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Abstract

Soft materials such as polymers and biological tissues have several engineering and biome-

chanical applications. These materials exhibit complex mechanical behavior, characterized

by large strains, hysteresis, rate sensitivity, stress softening (Mullins effect), and deviatoric

and volumetric plasticity. The need to accurately predict the behavior of such materials has

been a tremendous challenge for scientists and engineers.

This thesis presents a seamless, fully variational constitutive model capable of capturing

all of the above complex characteristics. Also, this work describes a fitting procedure based

on the use of Genetic Algorithms, which proves to be necessary for the multi-modal, non-

convex optimization required to identify fitting material parameters.

The capabilities of the presented model are demonstrated via several fits of experimental

tests on a wide range of materials. These tests involve monotonic and cyclic loading of

polyurea, high-density polyethylene, and brain tissue, and also involve cyclic hysteresis,

softening, rate effects, shear, and cavitation plasticity.

Application to ballistic impact on a polyurea retrofitted DH36 steel plate is simulated

and validated, utilizing the soft material model presented in this thesis for the polymer and a

porous plasticity model for the metal. Localization elements are also included in this appli-

cation to capture adiabatic shear bands. Moreover, computational capability for assessing

the blast performance of metal/elastomer composite shells utilizing the soft material model

for the elastomer is also presented.

Another implemented application is in the area of traumatic brain injuries under im-

pact/acceleration loading. Clinically observed brain damage is reproduced utilizing the

model presented in this work and a predictive capability of the distribution, intensity, and
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reversibility/irreversibility of brain tissue damage is demonstrated.



viii

Contents

Acknowledgments iv

Abstract vi

1 Introduction 1

2 Model formulation 5

2.1 Free energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Ogden-type hyperelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Deviatoric and volumetric plasticity . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Deviatoric plasticity . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.2 Volumetric plasticity . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Thermodynamic forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Evolution laws—Rate effects . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 Microinertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.7 Variational formulation of the rate problem . . . . . . . . . . . . . . . . . 14

2.8 Incremental constitutive updates . . . . . . . . . . . . . . . . . . . . . . . 16

2.9 Predictor-corrector implementation . . . . . . . . . . . . . . . . . . . . . . 17

2.10 Stress update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Validation 22

3.1 Parameter identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 High strain rate compression tests on polyurea . . . . . . . . . . . . . . . . 24



ix

3.3 Tension tests on polyurea . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Tensile tests on high-density polyethylene . . . . . . . . . . . . . . . . . . 37

3.5 Monotonic and cyclic uniaxial tests on brain tissue . . . . . . . . . . . . . 42

4 Application to ballistic and blast impact on composite plates and shells 51

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Ballistic impact on composite plates . . . . . . . . . . . . . . . . . . . . . 53

4.2.1 Localization elements . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.2 Modeling contact forces . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.3 Composite plate shot experimental setup . . . . . . . . . . . . . . 57

4.2.4 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Blast impact on composite shells . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.1 Subdivision thin-shell elements . . . . . . . . . . . . . . . . . . . 70

4.3.2 Shell fracture and fragmentation . . . . . . . . . . . . . . . . . . . 71

4.3.3 DH36 steel/Polyurea composite hull . . . . . . . . . . . . . . . . . 72

4.3.4 Aluminum/PVC foam H100/Aluminum composite hull . . . . . . . 77

4.3.5 PVC foam - Divinycell H100 . . . . . . . . . . . . . . . . . . . . 78

5 Application to brain trauma 89

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Finite element model of the human head . . . . . . . . . . . . . . . . . . . 92

5.3 Impact simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3.1 Frontal impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3.2 Oblique impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6 Conclusions 113

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.2.1 Polymeric applications . . . . . . . . . . . . . . . . . . . . . . . . 114

6.2.2 Medical applications . . . . . . . . . . . . . . . . . . . . . . . . . 115



x

6.2.3 Neuromuscular applications . . . . . . . . . . . . . . . . . . . . . 116

6.3 A concluding remark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Bibliography 118



xi

List of Figures

3.1 Alireza et al. experimental confined compression curves [5] vs. GAs fits.

Fitting curves correspond to one set of material parameters (cf. Tab. 3.1). . . 30

3.2 Alireza et al. experimental unconfined compression curves [5] vs. GAs fits.

Fitting curves correspond to one set of material parameters (cf. Tab. 3.1). . . 32

3.3 Tension tests on polyurea. Cauchy stress vs. true strain (all corrected for

inertial forces), with the corresponding strain rates as indicated. The model

Cauchy stresses are also shown for the same strain rates. . . . . . . . . . . . 36

3.4 SEM observation of cavitation mechanisms in HDPE during plastic defor-

mation (tensile axis is vertical). Interspherulitic decohesion for ε33r = 0.71

(axial residual strain) [4] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Predicted and experimental axial stress-axial strain curves for a tensile uni-

axial test by [4] on high-density polyethylene (strain rate: ε̇ = 0.001s−1) . . . 40

3.6 Total experimental volumetric strain in HDPE [4] used as input and model

volumetric plastic strain-axial strain. The difference between the curves is

the volumetric elastic strain. This shows the ability of the model to distin-

guish between elastic and plastic volumetric strain (strain rate: ε̇ = 0.001s−1). 41

3.7 Illustration of the uniaxial tests on short cylindrical samples of brain tissue

by [57] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.8 Independent tension-compression viscoelastic fits of experiments in [57] . . . 44

3.9 Global viscoelastic (ve) and viscoelastic/elastoplastic (ve/ep) fits of experi-

ments in [57] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



xii

3.10 Fits of Franceschini et al. one-cycle compression-tension (a) and tension-

compression (b) tests on specimens of white matter (cf. [30], Fig. 1) . . . . . 49

3.11 Fits of Franceschini et al. cyclic tests on a specimen of white matter (cf. [30],

Fig. B.3, first three cycles) . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 Localization surface in a three-dimensional body. S+and S−are the top and

bottom (smooth) surface of band attached to the sub-body B+and B−, re-

spectively. T is the traction acting on the mid-surface S. . . . . . . . . . . . 53

4.2 Naval Surface Warfare Center (Dahlgren Division) Research Gas Gun Facil-

ity (Courtesy of Bill Mock et al. [60]) . . . . . . . . . . . . . . . . . . . . . 57

4.3 Impactor (right) about to strike target composite plate (left) . . . . . . . . . 58

4.4 Polyurea release wave experiment set up by Clifton et al. [22] . . . . . . . . 59

4.5 Microstructure of the damaged area in polyurea as a result of the release

wave experiment [22] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.6 T-x diagram of the release wave experiment [22] . . . . . . . . . . . . . . . 60

4.7 Free surface normal velocity vs. time [22] . . . . . . . . . . . . . . . . . . . 61

4.8 Composite plate positions at different times. Each color/symbol represents a

time frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.9 Experimental and computational displacements at various times . . . . . . . 66

4.10 Experimental (top) and computational (bottom) final configurations . . . . . 67

4.11 Plastic strain (a), volumetric strain (b), and temperature (c) contour plots

from the impact side of the composite plate . . . . . . . . . . . . . . . . . . 68

4.12 Plastic strain (a), volumetric strain (b), and temperature (c) contour plots

across the thickness of the composite plate . . . . . . . . . . . . . . . . . . 69

4.13 Support of shape functions of a subdivision element (central triangle) . . . . 70

4.14 One cohesive edge and the two adjacent subdivision shell elements with their

one-neighborhoods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.15 Composite shell formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.16 Hull mesh (2880 elements) . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



xiii

4.17 Hull front, side, and dimetric views (top to bottom) . . . . . . . . . . . . . . 75

4.18 Composite hull views during blast impact. Views are front (a) and side (b). . 76

4.19 Hull kinetic energy vs. time for different configurations . . . . . . . . . . . 77

4.20 Composite shell formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.21 Cells structure of Divinycell H45 (top) and H130 (bottom)[7] . . . . . . . . 79

4.22 Photographs of a specimen of H200 foam sectioned along its mid-plane.

Views are undeformed and uniaxially compressed to 10% from left to right.[25] 79

4.23 Foam uniaxial compressive behavior . . . . . . . . . . . . . . . . . . . . . . 80

4.24 Schematic uniaxial stress-strain curve for Divinycell H100 . . . . . . . . . . 81

4.25 Variation of peak stress with foam density from quasi-static to high strain

rate [86] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.26 Coarse (a,b,c) and fine (d,e,f) hulls during blast impact. Views are front (a,d),

back (b,e), and side (c,f). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.27 Shell kinetic energy vs. time for different configurations . . . . . . . . . . . 88

5.1 Coup-contrecoup injury (adapted from Kleiven [46]) . . . . . . . . . . . . . 90

5.2 Mid-sagittal and mid-coronal sections of the adopted head finite element

model: (1) skull without facial bones; (2) CSF; (3) gray matter; (4) white

matter; (5) cerebellum; (6) corpus callosum; (7) telencephalic nuclei; (8)

brain stem; (9) ventricles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3 Frontal impact injury . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4 Animation of the translational head motion following frontal impact (t =

2, 4, 6, 8 ms) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.5 Predicted vs. experimental intracranial pressure time-histories (Nahum et al.

[63], experiment no. 37) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.6 Frontal impact: intracranial pressure contours (Pa) . . . . . . . . . . . . . . 101

5.7 Frontal impact: cavitation damage predictions . . . . . . . . . . . . . . . . . 102

5.8 Frontal impact: shear stress contours (Pa) . . . . . . . . . . . . . . . . . . . 104

5.9 Frontal impact: viscous shear deformation predictions . . . . . . . . . . . . 105



xiv

5.10 Oblique impact injury . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.11 Animation of the translational-rotational head motion following oblique im-

pact (t = 2, 4, 5, 6, 7, 8 ms) . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.12 Oblique impact: intracranial pressure contours (Pa) . . . . . . . . . . . . . . 107

5.13 Oblique impact: cavitation damage predictions . . . . . . . . . . . . . . . . 108

5.14 Oblique impact: shear stress contours (Pa) . . . . . . . . . . . . . . . . . . . 110

5.15 Oblique impact: permanent shear damage predictions . . . . . . . . . . . . . 111

5.16 Oblique impact: viscous shear deformation predictions . . . . . . . . . . . . 112



xv

List of Tables

3.1 GAs material parameter estimates for UCSD compression tests on polyurea

[5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Model parameter estimates for tension tests on polyurea at various strain

rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 GAs material parameter estimates for a tensile uniaxial test in [4] on high-

density polyethylene (strain rate: ε̇ = 0.001s−1) . . . . . . . . . . . . . . . . 39

3.4 GAs material parameter estimates for monotonic tests on brain tissue in [57] 45

3.5 GAs material parameter estimates for [30] tests on specimens of brain white

matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 Shot parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Material parameter estimates for release wave experiment on polyurea [22] . 62

4.3 Material parameter estimates for DH36 steel via fits to data in [64] . . . . . 64

4.4 Thermal parameter estimates for polyurea . . . . . . . . . . . . . . . . . . . 64

4.5 DH36 steel and polyurea fracture parameters . . . . . . . . . . . . . . . . . 74

4.7 Soft material model parameter estimates for PVC H100 foam . . . . . . . 82

4.6 Divinycell H100 material properties . . . . . . . . . . . . . . . . . . . . . . 82

4.8 Material parameters for aluminum . . . . . . . . . . . . . . . . . . . . . . . 83

4.9 Aluminum and PVC H100 fracture parameters . . . . . . . . . . . . . . . . 83

5.1 Soft tissue material properties. GM = Gray Matter; WM = White Matter;

BSCC = Brain Stem and Corpus Callosum . . . . . . . . . . . . . . . . . . 96

5.2 Skull and CSF properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97



1

Chapter 1

Introduction

Phenomenological modeling which describes the behavior of a particular material by adapt-

ing mathematical equations to experimental data has been a cornerstone in computational

solid mechanics. Concerned with capturing the macroscopic behavior, this type of model-

ing has been most effective in describing the response of a wide range of materials. On their

own, however, the fundamental phenomenological equations are incapable of determining

how a specific material behaves under both static and dynamic loading [40], and therefore,

the need for more effective and general constitutive equations arises.

Many materials of relevant interest for engineering and biomechanical applications

exhibit a complex mechanical behavior, characterized by large strains, hysteresis, rate-

sensitivity, stress softening (Mullins effect), and deviatoric and volumetric plasticity.

In thermoplastic polyurethanes (TPUs), for instance, the periodic repetition of hard

and soft microstructures determines a morphological complex phase separation that is re-

sponsible for a multi-faceted macroscopic behavior combining elastic, viscous, and plastic

responses. One example is the macroscopic behavior of the elastomer thermoset polyurea

[99, 80], which is currently being assessed together with TPUs for retrofitting steel struc-

tures.

By contrast, in amorphous polymers—typically used to form impact-resistant compo-

nents (helmets, eyeglasses, shatterproof glass, etc.)—intramolecular resistance to chain-

segment rotation due to rate-activated molecular motions contributes to the macroscopic
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response together with chain-alignment resistance. In these materials, the yield transition

is experimentally found to be rate and temperature dependent [62].

Boyce et al. [80] have recently proposed constitutive models for thermoplastic poly-

mers that decompose the material behavior into a rate-independent equilibrium part and

a collection of rate-dependent viscoelastic-plastic parts [80, 62]. The first accounts for

chain-alignment resistance and Mullins effect, while the second describes hard domain de-

formation (TPUs) or intramolecular resistance (glassy polymers). Furthermore, viscoelas-

tic modeling of polyurea based on experimental observations has recently been proposed

by [5], and several combinations of rheological models have been considered by [52] to

describe strain-rate effects in inelastic polymeric materials. Also, variationally consistent

finite viscoelastic models have been proposed by [34], [81], and [28].

Mullins effect, hysteresis, and residual strain are also characteristics of particle-reinforced

rubbers, such as carbon-black filled elastomers used in vehicle tires, vibration isolators,

earthquake bearings, and other engineering components. Several authors have modeled

this behavior through suitable damage theories [36, 35, 66, 26]. In addition, time-dependent

multi-network approaches have been proposed by [8] and [9].

