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Abstract

Most practical control problems are dominated by constraints. Although a rich theory
has been developed for the robust control of linear systems, very little is known about
the robust control of linear systems with constraints. Over the years various model-
based algorithms (given a generic term Model Predictive Control) have been used in
industry to control complex multivariable systems with operating constraints. The

design and tuning of these controllers is difficult for two reasons:

1. Process models are always inaccurate which implies that the controllers must

be robust.

2. Even in the simplest case where process models are linear, the overall systems

are nonlinear because of the constraints.

Despite Model Predictive Control’s considerable practical importance, there is
very little theory to guide the design and tuning of these controllers for stability
and robustness. It is the goal of this thesis to develop such a theory. Specifically,
a general framework based on Model Predictive Control is developed to synthesize
controllers for discrete-time linear systems subject to constraints with robust stability

and performance guarantees.
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Chapter 1 Introduction

Process models are always inaccurate which implies the controllers designed must
be robust. A rich theory [73] has been developed for the robust control of linear
systems without constraints. The theory has been successfully applied to design robust
controllers for a number of academic case studies such as high purity distillation
columns [82]. However, industrial applications have not been as forthcoming. One
main reason is that the current robustness theory does not take into account the fact
that most practical control systems are constrained.

Most practical control problems are dominated by constraints. In the late 1970s
and early 1980s, various model-based algorithms (given a generic term Model Pre-
dictive Control) (see, for example, [79, 20]) were developed by industrial researchers
to control complex multivariable systems with operating constraints. The design and
tuning of these controllers are difficult for two reasons: Firstly, process models are
always inaccurate which implies that the controllers must be robust. Secondly, even
in the simplest situation when process models are linear, the overall systems are
nonlinear because of the constraints.

Despite Model Predictive Control’s considerable practical importance and exten-
sive use, there is very little theory to guide the design and tuning of these controllers
for stability and robustness. It is the goal of this thesis to develop a general theory
for designing controllers for linear discrete-time systems subject to constraints with

robust stability and robust performance guarantees.

1.1 Motivation

Most practical control problems are dominated by constraints. There are generally
two types of constraints—input constraints and output constraints. The input con-

straints are always present and are imposed by physical limitations of the actuators
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which cannot be exceeded under any circumstances. For example, valves can only
be operated between fully open and fully closed, pumps and compressors have finite
throughput capacity, and surge tanks can only hold a certain volume. Often, it is also
desirable to keep specific outputs within certain limits for reasons related to plant op-
eration, e.g. safety, material constraints, etc. For example, total impurities should be
less than z for a distillation column, and reactors may have operating temperature
and pressure limits. It may be, however, unavoidable to exceed the output con-
straints, at least temporarily, for example, when the system is subject to unexpected
disturbances.

It may be argued that by overdesigning a controlled system the issue of physical
limitations (input constraints) could be avoided. While this is true in principle, it is
impractical due to the costs associated with the extra capacity built into the system
which is never, or rarely, used. Indeed economic optimization of the system operating

point typically derives the system to one or more constraints. Lee and Weekman [58]

report

“... in the petroleum industry the optimal operating point lies beyond
the range of practical constraints. This probably occurs because of the
savings incorporated into the design due to capital cost considerations.
Thus a well designed plant should operate at a constraint, or it is really

overdesigned.” (Emphasis added)

Lee and Weekman’s comments were based on their experiences 20 years ago. With
stiff competition and tight environmental regulations, today’s processes are even more
so than they were 20 years ago. Although Lee and Weekman’s comments stem from
the process industries, their economic considerations are valid in other disciplines as
well. These include applications in aerospace, electrical, and mechanical engineering.

In addition to dealing with constraints at the controller design stage, it is im-
portant to recognize that process models are always inaccurate. Even for extremely
detailed and involved first principles models, this will be true because assumptions

and other simplifications made in deriving these models may not be satisfied and/or
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because parameters used may not be known ezactly. Detailed models are typically
difficult and costly to obtain. The costs associated with improved modeling must
be balanced against the promise of improved control. Since there are diminishing
returns in terms of control performance from improved modeling, ezact modeling is
not economically feasible.

As aresult of model error (also called model uncertainty), the controller designed
based on a model may not work as well, if at all, on the real plant. In fact, if model
uncertainty is not taken into account properly, the performance on the real system
can be arbitrarily bad (the overall system may even be unstable). The ultimate
goal of designing a controller is for the controller to work on the real system, not on
the model. Therefore, it is necessary that the controller should be designed to be
insensitive to model uncertainty. We say that the controller is robust if small model
uncertainty results in only small changes in performance. For linear systems without
constraints, a rich theory has been developed to address the robustness issue (see, for
example, the review article by Packard and Doyle [73] and the book by Dahleh and
Diaz-Bobillo and references therein). However, very little is known for the robust
control of linear systems with constraints. It is the aim of this thesis to develop such

a theory for linear discrete-time systems with constraints.

1.2 Previous Work

Previous work on constraints and model uncertainty is summarized here.

1.2.1 Constraints

There are two popular approaches to design controllers for linear systems with con-
straints — Anti-Windup Bumpless Transfer (AWBT) and Model Predictive Control
(MPC). There are, of course, many others (see, for example, [61, 91, 90, etc]), but
we will not discuss them in this thesis. The AWBT design approach is based on the
following two-step design paradigm: Firstly, a linear controller is designed by ignoring

constraints. Because of the constraints, performance may suffer. In the next step,
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an anti-windup scheme is added to compensate for adverse effects of the constraints
on closed loop performance. The AWBT design approach rarely deals with output
constraints. The underlying principle of MPC is to determine some future control
moves that optimize an open-loop performance objective over some horizon subject
to input and output constraints. Although more than one control move is generally
calculated at each sampling time, only the first control move is implemented. At the
next sampling time, the output measurement is used to update the state estimate.
The horizon is shifted forward by one sampling and the same calculations are re-

peated. This is why MPC is also referred to as Receding Horizon Control or Moving

Horizon Control.

Anti-Windup Bumpless Transfer

Windup problems were originally encountered when using PI /PID controllers for con-
trolling linear systems with control input nonlinearities. One of the earliest attempts
to overcome windup in PID controllers was the work by Fertik and Ross [28]. It was
recognized later, however, that integrator windup is only a special case of a more gen-
eral problem. As pointed out by Doyle et al. [26], any controller with relatively slow
or unstable modes will experience windup problems if there are actuator constraints.
Windup is then interpreted as a mismatch between the controller output and the
plant input when the control signal saturates. The “conditioning technique” as an
AWBT scheme was originally formulated by Hanus et al. [40, 39] as an extension of
the back calculation strategy of Fertik and Ross [28] to a general class of controllers.
Astrom et al. [1, 2] proposed that an observer be introduced into the system to esti-
mate the states of the controller and hence restore consistency between the saturated
control signal and the controller states. Walgama and Sternby [93] have very clearly
exposed this inherent observer property in several anti-windup schemes. Campo and
Morari [11] have derived the Hanus conditioned controller as a special case of the
observer-based approach.

All these anti-windup schemes have been developed only for single-input single-

output (SISO) systems. The extension to multi-input multi-output (MIMO) systems
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has not been attempted in its entirety. As pointed by Doyle et al. [26], for MIMO
controllers, the saturation may cause a change in the plant input direction resulting
in disastrous consequences. Through an example, Doyle et al. [26] showed that all of
the existing anti-windup schemes failed to work on MIMO systems.

The stability analysis problem for SISO systems with input nonlinearity was ex-
tensively studied in the 1960s (see, for example, the book by Narendra and Taylor
[72]). However, most stability results, e.g. circle conditions [81, 99] and off-axis cri-
terion [12], were derived based on the standard conic sector bounded nonlinearity
stability theory. It is well known that these results can be very conservative when
applied to systems with input saturation constraints. Furthermore, the extension to
MIMO systems nonconservatively was not straightforward. The issue of robustness
has been largely ignored.

Recently Campo [9] and Kothare et al. [48] unified all existing AWBT schemes
and developed a general framework for studying stability and robustness issues. The
importance of this work lies in that model uncertainty can be taken into account
systematically and powerful theory exists to analyze the closed loop system for sta-
bility and robustness. However, their analysis is also based on the standard conic
sector nonlinear stability theory. Therefore, the results could be potentially conser-
vative. Another drawback for all AWBT schemes is their inability to handle output

constraints which may be present.

Model Predictive Control

In the late 1970s and early 1980s, various MPC algorithms (see, for example, [20, 79])
were developed in industry to control complex multivariable systems with input and
output constraints. Some particular names include Model Predictive Heuristic Con-
trol (MPHC), Dynamic Matrix Control (DMC), Model Algorithm Control (MAC),
Quadratic Dynamic Matrix Control (QDMC), and Identification and Command (ID-
COM). MPC has been successfully implemented on process systems as diverse as
distillation and oil fractionation [79, 41], fluid catalytic cracking [76, 36], hydrocrack-
ing [19, 46], and pulp and paper processing [62].
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Because of the constraints, the overall MPC systems become nonlinear. Until
recently when the infinite horizon MPC with guaranteed nominal stability was in-
troduced by Rawlings and Muske [77], proving nominal stability for MPC systems
represented a major obstacle [97]. An alternate but essentially equivalent approach
is to enforce an end constraint [45], i.e. that the state at the end of a finite horizon
must be zero (or more generally, within some region). (Some of the early work is due
to Kwon and Pearson [53], but the ideas have seen a revival recently [15, 16, 60].)
This approach is identical to setting the output horizon to infinity when the system is
represented by a Finite Impulse Response (FIR) model and when the output horizon
is chosen long enough for the system to settle.

Despite MPC’s considerable practical importance and extensive use, there has
been very little theory to guide the design and tuning of MPC controllers for robusi-
ness. Campo and Morari [10, 9] made the first rigorous attempt to extend the MPC
concept to the control of uncertain linear systems and proposed a robust MPC algo-
rithm. Unfortunately, it is well known (see, for example, [102]) that robust stability
is not guaranteed with this algorithm. Zafiriou [96] used the contraction mapping
principle to derive some necessary conditions and some sufficient conditions for ro-
bust stability. However, the conditions are both conservative and difficult to verify.
Assuming lower and upper bounds on each impulse response coefficient, Genceli and
Nikolaos [32] showed how to determine weights such that robust stability can be
guaranteed for a set of FIR models. However, often weights do not exist even when
robust stabilization is possible for a set of FIR models. Lee et al. [56] proposed
a robust MPC algorithm that minimizes the expectation of a multi-step quadratic
objective function for an input-output model with stochastic parameters. Of course,
the concept of robust stability cannot be defined in this framework. For time-varying
systems, Kothare et al. [49] proposed a robust MPC algorithm whose optimization
problem for the state feedback case can be cast as a set of Linear Matrix Inequalities
(LMIs) and showed that global asymptotic stability can be guaranteed if the opti-
mization problem is feasible. This algorithm may be conservative when applied to

linear time-invariant systems (see Chapter 7 for an example). Polak and Yang [75]
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proposed a receding horizon control strategy for linear continuous-time systems with
input constraints and proved nominal stability of the closed loop system. Then they
showed that robust stability is guaranteed provided that the perturbation is suffi-
ciently small. The MPC concept has been extended to nonlinear systems. Discussing
nonlinear MPC, however, is beyond the scope of this thesis. Interested readers are
referred to the work by Mayne and Michalska [63, 64] and de Oliveira and Morari [23]

for details.

1.2.2 Model Uncertainty

In stark contrast to the problem of constraints, a rich theory has been developed for
the robust control of linear systems. Quantitative robustness analysis results were
first articulated by Doyle and Stein [27] for unstructured model uncertainty, and by
Doyle [25] for structured model uncertainty. General synthesis techniques have also
been developed. For a recent description of these techniques, see the review article
by Packard and Doyle [73]. For similar results obtained by using the I; approach, see
the book by Dahleh and Diaz-Bobillo [21] and references therein.

The theory has substantially improved the ability of control system designers to
develop multivariable designs for linear systems. It has not, however, been useful in
designing AWBT compensation schemes or MPC controllers. This is because these

systems include constraints which are not admitted by the theory.

1.3 Thesis Overview

In Chapter 2, we will give a brief tutorial review of the state-space formulation of
MPC. Through an example, we show that under the still popular assumption of a finite
output horizon it is difficult to provide stability guarantees that are general enough
to be of practical value. By extending the output horizon to infinity or including
an additional constraint called “end constraint,” the stability question is reduced
to the question of feasibility of the resulting optimization problem. The chapter

finishes with some discussion on the feasibility of both input and output constraints.
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It turns out that the output constraints may be infeasible for stable systems. As a
result, the Infinite Horizon MPC with Mixed Constraints! (IHMPCMC) algorithm
was introduced. In the next three chapters, we will investigate stability properties of
the IHMPCMC algorithm for stable systems, systems with poles on the unit circle,
and unstable systems (systems with poles outside the unit circle), respectively.

In Chapter 3, we show that global stability with the IHMPCMC algorithm is
guaranteed for linear discrete-time stable systems with both state feedback and out-
put feedback. The on-line optimization problem can be cast as a finite dimensional
quadratic program even though the output constraints are specified over an infinite
horizon. An example illustrates the main difference between the IHMPCMC algo-
rithm and the Infinite Horizon MPC algorithm proposed by Rawlings and Muske
[77].

Based on the growth rate of the set of states reachable with unit-energy inputs,
we show in Chapter 4 that a discrete-time controllable linear system is globally con-
trollable to the origin with energy bounded inputs? if and only if all its eigenvalues
lie in the closed unit disk. These results imply that the IHMPCMC algorithm is
semi-globally stabilizing for a sufficiently long input horizon if and only if the con-
trolled system is stabilizable and all its eigenvalues lie in the closed unit disk. The
disadvantage of this IHMPCMC algorithm is that the input horizon necessary for
stabilization depends on the initial condition and can be arbitrarily large. As a re-
sult, we propose an implementable ITHMPCMC algorithm. We show that with this
algorithm a discrete-time linear system with n poles on the unit disk (with any mul-
tiplicity) can be globally stabilized if the input horizon is larger than n. For pure
integrator systems, this condition is also necessary. Moreover, we show that global
asymptotic stability is preserved for any asymptotically constant disturbance entering
at the plant input.

In Chapter 5, we analyze and characterize the domain of attraction for a linear

Mixed constraints refer to “hard” input constraints and “soft” output constraints.
oo

2An energy bounded input refers to the following: Given any input u(k) € R", Z u(i)Tu(i) < co.

i=1



9
unstable discrete-time system with bounded controls. An algorithm is proposed to
construct the domain of attraction. We show that the IHMPCMC algorithm (with a
proper choice of the input horizon) generates a class of control laws that stabilize the
system for all initial conditions in the domain of attraction.

The results from Chapters 3, 4, and 5 imply that the IHMPCMC algorithm,
with the input horizon chosen properly, can globally stabilize any linear discrete-time
system for which global stabilization is possible. If global stabilization is not possible
(which is the case for unstable systems with constraints), the IHMPCMC algorithm
stabilizes any initial condition for which a stabilizing control law exists.

In Chapter 6, we generalize the robust MPC algorithm proposed by Campo and
Morari [10] for control of linear time-varying systems (represented by FIR. models)
with constraints. We show that with this scheme robust Bounded-Input Bounded-
Output stability is guaranteed. Both necessary and sufficient conditions for global
asymptotic robust stability are stated. Furthermore, we show that robust global
asymptotic stability is preserved for a class of asymptotically constant disturbances
entering at the plant output. Although these results hold for any uncertainty de-
scription expressed in the time-domain, there is a trade-off between the generality of
the uncertainty description and the computational complexity of the resulting opti-
mization problem. For a broad class of uncertainty descriptions, we show that the
optimization problem can be cast as a linear program of moderate size.

In Chapter 7, we consider robust control of linear time-invariant systems with
constraints. We propose a novel MPC algorithm which optimizes performance sub-
ject to stability constraints for linear systems with mixed constraints. In the nominal
case, we show that global asymptotic stability is guaranteed for both state feedback
and output feedback for linear time-invariant stable systems. Furthermore, global
asymptotic stability is preserved for all asymptotically constant disturbances. The
algorithm is then generalized to the robust case. We show that robust global asymp-
totic stability is guaranteed for a set of linear time-invariant stable systems. When
the system is represented by an FIR model, we show that the optimization problem

can be cast as a quadratic program of moderate size for a broad class of uncertainty
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descriptions.

Chapter 8 summarizes the contributions of this thesis work. In addition, sugges-
tions for future research work are given. In Appendix A, a general anti-windup de-
sign which optimizes the error between the constrained output and the unconstrained
output of the system, applicable to MIMO systems, is developed. The method gen-
eralizes the Model State Feedback for single-input multi-output systems proposed by
Coulibaly et al. [17] and Hanus’s conditioning technique [39, 40]. Furthermore, from
our problem formulation, we can see what these methods do and why they do not

work well on MIMO systems.
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Chapter 2 Model Predictive Control

Summary

A tutorial review of the state-space formulation of Model Predictive Control is pre-
sented. The relations of Model Predictive Control to Internal Model Control and
Linear Quadratic Gaussian control are briefly examined. We show through an exam-
ple that under the still popular assumption of a finite output horizon it is difficult
to provide stability guarantees that are general enough to be of practical value. By
extending the output horizon to infinity or including an additional constraint called
“end constraint,” the stability question is reduced to the question of feasibility of the
resulting optimization problem. The chapter finishes with some discussions on global

feasibility of both input and output constraints.
2.1 Introduction

During the last two decades, various forms of Model Predictive Control (MPC) have
become common in the process industries. Some particular names include Model
Predictive Heuristic Control (MPHC), Dynamic Matrix Control (DMC), Model Al-
gorithm Control (MAC), Quadratic Dynamic Matrix Control (QDMCQ), and Identi-
fication and Command (ID-COM). Many applications of MPC are reported in the
literature and even more in sales publications. Some of them are mentioned in the
review paper by Garcia et al. [31] and in the more recent summary article by Richalet
[78]. MPC also enjoys widespread use in the Japanese process industries, as one can
learn from the survey published by [95]. It is most significant that in a similar survey
ten years prior [42], MPC can not even be found in the list of control techniques.
MPC may be the most successful and widely accepted “advanced” control technique

in process industry because
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e MPC handles input and output constraints;

MPC handles systems with the time delays;

MPC is multivariable; and

MPC is intuitive.

There is little doubt that most of the research on MPC started with the publication
of the seminal papers by Cutler and Ramaker [20] from Shell and Richalet et al. [79].
This is not to suggest that they invented MPC, but they did convince a generation
of control consultants, application engineers, managers, and researchers of the merits
and the potential of this type of tool for industrial applications. Early joint work by
Amoco and IBM [18, 51, 74] contains some of the essential features, but does not
take into account process dynamics. There is also the theoretical work on “open-loop
optimal feedback” with references going back to 1962 which is reviewed in the thesis
by Gutman [37].

The various implementations of MPC preferred by the different vendors and users
are identical in their main structure, but differ in details. These details are largely
proprietary and are often critical for the success of the algorithm in an application.
The general structure is shown in Figure 2.1. An observer utilizes knowledge of the
plant input u and the output measurement y to arrive at a state estimate #. Starting
from the current state estimate %, one can employ classic prediction algorithms to
predict the behavior of the process output over some output horizon H, when the
manipulated input u is changed over some input horizon H, (Figure 2.2).

At time step k, the task of the optimizer is to compute the present and future
manipulated variable moves {u(k),...,u(k + H,)} such that the predicted output
follows the reference trajectory in a desirable manner. The optimizer takes into
account constraints on the inputs and outputs which may be present. For linear
process models, depending on the objective function, either a linear or a quadratic
program results which is solved on-line in real-time at each time step. For commercial

applications, various vendors have developed short-cut optimization procedures.
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Figure 2.1: Structure inherent in all MPC schemes

Only u(k), the first one of the sequence of optimal control moves is implemented
on the real plant. At time step k + 1, another output measurement y(k + 1) and
another state estimate (k + 1) are obtained, the horizons are shifted forward by one
step, and another optimization is carried out. This procedure results in a moving
horizon or receding horizon strategy. A key feature of the technique is that the input
and output horizons (H, and H,, respectively) are generally finite. Often the values
chosen for H, and H, are different. Furthermore, in some of the algorithms, there
is the option not to include the control error during the first few time steps in the
objective function. The problem definition as presented allows one to treat with
equal ease multivariable problems with an unequal number of inputs and outputs,
non-minimum phase systems and systems subject to constraints.

The rest of the chapter is organized as follows. Section 2.2 gives a brief tutorial of
the state-space formulation of MPC. For the input /output formulation of MPC, in-
terested readers are referred to the book by Soeterboek [83] who provides an excellent
exposition of the input/output formulation and assumptions. The relations of MPC
to Internal Model Control and Linear Quadratic Gaussian control are briefly exam-
ined in Section 2.3. In Section 2.4, we show through an example that under the still

popular assumption of a finite output horizon it is difficult to provide stability guar-
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Figure 2.2: Definition of the optimization problem for MPC

antees that are general enough to be of practical value. By including an additional
constraint called “end constraint” (Section 2.5) or extending the output horizon to
infinity (Section 2.6), the stability question is reduced to the question of feasibility of
the resulting optimization problem. We discuss global feasibility conditions for both
input constraints and output constraints in Section 2.7. Section 2.8 concludes the
chapter.

Notations and Assumptions The notation used in this chapter is fairly standard.
|e| denotes the Euclidean norm, |e|; the 1—norm, and |e|s, the co—norm. z7 denotes
the transpose of z. For z,y € R",z < y if and only if z; < Yi,t = 1,--- n. We
will assume throughout this chapter that the sysfem to be controlled is linear time
invariant discrete-time. For simplicity but without loss of generality, the disturbance
and the noise are not included in the system. A good treatment of the disturbance
and noise is given in [57]. Also we assume that we would like to keep the state at the

origin rather than at some arbitrary reference state.
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2.2 Problem Formulation

Assume that the system is described by

v(k+1) = Az(k) + Bu(k)
(2.1)

y(k) = Cxz(k)

where z(k) € R"= denotes the state at time step k, u(k) € R™ the manipulated
variables (or the input), and y(k) € R™ the controlled variables (or the output). It
is well known (see, for example, the paper by Lee et al. [57]) that the popular step
response models used, for example, in Dynamic Matrix Control and other algorithms
are just a special realization of a state-space model. Here we have not included
the disturbance and noise for simplicity. The theory for output prediction is well

developed (see, for example, [3] and [35]). It is summarized in the following:

z(klk—1) = Az(k—1k—1)+ Bu(k—1) (2.2)
y(klk—1) = Cxz(klk—1) (2.3)

Correction based on measurements:

z(klk) = z(k|k — 1) + K (y(k) — y(k|k — 1)) (2.4)

Prediction:
z(k+1k) = Ax(klk) + Bu(k) (2.5)
y(k+1lk) = Cz(k+ 11k) (2.6)

The filter gain K is determined from the solution of a Riccati equation. Prediction for
more than one step ahead is obtained by applying the prediction equations recursively.
Here (o)(k +i|k) denotes the variable at time step & + 7 with information up to time

k. Clearly, z(k + tlk) = z(k +1) V i < 0.
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2.2.1 Objective Function

Various objective functions have been used. The most common one uses the 2—norm

both spatially and temporally.

H, H,
Op = Y z(k+ilk) Tox(k +ilk) + > u(k + i|k) Tyu(k + i|k)
i=1 . i=0 (2.7)
+ > Aulk +4lk) T anAu(k + i|k)
=0

where

H, is the output horizon
H, is the input horizon
Au(k +ilk) = u(k + i|k) — u(k +14 — 1|k), Au(k +ilk) = Au(k +4) Vi <0

I';,I'y, and s, are positive definite (or semi-definite) weighting matrices

In general, one can even choose weighting matrices to be time varying, i.e. I';, Ty,
and I'a,, may be functions of i. However for simplicity we assume them to be time-
invariant here. Other popular objective functions are given as follows.

1 —1 norm:
HP Hc

O = [Toa(k +ilk)y + Y [[Twulk + ilk)| + [T auAulk + k)]
1=1 =0

o0 — 1 norm:

&, = Z; ITaz(k + i|k)|oo + ; (ITuu(k +4]k) oo + T aulu(k + i[k) o]

oo — OO norm:

o, = pax, IToz(k +4]k)|oo + max, ITuu(k + i]k)|oo + Jmax, ITauAu(k +i]k)|o
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1 — oo norm:
o, = i:I},lfj-l,}%Ip IToz(k +ilk)|; + Jmax [Cyu(k +ilk)]; + Jmax T avAu(k + 1]k) |y

A good description of advantages of each, especially the co — oo norm, as well as some

other objective functions is given by Campo [9].

2.2.2 Constraints

There are generally two types of constraints—input constraints and output con-
straints. The input constraints can be described by imposing lower and upper bounds

on the input.

u(k)€U={u:ummgugum‘”},kZO

Sometimes the rate of change of the input may be bounded, i.e.
|Au(k)|] < Au™>7 V k
The output constraints can be described generally by

u
z(k) e X =1z :[F, F <f,uelUy, k>0

x

Clearly, to make any control problem meaningful, we must assume that « = 0 and
r = 0 are an interior point of U and an interior point of X, respectively, and that

Au™®® > 0. As we shall see later, these constraints may be infeasible even for stable

systems.

2.2.3 Control Design

The control actions are generated by Controller MPC which is defined as follows.
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Definition 1 Controller MPC: At time step k, the control move u(k) equals the
first element u(kl|k) of the sequence {u(k|k), u(k+1[k), - u(k+ H, — 11k)} which is
the minimizer of the optimization problem

J, = &
BT )k )

u(k +1ilk) elU 1=0,1,---,H.— 1
(k +ilk) (2.8)
|Au(k + k)| < Au™=® §=0,1,---,H, — 1

subject to <
u(k+ilk) =0 i=H,H.+1,--- H,

sk+ik)eX  i=1,--- H,

For the objective function that uses the 2—norm both spatially and temporally, the
optimization problem (2.8) can be cast as a quadratic program. For all others men-

tioned above, the optimization problem (2.8) can be cast as a linear program.

2.3 Relations to Other Methods

In this section, we discuss briefly how MPC without constraints is related to Internal
Model Control and Linear Quadratic Gaussian control. Here we will assume that the

2—norm is used both spatially and temporally (i.e. ®; in Definition 1 is defined by

2.7)).

2.3.1 Internal Model Control

Without input and output constraints, the optimization problem (2.8) can be solved
as a standard linear least squares problem. With the moving horizon assumption, a
linear time invariant controller results. Garcia and Morari [30] have shown how to
obtain the controller transfer function from the linear least squares solution.

Garcia and Morari [29] were the first to show that the structure, which is referred
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to as Internal Model Control (IMC), depicted in Figures 2.3, is inherent in all MPC
schemes without constraints. Here P is the plant, P a model of the plant, and @,
and @), the controllers. It is well known [69] that the IMC structure and the classic
feedback structure shown in Figure 2.4 are equivalent. However, the advantage of
using the IMC structure is that closed loop stability is guaranteed if and only if ),
and @), are stable when P is stable and P = P.

r + u id
—>Q1—>§ - P o -

Figure 2.3: Internal Model Control structure

r + u id

— C; —»i_ = P 0 r

C, |=

Figure 2.4: Classical feedback control structure

Much research has been done to relate various MPC tuning parameters to @; and
@2 and choose the tuning parameters properly so that (1 and @), are stable. However,
it is fair to say, after a decade of research, that such relationship, if it exists, is too

complicated to be practical.! With ', = 0, it can be easily shown that Controller

't was falsely claimed in the survey paper [31] (Theorem 2 in the paper) that a sufficiently large
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MPC provides integral control, i.e. no offset for step-like disturbances.

2.3.2 Linear Quadratic Gaussian Control

With H, = H, = co and T'p, = 0, and without constraints, the well studied infinite
horizon Linear Quadratic Gaussian (LQG) optimal control problem results, which
has been studied extensively for decades [52, 7, 54]. It has some nice properties, most
importantly that the resulting controller is a constant gain acting either on the state,
if available, or the state estimate, and that closed loop stability can be guaranteed

under rather general conditions.
With H, and H, finite, some main differences between MPC and LQG are given

as follows. Interested readers are referred to the paper by Garcia et al. [31] for more

details.

e The MPC computation requires the solution of a linear least squares problem.

LQG involves solving an algebraic Riccati equation.
® MPC has two more tuning parameters (H, and H,) than LQG.

e Most MPC algorithms used in the industry assume no measurement noise and

step disturbance.

2.4 Finite Horizon MPC

Ever since MPC was first introduced in the late 70s and early 80s, much of the research
has been done based on the assumption that both the input horizon and the output

horizon are finite. Several reasons have been mentioned. Among them are

o Simpler computation: In certain situations, it may be simpler to use the MPC
approach to find the controller gain matrix via a least squares problem, rather
than by solving a Riccati equation which is necessary in the infinite horizon

case.

weight on Au would result in stable Q; and Q. See Section 2.4 for a counter example.
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e Constraints: It is not immediately clear how a problem involving constraints on

both inputs and outputs can be addressed in an infinite horizon setting.

o More tuning flezibility: The variable output horizon length (H,) may offer an-

other tuning parameter to achieve improved performance and robustness.

