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Abstract 

This thesis explores the application of geometric mechanics to  problems in 

2D, incompressible, inviscid fluid meclzanics. The main motivation is to  

try to  develop syrnplectic integration algorithms to model the Hamiltonian 

structure of inviscid fluid flow. The main manifestation of this Hamiltonian 

or conservative nature is the preservation of the infinite family of Casimirs 

parametrized by the body integrals of vorticity in the 2D case. The main 

difficulties encountered in trying to  model the I-Iamiltonian structure of a 

fluid mechanical system are that the configuration space for the Hamilto- 

nian flow is an infinite dimensional Frechet space and that the phase space 

is not symplectic but Lie-Poisson. Therefore, an appropriate finite mode 

truncation must be constructecl under the constraint that it too remains 

Poisson and in some sense converges to the infinite dimensional parent man- 

ifold. With such a truncation in hand, there still remains the obstacle of 

non-symplectic structure. This geometry invalidates the application of tra- 

ditional symplectic integrators and requires a more sophisticated algorithm. 

We develop a Lie-Poisson truncation on the Lie group SU(1V) for the Eu- 

ler equations on the special geometry of a twice periodic domain in R2. We 

show that this finite dimensional analog is compatible with the Arnold[5] 



formulation of Hamiltonian mechanics on Lie groups with a left or right 

invariant -metric. We then proceed to review the Lie-Poisson integration 

literature and to develop Hamilton-Jacobi type symplectic algorithms for a 

broad class of Lie groups. For this same class of groups, we also succeed 

in constructing an explicit Lie-Poisson algorithm which radically improves 

computational speed over the current implicit schema. We test this new al- 

gorithm against a Hamilton-Jacobi implicit technique with favorable results. 
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Introduction 

The following is a summary of the topics covered in this thesis. 

Chapter One and Appendices A and B provide an introductory tutorial 

on the theory and techiliclues of the modern formulation of classical mechan- 

ics. Chapter One starts with a description of classical mechanics over linear 

vector spaces and proceeds to generalize the theory to smooth manifolds. In 

the applications that we will explore, symmetries propagated by the action 

of Lie groups will play a pivotal role. Thus, section 1.4 provides a com- 

plete introduction to Lie group theory with ail emphasis on the computing 

of derivatives of group and algebra mappings. The first chapter concludes 

with the development of the Hamiltonian formalism on Poisson manifolds. 

These manifolds are characterized by the fact that the Poisson bracket is 

degenerate and they are of importance because so many physical systems 

are most naturally described on them. 

Chapter Two reviews the major result of Hainiltonian Auid mechanics 

which is that vortex dynamics can be incorporated into the modern for- 

mulation of geometric mechanics. The phase space for vortex distributions 

is shown to be Lie-Poisson. The 1983 Physica D paper by Marsden and 



Weinstein[s] is reviewed iiz great detail and the calculations fully explained. 

Chapter Two concludes with a I-Iamiltonian truncation of the equations of 

motion for a vortex patch with a single-valued boundary. This result is of 

very little practical interest as it is only valid on a small co-ordinate patch 

around an equilibrium point on the vortex patch co-adjoint orbit. 

Any attempt at building symplectic integration algorithms for fluid me- 

chanical systems will have to rely on some suitable truncation of the infi- 

nite dimellsioilal function group introduced in Chapter Two. The goal of 

Chapter Three is to  develop the most promising Lie-Poisson truncation for 

the evolution of a vortex distribution on a twice periodic domain in R2. 

The symmetry group which replaces the infinite dimensional group of area- 

preserving diffeomorphisms on the 2- torus is S U (N) . This configuration 

space has some very useful properties which maltes it accessible to  the ap- 

plication of standard techniques in Lie-Poisson integration. We fully develop 

the theory of vortex dynamics on su*(N) .  

Chapter Four develops a self-contained expositioil of Symplectic Integra- 

tors from the basics to the current state of the literature. The formulation 

of Lie-Poisson integration through the Hamilton-Jacobi theory is presented 

in detail. The description is heavily influenced by the papers of Ge and 

Marsden[9] and Chanllell and Scovel[14]. 

Chapter Five applies the techniques of the previous two chapters to the 

test-bed problem of the rigid body motion and to the S U ( N )  truncation for 

fluid dynamics. The Channell and Scovel algorithm is successfully imple- 

mented for both algebras. However, it is found that in the case of high di- 



mension S U ( N )  , the implicit generating function integrator of Channell and 

Scovel is inadequate in the sense that run times become prohibitively expen- 

sive. However, we also provide a new explicit Lie-Poisson algorithm which is 

based on the same natural exponential atlas as used in the Hamilton-Jacobi 

integrator. The new integrator is Lie-Poisson by construction and provides 

a far faster alternative to  the iinplicit scheme of Channell and Scovel. The 

integrator is tested against the implicit Lie-Poisson scheme for SO(3)  with 

favorable results. 



Chapter 1 

Harnilt onian Mechanics 

1.1 Introduction 

The purpose of this chapter is to lead the reader through the modern for- 

mulation of Hamiltonian Mechanics. The familiar Hamiltonian formalism 

is developed in terms of linear spaces which can be easily furnished with 

a canonical co-ordinate system. Examples of these include c!asslcal point 

particle mechanics in conservative force fields and also classical field theory 

which even though illfinite dimensional, parallels the finite dimensional point 

particle case. The discussion will then proceed to the construction of Hamil- 

tonian mechaizics over more mathematically abstract configuration spaces. 

Configuratioil space is simply the set of physical variables in terms of which 

we choose to describe the dynamics under consideration. For example, for 

point vortices in 2-D fluid mechanics, the configuration space consists of the 

x and y ordinate of each vortex within the domain of the fluid. In the case 

of rigid body motion, the configuration space will be a Lie group, namely 



the special ortlzogonal group SO(3). After the assignment of configuration 

space, phase space is constructed by forming the bundle of dual tangent 

spaces to  each point in configuration space. For the point vortices, this will 

simply reduce to  the velocity I-form at  each vortex location. For the rigid 

body, the situation is more complicated. SO(3) is not covered by one chart, 

so the formation of phase space has a more involved underlying geometry. 

The connection between the more intuitive point particle dynamics and 

the apparent soplzistication of field theory whose description is embedded in 

infinite dimensional Banach spaces is most easily bridged by the employment 

of symplectic forms. The use of syinplectic structures to express Hamiltonian 

dynamics is most easily understood on configurations spaces which are linear 

vector spaces such as Rn. The more general case of viewing the physical 

configuration as an element of a differentiable manifold can be accomplished 

by recalling that most manifolds can be described by assigning an atlas of 

charts to  the manifold so that locally, the evolution equations are expressed 

on Banaclz spaces reducing the analysis to the linear case. This is one 

way of generalising the geometric setting. Perhaps more far-reaching, a t  

least from the context of this thesis, is to extend the traditional Poisson 

bracket formalism. Once a space P has an associated symplectic structure, 

a mapping 

on the smooth functions on P can be defined in terms of the symplectic 

structure and the Hamiltonian dynamics reduce to an evolution equation 

F = {F, H). The properties of the symplectic form are inherited by the 



Poisson bracket. However, by weakening some of these properties, a new 

regime of interesting dynamics can be unlocked such as those modeled on 

Lie-Poisson systems. 

The structure and content of this chapter draw heavily from a rich vari- 

ety of sources. The main references include V.I.Arnold[S], R.Abraham and 

J.E.Marsden[l] and R.Schmid[2]. 

1.2 Mechanics Over Linear Spaces 

We start by first defining a symplectic structure on an arbitrary Banach 

space, V. 

Definition 1.2.1 A synzplectic space (V, R)  consists of a linear space V and 

a weakly non-degenerate, bilinear, antisymmetric 2-form Cl. 

If vl and v 2  are elements of V, weakly non-degenerate means that if 

C ? ( I ) ~ ,  7 1 ~ )  = 0 \J7)2 E V ; then vl is identically zero. Given a 2-form Cl, we 

can define an associated mapping fib : V -+ V* by 

R being a weak symplectic form simply means that the above mapping from 

V to V* is one-to-one but not necessarily onto,i.e., Rb : V -+ V* does not 

define an isomorphism. If it does, then R is said to  be symplectic. We will 

see in future examples that this distinctioil is of crucial importance. 

We next need to define the symplectic maps from one symplectic space 

to  another. This concept correlates with the traditional canonical mappings 



as encountered in classical mechanics. If (V, a) and (W, 23) are symplectic 

spaces and f : V -+ W, then f is said to  be symplectic if 

f*C = st. (1.1) 

It will be recalled from Appendix B that f *  is the pull-back of f to  the 

tangent bundle which in this case is isomorphic to  W x W*. 

Finally, before defining Hamiltonian mechanics on a linear space, we 

discuss flows of vector fields. 

Definition 1.2.2 A flow on phase space is a l-parameter difleomorphism 

cbt : P -+ P. This usually correspon,ds to the time evolution for some initial 

condition located in the ph,ysical system's phase space P. 

A flow {4tlt E R} generates a corresponding vector field X : P -+ X ( P )  

through 

The flow forins a l-parameter group of diffeomorpl-tisms on P and it can be 

easily seen that these properties lead to  an equivalent differential equation 

formulation 

Equipped with a sylnplectic structure and a familiarity with the connec- 

tions between vector fields, l-forms and flows/differential equations, we can 

produce a l-lamiltonian Mechanics. 

Definition 1.2.3 Given a symplectic structure st on a Banach space, V, 

a vector fielcl X : V -+ V is called Hamiltonian if there exists a function 



H : V --t R which is at least C1 such that 

Such X are referred to as Hamiltonian and the set of all such vector fields 

will be denoted XH,,(V). It will be recalled that given H : V -+ R, dH' is 

the diflerential muppin,g, d H  : V -t T*V (g V x V*). 

The above clefinition has a very familiar interpretation. We understand 

V to represent the phase space for some physical system and H as the Hamil- 

tonian defined on this phase space. We see that it is the symplectic form 

which allows one to define the link between the Hamiltonian and the possi- 

bility of a corresponding vector field. It is this connection which is so crucial. 

The above discussion of phase flows allows one to express the contents of 

the above definition into a differential equation setting. By considering the 

integral curve of XH, c : R -+ V ,  Hamilton's equations are 

assuming of course that c exists for all t .  We will now show that these 

equations produce Hamilton's equations when canonical co-ordinates are 

chosen on a finite dimensionali V. 

Example 1 Consider V to  be 2n dimensional and choose canonical coor- 

dinates on V, (qi7pi) where i ranges from 1 to n. The q are usually 

referred to as the generalised coordiilates and the p as the conjugate 

momenta. In the next section, we will see that such a pair constitutes 

a canonical description of the dual tangent bundle where q locates the 



base in the coilfiguration space and p specifies the momentum 1-form 

in the dual tangent space to q. In these coordinates, we assume that 

Since we are using a canonical description, the two form R can be 

written as R;,j = J;,j where 

Therefore, given a w E V where lo = (a ; ,  bi) 

d H  d H  ; 
= d H ( x ) . w  = -a; + -b . 

aqi dp; 

By choosing w = (ak,  0) and then w = (0, bk), for some k in the range 

1 to n, we see that 

Hamilton's equations are then easily derived as 

from the integral curve form of the evolution equations. 



So, we have reproduced the standard classical form of Hamilton's equa- 

tions. Of course, the formulation that we have used is not coordinate de- 

pendent so we are not locked into having to  do mechanics in only canonical 

settings. 

One of the main results of classical Hamiltonian mechanics is that the 

flow of X H  preserves the value of H ,i.e., H ( c ( t ) )  is an invariant. This is 

quite easily seen to be a consequence of the anti-symmetry of Q. Take the 

time derivative of H to obtain 

by the antisymmetry of Q. 

Before making our theory more accessible via a suitable example, the 

above can be reformulated in terms of a bracket structure on C m ( V ) .  Again, 

this Poisson structure can be completely defined in terms of the symplectic 

2-form. 

Definition 1.2.4 Given F , G  : V -+ R, the bracket {F,G) : V -i R is 

defined as 

{F, G )  (u) = Q ( X F ( ~ )  7 X G ( ~ ) )  v v E V. (I.5] 

The Poisson bmcket inherits the properties of Q. It is bilinear, anti- sym- 

metric and can also be shown to satis& the Jacobi identity which states that 

given F, G and I< i n  CDO(V), 

{{F, G ) ,  K )  4- {{G, I(), F) + {{I<,  F ) ,  G) = 0. 



The equations of motion can also be expressed in terms of the Poisson 

bracket. \Ve can slzow tlzat if 4t is the flow corresponding to  the Hamiltonian 

vector field with Hamiltonian H : V -+ R, then for some F 

d 
- (F d t  0 4,) = {F 0 4t, H )  = {F, H )  o $ht. 

It is an easy corollary to show that F will be constant along the integral 

curves of X H  if aizd only if {F, I I )  = 0. 

In conclusion, by simply providing a Banaclz space with a symplectic 

form, we can construct vector fields from C1 functions on the linear space. 

We can recover the traditional Hamilton equatiolzs for canonical coordinates 

defined on the pl-tase space aizd finally derive a bracliet formulation for the 

dynamics. 

In order to  demonstrate tlzat the theory is not much more difficult in the 

setting of infinite dimensional Banaclz spaces, we will construct a symplectic 

form and a Poisson bracliet for classical field theory. 

Example 2 In classical field theory, configuration space is usually some 

function space whose elements have certain differentiability and in- 

tegrability coizditions associated with them. I11 the case of the wave 

equation which can be shown to be Hamiltonian, the configuration 

variable is the displacement of some material from some base equi- 

librium state. For our purposes, we will take a vector space which is 

basically of the form V = W x W* where W is the space of smooth 

functions over some domain D which we will just take as R3. The dual 

space will be the space of densities over R3. A density can simply be 



written as the product of a smooth function times a volume form for 

R3. This allows us to  express a natural duality between W and W* 

where 4 E W and n E W*. With this we can define a 2-form 0, 

The properties of the symplectic form are easily shown to hold true 

for R.  We now proceed to  construct a Hamiltonian vector field cor- 

responding to  a H : V -+ R. We recall that if F : W x W* -+ R 

then 

DlJ'(4, TI(+) = DJ'(47 74($7 0) 7 47 + E w, n- E w* 

and 

UF(@, n j[+, pj = UlF(@, n)($> + U2F(@, n jip) 

where if F : Vl -+ V2, Vl, V2 Banach spaces, then 

and D F ( x j  is a. linear transformation satisfying 

Also, we will need to remember the definitions of functional derivative 

and partial functional derivative. From the tot a1 Frechet derivative, 



we call define the functional derivative of a real-valued function F on 

V as the unique element of V* such that 

where <, > is tlze natural pairing between V and its dual. The partial 

functional derivatives for a function F : Vl x V2 --+ R are defined in a 

similar way. We have pairings between Vl and its dual and between 

V2 and its dual, <, >1 and <, >z respectively. Therefore, 

S F  < --, w; >;= DiF(v1,v2).wii = 1,2. 
Sv; 

Using these results, if H : W x W* -+ R, then 

noting that @ t W* and E W. The last equation above becomes 

Therefore, XH(4, a )  = (g , - F) and the equations of motion are 

Finally we write down a Poisson bracket for our infinite dimensional 

example. If F,  G E Cm(V), then 

SFSG SGSF 
{ F , G ) = Q ( x F , x G ) = S ~ ~ - ~ ~  



The above analysis will now be carried out for configuration spaces which 

are modeled on differentiable manifolds. Many of the results carry over 

quite easily from linear spaces to  differentiable manifolds as differentiable 

manifolds are locally modeled on Banach spaces. 

1.3 Mechanics Over Manifolds 

If we wish to  build I-Iamiltonian mechanics over manifolds, we simply loosen 

cCt from its local definition over a linear vector space to  a closed, weakly non- 

degenerate 2-form over the manifold as defined in Appendix C. A symplectic 

pair is now a (P ,  R) such that P is a manifold and R is as defined above. 

The 2-form R will vary from point to point and by the definition of 2- 

forms, for x E P ,  R(x) : T,P x T,P i R is nondegenerate and bilinear on 

the tangent space. 

A major result in Mechanics is that locally a symplectic manifold looks 

like a syliiplectfc vector space, i.e., in the neighbourhood of a point z E P,  

Q ( x )  is constant. This is a more general statement of the theorem that 

when P is finite dimensional, P is of even dimension and locally there exist 

coordinates (p, q) such that R = C dq A dp. 

We will concentrate on the special case where the symplectic manifold is 

a cotangent bundle, T*Q where Q is some configuration space co-ordinatized 

by a set {qi). For each q E Q, T;Q has a basis dqi and every 1-form over Q 

can be expressed as a = p;dq2. 

We can define a 1-form on T*Q such that its differential will be a closed 

(weakly) non-degenerate 2-form and we can do this in a co-ordinate free 



manner. Take the cotangent bundle r : T*Q + Q and choosing P E T*Q, 

v E T(T*Q), globally define the 1-form 0 at  ,f3 by 

where from Appendix C, TT : T(T*Q) -+ T*Q is also a vector bundle. Let 

Q = -clO and this then defines a co-ordinate free sympletic two form on the 

cotangent bundle. 

We will now introduce the lift of a diffeomorphism from Q to the bundle 

T*Q. If f : Q -+ Q is a diffeomorphism on Q, then T* f ,  defined as a map 

from T*Q to T*Q by 

is called the lift of f where v E Tf-~(qlQ and a, is a 1-form at  q E &. An 

important observation is that T* f preserves the global 1-form defined above. 

To see this, take p E T*Q and v E Tp(T*Q) and form 

So, T* f 0 = 0 and consequently, T* f preserves R. 

In a similar fashion to the previous section, Namiltonian vector fields 

can be defined using the symplectic 2-form. If X is a vector field on P, then 

it is called Hamiltonian if there exists a function 11 on P such that 



for all n: E P and vector fields, v on P. 

Also, the Poisson bracket of two functions has a similar form as in the 

linear case. If F, G : P -+ R are smooth, then 

and if 4t is the flow of some Hamiltonian X on P, then 

So, we see that all of the results that were demonstrated for the linear 

vector space case carry over, more or less, to the more abstract manifold, 

both infinite and finite dimensional. 

In order to  develop computational skills, we will study the problem of 

a Hamiltoiziall system which evolves on a symplectic space which has quite 

an involved function space component. The followil~g example is due to  

Baessens and MacKay. 

Uniformly Traveling Water Waves We consider an inviscid, 2-D body 

of water with an air interface and of infinite depth. The fluid is as- 

sumed to  be irrotational and any surface tension will be ignored. The 

equations of motion are 

1 
P - Po = -4t - - ( ~ ( 7 4 ) ~  2 - gy, 



where 4 is the velocity potential, p is the pressure , po is the atmo- 

spheric pressure and u = (u ,v)  is the velocity field. To set up the 

problem we will need tlze boundary conditions at  the free surface and 

at infinite depth. 

The free surface is denoted by y - q(x,t)  = 0 and is defined by the 

observation that fluid does not cross it. Therefore, the normal velocity 

of tlze interface must equal the normal component of velocity of the 

fluid at  the interface. This leads to the bou~zdary condition 

rlt + Uqx = v 

at y = 7.  The otlzer boundary condition at  tlze free surface is that 

p = p0. This gives 

For the fixed bottom at infinite depth, we have the boundary condition 

dY = 0. 

We consider the case of a uniformly travelling wave of velocity c relative 

to  the fluid at infinite depth. This reduces the first boundary condition 

at  the free surface to 11, = constant, where + is the stream function for 

the flow and at infinite depth, we now have (u, v) i. (-c, 0). 

Before slzowiizg that the above system is Hamiltonian, we will trans- 

form to new co-ordinates. Let Y = y - 71 be the vertical height below 

the surface and F ( z , Y )  = 6(x, q + Y) + cz, U(x,Y) = ~ ( x , q  + Y). 

When surface tension is not zero, we can derive the equations of motion 



from a variational principle defined with respect t o  some Lagrangian 

density. A Hamiltonian system can then be constructed via a Legen- 

dre transformation. However, in the case of zero surface tension, such 

a transformation is singular and thus cannot be enacted. So, we will 

just write down a Hamiltonian as a function over some constrained 

function space and then show that with a particular choice of closed 

2-form, we can retrieve the equations of motion for the traveling wave. 

Our phase space, M is 

{(F, U,v, w)IF, U : (-W,O] -+ R; F,Fy -+ 0 and U -+ 0 as Y -+ -w), 

with the following constraints on w and 

and 

The symplectic form is the canonical one restricted to  our phase space 

above, namely 

which is non-degenerate provided Uo = 0. The Hamiltonian we choose 

We now show that the equation 



leads to the travelling wave equations. 

However, we need a general result on the evaluation of functional 

derivatives before we continue. The definitions of Frechet and func- 

tional derivatives that we employ here were encountered in section 1.3. 

