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Abstract

Most practical control problems are dominated by constraints. Although a rich theory
has been developed for the robust control of linear systems, very little is known about
the robust control of linear systems with constraints. Over the years various model-
based algorithms (given a generic term Model Predictive Control) have been used in
industry to control complex multivariable systems with operating constraints. The

design and tuning of these controllers is difficult for two reasons:

1. Process models are always inaccurate which implies that the controllers must

be robust.

2. Even in the simplest case where process models are linear, the overall systems

are nonlinear because of the constraints.

Despite Model Predictive Control’s considerable practical importance, there is
very little theory to guide the design and tuning of these controllers for stability
and robustness. It is the goal of this thesis to develop such a theory. Specifically,
a general framework based on Model Predictive Control is developed to synthesize
controllers for discrete-time linear systems subject to constraints with robust stability

and performance guarantees.
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Chapter 1 Introduction

Process models are always inaccurate which implies the controllers designed must
be robust. A rich theory [73] has been developed for the robust control of linear
systems without constraints. The theory has been successfully applied to design robust
controllers for a number of academic case studies such as high purity distillation
columns [82]. However, industrial applications have not been as forthcoming. One
main reason is that the current robustness theory does not take into account the fact
that most practical control systems are constrained.

Most practical control problems are dominated by constraints. In the late 1970s
and early 1980s, various model-based algorithms (given a generic term Model Pre-
dictive Control) (see, for example, [79, 20]) were developed by industrial researchers
to control complex multivariable systems with operating constraints. The design and
tuning of these controllers are difficult for two reasons: Firstly, process models are
always inaccurate which implies that the controllers must be robust. Secondly, even
in the simplest situation when process models are linear, the overall systems are
nonlinear because of the constraints.

Despite Model Predictive Control’s considerable practical importance and exten-
sive use, there is very little theory to guide the design and tuning of these controllers
for stability and robustness. It is the goal of this thesis to develop a general theory
for designing controllers for linear discrete-time systems subject to constraints with

robust stability and robust performance guarantees.

1.1 Motivation

Most practical control problems are dominated by constraints. There are generally
two types of constraints—input constraints and output constraints. The input con-

straints are always present and are imposed by physical limitations of the actuators
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which cannot be exceeded under any circumstances. For example, valves can only
be operated between fully open and fully closed, pumps and compressors have finite
throughput capacity, and surge tanks can only hold a certain volume. Often, it is also
desirable to keep specific outputs within certain limits for reasons related to plant op-
eration, e.g. safety, material constraints, etc. For example, total impurities should be
less than z for a distillation column, and reactors may have operating temperature
and pressure limits. It may be, however, unavoidable to exceed the output con-
straints, at least temporarily, for example, when the system is subject to unexpected
disturbances.

It may be argued that by overdesigning a controlled system the issue of physical
limitations (input constraints) could be avoided. While this is true in principle, it is
impractical due to the costs associated with the extra capacity built into the system
which is never, or rarely, used. Indeed economic optimization of the system operating

point typically derives the system to one or more constraints. Lee and Weekman [58]

report

“... in the petroleum industry the optimal operating point lies beyond
the range of practical constraints. This probably occurs because of the
savings incorporated into the design due to capital cost considerations.
Thus a well designed plant should operate at a constraint, or it is really

overdesigned.” (Emphasis added)

Lee and Weekman’s comments were based on their experiences 20 years ago. With
stiff competition and tight environmental regulations, today’s processes are even more
so than they were 20 years ago. Although Lee and Weekman’s comments stem from
the process industries, their economic considerations are valid in other disciplines as
well. These include applications in aerospace, electrical, and mechanical engineering.

In addition to dealing with constraints at the controller design stage, it is im-
portant to recognize that process models are always inaccurate. Even for extremely
detailed and involved first principles models, this will be true because assumptions

and other simplifications made in deriving these models may not be satisfied and/or
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because parameters used may not be known ezactly. Detailed models are typically
difficult and costly to obtain. The costs associated with improved modeling must
be balanced against the promise of improved control. Since there are diminishing
returns in terms of control performance from improved modeling, ezact modeling is
not economically feasible.