Some glassy and amorphous polymers exhibit crazing, i.e., the formation of microvoids

in yielding regions, which can grow and coalesce and lead to the nucleation of cracks [77,

61]. In crystalline or semi-crystalline polymers such as polypropylene and high-density

polyethylene, shear yielding is instead accompanied by cavitation, either below or above

the glass transition temperature. This phenomenon (volumetric plasticity) is visible as

whitening at the macroscale, under tensile uniaxial loadings (micronecking) or hydrostatic

tensile stresses. Cavitation has recently received the attention of several research groups

([77, 61, 4] and references therein).

Likewise, soft biological tissues exhibit complex mechanical behavior, and have been

the subject of intensive research in engineering, physics, biology, medicine, and applied

mathematics (refer to [41] for a research overview in the field). One important example is

brain tissue, which exhibits extremely soft behavior and is often modeled using hyperelas-
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tic or hyperviscoelastic constitutive equations [79, 56, 57, 58, 54, 11, 10, 91]. Plasticity,

hysteresis, permanent deformation, and biphasic (solid/fluid) behavior of soft biological

tissues have been analyzed by [9], [32], and [30].

Taking into account all of the previously mentioned requirements in the modeling of

soft materials, herein this thesis presents a fully variational constitutive model with the

ability to capture all of the following:

• Void growth and shrinkage during the process of cavitation

• Rate and microinertia effects

• Complex viscous behavior via a flexible number of viscoelastic mechanisms capable

of representing finite viscosity

• Hysteresis, strong non-linearity, different behavior in tension and compression, pre-

conditioning, and cyclic softening

• Thermal softening and adiabatic heating via thermal updates.

By virtue of a multiple multiplicative decomposition of the deformation gradient, the rhe-

ological representation of the model consists of an elastoplastic network acting in parallel

with several viscoelastic networks. Quasi-incompressible Ogden-type potentials govern

the elastic behavior, both in the elastoplastic (which accounts for both deviatoric and volu-

metric plasticity) and viscoelastic branches. Cyclic stress softening is reproduced through

a combination of elastoplastic and viscoelastic responses, while volumetric plasticity is re-

lated to the expansion of spherical voids or bubbles in a plastically incompressible matrix.

As the pressure reaches a critical value in tension, the material is allowed to yield and ex-

hibit volumetric strain softening. Microinertia due to expanding bubbles is also taken into

account [70, 95, 94].

The number of model parameters is a function of the number of active Ogden terms

and relaxation mechanisms, and therefore a significant number of variables may need to

be identified. This requires the use of advanced techniques for the calibration of model
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parameters based on experimental data, hence this thesis proposes a procedure based on

Genetic Algorithms, which have been proven to be well-suited for multimodal nonconvex

optimization [87]. Several sets of experimental data are compared with model predictions,

showing the ability of the model to reproduce the observed behavior of polymers and soft

biological tissues. Monotonic and cyclic tests on polyurea, high-density polyethylene, and

brain tissue, which involve complex behavior such as cyclic hysteresis, cyclic softening,

rate effects, shear, and cavitation plasticity are examined.

The order of presentation of topics within this thesis is as follows: The formulation

of the constitutive model of polymers and soft biological tissues is presented in Chap-

ter 2. Chapter 3 describes a fitting procedure based on the use of Genetic Algorithms,

which are useful for multimodal nonconvex optimization. Several carefully chosen fits of

experimental tests are presented in order to demonstrate the model’s versatility in repro-

ducing complex behavior of polymers and soft biological tissues. Monotonic and cyclic

tests on polyurea, high-density polyethylene, and brain tissue are examined. These tests

involve cyclic hysteresis, softening, rate effects, shear, and cavitation plasticity. In chap-

ter 4, application to ballistic impact on a polyurea retrofitted composite plate is simulated

and validated, utilizing the soft material model presented in this thesis for the polymer and

a porous plasticity model for the metal. Moreover, computational capability for assessing

the blast performance of metal/elastomer composite shells is also presented. An underwater

blast load on a composite hull is simulated by assigning the proper model, material proper-

ties, and cohesive law to the corresponding metal/polymer across-the-thickness integration

points. In Chapter 5, the simulation of axonal damage due to head injury through shearing

plastic deformation, and focal damage through the volumetric plastic deformation induced

by the tension tail of an impact wave is demonstrated. Finally, in Chapter 6, conclusions

are drawn from the findings in the previous chapters, with recommendations about possible

future directions.
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Chapter 2

Model formulation

2.1 Free energy

Let F denote the deformation gradient at an arbitrary point of the material, and let

F = F eF p = F e
1F

v
1 = ... = F e

MF v
M (2.1)

be its multiple multiplicative decomposition, where M is a positive integer that defines

the number of viscoelastic (Maxwell-type) relaxation networks that the model possesses,

which act in parallel with an elastoplastic equilibrium network; F e, F e
1, ..., F e

M are the

elastic parts of F ; F p is the plastic deformation gradient; and F v
1, ..., F v

M are the viscous

deformation gradients.

The thermo-mechanical behavior of the material derives from the additive potential

A = Aep(F , F p, Zp, T ) + Ave(F , F v
i , Z

v
i ), (2.2)

where Aep and Ave are elastoplastic and viscoelastic contributions, correspondingly; Zp

is a vector of plastic internal variables; Zv
i are vectors of viscous internal variables (i =

1, ..., M); and T is the absolute temperature.

The first Piola-Kirchhoff stress P , and the thermodynamic forces Y p and Y v
i conjugate
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to Zp and Zv
i follow from

P =
∂A

∂F
, (2.3)

Y p = −
dA

dZp , (2.4)

Y v
i = −

dA

dZv
i

. (2.5)

The free energy is assumed to have the additive structure

Aep(F , F p, Zp, T ) + Ave(F , F v
i , Z

v
i ) =

W e(FF p−1, T ) + W p(Zp, T ) +
M

∑

i=1

W e
i (FF v−1

i , T ) + ρ0CvT (1 − log
T

T0

),
(2.6)

where W e is the elastic strain-energy density associated with the elastoplastic branch; W p

is the plastic stored energy; W e
i (i = 1, ..., M) are the elastic strain-energy densities corre-

sponding to the viscous relaxation mechanisms; ρ0 is the mass density per unit undeformed

volume; Cv is the specific heat per unit mass at constant volume and T0 is the reference

temperature.

The internal variables F p, Zp and F v
i , Zv

i are closely related to each other by the means

of suitable differential equations or flow rules to be introduced later.

2.2 Ogden-type hyperelasticity

It is assumed that the elastic strain energies admit a decomposition into deviatoric and

volumetric parts. Furthermore, it proves convenient for the constitutive updates to introduce
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the logarithmic elastic strain measures

εe =
1

2
log(F eT F e) =

1

2
log(F p−T CF p−1), (2.7)

εe
i =

1

2
log(F e

i
T F e

i ) =
1

2
log(F v

i
−T CF v

i
−1), (2.8)

ee = dev(εe), θe = tr(εe), (2.9)

ee
i = dev(εe

i ), θe
i = tr(εe

i ), (2.10)

where C is the right Cauchy-Green deformation tensor (C = F T F ), and dev(·) and tr(·)

are the deviator and the trace operators, respectively. Thus, the elastic strain energy density

decompositions are

W e(εe, T ) =W e,vol(θe, T ) + W e,dev(ee, T ), (2.11)

W e
i (εe

i , T ) =W e,vol
i (θe

i , T ) + W e,dev
i (ee

i , T ), (2.12)

with

W e,vol(θe, T ) =
κ

2
[θe − α(T − T0)]

2 , (2.13)

W e,dev(ee, T ) =
3

∑

j=1

N
∑

n=1

µn

αn

(

[exp(ee
j)]

αn − 1
)

, (2.14)

W e,vol
i (θe

i , T ) =
κi

2
(θe

i )
2, (2.15)

W e,dev
i (ee

i , T ) =
3

∑

j=1

Ni
∑

n=1

µi,n

αi,n

(

[exp(ee
i,j)]

αi,n − 1
)

. (2.16)

In (2.11)–(2.16), κ and κi (i = 1, . . . , M) are bulk moduli; µn and µi,n are shear moduli

associated with the Ogden potentials [68] adopted for deviatoric elasticity; αn and αi,n

are dimensionless real parameters; N is the number of Ogden-terms considered for the

time-infinity behavior; Ni is the number of Ogden-terms selected for the ith relaxation

mechanism; and ee
j and ee

i,j (j = 1, 2, 3) are the eigenvalues of ee and ee
i , respectively.
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Polyconvexity of the Ogden models requires (cf. [6, 18]):

µn αn > 0, |αn| > 1 ∀n = 1, . . . , N, (2.17)

µi,n αi,n > 0, |αi,n| > 1 ∀n = 1, . . . , Ni; ∀i = 1, . . . , M. (2.18)

For convenience, let

µ0 =
1

2

(

N
∑

n=1

µn αn +
M

∑

i=1

Ni
∑

n=1

µi,n αi,n

)

, (2.19)

µ∞ =
1

2

N
∑

n=1

µn αn, (2.20)

denote the consistent shear moduli in the small strain regime, which correspond to initial

and long-term behaviors, respectively.

2.3 Deviatoric and volumetric plasticity

The plastic stored energy is also assumed to admit an additive decomposition into volumet-

ric and deviatoric parts as

W p(Zp, T ) = W p,vol(θp, T ) + W p,dev(εp, T ), (2.21)

where

Zp = {θp, εp} , (2.22)

in which θp ≥ 0 and εp ≥ 0 are effective volumetric and deviatoric plastic strains, respec-

tively. The flow rule that relates Zp and F p is assumed to be

Ḟ
p
F p−1 = θ̇pN p + ε̇pM p, (2.23)
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where M p and N p are second-order tensors subject to the normality constraints

tr(M p) = 0, M p · M p =
3

2
, N p = ±

1

3
I. (2.24)

with the following irreversibility of plastic flow requirements

ε̇p ≥ 0 , θ̇p ≥ 0. (2.25)

2.3.1 Deviatoric plasticity

The deviatoric plastic behavior is modeled via the hardening power law

W p,dev(εp, T ) =
n σ0(T ) εp0

n + 1

(

1 +
εp

εp0

)
n+1

n

, (2.26)

where n is the hardening exponent, σ0(T ) is the yield stress, and εp0 is the reference devia-

toric plastic strain. Furthermore, the yield stress is assumed to be a function of temperature

σ0(T ) = σ0(T0)

(

1 −
T − T0

Tm − T0

)l

, (2.27)

where T0 is the reference temperature, Tm is the melting temperature and l is the thermal

softening exponent.

2.3.2 Volumetric plasticity

The volumetric plastic behavior is assumed to be related to the expansion or collapse of

spherical voids in a plastically incompressible matrix [70, 94, 95]. The initial void volume

fraction of the body in the undeformed configuration is given by

f0 = Nv
4πa3

0

3
, (2.28)
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where Nv is the void density (number of voids per unit undeformed volume); and a0 is the

initial void radius.

Neglecting the elastic volume change of the voids, the plastic volumetric deformation

can be expressed as a function of the void radius

Jp = 1 − f0 + Nv
4πa3

3
, f =

f0 + Jp − 1

Jp
, (2.29)

where Jp is the determinant of F p, and a is the void radius in the deformed configuration.

For purely volumetric deformations the flow rule (2.23) becomes

d

dt
log Jp = tr(N p)θ̇p = ±θ̇p, (2.30)

and hence implies

θ̇p =

∣

∣

∣

∣

d

dt
log Jp

∣

∣

∣

∣

, (2.31)

which in turn means that the internal variable θp represents a measure of the accumulated

volumetric plastic deformation. By introducing the expression of the stored energy of a

single spherical void in a power-law hardening material [70], and integrating the energies

stored by each void (dilute limit), the following is obtained:

W p,vol(θp, T ) =
n σ0(T )εp0

n + 1
Nv

4πa3

3
g(θp, n), (2.32)

where

g(θp, n) =

∫ 1/f

1

(

1 +
2

3εp0
log

x

x − 1 + f0

f0+exp θp−1

)
n+1

n

dx. (2.33)
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2.4 Thermodynamic forces

Let T p and Y p = {Y p, Zp} denote the thermodynamic forces conjugate to F p and Zp =

{θp, εp}, respectively, which are obtained by applying the chain rule in (2.4), as follows

T p = −
∂A

∂F
·
∂F

∂F p −
∂A

∂F p = F eT P − A,Fp , (2.34)

Y p = p − pc, Zp = σ − σc, (2.35)

where

p = −
dA

dθp
= T p · N pF p, pc =

∂A

∂θp
, (2.36)

σ = −
dA

dεp
= T p · M pF p, σc =

∂A

∂εp
, (2.37)

and in which p and σ are the effective pressure and the effective deviatoric stress, respec-

tively; and pc and σc are the flow pressure and the deviatoric flow stress, respectively.

Substituting (2.6), (2.11), and (2.21) in (2.36) and (2.37) the following is obtained:

p = −
dA

dθp
= −

∂W e,vol

∂θe
, pc =

∂W p,vol

∂θp
, (2.38)

σ = −
dA

dεp
= −

∂W e,dev

∂ee
, σc =

∂W p,dev

∂εp
, (2.39)

where ee =
√

2
3
ee · ee.

It is assumed that there exists a viscous flow rule that takes the form

Ḟ
v

i F
v−1
i =

3
∑

j=1

ε̇vi,jM
v
i,j ⊗ M v

i,j (i = 1, . . . , M), (2.40)

where ε̇vi,j and M v
i,j are the eigenvalues and the eigenvectors of dv

i = Ḟ
v

i F
v−1
i , respectively

(null viscous spin is assumed). The viscous internal variables are

Zv
i =

{

εvi,1, ε
v
i,2, ε

v
i,3

}

, (2.41)
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where

εvi,j = εvi,j(0) +

∫ t

0

ε̇vi,j(ξ)dξ. (2.42)

The viscous driving forces Y v
i = {σv

i,1, σ
v
i,2, σ

v
i,3} follow from (2.5) and the chain rule

as

σv
i,j = −

dA

dεvi,j
= T v

i · M
v
i,jF

v
i . (2.43)

Substituting (2.6), (2.12) in (2.43), the viscous principal stresses are obtained as

σv
i,j = −

dA

dεvi,j
= −

∂W e
i

∂ee
i,j

. (2.44)

Isochoric viscous deformations may be obtained by enforcing the constraint θ̇v
i = ε̇vi,1 +

ε̇vi,2 + ε̇vi,3 = 0 (cf. [28]), while the purely elastic bulk behavior may be obtained by setting

the volumetric viscosities to zero.