If we have a functional dependent on a function, f say, given by 

over some range 52 in R, thelz the functional derivative will satisfy 

by definition. Differentiating, the above gives 

after applying the clzain rule. 

We now wish to  calculate the implied equations of motion by identi- 

fying 

w((SU, SF), (0, F)) 

and 

d H (6 U,  SF) 

where H is the Hamiltonian and (u ,  k) is tlze Hamiltonian vector field 

associated with the Hamiltonian function. defined on M and (SU, S F )  

is some arbitrary perturbation in (U, V). Implicitly, perturbations in 



w and 7 are included but they depend on the perturbations in F and 

U .  In fact, we can derive them from the constraints on M .  We obtain 

and for w, 

We have ignored the second order terms. Applying the chain rule, the 

above expression yields 

We now find that 

Througlz the functional derivative result presented above for a density 

which depends on the first derivative of a function in addition to  the 

function itself, we find that 

dH(SU, SF) = -767 + ( U  + c)SU - FySFydY 

= -767 + ((U + e)6 + Fyy6F)dY - FyahFo. 

Substituting for Sw and for 677 and equating both d H  and w for all 

perturbations, we find 



These equations are only satisfied for non-zero Uo. This set of equa- 

tions corresponds to tlze travelling wave solution to  the water wave 

equations in the absence of surface tension. 

For applications of this Ramiltoizian formulation of the water wave 

problem, the reader is referred to  the paper by Baesens and MacKay. 

1.4 Lie Groups 

Before we can develop a Hamiltonian theory of illviscid, incompressible fluid 

mechanics, a large nuinber of results concerning Lie groups must be accumu- 

lated and understood. This section will describe Lie groups and Lie algebras 

and will introduce the concept of group action on manifolds. 

A Lie group is a differentiable manifold with a group structure attached. 

The group composition or multiplication will be smooth in the CCO sense. 

We will denote group mutliplication by 



Usually, smoothlless of inversion is also included in the definition of a Lie 

group but this in fact easily follows from the smoothlzess of the multiplication 

operator. We ilow define the two most fundamental mappings associated 

with a Lie group, the left and right translation maps 

Here, we have used glz instead of p(g, h). Because these mappings are defined 

using the multiplicatioll operator, they are both smooth and since Rg-I = 

(R,)-I and Ly-I = (Ly)-l, both maps are diffeomorphisms on G. 

An example of a Lie group is the space of linear isomorphisms fro111 

Rn to  Rn which is denoted GL(n, R) in the literature. Each element can 

be represented by an n x n, non-singular matrix and the group operation 

becomes matrix inultiplication 

p(A, B)  = AB for A, B E GL(n, R) 

and the inverse map is simply matrix inversion. Smoothness follows from 

the fact that matrix multiplication is smooth in the matrix components. 

For our applications in dylzainics, Lie groups will play the role of con- 

figuration space and thus, we will be interested in how the group structure 

behaves on TG and on T*G. In particular, we will want specific results con- 

cerning TL, : TG + T G  and T*Ly : T*G -+ T*G and their R, counterparts. 

In our applications to fluid mechanics, the adjoint mapping will provide the 

starting point for all our computations. This is constructed from the inner 

automorphisin I,(h) = g-lhg. The tangent derivative or linearisation of I, 



at the identity of G defines the adjoint mapping 

Ad, = T,Ig = T,(R,-11,) : T,G + T,G. 

The subset of tangent vectors which are invariant under T L ,  and TR, 

are denoted X L ( G )  and XR(G) respectively. A vector field X is left-invariant 

if 

T h L g X ( h ) =  X ( g h )  for everyg E G,  

where ThLg : ThG -+ TghG. We can form an isomorphism between left- 

invariant vector fields on G and the tangent space at  the identity of the 

group. This is achieved through 

pl : XL(G)  + T,G : X + X ( e )  and 

It follows that pl and p2 satisfy pl o p2 = IdTeG and pz o pl = Id,y,(q. 

This observation makes the two spaces isomorphic in the vector space sense. 

In fact, they both form Lie algebras which will be discussed next. 

A Lie algebra can be defined independently of Lie groups even though 

there exists a very useful relationship between the two structures. 

Definition 1.4.1 A Lie algebra is a linear vector space on which a bracket 

is defined. The bracket is denoted by [., .] and has the following properties: 

i )  [,] : V x V -+ V and is bilinear, ii) [u, v] = - [v ,  u] V u,  v E V ,  iii) 

[u,  [ v ,  w]] + [v, [w , u]] + [w , [u, v]] = 0 which is known as the Jacobi identity. 

The space of left-invariant vector fields on G can be furnished with a Lie 

bracket t11rougl-i the Lie derivative operator which was discussed in Appendix 



C. The Lie derivative of a function f on G with respect to  a vector field X 

is defined by 

L x f  : G -+ R : Lxf (g )  = df(g).X(g). (1.8) 

The bracket of two vector fields X and Y is then the vector field on G which 

satisfies 

[ X , Y ]  = LxY such that Llx,Y~ = [Lx, L y ]  

where 

[Lx,Ly] = Lx 0 Ly - Ly oLx.  

It can be shown that if X and Y are left-invariant, then [X, Y ]  is also left- 

invariant and thus, XL(G) forms a Lie subalgebra of the vector field algebra. 

We can thus define a Lie bracket on T,G by 

(T,G, [,I) is called the Lie algebra of G and is denoted by 6. 

It should be pointed out that right translation can be dealt with in 

a similar fashion and that the space of right-invariant vector fields on G 

will play a major role in the diffeomorphism groups which arise in fluid 

mechanics. Also, the adjoint mapping can now be regarded as a mapping 

from G to  G. 

If a Lie algebra is finite dimensional ,i.e., as a vector space, every element 

can be generated by a finite dimensional basis which we will denote {ei) , 

then there are a set of structure constants which we can define with respect 

to  our choice of basis, 

[ e i , e j ]  = c & e r  V e i , e j  in t h e  basis. 



We have now set up the connection between Lie groups, which are fun- 

damentally topological in nature and Lie algebras which are algebraic. If 

calculations oil functions and mappings over the Lie group could be ex- 

pressed in terms of its corresponding Lie algebra, a great computational 

simplificatioil would be achieved. So, how do we relate the two entities? 

We now introduce the exponential mapping which maps elements of the 

Lie algebra into the Lie group. 

Take [ E G and form its left-invariant vector field, X E  over TG. The 

integral curve of Xt is defined by 

This curve through G forms a 1-parameter subgroup, i.e., yt( t  + s )  = 

yE(t )y , (s ) .  This is easily seen by noting that both of sides of the equal- 

ity satisfy the same differential equation in t and that they have the same 

initial conditions at t = 0. This enables us to define the exponential mapping 

as follows 

Definition 1.4.2 The e~pon~ential mapping is defined as exp : G -+ G : 

,$ -+ ~ ( ( 1 ) .  It is Cm i n  finite dimensions which follows from the smoothness 

of both the group product and the solutions of the diflerential equation for 

y t .  Due to th,e fact that expG is connected and G is  in  general not, the 

exponential ma,p is not onto. It will also be seen that exp has far more 

restricted properties in  infinite dimensional examples. 

The mapping is called exponential because if [ E G ,  then exp(( t  + s ) [ )  = 

exp( t [ )exp(s [ )  for t ,  s E R. EIowever, the following does not generally hold, 



exp([ + q )  = exp([)exp(q) .  This is because [[, q] is not usually zero. Also, 

all 1-parameter subgroups in G are of the form exp( t [ )  for some [ E G. 

Finally, exp  provides an atlas for G. exp is a local diffeomorphism for a 

neighbourhood of the identity of G onto a neighbourhood of the Lie algebra 

zero. Therefore, it defines a local chart which can be extended to  an atlas by 

using left translation. On an open set containing the origin of the Lie group, 

we can thus define an inverse mapping to exp. This will be denoted In and 

it will be used extensively in the design of symplectic integrators which will 

be introduced in chapter 4. 

We will now prove a number of results which will both provide a good 

exercise in doing calculations on Lie groups and be useful later in the devel- 

opment of I-Iainiltonian mechanics on Lie groups. 

Proposition 1.4.1 Consider two Lie groups G and H .  Take f : G -+ H ,  a 

homomorphism. This means that if f ,  g E G ,  then f ( g h )  = f ( g )  f ( h ) .  The 

mapping defined by taking the tangent derivative o f f  at the identity of G can 

be shown to be a Lie algebra homomorphism, i.e., T, f ([[, q ] )  = [T, f.(, T ,  f.71 

for all [, q E G. Also, it can be demonstrated that 

2. i f  f l ,  f2 : G -+ N are homomorphisnzs and both G and H are connected 

Lie groups, then Te fl  = Te f2  implies that fi  = fi. 

3. exp(Ad,[) = g(exp[)g-I where Adg is the adjoint mapping and g E G 

[ E G ,  



Proof If f : G -+ 17 is a homomorphism, then Lf(,)  o f = f o Ls and by 

taking the tangent derivative and applying the chain rule,we obtain 

Choose E 6(% TeG)  and apply the above tangent derivative to  ( at  

the identity 

TeLf(,) 0 Tef  ( F )  = Tgf 0 TeLg(O 

which reduces to  

X ~ e f . t ( f  ( 9 ) )  = T g f  ( X E ( g ) )  

when the identifications Xt(g)  = T e L g ( J )  and XTef.(( f ( g ) )  = TeLf(,)(Te f (0) 
are made. These are just the left invariant vector fields which are gen- 

erated by t E 6 and Te f ( t )  E 3-t. NOW to prove that '-r, f is a Lie 

algebra homomorplzism, take 7 E G' and form [ J ,  q] which is also an 

element of the Lie algebra. Apply Te f to this bracket 

1. I f f :  G --i N then 4 :  R -+ H :  t --? f(expct[) where E G is a 1- 

parameter subgroup in N and can thus be generated by some q € E,  

i.e., 

4 ( t )  = ezps(t'rI). 



where 7 satisfies 

By the uniqueiless of the differential equation solution, this implies 

that a t  t = 1, 

~ ( ~ X P G F )  = e x ~ ~ ( T e f . F ) .  

2. When G and H are connected, it implies that both eXpH and expG are 

onto. Therefore, if fl,a : G -+ H are homomorphisms and Te fl = Te fi, 

i.e., the induced Lie algebra homoinorphisms are identical, it is easy to  

show that fl = fi. Since expG is onto, every g E G can be represented 

as expG[ for some [ E G. Therefore, 

for all g E G. 

3. This follows immediately from the result in 2. above. Take f = I, : 

G -+ G. Then, since Cf = Adg, we obtain 

4. We know tlzat the flow of X E  is given by &(g) = gezptt so given I, q E G, 

we can carry out the followillg computatioil 



- d 
- -Tezpt€Rezp-tExq(exptt)It=o clt 

- d 
- ;iiTezpt[Rexp-qTeLexpt~~lt=~ 

d 
= zTe(Lexpt.$exp-t<)~t=~ 

d 
= - Adezpt(~lt=o. dt 

This completes the proof. 

We now discuss group action of G on a manifold &I. Group action is 

important as it is the main technique by which sylnmetry properties of phys- 

ical systems are treated. If a Hamiltonian for a physical system is invariant 

under the action of some Lie group operation, this degree of freedom can 

be factored out of tlze equations of motion, leaving a reduced system in its 

place. This decrease in the number of degrees of freedom leads to  a sub- 

stantial calculational simplification. 

Definition 1.4.3 Let M be a smooth manifold. A n  action of G on M is a 

mapping @ 

cP : G x & I  - + M  : ( g , m ) - + @ ( g , m )  

such that i)if g = e ,  @(e ,  m)  = m, ii) @(g ,  @ ( h ,  m))  = @(gh, m)  for all 

g , m  E G. 

The followin,g structure will prove useful throughout all our future work. 

Define the @-orbit of some m in  M by 



@ is called transitive if th,ere is simply one orbit,i.e., every point in  the 

manifold can be joined to every other point by a suitable choice of an element 

of the Lie group, @ is called egective if g -i @, is 1-1, and @ is called free 

if for each m E M ,  the m,ap g -+ @,(m) is 1-1. 

We have already encountered a group action, namely the left translation, 

L,. Thus in terms of our ilotation above, we have @(g,  h )  = Lgh .  Also, the 

by taking &I to be the tangent buildle of the group G itself we can show 

that the adjoint mapping is also a group action. Let 

The coizcept of action yields an infinitesimal analog which is vital t o  our 

description of inechalzics. We again pose a definition 

Definition 1.4.4 Suppose Q, : G x &I :-+ G is an action of the Lie group 

G on M .  The infinitesim,al approach to group action basically facilitates the 

construction of a vector field on &I from an element of the Lie algebra of 

G. Taking [ E 9,  form th,e 1-parameter subgroup in  G,  expt[ and look at 

the flow on &I given by Q,(expt[, m). Diferentiating this with respect to t at 

t = 0 yields 
d 

Flw(n1) = ; i i @ ( e x ~ t t ,  m)lt=o (1.9) 

which is called the infinitesimal generator of the action corresponding to E. 

As above, we have already encountered infinitesimal generators of group 

action. I11 Propositiorl 1.4.1 iv), we showed that $ ~ d , , , ~ l ~ = ~ ~  = [E, 71. 



Therefore, we conclude that tg = adt where adtq = 15, q] for the adjoint 

action. 

Before proceeding to discuss co-adjoint orbits and symplectic leaves, it 

will be instructive to  consider an infinite dimensional example of Lie group 

action. 

Example 1 Consider the Lie group of diffeomorphisms from a manifold M 

onto itself, Di f f ( M ) .  We will see later that Di f f ( M )  does not form 

a Lie group in the sense that we have encountered so far. It is an 

example of an Inverse Limit Hilbert (ILH) group and the implications 

of this distinction will be investigated in Chapter 2. Ignoring these 

difFiculties, we will proceed as if all our computations to date can still 

be implemented. 

Define the action 

Then consider the acljoint action which can be deduced from this, 

Ad :  D i f f ( & i )  x T ; d D i f f ( M )  -i ? ' ; d D i f f ( M ) .  

The Lie algebra of Dif  f ( M )  may be identified with the algebra of 

vector fields on M ,  X ( M ) .  Therefore, Ad : Di f f ( M )  x X ( M )  -t 

X ( M ) .  Adq,, $I E Di f f ( M )  is evaluated by differentiating l4 at the 

identity where 



Let X = d +t where +t is a l-parameter group in Di$$(M).  So, 
dt l,=o 

We recall that $, is the pushforward operation. Therefore, we have 

shown that the adjoint action in this infinite dimensional example is 

simply the pushforward which was encountered in Appendix 3. 

1.5 Co-adjoint Action and Lie-Poisson Sytems 

Group actions find widespread application in many of the examples in which 

we will be interested. Usually, a Lie group G acts on the tangent bundle to  

some configuration space Q giving the action 

However, a very special case arises which will be of central concern to  us and 

that is when Q = G. So the group action is acting on the tangent bundle to  

the group itself. 

Given the Lie algebra G to G, we can form its algebraic dual G* which is 

simply a space for which a non-degenerate pairing <, >: G* x G -+ R exists. 

In the case of volume preserving diffeomorphism groups, we will see that 

G is identified with the divergence free velocity fields on R3 and that G* is 

associated with the vorticity field. For fluid mechanics this is obviously the 

principal reason why these algebraic structures are of such interest. It will 

be shown that G* forms a Poisson manifold with a bracket which is derived 



by extending functions on T,"G to the whole of the dual tangent bundle and 

then evaluating the bracket at e, the identity of G. 

In this section, we will first show that if we take the space of CDO functions 

on G*, that they form a Poisson manifold with bracket 

S F  SG 
{F, G)(p) = & < p, [-, -1 > V F, G E CDO(G*). 

SP 

We usually extend from CW(G*) to CF(T*G) using left translations. This 

induces a minus sign in the bracket structure. The plus sign comes from 

translating to the right. We will then proceed to prove that by taking the 

co-adjoint action of G on the dual to its Lie algebra, we can foliate the space 

into co-adjoint orbits on which a non-degenerate, symplectic 2-form can be 

defined with respect to  which a bracket can be formed which is consistent 

with the Lie Poisson bracket above. With these tools in place, we are ready 

to  study the plzysical systems in wlzich we are interested. 

Consider the space of real-valued functions on T*G. A function F in 

this space is left-invariant if F o T*L, = F for all g E G. T*L, preserves the 

canonical Poisson bracket and thus the space of all left-invariant functions 

on T*G forms a Lie subalgebra of (CW(T*G), {, )). A major result which we 

will present without proof states tlzat 

Proposition 1.5.1 The space CF(T*G) of left invariant functions on T*G 

is isomorphic to CW(G*). 

Therefore, there will exist two mappings 



and 

: : CF(T*G) + CQ3(G*), 

such that if we take F E CW(G*), then 

- 
F(ag )  = F(Tz L,(a,)) for a, E T,*G 

and for H E C,"(T*G), 

- 
It is then required that 7 be left-invariant and that 7 = F and .@ = H. 

Consequently, these two operations are inverse to  each other and define an 

isomorphism. 

A Lie algebra structure is then endowed on CQ3(G*) via 

{F, G) = {T,q v F, G E CW(G*), 

where the bracket on _F and ?? is taken with respect to  the symplectic 2-form 

defined on T*G. This procedure gives rise to  an explicit representation of 

the bracket in terms of the functional derivatives of F and G and the natural 

pairing between G and G*. 

Proposition 1.5.2 The Poisson structure on G* takes the explicit form 

6F . where F, G E Cm(G*) and p E t;*. Of course, we recall that zs an element 

of G. 



Proof We will only prove the above formula in the case that F and G are 

linear functions. This may appear restrictive but it should be realised 

that the bracket is a linearisation of the behaviour of F and G at p 

and thus, there is no loss of generality. 

It will be recalled from section 1.2 of the current chapter that if F is 

a linear function, then the Frechet derivative of F is just F again. We 

call easily derive this from the definition of the derivative D F ,  

where F : M -+ N, is a mapping between two Banach spaces and 

x, h E M .  Thus, we see that DF(x).h = F(h). Therefore in our case, 

Consider the extension of F to the space CF(G*) and note the following 

where .J, = T,*L,(cu,) E G*. We can simplify this further to 

We then define a mapping a : X(G) -+ L(T*G), the linear transfor- 

mation on tlze tangent bundle to  G through a(X)(a,) =< a,, X ( g )  >. 

This yields 
- 
F(a,) = Q ( X S F / G ~ ) ( ~ ~  1- 



It can be shown that a is an anti-isomorphism between L(T*G) and 

X(G) and that it anti-preserves the bracket on X(G) i.e. {a(X),a(Y)} = 

--.([X, YI). 

Bringing all these facts, we find that 

which completes the proof. 

We could have identified Cm(G*) with the right invariant functions on 

T*G instead. Translating from the dual Lie algebra to  the tangent bundle via 

right translations would have endowed the dual algebra with a Lie-Poisson 

structure allnost the same as in the above theorem except that the minus 

sign would have been replaced by a plus. 

We now turn to  the adjoint and co-adjoint actions. Recall that the 

adjoint action of a Lie group is defined by the group acting on its own Lie 

algebra 

Ad : G x G i 6 ,  Adg(() = T,(R,-I o L,)[ tJ ( E G and g E G. 

The co-adjoint action acts on the dual Lie algebra and is defined via the 

natural pairing <, > between G and G* 

For p I, G*, the co-adjoint orbit of p is defined by 



and the isotropy group of the co-adjoint action at  p by 

G, = {g E GIAdB-,p = p). (1.14) 

The co-adjoint orbit construct will be seen to  be of central importance 

in fluid mechanics. We wish to build a tangent structure on these orbits and 

prove that they are in fact symplectic spaces. The implied symplectic 2-form 

which is defined on these orbits is known as the Kostant-Arnold-Kirillov- 

Souriau (KAKS) form and we will see later that it's intimately bound with 

the the Lie-Poisson bracket defined in the first half of this section. 

Before defining tlze tangent space to  a co-adjoint orbit, we first write 

down the infinitesimal generator of the co-adjoint action. By definition, 

d tG t ( a )  = xlt=OAd~,p-tE(a) and we can evaluate this by using the natural 

pairing so that 

d 
< tg*(a),  7 >= --It-a < AdEZp-tp, 7 > clt - 

- d 
- dt It-O < a ,  -[[, q] >= - < a ,  adt(q) > . 

Therefore, we make the identification 

forall J E G. Consider the co-adjoint orbit through p and define the curve 

c : R -+ 0, by t -+ Ad$Z,-tE(p). We observe that c(0) = p and that 

$lt,oc(t) E T,O,. It is quite easy to  see from this that a tangent vector 

to  the co-adjoint orbit is an infinitesimal generator corresponding to  the 

co-adjoint action, for some t E 6. Therefore, we have that 



This should not be too surprising given that T,(3, C T,G* % G*. We now 

have the definitions a t  hand to  state a theorem on the co-adjoint orbit's 

symplectic structure. 

