9426 0.4819 2.071
.30 0.0859 0.9177 0.5879 2.172
.35 0.1180 0.8887 0.6995 2.301
bo 0.1560 0.8556 0.8183 2.4e0
45 0.2000 0.8187 0.5459 2.652
.50 0.2507 0.7182 1.0841 2.887
.55 0.30886 0.73hk 1.21353 3.170
.60 0.3745 0.6876 1.4019 3.507
.65 0.4k491 0.6382 1.5869 3.908
.70 0.5336 0.5865 1.7934 L.37h4
.75 0.6289 0.5332 2.0251 4,906
80 0.7365 0.4788 2.2848 5.502
85 0.8579 0.4240 2.5760 6.15k4
.90 0.9947 0.3698 2.9004 6.840
95 1.1485 0.3171 3.2590 7.518
00 1.3212 0.2668 3.6510 8.158
05 1.5141 0.2200 L.0723 8.710
10 1.7288 0.1775 L.5186 9.120
15 1.9662 0.1400 L . 9806 9.358
20 2.2270 0.1078 5. 4505 9.418
25 2.5112 0.0812 5.9175 9.268
30 2.8186 0.0597 6.3724 8.926
35 3.1481 0.0k29 6.8060 8,434
4o 3.4987 0.0302 7.2120 7.838
Ls 3.8688 0.0209 7.5861 7.182
50 4 .2568 0.01h42 7.9265 6.467
55 4. 6608 0.0095 8.2309 5.782
60 5.0794 0.0062 8.5021 5.096
85 5.5103 0.0040 8.735 L hhy
70 5.9524 0.0026 8.940 3.755
5 5.5038 0.0016 9.100 3.100

Ion Species He Ne Ar Cs Hg
S uall 1.548 1.649 1.693 1.758 1.787

e

0.299 0.264 0.250 0.232 0.225

n
O

Fig. A3.19
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