Unfortunately in retrospect there is little merit to these and other arguments in

favor of a finite horizon approach.

e Simpler computation: With today’s computer power at our disposal, the com-

putational issue is largely irrelevant.

e Constraints: We can argue that the constrained case can be handled in an infi-
nite horizon setting (H. = H, = 00) as well. Let us assume for simplicity that
we are regulating the state from some initial state xy to the origin and that the
optimization problem is feasible, i.e. there exists a solution u(k),u(k + 1),...
which satisfies all the constraints and brings the state back to the origin. Clearly,
the steady state solution u®*® = 0, z*° = 0 is feasible and inside the constraint
set. Thus, the problem is only constrained initially when the state is far from
the origin and becomes unconstrained after sufficiently long time. This time
can be estimated from some simple norm arguments. Therefore, we can solve
the constrained problem over an infinite horizon by appropriately splicing to-
gether the solution for a constrained finite horizon and an unconstrained infinite

horizon problem.

e More tuning flexibility: Tuning of control systems based on a finite horizon
approach is often exceedingly difficult. The effect of the available parameters
is often non-monotonic as demonstrated by Soeterboek [83]. For example, with
'y =1,T, = 0 and I'ny, = 7/, increasing the input weight -, which one
would expect to suppress control action and stabilize the system, can actually
destabilize a system. Upon further increase of the parameter, stable behavior is
found. This is shown in Figure 2.5. This behavior is not observed with H, = co

(Figure 2.6).
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Figure 2.5: System 5/(4s + 1)(5s + 1); T, = 0.5; H, = 1. For finite output horizons
H, =1 or 2 the system behavior is “non-monotonic” as the input weight 7 penalizing
Auw is increased (y = 0 solid; v = 0.1 dash; vy = 1 dot)

As pointed out by Bitmead et al. [4], proving strong stability for the Finite
Horizon MPC (FHMPC) formulation has been extremely unsuccessful. The stability
results which have been obtained for the FHMPC formulation are all very weak (see,
for example, the early results in [29, 14, 13].) They either are of an asymptotic na-
ture, utilizing the well known results for the infinite horizon problem, or apply to very
particular situations only (a specific class of systems, deadbeat control, etc.). In fact,
we will now consider an example which illustrates that there does not exist a univer-
sal set of tuning parameters for the FHMPC formulation, within the input /output

setting, that would guarantee stability for all systems.
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Figure 2.6: Same system as in Figure 2.5. H, = oco. For any input horizon H, the
system behavior is “monotonic” as the input weight p penalizing Aw is increased
(7 = 0 solid; v = 0.1 dash; v = 1 dot)

Example 1 Consider the following system.
y(k) = —u(k — 1) + u(k — 2) + u(k — H, — 1)

Suppose that there are no constraints and that there is no model/plant mismatch. The
control action u(k) equals the first element u(k|k) of the sequence { Au(k|k), - - -, u(k+
H. —1|k)} which is the solution of the optimization problem

Hy H.—1
' k) — y(k +ilk))? + Doy A 172
Au(klk),-n’-l,g(lk-i-Hc]k)i:z;(T( ) = y(k+ilk))* +Ta ,; u(k + ilk)

The reason that no penalty on u is used (i.e. I, = 0) is to obtain integral control.

What we want to show is the following: regardless of what 'y > 0 and H, are, the
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closed loop system is always unstable. All we have to show is that the IMC controller

Q1 shown in Figure 2.3 is unstable. Using the formula given in [100], we have

1
@i1(q) = - _ ”
1_q l_I’Ai—}-lq H
. 1 1 1 1
Since o) = 1 >0 and oM = o < OV 0 <Tas < o0, ) has roots

outside the unit circle which implies that Q. is unstable. Thus the closed loop system

is unstable for all Tay > 0 and H,. Clearly the closed system would also be unstable

if there are input and/or output constraints.

Notice that this example applies to the input/output formulation of the FHMPC. It
may not apply to the state-space formulation of the FHMPC. The reason is that we
may not be able to select the system order to be H, as we have done here. However,
this example does illustrate the problem with the FHMPC formulation and that it
may be necessary to impose additional constraints (such as an end constraint) in
order to guarantee stability.

We should point out that it may be possible to derive strong stability results if
we make the output horizon H, to be dependent on the system, i.e. given any system,
closed loop stability may be guaranteed for a sufficiently large H,. Of course, one

simple way to get rid of this dependency is to choose H, = oo [77].

2.5 Finite Horizon MPC with End Constraint

In order to prove general stability results for the FHMPC formulation, some additional
constraints may have to be introduced. Several researchers [53, 45, etc] have proposed
explicitly to include an additional constraint called “end constraint.” The idea here
is to force the state at the end of the output horizon to zero (or more generally
within some region [65]), i.e. z(k + H,|k) = 0. We refer to the resulting controller (or
algorithm) as the Finite Horizon MPC with End Constraint (FHMPCEC) controller

(or algorithm) which is defined below.
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Definition 2 Controller FHMPCEC At time step k, the control move u(k) equals
the first element u(k|k) of the sequence {u(k|k),u(k+1|k), -, u(k+H,—1|k)} which

is the minimizer of the optimization problem

= min (bk

u(klk), - u(k+H:—1|k)

[ wk+ik)eu  i=01,. H -1

|Au(k +ilk)| < Aume® §=0,1,---, H, — 1 (2.9)
subject to ¢ u(k+ilk) =0 t=H,H,+1,---,H,

o(k+ Hylk) =0

s(k+ik)eX  i=1,--- H,

where @, is defined by (2.7).

The idea of including the end constraint z(k + H,|k) = 0 seems to be originated by
Kwon and Pearson [53] for the unconstrained case although it was implicitly used in
Kleiman’s stabilizing controllers [47] (see Theorem 3 below). Keerthi and Gilbert [45]
proved that closed loop stability can be guaranteed with Controller FHMPCEC in
the presence of input and output constraints provided that the optimization problem
(2.9) is feasible. We present the theorem below. We sketch the proof of the theorem

because the ideas are simple and instructive.

Theorem 1 (State Feedback) Consider the system described by (2.1 ). Assume
that the state is measured and that there is no model/plant mismatch. Suppose that
'y >0,Ty >0, andI'ay > 0. Then the closed loop system with Controller FHMPCEC
is asymptotically stable to the origin if and only if the optimization problem (2.9) is

feasible.

Proof. Feasibility of the optimization problem (2.9) implies J, < co V k. Since the
optimal control sequence {u(kl|k),---,u(k + H, — 1|k)} computed at time step k is
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feasible at time step k + 1, we have
Tesr < Jp = (2(k) Doz (k) + u(k) Tyu(k) + Au(k)"Taudu(k)) ¥k
It follows that
k
Jer1+ D (x(z)Tsz(z) +u(i) Tyu(d) + Au(i)TFAuAu(i)> < Jp < 0
=0

This together with I'y, I'; > 0 implies u(k), z(k) — 0 asymptotically. O

Remark 1 In order for the end constraint z(k + Hy|k) = 0 to be feasible, the system
described by (2.1) must be controllable.

Remark 2 With state feedback, feasibility of the optimization problem (2. 9) at sam-
pling time 0 implies feasibility for all future sampling times. However, this may not

be the case when the state has to be estimated and/or when there are disturbances.

For the system described by (2.1), Kleiman provides a formula for stabilizing con-

trollers when there are no constraints on inputs and outputs.

Theorem 2 (Kleiman 1974) Consider the system described by (2.1). Assume that
the system is controllable, that there are no constraints on the wmnput and the output,
that A s invertible, and that the state is measured. Then the closed loop system is

stable with the following state feedback control law

u(k) = —I';' BT (AT)H~1 (Hi AiBr;IBT(AT)i>_ A1 Ag (k) (2.10)

1=0
forall H. > n, + 1.

As it turns out, the idea of including an end constraint was also implicitly assumed

here. Specifically, we can prove the following theorem.

Theorem 3 Consider the system described by (2.1). Assume that the system (2.1)

is controllable, that there are no input and output constraints, and that the state is
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measured. Then the feedback control law generated by Controller FHMPCEC with
Iy =0,Tay =0, and H, = H. > n, + 1 equals the feedback control law (2.10).

Proof. With I'; = 0 and I'a, = 0, the optimization problem (2.9) becomes

H.-1

. JINT . . _
B Z(:, u(k +1ilk)" Tyu(k + ilk) subject to z(k + H,|k) =0

which is equivalent to

Ho—1
. T AT . _
u(klk),-ng%}cr—li-Hc—l]k)x(k + H|k)" Qz(k + H,|k) + i:EO u(k +ilk) Tyu(k +4|k), Q = ool

After some algebra, the optimization problem becomes

min (4™ (k) + Cr.UK)) Q (Aea(k) + Ca,U(K)) + U(k)TTU(K)

where

Uk) = [u(klk) - u(k+H - 1]k)]"
Cu, = [A"7'B ... AB B]
rru 0 --- 0
P, =
0 --- 0 Puj
The solution is given by
Uk) = = (Du+ChQCH) " ChQA™a(k)
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H(ChITCH) Q™) + ) Q) Afex(k)
= Tk ((CunTo'Ch)™ = (CaT7'CE)2Q7Y) — ) APea(k)
= —I,'CL.(CuT; Ch,) " AMea (k)

The second step uses the matrix inversion lemma while the last three steps follow
from the fact that @' = 0. Here we have assumed that Cpy I'; ICE. is invertible
which is the case if Cyr, has full row rank which is implied by controllability of {A, B}
and Hc > ngy + 1 (see the discussion below). Since u(k) =[I 0 --- 0]U(k), where I

denotes the identity matrix, we have

-1

He—1 _
u(k) = T, BT (AT)H1 <Z A’BF;IBT(AT)’> AP Ag(k)
=0
which is the same as (2.10). O

From this theorem, we can clearly see what Kleiman’s controllers do. Also from
our proof, several assumptions in Theorem 2 can either be relaxed or ignored. A
necessary and sufficient condition on H, for (2.10) to be stabilizing is that H, is such
that Cy, has full row rank. So the assumption that H, > n, + 1 can be replaced by
that H. is such that Cp, has full row rank. Furthermore, the assumption that A4 is
invertible can be dropped. The controllability assumption is needed since without it
the state cannot be made identically zero, i.e. x(k 4+ H,|k) = 0 is infeasible.

In the proof, we interpreted the end constraint as an infinite weight on the state
at the end of output horizon, while the weights on the states for the rest of horizon
are finite. Several stability results [4] have been proved by assuming I', to be time-
varying. Recently, the idea of including an end constraint to enforce stability has
seen a revival. Interested readers are referred to [15, 16, 60, etc] for more recent

developments.
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2.6 Infinite Horizon MPC

As we discussed in Section 2.2.4, it may be true that, given any system, the closed
loop stability can be guaranteed for a sufficiently large H,. Of course, this H, depends
on the system. One way to remove this dependency is to have H, = co. Indeed this
is what has been suggested by Rawlings and Muske [77]. The resulting algorithm
is referred to as the Infinite Horizon MPC (IHMPQC) algorithm which is defined as

follows.

Definition 3 Controller IHMPC At time step k, the control move u(k) equals the
first element u(kl|k) of the sequence {u(k|k), u(k+1|k),- - -, u(k+ H, — 1|k)} which is

the minimizer of the optimization problem

k= min (I)k
u(kl|k), - u(k+He—1|k)

w(k +ilk) € U i=0,1,---,H,—1
(k+alk) (2.11)

J |Au(k + i|k)| < Au™=® §=0,1,---,H, — 1
subject to
u(k+ilk) =0 i=H,H +1,---,H,

ok +ilk) € X i=1,---,H,

\

where @y, is defined by (2.7) and H, = co.
Rawlings and Muske showed that closed loop stability can be guaranteed with Con-
troller IHMPC if the optimization problem (2.11) is feasible. We sketch the proof of

the theorem here since the ideas are simple and instructive.

Theorem 4 (State Feedback) Consider the system described by (2.1). Assume
that the state is measured and that there is no model/plant mismatch. Suppose that
Iy >0,y >0, and T'ay > 0. Then the closed loop system with Controller IHMPC
15 asymptotically stable if and only if the optimization problem (2.8) is feasible.

Proof. Feasibility of the optimization problem implies J;, < 0o V k. Since the optimal

control sequence {u(kl|k), -, u(k+ H,—1|k)} computed at time k is feasible at time
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k + 1, we have

Terr < Ji = (2(k)TTom (k) + u(k) Tyu(k) + Au(k) T ayAu(k)), ¥V k
which yields

Tes1 + 3 (2(8) Tom(d) + u(@) Tyu(s) + Au(i) T awAu(i)) < Jo < 00

i=0
This together with I'y,I'; > 0 implies u(k), z(k) — 0 asymptotically. O

Remark 3 For the optimization problem (2.11) to be feasible, the system needs only
to be stabilizable. On the other hand, as we remarked earlier, the system must be
controllable for the optimization problem (2.9) (which is defined by Controller FHM-
PCEC) to be feasible. These approaches are identical when the system can be repre-
sented by a Finite Impulse Response (FIR) model and when the output horizon H,
in Controller FHMPCEC has been chosen long enough for the system to settle (i.e.
H, > H.+ Nprr where Npig is the order of the FIR model including the delays).

While the work by Rawlings and Muske is exemplary in its clarity, it must be men-
tioned that other authors (see, for example, [63, 50]) have suggested independently
to prove stability via the Lyapunov function Jj.

The implementation of the IHMPC algorithm (i.e. Controller IHMPC) is discussed

in [71]. The basic idea is to break the objective function into two parts as follows:

O, = z(k+ Hy|k) T x(k + H.k) + %x(lz +ilk) T,z(k + ik)
+ i (u(k + ilk) "Tyu(k + ilk) + Au(k + ilk) T ag Au(k + ilk))

=0

where I, can be determined by solving a Lyapunov function. This effectively replaces

the infinite output horizon with a finite horizon.
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2.7 TFeasibility of the Constraints

Both the FHMPCED and IHMPC algorithms have converted the question of closed
loop stability into the question of feasibility of the resulting optimization problems.
Feasibility of an optimization problem means that the objective function is bounded
and that all constraints are satisfied. It is well known (see, for example, [84]) that a
linear discrete-time system is globally stabilizable with input constraints if and only
if the system is stabilizable and has all its eigenvalues inside the closed unit disk.
Thus, the input constraints may be infeasible for unstable systems for some initial
conditions. In general, input constraints are imposed by physical limitations of the
system. They cannot be violated under any circumstances. Therefore, for unstable
systems, we can only determine the region of initial conditions for which stabilization
is possible.

On the other hand, output constraints can be infeasible even for stable systems.

We illustrate this by considering the following example.

[
.655 -0.1673 1673
zk+1) = z(k) + u(k)
1673 0.9825 0.0175
-
y(k) = | —2 1 |=(k)

The system is stable and has a zero outside the unit circle (inverse response behavior).
Suppose that we would like to keep the output within +1 and that there are no
input constraints. Then, regardless of how we choose the tuning parameters, output
constraints are infeasible for the initial condition z(0) = [1.5 1.5]7. Furthermore, this
implies that there does not exist a stabilizing controller that would satisfy the output
constraints. Since this type of system is very common in process control applications,
it is essential to have methods that deal with infeasible output constraints effectively.
Two approaches have been proposed: Rawlings and Muske [77] suggested to ignore

the infeasible output constraints and they showed that stability is preserved in this
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case. The other approach [80] is to relax the output constraints as follows

u
z(k) € Xe=<x:[F, Fy <fH+eueldy; ,k>0,e>0

T

and penalize the extent of violation by adding a penalty term (e.g. €’ T'.e with I", > 0)
to the objective function. This results in the Infinite Horizon MPC with Mixed
Constraints (IHMPCMC) algorithm which is defined as follows.

Definition 4 Controller IHMPCMC: At time step k, the control move u(k) equals
the first element u(k|k) of the sequence {u(k|k), u(k+1[k), -, u(k+ H,—1|k)} which

s the minimizer of the optimization problem

Oy, + e(k)TT.e(k)

min
e(k)su(k|k),-u(k+H.—1|k)

( u(k+ k) el 1=0,---,H,—1
(2.12)

|Au(k +i|k)| < Au™® §=0,--- H,—1

subject to

Au(k +1ilk) =0 1=H, - -,00

:E(k+i|k)€X€(k) 1=1,---,00

\

where @ is defined by (2.7) and T'. > 0 is diagonal.

In the next three chapters, we will investigate stability properties of Controller IHM-
PCMC for stable systems, systems with poles on the unit circle, and unstable systems

(i-e. systems with poles outside the unit circle), respectively.

2.8 Conclusions

In this chapter, we have given a brief introduction to the state-space formulation of
MPC. We refer interested readers to the books by Soeterboek [83] and Morari et al.
[68] for details. We showed through an example why it is difficult to obtain general
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stability results for the finite horizon MPC formulation. This is entirely consistent
with the fact that over the last two decades proving strong stability results for the
finite horizon MPC formulation has been extremely unsuccessful [4]. In order to
obtain strong stability results, it is time to revise the problem formulation. In fact,
this is exactly what has been initiated by several research groups independently during
the last couple of years and a wealth of existing results have appeared. Two of them
that are discussed in some details in this chapter are the FHMPCEC algorithm and
the THMPC algorithm.

Both the FHMPCEC and IHMPC algorithms convert the question of stability
into the question of feasibility of the resulting optimization problems. Unfortunately,
the output constraints may be infeasible even for stable systems. As a result, the
IHMPCMC algorithm was introduced. In the next three chapters, we will investigate
stability properties of the IHMPCMC algorithm for stable systems, systems with
poles on the unit circle, and unstable systems (i.e. systems with poles outside the

unit circle), respectively.
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Chapter 3 Infinite Horizon MPC with Mixed

Constraints—Stable Systems

Summary

We show that with the Infinite Horizon Model Predictive Control with Mixed
Constraints algorithm global asymptotic stability is guaranteed for linear discrete-
time stable systems with both state feedback and output feedback. The on-line opti-
mization problem defining the élgorithm can be cast as a finite dimensional quadratic

program even though the output constraints are specified over an infinite horizon.
3.1 Introduction

Many practical control problems are dominated by constraints. There are generally
two types of constraints—input constraints and output constraints. The input con-
straints are always present and are imposed by physical limitations of the actuators
which cannot be violated under any circumstances. For this reason, we refer to input
constraints as “hard” constraints. Often, it is also desirable to keep specific out-
puts within certain limits for reasons related to plant operation, e.g. safety, material
constraints, etc. It is usually unavoidable to exceed the output constraints, at least
temporarily, for example, when the system is subjected to unexpected disturbances.
Thus, output constraints are referred to as “soft” constraints.

In Chapter 2, we presented several results that show the equivalence between
closed loop stability and feasibility of the respective optimization problem. Specifi-
cally, both with the Infinite Horizon MPC [77] and Finite Horizon MPC with End
Constraint [45] algorithms, the closed loop system is asymptotically stable if and
only if their resulting optimization problems are feasible. Unfortunately, as we showed

through an example in Chapter 2, output constraints may be infeasible even for stable
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systems.

Several methods have been proposed to deal with infeasible output constraints.
Rawlings and Muske [77] proposed to remove the infeasible output constraints during
the initial portion of the infinite horizon to make the optimization problem feasible.
However, this may result in undesirable performance: the violation of the output
constraints during this initial portion of the infinite horizon can be very large in
order to satisfy the constraints during the rest. Thus, large constraint violations may
be experienced, when the computed control actions are implemented.

An alternative way to handle the feasibility problem is to relax the infeasible
output constraints for the entire horizon and to penalize the extent of the violation.
This technique is referred to as “constraint softening” [80]. The problem is that
global stability may not be guaranteed. Zafiriou and Chiou [98] have derived some
conditions for stability for single-input single-output systems with the finite horizon
MPC formulation. However, these conditions are generally conservative and difficult
to check. Softening the output constraints with the infinite horizon MPC formulation
results in the Infinite Horizon MPC with Mixed Constraints (IHMPCMC) algorithm
which was introduced in Chapter 2.

In this chapter, along with the next two chapters, we will investigate stability
properties of the IHMPCMC algorithm for stable systems (this chapter), systems
with poles on the unit circle (Chapter 4), and unstable systems (Chapter 5). This
chapter is organized as follows. Sections 3.2 and 3.3 deal with state feedback and
output feedback, respectively. Specifically, we show that global asymptotic stability
1s guaranteed in both cases. In addition, we show in Section 3.3 that the optimization
problem can be cast as a finite dimensional quadratic program even though the output
constraints are specified over the infinite horizon. An example is presented in Section
3.4. Section 3.5 concludes the chapter.

Notations The notation used in this chapter is fairly standard. |e | denotes the
Euclidean norm, |e|; the 1—norm, and | e |, the co—norm. z7 denotes the transpose

of z. Forz,y €e R",z <yifandonly if z; < y;,i=1,---, n.



36
3.2 State Feedback

Consider the system
z(k+1) = Az(k)+ Bu(k)
y(k)  =Cz(k)

where z(k) € "=, u(k) € R™ and y(k) € R™.

The input is assumed to belong to the set 2 which is defined as follows.

u(k)eué{u:0>umi”§u§um““”>0}
The soft output constraints are defined as follows:

x

z:[F, F] <f4+ee>0uecld

u

&
[

The objective function is defined as follows.

Z (k 4 3|k)TToz(k + i|k) Z[ (k +i|k)TTyu(k + i|k)+

=0

Au(k +i|k) T ay Au(k + ] k)]

(3.2)

(3.3)

(3.4)

where I'z > 0,T'y > 0,Tay 2 0, Au(k + i|k) = u(k + i|k) — u(k + ¢ — 1|k), and H, is

finite. I';, T, and T'a, are symmetric. (-)(k+1|k) denotes the variable (-) at sampling

time k + 2 predicted at sampling time k and (-)(k) = (-)(k|k).

The control actions are generated by State Feedback Controller IHMPCMC which

1s defined as follows.

Definition 5 State Feedback Controller IHMPCMC: At sampling time k, the

control move u(k) equals the first element u(k|k) of the sequence {u(k|k),u(k +
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k), -, u(k + H. — 1|k)} which is the minimizer of the optimization problem

_ . -
B u(k|k),...,u(%i_126_1|k)7€(k) r + (k) Tee(k)
4
|Au(k +ilk)| < Aum® §=0,---, H,
subject to w(k +ilk) = 0 -

z(k +ilk) € X 1=0,1,---,00

e(k) >0

\

where I'c > 0 is diagonal and ®y, is defined by (3.4).

The output constraints are softened by the slack variables (k). They can be violated
temporarily, if necessary. In the long term, the penalty term e(k)T.e(k) in the

objective function will drive the slack variables to zero. The optimization problem

(3.5) can be cast as a quadratic program.

The control problem is to bring the state to the origin. To make it well posed,

the feasible region for

|Au(k +ilk)| < Aum™=® =01, H.

u(k +ilk) € U i=0,1,-,H —1

must contain u(k +ilk) = 0,7 = 0,1,---, H, — 1, as an interior point. The feasible
region for
.’E(k—*—Z,k‘) € Xe(k) 1=0,1,---,00
e(k)=0
contains z(k +ilk) = 0,7 =0,1,---, 00, as an interior point. Note that this implies
f > 0. Then we have the following theorem which extends the results in [77] for

(k) =0V k> 0.



38
Theorem 5 The closed-loop system with State Feedback Controller IHMPCMC is
globally asymptotically stable if and only if the optimization problem (8.5) is feasible
for all (0) € R"=.

Proof. If the optimization problem (3.5) is not feasible, the controller is not defined.
Feasibility of the optimization problem implies that .J; is finite. At sampling time
k+1, let

w(k+ilk+1)=u(k+idk) i=1,2,---,H,

e(k+1)=e(k)

Thus, (u*, €*) is a feasible solution but may not be optimal. We have
Jer1 < Jp — 2(k + 1) Toz(k + 1) — u(k) Tyu(k) — Au(k) T ayAu(k)

which yields

k

Tep1+ 2 [wi + 1) Toa(i + 1) + u(i) Tyu(s) + Au(k) Taudu(k)] < Jy < 0o

i=1
Note that we replaced z(k + 1|k) with z(k + 1) since z(k + 1) = z(k + 1|k). This
together with I';,I'y > 0 implies that z(k) — 0 and u(k) — 0 as k — oo. O

Remark 4 Theorem 5 also holds if T, > 0 provided that at steady state T = 0 of and
only if u = 0 which is equivalent to that (I — A)~'B has full column rank. Also if
(I — A)™' B has full column rank, Theorem 5 holds with u(k+ilk) = 0,4 = H,,---, oo
in (3.5) replaced by Au(k +ilk) =0,i= H,,- - -, c.

Remark 5 IfI'. = oo, then the output constraints become hard and the optimization

problem (8.5) may not be feasible.

The following theorem states that for I, < oo feasibility of the optimization

problem (3.5) is guaranteed for stable systems.

Theorem 6 If A is stable, i.e. all eigenvalues of A are strictly inside the unit circle,

then the optimization problem (3.5) is feasible ¥ H, > 1, T'. < oo, and z(0) € R=,
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Proof. All we have to do is to prove the feasibility of the optimization problem (3.5)
at the first sampling time. We will prove this theorem by construction. Since A is

stable, z(k) is bounded V & > 0 for any initial condition. Then

w*(i]1) = 0 i=1,2,-- H,

(1) = max |Frz(i]1)|eo < 00
12
satisfies all the constraints and results in J; < co. Thus it is a feasible solution. O

Remark 6 Theorems 5 and 6 hold as well if other norms for softening the output

constraints are used.

3.3 Output Feedback

In the previous section, we assumed that the state is measured. Since the closed loop
system may be nonlinear because of the constraints, we cannot apply the Separation
Principle to prove global stability for the output feedback case. It is well known
that, in general, a nonlinear closed loop system with the state estimated via an
exponentially converging observer can be unstable even though it is stable with state
feedback. Although it is trivial to show local asymptotic stability here, proving global
asymptotic stability is nontrivial. We will show in this section that global asymptotic
stability of the closed loop system generated by State Feedback Controller IHMPCMC
and an exponentially converging observer is guaraﬁteed for stable systems.

Denote the state (output) at sampling time k + 4 estimated at sampling time k

by £(k +4|k) (9(k +i|k)). The state is estimated as follows.

B(klk) = A&(k — 1|k — 1) + Bu(k — 1) + K (y(k) — §(k|k — 1)) 56

2(k+ilk) =Ai(k+i—1k)+Bu(k+i—-1) i>1

where K is the observer gain. Define Output Feedback Controller IHMPCMC as

follows.
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Definition 6 Output Feedback Controller IHMPCMC: At sampling time k,

the control move u(k) equals the first element u(k|k) of the sequence {u(k|k), u(k +

k), -, u(k 4+ He. — 1|k)} which is the minimizer of the optimization problem

A

= 3 z k T L
b= ol e oy DT ER) Tee(k)

2

|Au(k +i]k)| < Au™® =0,---, H,
u(k+ik)eU 1=0,---,H.—1
subject to J u(k +ilk) =0 i=H, -, 00

o(k+ilk) € Xy  i=0,1,---,00

e(k) >0

\

where I'c > 0 diagonal, £(-|-) estimated via Equation (3.6), and

o0 Hc
b= 3@k +ilk) Tod(k+ilk) + [ulk+ilk)Tuulk +ilk)
=1 =0

+Au(k +ilk) T aulu(k + ilk)]
Combining Equations (3.6) and (3.1) yields
e(k+1)= (I — KC)Ae(k)
where e(k) = z(k) — £(k|k). Thus Equation (3.6) can be written as

Z(klk) =i(klk—1)+ KCAe(k — 1)
(k+ilk) =Az(k+i—-1lk)+ Bu(k+i—-1) i>1
which yields
E(klk) = KCAe(k—1)

E(k+ilk) =ALk+i—1lk) i>1

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)
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where £(k +i|k) = £(k + i|k) — 2(k + ik — 1).

Remark 7 The overall system with Output Feedback Controller IHMPCMC can be

expressed as follows.
z(k+1) = g(z(k),e(k))

e(k+1) =(I—-LC)Ae(k)

(3.12)

where z(k+1) = g(z(k),0) represents the closed loop system with state feedback and is
globally asymptotically stable for stable systems. To prove global asymptotic stability
for (8.12) is a special case of an actively studied problem (see, for ezample, /88],/85])
that considers a more general set of equations.

= al@e) (3.13)

¢ =ge)
where both & = g,(x,0) and é = go(e) are globally asymptotically stable.

Before we state the result on global asymptotic stability of the closed loop system

with Output Feedback Controller IHMPCMC, let us first prove the following lemma.

Lemma 1 Assume that A and (I — KC)A are stable, i.e. all the eigenvalues are

strictly inside the unit circle. Define

1(k) = max |Fo AT Fe(i)].o | ¢ | € Br
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Then

i \J i{ k+ k)T E(k +ilk) < oo
S HETaE) <o 1y
5 (\‘ > 60k ilRYTTLECk +ilk) + \/n(k‘)TFen(k)) <o

1=0

where 0 < T'y,I'c < oo and np is the number of columns of [F, F,].
Proof. From Equations (3.9) and (3.11), we have
le(k)]2 < ik ple(0)],
and
[€(k +ilk)]2 < i Py [E(KlK)|2 < c5i® "k~ pf o [e(0) 2

where p; = Ao (1 — KC)A) and ps = Apaz(A); ¢, ¢o, and c5 are constant; o; and
@y are the multiplicities associated with the largest eigenvalues' of (I — KC)A and
A, respectively. Here Apq,(A) denotes the spectral radius of A. Stability of A and
(I — KC)A implies that p;, ps < 1. Thus,

Z Zf(k-l—dk)TI‘zf(k—l—z]k) < c1¢9le(0)]25( Fx) 222(02 1)p2’Zk°“ 1o < o0
k=1 \ i=

The other two expressions can be proved similarly. |

Remark 8 If A is unstable or has poles on the unit circle, Lemma 1 clearly does not

hold.

The following theorem states that global asymptotic stability with output feedback

can be guaranteed for stable systems.

Theorem 7 Assume that A and (I — KC)A are stable, i.e. all eigenvalues of A and

!The largest eigenvalue is defined to be the eigenvalue with the largest absolute value.
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(I = KC)A are strictly inside the unit circle. Then the overall system with Output
Feedback Controller IHMPCMC is globally asymptotically stable.

Proof. Denote the weighted 2—norm vzT Rz by |z|x. Let
w(k+ilk+1)=ulk+ik) i=1,2---,m
e*(k+1) =e(k) +n(k)

where 7(k) is as defined in Lemma 1. Thus, (u*,€*) is a feasible solution but may not

be optimal. Define

U=3[lulk+ilk), +1Au(k+ilk)2, ]

=1
V(k) = |2(k + 1|k)[F, + [u(k)[}, + |Au(k)2,.

We have

|Z(k+ilk+1)[; + U+ |e(k + D3,

M8

Jpt1 <

T]‘
[

|2 (k +ilk) + &(k + ik + DIE, + U+ |e(k) + n(k)[E,

I
M8

~

IA
L‘:
M8

2k +ilk)[E, + U + (R}, + 2 €k +ilk + DIE, + ,U(k)h“e)

||
o

= (JJ——vuc) + J i €K + ilk + DI, + n(k) )

Taking square root on both sides yields

\/ Jep1 < \/ Jp — V(k) + \li 1E(k +ilk + )3 + [n(k)]r.

1=2

< Vi + \Ji‘ €k + ik + D)IF, + [n(k)Ir.

1=2
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which in turn yields

V k1 < \/?1+ Z NZ € +ilg +DIE, + In()]r.