Proposition 1.5.3 Let G be a Lie group and (3 a co-adjoint orbit. Then 

(3 is a syn?,plectic manifold and there exists a unique symplectic 2-form wo 

on 0 such that 

WO(P)(EG+(P), r l ~ * ( ~ ) )  =< P, rll > 

where Fg*(p) and qg*(p) are elements in T,(3,. 

We will now attempt to connect the two threads of this section. We 

will show that the symplectic leaves of the Lie-Poisson bracket are just the 

co-adjoint orbits equipped with the I<AI<S 2-form, i.e., for F and G, smooth 

functions on G* and p a representative member of the co-adjoint orbit (3, 

6F 6G Recall that {F, G)(p) = - < p,  [z, >, where we have endowed the 

Lie algebra with the Poisson structure derived from the subalgebra of left 

invariant vector fields on T*G. The Hamiltonian vector field XF on G* can 

be computed to be ad;, where < = g. However, we still need to  show that 

the Hamiltonian vector fields on (3 which are derived from the restriction 

of F and G themselves restricted to  (3, are also equal t o  elements of the 

tangent space T,O,, i.e., 



We will assume this to be true and thus from the definition of the KAKS 

2-form , we arrive at 

This concludes the proof as we have now retrieved the Lie-Poisson bracket. 

In the next chapter, we will encounter the reduction theorem for Hamil- 

tonian systems wlzich are invariant under some group action. We will find 

that when we have a situation in which a group G acts on the tangent 

bundle to  the group G itself, then the reduced space will be isomorphic to  

a co-adjoint orbit. Thus, the Lie-Poisson bracket will be seen to  be the 

fundamental geometric construct on which the dynamical equations evolve. 



Chapter 2 

The Reduction Theorem 

and Harniltonian Fluid 

Mechanics 

2.1 Introduction 

In the last chapter, frequent references to Hamiltonian systems with sym- 

metry were made. Traditionally, we are most familiar with conserved quan- 

tities or integrals of motion such as linear and angular momenta which arise 

through some EIamiltonian symmetry such as translational and angular in- 

variance. This follows from Noether's theorem which basically states that 

for every Hamiltonian symmetry, there exists a corresponding conserved 

quantity. However, in the formalism that we will develop, these conserved 

quantities manifest themselves as mappings. 



In this section, we will start with a Hamiltonian system defined on some 

symplectic space, P. We will then define an action of a Lie group G on 

P as explained in tlze last clzapter. Using this action, the concept of mo- 

mentum map will be developed. The momentum mapping is the repository 

of all information about the symmetries associated with the parent action 

and it provides a generalization of Noether's theorem for more topologically 

involved phase spaces. Equipped with the momentum map formulation of 

Noether's theorem, a 7-eduction of dimension technique will be constructed. 

Essentially, what we wish to  accomplish is the elimination of certain degrees 

of freedom in the system which are redundant. Tlze reduced system which 

is obtained can be viewed as providing us with the most sparse description 

possible of the underlying physics. The simplest mathematical analogy is 

the formation of equivalence classes under some relational definition. If we 

take the space of square integrable functions on R, we identify two functions 

if they only differ by at most a set of measure zero. In the same way, we 

can separate tlze dynamics of some Hamiltonian system with symmetry into 

disjoint classes, members of the same class differing by properties which we 

deem inessential to  the bare description of the plzysics. Of course, this may 

entail a loss of information but tlze gain in colnputational simplification is the 

advantage. The principal application that we have in mind is moving from 

a Lagrangian description of fluid flow to an Eulerian. In the Lagrangian, 

we track each fluid particle's trajectory, given its initial position. There is 

however a symmetry associated with these dynamics, namely the particle 

relabelling symmetry. The formalism will be developed later but effectively 



the result of factoring out this symmetry reduces the physics to  the Eulerian 

description. The information loss consists of no longer being able to  track 

individual particle trajectories. 

2.2 Momentum Mappings and Reduction 

In all the problems that we will look at ,  symmetries will manifest themselves 

through some Lie group action. The physical system is assumed to  evolve 

on some symplectic phase space (P7f2) and the action is taken to  be 

a symplectic action of a Lie group, G on P. If we have a Hamiltonian 

H : P -+ R which is invariant under the action a, i.e., 

then we wish to construct some conserved quantity corresponding to  this 

invariance. 

r n l  
I ne consel ved quantity is d, iilapping J f i u ~ r ~  the phase space into the dual 

Lie algebra of G called the momentum mapping. At first, the construction 

of J seems very iilvolved and contrived but this apparent complexity arises 

due to  how much information must be encapsulated in its definition. The 

structure of the inoinentum mapping must reflect properties of the group 

and the group's action 011 phase space. It must in some sense preserve the 

symplectic structure because the action is symplectic and be preserved itself 

on G* under the flow of the invariant Hamiltonian. Before defining J ,  we 

construct a related quantity which is a mapping from the Lie algebra to  the 

CCO functions on P. 



We know that @Bfl = fl by the fact that cP acts canonically. Therefore, 

by using the usual trick of setting g = exptJ where J E L7 and differentiating 

with respect to  t  at t = 0 ,  we obtain 

This is the definition of the Lie derivative of the differential form Sl along 

the vector field X whose flow is given by some +t on P. In this case, 

$J~ = This vector field turns out to be the infinitesimal generator of 

the action corresponding to [. Therefore 

By Poincare's lemma, this implies that X is locally Hamiltonian, i.e., it, = 

dH for some H : P i R. Assuming that [p is globally Hamiltonian, we 

define a Hamiltonian function on P for every J in 6 ,  

If such a mapping exists, it can always be chosen to  be linear. We can then 

define the momentum map as a function J : P -+ 5:" which is defined using 

the j construct, 

< J ( x > , S  >=I j ( J ) ( x ) ,  (2.3) 

for all [ E 5: where <, > is the natural pairing between the algebra and its 

dual. 

To show that this actually represents a conserved quantity for a Hamil- 

tonian H whiclz is invariant under the group action, take the derivative with 



respect to time of 

H(@ezptEx) = H(x),  

a t  t = 0 to  yield 

This is equivalent to  the Lie derivative of H in the direction [p being zero 

which proves that the function j([) is invariant under the flow of X H .  From 

the definition of J, this implies that 

We will only encouilter momentuin mappings which are Ad*-equivariant, i.e., 

Ad;-, J (x )  = J(@,x) for all g E G and x E P. The most important exam- 

ple of these equivariant momentum mappings arises when P is a cotangent 

bundle. We have an action of the Lie group G on some configuration space 

Q and we lift it to  P = T*Q by point transformations which we have en- 

countered previously. This action is symplectic and has an Ad*-equivariant 

momentum mapping J given by 

where a, E P and F E }. 

As an example, take P = T*G and the action to  be right multiplication. 

Therefore, define 

@ : G x G - + G ,  (g ,h ) -+hg .  



9 ( g ,  h)  = Lhg which implies 

Lifting to T*G, we derive the following momentum mapping 

J(ah)  E G* since (TeLh)* translates a 1-form on TiG to  TZG. This example 

of lifted right group action on the tangent bundle will arise in the case of 

fluid mechanics because the Hamiltoizian for inviscid, incoinpressible fluid 

flow will be seen to  be right invariant. 

We will now explore the reduction process. We will simply state the 

theorem without proof so as to not detract from the main goal of this chapter 

which is to  show that the material description of fluid mechanics can be 

naturally represeated as a Lie-Poisson Harniltonian system. The following 

table will be used to  summarise all the mappings that we will need in order 

to  state the theorem. Again, it should be emphasized that even though the 

following appears to be extremely involved in both notation and conditions, 

the main result is quite simple and is the important piece of information to  

be digested fron this section before proceeding. We are simply saying that 

if we have a symplectic manifold on which some group symplectic action is 

defined, then as long as the molnentum mapping can be defined and is Ad*- 

equivariant, we can build a manifold from P which is also symplectic and 

whose 2-form is derived fro111 the parent space. This new manifold will be 



called the reduced phase space. Once we have defined a Hamiltonian system 

on P, we will carry the dylzainics onto this reduced space and explore the 

physics there. 

Summary of Structures and Mappings for the Reduction Theorem 

(P, w )  a symplectic manifold. 

Q! : G x P -+ P a symplectic action. 

J : P + 6* an Ad* equaivariant momentum mapping. 

{g E GIAdJ-,p = p} isotropy subgroup of G under the co-adjoint action. 

We need G, to  act freely and properly on J-I('). An action is free if 

for each x E P, g ~-i Qg(x) is injective. 

J-'(p)/G, the orbit space which is well-defined since J- l&) is a subman- 

ifold of P. We assume that p is a regular value of J ,  i.e., for all 

x E J-'(p) the mapping TxJ  : TxP  -+ Tj(,)G* 2 G* is surjective. 

T, : J - l (p)  -+ P, canonical projection which must be a submersion, i.e. , 

for each x E J- l (p) ,  the mapping Txr, : TXJ-l(p) -+ Pp is surjective. 

i, : J-l(p) -+ P the inclusion mapping. 

With these constructs, we state the reduction theorem 

Theorem 2.2.1 Assume that p E G* is a regular value of J and that 

the isotropy subgroup G, acts freely and properly on  J-'(p). Then P, = 

J-l(p)/G, has a unique symplectic form w, such that 



We will be most interested in the case where P = T*G. As we saw 

previously, in this case t G ( g )  = TeRgt for left action and J (ag)  = TeRl;ag. 

Therefore, 

J-l((I.L {a,  E T*Gl~g(TeRg.t) = ~ ( t ) ) ,  (2.8) 

which is the graph of the right invariant l-form a,  which equals p at  e; 

a,(g) = T,*R,-l(p) = p o TR,-I. We can see that this allows a diffeo- 

morphism to be established mapping the reduced phase space P, to the 

co-adjoint orbit (3, through p E G*, 

for any g E G. Also, the reduced phase space inherits the symplectic struc- 

ture of KAICS through its identification with the co-adjoint orbit through 

P* 

Up to this poiilt, we have been only concerned with reducing the phase 

spa,re. Now, we introduce the idea of a reduced dynamics. If the physical 

system defined on P is invariant under the group action, then the Hamilto- 

nian flow on P induces a Hamiltonian Aow on P,. The induced Hamiltonian 

is denoted H ,  and obeys H, o n, = H o i,. 

For the case of left action on the co-tangent bundle to  the action group 

itself, the reduced Ilainiltonian on (3, will be by definition 

where H o T*Lg = H for all g E G. In the next few sections, we will also 

be interested in the lifted right action on the co-adjoint orbits. However, 



the effect of this will only be to change the sign of the Lie-Poisson bracket 

which is equal to the I<AI<S induced bracket as we observed in the final 

section of clzapter one. The main lesson to be learned from a study of 

this section is that it is possible to make phase space smaller when certain 

action symmetries exist in the Hamiltonian structure and that when the 

group is acting on its own cotangent bundle, the reduced phase space and 

dynamics can be described on tlze orbits of the co-adjoint action which are 

diffeomorphic to the Lie-Poisson structure on the dual Lie algebra. 

2.3 Geometric Vortex Dynamics 

The following is a detailed account of tlze Marsden and Weinstein[8] treat- 

ment of vortex dynamics as a Lie-Poisson system. In a fixed, compact 

domain, cR & Rn, the motion of an incompressible, inviscid fluid is described 

by elements of the configuration space SDi  f f(cR). This space is the Lie 

group of volume preserving diEeorrrorplzisms of 0 onto itself. The term Lie 

group is employed loosely and tlze reader is referred to  Appendix D for a 

discussion of the structure of S D i  f f(R).  The group is not strictly Lie but 

ILH (Inverse Limit Hilbert) instead. We will show that the Hamiltonian for 

the fluid flow which is defined on the cotangent bundle to  the group is right 

invariant under tlze action of the group itself. Thus, by forming the reduced 

phase space under the right co-adjoint action as outlined in the last section, 

the reduced dynamics is totally determined by a Hamiltonian structure on 

sdiff*(R) , the dual Lie algebra of SDiff(w). Elements of sdiff*(R) are 

the 1-forms cr = v;dxi acting on the divergence free vector fields in the Lie 



algebra, sdi f f (0) .  The reduced phase space for some point in the dual Lie 

algebra will be diffeornorplzic to the co-adjoint orbit through that point and 

thus, we will need to  describe the co-adjoint action for S D i  f f(R) and find 

the KAKS 2-form and tangent space to  the co-adjoint orbits for this specific 

case. For cr E sdif f*(fl), consider the exterior derivative of a, w = d o  

which in R3 reduces to V x v which is the vorticity of the velocity field, v. 

This can be derived by using tlze examples for the Hodge *-operator and the 

b-operator outlined in Appendix C. So w may be tlzought of as a vorticity 

2-form. This is tlze equivalelzce class of l-forms on sdi f f * ( a )  where l-forms, 

a1 and a 2  are identified if dal = (la2 so that they differ by at  most an exact 

l-form. This is a consequence of the Poincare lemma which is also discussed 

in Appendix C. 

We recall from the end of section 1.4 that the adjoint action in the 

example of tlze diffeomorplzism group is given by 

for X E T,Di f f (0) and $ E D i  f f (R). Therefore, by using the natural 

pairing between the Lie algebra and its dual, we can show that the co- 

adjoint action is given by the pull-back of a diffeomorphism in the volume 

preserving group. Therefore the co-adjoint orbit with generic element 2-form 

w becomes 

0, = {rl*wlrl E SDiff(f l ) l ,  (2.12) 

where r)* is the pull-back of 7. We now construct the tangent vector space 

to  Ow, elements of which are given by L,w, u E sdi f f(R),  where L, is the 



Lie derivative in tlze direction u. Since we know that tangent vectors to  

a co-adjoint orbit tlzrouglz some w are given by tlze co-adjoint infinitesimal 

generators at  tlzat point, we must show tlzat such a Lie derivative of the 

vorticity form w is tlze infinitesimal generator of the co-adjoint action on 

sdi f f *(Q). To see this, take u E sdi f f (Q)  and the definition of the co- 

adjoint infinitesimal generator 

where a is an element of the equivalence class corresponding to  w.  To 

complete tlze calculation, form the product of u,d;jj*(n) with some v E 

sdi f f(Q) via tlze natural pairing between the algebra and its dual. This 

leads to  

Noting from Appendix C that tlze differential is natural with respect to  

the Lie derivative, we have 

Therefore, the generator of the co-adjoint action is seen to be the Lie 

derivative of w in the direction u. (O,,Q,) forms a symplectic leaf in 

sdi f f*(R) where tlze symplectic 2-form is given by tlze KAKS form. SZ, acts 



on pairs of elements of the tangent space to  the co-adjoint orbit through w. 

We will show that the actual form becomes 

for any ul ,  u2 E sdi f f (0). Under the right group action, the KAKS form is 

identified with the positive form of the Lie-Poisson bracket, so 

Now, by using the definition of the Lie derivative on vector fields, the above 

equation reads J a.L,, 212 which when integrated by parts becomes 

S, (i,, da + di,, a).u2dx. 

This follows from application of the chain rule and the formulae for the 

Lie derivative given in Appendix C. diu,cr = (divul)a = 0 since ul is a 

divergence free vector field. Thus, we obtain 

Tlzis is the required result. 

After having constructed the reduced phase space in the form of the co- 

adjoint orbit through w ,  we need to  look at the reduced Hamiltonian. As 

discussed in Appendix D, the Kamiltonian for the fluid flow on 0 is given 



as either a function on TG or on T*G where G = SDi  f f (0). in the case of 

the tangent bundle, the EIamiltonian in the absence of external forces equals 

where p is the volume form on $2 and V,(x) is the velocity of the fluid 

particle x at q(z) .  Under right translation, this functional is invariant. 

Take $ E SDi  f f (0) and consider 

This functional is invariant due to the change of variables theorem and the 

fact that q*p = p. Therefore, we can reduce the Hamiltonian to  the tangent 

space at  the identity of the group. On the Lie algebra, the Hamiltonian 

reads 

In order to apply the Lie-Poisson formalism of the last section, we need to  

find the form of the I-Iamiltonian function on the dual Lie algebra. This ba- 

sically means expressing the energy in terms of the vorticity. The integrand 

in equation above can also be expressed in terms of vb so as to read 

Froin the Hodge-deRlzam theory, vb  = ~ j ~ - l d v ~  is an identity for divergence 

free vector fields. Thus, 



/; < ~ - ' w , w  > d r .  

This is a generalization of the 2-D result where the energy is the integral of 

the product of the stream function and the scalar vorticity. This defines the 

right-invariant Hamiltonian on s d i  f f*(O). We will prove that the vorticity 

equations on the dual Lie algebra are equivalent to  the Lie-Poisson equation 

F = {F, H )  where F, H : s d i  f f *(O) + R and the bracket is Lie-Poisson as 

derived from tlze KAMS form. With the Hamiltonian given above, we find 

its functional derivative with respect to  the vorticity, which is an element 

of the Lie algebra, to  be = v where v is actually the velocity field which 

corresponds to the vorticity w. So, by the Lie-Poisson bracket, we know that 

With, F = F(w(t)), we have 

Therefore, since F is arbitary, we find 

This simply implies that w is Lie transported by the flow which completes 

the proof. 



The situation simplifies considerably in 2-dimensions due to  the fact 

that it is possible to identify s d i  f f ( R )  with CW-functions on R,  at  least 

up to  the addition of arbitrary constants. This allows us to  replace the 

Lie bracket of vector fields on s d i  f f ( R )  with the Poisson bracket of their 

corresponding scalar stream functions. The Lie-Poisson vorticity bracket 

can then be written in the form 

where w , E , E  are regarded as functions on R  and {, } is the normal Poisson 

bracket in 2-D. 

We will now specialize our discussion to  the case of a vortex patch. The 

vorticity w is regarded as the characteristic function of a particular fixed 

area, A in the plane; w  = x A d x  A d y .  Tlze motion of a vortex patch lies 

on an irregular symplectic leaf and the natural syinplectic 2-form becomes 

quite simple. It actually reduces in local co-ordinates to  a contour integral. 

Following Marsden and Weinstein[8], we let (3, be a co-adjoint orbit for the 

vortex patch w  = x A d x  A d y  and we take the velocity vector, v E s d i  f f (S2)  

with + as its corresponding stream function. Then 

where S is the co-differential, 

and 

b w = d v .  



As before, v b  is the natural co-vector in sdi f f * ( f l )  corresponding to  v. It is 

easily shown that the symplectic structure f l ,  on TWOw where o = xAdzAdy, 

AC R2 is given by 

where and $2 are stream functions for vl and v2 

In the case of a circular patch representing the equilibrium configura- 

tion of a vortex, we can consider an area-preserving perturbation which is 

parametrized by 

4 ( 0 )  = 1/2(r2  - 1) .  

Using this parameterization, we can write down the Poisson bracket of two 

functionals, F,G on 0, in the following way, 

where we use the correspondence between sdi f f (52) and C m ( R 2 ) .  This can 

be achieved via application of the definitions of gradients and Frechet or 

directional derivatives in the 2-d context. The stream functions, +F and t,bG 

are defined by 

where + is the stream function corresponding to  the velocity field of the flow 

so that the above is in fact, a directional derivative. The definition of the 

gradient of the density, F of a functional, F is 



Thus, using the plane polar form of the stream function, we see that ru, = 

2 and 

Therefore, we can identify our stream function, +F on the boundary of the 

patch with the F'rechet derivative of F with respect to  4. One other point 

that should be noted is the difference between the functional (b and the 

corresponding density function, 4(0). It is always important to  be aware of 

the distinction. The Hamiltonian forma,lism subsequently yields 

for the evolution of the perturbed vortex patch boundary, parameterized 

by the single polar angle, 8. This is the starting point for the derivation 

of a result due to Dritschel[ll] for a wave traveling on the boundary of a 

single-valued patch boundary. 

2.4 Vortex Patch Dynamics 

Dritschel[ll] uses Contour Dynamics to derive an integro-partial differential 

equation governing the time evolution of a perturbation to  the boundary 

of a circular vortex patch. This equation is then analysed by means of a 

weakly non-linear expansion. The main aim of this section is to  reproduce 

this equation from the geometric mechanics of section 2.3. 

The spirit of the following derivation is due to the analysis carried out 

by Wan and Pulvirenti[lO]. They outline an elegant wa.y to  write down the 



energy of a perturbed circular vortex patch. First, let us state the problem. 