2.5 Evolution laws—Rate effects

Evolution laws for the internal variables are obtained variationally by assuming the exis-

tence of differentiable kinetic potentials ψ(Y p, F p, T ) and φi(Y
v
i , F

v
i , T ) such that

Żp =
∂ψ

∂Y p , Żv
i =

∂φi

∂Y v
i

(i = 1, . . . , M). (2.45)

The dual kinetic potentials ψ∗(F p, Ż
p
, T ) , ψ∗

i (F
v
i , Ż

v

i , T ) are introduced via the Leg-

endre transformations

ψ∗(F p, Żp, T ) = sup
Y p

{

Y p · Żp − ψ(Y p, F p, T )
}

, (2.46)

φ∗

i (F
v
i , Ż

v
i , T ) = sup

Y v
i

{

Y v
i · Ż

v
i − φ(Y v

i , F
v
i , T )

}

(i = 1, . . . , M), (2.47)
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that in turn satisfy

Y p =
∂ψ∗

∂Żp
, Y v

i =
∂φ∗

i

∂Żv
i

. (2.48)

The dual kinetic potentials may also be decomposed into deviatoric and volumetric com-

ponents

ψ∗(F p, Ż
p
, T ) = ψ∗,vol(Jp, θ̇p, T ) + ψ∗,dev(ε̇p, T ), (2.49)

φ∗

i (F
v
i , Ż

v

i , T ) = φ∗,vol
i (θ̇v

i , T ) + φ∗,dev
i (ėv

i , T ), (2.50)

where

ψ∗,vol(Jp, θ̇p, T ) =
m2σ0(T )ε̇p0

m + 1
Nv

4πa3

3
(1 − f

1
m )

∣

∣

∣

∣

2ȧ

ε̇p0a

∣

∣

∣

∣

m+1

m

, (2.51)

ψ∗,dev(ε̇p, T ) =
m2σ0(T )ε̇p0

m + 1

(

ε̇p

ε̇p0

)
m+1

m

, (2.52)

φ∗,vol
i (θ̇v

i , T ) =
ηvol

i

2
θ̇v

i

2
, (2.53)

φ∗,dev
i (ėv

i , T ) =
3

∑

j=1

Ni
∑

n=1

ηdev
i,n

αi,n

([

exp(
ėv

i,j

ė0
v
i,j

)

]αi,n

− 1

)

. (2.54)

In (2.51) and (2.52) m is the rate sensitivity exponent; ε̇p0 is the reference plastic strain

rate; and the void radius a is regarded as a function of Jp through (2.29). The rates J̇p

and θ̇p are related through (2.31). In (2.53) and (2.54) ηvol
i and ηdev

i,n are the volumetric

and deviatoric viscous coefficients, respectively (i = 1, . . . , M ; n = 1, . . . , Ni); and ė0
v
i,j

are the reference eigenvalues of the viscous strain rate. Non-Newtonian viscosity may be

modeled by assuming that these coefficients are deformation dependent.

2.6 Microinertia

The microinertia attendant to the plastic expansion of voids is regarded as dissipated en-

ergy in a system of shell-like particles with variable mass [70, 94]. Reformulation of this
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problem into an equivalent system of particles with constant mass leads to a microkinetic

energy of the form [94]

L(b, ḃ) =
3

2
ρv0

ḃ2; ρv0
= ρ0Nv

4πa3
0

3
, b =

2

5

a5/2

a3/2
0

. (2.55)

The introduction of microinertia effects a change in the thermodynamic stress T p

T p = F eT P − A,Fp +

(

∂L

∂F p −
d

dt

∂L

∂Ḟ
p

)

, (2.56)

that henceforth is used in place of (2.35).

2.7 Variational formulation of the rate problem

Consider a body B ⊂ R3 undergoing a motion described by the mapping ϕ : B× [t1, t2] →

R3. Assume that the boundary ∂B, with unit normal N̄ , is the union of a displacement

boundary ∂1B, where boundary displacements ϕ̄ : ∂1B × [t1, t2] → R3 are prescribed, and

a traction boundary ∂2B, where tractions T̄ : ∂2B×[t1, t2] → R3 are applied (∂1B∩∂2B =

*). Let also B : B × [t1, t2] → R3 be the body force. Furthermore, for every t ∈ [t1, t2]

the following power functional is introduced

Φ[ϕ̇, Ż
p
, M p, N p, Ż

v

i , M
v
i,j] =

∫

B

[

Ȧ + ψ∗ +
M

∑

i=1

φ∗

i −
(

∂L

∂F p −
d

dt

∂L

∂Ḟ
p

)

· Ḟ p

]

dV −
∫

B

ρ0(B − ϕ̈) · ϕ̇ dV −
∫

∂2B

T̄ · ϕ̇ dS,

(2.57)

where F p, Zp, M p, N p Zv
i , and M v

i,j are now regarded as fields over B; Ḟ
p is determined

by Ż
p, M p, and N p through the flow rule (2.23), and Ḟ

v

i is determined by Ż
v

i and M v
i,j

through the viscous flow rule (2.40). Using identities (2.3), (2.35), and (2.43) and the flow
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rules (2.23) and (2.40), (2.57) may be rewritten as

Φ[ϕ̇, Ż
p
, M p, N p, Ż

v

i , M
v
i,j] =

∫

B

(

P · Gradϕ̇ − Y p · Żp −
M

∑

i=1

Y v
i · Ż

v

i + ψ∗ +
M

∑

i=1

φ∗

i

)

dV −
∫

B

ρ0(B − ϕ̈) · ϕ̇ dV −
∫

∂2B

T̄ · ϕ̇ dS,

(2.58)

where F = Gradϕ has been introduced. The rates ϕ̇, Żp, Ż
v

i (i = 1, ..., M) and the direc-

tions of plastic and viscous flows M p, N p, M v
i,j (j = 1, 2, 3) at the generic time t ∈ [t1, t2]

are found by solving the minimization problem

Φeff[ϕ̇] = inf
Ż

p
,Mp,Np,Ż

v
i ,Mv

i,j

Φ
[

ϕ̇, Ż
p
, M p, Np, Ż

v

i , M
v
i,j

]

, (2.59)

subject to constraints (2.24) and (2.25). The material velocity field follows from the mini-

mization of the reduced power functional (2.59)

inf
ϕ̇

Φeff[ϕ̇], ϕ̇ = ˙̄ϕ on ∂2B. (2.60)

The functional Φ[ϕ̇, Ż
p
, M p, N p, Ż

v

i , M
v
i,j] does not depend on spatial derivatives of its

fields, therefore the minimization (2.59) may be obtained locally as

Φeff[ϕ̇] = inf
ϕ̇

(
∫

B

φ(Gradϕ̇)dV −
∫

B

ρ0(B − ϕ̈) · ϕ̇dV −
∫

∂2B

T̄ · ϕ̇dS

)

, (2.61)

where

φ(Ḟ ) = inf
Ż

p
,Mp,Np,Ż

v
i ,Mv

i,j

f
(

Ḟ , Ż
p
, M p, N p, Ż

v

i , M
v
i,j

)

,

f
(

Ḟ , Ż
p
, M p, N p, Ż

v

i , M
v
i,j

)

= P · Ḟ − Y p · Żp −
M

∑

i=1

Y v
i · Ż

v

i + ψ∗ +
M

∑

i=1

φ∗

i .

(2.62)
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The Euler-Lagrange equations of the power functional Φ with respect to Ż
p and Ż

v

i are

the kinetic relations (2.48), and its Euler-Lagrange equations with respect to M p, N p, and

M v
i,j result in the optimal directions of plastic and viscous flows, as indicated in subsection

2.8.

It can be shown via the kinetic relations (2.48) and the flow rules (2.23), (2.40) (cf. [98,

94, 76, 28]) that the Euler-Lagrange equations corresponding to the minimization problem

(2.60) are the equations of motion

DivP + ρ0B = ρ0ϕ̈ in B, P · N̄ = T̄ on ∂2B. (2.63)

2.8 Incremental constitutive updates

The time integration of the constitutive equations within a generic time interval [tk, tk+1] is

effected by recourse to an incremental variational update. Assume that F p
k, Z

p
k, Z

v
i,k (i =

1, . . . , M), θ̇p
k, and θ̈p

k are known at time tk, and that the deformation gradient F k+1 and the

temperature Tk+1 at time tk+1 are given. A discrete version of problem (2.59) is obtained

by introducing the effective incremental strain-energy density (cf. [94])

Wk(F k+1, Tk+1) = min
Z

p
k+1

,Mp,Np,Zv
i,k+1

,Mv
i,j

fk(F k+1, Tk+1, Z
p
k+1, M

p, N p, Zv
i,k+1, M

v
i,j),

(2.64)

where fk is the incremental objective function

fk(F k+1, Tk+1, Z
p
k+1, M

p, Np, Zv
i,k+1, M

v
i,j) = W e(εe

k+1, Tk+1) + W p(Zp
k+1, Tk+1)+

M
∑

i=1

W e
i (εe

i,k+1, Tk+1) + ρ0CvTk+1

(

1 − log
Tk+1

T0

)

+ ∆t

(

ψ∗

k+1 +
M

∑

i=1

φ∗

i,k+1

)

+ β∆t2Bk+1,

(2.65)
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with ∆t = tk+1 − tk, and

εe
k+1 =

1

2
log(F e

k+1
T F e

k+1), εe
i,k+1 =

1

2
log(F e

i,k+1
T F e

i,k+1), (2.66)

ψ∗

k+1 = ψ∗

(

∆Zp

∆t
, Jp

k+1, Tk+1

)

, φ∗

i,k+1 = φ∗

i

(

∆Zv
i

∆t
, Tk+1

)

, (2.67)

∆Zp = Zp
k+1 − Zp, ∆Zv

i = Zv
i,k+1 − Zv

i,k, (2.68)

Bk+1 =
3ρv0

2

(

bk+1 − bpre
k+1

β∆t2

)

, bpre
k+1 = bk + ∆tḃk +

(

1

2
− β

)

∆t2b̈k, (2.69)

where β ∈ (0, 1
2
). (2.69) defines a Newmark predictor for bk+1, which is regarded as a

function of Jp
k+1 through (2.55) and (2.29). F p

k+1 and F v
i,k+1 (i = 1, . . . , M) are computed

through the following discrete versions of the flow rules (2.23) and (2.40)

F p
k+1 = exp(∆εpM p + ∆θpN p)F p

k, (2.70)

F v
i,k+1 = exp

(

3
∑

j=1

∆εvi,jM
v
i,j ⊗ M v

i,j

)

F v
i,k. (2.71)

The minimum problem (2.64) returns the updated values of the internal variables Zp
k+1,

M p, N p, Zv
i,k+1, and M v

i,j (i = 1, .., M ; j = 1, 2, 3). The first Piola-Kirchhoff stress and

consistent tangent can now be computed (cf. [94]) as

P k+1 =
∂Wk

∂F k+1

, DP k+1 =
∂2Wk

∂F k+1∂F k+1

. (2.72)

The symmetry of the consistent tangent is a direct consequence of the potential structure of

the incremental problem.

2.9 Predictor-corrector implementation

By adopting a predictor-corrector strategy based on logarithmic elastic strains to solve the

variational problem (2.64), the constitutive update is reduced to small-strains and purely

kinematic steps (cf. [24, 76, 94, 28]). The corresponding elastic logarithmic strains at time
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tk+1 are

εe
k+1 = εe,pre

k+1 −∆εpM p −∆θpN p, (2.73)

εe
i,k+1 = ε

e,pre
i,k+1 −

3
∑

j=1

∆εvi,jM
v
i,j ⊗ M v

i,j, (2.74)

where M v
i,j are also the eigenvectors of ε

e,pre
i,k+1, and

ε
e,pre
k+1 =

1

2
log(F p

k
−T

Ck+1F
p
k
−1), (2.75)

ε
e,pre
i,k+1 =

1

2
log(F v

i,k
−T Ck+1F

v
i,k

−1), (2.76)

with Ck+1 = F T
k+1F k+1. (2.73)–(2.76) follow from the co-linearity between M p and ε

e,pre
k+1

(cf. [94]), the optimization of fk with respect to the viscous flow directions M v
i,j (cf. [28]),

and the assumption of null incremental plastic and viscous deformations in the predictor

phase.

Optimization of fk with respect to M p, N p yields, after some algebraic manipulation

M p =
3sk+1

2σk+1

, N p =
1

3
sgn(ppre

k+1)I (2.77)

where

sk+1 =
∂W e

∂εe
k+1

= dev
(

∂W e,dev

∂ee
k+1

)

, (2.78)

σk+1 =

√

3

2
sk+1 · sk+1, (2.79)

ppre
k+1 = k

[

tr(εe,pre
k+1 ) − α(Tk+1 − T0)

]

, (2.80)

with ee
k+1 = dev(εe

k+1). (2.77) determines M p implicitly, which can be expressed as

mp
j =

3sj,k+1

2σk+1

, j = 1, 2, 3 (2.81)
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where mp
j and sj,k+1 are the eigenvalues of M p and sk+1, respectively.

Optimization of fk with respect to θp
k+1, εpk+1 yields

∆θp = 0, ∆εp = 0 (2.82)

if

ppre
k+1 ≤ pc(θ

p
k, ε

p
k, Tk+1), σpre

k+1 ≤ σc(θ
p
k, ε

p
k, Tk+1), (2.83)

or

ppre
k+1 − k ∆θp = pc,k+1 +

∂

∂θp
k+1

[∆tψ∗

k+1 + β∆t2Bk+1], (2.84)

σk+1 = σc,k+1 +
∂

∂εpk+1

[∆tψ∗

k+1 + β∆t2Bk+1], (2.85)

otherwise, with

σpre
k+1 =

√

3

2
spre

k+1 · s
pre
k+1, (2.86)

and

spre
k+1 =

∂W e,dev

∂e
e,pre
k+1

= dev
(

∂W e

∂ε
e,pre
k+1

)

, (2.87)

where e
e,pre
k+1 is the deviatoric part of ε

e,pre
k+1 .