By Lemma 1, the second term on the right-hand-side is bounded for all k. There-

fore, we have

Jk J"™ <00 V k>0

From before, we have

Jey1 < (\/ I, — V(k) + \li IE(k +ilk+ 1)}, + ,U(k)ll“e)

=2

=2

+2¢/J — (\[Z (K + ik +1)|2 + lﬂ(’ﬂln)

ﬂ—vw+(J§ww+m+wm+mme

= J-V(k)+ (\li 1€(k + ik + 1)2, + |77(k)|1“6)

VAN

+2v/ Jmaz ( i [k +ilk + 1), + |77(k)|1‘e)

\i=

which yields

=1 =2

k o) 2
Jis1 + ZV <J+ Z [( Do lEk +ilk+1)3, + lﬂ(k”re)

+2v/ Jmas (\' fj €k +ilk +1))2 + ln(k)lreﬂ

By Lemma 1 and boundness of J™ the second term is bounded for all . Thus,

k k
Tir + V(i) = Jea + 3 (180 + 1), + ()}, + |Au@)E,,] < oo

=1 1=1

Following a similar argument as in the proof of Theorem 6, we can therefore conclude
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that z(k) — 0 and u(k) — 0 as k — oo. O
The following theorem shows that the output constraints over the infinite horizon
can be replaced by the output constraints over an finite horizon. A similar result was

derived by Rawlings and Muske [77].

Theorem 8 Assume that A is stable. Given any 2(k|k) and e(k) > 0, there ezists a

finite N such that
z(k + ’L,k) € Xe(k) Vi>N

Proof. We need only prove this theorem for e(k) = 0: since €(k) > 0V k, Z(k+1|k) €
&' Vi > N implies &(k + ilk) € Xy V i > N. Suppose that N > H,. Then we only
have to show that Fy#(k +ilk) < f Vi > N. WLOG, assume that A is nonsingular.?
Consider a zero input, i.e. u(k+ilk) =0,i=0,---, H, — 1, and denote the value of

the objective function for this input sequence by j,:‘ Then,

Jp < Jp = 2(k|k)T f:(AT)iFIA%(ka) = 2 (k|k) 11 (k| k)

=1

where II is positive definite and bounded since A is nonsingular and stable. Also we

have

Jp = Zi: k+1i)k) T,2(k + i|k) + e(k) Tee(k)

i [ (k + ilk) Tyu(k + i|k) + Au(k + k) TayAu(k + z]k)]
i &k + ilk)TToa(k +i|k)

= &(k+ H.|k)"12(k + H,|k)

IV

¥ 0

2

z1(k+1 by 1 (k

#(k) = To(k)and | 2E+D | _| 20 0 Z1(k)

$2(k + 1) 0 22 .’L'z(k)

times, > becomes identically zero since ¥, is nilpotent.” Thus it suffices to consider the reduced
system with Z; as its states.

2If A is singular, we can write A = 7! T where ¥; > 0 and ¥, is nilpotent. Define

J . Then, after a finite number of sampling
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Combining these two inequalities, we obtain
2(k + H.|k) z(k + H.|k) < 2(k|k)TTI2(k|k)

which yields
|2(k + Helk)|2 < w(IT)|2(k|k)]

where x(IT) < oo denotes the condition number of II. Finally,

|Fe2(k + He + N|k)|oo |F AN 3 (k + H|k)|oo

IA

|Fo AN &k + H,|k)|

IA

5(Fp)a(AM)|2(k 4+ H.|k)|2
7(Fp)o (AY)k(IT)|2(k|K)|

IA

where 6(F;) denotes the largest singular value of F,. If N is such that
& (Fe)o (AN k()] (k[k)]2 < min(f;)  Vi>0
J

then
F.ez(k+ik)<f Vi>N+H,

f > 0 and stability of A imply that a finite N exists.

3.4 Example

Consider the system

0.655 —0.1673 0.1637
z(k+1) = z(k) + u(k)
0.1673  0.9825 0.0175

y(k)  =[-2 1=z(k)

(3.15)
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—2s5+1

which is obtained from the continuous-time transfer function Giiz With a sampling

time of 0.2. The initial condition is z(0) = [1.5 1.5]7. The output is constrained
between +1. Since the system exhibits inverse response behavior, hard output con-
straints can cause stability problems [96]. To use the approach proposed in [77], the
output constraint at the first sampling time must be ignored to make the optimization
problem feasible. We can also use the approach presented in this chapter and soften

the output constraints over the infinite horizon. The following parameter values are

used:

5 =2
H. =5T;= [ =01I,Tr, =0T =1

-2 2

where [ is the identity matrix. Using the arguments leading to Theorem 8 one can
show that the output constraints will be satisfied automatically after 35 time steps.
Thus, the output constraints need only be enforced over a finite horizon of length
35. The responses for the two approaches are depicted in Figure 3.1. A very large
overshoot is observed for the controller designed via the approach proposed in [77]
but the output comes within the constraints faster.

Figure 3.2 shows responses with output feedback. The initial state estimate is

£(0) = [0 0] and the observer gain is K = [0.1 1]7.

3.5 Conclusions

We have analyzed stability properties of the IHMPCMC algorithm for linear time-
invariant discrete-time stable systems. We showed that global asymptotic stability
can be guaranteed for both state feedback and output feedback cases. The on-line
optimization problem can be cast as a finite dimensional quadratic program. In the
next two chapters, we will investigate stability properties of the IHMPCMC algorithm

for systems with poles on the unit circle and unstable systems.
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e
3
= —: hard constraints [77]
O .
6f - - - -1 soft constraints (I, = I)
8t
-10F
_12 1 1 1 1 1 ! L
0 1 2 3 4 5 6 7
Time

Figure 3.1: Comparison of responses for the two approaches
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Figure 3.2: Output feedback responses



50

Chapter 4 Infinite Horizon MPC with Mixed

Constraints—Systems with Poles on the Unit

Circle

Summary

Based on the growth rate of the set of states reachable with unit-energy inputs, we
show that a discrete-time controllable linear system is globally controllable to the
origin with energy-bounded inputs if and only if all its eigenvalues lie in the closed
unit disk. These results imply that the Infinite Horizon Model Predictive Control
with Mixed Constraints algorithm is semi-globally stabilizing for a sufficiently long
input horizon if and only if the controlled system is stabilizable and all its eigenvalues
lie in the closed unit disk.

The disadvantage of the Infinite Horizon Model Predictive Control with Mixed
Constraints algorithm is that the input horizon necessary for stabilization depends
on the initial condition and can be arbitrarily large. As a result, we propose an
implementable Infinite Horizon Model Predictive Control with Mixed Constraints
algorithm. We show that with this algorithm a discrete-time linear system with n
poles on the unit circle (with any multiplicity) can be globally stabilized if the input
horizon is larger than n. For pure integrator systems, this condition is also necessary.
Moreover, we show that global asymptotic stability is preserved for any asymptotically

constant disturbance entering at the plant input.
4.1 Introduction

It is well known [84] that a linear time-invariant discrete-time system is globally
stabilizable with bounded inputs if and only if the system is stabilizable and all its

eigenvalues are inside the closed unit disk. The problem of constructing both globally
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stabilizing and semi-globally stabilizing controllers for linear discrete-time systems
with poles on the closed unit disk has been extensively studied over the last few
years. Various approaches, e.g. optimal control [63, 92, 75], smooth nonlinear control
[90, 86, 87, 91], and semi-global stabilization [61], have been employed to construct
stabilizing controllers for such systems. In this chapter, we use Model Predictive
Control (MPC) to study this problem.

Keerthi and Gilbert, and Rawlings and Muske [77] showed that, respectively, the
Finite Horizon MPC with End Constraint algorithm and the Infinite Horizon MPC
algorithm can globally stabilize linear discrete-time systems if and only the optimiza-
tion problems defining these algorithms are feasible for all initial conditions (see also
Chapter 2). We showed in the previous chapter that, with the Infinite Horizon MPC
with Mixed Constraints (IHMPCMC) algorithm, the optimization problem is guar-
anteed to be feasible for stable systems. The question now is: is the optimization
problem defining the IHMPCMC algorithm always feasible for systems with poles on
the unit circle?

It was shown in [92] that for stabilizable systems with poles in the closed unit disk,
given any initial condition, the optimization problem is always feasible, provided that
the input horizon (H,) is sufficiently long. Conversely [92, 86], for systems with poles
outside the unit disk, there always exist initial conditions for which the optimization
problem is infeasible. In this chapter, we prove the same result under stronger as-
sumptions on the input: Based on the growth rate of the set of states reachable with
unit-energy inputs (i.e. 192, u(z)Tu(i) < 1), we show that a discrete-time controllable
linear system is globally controllable to the origin with unit-energy inputs if and only
if all its eigenvalues lie in the closed unit disk. Then we show that the IHMPCMC
algorithm is semi-globally stabilizing for a sufficiently long input horizon. However,
the input horizon needed for feasibility of the optimization problem depends on the
initial condition; it is generally difficult to determine a priori and can be arbitrarily
large. Furthermore, in practice an unmeasured disturbance could still cause the op-
timization problem to become infeasible and an even larger number of control moves

may have to be chosen. Therefore, this strategy is not easily implementable.
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As a result, we propose an implementable IHMPCMC algorithm. We show that
with this scheme a discrete-time linear system with n poles on the unit circle (with
any multiplicity) can be globally stabilized if the input horizon is larger than n (i.e.
H, > n+1). For the specific case of a chain of n integrators, this condition is also
necessary. Furthermore, we show that global asymptotic stability is preserved for any
asymptotically constant disturbance entering at the plant input.

This chapter is organized as follows: In Section 4.2, we show that the singular
values of the ellipsoidal set of states reachable in N steps with unit energy inputs
for a discrete-time n—integrator system grow as {O(N?"~1), O(N?"-3),... O(N)}.
This implies that a discrete-time controllable linear system is globally controllable to
the origin if and only if all its eigenvalues lie in the closed unit disk. In Section 4.3,
we show that the IHMPCMC algorithm is semi-globally stabilizing. In Section 4.4,
we propose an implementable IHMPCMC algorithm and show that this scheme is
globally stabilizing if the input horizon is larger than the number of poles on the unit
circle (with any multiplicity). Two examples are presented in Section 4.5. Section 4.6
concludes the chapter. For notational simplicity, the results in Section 4.4 are proved
for single-input single-output (SISO) systems. We discuss the extension of the results
to multi-input multi-output (MIMO) systems.

Notations The notation used in this chapter is fairly standard. |e | denotes the
Euclidean norm, |e|; the 1-norm, and |e |, the co—norm. 27 denotes the transpose
of z. VaTRz = |z|r. For z,y € R",z < yifand only if z; < y;,i = 1,---, n. O(N)

means in the order of N.

4.2 Constrained Stabilizability of Linear Discrete-
Time Systems

In this section, we give the necessary and sufficient condition for the ezistence of a
control law to globally stabilize a discrete-time linear system subject to energy bounded

inputs (i.e. 320 u(i)Tu(z) < 1). The result is stronger than the stabilization result
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proved by Sontag [84] which applies to bounded inputs (i.e. |u(i)]oo < 1V i > 0).

4.2.1 Reachable Set for a Multiple-Integrator System

Consider the discrete-time integrator chain
z(k+1) = Alz(k) + epsyu(k) (4.1)

where A7 is a Jordan block of size n with eigenvalue 1:

- -
1 1 . 0
01 . 0
Al =
0 0 . 1 ]
and ey, is the last Euclidean basis vector, that is, e = [0 -+ 0 1]F. The size of

elast Will be determined from context (of course, here ej,5 € R7).

The set of states reachable with unit-energy inputs in N steps for system (4.1) is

z(0) =0, z(N) = z, z(-) satisfies (4.1) and Z_ u(k)? < 1} (4.2)

RNé{z

Of course, Ry C Ry C --- C Ry. Moreover, it is well known [8] that Ry is the
ellipsoid |

{z ' zTW,Z]l\,z < 1}
where W, v = S050 (A]) Ferasiethg ((AD)T)5. We will refer to W, v as the N—step
reachability Gramian of the pair (A7, ej,s;). We denote the ith singular value of W, v

by 0;(Wy n), and state the following result:

Theorem 9 The n singular values of W, y, {o1(Won), 00(Wo w), . o on(Wan)},

are

{O(N*"1),0(N*=3), ... ,O(N)}
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in N. Moreover, the corresponding singular vectors of W, x converge to the standard

Euclidean basis of " {[1 0---0],[0 1---0],...,[0 0---1]}.

Proof. We first note that

T
Tk k k k
(An) €last =
n—1 n—2 n—n
where
m!
— ifm>n
m | 5 ) nl(m—n)
n 0 otherwise
Therefore, Wy equals
{ k k k k k k
n—1 n—1 n—1 n—2) n—1 n-—mn
( k k k ( k k k
N—-1
n—2 n—1 n—2) n—2 n—2 n—n
k=0
k k k k k k
n—n n—1 n—n n—2 n—n n—n

In the sequel, given matrices A and B that depend on k, we will say “A(k) ~ B(k)
for large k” to mean that limj_.« A;;(k)/B;;j(k) = 1. Then, since

k k(=1 (k=n+j+1)
B (n =)
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we have
k f(n=3)
R
for large k£ and
N-1 k k N(2n—i—j+1)
> ~ ~ ~ — (4.3)
el n— i (n=i)!'(n—7!Cn—i-j+1)
for large V.
Therefore, we conclude that for large N, Wy is
O(NZn—l) O(N2n—2) . O(N2n—n)
O N2n—2 O(N2n—3) ... 0 N?n—n~1
( ) ( ) (4.4
O(N?"=") O(N¥—n=1) . O(NY)

Intuition suggests that this fact means that the largest singular value o, (W, x) grows
as O(N**7!) and the corresponding left and right singular vectors tend to e =
[1 0---0], that the second singular value oy(W, x) grows as O(N?"=3) and the
corresponding left and right singular vectors tend to e; = [0 1---0], etc. Let us now
prove this.

We start by writing W, x as

r 2 T 7

Z Ai- 1Clast

T
e
2
L
=S

>
Il
(=}
3
l
p—t
b
Il
[}
3
[
—

7
A €last Wi n
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Applying a congruence on W, y with

( | 0
N-1 k
A;{_lelast
Q= =0\ n—1
_ . I
N-1 k
k=01 n—1
we get
r 2
N-1 k
0
QWNQT = k=01 -1
0 I/T/n—l,N ]
where
N-1 k N-1 k
Z An—l €last Z A’r{— 1€last
k=0 n—1 =0\ n—1
Wn—l,N = Wn—l,N - 9
N-1 k
k=0 n—1

Using routine algebraic manipulations, it can be shown that Wn_l, ~ s approximately

1 ' 1

2n — 2 2n — 2

2n — 3

L n L

for large V.

2n— 3

n—1
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We now observe that the congruence matrix Q — I as N — oo, implying that
2

the maximum singular value o1(W, y) ~ SN for large N, and that
n—1

the corresponding singular vector converges to the first Euclidean basis vector €1.
Applying the block diagonalization technique recursively to Waoin, ... Win, we

conclude that the ith singular value of W, y

2 2

N-1 k 2n — 1
oi(Wan) =~ Z /

k=0 n—4 i—1

for large NV, and the singular vectors tend to the the standard Euclidean basis of R,

ie.,

{[L 0---0,[0 1---0],...,[0 0---1]}

Using (4.3), we may finally write

(i—1)! (2n —2i + 1)1\ ? 1 onoi
7 n ~ N v
oi(Wan) ( (n—14)! (2n —i)! (2n — 2i+1)
for large IV, which concludes the proof. O

Figure 4.1 illustrates Theorem 9 for n = 4.

Corollary 1 Consider the system
z(k+1) = Alz(k) + Bu(k) (4.5)

where B € R"*P has a nonzero last row (so that the system is controllable). Theorem 9

holds for system (4.5) as well.



58

50 ! T T T T T

o ; ; ; ; ; ; ;

Figure 4.1: Logarithms of singular values of Wy N versus N

Proof. Let b7, b1,... b7 be the rows of B, so that BT = [b1 by -+ b,). Then,

- i
bTb, BTb, --- BT,
. N-1 b2Tb1 bgbz bQTbn
Wan = > (40 (A"
k=0 . . .. .
b,:fbl bfbg b,:’;bnj
No1
= D b > (AD ke (AT
1<i,j<n k=0
Since
T
k k k
(A)re; = , i=12...,n
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we have
N-1 N-1
> biby Y (A7) eies (AN~ brby S (AD) renen((A2)T)E
1<2,5<n k=0 k=0
for large N, and the claim made in the corollary follows (recall that b, #0). O

Next, consider the system
z(k+1) = TAJT  z(k) + TBu(k) (4.6)

where B € R™*P has a nonzero last row. Let the NV -step reachability Gramian of the

pair (TA]T~1,TB) be denoted by W, n. We then have the following theorem.

Theorem 10 Let T = QR be the QR-factorization of T, i.e., Q is orthogonal and R
is upper triangular with positive diagonal entries. Then, the singular values of Wm N

grow as

{O(N*™1), 0(N*3%), ... O(N)}

Moreover, the matriz whose columns comprise the singular vectors of Wn,N converges
to Q.

Proof. The N-step reachability Gramian Woan of the pair (TAJT=!,TB) equals
TW, NTT, where W, v is the N-step reachability Gramian of the pair (47, B). Then
Won = QRW, yRTQT. A direct calculation shows that

( R11 Rll
5 N-1
RV, v B ~ . (z <A,{)kela,stef;st(<Az>T>’“)

k=0

Rnn J Rnn _J

for large N, where R;; is the 7th diagonal element of R. (This is a direct consequence

of the fact that R is upper-triangular.) This completes the proof. O

Corollary 2 The above results extend immediately to the case when the eigenvalue

of the Jordan block is not unity, but equals re’® for some 6 € [0,27] and some r > 1.
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(In this case, Wy v is defined to be Sp g (A7) *ersiel, ((A7)*)E.) Then the singular

values of W, y grow as
{O(r*"N*™ 1) O(r* N3, .., O(r*N)}

with N.

Proof. Let A7 be a Jordan block of size n with eigenvalue \ = ref. It is easy

to show that AJ™ is similar to AA;J. This fact, combined with Theorems 9 and 10

immediately yields the desired conclusion. a
Corollary 3 Let ) )
AJ(I)
AJ(Z)
A=
A](m)
where A7 is a Jordan block of size v; and eigenvalue \; = €% fori=1,... m with

(A, B) being controllable. Then the minimum eigenvalue of the N-step reachability
Gramian of the pair (A, B) is O(N).

Proof. The proof is very similar to the proof of Theorem 9. For simplicity of exposi-
tion, we will demonstrate the proof for the special case when the size of each Jordan

block is two (i.e., v; = 2 for all ¢), and when B; = ej,s;. The proof for the general case

should be readily apparent.

We first perform a similarity transformation so that

i
MAL

M AL

J
/\mA,,m j
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and

)‘1 €last

A2€last

/\melast

.

(With some abuse of notation, we will use 4 and B to denote the state-space matrices
in the new coordinate systems as well, in order to avoid proliferation of symbols.)

We follow this with another similarity transformation (in fact, a simple permuta-
tion similarity) so that

A A
A=
0 A
and
0
B =
A1l

where A = diag (A, ..., Ay) and 1 is a vector of length m with each component unity.

In this new coordinates, the N-step reachability Gramian Wy satisfies

N-1 N-1
SRS kI
k=0 k=0

Wy~ N-1 N-1
SSKI S I
k=0 k=0

for large N. Using the block diagonalization technique in the proof of Theorem 9, it

is straightforward to show that m singular values of Wy are O(N?) and the remaining
m singular values of Wy are O(NV).

O
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4.2.2 Controllability to the Origin with Bounded Inputs

Consider the discrete-time system
z(k+1) = Az(k) + Bu(k) (4.7)

Since we may always perform a state coordinate transformation that puts A in its

Jordan form, we may assume, without loss of generality that

AJ(l)

AJ(Z)

AJ(m)

|

where 47 is a Jordan block of size v; and eigenvalue )\; for s = 1,...,m. For future

reference, we partition B and x conformally as

- - -
[. Bl I
B, T2
B = and z =
B, T

We now consider the problem of controlling the state of system (4.7) to the origin

with unit-energy inputs:
[ee)
Given z(0), find u with ) u(i)"u(i) < 1 such that limg_,. z(k) = 0 (4.8)
=0

We will show that a necessary and sufficient condition for this is that {A, B} is
stabilizable and A has all its eigenvalues in the closed unit disk, that is p(A) < 1.
Indeed, we will show that for every z(0) € ", there exists N such that the following
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problem is feasible, if and only if {A, B} is stabilizable and p(A4) < 1:

N-1 1/2
Given z(0), find v and N with (Z {u(k)]2> < 1such that z(N) =0  (4.9)

k=0

First let us assume that p(A4) < 1. Indeed, we may as well assume that all the
eigenvalues of A are on the unit circle: Any eigenvalue in the open unit disk is a
stable eigenvalue, and the projection of the initial condition z(0) on the eigenspace of
this eigenvalue decays to zero exponentially, with zero input, and therefore we may
“ignore” these eigenvalues. (If there is no eigenvalue on the unit circle, then the
problem is trivially solved with zero input!)

The condition z(N) = 0 yields
0=[BAB - AV1B] [u(0)" u()” - u(N = 1)7]" + 4z (0)
Then, we need
#(0) =~ [A7B A7B - AVB] [u(N — )7 u(N — 2)7- - u(0)?]"
In other words, £(0) must be reachable for the system
F(k+1) = A~'%(k) — A Bu(k)

with unit-energy u, over N time steps. Since every eigenvalue of A~! is of the form
e/? for some 6 € [0, 27], it follows from Corollary 3 that this is so. Thus sufficiency
of the condition p(A) < 1 is proved.

Conversely, let p(4) > 1. Without loss of generality, say |A\;| > 1. Then it is
quite easy to show that for every initial condition of the form z(0) = [z7 0]” with

szc_lzl > 1, problem (4.9) is infeasible, where W, is given as the unique solution

to the Lyapunov equation

W, — A" W, (A" + B,BT =0
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Thus, we have the following theorem.

Theorem 11 For every z € R, there exists N such that the system (4.7) is control-
lable from z to 0 in N time steps with unit-energy inputs if and only if p(A) <1 and
{A, B} is controllable.

Remark 9 Since the set of reachable states grows linearly with the energy bound on

the input, we note that the above claims hold for any arbitrarily small bound on the

energy, not necessarily unity.

Often, the following variation on problem (4.9) is of interest:

Given z(0), find v and N with |u(k)|e <1, k=0,...,N — 1, such that z(N) = 0

(4.10)

This problem concerns the controllability to the origin from z(0) with unit-peak in-
puts, in contrast to the unit-energy inputs considered earlier.

It may be shown that problem (4.10) is feasible if and only if all the eigenvalues
of A are in the closed unit disk. It follows immediately that the latter condition is
sufficient for problem (4.10) to be feasible: the set of unit-peak inputs contains the
set of unit-energy inputs.

The proof of necessity can be outlined as follows. Suppose that one of the eigenval-
ues of A is outside the unit circle. At the sampling time &, the value of the state has
two contributions, one from the initial condition (z(0)) and the other from the con-
trols (u) up to the sampling time k — 1. For sufficiently large k, the contribution from
the initial condition behaves as Be** where A > 0 and £ is a constant that depends on
the initial condition and can be made arbitrarily large for some initial condition. The
contribution from the control input at the sampling time i < k behaves as yerk—i),
Since the control input is bounded, 7 is bounded. Simple calculations show that the
total contribution from the controls up to the sampling time k — 1 is bounded by yer*
where 7 is constant. Thus if we chose an initial condition such that |G| > 7, then the
output will grow unbounded regardless of control actions. Therefore, there are initial

conditions that cannot be controlled to the origin, even with unit-peak inputs, if the
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controlled system has eigenvalues outside the unit disk. In other words, Theorem 11

may be extended to the case of unit-peak inputs:

Theorem 12 For every z(0) € R™, there exists N such that the system (4.7) is
controllable from x(0) to 0 over N time steps with unit-peak inputs if and only if

p(A) <1 and (A, B) is controllable.

Remark 10 As before, the claim in Theorem 12 holds for any arbitrarily small bound

on the peak, not necessarily unity.

Remark 11 Controllability of {A, B} can be replaced by stabilizability of {A, B} if
we replace z(N) = 0 by limg_,, (k) = 0.

4.3 Semi-Global Stabilization

In this section, we will prove that the IHMPCMC algorithm is stabilizing for any ini-
tial condition if the input horizon (H,) is sufficiently long. Notice that H, depends on
the initial condition. This kind of stabilization is usually referred to in the literature
as semi-global stabilization: Given any initial condition (or a set of initial conditions),
there exists an H, such that the controller stabilizes the initial condition (or the set
of initial conditions) to the origin. On the other hand, there does not exist a constant
H. that will stabilize all initial conditions to the origin.

Define the objective function as follows:

Dy = f; |z (k + ik) |3, + ZO [k + i) 2, + |Au(k + i) Ry, ] (4.11)

where I'y > 0,T, > 0,Ta, > 0, and H, is finite. I';,I'y and Ta, are symmetric.
(-)(k +i|k) denotes the variable (-) at sampling time & + 4 predicted at sampling time
k. The control actions are generated by Controller IHMPCMC which is defined as

follows.

Definition 7 Controller IHMPCMC: At sampling time k, the control move u(k)
equals the first element u(k|k) of the sequence {u(k|k), u(k+1|k),- -, u(k+H.— 11k)}
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which is the minimizer of the optimization problem

Oy, + le(k)F,

min
E(k):u(klk)a""u(k+HClk)

(
wk+ik)eld i=0,1,--- H —1 (4.12)

subject to J u(k+ik)=0 i=H,H,+1,---,00

x(k+i|k) € Xe(k) 1=0,1,---,00
where I'c > 0 is diagonal, and

u = {u:0>u'”i"§u§um“$>0}

z
z:[F, F)] <f+ee>0ucld

u

&
(>

We assume throughout this chapter that &/ contains u = 0 as an interior point and X
contains z = 0 as an 4nterior point. An important question associated with Controller
IHMPCMC is that of stability: Given z(0), does Controller IHMPCMC always lead
to a control u that steers the state to zero?

We may break the answer to this question into two parts: First, we require J, < co
for each k. If this condition is satisfied, we may then ask if the overall strategy—that
of implementing as input only the first element of the minimizer at each step—is
stable.

Obviously, Ji < oo for all z(k) € R if and only if for every z(k), the projection
of z(k + H.|k) on the eigenspace of A corresponding to the unstable (that is, with
magnitude that is not less than one) eigenvalues is zero. The results of Section 4.2.9
immediately give us the following: for every z(k), there exists a value of H, such that
Jr < 0o if and only if (4, B) is stabilizable and all the eigenvalues of A are in the
closed unit disk.

Next, let us consider the stability of the moving horizon strategy. First, if J, < oo
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for some k, then Ji,; < co. Indeed J. serves as a Lyapunov function that proves the
stability of the horizon strategy. This can be seen as follows. Assuming J;, < oo,
let {u(k|k),u(k + 1]k),...,v(k + 1|H, — 1|k)} be the minimizer of problem (4.12).
Then we have that for problem (4.12) at time k + 1, the input {u(k + 11k), u(k +
2|k), ..., u(k + H. - 1|k),0} leads to a finite objective that equals

Te = (2(k) Tz (k) + u(k) Tyu(k) + Au(k)"TauAu(k))
Thus, if Ji < oo, then Ji;; < co. Also,
Ji + x(k) Toz(k) + u(k) T uk) + Au(k) T ayAu(k) < Jy
which yields

Jet+ 3 [0() () + u(i) Tyuli) + Au(i) T, Au(i)] < Jy < oo

1=0

for all k£ > 0, which, in turn, implies that z(k) — 0 as k — oco. The above discussion

is summarized in the following theorem.

Theorem 13 The closed loop system with Controller IHMPCMC is semi-globally
asymptotically stable for a sufficiently large finite H, if and only if (A, B) is stabilizable
and p(A) < 1.

Thus, given 2(0), we conclude that Controller IHMPCMC is stabilizing for some
input horizon H. if and only if (A, B) is stabilizable and p(A) < 1.

4.4 Global Stabilization

In the previous section, we showed that the IHMPCMC algorithm semi-globally sta-
bilizes a stabilizable system with poles on the unit disk. However, H, depends on
the initial condition; thus, it is generally difficult to determine g priort and can be

arbitrarily large which implies demanding computations. Furthermore, in practice
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an unmeasured disturbance could still cause the optimization problem to become in-
feasible and an even larger H, may have to be chosen. Therefore, the strategy is
not easily implementable. In this section, we propose an implementable IHMPCMC
algorithm and show that with this scheme a discrete-time linear system with n poles
on the unit disk (with any multiplicity) can be globally stabilized if H, > n. For the
specific case of a chain of n integrators, this condition is also necessary. Furthermore,
we show that global asymptotic stability is preserved for any asymptotically constant
disturbance entering at the plant input. For notational simplicity, all the results in
this section are proved for single-input single-output (SISO) systems. We discuss the

extension of the results to multi-input multi-output (MIMO) systems.

4.4.1 Preliminary

Systems

The system which we will consider here is linear time-invariant discrete-time with

poles on the unit circle and can be represented generally as follows.

Na ny .
(L—g ™1 +g )™ [JQ+2aq7" + q—Q)"’] y(k) = [Z b,-q-lJ u(k)  (4.13)

i=2 i=1
where n;,7 = 0,1,---,n,, and n, are integers, ¢~* is the backward-shift operator, and
la;| < 1,4 > 2. The term (1 — ¢~')™ represents n, integrators, (1 + ¢~1)™ n; poles
at —1 and (1 + 2a;¢7' + ¢?)™ n; pairs of complex conjugate poles at —a; & 1/a? — 1.
Assume that the left-hand and right-hand polynomials of (4.13) do not have any

common roots. Define

Na
n = no—l—nl—i-QZni
=2

n = max 7n;
max 0<i<n, 1

Ng
Nmodes = min(ng,1)+ min(ny,1)+ 2 min(n;,1)
j=2
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Here n is the total number of poles on the unit disk, nyay is the largest multiplicity,
Tmodes 18 the total number of poles on the unit disk not counting multiplicity. The

unforced response, i.e. u(k) =0, V k> 0, is

y(k) = 3 B(k)Qi Yk >mn, (4.14)

where Pi(k) = [ cos(rk) sin(wpk) cos(wak) --- sin(wn,k) cos(w,, k)k™"} w; =
arccos(—a;) € (0,7),5 > 2, and Q; is a constant column vector that depends on

L

the initial condition yo = [y(—n + np) -+ y(np — 1)]. Let Q = : and

Q. |
P(k) = [Pi(k) -+ Ppp..(k)], then we have y(k) = P(k)Q.

Example 2 Consider the system
I+ A ~g"+¢7)y(k) = u(k - 1)
with the initial condition
vo = [y(=4) y(=3) y(=2) y(=1) y(0)].