An incompressible, inviscid 2-D fluid is confined to  the inside of a circular 

disc of radius R. At ally point in this domain, the velocity field can be 

expressed in terms of a stream function q, 

The vorticity field is given by w = -Ay and the energy of the fluid motion 

by 112 JD 1 1  u / I 2  dxdy. w will usually be the characteristic function of some 

area in the domain of the disc. We will also denote the Green's function 

for w by Gw. Thus, A(Gw) = -w and Gw JsD= 0. For the circular disc of 

radius y whose vorticity we will denote by wo, we have 

and 

As was stated above, a vortex patch is the characteristic function of an area 

within the disc. We will use the following notation to denote the patches. 

xf is a patch of unit strength centered at the origin with boundary defined 

by the radial function, r = f ( 0 ) .  I11 what follows, use will also be made of 

the Green's function, I< for the problem 

I11 this case, we will have $(() = JD l i (z ,  [)w(z)dxdy with 



In the above formulae, + is the stream function; z,[ E C; and z' = (6)'. 
The energy of a vortex patch, xg, is given by < x,, Gx, > where <, > is 

simply defined by < g, h >= JD ghdxdy. Consider a perturbation to  xg 
denoted by x g + h .  The difference between their respective energies is 

where 

We will now transform to the variable used in the previous section to  repre- 

sent the boundary of the vortex patch, namely, 4(0) = 1/2(r2 - 1). In this 

parametrization, rdr = d4 and we will have Gxg as a function of 4 and 6.  It 

is at this point that we depart from the precise formulation of Wan et al. in 

order to  accomodate tlze Marsden and Weinstein[8] analysis. However, the 

approach is still basically the same. Thus, we consider h as being a small 

perturbation to  tlze boundary, g and we try and express the energy in terms 

of a Taylor series about r = g ( 4  = 0) .  First of all, 

from which we derive 

The second term equation() can be expressed in terms of the Green's 

function, K. In this case, we will have 



Thus, we have an expression for the total energy of the perturbed vortex 

patch and we now proceed to  consider the g(8)  = 1 or the circular case. It 

is easily seen that J: 4d8 = 0 , g ( 0 )  = -112 and that m(0) = 1, giving a+2 

We now have an expansion of the energy or the Hamiltonian up to  third 

order. In the notation of section 3.4 we have expanded < A-lw,w > in a 

series in the perturbed quantity 4 up to  third order. It is thus possible to  

implement the calculation of the Lie-Poisson bracket for the evolution of the 

boundary of the vortex patch, 

Carrying out the variation, g, we obtain 

and thus, 

Using the fact that $i = J:" &dB, we can easily deduce that 

up to third order in 4. We can further simplify the form of % by carrying 

out some algebra to arrive at 



which in tlze limit, R -+ oo, leads to  the term 

in the evolutioll equation for the density 4(0) corresponding to  the boundary 

functional, q5 for the patch. This is the term for the Hilbert operator as 

reported in Marsdelz and Weinstein[8] and Dritschel[ll]. 

2.5 Local Canonical Co-ordinates 

The co-adjoiizt orbit for tlze circular vortex patch is a symplectic manifold 

with syrnplectic 2-form furnished by the KAKS form. However, it is not 

possible to  find global canonical co-ordinates on tlze manifold as the patch 

very quickly evolves into a domain whose boundary is no longer a single- 

valued function of the polar angle 6.  In the case where the single-valued 

regime is valid, we can easily find a set of canonical co-ordinates for the 

patch. 

Let the boundary of the patch be decribed by the function $(0) as above. 

Expand gi ill a Fourier series in 8 to yield 

In terms of 4, each Fourier component 4, can be expressed as 



Therefore, the functional derivative, is defined by 

As a consequence, % = &eke. From the definition of the Lie-Poisson 

bracket for the vortex patch, it is easily seen that 

for some constant, IC. 

BY letting qz = 4-; and pi = +;, we have canonical coordinates {qi ,p i}  

on the vortex patch, 

{qi, pi} = i6(i t j ) ,  

We could keep just a finite number of Fourier modes for 4 which would 

provide a finite dimensional Hamiltonian truncation for the infinite dimen- 

sional manifold. However, the patch boundary would evolve rapidly so as to  

make this finite dynamics inapplicable in a very short period of time. In the 

next chapter, we will investigate a truncation for 2D vortex dynamics which 

will be a far more appropriate candidate for the study of finite dimensional 

approxiinations to  the infinite dimensional system. 



Chapter 3 

The SU(N) Truncation of 

3.1 Introduction 

The incorporation of inviscid, incompressible fluid mechanics into the frame- 

work of iiamiitonian mecilanics can be regarded as one of the great acbieve- 

ments of the geometric program initiated by Arnold[5] and completed by 

Marsden and Weinstein[8]. By expanding the class of configuration spaces in 

which conservative physical systems can evolve to Poisson manifolds, many 

special cases could be incorporated into a general framework. These include 

the dynamics of the rigid body in body co-ordinates, the equations of plasma 

physics and as we have seen, incompressible, inviscid fluid flow. At the 

same time as this theory was being developed, more traditional Iiamiltonian 

systems were been investigated numerically through symplectic algorithms. 



Symplectic integrators basically approximate phase space transformations 

by forcing the approximating flow to also be symplectic, the hope being that 

such integrators will more faithfully preserve the real solution structure es- 

pecially for long time integrations. Ge and Narsden[9] have also constructed 

integrators for Poisson manifold transformations. These algorithms while far 

more mathematically involved than their canonical counterparts also offer 

the hope of accurate reconstruction of the phase flow trajectory and they 

have been successfully iinplelnented by Channell and Scovel[l4] for the case 

where the Poisson manifold is tlze dual of a Lie algebra. We saw in the last 

chapter that such a manifold foliates into symplectic leaves and that these 

leaves are isomorphic to the co-acljoint leaves of a Lie-Poisson system. The 

integrator of Channell and Scovel[l4] implicitly preserves these orbits and 

thus preserves all Casimirs for the Lie-Poisson bracket. This follows from the 

fact tlzat the orbit can also be viewed as a constrained surface parametrized 

by fixing values for the Casimirs. It is desirable to bring both these separate 

threads together and to  use symplectic techniques to  study the evolution of 

a vorticity field. However, the fluid system is described by an infinite dimen- 

sional Lie group and thus to  implement numerics would require some form of 

truncation. The truncated system would have to  be Hamiltonian and prefer- 

ably also Lie-Poisson. So, the symmetry group and the configuration space 

would have to  be the same. The resulting finite dimensional Lie-Poisson 

system would also have to  converge in some limit to its infinite dimensional 

parent and tlze bracket would have to  exhibit some analogous degeneracy. 

Such a truncation has been achieved for two-dimensional fluid flow on a twice 



periodic domain. This is a significant restriction but represents the possi- 

bilty of using Lie-Poisson integrators to investigate fluid mechanics. The 

Lie group which describes area preserving diffeomorphisms on the torus is 

S D I F F T  which has been investigated in quite some depth by Arnold. We 

will actually use an infinite dimensional Lie subgroup, SoDIFFT  which is 

the group of all area preserving diffeomorphisms on the torus which keep 

the center of mass of the Auid fixed. This subgroup is chosen because the 

space of stream functions which generate the divergence free vector fields 

for the phase flow are then single-valued on the domain. For this particular 

group, Hoppe[22] discovered that the special unitary group, S U ( N )  with a 

particular choice of structure constants for its Lie algebra was a truncation 

for the stream function space. S U ( N )  is a Lie group which is semi-simple 

and compact. From the point of view of numerically implementing a Lie- 

Poisson integrator, these two characteristics will be seen to  be vital. The 

first section in this chapter will explore the truncated group and its alge- 

bra. The second section will discuss the truncated dynamics and analyse 

the finite dimensional Lie-Poisson bracket. 

3.2 Groups of Diffeomorphisms 

In 1966, Arnold published a paper on Lie groups endowed with one-sided 

invariant metrics, i.e., left or right invariant. His motivation was to  try 

t o  explain rigid body dynamics in the most economical geosnetric way by 

showing that the principle of least action produced the Euler equations 

of motion in body co-ordinates over the Lie algebra. He succeeded in his 



endeavor and in the process observed an important fact: The method of 

Euler was not limited to the description of the rigid body but could also 

be used as the starting point for the study of any physical system whose 

configuration space was a Lie group and whose energy was defined through 

an invariant metric. The immediate application he had in mind was fluid 

mechanics. I11 the case of an incompressible, inviscid fluid in two or three 

dimensions, the configuration of the fluid can be specified by giving the 

positions of the fluid particles relative to their initial positions. As in the 

case of the rigid body, where the relative position of the body after a time 

interval is constrained by the condition that the positions of the elements of 

the body remain fixed with respect to each other, the fluid configuration is 

constrained by its incompressibility. This means that the transformations 

defining the relative motion of the fluid particles must belong to the group 

of volume preserving diffeomorphisms. This discussion is similar to  that of 

the previous chapter except that now we are describing the motion with 

respect to  the Lie algebra and not its dual. 

Take a bounded region D ill a Riemannian manifold and form the group 

of diffeomorphisins on D wlzich preserve the volume form. This is denoted 

S D i  f fD .  The Lie algebra to this group is the tangent space t o  S D i  f f D  at  

the identity transformation and consists of the vector fields of zero divergence 

on D which are tangent to  the boundary of D(if it is non-empty.) The kinetic 

energy can be defined by using the following rnetric 

(3.1) 

where vl aizd v2 are elements of the Lie algebra aild the integrand is simply 



the Euclidean inner product. 

The motion of the fluid is given by a trajectory through the diffeomor- 

phism group t -i gt. The kinetic energy of the moving fluid is a right 

invariant Riemannian metric on the group of volume preserving diffeomor- 

phisms. The principle of least action asserts that flow of an ideal fluid is a 

geodesic in the above metric. 

In the 2D case, the velocity fields can be represented by Hamiltonian 

functions which are called stream functions in hydrodynamics and which we 

will denote by $. The commutator of two fields turns out to be the Jacobian 

of the stream functions for the original fields. 

For our purposes, we will be concentrating on the manifold of area pre- 

serving diffeomorphisms on a twice periodic domain in R2. This geometry is 

isomorphic to  a 2-torus and we will thus denote this space by SDi  f fT .  We 

will study the submanifold whose vector fields are divergence free and have 

single-valued stream functions. The corresponding subgroup is SoDi f fT 

which is the space of area preserving diffeomorphisms which preserve the 

center of mass of the torus. Elements of the Lie algebra can be thought 

of as stream functions on the torus whose body integral over T is zero. It 

is easy to  decompose such stream functions into their Fourier series and 

thus form a complete basis for the function space of single-valued stream 

functions on T. This basis has rnernbers of the form 

where k is a wave vector in Z 2  \ (0) and x is an element of the 2-torus. The 

{0,0) element is not included as it is zero for single-valued stream functions. 



The following theorem due to  Arnold expresses the kinetic energy Rie- 

mannian metric, the Lie bracket on the algebra and some results concerning 

the Riemannian connection in terms of the Fourier basis for the Lie algebra, 

sodi f f T .  

Proposition 3.2.1 The explicit form of the scalar product, commutator, 

connection and curvature for the group SoDi f fl' are given by 

< ek, el >= k2SS(k + I ) ,  (3-3) 

[ekt ell = ( k  X l)ek+l, (3.4) 

vekel = dl,li+lek+l, (3.5) 

Rk,l,rn,n = (alnakrn - almakn)SS(k + 1 $- m + n) ,  (3.6) 

where S is  the area of the Ltorus, S is the delta function, V is a Riemannian 

connection and 
(v X u)(u.v) 

du,v = 4.2 7 

and 

In what follows, we shall consider possible ways of truncating the group 

of area preserving diffeomorphisms on the torus using the group of unitary 

matrices of deterininant one, S U ( N ) .  The corresponding Lie algebra, su(N) 

will be studied as an approximate algebra whose elements represent finite 

analogs of either the velocity field or the vorticity. It is hoped that this trun- 

cation may be used to  build a Lie-Poisson integrator which would have long 

time qualitative stabilty and thus, could shed some light on 2-D turbulence. 



Bordemann, Hoppe et al. [7] present a mathematically elegant way to  

effect truncation of infinite dimensional Lie algebras of the type which in- 

terests us. They colzsider a family of real or complex Lie algebras L a ,  a d  

with bracket [,I, which approximates a Lie algebra (L,[,]) as a -t CQ. The 

question arises as to how effective the approximation is and how one can 

isolate a statement of convergence in the Lie algebra sense. We will present 

the arguments outlined by Bordemann et al. in theorem form and then 

consider sdi f f T as an example of (L,[,]) and su(N) for La where a E N. 

Proposition 3.2.2 Let us assume that we can provide the approximate Lie 

algebras with the additional structure: 

1. There exists a surjective m,ap p, : L -+ L ,  for all a.  

2. If we h,ave some metric d,  on  each L,, then we assume that i f  for 

each x,ytL, if d,(p,,p,) -+ 0 as cu --+ oo, then x=y. 

With the above assumptions, we call (L,, [,I,, d,) an approximating se- 

quencejor (L,l;jj in,duced by (pa ,  a d )  and L an La-quasilimit i f  the following 

axiom is also valid, 

3.For each x, ycL, 

a s a i o o .  

With the above structures, we can avoid the problem of the same sequence 

of algebras approzinzating non-isonzorphic algebras by noting that the Lie 

structure on the un,derlyitzg vector space L of the La-quasilimit is uniquely 

specified once th,e (p,, a d )  are specified. 



Let us now apply the above general structure to  the problem at  hand, 

namely the algebra of divergence free vector fields on the torus with sin- 

glevalued stream functions. The example below is not provided with all 

the details needed to  tie down the approximating sequence completely but 

should provide the Aavour of the formalism. 

Proposition 3.2.3 Let us start with the Lie algebras LA defined by the 

structure constants 

N 2T " - sin -(m x n ) S ( m  -I- n - k ) l m o d ~ ,  c m , n - 2 T  N 

Then, as N -i oo, the algebras converge to sdi f f T  which we denote 

by L. We  can factor out an ideal for each LA,  where A is equal to $, and 

define the structures required in the above theorem to induce uniqueness of 

convergence. Th,e approximating algebras are seen to be su(N) with a specific 

basis choice. 

Proof The basis functions which give rise to the above structure constants 

will be denoted by {T,lm E Z 2 } .  Therefore, 

is the Lie bracket with the structure constant as defined in the above 

example. We see that as n -+ oo, the bracket reduces to  the bracket for 

sodi f fT as expressed in the above theorem. The algebras generated 

by [ , I N  can be made finite dimensional by identifying the basis element 

Tm with T m + ~ a  where a E Z 2 .  The resulting algebra will satisfy all the 



requirements of theorem 3.3.2 with the surjective mapping between L 

and LN being given by the canonical projection mapping, 

ON : L + LN : d)N(Trn+aN) = Trn, 

where we have umklapped the external modes back onto the finite 

lattice, 0 < nzl, r n z  < N .  Given a metric dN on LN which satisfies the 

following condition: If x = tl: rmTm and y = C srnTrn, then 

4N(x) - ~ N ( Y )  = x ( r m  - srn)$N(Tm). (3.9) 

We then find that 

~ N ( ~ N ( x )  - ~ N ( Y ) )  = lrnz - srnrI2 = 0 

if and only if z = y. We also find that L will be an L~ quasi-limit 

because of the following: Witlzout loss of generality take x = T, and 

y = T, and consider 

We find tlzat as N + co, the expression above goes to  zero. 

The LN factored algebras offer a converging sequence of finite dimen- 

sional algebras whiclz may be used as an approximation for sodi f f T  in the 

N -+ co limit. In order for us to take advantage of this approximation, a 

representation for the algebra will be needed. It transpires that the special 

unitary group, SU(N) wit11 a special choice of algabra basis vectors repli- 

cates the above structure constants. Therefore, we can say that the Lie 

algebra of SoDi f fT is approximated by the Lie algebra of SU(N). We will 

demonstrate this fact in the next section. 



3.3 The t'Hooft Basis for SU(N) 

We first present some details of the group S U ( N )  and its algebra. S U ( N )  is 

a Lie subgroup of the group of non-singular linear transformations G L ( N ) .  

Its members are unitary and have determinant one. It is a matrix group 

and thus can be defined by 

S U ( N )  = {U E G L ( N ) ~ U ~ U  = Iand  det(U) = 1) .  (3.11) 

The Lie algebra s u ( N )  will be the set of traceless, anti-hermitian matrices. 

This is seen by taking a curve, U ( t )  passing through the identity of S U ( N )  

and differentiating the two properties above with respect to t  at t  = 0. 

Therefore, 

s u ( N )  = { A  E gl(N)IA* = - A  and t r ( A )  = 0) .  (3.12) 

We are free to  choose whatever basis we like but the following choice due 

to  t'liooft will provide the finite dimensionai connection with SDi  f fT from 

the previous section. For N  odd, consider the following pair of N  x N  

unitary matrices 



where w = F% is a root of unity. It can easily be shown that g N  = hN = I. 

The basis for su(N)  is constructed via T, = w Y g n l  hn2, n # (0,O). These 

basis elements satisfy an invariance condition, T, = Tn+aN where a E Z 2  

is arbitrary. This has the effect of partitioning Z 2  into N x N cells. For 

our purposes, we will choose a cell centered on the origin in Z 2  with -M < 
nl ,  nz < M where M = 9. We will call this cell R. The Lie algebra 

bracket defined as the usual matrix commutator, [A,  B] = AB - BA, yields 

where the structure constants are defined by 

These are seen to  be the structure constants for the Lie algebra sequence 

which converged to  sodi f f T  in the previous section. 

The set {Tnln E S 2 )  does not actually produce elements of su(N) in a 

straightforward manner. The reason for this is that each elemnet of the basis 

is not actually an element of su(N). In fact, the hermitian conjugate of T, 

equals -T-,. However, the linear combinations Tn-T-, and i(T,f T-,) are 

elements of su(N) and thus only linear combinations of the Tn7s which yield 



this decomposition are allowed. This corresponds to  what we would expect 

since all stream functions and velocity fields will have to  be either real-valued 

functions or real-valued vectors. We will be able to  express all quantities 

as expansions in terms of T,'s but the co-efficients will have t o  obey the 

property that they produce real-valued quantities. This is analogous to  the 

case of a stream function on the torus which is single-valued. This function 

can be expanded in terms of the Fourier basis ek  over Z2. However, the 

coefficients, will obey = @-k. 

Since SU(N) is a matrix group, the adjoint action of SU(N)  on su(N) 

will simply be matrix conjugation, i.e., if U E SU(N),  then Adu( = U*fU 

for all [ E su(N) and the corresponding Lie algebra action will be ad[q = 

[f, q] where f ,  7 E su(N). We will use SU(N) as a finite dimensional model 

for exploring fluid mechanics on a 2-torus. In order to  conform to the theory 

in chapter 2, we will develop a vortex dynamics 011 the dual Lie algebra, 

su*(N) and investigate its implications. However, before proceeding, we 

must give a summary of fundameiltal results from the theory of semi-simple 

Lie algebras. 

3.4 Lie Algebra Theory 

The reader is referred to Sattinges and S;Veaver[20] for a good review of 

classical Lie algebras. A Lie algebra is a vector space over a field F with a 

product [,] : G x G -+ 6 satisfying 

i) [,] is closed and linear over F. 



ii) [, ] is antisymmetric, and 

iii) the bracket satisfies the Jacobi identity, i.e., [X, [Y, Z]] + [Y, [Z, XI] + 
[ Z ,  [ X ,  YII = 0. 

A subalgebra S of G is an ideal if [S, GI C (2'. A Lie algebra 6 is semi- 

simple if it contains no ideals other than itself and the zero element. The 

most well-behaved semi-simple Lie algebras are over the complex numbers. 

In our su(N) case, we will be primarily interested in its complexification, 

sl(N, C)  which is the Lie algebra of the special group of determinant one 

N x N matrices. The elements of sl(N, C) can be identified with the traceless 

N x N  matrices in gl(N, C). The relationship between su(N) and sl(N, C )  is 

important. su(N) is an example of a real form of sl(N, C). This is achieved 

by selecting a basis for sl(N, C)  which makes the structure constants real. 

However, there can be multiple real forms derived from one semi-simple Lie 

algebra over the complex numbers. For this reason, the classification of 

the real forms of semi-simple Lie algebras is more formidable than in the 

complex case. As an example, su(2) and sl(2, R) are two non-isomorphic 

Lie algebras with the same complexification, sl(2, C). 

A fundamental linear transformation on a Lie algebra is the adjoint rep- 

resentation, ad : G x G -+ G,ad(X)Y = [X,Y]. It is a representation of 

the Lie algebra since it is linear and ad([X, Y]) = [ad(X), ad(Y)]. This last 

property can be derived from the Jacobi identity. If {E;} is a basis for (7, 

then 

ud(Ei)Ej = c ~ ~ E I ; ,  (3.17) 



where summation is implied and the C t j  are structure constants for the Lie 

algebra.Tlzis provides a matrix representation of G, 

where (M;)j,k = c{~. This matrix form will be useful in the to  follow. From 

this point on, we will concentrate on the semi-simple Lie algebras. 