(2.81), (2.84), and (2.85) may be solved for the unknowns θp
k+1, εpk+1, mp

j (j = 1, 2, 3)

by recourse to a Newton-Raphson iteration, under the constraints

∆θp ≥ 0, ∆εp ≥ 0. (2.88)

Optimization of fk with respect to εvi,j,k+1 (i = 1, . . . , M ; j = 1, 2, 3) leads to the

system of equations

σv
i,j,k+1 =

∂

∂εvi,j,k+1

(∆t φ∗

i ) (2.89)

that can again be solved via a Newton-Raphson iteration. Furthermore, (2.89) may be recast
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as

σv
i,j,k+1 =

∂W e
i

∂εei,j,k+1

, (2.90)

which defines σv
i,j,k+1 as a function of εvi,j,k+1, together with (2.74).

2.10 Stress update

Once Zp
k+1, M p, N p, Zv

i,k+1, M v
i,j are determined, the updated equilibrium and viscous

stresses follow from

σk+1 = pk+1I + sk+1, (2.91)

σv
i,k+1 = pv

i,k+1I +
3

∑

j=1

sv
i,j,k+1M

v
i,j ⊗ M v

i,j, (2.92)

with sk+1 given by (2.78), and

pk+1 =
∂W e,vol

∂θe
k+1

, (2.93)

pv
i,k+1 =

(

σv
i,1,k+1 + σv

i,2,k+1 + σv
i,3,k+1

)

/3, (2.94)

sv
i,j,k+1 = σv

i,j,k+1 − pv
i,k+1. (2.95)

Due to the variational structure of the update, the stresses and strains satisfy the potential

relations

σk+1 =
∂Wk

∂εe
k+1

, σv
i,k+1 =

∂Wk

∂εe,i
k+1

. (2.96)

The first Piola-Kirchhoff stress follows from

P k+1 = P∞

k+1 + P ve
i,k+1 (2.97)
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with

P∞

k+1 =
∂Wk

∂εp
k+1

·
∂εe

k+1

∂Ck+1

·
∂Ck+1

∂F k+1

, (2.98)

P ve
i,k+1 =

∂Wk

∂εe
i,k+1

·
∂εe

i,k+1

∂Ck+1

·
∂Ck+1

∂F k+1

. (2.99)

P∞

k+1 and P ve
i,k+1 can also be expressed in indicial notation as (index k + 1 not shown for

convenience)

(P∞)jH = (σ)ABD log(Ce,pre)ABCD(F p
k
−1)HC(F p

k
−1)LDFjL, (2.100)

(P ve
i )jH = (σv)ABD log(Ce,pre

i )ABCD(F v
i,k

−1)HC(F v
i,k

−1)LDFjL, (2.101)

with Ce,pre = F p
k
−T

Ck+1F
p
k
−1, and Ce,pre

i = F v
i,k

−T Ck+1 F v
i,k

−1. The consistent may be

obtained by following [94] and [75].
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Chapter 3

Validation

3.1 Parameter identification

This section presents a parameter identification method and several parameter estimates

obtained via Genetic Algorithms (GAs). The identification procedure assumes that a col-

lection of N e experimental results is available for model parameter identification, through

a data set of the form
{

[xe
i , ȳ

e
i ]i=1,...,Ne

p

}e=1,...,Ne

, (3.1)

where xe
i are experimental observations of a suitable strain measure x, and ȳe

i are the cor-

responding recordings of a stress measure y, and N e
p is the number of data points for ex-

periment e. The best-fit values of selected parameters

p =
{

{pm}m=1,...,P

}

, (3.2)

are sought, under simple bounds of the form

p ∈ D = [plb
1 , pub

1 ] × . . . × [plb
P , pub

P ], (3.3)



23

If p is assigned, numerical simulations of the experiments can be employed to get a set of

predictions
{

{xe
i , y

e
i (p)}i=1,...,Ne

p

}e=1,...,Ne

, (3.4)

and their fitting performance can be evaluated through the fitness function

f(p) = max
i

|ye
i (p) − ȳe

i | , (3.5)

which is an L∞ norm of the residuals ye − ȳe. This leads to the multivariate minimization

problem

min
p∈D

f(p), (3.6)

which is expected to be non-convex and affected by multiple local optima (cf. Ogden et al.

[67]).

GAs are well suited for the minimization of non-convex objective functions due to their

ability to explore the entire search space looking for a global minima [87].

A steady-state GA is adapted, where a population of individuals is created sampling

the search space. A temporary population is created at every generation and added to

the previous one. The worst individuals are removed in order to maintain the size of the

population constant. The roulette-wheel selection method was utilized with scaled fitness

scores. Any individual has a probability p of being chosen where p is equal to the fitness

of the individual divided by the sum of the fitnesses of all the individuals in the population.

An initial population of 500–1000 individuals was used along with a mutation percentage

of 0.01 and a crossover percentage of 0.6. Although the algorithm was set to terminate

after 200–500 generations, it started to converge to a minima, which could be local or

global, after approximately 80 generations. It is worth noting that the selection strength for

a steady-state GA is twice that of a generational GA, where for each m members of the

population there are only 2m selections.
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3.2 High strain rate compression tests on polyurea

The experimental data considered for polyurea under compression was obtained from the

Center of Excellence for Advanced Materials at the University of California, San Diego.

The experiments were a series of split-Hopkinson bar tests performed by Alireza et al.,

some of which are referenced from [5]. 15 sets of stress-strain response experiments of

polyurea were considered, 3 of which were under unconfined compression loading condi-

tions and the rest under confined compression. These data sets were fitted simultaneously

via GAs with

p = {µ1, α1, µ2, α2, σ0, ε
p
0, n, ε̇p0, m} (P = 9). (3.7)

One set of parameters was obtained for all 15 experiments, proving the outstanding effec-

tiveness of the GAs approach. The applied strain rates were in the range of 1,200–37,000

s−1 for the confined compression tests and 3,400–6,200 s−1 for the unconfined compres-

sion. Results for some values of the applied strain rates are presented in Figs. 3.1 and 3.2,

with the corresponding parameters in Tab. 3.1.
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Figure 3.1: Alireza et al. experimental confined compression curves [5] vs. GAs fits. Fitting

curves correspond to one set of material parameters (cf. Tab. 3.1).



31

0 0.2 0.4 0.6 0.8
Logarithmic Strain

0

0.01

0.02

0.03

0.04

0.05

Ca
uc

hy
 S

tre
ss

 (G
Pa

)

Experiment
Model

Unconfined Compression (3,400/sec Effective Strain Rate)
294K Temperature

(a)

0 0.5 1
Logarithmic Strain

0

0.05

0.1

Ca
uc

hy
 S

tre
ss

 (G
Pa

)

Experiment
Model

Unconfined Compression (4,500/sec Effective Strain Rate)
294K Temperature

(b)



32

0 0.2 0.4 0.6 0.8 1
Logarithmic Strain

0

0.02

0.04

0.06

0.08
Ca

uc
hy

 S
tre

ss
 (G

Pa
)

Experiment
Model

Unconfined Compression (6,200/sec Effective Strain Rate)
294K Temperature

(c)

Figure 3.2: Alireza et al. experimental unconfined compression curves [5] vs. GAs fits.
Fitting curves correspond to one set of material parameters (cf. Tab. 3.1).

µ1 [Pa] 94.9×106

α1 17.0
µ [Pa] -403×106

α2 -9.77
µ∞ [Pa] 807×106

σ0 [Pa] 5.26×106

εp0 0.12
n 1.0

ε̇p0 (s−1) 7200
m 0.411

Table 3.1: GAs material parameter estimates for UCSD compression tests on polyurea [5]
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3.3 Tension tests on polyurea

The experimental data considered for polyurea under tension was provided by [84]. The

reported results were obtained on a newly developed drop-weight tensile test instrument

that ensures strain rate uniformity and strain homogeneity. Shuttle speeds as high as 26 m

s−1 were achievable, corresponding to strain rates ∼ 103 s−1 [84]. Tests were conducted

at strain rates varying from 0.15 s−1 (quasi-static) to 408 s−1–573 s−1 (high strain rates).

The initial region is linear, with a slope approaching 100 MPa at the highest rates. There

is also an increase in stiffness as the strain rate increases (see Fig. 3.3.) Considering all

of these factors, GAs were utilized to determine sets of parameters for the experiments. It

is important to note that the Ogden parameters thus obtained are stiffer as the strain rate

increases (see Tab. 3.2.) Also, in agreement with [84], viscoelastic behavior is evident, with

the result that the mechanical properties of polyurea in tension are highly rate-dependent

(Tab. 3.2.) The model is evidently able to capture these complex behaviors via 3 Ogden

terms in deviatoric elasticity, 2 relaxation mechanisms (the first with 3 Ogden terms and

the second with only one), and deviatoric plasticity.
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Figure 3.3: Tension tests on polyurea. Cauchy stress vs. true strain (all corrected for inertial

forces), with the corresponding strain rates as indicated. The model Cauchy stresses are

also shown for the same strain rates.
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Strain rate [s−1] 0.15 14 327 408 573

µ1 [Pa] 34.45 55.0 96.92 154.26 148.64

α1 7.44 7.44 7.5 7.29 7.84

µ2 [Pa] 33.67 51.8 100.78 146.93 154.15

α2 7.86 7.47 7.46 8.01 6.09

µ3 [Pa] 32.72 53.62 98.6 153.57 147.87

α3 5.33 7.64 7.58 6.65 5.03

τ1 [s] 2.02 0.0195 0.0006 0.0005 0.0005

µ1,1 [Pa] 1.73×106 1.83×106 2.79×106 2.68×106 2.55×106

α1,1 4.72 4.0 4.0 6.0 5.58

µ1,2 [Pa] 1.6×106 1.84×106 2.44×106 2.54×106 2.59×106

α1,2 4.5 4.28 4.11 4.58 5.39

µ1,3 [Pa] 1.97×106 1.92×106 2.79×106 2.52×106 2.46×106

α1,3 4.78 4.21 4.29 6.0 5.47

τ2 [s] 41.66 0.355 0.0116 0.00992 0.00992

µ2,1 [Pa] 192218 483001 937288 942297 718477

α2,1 4.62 4.47 4.58 4.46 4.44

σ0 [Pa] 5.59×106 6.57×106 5.64×106 6.47×106 5.59×106

εp0 1.1 1.1 1.1 1.01 1.1

n 0.005 0.005 0.005 0.004 0.001

Table 3.2: Model parameter estimates for tension tests on polyurea at various strain rates

3.4 Tensile tests on high-density polyethylene

Density measurements on stretched semi-crystalline polymers such as high-density polyethy-

lene (HDPE) under uniaxial tension have shown significant dilatation due to void formation

and crazing [4]. The behavior of HDPE during tensile continuous loading at constant strain
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rate, unloading, and recovery is examined. The specimen is deformed at a strain rate of

10−3s−1 until the strain under load reaches 1.0, subsequently unloaded at the same rate,

and finally left to recover at zero stress for 3 hours [4]. The evolution of volume strain,

εv = ε11 + ε22 + ε33, vs. true axial strain ε33, is shown in Fig. 3.6. It is important to note that

the recorded experimental volume strain is both elastic and plastic, nevertheless, the elastic

component contributes minimally and there is an early onset of plastic dilatation [4]. With

the activation of deviatoric and volumetric plasticity along with one relaxation mechanism

and rate effects, the fitting parameters are let to be

p =
{

µ1, α1, τ1, K
∞, µ1,1, α1,1, K

0, σ0, ε
p
0, n, Nv, ε̇

p
0, m

}

, (3.8)

with P = 13. The resulting values of the parameters, obtained from GA, are shown in Tab.

3.3.
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µ1 [Pa] 70.2×106

α1 1.10

µ∞ [Pa] 38.7×106

K∞ [Pa] 9.89×109

τ1 [s] 8.10

µ1,1 [Pa] 129×106

α1,1 12.15

K1 [Pa] 9.95×109

µ1 [Pa] 822×106

σ0 [Pa] 5.43×106

εp0 0.89

n 0.50

a0 [m] 10.0×10−6

Nv [m−3 ] 3.87×1012

ėp
0[s−1] 51.98

m 14.75

Table 3.3: GAs material parameter estimates for a tensile uniaxial test in [4] on high-density

polyethylene (strain rate: ε̇ = 0.001s−1)

The volumetric strain recovered from the model is log(Jp), which is due to void expan-

sion and shrinkage during the process of cavitation. A total residual plastic strain of 0.76

and volumetric plastic strain of 0.046 were obtained from the simulation compared to the

experimental values of 0.71 and 0.044, respectively. Figs. 3.5 and 3.6 show the model’s

ability to capture void growth and shrinkage in HDPE.
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Figure 3.4: SEM observation of cavitation mechanisms in HDPE during plastic deforma-
tion (tensile axis is vertical). Interspherulitic decohesion for ε33r = 0.71 (axial residual
strain) [4]
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Figure 3.5: Predicted and experimental axial stress-axial strain curves for a tensile uniaxial
test by [4] on high-density polyethylene (strain rate: ε̇ = 0.001s−1)
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Figure 3.6: Total experimental volumetric strain in HDPE [4] used as input and model
volumetric plastic strain-axial strain. The difference between the curves is the volumetric
elastic strain. This shows the ability of the model to distinguish between elastic and plastic
volumetric strain (strain rate: ε̇ = 0.001s−1).
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3.5 Monotonic and cyclic uniaxial tests on brain tissue

Uniaxial tests performed by Miller et al. [57] on short cylindrical samples of swine brain

tissue are considered [57]. These tests were performed in both tension and compression

(Fig. 3.7), under different strain rates (moderately high, intermediate, and low strain rates).

Brain samples were extracted between the arachnoid membrane and the ventricle surface of

the swine brains, with a 30 mm diameter and a 13 mm height, in order to measure averaged

isotropic properties of the tissue.

Figure 3.7: Illustration of the uniaxial tests on short cylindrical samples of brain tissue by
[57]

The experimental results in [57] can be summarized into five stress-strain curves [58],

relating the first Piola-Kirchhoff traction Pz (vertical force divided by the undeformed

cross-sectional area) with the mean stretch λ (current sample height 2h divided by the
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initial height 2H , cf. Fig. 3.7). Two curves are in tension (λ̇ = 0.64, 0.64 × 10−2s−1), and

three in compression (λ̇ = 0.64, 0.64 × 10−2, 0.64 × 10−5s−1).