Then n =5, Nmodes = 3, Nmax = 2,ws = arccos(0.5) = 2y Pi(k) = [cos(mk) sin(wqk)
cos(wsk)], and Py(k) = [sin(wzk)k cos(wak)k]. @ can be calculated using the rela-

tionship
yo = [P(—4)T .- P(0)T]TQ = DyQ.

Notice that Dy is not singular for all k. Otherwise, there would be some coefficients

that do not depend on the initial condition.

1Since n; is not necessarily equal to nmax for all 0 < i < n,, P; may not contain every term
shown here. For example, if ng = 0, then P;(k) does not contain the constant term 1 for all 4 > 1.
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Objective function

Consider the following objective function:

®(k,0) = Z]r— (k+i4k)]* +T, HCZ—IIAuk—HIk)]z 0<TI'y<oo (4.15)

Since the system (4.13) contains poles on the unit disk and the input is constrained,
H, must be sufficiently large, as shown in the previous section, to bring the steady-
state to the setpoint. However, for computational reasons we would like to keep H.,
small and for small H, the value of the objective function (4.15) may be unbounded.
We want to modify the objective function such that it is bounded for all values of
H,. For systems with poles on the unit disk, the state may grow at most as k"maz—1,
Multiplying the objective function (4.15) by the term piﬁ and choosing  appropriately
will make the objective function bounded for all values of H,. This motivates the

following modified objective function.

H.-1
®(k,0) = hm W er Yk +ilk)* + Taw > |Au(k +i|k)|? (4.16)

1=0
where §(a) = max(2a — 1,0) and « is the smallest nonnegative integer such that the

optimal value of the objective function is finite.

Remark 12 The poles inside the unit disk do not affect O(k,a), @« > 1. This is
because Y |ys(k + i|k)|?, where y, denotes the output contribution from the poles
=1
inside the unit disk, is finite.
Remark 13 The modified objective function (4.16) can be extended directly to handle
MIMO systems as follows.
H.—1

O(k,a) = lim 1(0) Zlfr vk +iBf, + X 1tk + iR, | (@7

where B(a) = max(2a — 1,0) and « is the smallest nonnegative integer such that the

optimal value of the objective function is finite.
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Control design

At each sampling time, H, control moves are calculated such that ®(k, o) is minimized
where « is the smallest integer such that the optimal value of ®(k, «) is finite. The
value of a can be determined as follows: since the optimal output grows at most as
krmas=l . J(k, Nnes + 1) = 0, ¥ i > 1. Starting with the initial gUESS Nyqp for a,
we reduce the value of o by one until J(k,a) > 0. The optimal control moves are

generated by Implementable Controller IHMPCMC which is defined below.

Definition 8 Implementable Controller IHMPCMGC: At each sampling k, the

control moves u(k) is determined as follows.
Step 1 Set o = nyyyy.

Step 2 Solve the following optimization problem.

J(k,0) = min ®(k, a)
Uk

(uminsu(k_'_i’k)sumaz, ’iZO,"',Hc—l
|Au(k +ilk)| < Aume=,  j=1,... H,—1 (4.18)
subject to ¢
Au(k + ilk) =0, t=H, - 00
O(k,a+1) =0, =1, Npee —

where Uy = [u(kl|k) --- u(k+ H,— 1|k)]T.
Step 3 If J(k,a) =0 and o > 1, then set & = o — 1 and go to Step 2. Otherwise,

go to Step 4.

Step 4 Set the control moves u(k) equal to the first element u(k|k) of the sequence
{u(klk), -, u(k+H.—1|k)} which is the minimizer of the optimization problem

(4.18).

Notice that ®(k,a+1) =0,s=1,---, Nmaz — @, 1S Necessary to ensure that « is the

smallest integer for which the optimal value of the objective function is finite.
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Remark 14 Here we did not include the soft output constraints for simplicity only.

Inclusion of such constraints does not affect any results to be presented later.

Remark 15 In the absence of disturbances, the value of o does not increase with
time. The value of a at time k can be determined by starting with the value at
time k — 1 as the initial guess. However, in practice, because of disturbances and/or
model/plant mismatch, the value of a at each sampling time must be determined by

starting with the initial guess Nyaz.

4.4.2 Main Results

The infinite-horizon minimization problem is converted into a finite-dimensional op-

timization via the following lemma.

Lemma 2 Suppose r = 0. Assume that at sampling time k, the coefficients (Q) are
calculated by treating k + H. + ny, — 1 as the initial time. Clearly, @ depends on
Ur. Then J(k,a) is finite if and only if Q; =0, i > a + 1. Moreover, if @ # 0 and
Qi=0,1>a+1l, then J(k,a) = n[}ianWaQa where W, = 5-—diag{1,1, 1 L. 1

Proof. If Qa41 # 0, then the output grows as O(k?). hm — Z |O(k*)|? clearly
approaches infinity for all @ > 0. If Q; = 0,V 7 > 1, then if(k, O)plslc ciearly finite. The
sufficiency for o > 1 follows by establishing the second part of the lemma which we
do now.

Since the output horizon is infinite, the term P, (k)Q, in the output which grows as
O(k*') dominates. The second term in the objective function also vanishes. WLOG,

assume that k is chosen such that u(k) = 0,k > 0.2 Then by Equation (4.14), we

have

(k) = H_)OOHQQ 1Z[P
P p

= hm

Hga 1 Z Qu Pl (k) Pa(k)Qa

?In the presence of the disturbance w entering at the plant input, u(k) +w = 0.
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= QZWQa

where

— T
W = H}Dlinoo H2 Z P, (k)P

cos(mk)

Hp | sin(wek
! > (wak) [1 cos(mk) sin(wsk) cos(wak) -+ cos(wn, k)] k22

k=11 cos(wsyk)

= m
Hp—o0 Hga—l

cos(wp, k)
[- 1 cos(mk) e cos(wp, k)
cos(rk) cos(rk)? -+ cos(mk) cos(wp, k)
= lim —— %" k22
Hp—o0 Hp =1
cos(wn, k) cos(mk) cos(wp, k) - cos(wp, k)?
1 1

jagf{1.1.=.... =
2a_1dla‘g{ 71’2’ ’2}

The last equality follows from the following integrals.

HP
/ k2 sin (w1 k) cos(wek)dk ~ O(H27%) for large H,
1

Hy, ( O(Hga_l) if W1 = Wy
/ k**~? sin(w; k) sin(wpk)dk  ~ for large H,
1

O(Hga_2) if w1 ?é Wa

H, O(Hga—l) if W1 = Wy
/ k**7? cos(wi k) cos(wak)dk  ~ 4 for large H,
1

O(HZ*7?) if wy # wy

\
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a

Remark 16 If r # 0 is such that the steady-state input is strictly within the con-
straints, the lemma still holds. By change of variables, the desired output becomes the

origin and () must be determined using the values for the new variables.

Remark 17 W, may not contain every term shown. For example, for the system
1

considered in Ezample 2, Wy = diag{1,},3} and W, = Ldiag{3,1}. If we used the

Hy
Ly-norm ([ ly(k + t|k)|*dt) instead of the l-norm | > |y(k + z|k)|2), then W, =

i=1

1 . 1 1 1
mordiag{l, 3,3, -, 3}

Remark 18 One difficulty may arise in extending this lemma to MIMO systems.
The order of growth for each output may be different. For example, one output may
grow as O(k*) while another one may grow as O(k*). Therefore, different values of

a may have to be used for each output.

Remark 19 For o > 1, the solution to the optimization problem (4.18) may not be

unique. If this is the case, we assume that the unique solution is such that

2

u(k) Uk

Uk+1 u(k—f—Hc]k)

2

is minimized over all feasible control moves for which the objective function has the

optimal value.

The following theorem establishes a necessary condition and a sufficient condition
on H, such that the closed-loop system is globally asymptotically stable with Im-
plementable Controller IHMPCMC. The proof of this theorem is lengthy and can be
found in Section 4.4.7.

Theorem 14 Suppose that a disturbance w enters at the plant input and that the

disturbance has the following properties:
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1. w(k) — @ as k — oo and —w s strictly within the input limits, i.e. ™ — S <
—w < u™ — u® where u® is the steady-state input resulting from the setpoint

change r.
2. For any € > 0, there exists a finite K such that |lw(k+1) — 0| <eV k > K.

The future disturbance is estimated by assuming that it is a step. Then the closed-loop
system with Implementable Controller IHMPCMC is globally asymptotically stable,
ie. y(k) =7 ask — oo, if H. > n+1 and only if H, > 1 — Nupoges + 2 where n is

the total number of poles (with any multiplicity) on the unit disk.

Proof. See Section 4.4.7. O

For pure integrator systems, nmodes = 1 and the following corollary is immediate.

Corollary 4 Under the conditions of Theorem 14, the closed-loop system with Im-
plementable Controller IHMPCMC s globally asymptotically stable if and only if

H, > n+1 for pure integrator systems.

In the absence of the disturbance, we have the following corollary.

Corollary 5 In the absence of the disturbance, J(k,a) =0V a > 1 for a sufficiently
large finite H,.

This corollary implies that for a sufficiently large number of control moves, the
original objective function (4.15) is finite. Thus this result parallels those in the

previous section and those in the paper by Tsirukis and Morari [92].

4.5 Examples

We have shown that, with H, properly chosen, the IHMPCMC algorithms can semi-
globally or globally stabilize any constrained stabilizable system with poles on the
unit disk. Example 3 compares the closed loop responses for Controller IHMPCMC
with other design methods. Example 4 illustrates how to choose H, for Implementable
Controller IHMPCMC to reach the best compromise between performance and com-

putational complexity.
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Example 3 [92] Consider the following system [87]

.’i’] = I
iiIQ = —I1+ T3
.’i?g = X4
.’i?4 = —ZI3+u

where u must satisfy the constraint |u| < 1. The system has four poles on the
imaginary axis (—j, —j, 5,7). As shown by Teel [91], no linear controller can globally
stabilize this system.

The system was discretized with a sampling time of 0.1. The initial condition is
zo=[1 0.5 0.5 1]7. The weights are I'; = I,T, = 10, and ['a, = 0. The input
horizon is H, = 50. Figure 4.2 depicts the time-evolution of state z; for the controller
designed by Sontag and Yang [87] and Controller IHMPCMC. The behavior of the
other three states is similar. The corresponding control actions are shown in Figure
4.3. Although both controllers stabilize the system, the difference in performance is
striking. In all fairness, we should point out that the controller designed by Sontag
and Yang [87] was to ensure stability and that they made no attempt to achieve good

performance.

Example 4 [89] Consider the following triple-integrator system.

Ty =29
T9 = T3
(4.19)
I3 =1U
y =

As shown by Teel [91], no linear controller can globally stabilize this system. We
discretize the system with a sampling time of 0.1. The initial condition is z(0) =

[3 =1 3]" and the control input is constrained between the saturation limits +1. To
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Figure 4.2: Time-evolution of z; for Example 3 (solid — MPC; dash — from Sontag
and Yang 1991)

stabilize this initial condition with Controller IHMPCMC, we must choose H, > 150.
Theorem 14 states that with Implementable Controller IHMPCMC H, = 4 is sufficient
to globally stabilize this system. Figure 4.4 shows the responses for H, = 4,10, 20, 40,
and 60 along with the response for the nonlinear controller designed by Sussmann et
al. [90]. The input weight is Ta, = 0. As we can see, the performance improves
as the input horizon (H.) increases. However, the amount of computation increases
dramatically.® Thus a trade-off between performance and computation arises. Al-
though Theorem 14 states that H. = 4 is sufficient to globally stabilize this system,
H, should be chosen to reach the best compromise between performance and compu-

tation.

31t was observed that computational time grew exponentially in H,.
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(0] 10 20 30 40 50 60 70 80 90 100

Figure 4.3: Time-evolution of control action for Example 3 (solid - MPC; dash — from
Sontag and Yang 1991)

4.6 Conclusions

Based on the growth rate of the set of states reachable with unit-energy inputs, we
showed that a discrete-time controllable linear system is globally controllable to the
origin with energy-bounded inputs if and only if all its eigenvalues lie in the closed
unit disk. These results imply that, with proper choice of the input horizon, the
IHMPCMC algorithm is semi-globally stabilizing if and only if the controlled system
is stabilizable and all its eigenvalues lie in the closed unit disk.

The disadvantage of the IHMPCMC algorithm is that the input horizon necessary
for stabilization depends on the initial condition and can be arbitrarily large. As a
result, we propose an implementable IHMPCMC algorithm. We show that with
this algorithm a discrete-time linear system with n poles on the unit disk (with any
multiplicity) can be globally stabilized if the input horizon is larger than n. For pure
integrator systems, this condition is also necessary. Moreover, we show that global
asymptotic stability is preserved for any asymptotically constant disturbance entering

at the plant input.
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60r Solid: H, = 4 ]
+: H. =10

5oL o: H, =20 i
* H, =40
x: H. =60

40- Dotted: from Sussmann et al (1992) _
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Figure 4.4: Output responses for various H, values

4.7 Appendix—Proof of Theorem 14
Before we prove Theorem 14, let us first establish some preliminary results.

Claim 1 Let V € ™™ be a unitary matriz. 23" = argmin 27 2, subject to
2 1In 25

0> 2™ <V < M > (4.20)
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where z, € R™, m > my, 1™ € R™ and 7% € R™. There ezists a positive constant

A such that

2l 21 > MzgP)T 2P for all feasible 2,4
Proof. If 237" = 0, the claim clearly holds. Assume that 2% # 0. Then the optimal

solution must occur on the boundary. The feasible region formed by the constraints

(4.20) has m2™~" edges (or lines). Each edge is represented by

21

Vi =z

22

where V; consists of m — 1 rows of V and z consists corresponding rows from either
™" or g™, After eliminating m — 2 variables (only one variable in z, and one

variable in z; remain), we obtain
uizl(z')-i-l/sz(j) :Cij 1= 1,--~,m—m2 and j = 1,---,m2

If 4 = 0, then any change in 2;(i) does not affect z,(j) and 23(7)%* = 0 since
it is feasible. Let A be the smallest value of zﬁﬁo:g—;l over all edges. We have
Mz 297" < 2Tz for all edges where the optimal solution lies. If the optimal
solution does not occur on any edge, then some of the constraints are not satisfied as

equalities and the value of (257")726”" must be smaller. Thus, we have
2121 > M2 T2 for all feasible 2,

where ) is a positive constant. O

Claim 2 Let X be a closed conver set. Suppose the point xo lies outside X. Then

there is a plane that strictly separates X from z,.3

Claim 3 Let J = Il’éi}l(l(.’l?o —z)"W(zo—1z) where W > 0, X is a closed conver set and

0 € X. Suppose that z% is the optimal solution. Then J < zT Wz — (2°P!)TW 2o,

429P! clearly depends on z;.
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Proof. WLOG, assume that W is the identity matrix, i.e. J = (zg — 2T (2o — z°Pt).
If 2o € X, i.e. 2°°° = z, then J = 0 and the claim clearly holds. Suppose z, lies
outside X. By Claim 2, there is a plane that strictly separates X from z,. Let P be
the separating plane that is orthogonal to the line passing through the points z, and
2°P* and contains the point z°P*. Since the origin belongs to the set X, there exists
another plane P’ which contains the origin and is parallel to P. Let the intersection
of the plane P’ and the line passing through the points z, and z°?* be y. Since xg, 2P
and y form one line and z°"* is between x4 and y, (zo — 2°?))T (2" — y) > 0. Since
both the origin and y belong to P’ and the line passing through the points xg, TP
and y is perpendicular to P', (2o — y)"(y — 0) = 0 and (z°?* — )T (y — 0) = 0, i.e.
iy = yTy and (27))Ty = yTy. We have

(o —y) (w0 —y) + 9"y = zg o + 2y"y — 2rjy = axlz,
(xopt _ y)T(.’EOPt _ y) + yTy — (xopt)Txopt
Thus,
25 — (zP) 2% = (zo — )T (zo — y) — (2% — y)T (2Pt — 3))
= (w0 — 27" + 2% — y)T(zg — 2P + 2%t — y)
—(@" = y)T (2 — y)

= (370 _ xopt)T(xO _ ZCOPt) + 2(1:0 _ xOPt)T(;L-OPt _ y)
2 (1:0 _ fEOpt)T(CEO _ l,opt)
= J

= J < glzy — (zP)T gt . O

The following claim is a generalization of the previous claim.
Claim 4 Let J = min(ao + Ez)"W(ag + Ex) where X = {z:2 € ®™, Gz = 0,0 <
E

™ < g < g >0}, We RV >0, and m > n. has full row rank. If the
G
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solution is not unique, the optimal solution (°Pt) is determined as argmin 2’z over
all feasible solutions for which J has the optimal value. Then there exists a positive

constant vy such that J < af Wy — (2P T 1P,

E U E UE
Proof. Let = S0 J VT where and VT are unitary matrices
G UG UG
and ¥ contains all the singular values. Since has full row rank, ¥ > 0. Let
21
z= = VTz. The optimization problem becomes
29
J = min(ao + UpZ21)"W (ao + UpZ2) (4.21)
subject to
)
ngzl =0
[
9 ) 21
0>zm™ <V <z >0
2
Zopt
. 1
For any given 2%, 29V' = arg min 23 2, subject to 0 > z™r < V <
2
)

™ > 0 and 2{¥ is such that the constraints are feasible. By Claim 1, there exists a
positive constant A such that (27)72{"" > A(257)T25"". This together with the fact

(zP)TzP = (277721 + (257)7 2, (since V is unitary) gives

1
1+

AR > — e

> |
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2

Ug - _
Thus, |Ex®|3 = |UgZz?'|? = S = |Z2PP2 > A|zP'|2 where )\ =
Ug
2

Q(E)l—j—%— and ¢g(X) > 0 is the smallest singular value of X.

J = néi)r(l(ao + Ez)"W (ay + Ex)
— i —gn — T g —
= Igél)r(l( ay — Ez)" W(—ay — Ex)

< (—a0)"W(=ag) — (ExP)TW (Ez°)  (by Claim 3)
= ay Way — (ExP")TW (Ez")
< alWag — a(W)(EzP)T (EzP)

< agWag — y(z°P)T gort

where v =g(W) and ¢(W) > 0 is the smallest singular value of . O

Remark 20 As one can see, the optimal solution of J = Il’éi)l{l(ao + Ex)TW (ag + Ex)
x

may not be unique. If we do not determine the unique optimal solution as arg min z7x

over all feasible solutions for which J has the optimal value, then this claim does not

hold in general.

Now we are ready to prove Theorem 14.
Proof. WLOG, assume that v™" + § < —w(k) < u™* —§V k > 0, where § > 0 is
constant, and |w(k 4+ 1) — w(k)| < eV k > 0.5 The future disturbance is estimated
by assuming that it is step-like, i.e. w(k +ik) = w(k — 1) V i > 0 where % denotes
the estimate of w. Thus u(k + N — 1|k) + @(k + N — 1]|k) = 0 is always feasible,
i.e. ®(k,Nmax) = 0V k > 0 is always feasible. Only N — 1 control moves are used to
minimize the objective function. Let Q(j[i) be the coefficients calculated at time j

with reference time at i, i.e. i is treated as the initial time (0). We have

By assumptions on the disturbance, this is always possible by appropriately defining the initial
time.
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F P(—n+1) -

P(—n+2)
Q(klk—!-N—l-nb—l):

P(0)

y(k)

| y(k—n+1)

P(—n+1) -

P(—n+2)
Q(k+1|k+N+nb—1) =

P(0)

84

y(k+N —n+ny — 1|k)

y(k+ N+ ny — 2|k)

y(k+ N +n, — 1]k) ]

u(klk) —w(k — 1)

u(k 4+ 11k) — w(k — 1)

u(k + N = 2Jk) — w(k — 1)

w(k+N = 1]k) — w(k — 1) = 0

y(k+N+n, — 2|k +1)

y(k+ N +ny— 1|k + 1)

y(k+N—-n+n,— 1]k +1)

uk+N-n+2-m)—wk+N-—n+2—n,)

|

(4.22)
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-
uk+N—-n+2-mn)—wk+N-n+2—mn)

c : +D (k) = w(k) (4.23)
u(k+ 1k +1) — w(k)

u(k+ N =1k + 1) — w(k)

Subtraction of the above two equations and a few lines of algebra give
QUe+1k+N+ny—1) = Q(klk+N+ny— 1) + FAvg g + G(w(k) —w(k — 1)) (4.24)

where Avgyy = [u(k+1[k+1) - w(k+N—=1]k+1)]" - [u(k+1[k) - u(k+N—1]k)]"
and F and G are defined in an obvious manner. Or equivalently, for o = 1, Nmax,

we have

Qalk+1[k+N+m,-1) = Qa(klk-+N+ny—1)+FpAvg 41 +Ga(w(k) —w(k—1)) (4.25)

r -

Fy

where F' = : and G is defined similarly.

F,

Mmax

Remark 21 Notice that Q(k + 1|k + N + 2) may not be necessarily equal to Q(k +
1k + N +1). However, by Corollary 1, Q;(k + 1|k + N +2) = 0V i > a and
Qo(k+11k+N+2)TW,Qu(k+1k+N+2) = Qo(k+1|k+N+1)"W,oQo(k+1|k+N+1)
if and only if Qi(k+1k+N+1)=0V i > q,

The optimization problem, with slight abuse of notations, becomes the following:

J = min [Qu + Folvii1]” Wo [Qa + FalAvpyi] (4.26)

Avgqy
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subject to

( FotiDvg = Go(wk) —w(k—1))=0(e) Vi=1,- -, nyu — a

J wk+Nlk+1)—ulk+ N —1]k) = —w(k) + w(k — 1) (4.27)

u™ <ulk+ilk+1) <umYi=1,... m

\

The following claim is obvious.
Claim 5 The matriz consisting of the last n columns of F is nonsingular if N > n+1.

Proof. Since the system is controllable, we can transfer any initial state to an arbitrary
state with at most n control moves if the controls are unconstrained. Since the last
control move is such that u(k+ N —1|k) + w(k — 1) = 0, we can take the coefficients
from any initial condition to any arbitrary values with n-+1 control moves. Therefore,
the matrix consisting of the last n columns of F' must be nonsingular if N > n + 1.
O

The proof is completed with the following two claims.

Claim 6 If w(k) —w(k—1)=0V k> 1, then
J(k+n+1,0) <max(J(k,a) —n(a),0) Va>1

where n(a) is a positive constant that depends on o if N > n + 1 and only if N >

T — TMmodes + 2.

Proof. (=) N >n+1.
Case 1: Suppose [Avktilo < B, Vi=1,---,nandlet 8 = mi“(‘“mi"‘“’ng'l’lumx_w(k)l) >

—£- > 0. We have |u(k+N+ilk+n)—u(k+N+ilk)| < fnVi=—1,---,n—1. Since
u(k+N+ilk) =u(k+N—1lk) = ~w(k—1) Vi > 0, lu(k+N+ilk+n)+w(k—1)] <
fn = 156 Vi > —1. This together with the fact u™" +§ < —w(k — 1) < u™* _ §

gives min(u(k+N+ilk+n) —u™" w™* —y(k+ N +ilk4+n)) > Vi=—1,--- n—1.

Thus at the sampling time k +n + 1, the last n + 1 elements of Avgyni1, denoted by
Av', can be varied within 8, i.e. —3 > v™" < Ay’ < o™ > 3. Assume that the
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first N —n — 1 elements of Avyy,.; are zeros. Then we have

J(k +n+ 1,0’) < Izllp [Qa + HlA’Ul]T % [Qa -+ HlAvl]

subject to
HQA’U’ =0
—62Umin SA’U’ Svma.x Zﬁ
F. a+1
H,
where H = is the last n columns of : . Notice that the inequality
H,
anax

follows from the assumption that the first N —n — 1 elements of AV, are zeros.
By Claim 5, H must have full row rank. Then there exists a positive constant (it can
be taken, for example, as the largest radius of balls centered at the origin within the
set) 7(a) such that J(k +n+ 1,a) < max(J(k,a) — (), 0).

Case 2: If |Avgii]eo > B for some 7 € {1,---,n}, then by Claim 4, J(k + n, o) <
J(k,a) — v This completes the proof for the if part.
R

(<) If N < n — Numodes + 2, then for a = 1, : has more columns than

E

Mmax

rows and the only solution, if feasible, is Avy,; = 0 for some initial conditions. Thus

no degree of freedom is left to minimize J(k, 1). For some initial conditions, J(k, 1)

cannot be reduced to zero. O

Claim 7 For sufficiently large k, there ezists an integer o, 2(n+1) > 0 > n+1 such
that
J(k +o0,a) < max(J(k,a) — n'(),0) V o > 1

where n'(a) > 0 if N > n + 1.

Proof. Because of the disturbance, the constraints (4.27) may not be feasible at the

sampling time k£ + 1 even though they are feasible at the sampling time k. We want
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to show, however, that for sufficiently large k, or equivalently for sufficiently small
€, there exists an integer 1 < [ < m + 1 such that the constraints are feasible at
the sampling time k£ + [. Suppose that the constraints are not feasible for all <mn;
otherwise, we are done. By Claim 4, Avgy; ~ O(e) Vi=1,---,n. Since there exists a
positive constant 6 such that ™" 4§ < —w(k+1i) < u™* —§V ;> 0, for sufficiently
small €, following the similar arguments as in the proof of Claim 6, the last n + 1
elements of Avg, 41, denoted by Av’, are allowed to vary within +3 where B > 0is as

.
Fa+1
defined in the proof of Claim 6, i.e. —f > ™" < Av' < 2™ > 3. Thus

F

Mmax
J

subject to the constraints —§ > ™" < Av' < 2™ > 3 covers a ball centered at the

[
Fa+1

origin with radius of p. For sufficiently small e, ... | = O(e) must be feasible.

M max i

Therefore, for sufficiently small €, there exists an i-nteger 1 <1< n+1 such that the
constraints are feasible at the sampling time k + [.

Suppose that at the sampling time o, where 2(n+1) > 0> n+1, the constraints
are feasible. By Claim 4, the control moves in making the constraints feasible are
O(e). Therefore, the effect of the control moves on J(k+ o0, @) is O(e). This combined

with the previous claim gives
J(k + 0, a) < max(J(k, a) — n(a) + O(e), 0)
Thus for sufficiently small €, we have
J(k +o0,a) < max(J(k,a) — 7'(a),0)
where 7'(a) = n(a) — O(e) > 0. |

Thus, J(k,0) — 0 as k — oo which in turn yields y(k) — r asymptotically. This
completes the proof of Theorem 14. O
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Chapter 5 Infinite Horizon MPC with Mixed

Constraints—Unstable Systems

Summary

In this chapter, we analyze and characterize the domain of attractability for a linear
unstable discrete-time system with bounded controls. An algorithm is proposed to
construct the domain of attractability. We show that the Infinite Horizon MPC
with Mixed Constraints algorithm generates a class of (nonlinear) control laws that

stabilize the system for all initial conditions in the domain of attractability.
5.1 Introduction

It is well known [59, 84] that a linear time-invariant discrete-time system is globally
stabilizable with bounded controls if and only if it is stabilizable and all the eigen-
values are inside the closed unit disk. In Chapters 3 and 4, we have shown that
the Infinite Horizon MPC with Mixed Constraints (IHMPCMC) algorithm (with the
input horizon chosen properly) automatically generates a class of (nonlinear) control
laws that globally stabilize any system for which global stabilization is possible. Since
global stabilization is not possible for systems with poles outside the unit disk, it may
be desirable, to characterize and determine the domain of attractability (referred to
as the mazimum region of recoverability in [59]), i.e. the set of all initial conditions
for which a stabilizing control law exists, but very little work has been done.

Most of the work in the literature (see, for example, [38, 33, 5]), not necessarily
applicable to unstable systems, has been to determine an invariant set for a linear
controller. A set is said to be invariant if the state remains in the set for every initial
condition started in the set. Disturbances can also be taken into account to construct
such an invariant set [5]. In general, however, such an invariant set is a conservative

approximation of the domain of attractability. This is because that only linear control
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laws are allowed. Also in many cases, the control law is constructed such that the
control input does not saturate.

In this chapter, we analyze and characterize the domain of attractability for a
linear unstable discrete-time system with hard input constraints and soft output
constraints. An algorithm is proposed to determine the domain of attractability
within an arbitrary accuracy. We show that the IHMPCMC algorithm generates a
class of (nonlinear) control laws that stabilize the system for all initial conditions in
the domain of attractability.

This chapter is organized as follows: In Section 5.2, the domain of attractability is
analyzed and determined. We show in Section 5.3 that the Infinite Horizon MPC with
Mixed Constraints algorithm generates a class of (nonlinear) stabilizing control laws.

Several examples are presented in Section 5.4. Section 5.5 concludes the chapter.

5.2 Domain of Attractability

Consider the following linear time invariant discrete-time system,
z(k 4+ 1) = Az(k) + Bu(k), |u(k)|o < 1,k >0 (5.1)

where z(k) € R"=,u(k) € R", and A and B are matrices of appropriate dimensions.

The domain of attractability, W, is defined as follows.

Definition 9 The domain of attractability, denoted by W, is the set of all initial
conditions for which there exists a sequence of controls {u(0), u(1),- - -, u(K),0,0,- - -},
[u(i)|oo < 1V i >0, for some finite integer K such that the state approaches the origin
asymptotically.

Remark 22 It is without loss of generality (WLOG) to assume that |u|o,, < 1 in
(5.1) instead of u™" < u < u™=2. Let P be a diagonal matrix whose diagonal
elements equal 3(u™* — w™"). By defining u = Pi + L(«™* + u™") and z =

T+ (I —A)7'B(u™=® + 4™") ! we can transform (5.1) with u™" < 4 < 4™ into

'Here we assume that A does not have eigenvalues at 1.
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Z(k+1) = Az(k) + Bu(k) where || <1 and B = BP.