The Cartan-Killing form is a real-valued bilinear, Ad-invariant quadratic 

form on G. It is defined as 

The importance of the Killing form lies in the following result due to  Cartan: 

The Cartan criteriolz states that a Lie algebra is semi-simple if and only if 

its Killing form is non-degenerate, i.e., if K(X,  Y) = 0 for all Y E G, then 

X = 0. In this case, we can use the Killing form to define a metric tensor 

for the Lie algebra. This tensor, g is defined by g;,j = K(E;, Ej)  wlzich can 

be shown to be equivaient to g; j  = C[,,CJ,, where summation is implied. 

This metric can be used as a raising and lowering operator for in the case 

that the form is non-degenerate, it is possible to consider the dual G* to be 

isomorphic to G. We will constantly make use of this property in the design 

of Lie-Poisson integrators which are discussed in the next chapter. 

The next topic to be discussed will be t,he Cartan subalgebra of a semi- 

simple Lie algebra. This is the maximal abelian subalgebra 7-1 of G such that 

adH is semi-simple for all H E 7-1. Since {adHIH E 7-11 forms a commuting 

family of semi-simple operators, there exists a basis for 6 in which these 

operators are simultaneously diagonalizable. 



The rank of 6 is the dimension of its Cartan subalgebra which can be 

shown to be invariant under a change of algebra basis. The roots of G are 

the functionals on 7-1 which satisfy 

for some E ,  E G. The E ,  are called the root vectors. An important de- 

composition of the Lie algebra occurs under the one dimensional subspaces 

spanned by these root vectors, namely 

where G, = { X l a d H ( X )  = a ( H ) X )  where a is an element of the set of 

non-zero roots of 7-1. 

The 1-dimensional root subspaces are orthogonal complements of each 

other for distinct roots and for every a E S*, there exists a unique H ,  E G 

such that a ( H )  = I i(H,,  H ) .  This last observation allows us define an 

inner product on ;FIV; if a,@ E 'X", then < a ,  P >= iC(ii,,p). The collection 

of roots of a semi-simple Lie algebra can be graphically represented in a 

Dynkin diagram. Tlzis diagram is strongly constrained and is the key to  

the classification of all complex semi-simple Lie algebras. s l (N ,  C) has the 

simplest root diagram and the way that the graph is extended as N + oo 

determines the limiting non-isomorphic infinite dimensional algebras. We 

will not explore these ideas in any more depth. It should be indicated that 

any analytic results that need to  be derived such as integrals over s u ( N )  

require a knowledge of the algebra root structure. An example where this 

would arise is the the statistical mechanics of an s u ( N )  vortex equilibrium. 



This topic will be discussed again in the conclusions. The reader is referred 

As an example of working with the t7Hooft basis, we will compute the 

roots and root vectors of su(N) in terms of the basis {T,). su(N) is a real- 

form of the semi-simple Lie algebra sl(N, C). In matrix terms, this is equiva- 

lent to  the statement that every element of su(N) lnay be simultaneously di- 

agonalized by conjugation with a suitable unitary matrix in SU(N).  A sub- 

set of {Tmn forms a natural and convenient basis for the Cartan subalgebra 

of su(N), namely {TpOl - M 5 p 5 M , p  # 0) where M = 9. For matrix 

algebras, the Cartan subalgebra always turns out to  be the maximal dimen- 

sion diagonal matrix algebra. If we choose a basis Eij = Sij for su(N), then 

an element H in 7-1 is of the form H = diag(A-M,. . ., AP1, Ao, XI,. ..,AM) 

with t r H  = 0 and the A; all imaginary. 

In terms of the basis, {Tpo), H = APTPo is also N - 1 dimensional. 

Using 

and 
M 

we find 

which reduces to 



It is easy to  see that the Eij, i  # j form the generators of the 1- 

dimensional root subspaces. We have that 

2) - u ~ ( M + j ) )  are the roots of the sub- Therefore, a ; j ( H )  = E!M ~ p ( w " ( ~ + '  

algebra element H  in this particular basis. 

3.5 Truncated Vorticity Dynamics 

We will now study the Lie-Poisson dynamics on G* = su*(N) .  Zeitlin[6] 

was the first to  detail the application of s u ( N )  to fluid mechanics. In this 

section, we will go one step further and show that the form of the Lie- 

Poisson system fits into the standard geodesic fomulation of Arnold and 

that the Hamiltoniall is right-invariant and can be expressed in terms of 

the Cartan-Killing metric. This will correspond to  a truncated dynamics 

on sodif fT .  su* (N)  is the dual to  the aigebra s u ( ~ )  and we specify the 

natural basis { S k )  such that Sk.Tm = 1 5 ~ , ~ .  The construction derives by a 

Fourier decompositioll of a circulation zero initial vortex distribution wo, 

where z E T. 

The approximation is made by replacing the basis of Fourier modes by 

the dual t'Hooft basis for s u ( N )  over a finite lattice 0 E Z 2 .  Thus, 



where the {wko} are the N2 - 1 Fourier components of the original vorticity 

distribution. The evolution of Hamiltonian systems on the dual to  a Lie 

algebra is generic and the following analysis applies equally well t o  the mo- 

tion of a rigid body in material or body co-ordinates as it does t o  vortex 

dynamics. We will start by explicitly stating the equation of motion on G* 

driven by some Hamiltonian H : G* -t R. 

Proposition 3.5.1 The equations of motion for the f Lie-Poisson brackets 

for a physical system driven by I f  : G* -i R are 

for p E G*. It will be recalled from the definition of the functional derivative 

that E G.  The plus or minus sign originates with whether or not the 

bracket is deduced by identifying elements of (j* with right-invariant or left 

invariant vector fields on T*G. 

To prove this, consider F E CW(G*) and p ( t )  E G*. Then 

dF d p  SF 
( p )  = dF(p( t ) ) . -  =< -, b ( t )  > 
dt dt P 

and 

SF < p, adsx .- >, (3.29) 
S P  Sp 

which by definition of the natural pairing between the Lie algebra and its 

dual, equals 
SF 

'f < - , a d * , ~ ( p )  > .  (3.30) 
Sp F 



Non-degeneracy of the pairing implies that 

k =  ' f a d b p .  (3.31) 
61* 

On sodi f f * T ,  the Hamiltonian of some circulation zero vortex field can 

be shown to be 

In the su*(N) case, it is natural to  choose the Hamiltonian to  be the 

finite dimensional analog of this Hamiltonian function 

We will take advantage of the existence of a non-degenerate, symmet- 

ric bilinear form (,) on su(N) that is invariant under the adjoint mapping, 

Ad(g), i.e., (Ad(g)[, Ad(g)q) = ( p ,  9). Not all groups possess such a struc- 

ture. However, if the algebra is semi-simple, then the Cartan-Killing form of 

the last section has these exact properties. The existence of such a form has 

profound implications for the structure of the co-adjoint orbits on a dual Lie 

algebra. Primarily, it means that there will exist a diffeomorphism between 

elements of 17 and G*. Consider w E G* and an arbitrary [ E G, then there 

will exist a unique ?I) E G such that 

Also, it transpires that in a Lie algebra with such a form, the co-adjoint 

orbits are identifiable with adjoint orbits and the I<AI<S symplectic 2-form 

will have a counterpart on G. Thus, the Lie-Poisson dynamics can equally 

well be considered an evolution on the algebra as on its dual. 



For su*(N), we will first show that the Killing metric defined by 

reduces to  a particularly siinple form. This metric is equivalent t o  

N where C;, = !7F sin %(m x s)6(r - m - s)lmOdN are the structure constants 

in this basis. Tlzis summation becomes 

However, the co-efficient of the Kronecker delta can be simplified to 

This can be proven by making use of the identities 

m lk2.7i- 
cos - 

2 m f 1  = h ( d ,  
L=-m 

and 
m Zk2n 

sin - = 0 ,  
L=-m 

2na + 1 

where h(j)  = 1 if mod(j, 2m + 1) = 0 a i d  zero otherwise. Using the known 

result, 

it is seen that 
N 

gmn = --tr(TmTk). 
4 



Therefore, every Sk in the su*(N) basis has a corresponding T-k in G and 

if w E su*(N), then (;, is the corresponding element of su(N) and 6 = 

Ew-kTk. 

We want the finite dimensional analog of the Hamiltonian on su*(N) t o  

be coilsisteilt with its parent. Thus we have equation(3.3.3) as the su*(N) 

Hamiltonian. We can represent this Hamiltonian using the Cartan-Killing 

metric via a symmetric operator C : su(N) 4 su*(N) which reproduces the 

Hamiltonian above by 

H = w.CM1w, (3.40) 

where the operator is defined implicitly 

Therefore, on G ,  H ( [ )  = (C[,[) = +b2J-k[k. We are then lead to  consider 

a transformation J : 6 + G in terms of which 

This form for the Hamiltonian defines a pseudo-riemannian metric on su(N) 

which is bi-invariant and has metric tensor, 

A right invariant measure rnay then be obtained on the tangent bundle t o  

SU(N) by right translating this metric to the whole group. This would 

be a right-invariant metric on TSU(N)  on which the SU(N) Lagrangian 

fluid mechanics could be described. We can show that the connection and 



Riemannian curvature corresponding to  this energy metric take the form 

where 
N 2n (m-n> 

dm,,  = - sin -(m x n)- 
2n N  n2 ' 

and 
1  N  , 2n 

ah1 = - sin - ( k  x 1 ) .  
Ik f l l r n o d ~  2 ~  N  

This is in agreement with the curvature result of theorem (3.2.1)  and thus, 

the linear stability of neighboring geodesics in sodif fT and s u ( N )  are the 

same. 

We will now turn to the derivation of the equations of motion for the 

components of the vorticity field in the t7Hooft basis. Returning to  the 

definition of the Lie-Poisson bracket for two smooth functions F, G E G*, we 

now find that 

so that we have 

where I is the identity matricx and the h are the components of the func- 

tional derivative of the Hamiltonian in the t'Hooft basis. If we consider only 

the nth component of w ,  we find that 



We find on evaluating all the terms in the above equation, 

. N  1 271. 
wn = q, ;;1 sin x ( p  x n)wn+,w-,. 

We can also view the above Lie-Poisson equation as a Lax system. Es- 

sentially the above equation can be expressed as 

= [Q, !PI, (3.50) 

where Q  = w-,T, and !P = %Tk. The elements of s u ( N )  are anti- 

hermitian matrices and thus by Lax[26], the eigenvalues will be purely irnag- 

inary and time-independent. Another way of expressing this is that all the 

solutions of the above matrix equation will be unitarily equivalent to  any 

other point on the trajectory, i.e., there will exist a U ( t )  E S U ( N )  such that 

if Qo is the starting point on the trajectory of the Lax system, then 

This is an alternative definition of the adjoint orbit through Ro. The Lax 

system has Casimirs which are given by the P1' - ? linearly independect, 

constant eigenvalues of Ro or expressed another way, the Casimirs can be 

given in terms of the traces of powers of any R ( t )  on the Lax trajectory, 

i.e., the Casimirs are t r ( Q k ) ,  k = 1 , .  . ., N  - 1. These Casimirs converge 

t o  the body integrals of the vorticity on the torus at N  i oo. The reason 

why there are only N  - 1 linearly independent eigen-values is because all 

the matrices in s u ( N )  are traceless. So, the fact that both s u * ( N )  and 

s u ( N )  are diffeomorphic allows one identify the symplectic leaves as sets of 

unitarily equivalent matrices. These equivalence classes foliate the Poisson 

manifold of all smooth fuizctions on s u * ( N ) .  



Chapter 4 

Hamilton Jacobi Theory and 

Lie-Poisson Integrators 

4.1 Introduction 

Recent years have seen the development of powerful new numerical algo- 
- 

rithms which are ideal for solving problems in sympiectic spaces. For the 

evolution of a physical system through its trajectory in phase space, we 

know that the symplectic structure is going to  be preserved through Liou- 

ville7s theorem, i.e., the phase space flow is divergence free. However, when 

we try to  use standard techniques to numerically approximate the system's 

evolution, one of the first inaccuracies to  creep into the approximate solu- 

tion is the non-preservation of the symplectic structure. In other words, the 

computed solution is not staying on its underlying physical path. We could 

try to ensure that this is not the case by using some projection operator a t  



each time-step so that the the component of the computed solution which 

represents the deviation from the phase space is factored out. However, 

these techniques are ad lzoc at best as they may force the solution to  live on 

the right phase space but there is no guarantee that the new point on the 

trajectory is symplectic ...j ust momentum preserving. The situation becomes 

more intricate when the physical system Lives in a Poisson manifold such as a 

dual Lie algebra. From Chapters 1 and 2, we know that in this case the dual 

algebra foliates into symplectic leaves which are parametrized by a specifi- 

cation of a full set of Casimirs. Therefore, the proposed projection system 

suggested above would become overwhelmed if there were many Casimirs. 

However, there are now a host of algorithms which attempt to  capture the 

behaviour of the Hamiltonian system by explicitly respecting the geometry 

of the phase space, be it canonical or Lie-Poisson in nature. The goal of 

this chapter is to explore such algorithms with particular emphasis on the 

Hamilton-Jacobi equation and associated integrators which are designed so 

as to  preserve the momentum mappings J. 

4.2 Symplectic Integrators 

The goal of Hamiltomian integration is to  preserve as faithfully as possible 

the underlying properties of the flow of the Hamiltonian vector field which 

is generated by the Hamiltonian function. We will see in this section that 

there is a Limit to the amount of accurate recreation of the Hamiltonian 

dynamics which can be achieved. By imposing the preservation of one aspect 

of the Hamiltonian dynamics, another facet is violated by default. This 



observation was made by Zhong Ge and is one of the central results in the 

field of sy~nplectic integration. We first classify the main types of phase 

space integrators. 

By an algorithm on phase space, P ,  where P can be any of the many 

exotic manifolds that we have discussed in the course of the past three 

chapters, we mean a process through which co-ordinates z E P are mapped 

to  new co-ordinates E P, i.e., 

where D is the map and the subscript 6 t  is some discrete time step. If the 

real flow is generated by a I-Iamiltonian vector field X H  where H : P -+ R is 

some Hamiltonian on P, then we say that our algorithm is consistent with 

respect to X H  if 

It will be observed tlzat this is on!;. an appr~ximatisn to  the r e d  flow of XH 

since we do not know how close the higher order derivatives are to  the true 

dynamics. 

There are three main categories which have been classified by Marsden[4]: 

i) D is symplectic if each D, is symplectic, i.e., D:R = 0 where the 

asterisk refers to  tl-te lift of D to the tensor algebra and 0 is the symplectic 

2-form on P .  

As an exa.mple of a symplectic integrator, consider the following Hamil- 

tonian scheme on a symplectic vector space. (We studied Hamiltonian dy- 

namics on symplectic vector spaces in considerable detail in Chapter 1.) If 



z  E V then the map zk+l = ~ ~ ~ ( 2 ~ )  given by 

zk+l - zk  zk + zk+l 
At = X H (  1 7 

where X H  is a Hamiltonian vector field on V, is symplectic. By taking the 

Frechet derivative of this expression, substituting z for zk and DAt(z )  for 

z N 1 ,  we obtain 

After applying the chain rule and setting A = D X H  and S = DDAt, we 

find that 

This is the Cayley transform of A. We know that A is an infinitesimally 

symplectic linear mapping on V and we will use this to  prove that S is 

neccesarily symplectic for sufficiently small At. It is easier to  prove it in 

I 1  me opposite directioii by assiiiiiiiig illat S is symplectic and showing that 

A is infinitesimally symplectic. If S is symplectic then so is ST. Therefore, 

SJST = J where J is the matrix which satisfies J2 = -I. Thus, 

This leads to  

Multiplying this out leads to the equation AJ + JAT = 0. Therefore, since 

these steps are reversible, we have proven that if A is an infinitesimally 



symplectic linear map, then the Cayley transform of A with X = is a 

symplectic transformation. 

ii)D is an energy preserving integrator if LI o DGt = H. This would seem 

a very important class of integrators as we are usually dealing with conser- 

vative Hamiltonian systems in which the main property is the invariance of 

the Hamiltonian on the physical trajectory. However, we will see that in the 

examples which we wish to explore, exact energy preservation is the very 

Hamiltonian constraint which we will relax. 

iii) Finally, D is a momentum integrator if it preserves the momentum 

mapping associated with some Lie group symmetry enjoyed by the Hamilto- 

nian. IVe will recall from Chapter 2 that such a momentum mapping is the 

repository of all geometric information concerning tlze system. For instance 

in the case of a group action on the tangent bundle to the Lie group itself, 

the reduced phase spaces become isomorphic to  the co-adjoint action orbits, 

which are in some loose sense the level sets of the momentum mapping in 

the full phase space. So, as we reasoned in Chapter 2, if a pl~ysical system's 

trajectory in phase space starts on some co-adjoint orbit, it will remain on 

it for all time. Thus, when an integrator preserves the momentum mapping, 

it is actually preserving the co-adjoint orbits. This could be a vital prop- 

erty of the Hamiltonian system whicl~ we want to  respect. As we observed, 

such actions foliate phase space into orbits and a momentum integrator will 

basically preserve this foliation. 

As mentioned earlier, the simultaneous preservation of all the above 

properties is not possible through the application of some approximate 



solver. The following theorem demonstrates that if such an integrator ex- 

isted, then tlze approximate solution would no longer be an approximation 

but rather an exact solution to the Hamiltonian equations, modulo a time 

reparametrization. So, we would have actually solved the full problem which 

if possible, would make redundant the necessity to construct a numerical 

scheme. 

Theorem 4.2.1 If th,e algorithm Dst preserves energy and momentum map- 

pings and is also symplectic, th,en tlze integrated solution is the exact solution 

up to a rescaling of time. We  also need to assume that the dynamics are not 

integrable. 

Proof We first assume that we are on the reduced phase space after the appli- 

cation of tlze Reduction tlzeorem,i.e., we have reduced P to  P, = PIG, 

where G, is tlze isotropy subgroup of G through p E G*. Without loss 

of generality, we will assume that P = T*G. We will recall that if the 

Hamiltoiziaiz EI is also invariant under the group action, then there 

will be a reduced I-Iamiltonian II, which is defined by 

where H oT*Ly = H. We also saw that this reduced space is effectively 

equivalent to the space on which all the conserved quantities,i.e., mo- 

menta, have been factored out and now act like a set of parametrizing 

varia.bles for the symplectic leaf. Therefore, on reduced phase space 

there exists only one conserved quantity and that is the reduced Hamil- 

tonian H,. This implies that if there are any other integrals of motion, 



then they must be just statements of the same fact, i.e., 

for some functional, F. Since we are assuming that D6t is symplectic 

on the symplectic leaves (recall the fact that the reduced phase space 

corresponding to a regular value of J is a sylnplectic manifold; this was 

one of the main reasons we explored it in the second chapter,) then the 

flow must be generated by some Hamiltonian function on P,. However, 

this Hamiltonian must be time dependent in order not to  violate the 

above assumptioil of 31, being the sole conserved quantity. But again, 

we assumed that D, is also energy preserving which necessarily implies 

that 

H~ = {H,li-} = 0. 

However the bracket is anti-symmetric which leads us to  the result 

that I< is also preserved by the flow which means that it is just a 

functional of H and that the lIamiltonian vector fields of both K 

and H, are thus parallel. Bearing in mind that X K  is the vector 

field which gives rise to the approximating dynamics, we see that all 

we have done is to reproduce the exact P, trajectory, albeit with a 

possible reparametrization of time. 

The principal examples which we have encountered up to  this point have 

been invariant Hamiltonian systems. Therefore, we will concentrate on the 

third variety of integrator which preserves the momentum mapping associ- 

ated with a Lie group action and we will place energy preservation at a lower 



priority. In fluicl mechanics, this translates into the construction of numer- 

ical schema which implicitly preserve the Casimirs. In two dimensions, the 

set of Casimirs will constitute the body integrals of smooth functions of the 

vorticity. However, the algorit hin will not necessarily keep energy constant. 

Even though this is a problem, it transpires that the energy behavior ex- 

hibits periodicity in time so that the computed solution fluctuates about a 

mean trajectory which is the actual path through phase space. 

We have defined symplectic algorithms and demonstrated that they are 

limited in the sense that they cannot preserve all facets of the Hamiltonian 

mechanics. However, we have provided no a priori method by which we can 

choose integrators which preserve the subset of the first integrals of motion 

in which we are interested. Symplectic difference schema are not covariant, 

i.e., they are not invariant under all symplectic transformations. However, 

when a class of symplectic transformations exists with respect to  wlzich the 

algorithm is invariant, then it can be shown that the algorithm preserves 

the Hamiltoniail function which generated these transformations. 

Consider the syinplectic difference scheme 7 = DH(z) where the time- 

step has been omitted. Move to  new co-ordinates w under some symplectic 

transformation, z = T(w). In these new co-ordinates, H -+ H o T and 

DH + Dl< where K(w) = H(T(w)) and the symplectic difference scheme 

becomes 

T(E) = DH(S(W)). 