As aresult of model error (also called model uncertainty), the controller designed
based on a model may not work as well, if at all, on the real plant. In fact, if model
uncertainty is not taken into account properly, the performance on the real system
can be arbitrarily bad (the overall system may even be unstable). The ultimate
goal of designing a controller is for the controller to work on the real system, not on
the model. Therefore, it is necessary that the controller should be designed to be
insensitive to model uncertainty. We say that the controller is robust if small model
uncertainty results in only small changes in performance. For linear systems without
constraints, a rich theory has been developed to address the robustness issue (see, for
example, the review article by Packard and Doyle [73] and the book by Dahleh and
Diaz-Bobillo and references therein). However, very little is known for the robust
control of linear systems with constraints. It is the aim of this thesis to develop such

a theory for linear discrete-time systems with constraints.

1.2 Previous Work

Previous work on constraints and model uncertainty is summarized here.

1.2.1 Constraints

There are two popular approaches to design controllers for linear systems with con-
straints — Anti-Windup Bumpless Transfer (AWBT) and Model Predictive Control
(MPC). There are, of course, many others (see, for example, [61, 91, 90, etc]), but
we will not discuss them in this thesis. The AWBT design approach is based on the
following two-step design paradigm: Firstly, a linear controller is designed by ignoring

constraints. Because of the constraints, performance may suffer. In the next step,
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an anti-windup scheme is added to compensate for adverse effects of the constraints
on closed loop performance. The AWBT design approach rarely deals with output
constraints. The underlying principle of MPC is to determine some future control
moves that optimize an open-loop performance objective over some horizon subject
to input and output constraints. Although more than one control move is generally
calculated at each sampling time, only the first control move is implemented. At the
next sampling time, the output measurement is used to update the state estimate.
The horizon is shifted forward by one sampling and the same calculations are re-

peated. This is why MPC is also referred to as Receding Horizon Control or Moving

Horizon Control.

Anti-Windup Bumpless Transfer

Windup problems were originally encountered when using PI /PID controllers for con-
trolling linear systems with control input nonlinearities. One of the earliest attempts
to overcome windup in PID controllers was the work by Fertik and Ross [28]. It was
recognized later, however, that integrator windup is only a special case of a more gen-
eral problem. As pointed out by Doyle et al. [26], any controller with relatively slow
or unstable modes will experience windup problems if there are actuator constraints.
Windup is then interpreted as a mismatch between the controller output and the
plant input when the control signal saturates. The “conditioning technique” as an
AWBT scheme was originally formulated by Hanus et al. [40, 39] as an extension of
the back calculation strategy of Fertik and Ross [28] to a general class of controllers.
Astrom et al. [1, 2] proposed that an observer be introduced into the system to esti-
mate the states of the controller and hence restore consistency between the saturated
control signal and the controller states. Walgama and Sternby [93] have very clearly
exposed this inherent observer property in several anti-windup schemes. Campo and
Morari [11] have derived the Hanus conditioned controller as a special case of the
observer-based approach.

All these anti-windup schemes have been developed only for single-input single-

output (SISO) systems. The extension to multi-input multi-output (MIMO) systems
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has not been attempted in its entirety. As pointed by Doyle et al. [26], for MIMO
controllers, the saturation may cause a change in the plant input direction resulting
in disastrous consequences. Through an example, Doyle et al. [26] showed that all of
the existing anti-windup schemes failed to work on MIMO systems.

The stability analysis problem for SISO systems with input nonlinearity was ex-
tensively studied in the 1960s (see, for example, the book by Narendra and Taylor
[72]). However, most stability results, e.g. circle conditions [81, 99] and off-axis cri-
terion [12], were derived based on the standard conic sector bounded nonlinearity
stability theory. It is well known that these results can be very conservative when
applied to systems with input saturation constraints. Furthermore, the extension to
MIMO systems nonconservatively was not straightforward. The issue of robustness
has been largely ignored.