A first set of parameter estimates was obtained through a viscoelastic fitting model (ve),

ignoring the plastic part of the equilibrium network. Two relaxation mechanisms were

considered, one-term Ogden-models, and independent tensile and compressive responses.

The selected fitting parameters are

p = {µ1, α1, τ1, µ1,1, α1,1, τ2, µ2,1, α2,1} , (P = 8), (3.9)

where

τi =
ηdev

i,1

µi,1
(i = 1, 2) (3.10)

denote the relaxation times of the viscous networks.

The tensile-compressive GAs estimates are shown in the first two columns of Tab. 3.4.

The positive {µ, α} pairs in tension (N e = 2), negative pairs in compression (N e = 3), and

significantly higher shear moduli µ0, µ∞ in compression confirm the well-known notion in

the literature of the heterogeneous tensile-compressive nature of brain tissue (cf. [57, 79,

54, 91]). A comparison between experimental and fitting stress-strain curves is shown in

Fig. 3.8.

Further estimates were obtained for the mixed tensile-compressive response (global re-

sponse: N e = 5), alternatively considering a pure viscoelastic (ve), and a viscoelastic/elasto-

plastic (ve/ep) model. In the first case the procedure is as before, while in the second the

plastic section of the time-infinity network was activated, assuming

p = {µ1, α1, τ1, µ1,1, α1,1, τ2, µ2,1, α2,1, σ0, ε
p
0} , (P = 10) (3.11)

(plastic rate effects were deactivated).

The global GAs estimates are shown in the third and fourth columns of Tab. 3.4, while

the corresponding fitting curves are depicted in Fig. 3.9. It can be observed that the global
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Figure 3.8: Independent tension-compression viscoelastic fits of experiments in [57]
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Fit Type ten. ve comp. ve global ve global ve/ep
µ1 [Pa] 106.4 -147.6 -45.8 -30.6
α1 1.89 -2.95 -5.79 -8.00

µ∞ [Pa] 100.4 218.2 132.6 122.2
τ1 [s] 4.68 4.31 0.18 0.19

µ1,1 [Pa] 106.4 -481.6 -66.9 -53.2
α1,1 1.89 -2.39 -17.99 -19.09
τ2 [s] 62.43 598.81 499.20 490.30

µ2,1 [Pa] 106.4 -144.0 -74.4 -68.9
α2,1 1.89 -4.56 -6.32 -6.42

µ0 [Pa] 301.34 1122.7 969.9 851.8
σ0 [Pa] - - - 315.28

εp0 - - - 0.30

Table 3.4: GAs material parameter estimates for monotonic tests on brain tissue in [57]

response is best fitted with negative {µ, α} pairs, and that the inclusion of plastic behavior

significantly increases the fitness performance.
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ments in [57]
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Miller et al. [57] estimated µ0 = 156 Pa, µ∞ = 842 Pa, α1 = α1,1 = α2,1 = −4.7,

through a simplified "finite linear" viscoelastic model, accounting for large deformations

and small perturbations away from thermodynamic equilibrium. Those results are in good

agreement with the global GAs estimates of Tab. 3.4. The same authors estimated τ1 =

0.50 s and τ2 = 50.0 s, that is, a second relaxation time about 10 times smaller than our

global estimates (τ2 ≈ 500 s, cf. Tab. 3.4). It is worth noting that the finite viscoelastic

model converges more rapidly toward thermodynamic equilibrium than finite linear vis-

coelastic theories (cf. [81]). This implies that larger relaxation times are needed in order to

extend the viscous effects over time.

A final set of estimates was obtained considering the cyclic quasistatic uniaxial tests

performed by [30] on human brain tissue excised during autopsy. Two one-cycle compression-

tension (first compression and then tension), tension-compression tests (Fig. 1 of [30]), and

a multi-cycle test (Fig. B.3 of [30]) performed on prismatic specimens of white matter har-

vested from different brain regions were examined. In the latter case, the first three cycles

of a 20-cycle test were analyzed, activating three viscoelastic networks and plastic rate

effects.

The GAs material parameter estimates and a comparison between experimental and

fitting curves are illustrated in Tab. 3.5 and Figs. 3.10 and 3.11. It is evident from the

figures that the presented model is able to capture hysteresis, strong non-linearity, different

behavior in tension and in compression, relaxation, preconditioning, and cyclic softening

of brain tissue. The results of Tab. 3.5 show that human brain samples analyzed by [30]

manifest higher initial and long term shear moduli in comparison with the pig brain samples

tested by [57] (cf. Tab. 3.4)
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Fit Type compr-tens tens-compr 3 cycles

µ1 [Pa] -297.29 -659.71 -69.81

α1 -2.98 -30.0 -40.0

τ1 [s] 19.81 2.13 0.57

µ1,1 [Pa] -223.89 -133.37 -610.73

α1,1 -6.31 -2.02 -23.76

τ2 [s] 211.17 207.57 7.62

µ2,1 [Pa] 2.05 109.30 -4.95

α2,1 21.55 15.26 -1.00

τ3 [s] - - 24.58

µ3,1 [Pa] - - 74.67

α3,1 - - 1.00

εp0 1.0e-4 0.176 7.6e-4

n 10.0 7.51 1.78

ε̇p0 [s−1] - - 0.01

m - - 14.35

Table 3.5: GAs material parameter estimates for [30] tests on specimens of brain white

matter
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Figure 3.10: Fits of Franceschini et al. one-cycle compression-tension (a) and tension-

compression (b) tests on specimens of white matter (cf. [30], Fig. 1)
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Figure 3.11: Fits of Franceschini et al. cyclic tests on a specimen of white matter (cf. [30],

Fig. B.3, first three cycles)
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Chapter 4

Application to ballistic and blast impact
on composite plates and shells

4.1 Introduction

The need for effective, light, and easily applied protective armors has become an aggres-

sively sought objective of the U.S. armed forces. Elastomeric polymers have recently been

identified as promising for purposes of mitigating powerful explosions and retaining struc-

tural fragments caused by such loads. The polymers are sprayed on as a lightweight mono-

lithic coating, do not contain volatile organic compounds, and can be made fire resistant.

Three-quarter-inch spray-on coatings are presently being applied by the military in Iraq to

the doors and side panels and below the floor of Humvees. Tests have determined that,

when sprayed on three-sixteenth-inch steel armor, the coatings offer the same protection as

three-eighth-inch armor, but at a much reduced weight. Thus, three-quarter-inch coating

deflects most small-arms fire and a good percentage of explosive devices. The reinforced

armor not only helps absorb the blast effects of roadside bombs, but also prevents the vehi-

cles’ metal from fragmenting and harming its occupants.

Different types of reinforcements have been investigated by several researchers. Hybrid

light-weight fiber-reinforced polymer-matrix composite laminate armor has been analyzed

by Grujicic et al. [38] using a two-dimensional axisymmetric model without fracture. That

type of armor is constructed using various combinations and stacking sequences of a high-
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strength/high-stiffness carbon fiber-reinforced epoxy (CFRE) and a high-ductility/high-

toughness Kevlar fiber-reinforced epoxy (KFRE) composite laminates of different thick-

nesses [38]. It is found that the armor consisting of one layer of KFRE and one layer

of CFRE, with KFRE laminate constituting the outer surface of the armor, possesses the

maximum resistance towards the projectile-induced damage and failure [38].

Laminated composites have shown good potential in reducing armor weight compared

to steels for the same ballistic protection, as they maintained 26% weight saving compared

to steel according to Ubeyli et al. [90]. Also, the ballistic properties of flax, hemp, and

jute fabric reinforced polypropylene composites processed by hot compression moulding

were investigated by Wambua et al. [92]. The composites’ ballistic effect was examined by

investigating the ballistic limit of composite-steel hybrid systems prepared by gluing thin

mild steel plates on the face and rear of the natural fiber composites [92]. Flax compos-

ites exhibited better energy absorption than hemp and jute composites and failed by shear

cut-out, delamination, and fiber fracture [92]. It was found that the ballistic properties of

the hemp composites increased significantly when a mild steel plate was used as facing

and backing [92]. Lin et al. have derived analytical solutions for the deformation, pene-

tration, and perforation of composite plates and sandwich panels subjected to quasi-static

punch indentation and projectile impact [49]. A generalized solution methodology for the

projectile impact on such structures was developed based on the contact load duration, the

through-thickness and the lateral transit times [49]. These results also lacked comprehen-

sive contact and fracture models. The ballistic properties of Kevlar 29/Polivnyl Butyral

and Polyethylene fiber composites used in the light armor design were analyzed experi-

mentally and numerically by Colakoglu et al. [23]. Higher elastic modulus and strength of

Polyethylene composite resulted in a better ballistic performance [23].

In the following sections, the ballistic impact of a high-speed projectile on a polyurea-

retrofitted DH36 steel plate is investigated. In Section 4.2.1, the localization elements

approach utilized in this study is outlined. The formulation of the contact potential used

to model the impact forces is summarized in Section 4.2.2. Then, in Section 4.2.3, the
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experimental setup for the composite plate shot is detailed. Quantitative and qualitative

validation is discussed in Section 4.2.4.

4.2 Ballistic impact on composite plates

4.2.1 Localization elements

Due to the high strain rate imposed by the ballistic impact, the use of a class of finite

elements developed in [96] is proposed for capturing sub-grid localization processes such as

shear bands and void sheets. The elements take the form of a double surface and deform in

accordance with an arbitrary constitutive law—in particular, they allow for the development

of displacement and velocity jumps across volume element boundaries [97].

T

_
S
SdS

+S

BdS
N

[[ϕ]]

h

+

B
_

Figure 4.1: Localization surface in a three-dimensional body. S+and S−are the top and

bottom (smooth) surface of band attached to the sub-body B+and B−, respectively. T is

the traction acting on the mid-surface S.

The thickness of the localized zone is set by an additional field variable which is de-

termined variationally. The localization elements are inserted, and become active, only

when localized deformations become energetically favorable. The implementation is three

dimensional and allows for finite deformations.
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Strain localization is strictly regarded as a sub-grid phenomenon and, consequently, the

bands of strain localization are modeled as displacement discontinuities. These displace-

ment discontinuities are confined to volume-element interfaces and are enabled by the in-

sertion of specialized strain-localization elements. These elements consist of two surfaces,

attached to the abutting volume elements, which can separate and slip relative to each other.

The kinematics of the strain-localization elements are identical to the kinematics of cohe-

sive elements proposed by Ortiz and Pandolfi [73] for the simulation of fracture. In contrast

to cohesive elements, the behavior of strain-localization elements is governed directly by

the same constitutive relation which governs the deformation of the volume elements. As is

evident from dimensional considerations alone, the transformation of displacement jumps

into a deformation gradient requires the introduction of a length parameter, namely, the

band thickness. The band thickness is optimized on the basis of an incremental variational

principle [76, 98]. This optimization takes the form of a configurational-force equilibrium

and results in a well-defined band thickness.

4.2.2 Modeling contact forces

A validation of the ballistic impact on a polyurea-reinforced steel plate requires the imple-

mentation of a contact potential algorithm capable of recreating the physical contact and

frictional forces arising from the projectile impact. The contact capability developed in

[69] is proposed to model the forces which arise from the impact between the projectile

and the target plate. The following summarizes the contact algorithm:

Let the kinetic energy of the body be given by

T (ϕ̇) =

∫

B0

1

2
ρ0ϕ̇ · ϕ̇ dV0, (4.1)

in which ϕ is the position, dV0 is a material or referential differential of volume, and ρ0 is

the mass density in the reference configuration.

The potential energy of the body has contributions from the strain energy from the bulk
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material, the applied load, the body forces, and an indicator function that plays the role of

the contact potential, as follows

V (ϕ) =

∫

B0

w(F ) dV0 −
∫

B0

ρ0b · ϕdV0+

+

∫

∂tB0

[IC(ϕ) − t · ϕ] dS0
(4.2)

in which ϕ is the position, F is the deformation gradient, w(F ) is the stored energy function

for the bulk material, dV0 is a material or referential differential of volume, b is the body

force density per unit mass, ∂tB0 is the part of ∂B0 in which the boundary traction t is

specified, and IC(ϕ) is an indicator function defined as

IC(ϕ) =











0, if ϕ ∈ C,

∞, otherwise,
(4.3)

in which C is the set of admissible configurations ϕ in which interpenetration does not

occur [44].

The Lagrangian function for the body is then

L(ϕ, ϕ̇) = T (ϕ̇) − V (ϕ), (4.4)

which gives rise to the action integral

I[ϕ] :=

T
∫

0

L(ϕ, ϕ̇) dt, (4.5)

which, according to Hamilton’s variational principle, yields the equation of motion for the

system when extremized.
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The action integral (4.5) reaches an extremum when its variation with respect to its

independent variables is zero, as follows

δI =

T
∫

0

(

∫

B0

(ρ0b · δϕ− P : δF − ρ0ϕ̈ · δϕ) dV0 +

∫

∂tB0

(t − F con) · δϕ dS0) dt

=

T
∫

0

(

∫

B0

(∇ · P T + ρ0b − ρ0ϕ̈) · δϕ dV0 +

∫

∂tB0

(t − F con − P · N) · δϕ dS0) dt = 0 (4.6)

in which F con := ∂IC(ϕ)/∂ϕ are the contact forces. The Euler-Lagrange equation corre-

sponding to (4.5) is then

∇ · P T + ρ0b = ρ0ϕ̈ on B0,

P · N + F con = t on ∂tB0,

t = 0 on S0. (4.7)

The admissible configurations in which interpenetration does not occur are such that

ϕ ∈ C ⇐⇒ gα(ϕ) ≥ 0, α = 1, . . . , Np (4.8)

in which gα(ϕ) are constraints that prevent penetration, and Np is the number of such con-

straints. One choice for the constraint functions is the interpenetrating distances between

the surface defined by the contact potential and the target. In this way Np becomes the

number of interpenetrating distances. The indicator function can then be approximated as

IC(ϕ) ≈ k

Np
∑

α=1

g3
α(ϕ), (4.9)
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in which k is a penalty parameter.