The scheme is invariant under a group G of symplectic transformations if 

I'-I o DHoT = DHoT forall T E G. As an example, we will determine the set 

of symplectic transformations under which the Euler mid-point algorithm is 

invariant. The mid-point rule differences Hamilton's equations as 

Under the transformation, z = T(w), this scheme yields 

Now, under linear symplectic transformations I', we obtain 

1 
T ( z ~ + '  - zk)  = T ( T J - ~ H , ( - ( ~ ~  + zkfl))  = 

2 
1 

T ( T J - ~ T - ~ H , ( T ( ~ ( T ( W ~  + w"") = 

. r T j - ~  m~ rr 1 k k + ~ \ \  
1 n w ( T ( - j w  + w ) I  = 

2 
1 

TJ-'IC,(-(W~+~ + wk)). 
2 

The covariance may be exploited in order to  build tlze required preser- 

vation properties into the algorithm. This will be seen from the following 

result. 

Theorem 4.2.2 Given a symplectic diflerence scheme D& for a Hamilto- 

nian H defined on some phase space P ,  the scheme will preserve a first 

integral f of H ,  

f 0 D H ( ~  = f (2) 



for all z E P if ancl only if the scheme is invariant under the phase flow of 

f .  Recall that f is a first integral of H i f  { f ,  H) = 0. 

We will prove this for a linear Hamiltonian system which has a quadratic 

form first integral. Consider H = $zTAz where z E V and A : V -+ V is 

Linear. The equations of motion are 

Let a difference scheme for this system be denoted zk+l = DJ-lAzk. The f 

in the above theorem will be assumed to  take on the form 

1 .  f (2) = -z Bz. 
2 

The phase flow of this first integral is given by Gt = exp(tJ-lB) and is a 

1 parameter group in the phase space. Let us assume that the difference 

scheme is invariant under this flow so that 

By Noether's theorem, (Gt)-lAGt = A which implies that 

We will set D J-lA = $(J-lA) for notational convenience. Taking derivatives 

with respect to  t ancl setting t = 0 yields 

which leads us to 

B = ~ ( J - ~ A ) ~ B ~ ( J - ~ A ) .  



Therefore, the schelne conserves the quadratic form in B. The converse 

uses similar arguments. To find a proof of the above result for more general 

Hamiltonians, see Ge[13]. 

In the Euler scheme, every first integral of quadratic form will be con- 

served because such first integrals give rise to  linear phase flows. 

4.3 Hamilton- Jacobi Theory and Generating Func- 

t ions 

In this section, we will outline the traditional theory of generating functions 

and the Hamilton-Jacobi equation both for time independent and time de- 

pendent Hamiltonian systems. Even though we are essentially interested in 

conservative Halniltonian systems, we will find ourselves solving the time 

dependent H-J equation. The reason for this will become apparent as we 

progress and is intimately connected to the theorem of Zhong Ge discussed 

in the last section. 

Initially, we will present the theory of canonical transformation generat- 

ing functions in the classical co-ordinate dependent manner. The treatment 

will be a t  the level of Goldstein[23]. Following this introduction, the rela- 

tively recent Lagrangian submanifold approach will be discussed. The reason 

for deriving the same theory i11 two ways is due to  the requirements of the 

next sectiolz. At that stage, we will be concerned with the construction of 

Hamilton-Jacobi solvers on the dual to a Lie algebra. The Cm functions on 

such spaces have already been shown to constitute a non- symplectic mani- 



fold and it turns out that the most natural way to solve the Hamilton- Jacobi 

equation in such a setting is through the employment of the Lagrangian sub- 

manifold approach. 

Consider the general canonical co-ordinate description of a tangent bun- 

dle. A phase space trailsformation from co-ordinates (qi,pi) to  (Qi, Pi) is 

defined by 

Such a transformation will be canonical if there exists a function K of the 

new co-ordinates such that 

which are the familiar I-lamilton's equations. We know that this K must 

satisfy a Hamilton's principle as H did, so that 

where 6 J means talting the variation with the end points values of Q and 

P fixed. By comparing this to the original variation of the Hamiltonian H ,  

we find that the integrands will be equivalent up to the addition of the time 

derivative of some function F of the old and new co-ordinates, i.e., 

F is called a generating function and it can be taken to  depend on a mixture 

of the old and new co-ordinates. As an example, we can consider the form 



F = F1(q, Q,  t )  which yields the following relations 

It should be clear that it is not possible to represent the identity transfor- 

mation using this type of generating function. Generating functions can be 

used as an alternative to solviilg the Hamiltonian equations. Consider some 

physical system wllose motion can be described by some set of canonical 

co-ordinates in phase space. Take the initial condition to  be specified by the 

pair (q6,pio) at t  = 0. Then, if the system moves to  (p, q) at time t ,  we seek 

the canonical tra~lsforination which maps the system from (p, q) to  (po, qo). 

Since the initial conditions are fixed in time, we try to find a transformation 

which maps into a K which equals zero, for in this case, Q = 0 and P = 0. 

The equation for the generating function E' takes the form 

If we choose the F to be of the form F2(q, P, t) ,  then since p; = @, we see 

that 

which is known as the Hami l ton  - Jacobi  equation. This is the time 

dependent equation as we have not made the assumption that the system 

is conservative as time explicitly enters N in the above equation. If the 



system is conservative then H ( q , p ,  t )  = I I (q ,p )  and the generating function, 

f;i must be separable as 

where cr and p are constants which are dependent on the initial values qo 

and po. The Hamilton-Jacobi equation now becomes 

We have derived tlie above sets of equations without any reference t o  the 

differential geometry that we spent so long exploring. We will now connect 

back to  the more general theory. One of the first things that one notices 

about generating functions is that they are co-ordinate dependent. In what 

follows, this restriction will be relaxed. 

The theory of Lagrangian submanifolds provides a covariant formalism 

of the generating fuizction approach to Hamiltonian mechanics. We will 

start by providing the basic definitions and properties of Lagrangian sub- 

manifolds. 

A Lagrangian submanifold of a symplectic space (P, w )  can be defined 

in a number of equivalent ways but we will concentrate on the two which 

have the most relevance to Hainilton- Jacobi theory. 

Definition 4.3.1 A submanifold L of a synzplectic space (P ,w)  is  said to 

be Lagran,gian i f  its dimen,sion is half that of P and w  van,ishes identically 

on  L .  Equiva2ently, we say that L is Lagrangian i f  the tangent space to L at 

every point of L is equal to its orthogonal complement,i.e., 



for all x E L. 

As an example, consider the graph of a symplectic transformation f : 

P -i P which in local co-ordinates becomes (p,?j) = f (p, q). The graph of f 

is a Lagrangian submanifold of the symplectic space (R4n, R) = ((p, ?j, p, q), R = 

@ A  dij - dp A dq). The 2-form 52 vanishes on L since the map f is symplectic. 

A result which we will state without proof is that if we are given a 1- 

form a on some configuration space Q, then gra(a)  C T*Q is a Lagrangian 

manifold if and only if a is closed. Therefore, if f : Q -+ R then {(q,p) E 

T*Q lp = df (q)} forms a Lagrangian submanifold of T*Q . On a copy of R4n 

endowed with a symplectic 2-form C = d;iiiAdw where (w, w) is an element of 

R4n, a Lagrangian manifold can thus be generated by consideriilg the graph 

of the differential of some function S : R2n -+ R, i.e., L = {;iiiliiii = dS(w) ) .  

The mechanism through which the results of the last section can be 

reproduced using Lagrangian submanifolds is by finding a correspondence 

between the graphs of sympiectic mappings and the graphs of exact 1-forms. 

If we have a Hamiltonia~l system on a linear vector space, then as in the 

two examples above, the graphs will be embedded in copies of R4n with 

symplectic 2-form 52 for symplectic transformations and C for 1-forms. The 

corresponcleilce is achieved by using the concept of a generating map, a, 

which is a linear symplectic transformation from (R4n, R) to  (R4n, 2). This 

formalism is due to Feng Kang[l?]. As we observed in the first part of 

this section, given local canonical co-ordinates on some symplectic space, 

P ,  we could basically use any pair choice between the (P, Q) and (p, q) co- 

ordinates in order to implicitly construct symplectic transformations. In the 



Lagrangian submanifold formulation, this choice becomes equivalent t o  the 

selection of generating map @ that we make. 

We will be particularly interested in generating functions of the first kind 

The choice of @ in this case is 

We see that @ ( F , Q ,  p ,  q) = ( -P ,  p , ~ ,  q). Therefore, S = S(q, q) and the 

Lagrangian submanifold generated by S will be given explicitly by (-j?, p) = 

dS(q7 q). 

Before preseilting the Hamilton-Jacobi equation in terms of these gener- 

ating maps @, we need to state some more basic results from the theory of 

Lagrangian subinanifolds. 

If L ,  a suhspace of P ,  is 1,agrangian and H E C m ( P ) ,  then if H is 

constant on L, L will be invariant under the phase flow of XH. Also if Ft is 

the flow of XH, then Ft(L) remains Lagrangian. Using these properties, we 

can state the Hamilton-Jacobi theory in terms of L and its Aow. Suppose 

that L C T*Q is the graph of some exact form dS. We say that S is the 

generating function for L. Assume that L is the graph of some Hamiltonian 

trajectory generated by some function H on P. If Ft is the flow of the 

corresponding Hainiltonian vector field XH, then for a short time, Ft(L) is 

the graph of the differential of some St : Q -+ R which depends smoothly on 

t and equals S at t = 0. This S(t, q) satisfies the Hamilton-Jacobi equation. 



Returning to  the Kang formalism, we see that since the Hamiltonian is 

defined on the copy of R2 with the 2-form $2, we will have to  find the inverse 

of @ in order to  write down the Hamilton-Jacobi equation. Therefore, 

where P2 is the projection of (E,  w) onto the second factor. For generating 

functions of tlze first kind, this equation reduces to  the familiar 

The derivation of Hamilton-Jacobi theory using Lagrangian manifolds 

may appear redundant but as we will need to  construct integrators on Lie- 

Poisson manifolds which are generally non-symplectic, it will be seen that 

the more abstract Lagrangian manifold approach is appropriate. 

4.4 Momentum Preserving Algorithms and the 

Reduced Ilamiiton-Jacobi Equation 

How can we use the generating function formalism of the last section to  con- 

struct symplectic difference schemes? Fixing some generating map @, and 

assumimg that we can find some generating function So on (R2, C) whose 

graph generates the identity transfornlation on (R4n, a) under @-I, then 

we can construct an algorithm as follows. If we choose a small enough time 

step, St, we could form a power series solution for the generating function 

St of the last section wlziclz smoothly equals So as t --+ 0. Let 

St" 
S( t )  = so + C-j sn ,  

n. 



which by the statement at the end of the last section also solves the Hamilton- 

Jacobi equation. This series truncated at any order will provide a symplectic 

difference scheme. 

However, we again face a dilemna. We do not know a priori if the trun- 

cated generating function series will preserve the first integrals of motion 

in which we are interested. In section 4.2, we defined the conditions under 

which a symplectic difference scheine is invariant under a group of symplec- 

tic transformations. We will now do the same for generating functions. If 

Dk is the difference scheine generated by S k ,  then under a symplectic trans- 

formation, z = T ( w ) ,  Z = D k ( z )  transforms to ?71 = T - l  o Dk o T(w). We 

say that Dk is invariant under some group G of transformations if and only 

if there exists a linear transformation defined by some A : R4n -+ R4n such 

that locally UT-I~D, ,T  = U D ,  o A. There also exists a connection between 

first integrals of motion for the physical system and the invariance of the 

symplectic difference schema. 

Theorem 4.4.1 Let f  be a first integral of the system with Hamiltonian H .  

For a given ch,oice of a, the symplectic difjcerence scheme S k  derived from 

truncating the power series expansion of S at order k will preserve f i f  and 

only i f  S k  is invariant under the flow o f f .  

The above formulation is also valid on cotangent bundles. We will be 

interested in the cases where the first integrals of motion are generated by 

a Lie group action on the cotangent bundle . The momentum mapping 

is the corresponding quantity which is preserved under the Hamiltonian 



dynamics and we will now investigate the types of generating maps Q, which 

will produce momentum mapping preserving symplectic schema. 

Let Q : G x P -+ P be an action on P with momentum mapping J 

defined by 

J : P 4 G*; < J(aq),[ >=< a,, tp(q) >, 

for all a, E P and t E G. If P = T*Q and taking a generating function of 

the first kind, S : Q x Q 4 R, then we will prove that if : T*Q -+ T*& 

is the symplectic sclzeme generated by S ,  then in order that preserve the 

level sets of the momentum, J, must be G-invariant, i.e., &(Q(g, 2)) = 

Q(g, cbs(2)). 

To prove this, differentiate this expression with respect to  t in the direc- 

tion t E 6. 
d 
- l t=o(qexptt ,  a ) )  = dt  

This implies that X< J , ~ > , ~  = X< J,€> and thus, 

differs from zero by at most a constant. Also, if S is invariant under the 

diagonal action of the group G, i.e, S(Q(g,q), Q(g,qo)) = S(q,qo), then 

the resulting symplectic difference scheme will preserve the level sets of 

J .  This call be proven in a similar way by differentiating the S invariance 

expression in the direction of t E G. We obtain 



which implies that 

dS.Fp(q) -t dS.Fp(qo) = 0, 

But 

The converse of this is also true: If (b is a symplectic difference scheme 

on P wlzich preserves the momentum mapping, then it is always possible to 

derive (b from a G-invariant generating function of the first kind. 

So, when we choose the generating mapping wlzich produces generating 

functions of the first kind, the resulting symplectic difference scheme will 

preserve level sets of the lnomentum mapping. 

We will now turn to the context of Poisson manifolds. This environ- 

ment presents problems for the implementation of the generating function 

procedure. As we have seen in earlier chapters, a Poisson manifold is not 

symplectic but rather foliates into symplectic leaves whose dimensions are 

even but not izecessarily constant across leaves. The solution which can be 

found in detail in Ge[18] is to employ a Generating Pair. In our case, there 

will be an extra stipulation that whatever mechanism we use to generate 

Poisson mappings (symplectic leaf preserving) on P, it must be able to  gen- 



erate the identity transformation on P .  This concept of a generating pair 

can be described as follows. 

Definition 4.4.1 A strict generating pair for a Poisson manifold P is a 

pair (S, J ) ,  where S is a symplectic manifold and J is a Poisson map from 

S to P x P- where the m,inus superscript indicates that the Poisson bracket 

in  this copy of P has been multiplied by minus one. J must have the property 

that Lagrangia,n nzanifolds of S are mapped to tlze graphs of local Poisson 

automorphisms in  P. Also, to be a strict generating pair, there must exist 

an Lo C S such that J ( L o )  is the identity automorphism on P .  

For Lie-Poisson systems, i.e., Poisson manifolds derived by the left or 

right action of a Lie group G on its own cotangent bundle, the formation 

of a generating pair is quite straightforward. This generating pair will only 

be strict for a certain sttbclass of reduced phase space duals. The reduced 

dynamics inhabit the Cm(G*) Poisson manifold and the generating pair is 

S = T * G  and J = JL x JR, where 

and 

JR : T * G  -+ G*; J R ( P , ~ )  = - T R i ( p ) .  

We have J : S -+ G* x G*- because right reductioil will endow G* with 

a plus sign in its Lie-Poisson bracket and left reduction will leave a minus 

sign. Section 1.5 has more details. 

For the Lie-Poisson case, we will now explicitly write down the resulting 

Poisson automorphism on G* x G*-. A Lagrangian manifold in S can be 



expressed as the graph of an exact l-form on the cotangent bundle to  S. 

Namely 

L = { ( g ,  du(g))l, 

for some u : G -+ R. Then the Poisson mapping on the reduced phase space 

will be given iinplicitly by 

A :  P -+ P ,A@) = (T)) (4.7) 

The Hamilton-Jacobi equation will be as given in the previous section, 

namely, 

ut = -H(-TR;.du(g)). (4.9) 

We still have to  show that under certain conditions, there will exist a 

Lagrangian submanifold on T*G which generates the identity transformation 

on G*. For the special case in wlzich G is regular quadratic,i.e, 6 is endowed 

wit11 a bilinear, Ad-equivariant, 2-form, then the identity transformation 

can be easily derived from this 2-form. We will prove this for the case of 

a semi-simple Lie algebra. In tlze case of a semi-simple Lie algebra, the 

regular quadratic property is satisfied by using the metric derived from the 

Cartan-Killing form which was iiltroduced in Chapter 3. Denote this regular 

quadratic 2-form by < ., . >: (? x (? -+ R. We will now construct a generating 

function on G which produces the identity transformation on G*. Let 



where In is the inverse of the exp mapping. In order for the Lagrangian sub- 

manifold Lo corresponding to this u to  produce the identity automorphism 

on G*, we need to prove that TR;du(g) = TL:du(g). This follows from the 

Ad-equivariance of < ., . >. 

Differentiating this expressioil will yield 

for E E G. Bringing the Ad operator out of the argument for du gives 

which implies that 

-TRi0du(g) = -TLI?;,du(g). 

To be complete, the JR mapping should also be shown to  be a local diffeo- 

morphism in a neiglzbourhood of ( e ,  0) in T*G. 

We have succeeded in incorporating Poissoil mappings on Poisson man- 

ifolds into the generating fullctioil formalism. For the special case of a 

Lie-Poisson system with a regular, quadratic form, we can carry out the con- 

structioil of a Lie-Poisson integrator by building a Poisson difference scheme 

using the strict generating pair. The reduced Hamilton-Jacobi equation can 

be solved for some truncated power series on T*G with time-step S t  about 

the identity transformation, uo(g) =< lng, lng >. Thus, the algorithm can 

be executed totally in the eilvironment of the Lie group and all Poisson 

transformations are effected only implicitly. 



4.4.1 The Lie-Poisson Integrator of Channell and Scovel 

In the last section, we constructed integrators for Lie-Poisson systems through 

the strict generating pair formalism which allowed the Hamilton-Jacobi 

equation to  be expressed in terms of dual Lie algebra variables. In essence, 

we take a scheme on T*G and use it to  produce a Poisson transformation 

algorithm on S*. For some appropriate time-step, T ,  if we are initially a t  

some point IIo E G*, we can time marc11 to II via solving 

for g and then setting 

for the time advanced variable in S* or more accurately, in the co-adjoint 

orbit through Do, One = {IIlII = AdB-l(IIo), g E G}. Implicitly, the co- 

adjoint orbit or phase space is preserved. Channell and Scovel[l4] carry this 

aigorithm one step further in that instead of solving for g in the group, they 

use the exponential mapping and its locally defined inverse, In, to  lift the 

algorithm to solving for elements of the Lie algebra and its dual only. The 

advantage in this approach stems from the difficulties associated with doing 

computations in the Lie group. It will be recalled that exp  : 6 + 5: provides 

a natural co-ordinatization of the Lie group. e x p  is not necessarily onto G 

but will admit an inverse in an open neighbourlzood of the identity, e  E G. 

The whole of G can be covered by left translating the e x p  mapping across 

G. The advantage of the Lie algebra co-ordinates as opposed to  those on the 

Lie group is that by computing in the Lie algebra, the e x p  mapping from 5: 



to G guarantees that we do not move out of the group. 

We will now transfer the algorithm from the G/B* setting to  the exp 

defined G'/G* environment. First, we define the analog of the generating 

function which is a red-valued function on G'. 

for g E G.Provided the time step is small, we will only need to  invoke this 

definition in a small, open neighbourlzood about the identity in which In is 

well-defined. If SL : G -4 R, then the differential of SL,  dSL : G i T*G is 

defined by 

dS~(g) (v , )  = P2 0 T,SL(V~)  for vg E TgG. 

The operator P2 is the projection oizto the second factor. Therefore, by 

applying the clzaiil rule, we obtain for the argument of the Hamiltonian 

functioil in the Lie-Poisson N-J equation, 

We have encountered all the above tangent derivatives in earlier chapters 

except for Tln the evaluation of which will require a number of tricks from 

the theory of Lie series. For a review, the reader is referred to  Dragt and 

Finn[l6]. First we need, 

Theorem 4.4.2 The tangent derivative of the exp function at = l n g  sat- 

isfies 

Ttexp = TL,-1q3(-adt), 



where adtq = [E, q] for q E G. The function (b is a formal power series which 

takes the form 

Proof Note that exp : G -+ G and thus, 

Texp : TG(g G x 6 )  -+ TG, 

and Ttexp : G -+ TgG. 

We first consider TtexpE = $lt,lexptE for E E G. Thus, we let A(t) = 

t t  and note that we can express TLg-lTtexp : G -+ 6 as 

d 
exp - A(t)-lt=lexpA(t). 

dt 

To proceed, we will need the following result concerning the vector 

solution 011 some vector space V, of the differential equation 

We find that 

U(S) = eSAu(0) + f (s, A)w . 