Recently Campo [9] and Kothare et al. [48] unified all existing AWBT schemes
and developed a general framework for studying stability and robustness issues. The
importance of this work lies in that model uncertainty can be taken into account
systematically and powerful theory exists to analyze the closed loop system for sta-
bility and robustness. However, their analysis is also based on the standard conic
sector nonlinear stability theory. Therefore, the results could be potentially conser-
vative. Another drawback for all AWBT schemes is their inability to handle output

constraints which may be present.

Model Predictive Control

In the late 1970s and early 1980s, various MPC algorithms (see, for example, [20, 79])
were developed in industry to control complex multivariable systems with input and
output constraints. Some particular names include Model Predictive Heuristic Con-
trol (MPHC), Dynamic Matrix Control (DMC), Model Algorithm Control (MAC),
Quadratic Dynamic Matrix Control (QDMC), and Identification and Command (ID-
COM). MPC has been successfully implemented on process systems as diverse as
distillation and oil fractionation [79, 41], fluid catalytic cracking [76, 36], hydrocrack-
ing [19, 46], and pulp and paper processing [62].



6

Because of the constraints, the overall MPC systems become nonlinear. Until
recently when the infinite horizon MPC with guaranteed nominal stability was in-
troduced by Rawlings and Muske [77], proving nominal stability for MPC systems
represented a major obstacle [97]. An alternate but essentially equivalent approach
is to enforce an end constraint [45], i.e. that the state at the end of a finite horizon
must be zero (or more generally, within some region). (Some of the early work is due
to Kwon and Pearson [53], but the ideas have seen a revival recently [15, 16, 60].)
This approach is identical to setting the output horizon to infinity when the system is
represented by a Finite Impulse Response (FIR) model and when the output horizon
is chosen long enough for the system to settle.

Despite MPC’s considerable practical importance and extensive use, there has
been very little theory to guide the design and tuning of MPC controllers for robusi-
ness. Campo and Morari [10, 9] made the first rigorous attempt to extend the MPC
concept to the control of uncertain linear systems and proposed a robust MPC algo-
rithm. Unfortunately, it is well known (see, for example, [102]) that robust stability
is not guaranteed with this algorithm. Zafiriou [96] used the contraction mapping
principle to derive some necessary conditions and some sufficient conditions for ro-
bust stability. However, the conditions are both conservative and difficult to verify.
Assuming lower and upper bounds on each impulse response coefficient, Genceli and
Nikolaos [32] showed how to determine weights such that robust stability can be
guaranteed for a set of FIR models. However, often weights do not exist even when
robust stabilization is possible for a set of FIR models. Lee et al. [56] proposed
a robust MPC algorithm that minimizes the expectation of a multi-step quadratic
objective function for an input-output model with stochastic parameters. Of course,
the concept of robust stability cannot be defined in this framework. For time-varying
systems, Kothare et al. [49] proposed a robust MPC algorithm whose optimization
problem for the state feedback case can be cast as a set of Linear Matrix Inequalities
(LMIs) and showed that global asymptotic stability can be guaranteed if the opti-
mization problem is feasible. This algorithm may be conservative when applied to

linear time-invariant systems (see Chapter 7 for an example). Polak and Yang [75]
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proposed a receding horizon control strategy for linear continuous-time systems with
input constraints and proved nominal stability of the closed loop system. Then they
showed that robust stability is guaranteed provided that the perturbation is suffi-
ciently small. The MPC concept has been extended to nonlinear systems. Discussing
nonlinear MPC, however, is beyond the scope of this thesis. Interested readers are
referred to the work by Mayne and Michalska [63, 64] and de Oliveira and Morari [23]

for details.

1.2.2 Model Uncertainty

In stark contrast to the problem of constraints, a rich theory has been developed for
the robust control of linear systems. Quantitative robustness analysis results were
first articulated by Doyle and Stein [27] for unstructured model uncertainty, and by
Doyle [25] for structured model uncertainty. General synthesis techniques have also
been developed. For a recent description of these techniques, see the review article
by Packard and Doyle [73]. For similar results obtained by using the I; approach, see
the book by Dahleh and Diaz-Bobillo [21] and references therein.