The following result is immediate from Definition 9.

Theorem 15 There exists a control law such that the closed loop system is asymp-

totically stable if and only if the initial condition z(0) € W,

For stabilizable systems with p(A) < 1, where p(A) denotes the spectral radius of A,
Sontag proved that W is ®"=.

Theorem 16 (Sontag 1984 [84]) W = R"= if and only if (A, B) is stabilizable and
p(A) < 1.

Assume, WLOG, the system (5.1) is represented as follows.

( z,(k+1) 1 ] A, 0 0 N zs(k) - B,
z(k+1) |=| 0 4, 0 z.(k) | + | B, | u(k) (5.2)
_:cu(k—}-l)_ 0 0 A, ] _wu(k')J | Bu |

where A, € ™= X"+« has all eigenvalues inside the unit circle, A, € R"=c*"sc on the
unit circle, and A, € "uX"su outside the unit circle. By Theorem 16, the domain of
attractability for the system without any poles outside the unit circle is R7==+sc. The

following corollary states that the poles outside the unit circle do not change that.

Corollary 6 * Consider the system described by (5.2) and assume that {A,B} is

stabilizable. The domain of attractability for x, and x. are R*=s and R respectively.

Proof. Tt is obvious that the domain of attractability for z, is ®™<: no control
action is necessary to stabilize any initial condition z,(0) € R":. So we only have to
show that the domain of attractability for z. is R"s. WLOG, assume that A has all
eigenvalues on and/or outside the unit circle. Then stabilizability and controllability

of {A, B} are equivalent.

2See an earlier proof by LeMay [59] for continuous-time systems.
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Denote the domain of attractability for z, by W*. Let z,(0) € W*. Then
there exists a finite integer K such that z,(K + 1) = 0. So it is WLOG to assume
that z,(0) = 0 and to show that the domain of attractability for z, is R i.e.
[ze(k) zu(k)]" — 0 as k — oo for all z,(0) € R and z,(0) = 0. Let a be some

integer. We have

z(k + @) A2 0 z.(k) B,
= + v(k)
zu(k + ) 0 AT | | zu(k) B,
where
i u(k)
B, As1B, B,
= v(k) =
B, Ae-1B, B,
ulk +a—1) |
B,
Since the system is controllable, o exists such that has full row rank. Consider
B, |
a linear feedback control law v(k) = Fz.(k). We have
z.(k + ) A*+ B,F 0 ( (k)
zu(k + ) B,F A2 zy (k)

Given any z.(0) R, if F exists such that

B,F = 0
p(A*+ B, F) < 1
|[Fz.(k)] < 1VE>1

then it follows that the domain of attractability z, is R"=.
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B
WLOG, assume that “is square and nonsingular: just set some rows of F'
B,
B, _ .
to zeros if is non-square. Let B; be the orthogonal complement of By, ie.
B,
B . ) i i
is square and nonsingular and By Bf = 0. Let B, = C,B} + C,B, and

B,

F =(B})TE. Thus B,F =0V E. Clearly C; and BL(BX)T are nonsingular® which
implies that E exists such that p(A2 + B.F) = p(A% + C; B:(BL)TE) < 1. From the
results by Lin and Saberi [61], E exists such that |Fz.(k)|o < 1 V k for any initial
condition z.(0) € R"=<. Therefore, the domain of attractability for z, is RN, 0

Therefore, we only need to determine W*, the domain of attractability for z,,. For
the rest of this section, unless specified otherwise, we assume, WLOG, that 4 has all
the eigenvalues outside the unit circle, i.e. A = A, and z = z,. The state at time k&

can be written as

u(0)
z(k) = A*z(0) + [A*'B ... B] : (5.3)

| u(k—1) |

Let Wy be the set of all initial conditions for which there exists a sequence of controls
{w(0),u(1), -, u(N = 1)}, [u(i)]o < 1V i > 0 such that z(N) = 0. Thus, W* =

limy_,o Wy. Wx can be written as follows.

( W)
Wy=qz:2=[A"'B --- A™VB] : Ju(i)leo < 1,6 >0 (5.4)
\ I w(N = 1) | )
3 AL
3That C; is nonsingular can be seen as follows: gc = [ 001 CIZ g“ .
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Some properties of W} and W* are stated here.
Lemma 3 W§ and W* are bounded, conver, and symmetric.

Proof. Since A contains poles strictly outside the unit circle, p(A™1) < 1. We have
|A™]|o < ev'if,v € [0,1) for some integer 3 and some positive constant c

Suppose z(0) € WE. We have

12(0)]o =

; A" Bu(i)

o0

IA

; |A™ Bu(i) |

VAN

N -
1 ) 1147 loo
=1

IN

N .
clcz 74P
=1

< ooVN

where ¢; = |B|. Thus, W is bounded. The convexity of W3 follows by ob-
serving that convexity is preserved for linear transformations. For z(0) € Wg,
there exists a sequence of controls {u(0), -, u(N — 1)}, |u(i)|s < 1V i such that
2(0) = ¥, A7 Bu(i — 1). Clearly, —2(0) = SN, A~B(—u(i — 1)) must also belong
to Wy. Therefore, W§ is symmetric. The proof for W* follows by replacing N with

0. O
Remark 23 Although W} is closed, W* is open.

In the next few subsections, we discuss several ways to characterize W* and therefore

w.

5.2.1 Exact Characterization of W}

In this section, we propose an algorithm to determine Wg. Let us first present some

preliminary results.
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Lemma 4 Consider the following sets.
X1 = {Z . le S hl}

X2 = {Z . HQZ < hg}
Assume that both X, and X, are bounded. Denote the vertices of X1 by p;,i =
L,---,n1, and the vertices of Xo by v;,i=1,---,ny. Let

X={z:z=2+4+2,2 € X1,z € X}

Then X is bounded and is the smallest convex set which contains the points p; +

Viyt=1,-++-,ny1,j =1,---,ny. Furthermore, X can be represented as follows:
X={2:Hz<h}

Proof. The convexity of X can be shown as follows: Suppose y,z € X,y;,2 €
X1,Y2,20 € Xpand 0 < A < 1 Ay + (1= Nz = M +y2) + (1= XN)(21 + 22) =
(Ay1 + (1= A)z1) + (Aya + (1 — A)z3) € X since X; and X, are convex. X is bounded
since X; and X, are bounded.

Next we want to prove the following: If X contains the points p; + vj,i =
Li-osymy,j = 1,--+,my, then y1 + 9y € X Vy, € X1,95 € X,. By convexity of
X, for 0 < A; < 1, we have Ay (pu; +vj,) +(1 —X1) (i +vj,) € X V4,751, 5o which yields

27 + /\11/]‘1 + (1 — /\1)1/]‘2 c XV i,jl,jz
Similarly, for 0 < Ay < 1, we have

)\2(/1,1‘1 -+ )\11/]'1 -+ (1 - /\1)Vj2) + (]. - )\2)(/.Li2 + )\11/]‘1 + (1 - /\1)Vj2) € X
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which yields

(Aapiy + (1= Ao)pay) + My + (1= M)w,) € X dinyio =1,y 51, J2 = 1,- -+, o

Thus, all points which are sum of the points on edges of X; and X, belong to X. By
similar arguments, one can show easily that y; +y, € X V y; € X7, y2 € X,. Clearly
the smallest convex set which contains a finite number of points is a polytope. a

Recall

Wy = {x(O) :2(0) =Y A7 Bu(i), |[u(i)|oo < 1,7 > 0}

i=1

= {x(O) 1 z(0) = ixi,xi € X,-}

=1
where
Xi={z:2=A47'By, |yl < 1}

Wy can then be determined via the following algorithm.

Algorithm 1 Data: A, B, and N. Denote the set of vertices of the polytope X; by
V(X;).

Step 0 Seti=1. Determine V(X;) and set V(X) = V(X;).

Step 1 Ifi = N, go to Step 2. Otherwise, seti = i+1. Determine V(X;). Calculate
PV(X)={p:p=y+z2yeV(X),ze V(X,)} Elminate all points from
PV(X) that are not vertices for the smallest polytope that covers all points in
PV(X).* Set V(X) = PV(X). Go to Step 1.

Step 2 Construct the polytope with vertices V(X).

Let PV(X) = {p, -, um}. We can determine if a point in PV (X), say u;, is a

vertex by solving the following optimization problem, which can be cast as a linear

4Since Wy is symmetric, we only have to check half of total number of vortices.
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program.

J = min
(63

M
=D biny
i=1

M
subject to 6; >0 V j,6; = O,Zéj =1
Jj=1
It is clear that y; is a vortex if and only if J > 0.

Remark 24 Constructing Wx this way requires to repeat Step 1 N — 1 times, i.e.
N —1 operations in set addition. Since doing set addition may be computationally
ezpensive, we can reduce the number of set addition as follows: Define D; of full row

rank and I(N) < N 5 such that
[D1 --- Dy =[AT'B --- AVB]

Then Wy can be rewritten as
I(N)
Wy = {x(O) :2(0) = > Dw(i), [v(i)|e < 1,0 > O}
=1

By defining X; similarly, we only have to repeat Step 1 I(N) — 1 times, i.e. I(N)-1
operations of set addition. Of course, in this case, it may take more computational

time to determine the vertices of X;.

5.2.2 Subsets of W*

Let C=[A"'B --- A™"B], where n is the smallest integer such that C has full row

rank.® We have

W = {I(O) 2(0) = S (AU ), U)o < 1}

1=0

®D;’s and I(N) are clearly not unique.
8Since (A, B) is controllable, such an n exists.
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where Uy (1) = [u(i-n) --- w((i+ 1)n — 1)]7. Let the set W be generated by
assuming U, (i) = U,(0) Vi > 1, i.e.

W = {x(m 2(0) = 3 (AT CUL(0), [Un(0) oo < 1}

1=0

= {2(0) : 2(0) = (I = A™)7'CUL(0), |Up(0)oo < 1}
Then we must have Wj;, C W*. If C is square and nonsingular,” then

Wi = {2(0) 1107 — A™)2(0)]o < 1} (5.5)

5.2.3 Supersets of W4

From z(0) = 3°,(47")!CU, (i), we have
T2(0)lo0 < D IT(A™)'CUn(9)]oo < D IT(A™)'Clo
=0 i=0

where T is some nonsingular weighting matrix. Thus, a superset of W, Wk, can be

defined as follows:

W, = {x(O) T < S ;T(A-n)i0|oo} > W

out —
1=0

5.2.4 Characterization of W*

Wy can be characterized exactly and can be used to approximate W*. Since A has
poles outside the unit circle, A=V approaches zero as N — co. We can approximate
W* with an arbitrary accuracy. Then the techniques presented in Sections 2.2 and

2.3 can be used to bound the approximation error, i.e. we have the following relations:
W2 {z(0):2(0) =y + 2,y Wy,ze W } (5.6)

W* C{z(0):z(0) =y+ 2,y € W, z € W;LmN} (5.7)

"For single input controllable systems, C' is always nonsingular if C is square.
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where

W = {2(0): 2(0) = AN(I — A™")"LCU,(0), [Up(0)] oo < 1}
W = {2(0): 7201 < > 114 (47 Cl |

5.2.5 Characterization of W

Once we have determined W*, W for system (5.2), i.e. A now has poles inside, on,

and outside the unit circle, is determined as well. It is simply given as

( [ 2,00 | *

I
[

$2(0) : z(0) = z.(0) | »2s(0) € R™, 2.,(0) € R", 2,(0) € W" r

| 2u(0) | )

\

It can be approximated by Wy which is given as follows:

( z(0) -
Wy =< z(0) : z(0) = z.(0) |, zs(0) € R"™, 2,(0) € R™, 2,(0) € W

A~

z4(0)

\ L d J

5.3 Stabilizing Control Laws

For any initial condition z(0) € W, Theorem 15 states the existence of a stabilizing
control law. In this section, we give a necessary and sufficient condition for the
IHMPCMC algorithm to be stabilizing.

Define the objective function as

&y = i z(k + k) Tox(k +ilk) + i [u(k +i|k) Tyu(k + i|k)+ .
=1 i=0 5.8

Au(k + k) T auAu(k + ilk)]

where I'; > 0,Ty > 0,Tay > 0, Au(k +ilk) = u(k +i|k) — u(k +i — 1|k), and H, is
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finite. I'z,I'y, and I'a, are symmetric. (-)(k+1|k) denotes the variable (-) at sampling
time k + ¢ predicted at sampling time & and (-)(k) = (-)(k|k).
Define Controller IHMPCMC as follows.

Definition 1 Controller IHMPCMC: At sampling time k, the control move u(k)
equals the first element u(k|k) of the sequence {u(k|k), u(k+1|k), - - -, u(k-+H,—1|k)}
which is the minimizer of the optimization problem

_ . ,
B k) u (bt Hom 1K) (k) Oy + e(k) Tee(k)

( wk+ik)eUd i=0,--- H, -1

wk+ik)=0 i=H, - o0
subject to ¢
a:(k—i—ilk)gzlfe(k) 1=0,1,---,00

e(k) >0
where I'c > 0 is diagonal, @y is defined by (5.8), and U and X are given as

{uw:|ul <1}

>

U

X
X. & {z:[F, F|] <f+ee>0ucld

Remark 25 Follow similar arguments leading to Theorem 8 in Chapter 3, we can
replace z(k+ilk) < Xy, t=0,1,---, 00, by x(k +ilk) < Xeky,t =0,1,-- -, M, where
M s finite.

When A has no poles on the unit circle and if z(0) € Wiy, then the optimizing problem
(5.9) is feasible for all H, > N. Thus we have the following result.

Theorem 17 Assume that A has no eigenvalues on the unit circle. Then Controller

IHMPCMC is stabilizing for all £(0) € Wy if and only if H, > N.

Proof. If z(0) € Wy, then by definition there exists a sequence of controls {u(0), - - -,
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uw(N — 1)} such that z,(N) = 0 and z,(k) — 0 exponentially as k — co. The
optimization problem (5.9) has a feasible solution for all z(0) € Wy if and only if
H. > N. Then J, is bounded. At sampling time k + 1, the control sequence of
{u(k +1[k),---,u(k + H. — 1|k), 0} results in a finite objective that equals

i = [2(k)"Tox (k) + u(k) Tyu(k) + Au(k)"T auAu(k)]
Thus, we have
Tor1 < T = [2(k) Toz(k) + u(k) Tyu(k) + Au(k) T auAu(k)]

which yields

k+1
Terr + 3 [2() Tow(d) + (@) Tyu(i) + Au(i) TauAu(i)] < Jo < oo,
=0
for all £ > 0, which, in turn, implies that x(k), u(k) — 0 as k — oo. O
If A has poles on the unit circle, then the number of control moves H_ necessary to
drive the corresponding modes to zero depends on the initial condition (see Chapter

4 for details and an alternative formulation). Not every H, > N may work in this

case.

Corollary 7 Suppose that A has poles on the unit circle. Given any z(0) € Wy,
Controller IHMPCMC is stabilizing for a suffictently large H..

Given an initial condition z(0) € W, if the optimization problem (5.9) is feasible,
then the infinite output horizon in Controller IHMPCMC can be replaced by a finite
output horizon with the end constraint [z.(k + Hc|k) x,(k + H.|k)] = 0 at each
sampling time k. Let

Of = Sl ok + ilk) Taw(k + k) + S, [ulk + ilk)TTyulk + ilk)+ 5.0

Au(k + k)T auAu(k + i)

Theorem 18 Consider the system represented by (5.2). Assume that H, is such that
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the optimization problem (5.9) is feasible for a given initial condition z(0) € W. Then

the optimization problem (5.9) is equivalent to the followinyg.

= i OF + z4(k + Ho|k)T Pz (k + H,|k BT Qe(k
B kel gy b Tk HeR) Pas(k + Helk) + e(k)" Qe(k)
( zc(k+ H.|lk) =0

zy(k+ H.|k) =0

wk+ik)eUd i=0,---,H -1

subject to ¢
wk+ik)=0 i=H, - 00
fE(k—I—i[k)SXe(k) 1=1,2,---,00

e(k) >0

(5.11)
where ®f is defined by (5.10), P is the solution of the Lyapunov equation ATpA, —

P = —T3, and I'j is the portion of T, that is associated with z.

Proof. Since u(k + H. +ilk) = 0,4 > 0, J is finite if and only if z,(k + H,|k) = 0
and z.(k + H.|k) = 0. Thus,

S alk+ilk) otk +ilk) = 3 ay(k+ilk) T, (k + k)
i=HC i=Hc

= a,(k+ H|k)T Pz, (k + H.|k)

5.4 Examples

In this section, we consider two examples. The system in the first example has one
pole outside the unit circle and three poles inside the unit circle, two of which are very
close to the unit circle. The domain of attractability is determined exactly. A class

of controllers (generated by Controller IHMPCMC) is constructed to stabilize any
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initial condition in the domain of attractability. In the second example, the system
has two poles outside the unit circle. In addition to approximating the domain of
attractability, we give both a subset and a superset, which are very close to each

other, of the domain of attractability.

Example 5 Consider a linear model approximating longitudinal dynamics at 3000

ft altitude and 0.6 mach velocity for a modified F-16 aircraft [44].

T = Az + Bu
where
—0.0151 —60.5651 0 —-32.174
4 —0.0001 —1.3411 0.9929 0
—0.00018 43.2541 —0.86939 0
0 0 1 0
-2.516 -13.136
—0.1689 —0.2514
B =

—-17.251 —1.5766

0 0

The constraints on both inputs are £25. The system is discretized with a sampling
time of 0.1. Since the system contains only one unstable pole at 1.7252, the domain of
attractability for the system is equal to the domain of attractability associated with

the unstable pole, i.e. the domain of attractability for the following system:

&k +1) = 1.72522(k) + [-91.0626 — 15.7785]0(k), |i(k)|eo < 1V k
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where = [—0.0002 9.5168 1.4947 0.0013]z and & = . Straightforward calculations

yield
1.7252

N
Wy =4 :][-0.0002 9.5168 1.4947 0.0013]z| < 106.84— 17252/
N {x [—0.0002 9.5168 1.49 Jz| < 106.8 1.7252_1}

W = {z:|[-0.0002 9.5168 1.4947 0.0013]z| < 147.33}

For the initial condition z(0) = [-65 3.5 24 4.45]7 Controller MPC is stabilizing
if and only if H. > 2. The response for H, = 2 is shown in Figure 5.1. The slow
responses are due to the two poles at 0.9992 + 0.00595 and 0.9992 — 0.00595. Of

course, we can speed up the responses by increasing H, (see Figure 5.2).°

Example 6 Consider the following system.

-2 -0.8 1
A - B =

-2 0.7 1

Shown in Figure 5.3 are Wy5, W;,, and W,,; with T = I , the identity matrix, and

T = PO . Here Wi and Wy, are determined via Equations (5.6) and (5.7)
4 1

As one can see, T can be chosen to make W,,; as small as possible and W,,,; with
10

T = and W;, are very close. Choosing W = W, is a good approximation.
4 1

For comparison, we also show the domain of attractability for the linear controller

which places closed loop poles at 1 and 1.

8Notice that W is open.
°It is interesting to note in this ezample that the 2—norm of the states, i.e. Yoo z(i)Tz(i), for
H. = 2 is actually smaller than that for H, = 6.
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Figure 5.1: Closed loop responses for controller IHMPCMC with H =2

5.5 Conclusions

In this chapter we have analyzed the domain of attractability for unstable linear
discrete-time systems with hard input constraints and soft constraints. Several meth-
ods were presented to characterize the domain of attractability. Although in general
the domain of attractability cannot be determined exactly, algorithms were introduced
to approximate it with an arbitrary accuracy. The major difference of the approach
presented here from various approaches existed in the literature is that the domain
of attractability does not depend on the control law used. We show that, with ap-
propriate choice of the input horizon, the IHMPCMC algorithm stabilizes any initial

condition in the domain of attractability.
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Figure 5.2: Closed loop responses for controller IHMPCMC with H. = 6
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Chapter 6 Robust Control of Linear Time

Varying Systems with Constraints

Summary

In this chapter, we generalize the robust MPC algorithm proposéd by Campo and
Morari for control of linear uncertain time-varying systems, represented by Finite
Impulse Response models, with constraints. We show that with this scheme robust
Bounded-Input Bounded-Output stability is guaranteed. Both necessary and suffi-
cient conditions for global asymptotic robust stability are stated. Furthermore, we
show that robust global asymptotic stability is preserved for a class of asymptotically
constant disturbances entering at the plant output.

Although these results hold for any uncertainty description expressed in the time-
domain, there is a trade-off between the generality of the uncertainty description and
the computational complexity of the resulting optimization problem. For a broad
class of uncertainty descriptions, we show that the optimization problem can be cast

as a linear program of moderate size.
6.1 Introduction

All real world control systems must deal with constraints. Although a rich theory
has been developed for the robust control of linear systems [73, 21, etc.], very little
is known about the robust control of linear systems with constraints. In this chapter
and the next chapter, we use Model Predictive Control (MPC), also known as moving
horizon control and receding horizon control, to study this problem. This chapter
deals with linear time-varying systems while the next chapter deals with linear time-
invariant systems. The basic idea behind MPC and its stability properties in the

nominal case were discussed in the previous chapters and will not be repeated here.
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Campo and Morari [10, 9] made the first rigorous attempt to extend the MPC
concept to the control of uncertain linear time-invariant systems and proposed a ro-
bust MPC algorithm. Unfortunately, it is well known (see, for example, [102] for a
counter example) that robust stability is not guaranteed with this algorithm. Zafiriou
[96] used the contraction mapping principle to derive some necessary and some suf-
ficient conditions for robust stability. However, the conditions are both conservative
and difficult to verify. Assuming lower and upper bounds on each impulse response
coefficient, Genceli and Nikolaos [32] showed how to determine weights such that ro-
bust stability can be guaranteed for a set of Finite Impulse Response (FIR) models.
However, often weights may not exist even though robust stabilization is possible for
a set of FIR models. Lee et al. [56] proposed a robust MPC algorithm that mini-
mizes the expectation of a multi-step quadratic objective function for an input-output
model with stochastic parameters. Of course, the concept of robust stability cannot
be defined in this framework. For a set of linear time-varying systems described in an
appropriate way, Kothare [49] proposed a robust MPC algorithm whose optimization
problem for the state feedback case can be cast as a set of Linear Matrix Inequalities
and showed that global asymptotic stability can be guaranteed if the optimization
problem is feasible.

Polak and Yang [75] proposed a receding horizon control strategy for linear contin-
uous time systems with input constraints and proved nominal stability of the closed
loop system. Then they showed that robust stability is guaranteed provided that the
perturbation is sufficiently small. Similar results have been obtained by Mayne and
Michalska [63, 64] for nonlinear systems. In all these approaches, the computational
issue which is crucial for implementing an MPC algorithm because of its on-line na-
ture was not discussed. Since discussing nonlinear MPC is beyond the scope of this
thesis, interested readers are referred to [22] for more reference in the area.

In this chapter, we generalize the robust MPC algorithm introduced by Campo
and Morari [10] and demonstrated that this new MPC controller can robustly stabilize
any set of linear time-varying systems represented by FIR models for which robust

stabilization is possible. Although the results hold for any uncertainty description
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expressed in the time-domain, there is a trade-off between the generality of the un-
certainty description and the computational complexity of the resulting optimization
problem. For a broad class of uncertainty descriptions, we show that the optimization
problem can be cast as a linear program of moderate size.

This chapter is organized as follows. In Section 6.2, a robust MPC algorithm
is presented and assumptions are stated. In Section 6.3, we show that with this
algorithm the closed-loop system is guaranteed to be robustly BIBO stable. Both
necessary and sufficient conditions for robust global asymptotic stability are stated.
Furthermore, we show that robust global asymptotic stability is preserved for a class
of asymptotically constant disturbances entering at the plant output. The extension
of the results to integrating systems is also discussed. In Section 6.4, the min-max
problem is formulated as a linear program of moderate size for a broad class of
uncertainty descriptions. An example is presented in Section 6.5 to demonstrate the
characteristics of the proposed method. Section 6.6 concludes the chapter.
Notation Fairly standard notation is used here. z7 denotes the transpose of z.
| - |1 denotes the 1—norm on ®", |- | the co—norm on %", and [|-]]1 the 1-norm on
R® e ||z]) = max; ¥ || V 2 € ™. Tt can be easily shown that [|-]]1 is the
operator norm induced by |-|;. 7/ is the identity matrix of dimension of nxn. For T,y €
R,z <yif and only if z; < 4,1 = 1,2,---,n. MAaXy(ktilk) < MAXy(k+ilk)eY (k+ifk)-

O(€) means in the order of e.

6.2 Preliminary

Consider a stable linear time-varying square system represented by an FIR model

y(k+1) :y(k)+§:gi(k+1)Au(k+1—z‘)+d(k+1) (6.1)

=1
where y(k) € R" and u(k) € R™ are the output and input of the system, respectively,

d(k) € R" is the disturbance, Au(k) = u(k) — u(k — 1), and g(k + 1) 2 [gn(k +
1) -+ gi(k+1)] € ™"V is the impulse response coefficient matrix. glk+1)ell
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and II is a set which is generally obtained from some identification methods. The set

of plants generated by II is given below.

g = {G : y(k+ 1) = G(y(k)aAu(k_ 1)7""Au(k—‘N+ 1))}

N (6.2)
- {G ry(k+1) =y(k) + D gi(k+ DAu(k+1—4),g(k+1) € H}

=1
The reason for defining time-varying systems by (6.1) is that a zero steady-state error

is possible: the steady-state output value does not change if the input is constant. A

linear time-varying system can be defined alternatively as

y(k+1) =§:gi(k—|-1)u(k+1 —1) (6.3)

=1

The disadvantage is that a zero steady-state offset may not be possible: the steady-

state output value varies even if the input is constant.

N
Define the steady-state gain as G(k)** =) g;(k) and
i=1

G(k)* € I = {G(k)* : G(k)* = 3_ gi(k), g(k) € IT}

=1
The control action is generated by Controller RMPCLTV which is defined as follows.

Definition 10 Controller RMPCLTV: At sampling time k, the control move u(k)
k), - u(k+H.—1|k)}

equals the first element u(k|k) of the sequence {u(k|k),u(k+1

which is the minimizer of the optimization problem

H:.-1
T B2, D+ ) — gk iR+ 3 MavAu(k +710)l
H.—1
= min max Dy [r(k + ) = y(k + a0 + Y ITaululk + jlk)];

AU y(k+ilk)i=He, - N+ H.~1 J=0
(6.4)

subject to

|Au(k +ilk)| < Au™*,  i=0,1,--,H. — 1
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u™n < u(k+4k) <uw™®, i=1,2,---, H,

where
AUk = [Au(k T ... Au(k + Hc — llk)T]T e §R’an’.

AuP(k+1|k) € R™ denotes the optimal control move at time k + i evaluated at time

k and Au(k) & Au(k|k);

y(k +1ilk) € R is the output at time k + ¢ predicted at time k. y(k|k) 2 y(k) is the

measured output at time k;

' ;
Au(k +1i— N)

Y(k+ilk) = {y(k+ilk) : y(k+ilk) = y(k+i—1|k)+ g(k+1) : ,

| Au(k+i - 1[k)
gk +9) € Mylk+i—1k) € Y(k+i—1/k)} ¥ i>1 and Y (klk) = {y(k|k)}.

Here we assume implicitly that the disturbance is a step;
r(k + i) € R™ is the setpoint at time k + i;
I’y and I'a, are positive definite diagonal matrices;
H. is the input horizon; and

H, is the start of the prediction horizon to be minimized. As pointed out by Campo
[10] for Hy = 1, the algorithm does not reject persistent disturbances for sys-
tems exhibiting inverse response characteristics. Any control action to reject
the disturbance could result in a larger mazimum predicted future error than if
no control action were taken (as a result of the initial inverse response). There-
fore, H can be adjusted to handle systems with inverse response, dead time,

etc. Obviously, 1 < H; < N+ H, - 1.

Remark 26 The reason for assuming U'a, > 0 is as follows: Since no assumption

on the set Il is imposed, the solution of the optimization problem may not be unique
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if Taw = 0. Choosing a sufficiently small positive I'a,, would ensure the uniqueness

of the solution. In most cases, however, we can set I'a, = 0.

Remark 27 It is generally not possible to have a zero steady-state error for all plants
in the set G. Using the 1—norm or 2—norm instead of the co—norm temporally may

result in an unbounded objective function since the output horizon is infinite.

Remark 28 This robust MPC' algorithm can also be regarded as a state feedback
control strategy. The states are y(k) and [Au(k — N 4+ 1) --- Au(k —1)]. They are

used to determine the optimal control move Au(k).

Remark 29 For SISO systems with H, = 1, output constraints, y™" < y(k) <
y™* Y k, are redundant. This is because the largest deviation from the setpoint is
minimized. Another reason for not including the soft output constraints is that the

optimal control moves in that case may be zero because co—norm is used temporally.

Assumptions Throughout the chapter, we make the following assumptions.

Assumption 1 The real system is stable linear time-varying with n inputs and n
outputs (i.e. square), and its steady-state gain matriz is nonsingular. Since the system

belongs to G, G must contain a model whose steady-state gain matriz is nonsingular.

Assumption 2 The setpoint r is constant such that a zero steady-state error is fea-

sible for all plants in the set.!

Assumption 3 The disturbance has the following properties: d(k) — d as k — oo

and d is such that a zero steady-state error is feasible for all plants in the set.

Assumption 4 The steady-state condition is u =0 and y = 0.