(eBZ-l) and A : V -+ V is a linear transfor- In this equation, f (s, z) = 

mation on V. Let B(s, t )  = exp - s~(t)$expsA(t) .  Differentiate with 

respect to s to  obtain 

[e-s a d A -  
Therefore, B(s, s)  = ( - a d A )  ']A. Evaluate this a t  s = 1 to get 



This is because 4 in the statement of the theorem is actually equal to  

f ( 1 ,  -adE). The result follows immediately. 

Now, from the chain rule, we have 

Tgln .T texp  = T < ( l n  o exp )  = I d g ,  

where expf = g.  So, we find that 

where T ( z )  is the power series satisfying T ( z ) 4 ( z )  = 1. In fact, T ( z )  = 

We now multiply T l n  on the right by TRg and find [ez-11 ' 

by definition of Ad, : G -+ 6. The identity = eRadc ,  allows us to  

simplify things further so that 

- d ~ . ~ ( a d ~ ) . e - " ~ € .  

Letting Q ( a d c )  = ~ ( a d ~ ) . e - " " ,  we finally find 

and 

TI = -dS.Q(ad[) .  

The reduced Hamilton-Jacobi equation now becomes 



We have now removed all traces of the group operations. The algorithm 

is totally expressed in terms of elements of the Lie algebra and its dual and 

to  implement, we now solve for ( instead of g = exp(. 

4.4.2 Tlie Lie-Poisson Integrator on Regular Quadratic Lie 

Algebras 

When the algebra is regular quadratic, there exists an Ad-invariant, non- 

degenerate quadratic form < ., . > on G with respect to  which a metric may 

be defined. As already mentioned, in the case of semi-simple Lie algebras, 

this quadratic form can be taken as the Cartan Killing form. We know 

that on G, the identity trallsformation for G* is generated by So : 6 -+ 

G , So(() = $ < (, ( >, for all ( E 6. Therefore, to  seed the algorithm 

of the last section, we expand in the time-step about So and truncate the 

power series at some desired order. We will calculate the first few terms 

in the expansion using Taylor's theorem. For the sake of completeness, we 

will state Taylor's theorem for a CM, real-valued function on a linear vector 

space, E. 

Theorem 4.4.3 Taylor's Theorem 

A CT map f : U C E -i R can, be expanded about a point u E U as 

follows 

where hp = (h, 1 2 , .  . . , h )  p t in~es  a,nd mp = Dp f .  



Let us insert the power series expansion, 

into the Hamilton-Jacobi equation. 

By Taylor's theorem, we find that to  

First Order: 

Sl = --H(-dS0.@(adt)). 

Second Order: 

where V = -dSo.@(adt),  and to 

Third Order: 

We will develop integrators of this and otlzer types for rigid body and 

s u ( N )  dynamics in the next chapter. 



Chapter 5 

Applications 

5.1 Introduction 

We will build Lie-Poisson integrators for so(3) and su (N) .  Both these al- 

gebras are regular quadratic. Therefore, Lie-Poisson dynamics on both Lie 

groups can be realized numerically using the Channell and Scovel integrator 

of chapter 4. However, it is found that the integration times for the vor- 

ticity dynamics over s u ( N )  are prohibitively slow. This arises because the 

scheme is implicit and at every time-step in the computation, power series 

in large matrices must be evaluated. If we are to  develop an efficient numer- 

ical tool from the application of Lie-Poisson ideas, we will need to  construct 

faster algorithms. We propose a new explicit Lie-Poisson integrator which 

still relies on the exponential mapping co-ordinatization of the Lie group. 

Therefore, Lie power series will again be encountered. However, a t  each 

time-step, only one power series calculation is required and the scheme is 

explicit. The time-step will again be limited as in the Channell and Scovel 



integrator because the In mapping from the group to  the algebra is only 

defined in a small neighborhood of the identity mapping in G. However, 

each componeilt in the power series expansion has a time-step factor which 

quickly reduces large powers to  within machine error so that a finite series 

truncation is sufficient. We test the explicit scheme against the implicit 

Hamilton- Jacobi solver ill the SO(3)  case with very favorable results. This 

explicit Lie-Poisson algorithm works for any regular quadratic Lie algebra. 

5.2 Rigid Body Dynamics 

The rigid body with one point fixed is the paradigm example for geometric 

mechanics. Tlze coilfiguration space is the Lie group SO(3) .  This is easily 

seen by considering the rigid body with one point fixed at the origin of R3. 

Take x( t ,  s o )  as the position of an element of the body at time t  given its 

initial position xo at t  = 0. Then, there exists an orthogonal matrix A such 

that 

x( t ,  xo)  = A(t)xo. (5.1) 

A ( t )  must be an element of SO(3)  if the motion is continuous and A(t  = 

0) = Id .  The mass of the body will be described by some measure on R3 

which is positive. The kinetic energy of the body then satisfies 

Ir'.E. = - ( k ,  k )dp (x )  
2 ' J 

k(0) will be an element of the tangent space at the identity of S 0 ( 3 ) ,  which 

is the Lie algebra. The Lie algebra of SO(3)  is the linear vector subspace of 



gl(3) whose elements are skew symmetric. If R E so(3), then there exists a 

w in R3 such that R(x) = w x x for all x E R3. Therefore, 

k(t, xo) = w(t) x x(t, xo) (5.3) 

for some time dependent smootli function R(t)  in so(3) whose counterpart 

in R3 is W. This w can easily be seen to equal TRR(t ) -~  ~ ( t ) ,  the right 

tangent translation of d ( t )  € TR(,)S0(3) to so(3). This w is referred to  as 

the angular velocity and corresponds to  viewing R from a frame of reference 

fixed in space. The velocity vector derived from left action will be seen to  

be the view of R from a frame of reference fixed in the body. and is given 

by 0 = TL,,,,-I ~ ( t ) .  The kinetic energy is seen to equal $ < 0(t) ,  0 ( t )  >, 

where < U, v >= J(u x x, v x x)dp(x). The trajectory of the rigid body 

through its configuration space will be a geodesic of this Riemannian metric, 

i.e., the trajectory will conserve and minimize the kinetic energy. This metric 

can be written in terms of some symmetric matrix I which maps the Lie 

algebra into its dual and such that 

where Iu.v represents the natural pairing between the algebra and its dual. 

Also, since 4 3 )  is semi-simple, its Cartan-Killing form is non-degenerate 

and we can identify the algebra with its dual and consider I : so(3) -+ so(3) 

instead. Tlle isomorphism with R3 simplifies matters further since the metric 

on the algebra, g;j becomes the kronecker delta, the Lie algebra bracket 

becomes the cross product and axes can be chosen so that I is diagonal. 



By moving to the angular momentum formulation which is basically the 

same discussion except over the dual Lie algebra, we can check to see that the 

rigid body dynamics are in fact Lie-Poisson. Take the angular momentum 

to be given by m = (ml, m2, ms) E so*(3)(E R3) and assume a general form 

of I - I  such that the kinetic energy is equal to H(m) = $ < m, I- lm >. If 

F E Cm(so*(3), then the Lie-Poisson bracket of F and H at m will be 

6 F  SH 
{F, H)(m) =< m, [- -1 > 

6m' Sm 

= -m.(VF x VH)  

where V F  = (g), which is the functional derivative of F with respect to 

m E so*(3).VF is an element of the Lie algebra. We can choose the basis for 

so(3) such that the inertia tensor becomes diagonal. In so doing, we can see 

what the equations of motion look like in dual algebra body co-ordinates. 

Since all the eigenvalues of I are real and positive, the time derivative of F 

will be 

~ ( n z )  = VF.(li2) = {F, W)(m) = -m.(VF x V H )  

= VF.(m x VH). (5.4) 

I-I is diagonal in this basis so, we have H(m) = i(mB/I:) where summation 

is implied. Thus 

and similarly for y and z component of m. These are our familiar angular 

momentum equations. A direct substitition will show that H and [mi2 are 

conserved. 



5.3 Generating Function Integrator for SO (3) 

An integrator for rigid body dynamics can be derived from the algorithm 

presented in section 4.5. The Cartan-Killing form furnishes so(3) with an 

Ad-invariant, non-degenerate quadratic form, K : so(3) x so(3) -+ so(3). As 

we know, the identity transformation for Poisson mappings in so*(3) will 

then be produced by the generating function defined in terms of the Killing 

form, 

where J is arbitrary in so(3). The time advanced angular momentum vector 

will then be computed by solving the Hamilton-Jacobi equation for some 

power series perturbation in the time step to So. 

The Cartan-Killing form for so(3) reduces to the scalar product after we 

identify the Lie algebra (so(3), [,I) with (R3,  x). Thus, the adjoint action 

ad : so(3) x so(3) -+ so(3); adEq = [J, 73 becomes the cross product in R3. 

We also have 

WJ,  d = - J - v ~  (5.7) 

for J, 7 in so(3) % R3. Thus the algebra metric which acts as the raising 

and lowering operator becomes 

g . .  - -8. 
2 3 -  zj- 

From the previous section, we know that a basis in R3 can be chosen so that 



the kinetic energy which generates the metric 

for some symmetric I : so(3) -+ so(3), reduces to  

Therefore, on the dual algebra so*(3), the kinetic energy, in terms of the 

angular momentum, takes the form 

If we the rigid body starts at  some point mo E so*(3), then it will remain 

on the sphere l(m1I2 = llmo1127 the trajectory being the intersection of this 

constant Casimir surface and the ellipsoid of inertia, H(m)  = H(mo). 

In nrder to canstruct the Lie-Poisson integrator from the generating func- 

tion formalism, we will need to  solve the reduced Hamilton-Jacobi equation 

which was derived in section 4.5. We use 

to  solve for E. and then time advance along the constant momentum trajec- 

tory to  m(t) obtained by substituting E. into 



We will recall that the .tIr and I' are to  be interpreted as Lie series of operators 

where 

@(z) = I'(z)e-' 

and 

It is easy to  see that Q(z) = - = I'(z) - z. The expansion of I'(z) is 

and when interpreting I'(-adE) etc., it is a calculation of this series which 

is implied. In the algorithm above, we are solving for an element of so(3) 

which will be dependent on the time-step r chosen, so that we would expect 

that the series could be truncated at finite order with only machine error 

departure from the Lie-Poisson dynamics. 

The solution to the Hamilton-Jacobi equation with So([) = - + K ( [ ,  [) 

to first srder is b y  equatien (4.51, 

where V([) = -dSo..tIr(ade) = -dSo.IG. This follows because 

and 

t . ( t  x ( t  x 71) = 0, 

etc. This allows us write 



Ez 3) .  Therefore, the algorithm simplifies t o  solving and thus -dS1 = (r;, z, 
for [ in 

mo = -dSo([).I'(adt) - rdS1([).I'(ad() = 

- [ - rdS1.I'(ad(), (5.15) 

and then setting, 

m = mo - dSl.adt. 

The second term in this equation simplifies to 

We will compare the results of this algorithm with the explicit scheme 

developed in the next section. 

5.4 Explicit Lie-Poisson Integration 

In this section, we introduce a new explicit Lie-Poisson algorithm. Take a 

Hamiltonian system on the cotangent bundle of some Lie group. Assume 

that the Hamiltonian is left-invariant under the group action of G on T*G. 

We saw from section 1.5 that the co-adjoint orbits on S*, when the phase 

space has been left reduced, is given by the negative Lie-Poisson bracket, 

i.e., if p E G*, then the co-adjoint orbit through p E G* will be (Q,,w,) 

where (3, = {Ad;-,(p)lg E G) and 

< ., . >is the natural pairing between the Lie algebra and its dual and [,] 

is the Lie algebra bracket. From section 3.5, we know that the equation of 



motion for some p E E* and Hamiltonian, H E Cw(E*) are given by 

The minus arises if the Lie-Poisson system was derived by identification 

with right invariant vector fields and the positive arises in the left-invariant 

case. Therefore, for a left invariant Hamiltonian, the equations of motion 

for p E E* is given by 

In order to  integrate tlzis system, we have resorted to  the construction 

of symplectic integrators which are based on the reduced Hamilton-Jacobi 

equation of Chapter 4. While this approach is applicable t o  a very broad 

class of Lie-Poisson systems, it is only easily realizable in the subcase of 

regular quadratic Lie algebras, i.e., algebras endowed with an Ad-invariant, 

bilinear, non-degenerate form. As we have seen, tlzis property enables us to  

construct a con-slngu!ar identity transfarmati~n =:I G* for the momentum 

preserving generating fullctions of the first kind on T*G. This was accom- 

plished by the application of the strict generating pair theory of Ge[13]. 

Armed with such an identity transformation generator, we can then form 

a kth-order perturbative solution to the Hamilton-Jacobi equation which is 

implicitly Casimir preserving and Poisson, i.e., the mapping on G* is sym- 

plectic with respect to the KAMS symplectic form on co-adjoint orbits. 

We claim that it is possible to build an explicit Lie-Poisson integrator for 

precisely these Lie algebras without reverting to a Ruth[l4] type of approx- 

imation to the Hamiltonian. If 6 is regular quadratic, then it is possible t o  



form a diffeomorphism between co-adjoint and adjoint orbits. For brevity, 

we will present a result proven in [I] for a left-invariant Poisson system. 

Proposition 5.4.1 Let H : T*G i R be a left-invariant Hamiltonian, i.e., 

N o T*L,  = N for all g E G. O n  (3, we defined the symplectic KAKS 

2-form with the negative sign having been selected. If there ezists a bi- 

invariant 2-form (., .) on G, then the adjoint orbit through t E G given 

by (3( = {Ad,tlg E G) has symplectic 2-form 

for ( anzd q in  6. 

As we will be using the Cartan-Killing form in our examples, let us 

denote (., .) by I<(., .). I< is non-degenerate, so for every p E G*, there 

exists a unique b E 6 such that < p , t  >= Ii'(fi,t) for all t. We now 

show that as a consequence of K being Ad-invariant, the adjoint action is 

skew-symmetric with respect to it. 

Consider 
d 

I<(adtC, 7 )  = -lt=oI~(Adexpt[C, 7) = 
dt 

With this information, we return to the original equation of motion on 

G* Since is the derivative of an element of a linear space, it can be also 

considered an element of that space. Thus, there exists some unique f i  in 6 



such that 

< b, 'I >= ~ ( j i ,  rl). 

Also, setting t = E O ,  we deduce 

- < p, adeq >= li(F, adtq) = 

- K(ad@, 7) .  (5.21) 

Therefore by the Ad-invariance of K ,  the system reduces to  

We can now approximate this flow by discretizing its equation of motion. 

If we choose as our initial position some element of the Lie algebra, po,then 

for time-step, T ,  the time advanced element p1 will be given by 

where h = is the first derivative of the Hamiltonian evaluated at the 

starting point. Each iteration may then be executed by replacing po by p~ 

and iterating through time. 

The trick which makes this algorithm pratical without any neccessity to  

separate the Hamiltonian into simpler pairings, is found in a formula which 

we have already encountered in the last chapter and proven in [24]. It can 

be shown that for t in the neigborhood of the origin in G ,  



where, just as in the final sections of the last chapter, ad< is simply a linear 

operator of a linear representation of (7 and thus the right-hand side of 

equation[1.23] can be interpreted as a power series in the operator. 

The above time-stepping obviously preserves the Casimirs by definition. 

However, we sliould check to  make sure that the KAKS symplectic 2-form 

on the adjoint leaves is preserved. 

Proposition 5.4.2 Ad,-1 : O5 -i C3t preserves the symplectic 2-form, wo, 

i.e., (Ad,-l)*wo = wo. 

To prove this, consider 

By definition this equals 

~O(A~,-~$)(TGA~,-~E‘B($), T$Ads-l ?B($)). (5.26) 

NDW, in genera! (f )*Y ( 3 )  = (T f)-lY( f (z))? so T$.Ad,-l tg($) = (Ad,)*JG(Ad,-I$). 

So, equation(5.24) equals 

where 4 = Ady-I$. We next use the fact that (Ad,)*& = ( A d , - ~ t ) ~ ,  to  

obtain 

w0(4)((Ady-1t>8(4), (Adg-l?)~(d))). (5.28) 

By the definition of the KAIIS bracket on adjoint orbits via the Cartan- 

Killing form, we find that equation(5.27) becomes 



- I{(+, [& ~ 1 ) ~  (5.29) 

by Ad-invariance of the Cartan-Icilling form. The transformed 2-form (5.24) 

now equals 

WO(@>(&(+>, ??G(?It))- (5.30) 

Therefore, the Ad mapping preserves the KAKS 2-form. 

This algorithm will be implemented in the next section for the case of the 

rigid body dynamics and compared to the results obtained via the implicit 

Hamilton- Jacobi integrator. 

5.5 Rigid Body Calculation 

We now implement the above algorithms for the same test probelem and 

compare their performances. Take a rigid body with moment of inertia 

tensor, diag(Il, 12, 13) with Il 1213. The moment of inertia ellipsoid has 

semi-axes J2 E 11, J2 E12, J2E13 where 

The angular mome~ztuin vector has magnitude m = Jrni + m$ f mg and 

the dyanmics of the rigid body is determined by the value of m relative to 

the semi-axes. 

1. If m < J2E13 or m > J2E11, then no motion is possible. 

2. If J2E13 5 nz 5 J2EI2 then the motion will be periodic with the 

constant angular momentum sphere intersecting the ellipsoid of inertia 



between the smallest and middle semi-axis. 

3. If J2EIz 5 rn < d2E11 then again the motion will be periodic about 

the longest axis. 

4. If m is equal to any of tlze three semi-axes, then this represent equi- 

librium poiizts with the two extrema being stable and the middle one 

unstable. 

We choose Il = 8, I2 = 4 and I3 = 2. We also choose the total angular 

momentum to equal 3 with initial position m = (J2, J7,O). Thus, the 

momelltuln lies in between the middle and the largest semi-axis. This gives 

an energy of E = 1. 

Botlz numerical techniques were seeded with these initial conditions and 

implemented. The explicit integrator benefits from the implementation of an 

exact formula for the so(3) Lie algebra from Whittaker[25]. The result states 

that if [ E so(3), tile11 the exponelztiai of the linear adjoint trai~sformation 

derived from this element of tlze algebra is equal to  

1 s i n 2 ( y )  
exp(ad0 = I + sin(l\tll)adt + - 

11t11 2 w 
ad;. (5.31) 

2 

Both integrators performed very well from the point of view of preser- 

vation of the angular momentum or Casimir. The implicit algorithm ap- 

peared not to  have secular growth terms in the energy whereas the explicit 

Lie-Poisson mapping exhibited a monotonic increase in its energy by about 

3-percent in 106 time steps. Both integrators reproduced the angular mo- 

mentum vector consistent with each otller. 



The angular lnon~entum remained constant throughout the calculation 

producing a trajectory completely specified by a position on the unit sphere. 

Because tlze energy error away from its true value was so small, the exact 

trajectory is almost completely reproduced. This is independent evidence 

that the explicit integrator is actually producing credible numerical results. 

Of course, the secular growth in the energy is worrying as the evidence seems 

to be that the energy oscillates around its true conserved value. However, 

it may be that the oscillation has a greater period than that of the implicit 

scheme. 

For the su(N) application, the process of constructing the algorithm is ex- 

actly tlze same as for the rigid body. We will delnonstrate the process for 

the explicit scheme. 
--- 

For su*(N), choose the basis {SqkEEn as in chapter 3, section 5. We 

know that su(N) is semi-simple and that the Cartan-Killing form in this 

basis reduces to g;j = N2S(i + j)lmOdN. Therefore, if we are given an w E 

su*(N), then we must transform it to  N2  C w-,T, in order t o  apply our 

integration technique. Given w ,  there are two more quantities to  calculate, 

the functional derivative of the energy and the linear operator adt on su(N). 

The functional derivative of the Hamiltollian witlz respect to  w is just 

($w-rcTlc) E su(N). 



From chapter 3, section 4, the matrix of the adjoint transformation is 

which provides a matrix representation on G. 

The exponential power series is then evaluated by taking matrix powers 

of this matrix. This is common to both algorithms. Just as in the so(3) 

regime, we get very good results for low dimensions but the implicit algo- 

rithm begins to slow down to a point where it is impossible to  use it for any 

significant vortex distribution evolution. 

The explicit algorithm should speed up this process by 100 to 200 fold. 