The theory has substantially improved the ability of control system designers to
develop multivariable designs for linear systems. It has not, however, been useful in
designing AWBT compensation schemes or MPC controllers. This is because these

systems include constraints which are not admitted by the theory.

1.3 Thesis Overview

In Chapter 2, we will give a brief tutorial review of the state-space formulation of
MPC. Through an example, we show that under the still popular assumption of a finite
output horizon it is difficult to provide stability guarantees that are general enough
to be of practical value. By extending the output horizon to infinity or including
an additional constraint called “end constraint,” the stability question is reduced
to the question of feasibility of the resulting optimization problem. The chapter

finishes with some discussion on the feasibility of both input and output constraints.
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It turns out that the output constraints may be infeasible for stable systems. As a
result, the Infinite Horizon MPC with Mixed Constraints! (IHMPCMC) algorithm
was introduced. In the next three chapters, we will investigate stability properties of
the IHMPCMC algorithm for stable systems, systems with poles on the unit circle,
and unstable systems (systems with poles outside the unit circle), respectively.

In Chapter 3, we show that global stability with the IHMPCMC algorithm is
guaranteed for linear discrete-time stable systems with both state feedback and out-
put feedback. The on-line optimization problem can be cast as a finite dimensional
quadratic program even though the output constraints are specified over an infinite
horizon. An example illustrates the main difference between the IHMPCMC algo-
rithm and the Infinite Horizon MPC algorithm proposed by Rawlings and Muske
[77].

Based on the growth rate of the set of states reachable with unit-energy inputs,
we show in Chapter 4 that a discrete-time controllable linear system is globally con-
trollable to the origin with energy bounded inputs? if and only if all its eigenvalues
lie in the closed unit disk. These results imply that the IHMPCMC algorithm is
semi-globally stabilizing for a sufficiently long input horizon if and only if the con-
trolled system is stabilizable and all its eigenvalues lie in the closed unit disk. The
disadvantage of this IHMPCMC algorithm is that the input horizon necessary for
stabilization depends on the initial condition and can be arbitrarily large. As a re-
sult, we propose an implementable ITHMPCMC algorithm. We show that with this
algorithm a discrete-time linear system with n poles on the unit disk (with any mul-
tiplicity) can be globally stabilized if the input horizon is larger than n. For pure
integrator systems, this condition is also necessary. Moreover, we show that global
asymptotic stability is preserved for any asymptotically constant disturbance entering
at the plant input.

In Chapter 5, we analyze and characterize the domain of attraction for a linear

Mixed constraints refer to “hard” input constraints and “soft” output constraints.
oo

2An energy bounded input refers to the following: Given any input u(k) € R", Z u(i)Tu(i) < co.

i=1
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unstable discrete-time system with bounded controls. An algorithm is proposed to
construct the domain of attraction. We show that the IHMPCMC algorithm (with a
proper choice of the input horizon) generates a class of control laws that stabilize the
system for all initial conditions in the domain of attraction.

The results from Chapters 3, 4, and 5 imply that the IHMPCMC algorithm,
with the input horizon chosen properly, can globally stabilize any linear discrete-time
system for which global stabilization is possible. If global stabilization is not possible
(which is the case for unstable systems with constraints), the IHMPCMC algorithm
stabilizes any initial condition for which a stabilizing control law exists.

In Chapter 6, we generalize the robust MPC algorithm proposed by Campo and
Morari [10] for control of linear time-varying systems (represented by FIR. models)
with constraints. We show that with this scheme robust Bounded-Input Bounded-
Output stability is guaranteed. Both necessary and sufficient conditions for global
asymptotic robust stability are stated. Furthermore, we show that robust global
asymptotic stability is preserved for a class of asymptotically constant disturbances
entering at the plant output. Although these results hold for any uncertainty de-
scription expressed in the time-domain, there is a trade-off between the generality of
the uncertainty description and the computational complexity of the resulting opti-
mization problem. For a broad class of uncertainty descriptions, we show that the
optimization problem can be cast as a linear program of moderate size.