6.3 Robust Stability

Let us first prove several lemmas for use later.

f r is time-varying for k¥ < K < oo, then we can take the initial time to be K.
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Lemma 5 Jk S Jk—l - IFAUA’LL(IC - 1)]1 + 'd(k) — d(k - 1)'1

Proof. Let
AuP(k|k — 1)

AU =
Au(k + H, — 2|k — 1)

0

where Au°"*(e|k — 1) denotes the optimal control moves determined at sampling time
k—1. Let Y*(k +1]k),s =0,1,---, be the set of output values generated by control
moves AUy for all plants in G. At time k, y(k) is measured and Y*(k|k) = {y(k)}.
Y (k|k — 1) consists all values of output at time k assuming that the disturbance
is constant. Since the disturbance may be time-varying, y(k) may not belong to
Y (k|k — 1). However, y(k) — Ad(k) € Y(k|k — 1) where Ad(k) = d(k) — d(k — 1).
Define

Y*(k+ilk) = {g*(k +ilk) : §*(k +ilk) = v*(k +i]k) — Ad(k), 65)

v (k +ilk) € Y*(k +ilk)}, i=0,1,-

This together with Au*(k+ilk) = Au(k+ilk—1),i =0,1,---, yields Y*(k+ilk) C
Y(k+ilk—1),5=0,1,---. Thus, for all > 0, we have

y(h+E) P~ (kilk) ILylr = y(k +alk)]k
< Lylr — y(k +ilk Ad(k
- y(k+i|kr)ré%}*{(k+ilk)| y[r — y(k + k)]l + |Ad(k)]y

< B .
- y(k+z‘|lgle%fx(k+i|k) ITyr — y(k +ilk)]1 + [Ad(k) |y

Since AU} may not be the optimal solution, we have

Ji < Jior — [PawAu(k — 1)); + |d(k) — d(k — 1)),
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Remark 30 In Campo’s formulation [10], the plant is assumed to be time-invariant.
Lemma 5 does not hold since the worst-case plant changes from sampling time to

sampling time.

Lemma 6 Suppose Au(k —1i) ~ O(e),i=1,2,---, N, and ld(k) — d(k — 1)|; ~ O(e)
where € is an arbitrarily small positive constant. For H, = N and H, = 1, there ezists

a constant 3 > 0 such that
Jr 2> Jr—1 = BlAu(k)]; + O(e) (6.6)

for a sufficiently small T 5,

Proof. From definition of Y (k + i|k),i = 1,2,---, we obtain Y(k+ N —1lk) =
{y(k+N—-1lk) : y(k+ N—1]k) = y(k) +G(k)**Au(klk) + O(e), G(k)* € I1**} where
the term O(¢) denotes the effect from Au(k — i),4=1,2,---, N. This gives

Jp-1 = y(HII{,@;!ck_l)[]Py[r —y(k+ N =2k = 1)]|; + |[TanAuk — 1)|]
= [Ty(r = y(k))l + O(e)
and
Je = min  max [|Ty[r—y(k+N—1Jk)]; + ITauAu(klk)]1] + O(e)

Au(klk) y(k+N=1|k)

= Join cmax (Tl —y(k) = G(R)™ Au(k[k)]|: + [Tawdu(klk) 1] + O(e)

> Arzf%}cﬁ)['ry[r —y(k) = G*Au(k[k)] | + [T awlu(k|k)] + O(e)
(for some nonsingular G2* € IT°)

= Tyl —y(k) = G5*Au(k)]|y + [Taulu(k)]; + O(e)

> [Tylr = y(B)]l — IT,G§ Au(k) |1 + ITauAu(k)|; + O(e)

= Je1 = [DyGFAuk)1 + [TauAu(k)]1 + O(e)

2 S = (0G| — v )[Au(k)]y + O(e)

= Jk—l — B‘Au(k)h + 0(6)
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where 7, is the smallest diagonal element of I'a,. Since G is nonsingular and Iy, > 0,

choosing I'a, sufficiently small guarantees 5 > 0. O

Lemma 7 Suppose Au(k — i) ~ O(€),i =1,2,---, N, and |d(k) — d(k — 1)|1 ~ O(e)
where € is an arbitrarily small positive constant. For H; = N and H. = 1, there exist

positive constants y1 < 1 and ~ys such that
Jip < max(’lek-l, Jp—1 — ’)’2) + 0(6) (6.7)
for a sufficiently small T p,, if there ezists some nonsingular G§° € I1°° such that

_ ss ss\—1p—1 —
Qg%ww yGR)*(GY) Ty h=A<1 (6.8)

Proof. Follow the similar arguments as in the proof of Lemma 6, we have
Je—1 = |Ty(r — y(k)) 1 + O(e)
and

Lylr —y(k) = G(k)* Au(k[R)]lL + [T aulu(k[k)]1] + Ofe)

Jp = min max |
Au(klk)  G(k)ss€llss

Let Au*(klk) = a(G§*)™'r — y(k)],0 < @ < 1. « can be chosen such that
Au*(k|k) is feasible: Choosing « sufficiently small guarantees |Au*(k|k)| < Au™*.
Since G§° € 1I*%, u(k — 1) + (G&*)~!{r — y(k)] is the steady-state input for some plant
in the set. By assumption that the steady-state input for all plants in the set does
not violate the constraints, we have v™" < u(k — 1)+ (G§*)~![r — y(k)] < u™®. This
together with v™" < u(k — 1) < u™® gives u™" < u(k — 1) + a(G§*) " Hr — y(k)] <
u™® for all 0 < a < 1. Au(klk) = Au*(k|k) may not be the optimal solution. We
have

Jeo < max [Dyfr = y(k) = G Mt (kR 1 + [ sl (KIE) |+ O(¢)
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= ganax Tyl —y(k) = aG(k)™(G*) " (r — y(k))]]x
Haua(G5) 7 (r = y(k))1 + O(e)

= gopax I = alyG(R)*(GE) T )Ty (r — y(k)y
+alLau(G5) 7Ty Ty (r = y(k))|y + O(e)

< g I = oD, G (G5) T, LT (r — y(k),
+a|[Tau(G*) T 1Ty (r — y(k)) |1 + O(e)
< Ly(r = y(k))1 + O(e)
where
7= e, I = ol G (G8) T s + ol Dau(G) T3
< L llal — alyG(k)*(G5*)'T | + (1 — o) |11 + o|[Lau(G3*) T |

( since0<a<1)

IN

58 ss\—1p— ss\—11—1
@ 2 1T = TyGR) (GF) T, + (1 - a) + aflTau(G2) TSl

= 1-(1-X—pa

where 1 = [|T'ay(G§°)7'T';%|];. Since A < 1, choosing T'a, sufficiently small guarantees

v < 1. Thus we have
Ji < yJk—1+ O(e)

Notice that 7 is not a constant and can be arbitrarily close to 1. To obtain the
constants ; and vy, as in the statement of the lemma, let us consider the following

two cases.

Case I—a = 1. a = 1 does not result in any constraint violation on Awu. Then
letting oo = 1 gives

Jr < v1Jk—1 + O(e)

where y; = A + u < 1 is constant.
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Case 2—0 < a < 1. a = 1 results in constraint violations on Awu. Then choosing

min(Au™)

[(G5*) = (r = y(k))oo

o=

where min(Au™%") > 0 denotes the smallest element of Au™*  does not result in any
constraint violation and a < 1. Using the fact Jy_1 = |T'y (7 — y(k))|1 + O(¢) and G§*

is nonsingular, after a few lines of algebra, we get

v
> —
@= Jk—l + 0(6)

where v > 0 is a constant. The following completes the proof.

Jp < g1+ 0(6)
= (1 — (1 — ’)q)Oz)Jk_l + 0(6)
= Ji-1— (1 —mn)adr-1+ O(e)
v
< — — -
< Je—(1 ’Yl)Jk_l 00 Ji—1 + O(e)
_ O(e)
= Jk—l - (1 - ’)’1)1/ + (]. - ’yl)VJk_l T 0(6) + 0(6)
= Jk—l — Y2 + 0(6)
where v = (1 — 7;)v > 0 is a constant. a

The following theorem states that robust BIBO stability is guaranteed for all

values of tuning parameters.

Theorem 19 Assume that there are no input constraints and that there are no dis-
turbances. Then the closed-loop system is guaranteed to be robustly BIBO stable for

all values of the tuning parameters He, Hy,I'ay and I'y,.

Proof. By Lemma 5, we have Jyi1 < Jp — |[TauAu(k)|;. Thus the optimal value

of the objective function is bounded for all times. Since I'y > 0, the output must

k
be bounded for all times. Also, Jir1 < Jy — Z ICauAu(i)]; < Jop — [Tagu(k)y =
1=0
ITavu(k)|; < Jo < 00. Since I'ay > 0, u(k) must also be bounded for all values of k.
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Therefore, the closed-loop system is robustly BIBO stable. O
Since the plant is stable, robust BIBO stability is trivially satisfied if the input is
constrained. Theorem 19 is only meaningful if the input constraints are not present.
Theorem 19 demonstrates the power of the proposed robust MPC algorithm. How-
ever, generally we would like that the output approaches the setpoint asymptotically,
i.e. robust global asymptotic stability is preferred. The following theorem establishes

a sufficient condition for robust global asymptotic stability.

Theorem 20 The closed-loop system is robustly globally asymptotically stable for
H, = N, all values of H., and a sufficiently small T a, if there exists nonsingular
G§° € II°° such that

_ ss(ryss\—11—1
s, I =TGR (G3) 7Ty < 1 (6.9)

Proof. We only need to show that the theorem holds for H. = 1: the theorem clearly
holds for H, > 1 if it holds for H. = 1. The optimal value of the objective function

becomes

Jo= min - max [Tyl —y(k+ N = 11k)]l + [TawAu(klk)l:]

Suppose J;, does not approach zero as k — co. By Lemma 5, we have
Jp < Jpo1 — [TagAu(k — 1)1 + |d(k) — d(k — 1)|;

By assumption, |d(k) — d(k — 1)]; — 0 as £k — oo. Therefore, Au(k) — 0 as £k — 0;
otherwise, the second term would eventually catch up with the first term and Jj
would approach zero asymptotically. By Lemma 6, we have

1

|Au(k)|y > 3

(Je—1 = Ji) + O(e(k))
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This together with Lemma 7 gives

Au(k)]; > %mm(% (1= 9)Js) + O(e(k))

Since €(k) — 0 as k — 00,71 < 1,7 > 0,8 > 0 and Jr-1 # 0, Au(k) does not
approach zero as k — oo and we have a contradiction. Therefore, J;, — 0 as k — oo

and the tracking error approaches zero asymptotically. O

Remark 31 For SISO systems, the sufficient condition (6.9) becomes that all plants
in the set have the same steady-state gain sign. Thus it is also necessary for robust
global asymptotic stability. For MIMO systems, the condition is trivially satisfied if
there is no uncertainty associated with the nominal model and the steady-state gain

matriz of the nominal model is not singular.

Theorem 20 is shown only for H. = N. In general, H. should be chosen as small
as possible to improve performance. The following corollary states that smaller values

of H, can be chosen to insure robust global asymptotic stability.

J
Corollary 8 Let II*** = {G(k)* : G(k)* = > gi(k), N* < j < N,g(k) € I}. Then
i1=1
the closed-loop system is robustly globally asymptotically stable for all H, > N*, all
values of H., and a sufficiently small T a, if there ezists nonsingular Gy® € TI5%* such
that

_ $s(r1ss\—1p—1
e, =Ty G (G5) T L < 1 (6.10)

A necessary condition for robust global asymptotic stability is stated in the fol-

lowing theorem.
Theorem 21 The closed-loop system is not robustly globally asymptotically stable for

any values of Hy, H, and T s, if there does not ezist G5 € R sych that

G(kr)rig,exnss [|(I — FyG(k)ss(Ggs)‘ll";l)rHl < |r|; for some r (6.11)
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Proof. WLOG, assume that the initial condition is zero and that there are no distur-

bances. From the definition of Y (k + i|k), we have

{y(N+ H[1) : y(N + HJ1) = G(k)* fau(m), Gk)™ € nss} CY(N + HJ1)

1=1
Then

-1

min y(ﬂ%u), y[r = y(N + HJD)]|, + JZO ITauAu(l + j]1)];

H.—1
+ > ITaulu(l +5]1)],
1 Jj=0
H.—1

+ Z ICauAu(l + j[1)]s

Ji

v

= min max
AU1 G(k)ssel‘[ss

— G(k)* Z Au(i|1)]

ryr—-T,G(k)* Z Au(il1)

= min max
AUl G(k)ssenss

1

Assume that the optimal control move is such that St AuoPt(144]1) = (G§)~tr
for some Gg* € R™*™. By condition (6.11), there exists 7 such that Ji > |Tyr|;. Since
Ji=|Tyr); if AU; =0 and J; > ITyr|y if AU # 0, AU; = 0 is the optimal solution.
Therefore, no control actions are taken for some setpoint change and robust global
asymptotic stability is not guaranteed. O

A necessary condition which is easier to check is stated in the following theorem.

Theorem 22 The closed-loop system is not globally asymptotically robustly stable for
any values of He, Hs,Uny and Ty if G(k)* is singular for some G(k)*s € I1°5.

Proof. From the proof of Theorem 21, we have

Ho—1
Ji 2min max ||Tyr — I,G(k)** Z Au(l+141)]; + Z ITauAu(l + §]1)];

AUL G(k)ss€llss =
If G(k)** is singular for some G(k)** € I1**, then J; > Tyl + 55" DAy AutPt(1+
J|1)|; for some r € R". Since J; = [Tyrly if AUy = 0 and J;, > |7 if AU, # 0,
AU; = 0 is the optimal solution. Thus the output does not approach the setpoint
asymptotically. O
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Integrating Systems  The SISO integrating systems can be treated in the same
manner by replacing Au in Equation (1) by u. All results presented follow imme-
diately with one exception: For stable systems, the class of asymptotically constant
disturbances entering at the plant output is the same as the class of asymptotically
constant disturbances entering at the plant input. This is clearly not the case for
integrating systems. Although all results hold for stable systems when the distur-
bances enter at the plant input instead of the plant output, whether this is the case
for integrating systems needs to be investigated. One difficulty may arise in extending
the results to MIMO integrating systems. There may be an integrator between one
input and output 1 while there is no integrator between this input and output 2. A

different system description may have to be used.

6.4 Computation of Control Moves

The results proven in the previous section hold for any uncertainty description ex-
pressed in the time-domain. However, there is a trade-off between the generality of
the uncertainty description and the computational complexity of the resulting min-
max problem. The more general the uncertainty description is, the more expensive
is the computation. Here we consider an uncertainty description for which a good
compromise between the generality of uncertainty descriptions and the computational
complexity is reached. Because of the space limitation, some details are omitted.

The set II is given by
!
I = {g 9=+ AV, GE RV Ve RN A e A, i = 1,---,1} (6.12)
=1

where
A ={A: A =diag{é, ,6,} and 6] <1,i=1,--- n}

We want to show that the min-max problem can be cast as a linear program of

moderate size. The following lemma can be shown easily.
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Lemma 8 max lz + Ayl = |z + [y|1 V 2,y € R
i€

An important step in casting the optimization problem (6.4) (which is a min-
max problem) as a linear program is that the special structure of the uncertainty
description (6.12) allows us to remove the “max” operation. WLOG, assume I', = J.2

Let

Avgys = [Au(k+i—N)T - Au(klk)T - Au(k +i — wc)T]T e RN

We have
hax Ir —y(k+ilk)|, = I . 38 X |r—y(k+i—1]k) — g(k + i) Avgyq)s

l
B B O (S Ak ) 1

!
= y(krﬁ;ﬁ,k) A,,(I;flﬁﬁ{e.a r—ylk+1—1lk) — gAvy; — ,,S:: Ap(k 4 )V Avgy

1

I
= max |r—y(k+i—1/k) — gAveli + Y [V, Averaly

y(k+i—1]k) =1

The first three equalities follow from the definition while the last equality follows from

Lemma 8. Repeating this process 7 times gives

y(r]?f},%)lr—y(k-l-zlk)ll =r—y ZAvkﬂ +ZZ|VAUk+]ll (6.13)
1 Jj=1p=1

Thus the optimization problem (6.4) is equivalent to

min ¢ (6.14)
AUy

*Since diagonal T, commutes with A, i.e. r'yA=AT,,A € A.
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subject to
H.-1
r—y(k QZAvk+J +ZZ|VAW+3|1+ > ITudu(k + k) < 6
j=1 1 j=1lp=1 7=0
1=Hg--- N+ H,—1
|Au(k +1]k)] < Auv™*®  ¢=0,---,H,— 1
u™ < u(k+ilk) <u™® i=0,---,H,—1
Define
aij = |r; —y;(k) — g, ZA”Hp
p_
Biop = |Vo(p, ) Avg]
where X (7, :) denotes the i** row of X. We have
min 6 (6.15)
AU,
subject to
n n Hc
ZaU+ZZZﬂJO,,+ZZAzU§0 i=Hg - N+H,—1
7j=1 j=lo=1p=1 2—1] 1
—%‘STj‘yj(k‘)—fJZAvaSaij i=Hg-\N+H —1; j=1,---,n
p=1
_ﬁiop S V:)(pa :)Avk-i-i S /Bz'op
1=1,--- N+ H., -1, o=1,---,; p=1,---,n
—Azjj < Au(k—1+jlk)<Az; i=1,---,n; j=1,---,H,
AzijSAu?laz izla"'an; J=1, ',Hc
u;-"‘mguj(k—(—ilk)gu?m i=0,---,H,—1; j=1,---,n

Notice that we have replaced the equality constraints for o and 3 by the inequality
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constraints. The reason that we can do this is that these inequality constraints must
occur as equality constraints at the optimal solution. For example, suppose that
the inequality constraint for ay,, is not an equality, then we can reduce the value
of 6 by reducing the value of ay,, without violating any constraints. Thus we get
a contradiction. Also the optimal solution must have Az; = [Au;(k — 1 + j|k)|.
Otherwise, the value of 6 can be reduced by reducing the value of Az;; without
violating any constraints. The above optimization problem can be written as the

standard linear program
min fz  subject to Az <b (6.16)

The number of constraints is at most (2n+1)(N + H,— H,) +2nd(N + H,— 1)+ 5H,n
and the number of variables is at most 1+ n(N + H, — Hy) +nd(N + H, — 1) + 2H,n.
Both these numbers are linear in parameters and the size of the linear program is

moderate.

6.5 Example

In this section, we present an example to demonstrate the characteristics of the pro-
posed method. The main point of this example is that robust global asymptotic

stability is guaranteed.

Example 7 The set of models is described as follows

G ={G(9) : G(g) = 62Go(q) + 61 [Go(q) — G1(¢)],0 < 6 < 0.5 and 0.5 < §, < 1.5}
(6.17)

where Go(q) = ;275 and G, = (qo—j%ﬁ%. Here 6; and 6, can be interpreted as

follows: ¢, accounts for possible unmodelled dynamics while §, accounts for the gain

uncertainty.
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G can be put into the following form:
3 $s 1 =1 $s <1 $8 Iy
6= {66 =160 - (6] + hi3Gi' @) + 5168 (0) - Gr(a)) i < 1)

Go and G, are approximated by FIR models of order 15 (N = 15) and can then be
represented by (6.1). We can put the impulse response coefficient set IT into the form
(6.12) withd = 2and A = {A: A € ® and |A| < 1}. Thus the optimization problem
(6.4) can be cast as a linear program. Since the steady-state gain for all plants in the
set is positive, by Theorem 20, robust asymptotic stability is guaranteed for H, = N.
Furthermore, by Corollary 1, robust asymptotic stability is guaranteed for all H, > 3.
The values of tuning parameters are H, = 3, H, = 2, and ['ay = 0. The resulting
linear program has 106 constraints and 46 variables. The input is constrained between
the saturation limits +1.

Figure 6.1 shows the output response for a unit-step setpoint change for a linear
time-varying system whose parameter variations are shown in Figure 6.2. Since the
class of LTI systems can be considered as a subclass of LTV systems, we can apply the
robust algorithm presented in this chapter to LTI systems as well and it follows that
stability can be guaranteed. However, the performance may be poor (see Chapter
7 for more details). Figure 6.3 shows the output responses for a unit-step setpoint
change for several values of §; and §,. An additive disturbance resulting from a unit-
step disturbance going through a lag of qfﬁ is introduced at the output. As we can

see from Figure 6.4, the disturbance is rejected asymptotically.

6.6 Conclusions

In this chapter, we have generalized the robust MPC algorithm proposed by Campo
and Morari [10] for control of uncertain linear time-varying systems (represented by
FIR models) with constraints. We showed that with this scheme robust Bounded-
Input Bounded-Output stability is guaranteed for all values of tuning parameters.

Both necessary and sufficient conditions for global asymptotic robust stability were
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Figure 6.1: Responses for a set-point change

stated. Furthermore, we showed that robust global asymptotic stability is preserved
for a class of asymptotically constant disturbances entering at the plant output.

Although these results hold for any uncertainty description expressed in the time-
domain, there is a trade-off between the generality of the uncertainty description and
the computational complexity of the resulting optimization problem. For a broad
class of uncertainty descriptions, we show that the optimization problem can be cast
as a linear program of moderate size. We also discussed the extension of these results
to integrator systems.

In principle, we can apply the robust MPC algorithm presented in this chapter to
control of uncertain linear time-invariant systems and show that stability can be guar-

anteed under the same conditions. However, this often produces conservative results.
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Another drawback of this algorithm is that the co—norm has to be used temporally.

In many situations, we would prefer to use the 2—norm (temporally) in the objective

function. In the next chapter, we will propose a robust MPC algorithm for controlling

uncertain linear time-invariant systems which overcomes these difficulties.
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Chapter 7 Robust Control of Linear Time

Invariant Systems with Constraints

Summary

In this chapter, we propose a Model Predictive Control algorithm which optimizes per-
formance subject to stability constraints for control of linear time invariant discrete-
time systems with hard input constraints and soft output constraints. In the nominal
case, we show that global asymptotic stability is guaranteed for both state feedback
and output feedback. Furthermore, global asymptotic stability is preserved for all
asymptotically constant disturbances.

The algorithm is then generalized to the robust case. We show that robust global
asymptotic stability is guaranteed for a set of linear time-invariant stable systems.
When the system is represented by a Finite Impulse Response model, we show that
the optimization problem can be cast as a quadratic program of moderate size for a

broad class of uncertainty descriptions.
7.1 Introduction

All real world control systems must deal with constraints. Although a rich theory
has been developed for the robust control of linear systems, very little is known
about the robust control of linear systems with constraints. In the previous chapter,
we generalized the robust Mode Predictive Control (MPC) algorithm introduced by
Campo and Morari [10] for control of uncertain linear time-varying (LTV) systems
and proved several important results. In this chapter, we will consider linear time-
invariant (LTI) systems.

Campo and Morari [10, 9] made the first rigorous attempt to extend the MPC

concept to control of uncertain linear systems and proposed a robust MPC algorithm.
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Unfortunately, it is well known that robust stability is not guaranteed with this algo-
rithm. Zafiriou [96] used the contraction mapping principle to derive some necessary
and some sufficient conditions for robust stability. However, the conditions are both
conservative and difficult to verify. Assuming lower and upper bounds on each impulse
response coefficient, Genceli and Nikolaos [32] showed how to determine weights such
that robust stability can be guaranteed for a set of Finite Impulse Response (FIR)
models. However, often weights do not exist even when robust stabilization is pos-
sible for a set of FIR models. Lee et al. [56] proposed a robust MPC algorithm
that minimizes the expectation of a multi-step objective function for an input-output
model with stochastic parameters. Of course, the concept of robust stability cannot
be defined in this framework.

In the previous chapter, we generalized the robust MPC algorithm introduced
by Campo and Morari [10] and demonstrated that this new robust MPC algorithm
can robustly stabilize any set of linear systems represented by FIR models for which
robust stabilization is possible. However, the controlled system had to be assumed to
be time-varying. Thus applying this new robust MPC algorithm to a time-invariant
system often produces conservative results. Another drawback of this robust MPC
algorithm is that only the co—norm can be used temporally. This is because it
is generally not possible to have a zero steady-state error for all plants in the set.
Using the 1—norm or 2—norm instead of the co—norm temporally may result in an
unbounded objective function because of the infinite output horizon. The focus of
this chapter is to introduce an MPC algorithm which overcomes these difficulties.

This chapter is organized as follows. After presenting some preliminaries in Sec-
tion 7.2, Section 7.3 deals with the nominal case. Specifically, a novel MPC algorithm
which optimizes nominal performance subject to a nominal stability constraint for
controlling LTI systems with “hard” input constraints and “soft” output constraints
is proposed. With this scheme we then show that global asymptotic stability is guar-
anteed for both state feedback and output feedback. Furthermore, we show that
global asymptotic stability is preserved for all asymptotically constant disturbances.

The framework is generalized to handle the robust case in Section 7.4. We show that
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robust global asymptotic stability is guaranteed for a set of stable LTI systems. The
output tracking problem is treated in Section 7.5. In Section 7.6, for the special case
when the system is represented by an FIR model, we show that the optimization
problems can be cast as quadratic programs of moderate size for a broad class of un-
certainty descriptions. Several examples are presented in Section 7.7 to demonstrate
characteristics of the proposed algorithm. Section 7.8 concludes the chapter.

Notations and Assumptions The notation used in this chapter is fairly stan-
dard. |e | denotes the Euclidean norm, |z|; the 1—norm, and |Z|oo the co—norm.
|z|p = V2T Pz denotes the weighted Euclidean norm. z7 denotes the transpose of z.
|| @ || denotes the induced 2—norm. Given two vectors z and vr<lysx <y Vi
Throughout the chapter, we assume that the plant is a stable LTI discrete-time sys-

tem.

7.2 Preliminaries

Consider the following LTI system

z(k+1) = Az(k) + Bu(k)
(7.1)

y(k) =Cux(k)+d(k)

where z(k) € ®"= is the state, u(k) € R™ the input, y(k) € R™ the output, and
d(k) € ®™ the disturbance. Denote the nominal model by (Ao, By, Cy) and the real
plant by (A,, B,, C;,). The input is assumed to belong to the set & which is defined

as follows.

L{é{u:0>umi”§u§um”>0} (7.2)

The input constraints are always present and are imposed by physical limitations of
the actuators which cannot be exceeded under any circumstances. Thus, u(k) € UV k.

Often we may have bounds on the rate of changes in the input, i.e.

|Au(k)] < Au™*
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We will also assume that the disturbance belongs to the set D which is defined as

follows.
D2 {d:|d|s < oo and C(I — A)™'Bu +d = 0 for some u € U} (7.3)

Often it is desirable to keep specific outputs within certain limits for reasons related

to plant operation, e.g. safety, material constraints, etc. Let

a) T
X2z [F, F <fuel (7.4)

Uu

It is usually unavoidable to exceed the output constraints, at least temporarily, for
example, when the system is subject to unexpected disturbances. Thus, z(k) does
not necessarily belong to X" for all k. However, we can relax the output constraints

and assume that z(k) € X, V k defined as follows.

x
X. 2!z [F, F) <f+ee>0ucld (7.5)

()

To make the control problem meaningful, we will assume the following:
e u = 0 is an interior point of U.
e Ay™T > (.

o (z,u) = (0,0) is an interior point of X.

7.3 Nominal Stability

In this section, we assume that the plant is known, i.e. A, = Ay, B, = By, and
Cp = Co. An MPC algorithm that optimizes performance subject to a stability con-

straint is proposed. With this scheme we then show that closed loop asymptotic
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stability is guaranteed with both state feedback and output feedback. For all asymp-
totically constant disturbances, we show that asymptotic stability is preserved. We
also remark that the stability constraint is necessary to ensure asymptotic stability

in the unconstrained case.

7.3.1 State Feedback

Define the objective function as

®(4,B,0) = % |z (k+ilk)[E, + i [lulk +ilk)2, + |Au(k + i1k)IE,, | +1elk)[2,

= = (7.6)
where I'; > 0,T', > 0,Ca, > 0,T, > 0, H, > H., and H, is finite. Ty, T, and s, are
symmetric matrices. I is a diagonal matrix. (e)(k + i|k) denotes the variable (e) at
sampling time k + 4 predicted (or calculated) at sampling time k. Define Controller

MPCC as follows.

Definition 11 Controller MPCC: At sampling time k, the control move u(k)
equals the first element u(k|k) of the sequence {u(k|k), u(k+1|k), - -, u(k+ H,— 1k)}

which 1s the minimizer of the optimization problem

Jr = (Ao, By, Cp)

min
u(klk)’7u(k+Hc—llk),€(k)

subject to
uk+ik)eUd  i=0,1,--- H. —1

|Au(k +ilk)| < Aum™® §=0,1,--- H, — 1 (7.7)
Au(k +1ilk) =0 t=H,H +1,---,00

:L’(k—l-ilk)GXe(k) 1=0,1,---,00

\

and

|z(k + 11k)[p < Az(k)|p
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where P > 0,ATPA - P = —-Q,! Q > 0,A < 1, and ®x(Aog, By, Co) is defined by

(7.6).

Remark 32 For simplicity but without loss of generality, we have assumed here that
we would like to stabilize the system to the origin. However, if we would like the state
to go to some reference state, say x,, then we need to replace |z(k + ilk)|r, in the
objective function by |z(k+i|k) —z,|r, and the contraction constraint |z(k + 1k)|p <

Az(k)|p by |z(k +1]k) — z.|p < A|z(k) — z,|p.

Remark 33 We will show that the contraction constraint |z(k-+1|k)|p < Alz(k)|p, X €
[0,1) ensures that the closed loop system is asymptotically stable. Therefore, it is re-

ferred to as the “stability constraint” in the sequel.

We want to show that global asymptotic stability is guaranteed with Controller
MPCC when the state can be measured and there are no disturbances, i.e. d(k) =

0V k > 0. Before we state the theorem on global stability, let us first prove the

following lemma.

Lemma 9 Suppose there are no disturbances, i.e. d(k) = 0V k. Then there ezists
a constant A* € [0,1) such that the optimization problem (7.7) is feasible for all
A€ [A*,1) if A is stable.

Proof. We want to show that u(k +ilk) = 0, =0,---, H, — 1, is a feasible solution
for all A € [A*,1). Clearly u(k +ilk) € U,i = 0,---,H, — 1. Since A is stable,
z(k +ilk) € Xqx V i > 1 for a sufficiently large finite €(k). The existence of a

constant A* € [0,1) can be shown as follows.

z(k + k)5 = |Az(k)+ Bu(klk)[%
= |Az(k)[%
= lx(k)'%?—cz

= |=(®)[p - l=(k)I5

10 < P < oo since A4 is assumed to be stable.
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< 2 a(Q) 2
< Jz(k)|p 5(P) lz(k)|p
- Q(Q) 2
= (- ZE)R
£ Xa(k)}
Obviously \* 2./1-2Q 1o stable A and the stability constraint is feasible for
7(P)

all A > A*. ]

Remark 34 In general, \* < 1 may not erist if other norms are used for the con-

traction constraint.
Using Lemma 9, we can show the following theorem in the absence of the disturbance.

Theorem 23 (State Feedback) Assume that A is stable and that d(k) =0V k > 0.
Suppose the state is measured. For all \ € [A*,1), where X\* is defined as in Lemma

9, the closed-loop system with Controller MPCC is globally asymptotically stable.