Conclusion and Summary 

We have developed the theory of geometric Hamiltonian fluid mechanics and 

built Lie-Poisson integrators for low dimensional truncations of the 2 - 0  Eu- 

ler equations on the 2-torus. The idea of using such integrators is appealing 

as they could provide a Hamiltonian technique to  investigate longtime invis- 

cid integrations. We hope that the explicit Lie-Poisson integrator introduced 

in chapter five will provide a practical tool for exploring the S U ( N )  trunca- 

tion We can definitely say for certain that the implicit Lie-Poisson integrator 

of Channel! and Scovel dries not zippear efftcient and practical clnough for 

large scale simulations. Another research area in which the S U ( N )  trunca- 

tion may find application is the equilibrium statistical mechanics of the 2D 

Euler equation. The attempt to  use statistical mechanics to  describe two 

dimensioizal illviscid fluid flow was initiated by Onsager[27] for the point 

vortex weak solution to  the Euler equations. The analysis seemed to  sug- 

gest the emergence of coherent structure of like-signed point vortex clumps 

in the fluid domain. This line of research has continued to  the present day 

with the most recent results of Miller[28] which also predict the emergence 

of such vortex structures except that the Miller theory actually models more 



realistic continuous solutions to the Euler equations. One of the problems 

with attempting to  build a statistical mechanics is to  identify the true phase 

space on which the Hamiltonian flow exists. Miller argues that phase space 

is the space of all vortex fields and that at least in the microcanonical en- 

semble averaging, one integrates over the vortex space under the Casimir 

constraints. However, since these constraints are infinite in number, some 

form of approximation to the IIellnholtz laws are effected. This approxi- 

mation unfortunately breaks material line integrity. Of course, this may be 

quite justifiable in the long time limit of equilibrium statistical mechanics 

and only extensive testing of the theory will yield a satisfactory answer. The 

question of the isolatioll of the real phase space can however be quickly ad- 

dressed from the discussioll of the previous chapters. The space of all vortex 

fields foliates into co-acijoint orbits whiclz have a symplectic structure and 

are disjoint. Therefore, depending on the choice of initial vortex distribu- 

tionj the appropriate phase space will be that particular distribution's orbit. 

The truncated torus flow offers a tempting mechanism by which a statistical 

mechanical program could be implemented. 
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Appendix A 

Differentiable Manifolds, 

Tangent Bundles and 

Manifold Mappings 

The fundamental result of manifold theory, at least for our applications is 

the formulation of calculus on general spaces. This is achieved by locally 

identifying the set with some linear space such as a Banach space. Calculus 

can then be executed on tlze set by moving to  the Banach space, computing 

as normal and then mapping back to  the set. By carefully linking the local 

charts together, a global calculus is obtained. 

Given a set &I, a local chart on M over some Banach space V is a pair 

(U, 4) where U is open in M and 4 : U -+ V is bijective onto an open set in 

V. M is called a smooth manifold over V if 

1. for all x E M ,  tlzere exists a chart (U, 4) such that x E U. 



are open in V and, 

3. (62 0 : &(U1 n U2) -+ 42(Ul n Uz) is a Cw diffeomorphism. 

A mapping f : M --+ N from one smooth manifold to  another is of class 

CT if given (U, (6) a chart in &I and (W, +) a chart in N such that if a E U ,  

f ( a )  E W, the mapping f4$ = + o f o 4-I : 4(U) --+ +( f (U)) is of class CT. 

We will use f4+ to construct the derivative of f .  

In order to define the derivative of a manifold mapping, we need to  

construct the tangent bundle. A tangent bundle is a special case of a vector 

bundle which can be thought of heuristically as a way of assigning a linear 

vector space to every point on a manifold. 

Locally a vector bundle will look like a vector space product. If E and 

F are vector spaces and U c E open, then U x F is called the local vector 

bundle with U the base space which is isomorphic to U x (0) which is 

known as the zero section. If u E U ,  then {u) x F is the fiber over U 

which is itself a vector space. Locally, a vector bundle mapping can also be 

defined. A mapping 4 : U x F --+ U' x F' is called a CT local vector bundle 

mapping if it haa the form $(u, f )  = (g!q(u), $Z(U). f )  where : U + U' 

and 42 : U --+ L(F,  F' ) .  4 will map fibers to  fibers. 

Now we are ready to  define a vector bundle. Let S be a set. A local 

bundle chart of S is a pair (W,$) where W C S and (6 : W -+ U x F is a 



bijection onto a local bundle. We can form a vector bundle atlas A which 

is a family of local bundle charts which satisfy 

1. for all x E S ,  there exists a local bundle chart (U, 4)  such that 

x E U, 

2. for any two local bundle charts, (Ui, 4;), (Uj, q$) with U; n Uj non- 

empty, 4;(Wl n I/Vz) is a local vector bundle and $21 = 42 o 41% 

is a Cm local vector bundle isomorphism. 

The vector bundle is the pair (S, A). The equivalent of the base on a local 

vector bundle is the space B = {s E Sls E dV1(U x (0)) for  some (U, 4) E 

A). B is a submailifold of S and the map n : E -+ B; n(s) = b is surjective 

and Cm. 

Let E and E' be vector bundles. Let f : E -+ E' be a mapping between 

the two bundles. f is called a CT vector bundle mapping if for each e E E 

and local chart (V,q5) of E' such that f (e)  E V, there exists a local chart 

(W,$) with f (W)  c V which has the property that f4$ = t,h o f o 4-I is a 

C r  local vector bundle mapping. 

We will often refer to a vector bundle by specifying the projection map- 

ping n : E -+ B from the vector bundle to  the zero section. The fiber n-I (b) 

is a vector space and n is Cm surjective. 

We can now investigate the tangent bundle. If f is of class CT and maps 

U c E into V c F ,  then the tangent mapping o f f  is denoted T f and maps 

U x E - + V x F v i a  



Recall that D f (u)  is an element of L ( E ,  F). This tangent mapping is easily 

seen to  be a local vector bundle mapping. 

We will now construct the tangent bundle to  a smooth manifold A4 and 

show that mappings on the tangent bundle can locally be represented as 

above. We proceed by defining a curve at a point x t. M as a mapping 

a : I c R -+ &I such that a(0) = x. Take two curves at  x t. M ,  a1 and az. 

We say that they are tangent a t  x if, in terms of some local chart (U, 4) a t  

lim ( 4  o .d(t) - ( 4  002)(t) = 0. 
t--bO t 

This can be shown to be independent of the choice of chart. 

We form an eq~iivalence class of curves at x which are tangent and denote 

it by [a],. Sucli a class is called a tangent vector. The set of all such vectors 

is called the tangent vector space at x and denoted T,&I. 

If f : M -+ N is a differentiable mapping and (U, 4) and (W, $) are local 

chzrts in ,?/I arid _N respectivelyj then i f  z E T i  and f (U)  c W ,  we define 

where if 2 = (x, v) E T,&I, then 

This is a local vector bundle mapping and Tf  is a vector bundle mapping 

on TM = UT,&!. The projection mapping n : T M  -+ M defined by 

n(v) = x if v t. T,M is a vector bundle. Also, if we form the space of linear 

functionals, T,+&I to T,M at every point of the manifold, &I then the space 

UT,*M is also a vector bundle referred to as the co-tangent bundle. 



Appendix B 

Tensors and Exterior 

Algebra 

We will first consider tensors defined on linear vector spaces. The space of 

linear mappings from E to  R,  L(E ,  R )  is called the dual space t o  E and is de- 

noted E*. This can be generalized to  L(E*, R) and to  LTfS (E* ,  . . . , E*; E7 .. . , E ;  R) 

where there are r copies of E* and s copies of E.  These multilinear real- 

valued mappings are called tensors of contravariant order r and covariant 

order s. 

The tensor product tl  8 t2 E ~::.tfii(E) of tl E TJ;(E) and t2 E TJ;(E) 

is defined by 

Given linear mappings between linear vector spaces, we can generalize 

their action to include tensors. 



Definition 1 If 4 E L(E,  F), then @ E L(F*, E*) is defined by @(/?).e = 

/3(4(e)). More generally, TJ4 = 4; E L(T,T(E), T,T(F)) is defined b y  

4it(P1,. . . , PT; fl, - .  , fs) = t(f(P1), . . . , f (PT) ,  $-I( f l ) ,  . . . , 4-l(fs)). 

(B.2) 

In order to  define tensors on smooth manifolds and vector bundles, we 

will expand the above definitions to  local vector bundles. If 4 : U x F + 

U' x F' is a local vector bundle mapping, then we define 4; : U x T,T(F) -+ 

U' x T;(F')  by 

4 3 ,  t )  = ( 4 0 ( ~ ) ,  (4u);t). ('3.3) 

Let n : E -+ B be a vector bundle with fibers Eb = n-l(b). We define 

T,T(E) = UTJ(Eb) and the tensor bundle to  be n,T(e) = b  if and only if 

e E T,T(Eb). 

Having stated the basics on a vector space, we will now move to  the 

manifold setting. Let M be a manifold and TIM : T M  -+ M its tangent 

bundle. We will denote Ti(&!) = T,T(T&I) as the vector bundle of tensors 

of this order. Before we proceed, we introduce sections which can loosely be 

considered as the inverse of the tangent bundle mapping. A CT section of a 

tangent bundle is a map ( : B -+ E of class CT such that for each b  E B, 

n([(b)) = b. The vector space of all such sections over B will be denoted 

rT (n). 

If 4 : M i iV is a diffeomorphism between smooth manifolds, then 

is the pusl~forward o f t  by 4 and @t = (4-l),t is the pullback. 



The major colnputational tool in Geometric Hamiltonian mechanics in- 

volves exterior calculus of differential forms. The main form which arises is 

the symplectic 2-form needed to  generate the Hamiltonian vector fields. We 

will now summarize the main techniques starting on vector spaces before 

passing to  the manifold environment. 

Let f i k ( ~ )  = L ~ ( E ,  R) be the space of skew-symmetric muItilinear maps 

on E. If a E TE ( E )  and p E T;(E),  we define their wedge product a A ,L3 E 

RT1+T2 ( E )  by 

A is the alternating operator on tensors defined by 

over all permutations, a of {1,2,. . . , 5). 

The properties of the wedge product can be summarized by 

1. A is bilinear, 

2. a A /3 = (-1)T1T2p A a ,  

3. a A ( f 3 A y ) =  ( a A p ) A y .  

The direct sum of R k ( ~ )  k = 0,1,2, .  . . is called the exterior algebra of 

E .  If d imE = n, then dimRn(E) = 1 and if a l , .  . . , a n  is a basis for E*, 

then a l , .  . . , an spans Rn(E). We now define the determinant of a mapping 

4, 

Definition 2 Let dim(E) = n and 4 E L ( E ,  E) .  Thre determinant of 4 is 



the unique constant det4 such that @ : Rn(E) -i Qn(E) satisfies @w = 

(detqi)~ for all w E Rn(E). 

If g E T,O(E) is non-degenerate and symmetric, then there exists a unique 

volume element, p = p(g) called the g-volume such that p(el , .  . . , en)  = 

1 for all positively oriented g -orthonormal bases {el, . . . , en) of E. If 

{el,. . . ,en} is the dual basis, then p = el A e2 A . . . A en. 

The Nodge mapping can be defined using this volume form. 

Definition 3 There exists a unique * : Qk -+ f P k ( E )  such that 

for a,P E R"(E. This map is called the Hodge star map. 

As a simpIe example, consider the Hodge star operator on Q1(R3), then 

*el = e2 A e3, *e2 = -el A e3 aud *e3 = e l  A e2. 

We are now prepared to  study differential forms and the operators which 

act on them. 



Appendix C 

Exterior Calculus 

We can extend the above definitions to exterior forms on a manifold M .  Let 

QO(M) = 3 ( M ) ,  Q1(M) = A'* and Qk(M) = roo(QL), the C" sections on 

&I wlzere Qif is the vector bundle of exterior k-forms on the tangent spaces 

of M .  

Letting Q(M) be tlze direct sum of Qk(M) for 5 = 0,1,2,  . . . and extend- 

ing the wedge product componentwise to  all of Rk(M),  Q(M) is called the 

algebra of exterior differential forms on M .  

The exterior derivative is one of the most important operators on ex- 

terior forms. The usual definition of the differential involves its action on 

smooth functions on some inanifold,M, d : QO(&l) -+ Q1(M) where f -+ 

df ;  df (x)X(m) = $ l t Z o (  f o u)( t ) ) .  The curve a is a tangent curve passing 

through x at t = 0. We can extend this definition to d : Qk(M) -i Rk+'(M). 

The differential d has a number of useful properties. We list(dropping the 

bold type) them: 



1. For a E fIk(A4) and P E Rl(M), then 

d(a A p) = dcu A /? + (-1)" A ddp. (c.1) 

2. On RO(M), d co-incides with the usual definition of the differential. 

3. d2 = d o d = 0 for all components of the exterior algebra. 

In co-ordinates, if w E Rk(M ), then 

where the component v; has been left out of the righthand side of the equa- 

tion. 

We will give a number of examples of applications of the differential. 

Consider a function f E R0(R3), then df = f,dx f f,dy + f,dz. This is 

the standard result which is usually taken as the gradient of f .  However, as 

we see, df is a 1-form, so if we want to know the gradient of f ,  we find the 

vector such that ?.jb = df. The operation b raises a vector to a 1-form with 

1-1 matching of the natural basis. 

Remaining in R3, we consider the form Fb = Fldx + Ejdy + F3dz for 

F E T2(R3). Then, 

dF2 dFl dFl dF3 a5 ap3 
dFb = (- - -)dx A dy - (- - -)dz A dz f (- - -)dy A dz. ax dy  az ax dy dy 

This will be related to the Curl of F by 

We can also show that d * = (divF)dx A dy A dz. Thus, we see that all the 

usual vector analysis operators on R3 can be expressed in terms of forms. 



Another important property of d is that it is natural with respect to  

diffeomorphisms, F : M --+ N. Then F* : Q(N) -+ Q(M) satisfies F*(+ A 

w) = F*$ A F*w and F*(dw) = d(F*w). With respect to  the pushforward, 

F, = (F-I)*, d is also natural. 

We will now discuss the Lie derivative. The Lie derivative of a function 

f with respect to a vector field, X E TJ(hf) is defined via the differential of 

f ,  

L x f  (m)  = df (m).X(m), (C.4) 

for all m E &i. It can easily be shown that Lx is also natural with respect 

t o  pushbacks and pusllforwards of diffeomorphisms. 

We can define Lx on X(M) by LxY  = [X, Y ]  which is the unique vector 

field on M such that 

From the theory of differential operators on tensors, it is known that 

if there exist a D : 7(&I) -+ 7 ( M )  which agrees with Lx on 3 ( M )  and 

on X(M),  then D will be uniquely determined on all of the tensor bundle. 

We will thus assume that we have extended Lx to all exterior forms of any 

order. This Lx is natural with respect to diffeomorphisms, just as d is, i.e., 

For example, let {&} be a basis for the vector fields on Rn. Consider the 

the Lie derivtive of a vector X = xi& on a tensor g E T;, g = gijdx%ddyj. 

Then 



which is still a symmetric tensor of covariant order 2. 

A most important property of the Lie derivative which is sometimes used 

as an alternative definition is that if Ft is the flow of X ,  then 

d 
-F,"t = F,"Lxt, 
dt F . 8 )  

for any tensor t. If Lxt = 0, then the tensor is obviously invariant under 

the flow of X .  

The differential d is natural with respect to Lx as well, i.e., 

The last major operator which is frequently applied in geometric me- 

chanics is the interior operator ix which is defined for some X € X(M). 

ix : RYM) -+ RL1(M) is defined on any w in R(M) by 

ix has a number of very useful properties which are quite indispensable 

in calculations. If a E Rk(M) ,P E R1(M) and f E RO(M), 

If a is a k-form which satisfies dixa = 0, then F,*(a) = a. Suppose that 

X E X(R3) is divergence free, then for the 3-form a = dx A dy A dz, 

i x a  = ix(dz A dy A dz) = *xb = divX. (C.10) 



Therefore, d i x a  = 0. We can thus conclude that the flow of X is volume- 

preserving. 

We say that w E Rk(n/l) is a closed form if dw = 0 and exact if there 

exists a 0 E Rk-' such that w = do.  

To finish off our discussion, we state Poincare7s lemma which applies to 

closed l-forms: Every exact form is closed and every closed form can be 

regarded, at least locally, as exact. 



Appendix D 

The volume preserving diffeomorpliisms on some Riemannian manifold M 

form a Lie group only in a restricted sense. We will use this appendix to  

investigate the properties of infinite dimensional Lie groups which are not 

modeled on l3anacli spaces. Details of all the topics discussed here can be 

found in Ebin and Marden[l2] or Schmid[2]. 

We first consider general function space manifolds. Consider a finite 

dimensional vectoir bundle over a compact Ad, n : B 4 &I, where B is the 

base space. Locally, a section ( of n can be considered a as a map from 

a copy of Rn to Rm for some m and n = dimM. A H s  section of n is a 

section such that all its derivations of order less than or equal to  s are square 

integrable. Therefore, form HS(n) ,  the set of all Hs-sections. If [ E HS(n), 

then locally its representative [ is an element of the Hs-maps on Euclidean 

vector spaces. 

Similarly, denote by HS(M, N)  the set of all H S  maps from a smooth 



manifold, &I to  another manifold N .  Locally, the representative of a map- 

ping f € I I S ( M ,  N )  will be an element of H S ( R n ,  Rn) where n,m are the 

dimensions of &l and N  respectively. We wish to impose a manifold struc- 

ture on tlzis space. We can define the tangent space t o  H S ( M ,  N )  at  any 

point f as follows, 

T f H s ( M ,  N )  = {[ E H S ( M , T N ) I n N  o  ( = f ) .  (D.1) 

The set of all W s  diffeoinorphisms on M ,  Di f f S ( M )  forms an open subspace 

of H S ( M ,  M). Tlle tangent space at e E M  to  Di f f S ( M )  is defined by 

There are problems defining a Banach or Hilbert structure on Di f f oo (M)  

because there does not exist a well-defined norm . It is an example of a 

Frechet space in which its topology is defined by an infinite sequence of 

norms on Di f f s(&l) ,s = 0, 1 ,2 ,  . . .. Differential calculus on these types of 

spaces is far more difficult than that encountered on the more benign infinite 

dimensional Banach function spaces. Dif  fS(II/I) can also be considered as 

a group under the composition of functions, 

p :  D i f f s ( M ) x  D i f f s ( M ) - +  D i f f s ( M ) ; p ( f , g ) =  f o g .  (D-3) 

However, Dif  f s ( M )  is not a Banach Lie group since the multiplication 

operator p  is only differentiable in a limited way. 

Consider right multiplication R, : Di f f s ( M )  -+ Di f f S ( M )  : R, f = 

f o g  for all f ,  g  E Di f f S ( M ) .  Then the derivative of this mapping implies 

tha TR, = R, so that R, is Cm. However, this is not the case for left 



translation as its derivative is TL ,  = LTg so that if g is Ck, then L, is only 

Ck. Therefore, group multiplication is not smooth but only continuous. 

In the geometric theory of mechanics, the Lie algebra is of the utmost 

importance. The Lie algebra in this case is the tangent space to  Di f fs (M)  

at  the idenity transformation of M .  The bracket on the algebra [g, q] between 

two elements will be defined by first extending them to  the full tangent 

bundle via right translation to their right-invariant counterparts,Yt and Y, 

and then restricting the usual canonical bracket back to  the identity. We 

use right-translation because it is smooth. The bracket is found to  be 

However, we see that forming such a bracket will lead to  an element with a 

lower HS  behavior, thus viloating closure. This can be remedied by carrying 

out all calculations in Di f foo(M) .  However, problems arise as this space is 

an Inverse Limit IIilbert group denoted ( D i  f foo(&i), Di f f '(M)) and has a 

more complicated toplogy than standard Banach Lie groups. 'This especidy 

leads to difficulties as we are interested in subgroups of Di f f '(M), the most 

prominent being the volume preserving diffeolnorphisins on &l. It is not 

immediately obvious that these subgroups form ILH subgroups. The usual 

tactic to  prove that a subgroup forms a Lie subgroup of some group G is 

to  use the exp inapping from the Lie algebra to the group. However, for 

the diffeomorphism group, the exp mapping is found to  be only continuous 

and not even C' and there is no neighborhood of the identity transformation 

in Di f f s (M)  onto which exp maps surjectively. However, these difficulties 

can be overcome and S D i  f fS (M)  can be shown to form an ILH subgroup 



of Di f f s ( M ) .  

S D i  f fS(&!) is important because it is the configuration space for the 

flow of inviscid, incompressible fluids. If we assume that M  is some compact 

orientable manifold with Riemannian volume p, then we can define a smooth 

weak Riemannian metric on the tangent bundle to  SDi  f f S ( M ) ,  

for U, V E T,Di f f S ( M )  and (,) the Riemannian metric on M .  Ebin and 

Marsden [12] used this metric to define the kinetic energy of the fluid in La- 

grangian co-ordinates. They showed that it was right-invariant so that the 

system could be reduced to the Lie algebra, sdi f f s ( M )  = T,SDi f f S ( M ) .  

The reduced equations reproduce the Material description of fluid mechan- 

ics. Similarly, Marsden and Weinstein[8] used the right group action of 

SDi  f f S ( M )  on its cotangent bundle and the invariance of the kinetic en- 

ergy under the right action to develop a Lie-Poisson dynamics on the dual 

Lie algebra. This is equivalent to  the vorticity formulation of inviscid, in- 

compressible fluid flow. Their formulation is detailed in Chapter 2. 