In Chapter 7, we consider robust control of linear time-invariant systems with
constraints. We propose a novel MPC algorithm which optimizes performance sub-
ject to stability constraints for linear systems with mixed constraints. In the nominal
case, we show that global asymptotic stability is guaranteed for both state feedback
and output feedback for linear time-invariant stable systems. Furthermore, global
asymptotic stability is preserved for all asymptotically constant disturbances. The
algorithm is then generalized to the robust case. We show that robust global asymp-
totic stability is guaranteed for a set of linear time-invariant stable systems. When
the system is represented by an FIR model, we show that the optimization problem

can be cast as a quadratic program of moderate size for a broad class of uncertainty
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descriptions.

Chapter 8 summarizes the contributions of this thesis work. In addition, sugges-
tions for future research work are given. In Appendix A, a general anti-windup de-
sign which optimizes the error between the constrained output and the unconstrained
output of the system, applicable to MIMO systems, is developed. The method gen-
eralizes the Model State Feedback for single-input multi-output systems proposed by
Coulibaly et al. [17] and Hanus’s conditioning technique [39, 40]. Furthermore, from
our problem formulation, we can see what these methods do and why they do not

work well on MIMO systems.
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Chapter 2 Model Predictive Control

Summary

A tutorial review of the state-space formulation of Model Predictive Control is pre-
sented. The relations of Model Predictive Control to Internal Model Control and
Linear Quadratic Gaussian control are briefly examined. We show through an exam-
ple that under the still popular assumption of a finite output horizon it is difficult
to provide stability guarantees that are general enough to be of practical value. By
extending the output horizon to infinity or including an additional constraint called
“end constraint,” the stability question is reduced to the question of feasibility of the
resulting optimization problem. The chapter finishes with some discussions on global

feasibility of both input and output constraints.
2.1 Introduction

During the last two decades, various forms of Model Predictive Control (MPC) have
become common in the process industries. Some particular names include Model
Predictive Heuristic Control (MPHC), Dynamic Matrix Control (DMC), Model Al-
gorithm Control (MAC), Quadratic Dynamic Matrix Control (QDMCQ), and Identi-
fication and Command (ID-COM). Many applications of MPC are reported in the
literature and even more in sales publications. Some of them are mentioned in the
review paper by Garcia et al. [31] and in the more recent summary article by Richalet
[78]. MPC also enjoys widespread use in the Japanese process industries, as one can
learn from the survey published by [95]. It is most significant that in a similar survey
ten years prior [42], MPC can not even be found in the list of control techniques.
MPC may be the most successful and widely accepted “advanced” control technique

in process industry because
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e MPC handles input and output constraints;

MPC handles systems with the time delays;

MPC is multivariable; and

MPC is intuitive.

There is little doubt that most of the research on MPC started with the publication
of the seminal papers by Cutler and Ramaker [20] from Shell and Richalet et al. [79].
This is not to suggest that they invented MPC, but they did convince a generation
of control consultants, application engineers, managers, and researchers of the merits
and the potential of this type of tool for industrial applications. Early joint work by
Amoco and IBM [18, 51, 74] contains some of the essential features, but does not
take into account process dynamics. There is also the theoretical work on “open-loop
optimal feedback” with references going back to 1962 which is reviewed in the thesis
by Gutman [37].

The various implementations of MPC preferred by the different vendors and users
are identical in their main structure, but differ in details. These details are largely
proprietary and are often critical for the success of the algorithm in an application.
The general structure is shown in Figure 2.1. An observer utilizes knowledge of the
plant input u and the output measurement y to arrive at a state estimate #. Starting
from the current state estimate %, one can employ classic prediction algorithms to
predict the behavior of the process output over some output horizon H, when the
manipulated input u is changed over some input horizon H, (Figure 2.2).