Proof. As shown in Lemma 9, a constant A\* € [0,1) exists such that u(k + ilk) =
0,6=0,---, H. — 1, is feasible for all A € [\*,1) but may not be optimal. Thus,

Hp
o < Yo la(k+ k)R, + |e(k) 2,

(5 (A9)TT, 49)
a(P)

< |2 (k)5 + le(k)IE,

Since A is stable, a finite constant ~ clearly exists such that the output constraints

are feasible with €(k) = v|z(k)|s. Then we have
T < 7]z (k)3

where 7 is a constant defined appropriately. Since |z(k)|p < A|z(k — D|p < M*|z(0)|p
and 0 < A < 1,z(k) — 0 and J, — 0 as k — co. This together with I’y > 0 yields
z(k),u(k) — 0 as k — oo. O
Remark 35 If we assume T'y, > 0 and Fau > 0 instead of Ty, > 0 and Tp, > 0,

Theorem 23 still holds. All we have to show is that the input s bounded in this case.
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& Hp ‘ij
Since [e(k+Dlp < e (W), Ji < a(k)fp where y 2 2D angry, > 0,

|Au(k)| < F|z(k)|p where ¥ is defined appropriately. We have

(k)] = IU(0)+;AU(Z')I
k
< Iu(O)I+;IAU(i)I

k
< [u(0)] +7 Y Nz(0)

=1
— )k
-

= |u(0)] + 11 Hlz(0)] < 0o Y k

Therefore, the closed loop system is asymptotically stable.

Remark 36 The stability constraint is sufficient to ensure stability. It is well known
that for unconstrained linear systems, the closed loop system is stable if and only if
the state matriz of the closed loop system is stable which is equivalent to the existence
of a positive definite matric P such that |x(k +1|k)|p < A|z(k)|p for some A € [0,1).
Therefore, the stability constraint should not result in any conservatism in controller

design.

Remark 37 With the stability constraint, the optimization problem (7.7) cannot be

cast as a quadratic program. We can solve the optimization problem as follows:

Step 1 Solve the optimization problem without the stability constraint (quadratic pro-

gram,).

Step 2 Check if the stability constraint is satisfied. If yes, we are done; if no, add a
penalty term of the form w|z(k + 1|k)|% to the objective function or adjust the

weight w and go to Step 1.

Since the global optimal solution to the optimization problem (7.7) is not required for
Theorem 23 to hold as long as the stability constraint is satisfied, we do not have to

determine the optimal solution.
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Remark 38 As it can be seen from the proof, other objective functions (for example,
those mentioned in Chapter 2) can be used. However, to keep the presentation simple

and clear, we would stick with the objective function defined by (7.6).

7.3.2 Output Feedback

In this section, we consider the case where the state has to be estimated. Since the
closed loop system may be nonlinear because of the constraints, we cannot apply the
Separation Principle to prove closed loop stability with output feedback. It is well
known that, in general, a nonlinear closed loop system with the state estimated via
an asymptotic observer can be unstable even though it is stable with state feedback.
However, we want to show, for Controller MPCC, that closed loop stability is guar-
anteed when the state can be estimated with an asymptotic observer and when there
are no disturbances, i.e. d(k) =0V k£ > 0.

Denote the state (output) at sampling time &k + ¢ estimated at sampling time &

by Z(k + i|k) (4(k +i|k)). The state is estimated as follows.

z(klk) = Az(k—1lk—1)+ Bu(k—1)+ K(y(k) — 9(k|k — 1)) (78)

#(k+ilk) =Az(k+i1—1]k)+Bu(k+i—-1) i>1
where K is the observer gain. Define Output Feedback Controller MPCC as follows.

Definition 12 Output Feedback Controller MPCC: At sampling time k, the
control move u(k) equals the first element u(k|k) of the sequence {u(klk),u(k +
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1k), -+, u(k + H. — 1|k)} which is the minimizer of the optimization problem

A

Jk = u(k[k),---,u(rkr-lf-llr}c_1'k),€(k) (bk(AO, Bo, CO)
subject to
( u(k+i|k‘)€l,{ i=0,1,--- H,—1
J 'A'U:(k“f‘llk), < Aymez i:O,l,...’Hc_ 1 (79)

Au(k +ilk) =0 t=H, ,H.+1, -+, 00

2(k+ilk) € Xy  i=0,1,---,00
and

12(k 4+ 11k)|p < A|2(K)|p

where

HP Hc
®c(A, B,C) =3 |a(k+ilb)[E, + > [Julk +ilk) [, + |Aulk + i), ] + k)2,
=1 2=0

(7.10)
Here P,\,T'y,Ty, and Tr, are defined as in Definition 11.
Combining this equation with equation (7.1) with d(k) = 0V k yields
e(k+1)= (I — KC)Ae(k) (7.11)

where e(k) = (k) — 2 (k|k) is the estimation error. Thus equation (7.8) can be written

as
(klk)  =a(klk—1)+ KCAe(k—1)
(7.12)
z(k +1)k) :Ai(k+i—1|k)+Bu(k+i—1|k) 1 >1
We have the following lemma for Output Feedback Control MPCC. The proof is

omitted since similar arguments in proving Lemma 9 can be used here.

Lemma 10 Suppose there are no disturbances, i.e. d(k) = 0V k. Then there ezists
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a constant \* € [0,1) such that the optimization problem (7.9) is feasible for all

A€ [N, 1) if A is stable.
Before we state the theorem on stability, let us first prove the following lemma.

Lemma 11 Assume that A and (I — KC)A are stable, i.e. all the eigenvalues are
k
strictly inside the unit circle. Suppose d(k) =0V k > 0. Then > XN"'KCAe(k —

=1

i)|p — 0 as k — oo for all X € [A*,1).

Proof. From equation (7.11), we have
le(k)|p < ck*p"[e(0)]p

where p = Anao((I — KC)A), c is a constant and « is the multiplicity associated
with the eigenvalue for the spectral radius of (I — KC)A. Here A\, (A) denotes the
spectral radius of A. Stability of A insures the existence of \* € [0,1) and stability
of (I — KC)A implies p < 1. Thus,

k k
S NTUKCAe(k —i)|p < d(PIKCAP™3)S. X-te(k —4)|p

=1 1=1

k
F(PEKCAP™%) Y Ni~le(k — i)* " p"[e(0)| p

<
=1
1 1 k . .
= G(P2KCAP™2)|e(0)|p Y A" Mk —4)* 1 pF"
=1
k
< ¢5(PTKCAP™7)|e(0)]pmax(X, p)* 3 (k — i)~
=1
k
< ¢5(PEKCAP)[e(0)|p max(), p)* 3 k!
=1
< ¢5(P:KCAP™%)|e(0)|p max(A, p)*~ 1k

Since 0 < max(}, p) < 1, max(), p)¥~*k® approaches zero as k — co and we have the
desired result. O
The following theorem states that global asymptotic stability with output feedback

can be guaranteed for stable systems.
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Theorem 24 (Output Feedback) Assume that A and (I — KC)A are stable, i.e.
all esgenvalues of A and (I—KC)A are strictly inside the unit circle. Suppose d(k) =
0V k > 0. Then the overall system with Output Feedback Controller MPCC is

globally asymptotically stable for all \ € [A*,1) where \* 2 \/1— %((T?))'

Proof. As shown in Lemma 9, u(k + i|k) = 0,5 = 0, - -+, H. — 1, is feasible for all
A € [A\*,1) but may not be optimal. Thus,

Hp
Je < Do lE(k +ilk) R, + Je(R)[2,
=1

(T (A)TT, A7)
- a(P)

|Z(kIR)[E + [e(k)[2,
Following similar arguments as in the proof of Theorem 23, we have
Je < 12 (k|E)|7
Now, we want to show that J; — 0 as k¥ — co. From Equation (7.12), we have
& (k|k) = &(k|k — 1) + KCAe(k — 1)
Thus,

|2(klk)|p = [|2(k|k — 1) + KCAe(k — 1)|p
|2(k|k = 1)|p + |KCAe(k —1)|p
< Ag(k =1k = 1)|p + |[KCAe(k — 1)|p

< MEO)r + 3 XK CAe(h — i)

=1

IN

Since 0 < A < 1, the first term clearly approaches zero as £k — oo. By Lemma 11,
the second term approaches zero as k — oo for \ € [A*,1). Therefore, #(k|k) — 0 as
k — oo which in turn yields z(k) and J, — 0 as k — oco. This together with I", > 0

yields u(k) — 0 asymptotically. O
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Remark 39 By similar arguments as in Remark 35, we can show Theorem 2/ holds

for Ty >0 and T'ay > 0 as well.

7.3.3 Disturbance Rejection

In this section, we investigate how disturbances affect closed loop stability. We show
that, with a modified stability constraint, global asymptotic stability is preserved
with output feedback (hence state feedback) for asymptotically constant disturbances.

Consider the following extended system:

z(k+1) A0 z(k) B 0
= + u(k) + Ad(k)
d(k+1) 0 I d(k) 0 I
(7.13)
y(k) =[C 1]
d(k)
where Ad(k) = d(k + 1) — d(k). Let
z(k) _ A0 _ B
z(k) = A= B = C=|[C I
d(k) 0 I 0
Both the state and disturbance can be estimated as follows.
z(klk) = Aﬁ?(k —1lk-1)+ Bu(k — 1) + R'(y(k) —9(klk — 1))
(7.14)

r(k+ilk) =Az(k+i—1k)+Bu(k+i—1) i>1
where K is the observer gain. Define Qutput Feedback Regulator MPCC as follows.

Definition 13 Output Feedback Regulator MPCC: At sampling time k, the
control move u(k) equals the first element u(k|k) of the sequence {u(klk),u(k +
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1]k), - u(k + He — 1|k)} which is the minimizer of the optimization problem

k= min ]Ij
u(klk)""7u(k+HC_llk)ae(k)

subject to

r
u(k +ilk) e U i=0,1,--, H,—1

J |Au(k +ilk)| < Aum™® §=0,1,---,H. — 1

Au(k +ilk) =0 t=H,H.+1,---,00

."f:(k-l-'ilk)EXe(k) 1=0,1,---,00
and

3k + 11k) = 32 (k)|p < Aa(klk) — 2°°(k)|p + min | 43° + Bv — &% (k)|
(7.15)

where &(k +1|k) and d(k|k) are estimated via Equation (7.14), #%°(k) = (I— A)~1Bv,
where v is such that C(I — A)™'Bv +d(k) = 0,2 is the estimate of the steady-state

values at sampling time k, and
N HP Hc
O =3y +alk)IF, + 3 [lu(k +ilk)}, + |Auk+ilk)2,, ] + [e(k)[2,
=1 1=0

with 'y > 0. Here P, A\, T, and T'a, are defined as in Definition 11.

Combining the observer equation (7.14) with equation (7.13) yields

e(k+1)= (I — KC)Ae(k) + KAd(k) (7.16)

2Clearly v may not be unique. If this is the case, we can determine v such that 7w is minimized.
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where é(k) = z(k) — Z(k|k). Since A is stable, an asymptotic observer exists, i.e. K

exists such that (I — KC)A is stable. Equivalently equation (7.14) can be written as
z(klk) = Z(klk—1) + KCAe(k — 1) + KAd(k — 1) (717
7.17

Z(k+ilk) =A#(k+i—1k)+Bu(k+i—1k) i>1
With these preliminaries, we can prove the following theorem.

Theorem 25 (Output Feedback) Assume that A is stable, that K is such that
(I — KC)A is stable, and that d(k) € D Y k > 0.3 Then with Output Feedback
Regulator MPCC the optimization problem (7.15) is feasible for all k > 0 and )\ €
[A*,1) where \* is defined as in Lemma 9. Furthermore, the closed-loop system is

globally asymptotically stable for all asymptotically constant disturbances.

Proof. u(k|k) = argnéiZ?lA:E“ + Bv —2%(k)|lp € U and z(k +ilk) € Xy Vi >
1 for sufficiently large e(k). That the stability constraint is feasible for u(klk) =

arg ng? |Az°* 4+ Bv — 2**(k)|p can be shown as follows.
v

|Z(k +1]k) — 2(k)|p = |AZ(k|k) + Bu(k) — 2% (k)|p

= |A#(k|k) — AZ**(k) + AZ* (k) + Bu(k) — * (k)| p

< |A(&(k|E) — 2% (k))|p + |AZ* (k) + Bu(k) — £°(k)|p
A|2(klk) — 2°° (k)| p + [AZ*(k) + Bu(k) — % (k)| p
|z (k[k) — 2 (k)| p + min |AZ* (k) + Bv — | p

IA

Thus the optimization problem (7.7) is feasible for all A € [A*, 1) and k£ > 0. Global

asymptotic stability of the closed loop system can be shown as follows.

[2(klk) =2 (k)P = |2(klk) — &°°(k — 1)|p + |2°(k) — &**(k — 1)|p
= |2(klk —1) + KCAe(k — 1) + KAd(k — 1) — 2°°(k — 1)|p

+|25 (k) — 2%°(k — 1)|p

3The theorem holds as well if there exists a finite 7' such that dk)eDVEk>T.
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< J&(klk —1) = 3% (k — 1)|p + |KCAe(k — 1) + KAd(k — 1)|p
+]&% (k) — 2°(k — 1)[p
S Al2(k[k) = 3(k)|p + min | A2** (k) + Bv — 2 (k)|
+KCAe(k — 1) + KAd(k — 1)|p + |2 (k) — 2°°(k — 1)

(1>

Mk =1k —1) =2k —1)|p + £(k — 1)
which yields

(600 = (Bl < NI2(0) = 2O + 3Nl
For asymptotically constant disturbances, Ad(k) — 0 asymptotically. By Equation
(7.16) and stability of (I — KC)A, &(k) — 0 and therefore (k) —z*(k—1) — 0
asymptotically. This together with the assumption d(k) € D V k implies that
min,ey |A%**(k) + Bv — £°%(k)|p either becomes zero after some finite time or ap-
proaches zero asymptotically. We have (k) — 0 asymptotically. Therefore, £(k) —
£**(k) asymptotically which in turn implies y(k) — 0 asymptotically. Since the ob-

jective function is bounded and I, > 0, u(k) is bounded. O

Remark 40 By similar arguments as in Remark 35, we can show Theorem 25 holds

forI'y >0 and Tay > 0 as well.

7.4 Robust Stability

Consider the LTI system (7.1) and assume that d(k) =0 V k > 0. The actual plant,
(Ap, By, Cp), is not known exactly and is assumed to lie in some set, i.e. (Ap, B,,C,) €
(A, B,C). At this point, the set can be completely arbitrary. The goal is to design an
MPC controller such that closed loop stability is guaranteed for all plants in the set.
Define Robust Controller MPCC as follows:

Definition 14 Robust Controller MPCC:

Step 0 Input the data.
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Step 1 Set ko =k and i = 1 where k denotes the current sampling time.

Step 2 The current control move u(k) equals the first element u(k|k) of the sequence
{u(klk), u(k+1lk), - -, u(k+H.—1|k)} which is the minimizer of the optimiza-

tion problem

T = 1)l By gry (A0 Bor Co)
subject to
ulk +jlk) e ) =0,1,--- H, —1
(k +7lE) ’ (7.18)
J [Au(k +ilk)] < Aum™® §=0,1,--- H, — 1
Au(k + jlk) =0 J=H,H.+1,---,00
z(k +jlk) € X, j=0,1,---,00
and the robust stability constraint
sup |A4%3(ko) + CoU(koli)|, < Mlw (ko) (7.19)

(A,B)

where @ (Ao, By, Co) is defined by (7.6) and

A< 1
¢, = [A¥'B A'?B ... B
[
’U,(k'o)
u(k0+i—2)
U(kolt) =

(ko +1i— 1|k +7 — 1)

u(ko + L—1lko+i~1)

P > 0is a weighting matrix
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Step 3 Setk=k+1. Ifi =1L or |z(ky +1)|p < AMz(ko)|p, go to Step 1; otherwise, set
1=141 and go to Step 2.

Remark 41 Robust Controller MPCC optimizes nominal performance subject to a
robust stability constraint. Clearly, other objectives can also be used. For example,
if max(a .oy ®x(A4, B, C) is minimized instead of @1 (Ao, Bo, Cy), then Robust Con-
troller MPCC would optimize the worst-case performance subject to a robust stability
constraint. However, as we shall see later, optimizing nominal performance subject

to a robust stability constraint greatly simplifies computations.

Lemma 12 Assume that A is stable for all A € A. Then there ezist an integer L
and a constant \*(L, P) € [0,1) such that the optimization problem (7.18) is feasible
for all X € \*(L, P),1).

Proof. It suffices to prove the lemma for i = 1 where i is defined as in Step 2 of Robust
Controller MPCC: if i # 1, then (ko + i + jlko + i) = u(ko + i + jlko + i — 1),j =
0,---,Hc— 1, is clearly a feasible solution. Let u(ko + jlko) = 0,5 = 0,---, H, — 1.
Clearly, u(ko + jlko) = 0,5 =0,-- -, H,— 1, may not be optimal but we want to show
that it is a feasible solution. w(k + jlk) € U,j = 0,---, H, — 1. Since A is stable
for all A € A, choosing e(k) sufficiently large guarantees z(k + j|k) € Xy Vij>1
The existence of an integer L and a constant \*(L, P) € [0,1) such that the robust
stability constraint is satisfied for all A € [\*(L, P), 1) can be shown as follows:

max |APz(ko)|p

max \/;(_P%ALT%)II(]CO)]P

S X (L, P)|z(ko)|

P

&}3% IALZ'(IC()) + CLU(kOIO)l

IN

Since A is stable for all A € A, a finite integer L exists such that M(L,P) e [0,1). O

Remark 42 Here the 2—norm is used for the robust stability constraint. Lemma 12
holds as well if other norms (e.g. the 1—norm) are used. As we shall see later, use of

other norms may simplify computations.
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The following theorem states that global asymptotic robust stability is guaranteed

with state feedback.

Theorem 26 (Robust State Feedback) Assume that A is stable for all A € A
and that L is such that a constant \*(L, P) € [0,1) ezists. For all A € [\*(L, P), 1),
the closed-loop system with state feedback is globally asymptotically stable with Robust
Controller MPCC for all (A, B) € (A, B).

Proof. By Lemma 12, \*(L, P) € [0,1) exists and the feasibility of the optimization
problem is guaranteed for all A € [\*(L, P),1). By the robust stability constraint, we

have

. . L .
lz(LG+ 1) < max |4 z(Lj) +Cr

| w(L(G+1)-1) |

IA

Mz (Lj)lp

< XHz(0)]5

Thus, z(k) — 0 as k — oo. Following a similar argument as in Theorem 23, we can

conclude that u(k) — 0 as k — oo. a

Remark 43 The robust stability constraint is sufficient to ensure robust stability. It
1s also necessary in the following sense: Given any controller, if there does not exist
a positive definite matriz P such that supA\/ﬁ(P%ALP‘%)[a:(ko)lp < ANz(k)|p for
some A € [0,1) and for some integer L, then z /4 0 as k — oo for some plant. Thus

asymptotic stability is not guaranteed.

The optimization problem (7.18) can be computationally expensive to solve for
general uncertainty descriptions because of the robust stability constraint (7.19). In

Section 7.6, for systems represented by FIR models, we will show that (7.19) can be
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represented by a set of linear constraints for a broad class of uncertainty descriptions.

Thus the optimization problem (7.18) can be cast as a quadratic problem.

7.5 Output Tracking

So far we have been concerned with global stabilization to the origin. In this section,
we deal with the constant output tracking problem. Because of the input constraints,
tracking of an arbitrary constant output may not be possible. Let us define the set

for which offset-free tracking may be possible.
Y2 {y:V(A,B,C) € (A,B,C), 3u €U such that y — C(I — A)~'Bu = 0} (7.20)

Clearly, the origin belongs to Y.* Since the system is stable, integral control is
necessary to obtain offset-free tracking. It is well known that robust integral control
may not be possible for some uncertainty set [66]. Consider, for example, a set of
SISO plants with both positive and negative steady-state gains. Then integral control
with robust stability guarantee is not possible.

Let us define the objective function for output tracking.

H H.
OL(A,B,C) =3 Ir —y(k+ k), + So((ulk + i), + [Au(k+iR)E,.) + ek,
= = (7.21)

where I'y > 0,I', > 0,T'a, > 0, and I, > 0. Again I, is diagonal.
In the case of global stabilization to the origin, doing nothing, i.e. no control
action, will steer both the state and the output to the origin for stable systems. How-
ever, in the case of output tracking, nonzero control action is necessary to guarantee

offset-free tracking. Let us write the system (7.1) in difference form with dlk)=0Vk.

Az(k+1) = AAz(k) + BAu(k)
(7.22)

Ay(k) =CAz(k)

“The origin may not be an interior point of ).
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where Az (k) = z(k) — z(k — 1), and Au(k) and Ay(k) are defined similarly.
Consider

— Ssk +L </\ ma _ Ssk 723
y”(ko-l-L)EY”(k +L)l y ( ), y”(ko)E};(”(kg) 'T Yy ( 0)' ( )

where 7 denotes the setpoint and y°*(ky) denotes the steady-state output assuming
that the control input remains constant after sampling time ko and the sets Y**(ko+1L)

and Y**(ky) are defined as follows.
Y*() = {y“(j) 1y7(7) = y(4) + C Y- A'Ax(j), (4,0) € (A, C)} ,J = ko, ko + L
i=1

Then for all A € [0,1), the output approaches the setpoint asymptotically. With
appropriate assumptions, it can be easily shown that the input is also bounded. This
together with stability of A gives that the closed loop system is globally asymptotically
stable. Unfortunately, constraint (7.23) may be infeasible. This can be seen as follows

for Au(ko+1) =0V i>0.

v (ko+L) = ylko+L)+CS AiAa(ko+ L)
i=1
L o]
= y(ko) +Cp Y AlAz(ke) +C S A'AL Az (ko)
=1 =1
= y(ko) + Cp Z A;;A:Ir(ko) + [CZAi -G, ZAZJ A{,’A:L‘(ko)
=1 =1 =1

= y(ko) -+ Cp Z A;Al‘(k‘o) =+ MlALL'(ko)
=1
which yields,

—y (ko + L - Az (k >
(4,00 c,,)l Y™ (ko + )l—yss(kgle)ﬁs(k)l y** (ko) +v|Az(ko)|, ~v>0

For sufficiently large Az(ko), we can show that (7.23) is not feasible for any nonzero

bounded control moves if M; # 0. Therefore, unless M; = 0, constraint (7.23) may
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be infeasible for some Az (ko). This motivates the following constraint.

— y*5 (ko + Llko)| 5. < AolAz(ko)l s
y”(ko-i-le(glGal;Es(ko—}-L'ko)'r Yy ( O+ , O),p2 >~ 2| 33( O)IPl

k ss X
+02(ko) yoo x| oI = 5% (ko)
(7.24)

where Ay and (ko) are positive constant, P, and P, are positive definite weighting

matrices, and

Yss(ko -+ leo) = {y”(ko + leo) : yss(k‘o + leo) = y(ko) -+
[CLZIAH—CZA’AL Lo C*+C'iAi BAU (koli),
(CE_L: i CZAZAL) Az(ko), (A, B,C),(4,B,C) € (A, B,C)}

This constraint alone does not, however, ensure global asymptotic stability because of
the first term on the right-hand-side. We need to introduce the following additional

constraint to ensure global asymptotic stability.

max |Az(ko+ Llko)|p, < M|Az(ko)|p, + 51 (ko) Ir —y**(ko)|p, (7.25)

(A,B)e(A,B) sS(Ic)eYH(Ic)
where A; and (ko) are positive scalars, and
L-1 .
Ax(k‘o + L,ko) = ALALE(]C()) + Z AL_I_]BA'U,(k() + ])
=0

With these preliminaries, we state the control algorithm for output tracking.
Definition 15 Robust Tracking Controller MPCC :

Step 0 Input the data.

Step 1 Set ko =k and i = 1 where k denotes the current sampling time.

Step 2 The current control move u(k) equals the first element u(k|k) of the sequence

{u(klk), u(k+1lk), - - -, u(k+L—1|k)} which is the minimizer of the optimization
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problem
== s ®T B
g U(k|k),"',u(lkn-i-lll}c—1|k),e(k) x (Ao, Bo, Co)
subject to

u(k + jlk) e U i =0,1, -, H, — 1
(k + jlk) J (7.26)

|Au(k +ilk)| < Aum® =01, H,—1

Au(k + jlk) =0 j=H,H.+1,---,00

x(k-}-j,k)EXe(k) 7=0,1,---,00
and  constraints (7.24) and (7.25)
where ®f (Ao, By, Cy) is defined by (7.21).

Step 3 Setk =ko+1. Ifi=L or

Az (ko +1)[ 5, < M|Az(ko)| 5, + Bi(ko) maxyssmyeyssry T — y** (ko)
| —** (ko +9)| 5, < Ao|Az(ko)lp, + B2(ko) maxyesryeyssry |7 — ¥ (ko) g,
go to Step 1; otherwise, set i =14+ 1 and go to Step 2.
We have the following result.

Theorem 27 (State Feedback) Assume that A is stable for all A € A and that
the steady-state gain matriz, C 32 A'B, satisfies the following condition.

1

2 7 <1 for some nonsingular W

(7.27)

Pz-—

[1 _ <C 2 AiB) WJ P}

max
(A4,B,C)e(A,B,C)

Let

[S1E
—_

*

I\le__‘

L-1 _ o 3 )
= max Py [I - (C A'B+CY AlAL‘1B> W}
(A,B,C),(A,B,C)E(A,B,C) —

=0 i=1

~
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* A_% L-1 A%“
nt = {E’aB)g Py, * A" BW P;
A1 a1
Al = max||P ;ALPf
A
A1 > A\ L
Ay = a P 2(CY A —CS At ALp?
27 e | ( ; 5;‘: ) ’ H

Br(ke) = O(ko)n
MaAXyss (ko)e =2 (ko) [¥5° (ko) — y°° (ko) |, + [1 — 8(ko) (1 — v*)]|r — Yo' (ko) p,

maxyss(ko)eyss(ko) ,7" - yss(k())l}sz

,32(]{)0) = mln{l,IBz(k‘o)}

S . 1
o) = | ol @)+ Balke) 26,6 € (1), 0> 0

1 otherwise

where y3°(ko) is the steady-state output for the nominal plant assuming Au(ky + j) =
0‘v’j20,ﬁ1=131’>0, andp2=]55>0. Then

1. the optimization problem (7.26) is feasible for all \; > AL, A2 > A3, and n > n*.

2. there exists an L such that the closed loop system with Robust Tracking Con-
troller MPCC s robustly asymptotically stable for allT € Y and AL > A A >
A2 mta >0, and € € (v, 1) which satisfy the following relations.

1
)\1+—/\2 < 1
a

Y 4+an < ¢

Proof. For notational simplicity but WLOG, assume P, = I and P=1.

1. Clearly all we have to show is that the optimization problem (7.26) is feasible
for A7, A3, and 7*. It suffices to prove the theorem for i = 1 where i is defined as
in Step 2 of Robust Tracking Controller MPCC : if i # 1, then u(ko + ¢ + j|ko +
i) = ulko+i+jlko+i—1),5 =0,---,H, — 1, is clearly a feasible solution. Let
Au(ko+jlk) =0V j > 1. We want to show that Aulkolko) = (ko)W (r —y3*(ko)) is
a feasible solution. r € Y implies that u(ko|ko) € U V O(ky) € [0,1]. That constraint
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(7.25) is satisfied can be shown as follows.

max |AY Az (ko) + ALY BAu(kolko)|
[+ [AXBAu(koko)]

max |Az(ko + Llko)|

IN

L
8}&)3:[.4 Az (ko

)
max[| 4] |Aa(

< ko)| + max | A1 BO(ko)W (r — y3* (ko))
< AflAz(ko)| + 0(ko )maXHAL "BW|| Ir — y5* (ko)

= AllAz(ko)| + 0(ko)y Ir— *(ko)l

< MlAz(ko)| +0(ko)y™ | max |r—y*(ko)|

ss(k )eYss(k )

Next we like to show that Au(ko|ko) = O(ko)W (r—y§*(ko)) is feasible for constraint

(7.24).

—y* (ko + L|k
oI =y (ko + L)

= max _ -
(A4,B,C),(A,B,C)

=1 =1

max _
(A,B,C),(A,B,C) ’t=1

(A,B,g}i’fi{,ﬁ,é) Ir —y** (ko) — MiAx(ko) — MyAu(ko|ko)]

— y(ko) — (ij A+ CiA’flL) Az(ko) — MyAu(kolko)

- (y(ko) + éiix") Az (ko) — MyAz(ko) — MyAu(kolko)

Tl = w5 (ko))

< max _ |M;Az(ko)| + max _ |r—y* (ko) — My Au(kolko)|
(4,C),(4,0) (4,B,0),(4,B,C)
< AAz(ko)| + max _ _ |yg*(ko) — y**(ko) +r — Yo' (ko) — MaAu(kolko)
(4,B,C),(4,B,0)
< * 0SS
< Al + | max (ko) — (ko)
— 3* (ko) — My Au(ko|k

+ (A,B,g;?fi(,é,é),r Yo (ko) — MaAu(kolko)|
= A|Az(ko)] LR T lvo° (ko) — y** (ko)

+  max _|[] = 0(ko) MyW](r — yg*(ko))|

(A4,B.C).(4,B,0)
< A A X 88 k _ 88 k
< AzlAz(ko l+y-‘(k§?€%}-‘s(l~:o)!y0( o) =y (ko)
X I — 0k MW —y®(k

b ap = MGV | — 33 (ko))

< MlAz(ko)[+  max  Jydt (ko) — y** (ko)| + [1 — 0(ko)(1 —

ss(k )EY s(ko)

= il flle) g I =)
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where

Ml = <C’Z¢4Z é

ok

M, = (cZchzAzAL 1)B

=1

8 ':'M8

If Ba(ko) > 1, then By(ko) = 1 and (ko) = 0. We have for Au(kglky) = 0,

=y (ko + Llko)| < Mj|Az(ko)| +  max  |r — y*(k
yss(koﬂlk)l?‘ (ko + Llko)| < A3|Az (ko) ”(ko)eY“(ko)l y** (ko)

Thus, constraint (7.24) is feasible.