4.2.3 Composite plate shot experimental setup

The experiment to be validated was performed by Bill Mock et al. [60] at the research gas

gun facility of Naval Surface Warfare Center (Dahlgren Division) (see Fig. 4.2.). A 4340

steel impactor is launched as shown in Fig. 4.3 at a composite circular plate comprising

DH36 steel and polyurea casted on (see Tab. 4.1 for shot details). The impactor strikes the

target plate on the steel side at a speed of 280.9 m/s causing it to deform significantly along

with the polyurea coating. Displacement profiles at various times are recorded and later

compared to the validation run.

Figure 4.2: Naval Surface Warfare Center (Dahlgren Division) Research Gas Gun Facility

(Courtesy of Bill Mock et al. [60])
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Figure 4.3: Impactor (right) about to strike target composite plate (left)

Impactor mass [gm] 145

Impactor hardness [RC] 36

DH36 steel target plate mass [gm] 692.2

DH36 steel target plate diameter [mm] 154.2

DH36 steel target plate average thickness [mm] 4.75

Polymer mass [gm] 230.1

Polymer diameter [mm] 154.2

Polymer thickness [mm] 11.1

Polymer/steel thickness ratio 2.335

Impact speed [m/s] 280.9

Table 4.1: Shot parameters
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4.2.4 Validation

Due to all of the polyurea fits obtained in Chapter 3 being at the material point, the polyurea

bulk behavior needs to be identified before the shot experiment is to be validated. For this

particular shot experiment, the polyurea approximately elongates to a strain of 0.104 (by

observing the displacement results) during the first 270 microseconds, resulting in a strain

rate of 380/s. The 408/s strain rate material parameters obtained in Section 3.3 were used

in a 3-dimensional finite element simulation of a release wave experiment (see Fig. 4.4 )

conducted by Clifton et al. at Brown University with an impact velocity of 218.2 m/s.

Figure 4.4: Polyurea release wave experiment set up by Clifton et al. [22]

The existence of voids in polyurea was observed in the microstructure of the spall area

(Fig. 4.5) which called for the activation of volumetric plasticity in the model. Contact

was also utilized in order to capture the effect of the reflected wave in the flyer as it passes

through the interface and reaches the original wave in the target plate resulting in spall as

shown in Fig. 4.6. The second peak in Fig. 4.7 is caused by the reflected wave from the

spall plain reaching the free surface. Spall was captured in the validation via insertion of

localization elements.
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Figure 4.5: Microstructure of the damaged area in polyurea as a result of the release wave

experiment [22]

Figure 4.6: T-x diagram of the release wave experiment [22]

The simulated normal velocity of the target free surface is shown to be in good agree-

ment with the experimental results (see Fig. 4.7). The bulk parameters obtained for this

validation are shown in Tab. 4.2. It is important to note that cyclic tests, which include
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tension and compression, are needed in order to obtain a more comprehensive set of pa-

rameters.

Figure 4.7: Free surface normal velocity vs. time [22]
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ρ 1070

ν 0.495

Void radius a0 [m] 81.6×10−7

Void density Nv [voids/m3 ] 2.89×1012

µ1 [Pa] 150

α1 7.5

µ2 [Pa] 150

α2 7.5

µ3 [Pa] 150

α3 7.5

τ1 deviatoric [s] 4.90×10−4

τ1 volumetric [s] 4.90×10−4

µ1,1 [Pa] 2.6×106

α1,1 5.0

µ1,2 [Pa] 2.6×106

α1,2 5.0

µ1,3 [Pa] 2.6×106

α1,3 5.0

τ2 deviatoric [s] 9.94×10−3

τ2 volumetric [s] 9.94×10−3

µ2,1 [Pa] 0.95×106

α2,1 4.5

σ0 [Pa] 6.0×106

εp0 1.0

n 0.003

Table 4.2: Material parameter estimates for release wave experiment on polyurea [22]

A mesh comprising 25605 tetrahedral elements was constructed in adherence to the
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dimensions outlined in Tab. 4.1. The model outlined in this work was utilized for polyurea

with the activation of thermal softening allowing for the formation of shear bands (thermal

properties obtained from [45] and Primeaux Associates LLC are shown in Tab. 4.4.) The

parameters obtained for polyurea in Section 3.3 and Tab. 4.2 were assigned to the polyurea

elements. A porous plasticity model outlined in [94] was utilized for the DH36 steel with

the material properties shown in Tab. 4.3. Friction was modeled as in [82] with values of

0.15 and 0.1 for the static and kinetic friction coefficients, respectively. The experimental

displacement profiles were recorded at various times for the purpose of validation (see Fig.

4.8). The simulation was performed on 256, 2.4 GHz, Intel Xeon processors with 4 GB

of memory shared between every 2 processors. The calculation lasted for approximately

72 hours to reach 297 microseconds. It is observed in the experiment that the composite

target plate starts to move as a rigid body along with the impactor at approximately 200

microseconds. The simulation displacement profiles were consequently compared to the

experimental results up to 208 microseconds with great agreement, as shown in Fig. 4.9.

The final configurations are shown in Fig. 4.10 and contours of the plastic strain, volumetric

strain, and temperature are shown in Figs. 4.11 and 4.12.
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ρ 7700

E [GPa] 210.0

ν 0.29

σ0 [Pa] 400.0×106

εp0 0.004

n 6.0

ε̇p0 [s−1] 0.001

m 60.0

T0 [K] 293

Tm [K] 1371

Cv [J Kg−1 K−1] 486.0

α [K−1] 12.0×10−6

l 0.75

β 0.9

Void radius a0 [m] 5.2×10−9

Void density Nv [voids/m3 ] 1.0×1022

Table 4.3: Material parameter estimates for DH36 steel via fits to data in [64]

T0 [K] 293

Tm [K] 500.0

Cv [J Kg−1 K−1] 1.5×103

α [K−1] 4.0×10−5

l 1.0

β 0.5

Table 4.4: Thermal parameter estimates for polyurea
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Figure 4.8: Composite plate positions at different times. Each color/symbol represents a

time frame.
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Figure 4.9: Experimental and computational displacements at various times
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Figure 4.10: Experimental (top) and computational (bottom) final configurations
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(a)

(b)

(c)

Figure 4.11: Plastic strain (a), volumetric strain (b), and temperature (c) contour plots from
the impact side of the composite plate
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(a)

(b)

(c)

Figure 4.12: Plastic strain (a), volumetric strain (b), and temperature (c) contour plots
across the thickness of the composite plate
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4.3 Blast impact on composite shells

4.3.1 Subdivision thin-shell elements

Within the framework of Kirchoff-Love theory, the strain energy density of thin shells is

expressed in terms of the first and second fundamental forms of the shell middle surface.

Therefore, a conforming finite element discretization requires smooth shape functions be-

longing to the Sobolev space H2. Cirak, Ortiz, and Schröder [19, 21] proposed a novel

type of discretization based on the concept of subdivision surfaces which delivers smooth

H2 shape functions on unstructured meshes in a particularly natural and efficient way. The

interpolation within one element is accomplished with shape functions which have support

on the element as well as the one ring of neighboring elements (see Fig. 4.13)

Figure 4.13: Support of shape functions of a subdivision element (central triangle)

The number of the control points N involved in the interpolation of each element de-

pends on the local connectivity of the mesh. For example, for regular patches where each

of the three element vertices are incident to six elements the interpolant derived from the

Loop’s subdivision scheme has N = 12 control points [51, 93]. The overlapping local

interpolations, each over one patch, combined lead to a global interpolation with square

integrable curvatures. In addition to several other advantages, an appealing feature of the
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subdivision elements is that the sole unknowns in the finite element solution are the nodal

displacements. However, this comes at a certain cost, namely, that the subdivision shape

functions are non-local in the sense that the displacement field within one element depends

on the displacements of the nodes attached to the element and the immediately adjacent

ring of nodes in the mesh.

4.3.2 Shell fracture and fragmentation

In three-dimensional solids, cohesive laws of fracture have been successfully integrated

into finite-element analysis by encoding them into cohesive elements in the form of double

surfaces (e.g. [15, 71, 72, 74] and references therein). The opening of the cohesive ele-

ments is compatible with the deformation of the adjacent volume elements and is subject

to a unilateral closure constraint. Cohesive elements may be inserted adaptively upon the

attainment of a critical stress condition on the interelement boundary [15, 71, 74]. The

insertion of cohesive elements introduces new surfaces into the mesh, which undergoes

complex topological transitions as a result. For three-dimensional solids these transitions

can be classified exhaustively [71, 74], and appropriate actions may be taken in order to

update the representation of the mesh in each case. The natural extension of the cohesive

element concept to shells consists of inserting cohesive elements at interelement edges,

and constraining the opening of the cohesive elements to conform to the deformation of

the middle surface of the shell and its normal. This approach allows for fracture both in an

in-plane or tearing mode, a shearing mode, or a bending or hinge mode. However, within a

subdivision-element framework the essential difficulty resides in making the scheme adap-

tive, in the sense of inserting cohesive elements in an otherwise conforming mesh upon

the attainment of some appropriate critical condition. Thus, the non-locality of the dis-

placement interpolation renders the tracking of the topological transitions induced by the

insertion of cohesive elements unmanageably complex. In order to sidestep this difficulty,

all the element edges are fragmented ab initio by duplication of common nodes [20], Fig.

4.14. In implicit calculations, element conformity prior to fracture is enforced by the ad-
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dition of a penalty term to the energy. Alternatively, in explicit dynamics calculations

conformity is readily enforced by a displacement averaging technique.

Figure 4.14: One cohesive edge and the two adjacent subdivision shell elements with their

one-neighborhoods

4.3.3 DH36 steel/Polyurea composite hull

Laminated composite plates are simulated with n plies of thicknesses h1, ..., hn by the sim-

ple device of disposing n integration points across the thickness of the plate and assigning

polyurea and DH36 steel properties to the corresponding plies (see Fig. 4.15). This method

applies equally well to shell and cohesive elements. In the case of shells the properties of

DH36 steel are modeled by means of finite-deformation porous plasticity [94]; whereas the

properties of polyurea are modeled by means of the model presented in this thesis. In the

shell cohesive elements, the quadrature points corresponding to steel and polyurea layers

are simply assigned the fracture properties of each material. Once the fracture criterion is

fully satisfied for either material, the integration points belonging to that material become

inactive and hence do not contribute to the composite shell deformation.
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Figure 4.15: Composite shell formulation

An underwater blast pressure profile as in [29] is applied to a polyurea (located opposite

of the blast side) retrofitted DH36 steel composite hull section taken from a Meko 140

corvette ship used by the Argentinean navy. The hull is modeled via shell elements with

dimensions shown in Fig. 4.17 and formulation shown in Fig. 4.15. The loading conditions

impose bending on the structure resulting in polyurea being in tension; the highest strain

rate tension parameters obtained in Chapter 3 were assigned to the polyurea across-the-

thickness integration points and the DH36 steel material parameters shown in Tab. 4.3

were assigned to the steel in the same fashion. The estimated fracture properties for both

materials are shown in Tab. 4.5. An underwater 0.5 Kg TNT blast load is applied to the

DH36 steel side of a 2880 shell-element mesh as shown in Fig. 4.16 with free boundary

conditions. Two simulations were conducted; the first with a composite hull comprising

0.0048 mm DH36 steel and 0.01056 mm polyurea coating on the opposite side of the
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blast load. The second with a 0.00625 mm DH36 steel hull without polyurea. Both hulls

have approximately the same total mass of 3811 Kg. The kinetic energy of the two shells

was plotted vs. time as shown in Fig. 4.27 with sample qualitative results shown in Fig.

4.26. Assuming that the starting hull thickness is 0.0048 mm of DH36 steel, the addition

of 0.01056 mm of polyurea is almost equivalent to adding 0.00145 mm of DH36 steel

with only an increase in the hull total kinetic energy of 4.2%. The advantages of adding

polyurea vs. DH36 steel can be summarized into two main factors: ease of application and

cheaper cost. This establishes a quantitative measure to improve the composite design by

minimizing the kinetic energy resulting in larger absorption of the blast energy in finite

deformation.

Material DH36 Steel Polyurea

Cohesive Stress (MPa) 1200 24

Fracture Energy Gc (N/m) 11905 37037

Table 4.5: DH36 steel and polyurea fracture parameters

Figure 4.16: Hull mesh (2880 elements)
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Figure 4.17: Hull front, side, and dimetric views (top to bottom)
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(a)

(b)

Figure 4.18: Composite hull views during blast impact. Views are front (a) and side (b).
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Figure 4.19: Hull kinetic energy vs. time for different configurations

4.3.4 Aluminum/PVC foam H100/Aluminum composite hull

Another composite hull configuration involves the use of Divinycell H100, a PVC foam

with a density of 100 Kg/m3, in the hull central part of the thickness laminates (see Fig.

4.20). Aluminum and PVC properties are assigned to the corresponding plies as described

in Section 4.3.3.
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Figure 4.20: Composite shell formulation

4.3.5 PVC foam - Divinycell H100

The compressive behavior of PVC H100 is due to its cellular structure (Fig. 4.21). At very

low compressive stress (≤∼ 2 MPa), the cellular structure is able to support the load. As

the compressive stress increases behind the first stress peak, the cells collapse, determining

the plastic flow (Fig. 4.22). At high compressive strain, the material is compact due to the

collapse of all the cells and its stiffness greatly increases as the loading continues. The

overall uniaxial foam response in compression is shown in Fig. 4.23.
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Figure 4.21: Cells structure of Divinycell H45 (top) and H130 (bottom)[7]

Figure 4.22: Photographs of a specimen of H200 foam sectioned along its mid-plane.

Views are undeformed and uniaxially compressed to 10% from left to right.[25]
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First stress peak

Foam behavior at 
large compressive 
strain

Figure 4.23: Foam uniaxial compressive behavior
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Due to the lack of comprehensive stress-strain data for PVC H100, information pro-

vided in the literature for PVC foam, along with reported stress-strain trends (see Tab. 4.6),

inspired the schematic uniaxial response of Divinycell H100 shown in Fig. 4.24. In uni-

axial tension, the stress strain curve is, within a good approximation, linear elastic until

rupture. In uniaxial compression, the PVC foam response may instead be subdivided into

three different phases:

1. Initial linear elastic response until the first compressive stress peak is reached

2. Plastic deformation

3. Final stiffness gain.
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Figure 4.24: Schematic uniaxial stress-strain curve for Divinycell H100

All the values which characterize the response of the Divinycell H100 foam used in

the following analysis are reported in Tab, 4.6, with σc being the compressive stress at

which the slope of the stress-strain curve first changes. The calibrated soft material model

parameters (without plasticity) at an assumed strain rate of 1 s−1 are shown in Tab. 4.7.