At time step k, the task of the optimizer is to compute the present and future
manipulated variable moves {u(k),...,u(k + H,)} such that the predicted output
follows the reference trajectory in a desirable manner. The optimizer takes into
account constraints on the inputs and outputs which may be present. For linear
process models, depending on the objective function, either a linear or a quadratic
program results which is solved on-line in real-time at each time step. For commercial

applications, various vendors have developed short-cut optimization procedures.
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Figure 2.1: Structure inherent in all MPC schemes

Only u(k), the first one of the sequence of optimal control moves is implemented
on the real plant. At time step k + 1, another output measurement y(k + 1) and
another state estimate (k + 1) are obtained, the horizons are shifted forward by one
step, and another optimization is carried out. This procedure results in a moving
horizon or receding horizon strategy. A key feature of the technique is that the input
and output horizons (H, and H,, respectively) are generally finite. Often the values
chosen for H, and H, are different. Furthermore, in some of the algorithms, there
is the option not to include the control error during the first few time steps in the
objective function. The problem definition as presented allows one to treat with
equal ease multivariable problems with an unequal number of inputs and outputs,
non-minimum phase systems and systems subject to constraints.

The rest of the chapter is organized as follows. Section 2.2 gives a brief tutorial of
the state-space formulation of MPC. For the input /output formulation of MPC, in-
terested readers are referred to the book by Soeterboek [83] who provides an excellent
exposition of the input/output formulation and assumptions. The relations of MPC
to Internal Model Control and Linear Quadratic Gaussian control are briefly exam-
ined in Section 2.3. In Section 2.4, we show through an example that under the still

popular assumption of a finite output horizon it is difficult to provide stability guar-
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Figure 2.2: Definition of the optimization problem for MPC

antees that are general enough to be of practical value. By including an additional
constraint called “end constraint” (Section 2.5) or extending the output horizon to
infinity (Section 2.6), the stability question is reduced to the question of feasibility of
the resulting optimization problem. We discuss global feasibility conditions for both
input constraints and output constraints in Section 2.7. Section 2.8 concludes the
chapter.

Notations and Assumptions The notation used in this chapter is fairly standard.
|e| denotes the Euclidean norm, |e|; the 1—norm, and |e|s, the co—norm. z7 denotes
the transpose of z. For z,y € R",z < y if and only if z; < Yi,t = 1,--- n. We
will assume throughout this chapter that the sysfem to be controlled is linear time
invariant discrete-time. For simplicity but without loss of generality, the disturbance
and the noise are not included in the system. A good treatment of the disturbance
and noise is given in [57]. Also we assume that we would like to keep the state at the

origin rather than at some arbitrary reference state.
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2.2 Problem Formulation

Assume that the system is described by

v(k+1) = Az(k) + Bu(k)
(2.1)

y(k) = Cxz(k)

where z(k) € R"= denotes the state at time step k, u(k) € R™ the manipulated
variables (or the input), and y(k) € R™ the controlled variables (or the output). It
is well known (see, for example, the paper by Lee et al. [57]) that the popular step
response models used, for example, in Dynamic Matrix Control and other algorithms
are just a special realization of a state-space model. Here we have not included
the disturbance and noise for simplicity. The theory for output prediction is well

developed (see, for example, [3] and [35]). It is summarized in the following:

z(klk—1) = Az(k—1k—1)+ Bu(k—1) (2.2)
y(klk—1) = Cxz(klk—1) (2.3)

Correction based on measurements:

z(klk) = z(k|k — 1) + K (y(k) — y(k|k — 1)) (2.4)

Prediction:
z(k+1k) = Ax(klk) + Bu(k) (2.5)
y(k+1lk) = Cz(k+ 11k) (2.6)

The filter gain K is determined from the solution of a Riccati equation. Prediction for
more than one step ahead is obtained by applying the prediction equations recursively.
Here (o)(k +i|k) denotes the variable at time step & + 7 with information up to time

k. Clearly, z(k + tlk) = z(k +1) V i < 0.
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2.2.1 Objective Function

Various objective functions have been used. The most common one uses the 2—norm

both spatially and temporally.

H, H,
Op = Y z(k+ilk) Tox(k +ilk) + > u(k + i|k) Tyu(k + i|k)
i=1 . i=0 (2.7)
+ > Aulk +4lk) T anAu(k + i|k)
=0

where

H, is the output horizon
H, is the input horizon
Au(k +ilk) = u(k + i|k) — u(k +14 — 1|k), Au(k +ilk) = Au(k +4) Vi <0

I';,I'y, and s, are positive definite (or semi-definite) weighting matrices

In general, one can even choose weighting matrices to be time varying, i.e. I';, Ty,
and I'a,, may be functions of i. However for simplicity we assume them to be time-
invariant here. Other popular objective functions are given as follows.

1 —1 norm:
HP Hc

O = [Toa(k +ilk)y + Y [[Twulk + ilk)| + [T auAulk + k)]
1=1 =0

o0 — 1 norm:

&, = Z; ITaz(k + i|k)|oo + ; (ITuu(k +4]k) oo + T aulu(k + i[k) o]

oo — OO norm:

o, = pax, IToz(k +4]k)|oo + max, ITuu(k + i]k)|oo + Jmax, ITauAu(k +i]k)|o
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1 — oo norm:
o, = i:I},lfj-l,}%Ip IToz(k +ilk)|; + Jmax [Cyu(k +ilk)]; + Jmax T avAu(k + 1]k) |y

A good description of advantages of each, especially the co — oo norm, as well as some

other objective functions is given by Campo [9].

2.2.2 Constraints

There are generally two types of constraints—input constraints and output con-
straints. The input constraints can be described by imposing lower and upper bounds

on the input.

u(k)€U={u:ummgugum‘”},kZO

Sometimes the rate of change of the input may be bounded, i.e.
|Au(k)|] < Au™>7 V k
The output constraints can be described generally by

u
z(k) e X =1z :[F, F <f,uelUy, k>0

x

Clearly, to make any control problem meaningful, we must assume that « = 0 and
r = 0 are an interior point of U and an interior point of X, respectively, and that

Au™®® > 0. As we shall see later, these constraints may be infeasible even for stable

systems.

2.2.3 Control Design

The control actions are generated by Controller MPC which is defined as follows.
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Definition 1 Controller MPC: At time step k, the control move u(k) equals the
first element u(kl|k) of the sequence {u(k|k), u(k+1[k), - u(k+ H, — 11k)} which is
the minimizer of the optimization problem

J, = &
BT )k )

u(k +1ilk) elU 1=0,1,---,H.— 1
(k +ilk) (2.8)
|Au(k + k)| < Au™=® §=0,1,---,H, — 1

subject to <
u(k+ilk) =0 i=H,H.+1,--- H,

sk+ik)eX  i=1,--- H,

For the objective function that uses the 2—norm both spatially and temporally, the
optimization problem (2.8) can be cast as a quadratic program. For all others men-

tioned above, the optimization problem (2.8) can be cast as a linear program.

2.3 Relations to Other Methods

In this section, we discuss briefly how MPC without constraints is related to Internal
Model Control and Linear Quadratic Gaussian control. Here we will assume that the

2—norm is used both spatially and temporally (i.e. ®; in Definition 1 is defined by

2.7)).

2.3.1 Internal Model Control

Without input and output constraints, the optimization problem (2.8) can be solved
as a standard linear least squares problem. With the moving horizon assumption, a
linear time invariant controller results. Garcia and Morari [30] have shown how to
obtain the controller transfer function from the linear least squares solution.

Garcia and Morari [29] were the first to show that the structure, which is referred
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to as Internal Model Control (IMC), depicted in Figures 2.3, is inherent in all MPC
schemes without constraints. Here P is the plant, P a model of the plant, and @,
and @), the controllers. It is well known [69] that the IMC structure and the classic
feedback structure shown in Figure 2.4 are equivalent. However, the advantage of
using the IMC structure is that closed loop stability is guaranteed if and only if ),
and @), are stable when P is stable and P = P.

r + u id
—>Q1—>§ - P o -

Figure 2.3: Internal Model Control structure

r + u id

— C; —»i_ = P 0 r

C, |=

Figure 2.4: Classical feedback control structure

Much research has been done to relate various MPC tuning parameters to @; and
@2 and choose the tuning parameters properly so that (1 and @), are stable. However,
it is fair to say, after a decade of research, that such relationship, if it exists, is too

complicated to be practical.! With ', = 0, it can be easily shown that Controller

't was falsely claimed in the survey paper [31] (Theorem 2 in the paper) that a sufficiently large



20

MPC provides integral control, i.e. no offset for step-like disturbances.