Other sources report similar properties [1, 33, 13].
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Fit Type compression tension
µ1 [Pa] -147.4 6.64×109

α1 -5.5 10.0
µ2 [Pa] 376.2 -
α2 9.4 -

µ3 [Pa] -133.5 -
α3 -14.1 -

τ1 [s] 0.02 -
µ1,1 [Pa] 2.3 ×106 -
α1,1 10.0 -

µ1,2 [Pa] -2.3 ×106 -
α1,2 -10.0 -

µ1,3 [Pa] 2.3 ×106 -
α1,3 10.0 -

Table 4.7: Soft material model parameter estimates for PVC H100 foam

εc -0.85

E [MPa] 105.0

µ [MPa] 40.0

ν 0.32

Ef [MPa] 1000.0

σut [MPa] 3.5

σc [MPa] -2.0

σuc [MPa] -50.0

KIC [MPa
√

m] 0.1

GIC [MPa m] 9.52 × 10−5

δc [m] 5.44 × 10−5

Table 4.6: Divinycell H100 material properties
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ρ [Kg/m3] 2734

E [GPa] 87.6

ν 0.31

σ0 [Pa] 275.0×106

εp0 0.1

n 25.0

ε̇p0 [s−1] 0.001

m 500.0

T0 [K] 293

Tm [K] 933

Cv [J Kg−1 K−1] 896.3

α [K−1] 33.0×10−6

l 0.75

β 0.9

Void radius a0 [m] 5.2×10−9

Void density Nv [voids/m3 ] 1.0×1022

Table 4.8: Material parameters for aluminum

Material Aluminum PVC H100

Cohesive Stress (MPa) 180 24

Fracture Energy Gc (N/m) 2.75 95.2

Table 4.9: Aluminum and PVC H100 fracture parameters

The final Young’s modulus is assumed equal to about one third of the Young’s modulus

of the bulk PVC material from which the foam is made, to account for possible voids still

present in the compacted material. The ultimate compressive strength, −50 MPa, is equal

to one of the lowest values available for the compressive strength of bulk PVC [2].

In order to better characterize the PVC foam response in blast analysis, the material
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behavior at high strain and high strain rates should be further investigated, since most of the

experiments reported in the literature do not show the final stiffness gain. In the presented

computations, the first stress peak is used as the compressive failure of the foam [59].

The strain rate does not significantly alter the first peak of the compressive stress for foam

of low density, such as the Divinycell H100 (Fig. 4.25) [86, 17], however, its role in the

material response at high strain is not determined and therefore not taken into account in

the presented analyses.

Figure 4.25: Variation of peak stress with foam density from quasi-static to high strain rate

[86]

A blast load as in Section 4.3.3 was applied to an aluminum–PVC–aluminum composite

hull with thicknesses 2.5, 50.0, 2.5 mm, respectively (see Fig. 4.20). The loading conditions

impose bending on the structure, hence the tension/compression material properties of the

PVC foam were assigned to the thickness integration points accordingly. The blast was

the result of an underwater 0.5 Kg TNT explosion applied to one side of the shell in two

separate simulations. The first with a shell mesh comprised of 2880 elements and the

second of 11520 elements. The kinetic energy of the two shells was plotted vs. time as

shown in Fig. 4.27, with a sample qualitative result shown in Fig. 4.26.
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(a)

(b)
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(c)

(d)
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(e)

(f)

Figure 4.26: Coarse (a,b,c) and fine (d,e,f) hulls during blast impact. Views are front (a,d),

back (b,e), and side (c,f).
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Figure 4.27: Shell kinetic energy vs. time for different configurations

All together, these methods and techniques result in a powerful framework for the mod-

eling of a shell structure subjected to blast loading. The process of damage, fracture, and

fragmentation are modeled explicitly and the energy absorbed by the structure during the

blast can be precisely quantified for future design purposes.
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Chapter 5

Application to brain trauma

5.1 Introduction

Brain damage resulting from traumatic brain injuries (TBI) under impact/acceleration load-

ing is often classified as focal or diffuse in the medical literature. The first consists of contu-

sions, lacerations, haematomas (extradural or intradural), tentorial/tonsilar herniation, etc.,

and may occur under (coup) or opposite to (contre-coup) the site of impact. Diffuse damage

instead encompasses diffuse axonal injury (DAI), cerebral swelling, and cerebral ischemia,

and is often associated with focal damage. Alternatively, brain damage can be classified as

primary, occurring at the impact site, or secondary, occurring at remote sites.

Damage is frequently caused by the relative motion of the brain with respect to the skull

(brain retarded or set into motion subsequently by the skull); striking and bouncing of the

parenchyma against inner skull protrusions; rupture of bridging veins, axonal fibers and

vascular tissue; and cavitation phenomena induced by negative pressures.

Fig. 5.1 (adapted from Kleiven [46]) shows the dynamics of a frontal impact injury. The

translational cranial motion causes relative brain movements and short-term intracranial

pressure gradients. High positive pressures are observed at the coup site, together with

marked negative pressures at the contrecoup site (cf. Lindgreen and Rinder [50], Nahum

et al. [63], Johnson and Young [43]). Coup contusions are produced by the slapping effect

of the skull hitting the brain, while contrecoup lesions follow from the bouncing of the
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brain against the inner posterior surface of the skull and the development of cavitation

bubbleswithin the brain due to negative pressures. The growth and collapse of such bubbles

may induce local tissue damage. This phenomenon, known as contre cavitation, is well

recognized in the literature (cf. Lubock and Goldsmith [53], Hardy et al. [39], Nusholtz et

al. [65], Brennen [14], Johnson and Young [43]).

Cavitation effects can also be observed in the coup region (coup cavitation), since nega-

tive pressures immediately follow the shock wave front, in both the coup and the contrecoup

areas (Gross [37], Lindgreen and Rinder [50], Fujiwara [31], Rodriges et al. [83]). Coup

lesions are usually prevalent in the case of an impact from a small object, while contrecoup

lesion are typically more severe under impacts from large objects. The development of

coup and/or contrecoup lesions is also dependent on which part of the skull is impacted.

There is evidence that frontal impacts always result in frontal lobe injuries and that occipi-

tal, and temporal impacts cause prevalent contrecoup lesions (cf. Leestma [48]). However,

in many cases, both coup and contrecoup lesions are observed.

Figure 5.1: Coup-contrecoup injury (adapted from Kleiven [46])
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TBI are also produced by rotational movements of the parenchyma within the skull

(angular acceleration injuries) and bending-stretching of the craniospinal junction (Adams

and Graham [3]). Such traumas are often associated with DAI since rotational or bending

motions may led to severe shearing of axons in different brain regions. Axons can literally

be torn in half by shearing forces. DAI was defined by Strich in [88] and is now widely

recognized in the literature (cf. Perles and Rewcastle [78], Adams and Graham [3]); it was

observed, with varying degrees of severity, in about 30% of the cases in the Glasgow brain

trauma database (Adams and Graham [3]). DAI also results in various and widespread

regions of the brain no longer being able to function or intercommunicate. Gliar cellular

reactions create axonal retraction balls and/or microglial scars or degeneration of the fiber

tracts.

Moreover, blast-associated TBI represents another relevant form of brain damage, which

is receiving a growing attention from the scientific community due to its special features

and relevance for civil and military purposes.

Biomechanical modeling of traumatic brain injuries requires the formulation of com-

plex constitutive equations, accounting for large strains, time and rate effects, and con-

sistent damage modeling. The current biomechanical literature is mainly concerned with

hyperelastic or finite linear viscoelastic models, accounting for small perturbations away

from thermodynamic equilibrium (Prangue and Margulies [79], Miller et al. [56], [57],

[58], Meaney [54], Brands et al. [11], [12], Velardi et al. [91]). Plasticity, hysteresis, per-

manent deformation, and biphasic (solid/fluid) behavior of soft biological tissues have also

been analyzed by Bergström and Boyce [9], Gasser and Holzapfel [32], and Franceschini

et al. [30]. It is often assumed that brain white matter exhibits mechanical anisotropy,

due to to the presence of oriented neural tracts (axons) in a matrix made of cell bodies and

vascular network (cf. [79], Meaney [54], Velardi et al. [91]). The latter, on the contrary,

doesn’t posses any particular directionality and can be modeled as isotropic (gray matter).

Nevertheless, some authors assume that brain tissue (both in the gray and in the white mat-

ter) may be modeled as initially isotropic, provided that a large enough sample of material
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is taken into consideration (cf. Miller et al. [57], [58]).

This chapter deals with the biomechanical modeling of the brain tissue response to trav-

eling impact waves, and the computational simulation of traumatic brain injuries. The ma-

terial model presented in this thesis is employed. By contrast to other elastic and viscoelas-

tic approaches available in the literature, the present model is able to reproduce permanent

brain tissue damage, in the form of plastic sliding between brain layers and irreversible

growth of voids or bubbles in the material, simulating the effects of DAI and cavitation in-

jury. The model also includes time-dependent viscous deformations and large perturbations

of the material from thermodynamic equilibrium, via an exact finite viscoelasticity theory

with validation against available experimental results on brain tissue samples in Chapter 3.

Finite element simulations of two different traumatic brain injuries are presented, ex-

amining frontal and oblique impact events. The ability of the present theory in reproducing

real tissue damage mechanisms is illustrated, and predictions of intracranial pressure, shear

strain, cavitation, and shear injuries dynamics are presented. Attention is focused on the

correlation between simulation results and prediction of physiological brain dysfunction.

Potential applications of the present research to relevant medical and engineering problems

are examined in the closing chapter.

5.2 Finite element model of the human head

The injury simulations presented in this work make use of a finite element model of the hu-

man head recently realized at the Bioengineering Laboratory of the University of Salerno

[16]. A finite element mesh was reconstructed from the axial Magnetic Resonance Images

available in "The Whole Brain Atlas" of the Harvard Medical School (http://www.med.har-

vard.edu/AANLIB/), via 3D image processing and editing, using the commercial software

Mimics (Materialise Group, Leuven, Belgium). The mesh includes the following compo-

nents (refer to Fig. 5.2): (1) skull without facial bones; (2) cerebrospinal fluid (CSF) in the

form of a 3-mm-thick layer; (3) gray matter; (4) white matter; (5) cerebellum; (6) corpus



93

callosum; (7) telencephalic nuclei; (8) brain stem; (9) ventricles.

The entire model comprises 39047 tetrahedral composite elements [89], and is charac-

terized by a detail level similar to that of the Wayne State Brain Injury Model (Zhou et al.

[102]). The brain measures 1508 cm3 in volume (CSF excluded) and has a mass of 1.40

kg. The modeled portion of the skull is 678 cm3 in volume and has a mass of 0.82 kg. The

total model mass is 2.38 kg. The reader is referred to Cardamone and Socci [16] for further

details about mesh geometry, density, and topology.
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Figure 5.2: Mid-sagittal and mid-coronal sections of the adopted head finite element model:

(1) skull without facial bones; (2) CSF; (3) gray matter; (4) white matter; (5) cerebellum;

(6) corpus callosum; (7) telencephalic nuclei; (8) brain stem; (9) ventricles.

The constitutive model presented in this work is used to model the brain tissue compo-

nents, considering two viscoelastic mechanisms and one-term Ogden functions. Viscoelas-

tic material properties frequently used in the literature for head injury simulations (cf. Zhou

et al. [102]; Zhang et al. [100], [101]; Kleiven [46]; Kleiven and von Holst [47]; Horgan

and Gilchrist [42]) were suitably adapted to the present model. A factor of 1/2.5 is used to

rescale the short-term shear moduli given in [101] for white matter, gray matter, and brain
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stem, to ensure consistency with the short-term brain tissue model proposed by Mendis et

al. [55]. In particular, shear stiffness ratios of 1/2, 1/4, 1/4 are assigned to the elastoplastic

and the viscoelastic networks, respectively. Following the results given in [27], negative

{µ, α} couples are considered. A yield stress of 20 kPa is adopted, amplifying by a factor

of 2 the shear stress threshold defined by Zhang et al. [101] as a tolerable level for 80%

probability of mild traumatic brain injury. The volumetric viscosities ηvol
i were set to zero,

assuming purely elastic volumetric behavior in the viscoelastic networks. The shear (or

deviatoric) viscosities ηdev
i,n were expressed in terms of the (near thermodynamic equilib-

rium) relaxation times τi = ηdev
i /µi, where ηdev

i and µi are consistent linear viscosities and

shear moduli. In detail, τ1 = 0.008s is prescribed in the first, and τ2 = 0.15s in the second

mechanism [55]. The first mechanism accounts for short-term viscoelastic response and

essentially rules time effects in impact problems (cf. next section). The complete set of

material properties employed for soft tissue components is given in Tab. 5.1. For the skull

and the CSF, the hyperelastic models described in Tab. 5.2 (cf. [100]) are adopted.
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Component GM WM BSCC

Mass density [kg/m3] 1040 1040 1040

Elastoplastic response

Ogden’s coefficient µ1 [kPa] -2.72 -3.28 -4.64

Ogden’s coefficient α1 -5.00 -5.00 -5.00

Long term shear mod. µ∞ [kPa] 6.80 8.20 11.60

Bulk modulus κ [kPa] 2190 2190 2190

Yield stress σ0 [kPa] 20.0 20.0 20.0

Reference plastic strain εp0 0.05 0.05 0.05

Hardening exponent n 10 10 10

Reference plastic strain rate ε̇p0 [s−1] 0.001 0.001 0.001

Plastic strain rate exponent m 10 10 10

Void density Nv [m−3] 108 108 108

Initial void radius a0 [µm] 100 100 100

First viscoelastic mechanism

Relaxation time τ1 [s] 0.008 0.008 0.008

Ogden’s coefficient µ1,1 [kPa] -1.36 -1.64 -2.32

Ogden’s coefficient α1,1 -5.00 -5.00 -5.00

Bulk modulus κ1 [kPa] 2190 2190 2190

Second viscoelastic mechanism

Relaxation time τ2 [s] 0.15 0.15 0.15

Ogden’s coefficient µ2,1 [kPa] -1.36 -1.64 -2.32

Ogden’s coefficient α2,1 -5.00 -5.00 -5.00

Bulk modulus κ2 [kPa] 2190 2190 2190

Initial shear modulus µ0 [kPa] 13.60 16.40 23.20

Table 5.1: Soft tissue material properties. GM = Gray Matter; WM = White Matter; BSCC

= Brain Stem and Corpus Callosum
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Skull CSF

Mass density [kg/m3] 1210 1004

Shear modulus µ [kPa] 3280 0.50

Bulk modulus κ [kPa] 4760 2190

Table 5.2: Skull and CSF properties

5.3 Impact simulations

The present section illustrates two different head injury simulations concerning frontal and

oblique impacts with an external object. In the first case, some comparisons are established

with available experimental results. Attention is focused on intracranial pressures, shear

stresses, and related brain tissue damage.