2.3.2 Linear Quadratic Gaussian Control

With H, = H, = co and T'p, = 0, and without constraints, the well studied infinite
horizon Linear Quadratic Gaussian (LQG) optimal control problem results, which
has been studied extensively for decades [52, 7, 54]. It has some nice properties, most
importantly that the resulting controller is a constant gain acting either on the state,
if available, or the state estimate, and that closed loop stability can be guaranteed

under rather general conditions.
With H, and H, finite, some main differences between MPC and LQG are given

as follows. Interested readers are referred to the paper by Garcia et al. [31] for more

details.

e The MPC computation requires the solution of a linear least squares problem.

LQG involves solving an algebraic Riccati equation.
® MPC has two more tuning parameters (H, and H,) than LQG.

e Most MPC algorithms used in the industry assume no measurement noise and

step disturbance.

2.4 Finite Horizon MPC

Ever since MPC was first introduced in the late 70s and early 80s, much of the research
has been done based on the assumption that both the input horizon and the output

horizon are finite. Several reasons have been mentioned. Among them are

o Simpler computation: In certain situations, it may be simpler to use the MPC
approach to find the controller gain matrix via a least squares problem, rather
than by solving a Riccati equation which is necessary in the infinite horizon

case.

weight on Au would result in stable Q; and Q. See Section 2.4 for a counter example.
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e Constraints: It is not immediately clear how a problem involving constraints on

both inputs and outputs can be addressed in an infinite horizon setting.

o More tuning flezibility: The variable output horizon length (H,) may offer an-

other tuning parameter to achieve improved performance and robustness.

Unfortunately in retrospect there is little merit to these and other arguments in

favor of a finite horizon approach.

e Simpler computation: With today’s computer power at our disposal, the com-

putational issue is largely irrelevant.

e Constraints: We can argue that the constrained case can be handled in an infi-
nite horizon setting (H. = H, = 00) as well. Let us assume for simplicity that
we are regulating the state from some initial state xy to the origin and that the
optimization problem is feasible, i.e. there exists a solution u(k),u(k + 1),...
which satisfies all the constraints and brings the state back to the origin. Clearly,
the steady state solution u®*® = 0, z*° = 0 is feasible and inside the constraint
set. Thus, the problem is only constrained initially when the state is far from
the origin and becomes unconstrained after sufficiently long time. This time
can be estimated from some simple norm arguments. Therefore, we can solve
the constrained problem over an infinite horizon by appropriately splicing to-
gether the solution for a constrained finite horizon and an unconstrained infinite

horizon problem.

e More tuning flexibility: Tuning of control systems based on a finite horizon
approach is often exceedingly difficult. The effect of the available parameters
is often non-monotonic as demonstrated by Soeterboek [83]. For example, with
'y =1,T, = 0 and I'ny, = 7/, increasing the input weight -, which one
would expect to suppress control action and stabilize the system, can actually
destabilize a system. Upon further increase of the parameter, stable behavior is
found. This is shown in Figure 2.5. This behavior is not observed with H, = co

(Figure 2.6).
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Figure 2.5: System 5/(4s + 1)(5s + 1); T, = 0.5; H, = 1. For finite output horizons
H, =1 or 2 the system behavior is “non-monotonic” as the input weight 7 penalizing
Auw is increased (y = 0 solid; v = 0.1 dash; vy = 1 dot)

As pointed out by Bitmead et al. [4], proving strong stability for the Finite
Horizon MPC (FHMPC) formulation has been extremely unsuccessful. The stability
results which have been obtained for the FHMPC formulation are all very weak (see,
for example, the early results in [29, 14, 13].) They either are of an asymptotic na-
ture, utilizing the well known results for the infinite horizon problem, or apply to very
particular situations only (a specific class of systems, deadbeat control, etc.). In fact,
we will now consider an example which illustrates that there does not exist a univer-
sal set of tuning parameters for the FHMPC formulation, within the input /output

setting, that woul