5.3.1 Frontal impact

A simulation of experiment no. 37 by Nahum et al. [63] on the intracranial pressure dynam-

ics in a human cadaver impacted by a rigid mass is performed. The impact was reproduced

by applying a pressure load history over a frontal region of the skull, with semi-sinusoidal

time distribution for a duration of 6 ms and amplitude corresponding to a resultant peak

force of 7.90 kN [63] (Figs. 5.3, 5.4). Similar simulations have been performed by other

authors for the validation of different finite element models (cf. Ruan et al. [85], Zhou et

al. [102], Kleiven and von Holst [47], Horgan and Gilchrist [42]).
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Figure 5.3: Frontal impact injury

Figure 5.4: Animation of the translational head motion following frontal impact (t =

2, 4, 6, 8 ms)

Fig. 5.5 shows the predicted pressure time-histories in correspondence with three dif-

ferent brain regions (frontal, posterior-fossa and parietal lobes), against the corresponding

experimental results given in [63]. A very good correlation between theory and experiments

can be observed, concerning both peak values and time-distribution of the intracranial pres-

sure, which validates the present constitutive and finite element models.
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Figure 5.5: Predicted vs. experimental intracranial pressure time-histories (Nahum et al.

[63], experiment no. 37)
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During the simulation, as well as in the referenced experiment [63], positive (compres-

sive) peak pressures were observed in the frontal brain region, beneath the impact site,

together with negative (tensile) pressure in the posterior-fossa area, opposite to the impact

site (Fig. 5.5). Those peaks approximatively occurred in correspondence with the peak

of the external pulse (t = 3 ms). After that time, the frontal pressure started to decrease

toward zero, while the posterior pressure began to increase toward positive values. A pres-

sure profile similar in shape to that of the frontal region, but reduced in amplitude, was

observed in correspondence with the parietal lobe (Fig. 5.5).

Contour plots of the intracranial pressure over a mid-sagittal section of the head model

are shown in Fig. 5.6, at the peak (t = 3 ms), during the decreasing phase (t = 4.5

ms), and soon after the end of the pulse (t = 6.5 ms). One observes that the traveling

stress wave reflects against the skull at the contre-coup site and then moves back toward

the interior of the parenchyma. It is followed by a tensile "tail" (negative pressure wave),

which produces irreversible cavitation damage in different brain regions, especially within

the contre-coup area (Fig. 5.7). Cavitation initiates when the traveling tensile stress reaches

a threshold value pc (critical cavitation pressure) [94], [27], and determines instable growth

of voids (or bubbles) in the tissue. It is locally amplified by the superposition of primary

and reflected tensile waves.
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t=3.0 ms

t=4.0 ms

t=6.5 ms

Figure 5.6: Frontal impact: intracranial pressure contours (Pa)
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t=4.5 ms

t=6.5 ms

Figure 5.7: Frontal impact: cavitation damage predictions

The dynamics of the shear deformation are slightly different. Fig. 5.8 shows contour

plots at different times of the total effective shear stress τ . It continues to rise also after the

peak of the pulse, assuming extreme values in correspondence with the parietal lobe, the

corpus callosum, the thalamus, and the midbrain (cf. [100], [101], [42]). Its highest value,

however, remains below the adopted plastic threshold (τ ≤ σ0 = 20 kPa, cf. Fig. 5.8), and

hence no permanent shear damage occurs in the present case. Nevertheless, remarkable

elastic and viscous shear deformations arise in different brain regions. Contour plots of the

viscous shear strain εv in the first viscoelastic mechanism are depicted in Fig. 5.9. In the

current example, εv can be regarded as measure of transient (axonal) shearing damage of
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brain tissue. It will be released after the end of the pulse, in a time sufficiently larger than

the mechanism relaxation time (t 4 8 ms, cf. Tab. 5.2).
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t=4.5 ms

t=6.5 ms

t=7.5 ms

Figure 5.8: Frontal impact: shear stress contours (Pa)
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t=6.5 ms

t=7.5 ms

Figure 5.9: Frontal impact: viscous shear deformation predictions

5.3.2 Oblique impact

An oblique impact event was simulated by applying the same pulse of the previous example

on a lateral region of the frontal bone, in such a way to induce a mixed translational-

rotational motion of the head (Figs. 5.10, 5.11).
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Figure 5.10: Oblique impact injury

Figure 5.11: Animation of the translational-rotational head motion following oblique im-

pact (t = 2, 4, 5, 6, 7, 8 ms)

This new simulation leads to the intracranial pressure profiles depicted in Fig. 5.12 over

a plane parallel to the impact direction through the center of the impact zone. It is seen that

markedly higher positive and negative pressures develop in the present case within the coup

and contre-coup regions, as compared to frontal impact. Such high intracranial pressures

induce intense and diffused cavitation damage (Fig. 5.13), with peaks of θp markedly higher

than those observed in the previous example (cf. Fig. 5.7).
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t=3.0 ms

t=4.0 ms

t=5.0 ms

Figure 5.12: Oblique impact: intracranial pressure contours (Pa)
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t=3.0 ms

t=4.0 ms

t=5.0 ms

Figure 5.13: Oblique impact: cavitation damage predictions
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Concerning the shear stress τ , the time history represented in Fig. 5.14 is recorded. It

can be noticed that τ profiles follow the contours of the velocity gradient associated with

the rotational motion of the head (Fig. 5.11). Its peaks initially appear beneath the cortical

surface, and then evolve toward the core regions of the brain (cf. [101]). They are up

to 10 times higher than those predicted for frontal impact, which implies the attainment

of the yield limit in the elastoplastic network and the development of permanent shear

damage εp, as shown in Fig. 5.15. Therefore, occurrence of DAI can be predicted, evolving

from the periphery to the core of the brain. Marked viscous shear deformation εv in the

first viscoelastic mechanism is also observed, with analogous time-space distribution as

compared to εp (Fig. 5.16). In the present case, the difference εv − εp may be regarded as a

measure of transient axonal shearing.
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t=3.0 ms

t=4.0 ms

t=5.0 ms

Figure 5.14: Oblique impact: shear stress contours (Pa)
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t=3.5 ms

t=4.0 ms

t=5.0 ms

Figure 5.15: Oblique impact: permanent shear damage predictions
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t=3.5 ms

t=4.0 ms

t=5.0 ms

Figure 5.16: Oblique impact: viscous shear deformation predictions
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Chapter 6

Conclusions

6.1 Summary

The presented soft material constitutive model is able to reproduce the behavior of a wide

range of soft materials. The model combines finite viscoelasticity, finite elastoplasticity,

and decoupling of volumetric and deviatoric responses. The viscoelastic response is de-

scribed through Ogden-type models including volumetric deformation. Volumetric plastic-

ity is related to the expansion of voids or bubbles in the material, as physically observed in

many polymers and soft biological tissues undergoing crazing, cavitation, or both.

The large number of material parameters required by the model demanded a systematic

approach for their identification. An optimization procedure based on Genetic Algorithms

is formulated and its versatility is demonstrated via the identification of parameters for

polyurea, high-density polyethylene, and brain tissue.

An application to ballistic impact on a polyurea-retrofitted composite plate is simu-

lated and validated, and computational capability for assessing the blast performance of

metal/elastomer composite shells is also shown. Clinically relevant injuries, such as DAI

and cavitation injury, are shown to be related to specific mechanical damage modes of brain

tissue involving plastic and/or viscous deformations. Finite element simulations effectively

predict the distribution, intensity, and reversibility/irreversibility of tissue damage, as well

as the associated physiological brain dysfunction.
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6.2 Outlook

This work is primed for use in relevant engineering and biomechanical applications such

as design assessment and optimization of a variety of structures under dynamic loading

(e.g., polyurea-reinforced plates and shells), and simulation of impact-induced damage in

biological tissues. Future directions of this work may lead to the formulation of head-injury

criteria for medical, governmental, and industrial applications; addressing the definition of

clinical-biomechanical injury thresholds and tolerances; the simulation of a wide range

of injuries, including blast-induced TBI and the effects of growing tumors; neurosurgical

simulations; and the design and the assessment of effective protective devices, such as

helmets including honeycomb materials, polymers, or foam padding.

6.2.1 Polymeric applications

There is a wide range of uses for computational modeling of soft materials such as poly-

mers and biological tissues. The computational utility is unsurpassed in the way that mod-

eling provides clear perception into the behaviors of polymers under a variety of circum-

stances that are experimentally problematic. Computational modeling has become a vital

instrument in research determining the properties of polymers. With the onset of quicker

computer processors, many simulations can be made in an very short amount of time. In

addition, studies have shown the power of computational modeling in predicting polymer

properties, especially at interfaces and in solution. Thus, computational modeling of poly-

mers can provide a valuable tool to supplement the ongoing research on the interface be-

tween phase-separated domains. A specific area of investigation would be using computer

simulations to model failure at an interface; an important goal would be to use the simula-

tions to isolate signatures for a specific failure mode. These studies would be particularly

helpful in designing high-strength composites.
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6.2.2 Medical applications

Ever since the increase in popularity of computational modeling, there have been many

contributions to the understanding of human health in regards to disease, injury, and their

treatment. Moreover, simulation of soft tissues is an increasingly practical instrument in

predicting surgical outcomes and in the training of medics/doctors. The possible uses of

computational modeling include laproscopic surgery, craniofacial reconstruction, z-plasty,

breast reduction, gastrointestinal surgery, and reconfiguration of musculoskeletal geome-

try. In these and many other scenarios, a subject-specific simulation environment in which

procedures can be practiced is of immeasurable value for the development of surgical tech-

niques. In retrospect, the lack of status given to computational modeling limits the ap-

plicability of surgical simulation. The solutions to these problems require collaboration

between mathematicians, computer scientists, engineers, and clinicians. Through compu-

tational modeling, one visits the most promising directions for algorithm design, use of

architectures, surgical simulation interface design, and procedures that lend themselves to

simulation by encouraging interdisciplinary cooperation between medicine, engineering,

applied math, and computer science. Nonetheless, the modeling of soft materials such as

biological tissues has yet to reach its full potential as a contributor to the improvement of

the health-care industry. Because of the inherent complexities of the microstructure and

biomechanical behavior of biological cells and tissues, there is a need for new hypothetical

frameworks to guide the design and interpretation of new classes of experiments. Because

of continued advances in experimental technology, and the associated rapid increase in

information on molecular and cellular contributions to behavior at tissue and organ levels,

there is a high demand for mathematical models to quantify and predict observations across

multiple length- and time-scales. Due to the intricate geometries and loading conditions,

there is a demand for computational approaches to solve the boundary and initial-value

problems of clinical, industrial, and academic applications. Inasmuch, computational mod-

eling of cancer behavior may be useful in the future for predicting tumor growth and guid-

ing treatment options. The modeling can be thought of as slicing a tumor. Mathematical
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equations are used to create a computer simulation of tumor growth, allowing physicians

to ascertain if the cancer will develop invasive and metastatic qualities.

Moreover, sophisticated musculoskeletal computational models help researchers to bet-

ter comprehend the loads applied to natural joints under normal and abnormal conditions.

When the researchers brought these models to the forefront, they were able to design more

effective artificial joints. In academia, researchers use biomechanical and statistical models

to create artificial limbs that are designed to function in a diverse set of situations: in pa-

tients ranging from frail to heavy-set, and for activities from sitting down to climbing stairs.

Many researchers also generate computational models that include variables that surgeons

and implant designers can administer (such as implant materials and geometric design), as

well as environmental variables beyond their control (including but not limited to patients’

varying activity levels and individual bone strength). Continuing work on computational

modeling has led to many breakthroughs in statistical optimization methods that consider

factors which optimize the design of an implant. This perspective of computational mod-

eling allows researchers to decipher what components are useful, conserving funds and

helping to decide where to concentrate efforts and resources.

6.2.3 Neuromuscular applications

Neuroprosthesis has made one of the biggest leaps in computational biomechanics. For

the past three decades, clinicians have performed experiments using electrodes to stimulate

paralyzed muscles in coordinated patterns. Their work has led to the creation of implanted

functional electrical stimulation (FES) systems that allow partially paralyzed patients to

hold a fork and feed themselves, brush their teeth, or run a comb through their hair. Over

time, biomechanical models have come to play a greater role in FES systems. Basically,

as the functions that we would like to restore have become more and more complex, our

ability to implement them by intuition and trial-and-error is decreasing. For this reason

computational models are needed in the field of neuromuscular science.
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6.3 A concluding remark

The principal message is simply that much has been learned through computational model-

ing. Less than a half a century old, continuum computational modeling of soft materials is

undoubtedly still in its infancy and its projected outlook remains promising for improving

humanity’s quality of life. Continued advances in computers and computational methods

are increasing our ability to handle large amounts of data and to model complex initial

boundary value problems; and continued improvements in diagnostics are allowing disease

and injury to be treated earlier.

Modeling of soft materials has a vital role to play in the development of the needed

mathematical models and analyses. Because of the incredible complexity of the biochemo-

physical aspects of soft tissues and the chemophysical aspects of polymers, this type of

modeling cannot develop in isolation. There is a need for increased interdisciplinary and

multidisciplinary research that brings scientists from various fields together in teams, both

in research and education. Only in this way can we achieve our ultimate goal: to improve

the human condition through knowledge of continuum modeling of soft materials.
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