Since the system is stable, the output constraint is feasible for some sufficiently
large €(ko). This completes the proof that the optimization problem (7.26) is feasible
at each sampling time.

2. Since 7* — 0, A} — 0,5 — 0, and * — v as L — oo, a finite L exists such that
the set {Ar, Ao, m, 0,8 0 Ap > AL 0 > A5 > ' a0 > 0,6 < 1A + X <1, and
v+ an < £} is nonempty. From (7.25), we obtain

|Az(ky +L)| < max {ALAx(kO)JrcLAU(kO )

< .88
< MlAeio)+ (k) TN ()]

Using (7.24) yields

—y (ko + L) < — y**(ko + Lk
yss(ko+LIn)€aifX53(ko+L) r=y ke + D) < y”(ko+legleai;(ss(ko+le)lr v (ko + Llko)|
< XAz (ko)| + Ba(ko) I — y** (ko)

- ss(k )eYss(k )

From these expressions, we have

alAz(ko+ L)| + yssr&ai(L |1 —y°*(ko + L)
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< Dt ulalAe(hn)| + [Balhn) + )] mas I — (ko)

S max{/\l -+ é/\g, ﬁz(ko) -+ aﬁl (ko)} CV‘A.ZE(ko), -+ yIslsl(ak}O() ,7‘ — y”(ko)IJ

Since Ay +LA; < 1 and Ba(ko) + afy (ko) < 1V k, a|Az(ko)| + maxyss o) 7 — y°* (ko)
is a non-increasing function of k, bounded below by zero.® In fact, we want to show
that a|Az(ko)| 4 maxye«(ky) |1 — y**(ko)| must approach zero asymptotically. Suppose
a|Az(ko)| + maxyes ko) |1 — y**(ko)| — ¢ where ¢ is some positive constant. This
implies, for sufficiently large ko, (32 (ko) + 81 (ko) — 1 and from definition 8(ko) = 0.
Thus, Az(kg) — 0 asymptotically which yields Maxyss (ko) |7 — y** (ko) | — minyss ) |1 —
y**(ko)| — 0 asymptotically. Simple calculations show that Ba(ko) +a By (ko) logkg)=1 —
7" +an. This together with v*+an < ¢ < 1 yields (ko) = 1 which is a contradiction.
Thus, oAz (k)| 4+ maxyss g |r — y**(ko)| must approach zero asymptotically which
in turn yields y(k) — r asymptotically. That the input is also bounded since the

objective function is bounded and only m control moves are allowed, 0O

Remark 44 Although Theorem 27 was proven when the 2-norm is used for con-
straints (7.24) and (7.25), Theorem 27 also holds when any other norm is used.

However, the expressions in Theorem 27 may have to be modified accordingly.

Remark 45 The sufficient condition (7.27) involves steady-state gain (CY2, A'B)
only. For SISO systems, the sufficient condition (7.27) becomes that all plants in the
set must have the same steady-state gain sign. This condition is also necessary for
the ezistence of stabilizing controllers with integral control ([66]). For MIMO systems
with the set of steady-state gains given by

G¥ ={g": 9" = (I +A)g*,|Al € A, g§* nonsingular} (7.28)

where A is some uncertainty description, then by setting W1 = ¢5° the sufficient

®Here ko denotes discrete times defined in Step 1 of Robust Tracking Controller MPCC .
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condition (7.27) becomes
max “P_IAP” <1 for some P
AcA

When A = 0, we have the following corollary.

Corollary 9 Suppose Ay = A} = 0. Suppose the optimization problem (7.26) is solved
with only one constraint (7.24) instead of two constraints (7.24) and (7.25). Under

the conditions in Theorem 27, the closed loop system with Robust Tracking Controller

MPCC is robustly asymptotically stable for allT € V.

Proof. Using the constraint (7.24) and following similar arguments as in the proof
of Theorem 27, we can show that the output approaches the setpoint asymptotically

and the input is bounded. O

Remark 46 For systems represented by FIR models of order N, choosing L = N

results in Ay = 0.

We have the following corollary for all constant disturbances whose steady-state gains

are such that offset-free tracking is possible.

Corollary 10 Theorem 27 holds as well for all constant disturbances whose steady-

state gains are such that offset-free tracking is possible.

7.6 Computation of Control Moves

In this section, we consider systems represented by FIR models. We show that, for a
broad class of uncertainty descriptions, the optimization problems (7.18) and (7.26)

can be cast as quadratic programs of moderate size.

7.6.1 FIR Models

It is well known (see, for example, Lee et al. [57]) that FIR models can be represented

as state-space models. However, their development would result in an A matrix with
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an integrator and the results in the previous sections would not apply. An alternative
state-space representation of an FIR model that would result in a stable A matrix is
introduced here.

Consider an FIR model with N impulse response coefficients and denote the 7t
impulse response coefficient by g;. For notational simplicity, let us assume that the
system is square with n, = n, inputs and outputs, i.e. g; € R™w*™ 4 = 1,---,N.

Let

o(k) =[u"(k =N +1) --- «"(k = 1) " (k)]

Then
0 1 0 00
0 0 I 010

: A

A = A 1|0 c §R[(N—l)'nu+ny]><[(N—1)nu_|_n_,,,]
0 0 0 -~ I1|0 Ay |0
0 0 0o --- 010
gN gn-1 gn-2 -+ G2|0

B = [0 .07 gl], € m[(N—l)nu+ny]xnu

C =10---0 I e Rru X[(N=1)nu+ny]

From these expressions, we have

AL 0

Ay AT 0
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where
r i .
0---0 1 -0
PR RIS o
0 00 - 0
0---00 --- 0J
Moot
A21A11;1 — 0---0 IN Qi1 §Rny><(N—1)nu
which yields
F -
0
CL = [AL—IB AL_2B ... B] — I c QR[(N—I)nu+ny]><nnu (729)
| gL o e gl J

7.6.2 Uncertainty Descriptions

Although the results presented in the previous sections hold for any uncertainty de-
scriptions, the complexity of the optimization problems depends on uncertainty de-
scriptions. Here we introduce a class of uncertainty descriptions for which the opti-
mization problems can be cast as quadratic programs of moderate size. Consider the

following set of impulse response coefficients.

l
g = {grg:§+ZAjVj,ge§R"yx”“N,Vjeﬂ?”yX"uN,AjeA, j:l,...J}
j=1
(7.30)
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where

A = {A:AZdiag{él,-.-,ény}a@' € R and |6 < 1,1:1,...,%}

g = [gn - G
[QN"'QI]
V} — [V}NV}] vjzl,"‘,l,V}iE%"“""Vi,j

Q
l

We can prove the following results for this set.

Lemma 13 The constraint
max |a + bz + gz|; < ¢ (7.31)
g9€eg

where a,b, and c are constants of appropriate dimensions, is equivalent to a set of

linear constraints.

Proof. By the special structure of A, we have

!
a b - max |a+b g AV
I?ng la +0z+ gzll A €A i=1, ] ToE (g " 2221 Z 2) ) 1
!
- max |a+bz+g AViz
Al |t TR RS z; “,

{
= la+bz+ gzl + Y [Vizy

=1

which yields

!
meagx]a—I-bz-ngll Sc@la-ﬂ—bz—l—gzll—i—Zlel <c
g

=1



162
Let & = abs(V;z),i = 1,---,1, and 7 = abs(a + bz + §z) where abs(z) denotes the

absolute value of the vector z. Then max,c¢ |a + gz|; < b is feasible if and only if

( Yiet i+ < ¢
=& < Viz, i=1,---1
Viz < &, 1=1,---,1
-n < a+bz+ gz
\ a+bz+gz < 7
is feasible. The latter is clearly a set of linear constraints. a

Remark 47 The total number of linear constraints representing (7.31) is 2n, (1 +
1) + 1 which is moderate.

Lemma 14

=1 =1

where z; and b are vectors of the same dimension.

Proof. (<) It is obvious.
(=) Let & = X7, abs(z;). Assume Y7 ,68;z; < bV |6] < 1. Suppose the first
element of ¢ is larger than the first element of b, i.e. & > b;. Then there exists

|6;] < 1V 4 such that 3% 6;2;; > b which is a contradiction. 0O

Lemma 15 The constraint
Hz+Fgz< fVgeg (7.32)

where H,F', and f are constants of appropriate dimensions can be represented as a

set of linear inequalities.
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Proof.

l
Fgz = F(g—&-ZAﬂ/})z
j=1

l
= Fgz+ ) FA;V;z

=1

l
= F_(]Z + Z[6j1F1 e 6jnanu]‘/jz
Jj=1

I Ny

Jj=1li=1

where (V;2); denotes the i** row vector of V;z. Using Lemma 14, we have

Ing,

Hz+Fgz< fVgeG& (H+Fg)z+ ) abs(v;) <b

=1

where v; is defined appropriately. By defining & = abs(v;) and following similar steps
as in the proof of Lemma 13, we can show that Hz + Fgz < f V g € G can be

represented as a set of linear inequalities. O

7.6.3 Casting Optimization Problems as QPs

We make the following assumptions.

Assumption 1 Systems are represented by FIR models.
Assumption 2 Uncertainty is described by (7.30) and g € G.
Assumption 3 ]5, Py, and P, are diagonal.

Assumption 4 1—norm is used for constraints (7.19), (7.24), and (7.25).

The following theorem states that the output constraint can be represented by a set

of linear inequalities.

Theorem 28 The output constraint z(k + ilk) € X ) V i > 1 can be cast as a set

of linear inequalities.
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Proof. Since the system is represented as an FIR model, with H, control moves the
system settles down in exactly N + H, steps, i.e. after which the output does not
change. The output constraints over the infinite horizon can be replaced with the

output constraints over a finite horizon of length N + H,, i.e.
o(k +ilk) € Xy Vi>1 <= z(k+ilk) € Xpyi=1,---, N+ H,

Simple calculations yield

i i
0---0 I 0 0
r 1T 1
0---0 0 I 0 0 u(k)
zk+ilk)=| g...0 o ... 0o o=zt I
R u(k+i—1)
0 0 0 0 0
| 09y gv-1 o gin 0
After some algebra, we can put the constraint
z(k + 1]k)
[F. F,] SfHek)VAjeAj=1,---,1

into the form (7.32). Then direct application of Lemma 15 yields the desired result.
O
The following theorem states that the robust stability constraint (7.19) can be

represented by a set of linear inequalities.

Theorem 29 Under Assumptions 1 — 4, the robust stability constraint (7.19) can be

represented as a set of linear constraints.
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Proof. With Assumptions 1 — 4, after some algebra, the robust stability constraint

(7.19) becomes

L
(O---O 1 0 0
0 0 0 I 0
: k
I}zlggxp 0---0 0 - 0 o]kt
0---0 0O -~ 0 0
i 0 “rr gN gN-1 - gL+1 O ] (733)
u(ko)
0
’LL(]C0+Z—2) N
I < AlPz(ko)|s
U(k0+l—1lk0+l—1)
_gL 91_
U(ko‘l‘L—l,ko-*-L—].)Jl

The right-hand-side is known at each sampling time. Since diagonal P commutes
with A, it is WLOG to assume P = I. (7.33) can clearly be put into the form (7.31).

Then direct application of Lemma 13 gives the desired result. O

Remark 48 Since AN =0V A € A, \(N) = 0. With L = N the optimization
problem (7.18) is feasible for all X € [0,1).

The optimization problem (7.18) can be solved as a quadratic program since the
objective function is quadratic and the constraints are linear. That constraints (7.24)

and (7.25) can be cast as sets of linear constraints is stated as follows.
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Theorem 30 Under Assumptions 1 — 4, constraints (7.24) and (7.25) can be repre-

sented as a set of linear constraints.

Proof. WLOG, assume P, = I and P, = I. For systems represented by FIR models,

we have
~ L ~ ot ~
My=CY A+CY A'A* = D+D
i=1 i=1
L-1 o] oo
My=|CY A+ CY A4 C“+CZA1}B = E+F
i=0 i=1 i=1
where
_ [ N N N-1 L+1
D = |gn Z Gi Z Gi Z gi Z Gi OJ
| i=N-1 i=N-L+1 i=N—-L =2
N
D =100 0 gn > g OJ
i i=L+2
_ ( L L-1 2
E = Da >Ya - > G §1J
Li=1 =1 =1
[ N N N N
E = Z 9i Zgi Zgi Zng
|i=L+1 i=L 1=3 1=2

By the uncertainty description (7.30), we have

Sa=5 (srxan)-FLor Esan=Fara iy,

j=ni1 j=n =1 j=ni j=n1i= j=n1 Jj=n1

which is of the same form as that of (7.30). maxyss(k,) |7 —y°*(ko)|1 can be determined

as follows.
N
max |1 —y**(ko)|y = max|r—y(ko) — |gn g EQJ Az (ko)
y*s (ko) 9€G J=N-1 .

A.’E(kg)

— y(ko) — [ﬁN Z g5 Z:gj 0

j=N-1

1

A.’I?(ko)

N
Viv Y Vi SV, 0
A 2

1
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The constraint (7.24) can be cast as a set of linear constraints as shown in Theorem

29. We can write the left-hand-side of the constraint (7.25) as follows.

max r —y** (ko + Lk
y“(ko+L|ko)€Y‘95(ko+L|ko)i y ( 0 l O)h

= max Ir —y(ko) — M1 Az (ko) — MaAU (ki)
(A,B,C),(A,B,C)e(ABC)

= max|r —y(ko) ~ (D + D)Aa(ko) — (B + E)AU (ko)

which can be clearly put into the form (7.31). Direct application of Lemma 13 results
in that the constraint (7.25) can be represented by a set of linear constraints. O
With ék(AO,BO,CO) quadratic in control moves and linear constraints, we can

solve the optimization problem (7.26) as a quadratic program.

7.7 Examples

Three examples are presented here to demonstrate the characteristics of the proposed
method. In Example 8, we consider the problem of robust stabilization to the origin.
The set of linear time-invariant systems is such that the robust stability constraint
is not feasible with L = 1. Both Examples 9 and 10 deal with output tracking.
Example 9 considers the same problem which was used in Chapter 6 and compares
the differences between the methods presented in Chapter 6 and in this chapter. The
Idle Speed Control problem [94] described in Example 10 has been studied extensively
by researchers using various control methods [43]. However, none of these methods
deals with the input constraint which is present. Using the results developed here, we

can design a controller which guarantees robust stability with the input constraint.

Example 8 The set of plants is given below.

A:{AZA:QAI‘F(].—O{)A%OSOJS1} (734)
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where
-
0.7 0.6
Al ==
0.6 —0.7
04 04
AQ =
-1 1
1
B =
1

The stability constraint may be infeasible for L = 1 and A < 1. However, for L = 2

3.85 —1.08
and P = , the stability constraint is feasible for all A > 0.742. The

-1.08 1.67
input is constrained between +1. The initial condition is zo = [2 2]'. By Theorem

26, global asymptotic stability is guaranteed with the following tuning parameters.

3.85 —1.08
H, =5 H,=10,L =2,P = T =1,T,=011,Tpr, =0

—-1.08 1.67

Figure 7.1 shows performance for the nominal plant, i.e. A = %(Al + Ay) while

Figure 7.2 shows performance for 4 = A4,.

Remark 49 One way to design a robustly stabilizing linear controller for a set of
linear plants is via the Linear Matriz Inequality (LMI) technique [6]. The basic idea
behind the LMI technique is that a linear controller is robustly stable if there exists
a positive definite matriz P such that P — A'PA < 0 for all A € A. However,
this condition is not necessary. For the set of systems described by (7.84), there
does not exist such a positive matriz P satisfying the inequality. This is because the
LMI technique assumes the system to be time-varying. Thus, designing a robustly
stabilizing controller via the LMI technique[{9] for a time-invariant system may not

be possible.
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1.5F

0.5

-1.5F

_2 1 1 1 1 1
0 5 10 15 20 25 30

Figure 7.1: Example 8—Nominal responses (4 = $(A; + A,))

Example 9 The set of models is described by

G ={G(q) : G(q) = 6:Go(q) + 61 [Go(g) — G1(¢)],0 < 6, < 0.5 and 0.5 < §, < 1.5}
(7.35)

where Go(q) = qf'g_ 2= and G; = %ﬁ%. Here 6; and &, can be interpreted as

follows: é; accounts for possible unmodelled dynamics while &, accounts for the gain

uncertainty.

G can be put into the following form:
) 1 =1 -1 _
6 ={60): G(0) = [{60(0) - 1G:(0)] + &360(0) + 815 [Gola) - Gr(a)] 6l < 1)

Go and G, are truncated by FIR models of order 15. We can put the set of models
into the form (7.30) with / = 2 and A = {A : A € R and |A| < 1}. Thus the
optimization problem can be solved as a quadratic program. For setpoint tracking,

by Theorem 27 and Corollary 10, global asymptotic stability is guaranteed with the
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1.5F ]

1
ot

Figure 7.2: Example 8—Responses for A = A,

following tuning parameters.
L=15H.=2,H, =4,Tp,=05T,=1T,=0,X=0

The input is constrained between +0.8. Figure 7.3 shows the output responses for
a unit-step setpoint change for the nominal plant (6; = 0 and & = 0). Performances
for the four extreme plants depicted in Figure 7.4 are worse than that of the nominal
plant but the closed loop system is asymptotically stable. This is expected since
the objective here is to optimize nominal performance subject to robust stability
constraints. Figure 7.5 compares the performance for the four extreme plants obtained
by using the method proposed in this chapter (which assumes that the system is LTI)
to that obtained by using the method proposed in Chapter 6 (which assumes that the
system is LTV). Although the method presented here does not attempt to optimize
the worst case performance, the performance obtained is at least comparable, if not

better, than the method proposed in Chapter 6. It should be pointed out that the
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method proposed in Chapter 6 applies to LTV systems.

1.2 T T T T T T T T T

0.8 4

0.2 -

O 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20

Figure 7.3: Example 9—Nominal responses

Example 10 —/Idle Speed Control [94]

Consider the system

Y1 G Gan Uy Gq

Ya 0 1 Uog 0

where y; is engine rpm, y, and wu, are spark advance, u; is bypass valve, w is torque
load (unmeasured disturbance), and G1;, Gy and Gy are the corresponding transfer
functions. After appropriate scaling, the constraints on spark advance become +0.7,
e |ug| <0.7.

Here we consider two different operating conditions (transmission in neutral and

drive positions) and the models for the two plants are taken from [43]. Plant #1
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0 2 4 6 8 10 12 14 16 18 20

Figure 7.4: Example 9—Responses for other plants

corresponds to operation at 800 rpm and a load of 30 Nm (transmission in drive

position) and is given by

9.626—0'168
= 7.37
G s2+2.45 + 5.05 (7.37)

15.9(s + 3)e0:04s
52+ 2.4s5+5.05

Gy (7.38)

Plant #2 corresponds to operation at 800 rpm and zero load (transmission in

neutral position) and is given by

20.5¢ 0165
G §2 4225+ 128 (7.39)
47.6(s + 3.5)e—004s
Gy (s+35)e (7.40)

s2+22s+12.8

We first truncate both plants by FIR models with 24 coefficients and sampling

time of 0.1. The nominal model (G) equals QJ"Q*—GZ and the uncertainty (V') equals
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1.4 T T T T T T T T T

0.8F
0.6}
=
<+
o= 04 ——: Robust LTI controller
7 - - -: Robust LTV controller
0.2 ’ .
0 i
-0.2F _
0 2 4 6 8 10 12 14 16 18 20
Time

Figure 7.5: Comparison of robust LTI and robust LTV controllers

QL;QZ. Thus, the set of plants can be described as follows.

G ={G(q): G(g) = G(q) + 6V (qg), 6] < 1}

With these preliminaries, we can cast the optimization problem as a quadratic

program. The following tuning parameters are used.
L=24H =5 H,=10,Tp, =05,T,=1,[, =0, =0

By Theorem 27 and Corollary 10, global asymptotic stability is guaranteed. Figure
7.6 shows nominal performance for a setpoint change while robust performance is

shown in Figure 7.7.
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O 1 1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure 7.6: Example 10—Nominal Response

7.8 Conclusions

In this chapter, we proposed an MPC algorithm which optimizes performance sub-
Ject to stability constraints for controlling linear time-invariant discrete-time systems
with “hard” input constraints and “soft” output constraints. In the nominal case, we
showed that global asymptotic stability is guaranteed for both state feedback and out-
put feedback for linear time-invariant stable systems. Furthermore, global asymptotic
stability is preserved for all asymptotically constant disturbances. The algorithm was
then generalized to the robust case. We showed that robust global asymptotic stabil-
ity is guaranteed for a set of linear time-invariant stable systems. When the system
is represented by a step response model, we showed that the optimization problem
with an appropriate objective function can be cast as a quadratic program for a broad

class of uncertainty descriptions.
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0 1 2 3 4 5 6 7 8 9 10

Figure 7.7: Example 10—Response for Other Plants (Solid: Plant # 1; Dashed: Plant
# 2
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Chapter 8 Summary of Contributions and

Suggestions for Future Work

8.1 Summary of Contributions

Although a rich theory has been developed for the robust control of linear systems
without constraints, very little was known for the robust control of linear systems with
constraints. In this thesis, we have developed the first general synthesis techniques
for designing controllers for linear discrete-time systems subject to constraints with
robust stability and robust performance guarantees.

In Chapters 3, 4, and 5, a complete theory has been developed for linear systems
without model uncertainty with mixed constraints—hard input constraints and soft
output constraints. For stable systems (Chapter 3), we showed that global asymp-
totic stability with the Infinite Horizon MPC with Mixed Constraints (IHMPCMCQ)
algorithm is guaranteed for both state feedback and output feedback cases. The on-
line optimization problem can be cast as a finite dimensional program even though
the output constraints are specified over an infinite horizon.

The problem of global stabilization of linear systems with poles on the unit circle
has attracted much attention recently. Based on the growth rate of the set of states
reachable with unit-energy inputs, we showed in Chapter 4 that a discrete-time con-
trollable linear system is globally controllable to the origin with energy-bounded inputs
(i-e. 3282, w(i)"u(i) < oo) if and only if all its eigenvalues lie in the closed unit disk.
These results imply that the IHMPCMC algorithm is semi-globally stabilizing for a
sufficiently long input horizon if and only if the controlled system is stabilizable and
all its eigenvalues lie in the closed unit disk. The disadvantage of this IHMPCMC
algorithm is that the input horizon necessary for stabilization depends on the initial

condition and can be arbitrarily large. As a result, we proposed an implementable
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IHMPCMC algorithm. We showed that with this algorithm a discrete-time linear
system with n poles on the unit disk (with any multiplicity) can be globally stabi-
lized if the input horizon is larger than n. For pure integrator systems, this condition
is also necessary. Moreover, we showed that global asymptotic stability is preserved
for any asymptotically constant disturbance entering at the plant input.

Global stabilization of unstable linear system with constraints is not possible. It is
important to characterize the domain of attraction, i.e. the set of all initial conditions
for which stabilization is possible, for such systems. However, very little work has
been done. In Chapter 5, we analyzed and characterized the domain of attraction
for a linear unstable discrete-time system with bounded controls. An algorithm was
proposed to construct the domain of attraction. We showed that the IHMPCMC
algorithm generates a class of (nonlinear) control laws that stabilize the system for
all initial conditions in the domain of attraction.

In Chapter 6, we generalized the robust MPC algorithm proposed by Campo and
Morari [10] for control of linear time-varying systems (represented by FIR models)
with constraints. We showed that with this scheme robust Bounded-Input Bounded-
Output stability is guaranteed. Both necessary and sufficient conditions for global
asymptotic robust stability are stated. Furthermore, we showed that robust global
asymptotic stability is preserved for a class of asymptotically constant disturbances
entering at the plant output. Although these results hold for any uncertainty de-
scription expressed in the time-domain, there is a trade-off between the generality of
the uncertainty description and the computational complexity of the resulting opti-
mization problem. For a broad class of uncertainty descriptions, we showed that the
optimization problem can be cast as a linear program of moderate size.

In Chapter 7, we considered linear time-invariant systems. We proposed a novel
MPC algorithm which optimizes performance subject to stability constraints for lin-
ear systems with mixed constraints (i.e. “hard” input constraints and “soft” output
constraints). In the nominal case, we showed that global asymptotic stability is guar-
anteed for both state feedback and output feedback for linear time-invariant stable

systems. Furthermore, global asymptotic stability is preserved for all asymptoti-
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cally constant disturbances. The algorithm was then generalized to the robust case.
We showed that robust global asymptotic stability is guaranteed for a set of linear
time-invariant stable systems. When the system is represented by a Finite Impulse
Response model, we showed that the optimization problem can be cast as a quadratic
program of moderate size for a broad class of uncertainty descriptions. The theory
was successfully applied to the Idle Speed Control problem.

Most of the AWBT schemes appeared in the literature over the years have been
developed for SISO systems. Features unique to MIMO systems such as gain direc-
tionality make these methods fail. In Appendix A, a general anti-windup design which
optimizes the error between the constrained output and the unconstrained output of

the system, applicable to MIMO systems, is developed.

8.2 Suggestions for Future Work

Even though there is little doubt that MPC is the most widely used advanced control
technique in process industry, it constitutes only a small portion of all controllers
used in process industry. Furthermore, applications in other disciplines are very rare.
Work in the following areas is needed for MPC to have widespread acceptance and
application in all disciplines.

Modeling  The routine application of robust MPC techniques faces many obsta-
cles. One key difficulty which stands in the way of these new techniques, as well as
many other advanced control techniques, is the need for a model and the associated
uncertainty description to describe the dynamic behavior of the process to be con-
trolled. While many aspects of modeling has been studied for decades, the modeling
needs for control purposes are largely not understood. Modeling is expensive and
time-consuming. It is of key interest to minimize the modeling effort required for
a specific control implementation. A clear understanding of the trade-offs between
model accuracy and control quality is essential for determining if increased modeling
effort is justified.

Computational Complexity  Because of the high computational requirements,
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MPC is typically implemented in a supervisory mode, i.e. on top of the regulatory
control systems, on systems with large sampling times, and on systems with a moder-
ate number of inputs and outputs. This explains why MPC is widely used in process
industry but not in other disciplines. Reducing the computational requirements for
MPC will expand MPC’s applications to include other challenging processes from
other disciplines.
Nonlinear Systems  The extension of the basic MPC concept is straightforward
and much research has been done on nonlinear MPC. One key difficulty in applying
these techniques to a practical control problem is that the required computation is
forbiddingly high. Part of the difficulty lies in that most of the techniques are intended
for general nonlinear systems. For general nonlinear systems without constraints,
most of control techniques available [24] in the literature require such amount of
computation that even designing controllers off-line is forbidding for a reasonably
nontrivial system. It is important to restrict the class of nonlinear systems such
that the computation is manageable and yet the class is rich enough to cover (or
approximate reasonably well) a real process.
Process Diagnostics and Monitoring Sensor and actuator faults or failures
in sensors and actuators are common in process control applications. Since they
can be expressed as additional constraints, they can be handled trivially by MPC
provided they are recognized. Developing process diagnostic and monitoring tools
and incorporating them within the MPC framework will be crucial for maintaining
system performance.
Process Applications The synthesis technique developed in Chapter 7 was
applied to the Idle Speed Control problem and the results are promising. However,
the ultimate effectiveness of any control approach must be judged on the basis of its
application to real systems. Applications to real systems will suggest how to modify

the theory to improve its applicability.
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Appendix A Anti-Windup Design for Internal
Model Control

Summary

This appendix considers linear control design for systems with input magnitude satu-
ration. A general anti-windup scheme which optimizes nonlinear performance, appli-
cable to multi-input multi-output systems, is developed. Several examples, including
an ill-conditioned plant, show that the scheme provides graceful degradation of per-

formance. The attractive features of this scheme are its simplicity and effectiveness.
A.1 Introduction

Of special interest and common occurrence are systems having control input satura-
tion nonlinearities but which are otherwise linear. Windup problems were originally
encountered when using PI/PID controllers for controlling such systems. However, it
was recognized later that integrator windup is only a special case of a more general
problem. As pointed out by Doyle et al. [26], any controller with relatively slow
or unstable modes will experience windup problems if there are actuator constraints.
Windup is then interpreted as an inconsistency between the plant input and the states
of the controller when the control signal saturates.

The “conditioning technique” as an anti-windup technique was originally formu-
lated by Hanus et al. [39, 40] as an extension of the back calculation method of
Fertik and Ross [28] to a general class of controllers. Astrom and Wittenmark [2]
and Astrém and Rundqwist [1] proposed that an observer be introduced into the
system to estimate the states of the controller in the face of constraints and hence
restore consistency between the saturated control signal and the controller states.

This observer-based approach represented a significant generalization of the existing
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anti-windup schemes. Walgama and Sternby [93] have clearly exposed this inherent
observer property in a large number of anti-windup schemes. Campo and Morari [11]
have derived the Hanus conditioned controller independently as a special case of the
observer-based approach.

All these anti-windup schemes have been developed only for single-input single-
output (SISO) systems. The extension to multi-input multi-output (MIMO) systems
has not been attempted in its entirety. As pointed by Doyle et al. [26], for MIMO
controllers, the saturation may cause a change in the plant input direction resulting
in disastrous consequences. Through an example, Doyle et al. showed that all of
the existing anti-windup schemes failed to work on MIMO systems. It is one of the
objectives of this chapter to develop an anti-windup scheme which is applicable to
MIMO systems.

The Internal Model Control (IMC) structure [69] (see Figure A.1) was never in-
tended to be an anti-windup scheme. Although stability of P and Q would guarantee
global stability, provided that there is no plant-model mismatch, the performance suf-
fers when there are actuator constraints. This is because the controller (Q) is entirely
unaware of the effect of its action. In particular, it does not know if and when the
manipulated variable (u) saturates. This effect is most pronounced when the IMC
controller has fast dynamics which are chopped off by the saturation. Unless the IMC
controller is designed to optimize nonlinear performance, it will not give satisfactory
performance for the saturating system. The focus of this chapter is to identify this
nonlinear performance.

Assumptions and Notations = We will assume that the plant is a linear time
invariant and stable square system with n inputs and n outputs. For simplicity,
we will use the same symbol to denote both the transfer function and the corre-
sponding impulse response model. The meaning should be clear from context. P,

P, and () denote the plant, the model of the plant, and the IMC controller, respec-
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Figure A.1: IMC structure

]
sat(u1)

tively. They are n by n transfer matrices. For u € R", sat(u) = { : , Where

sat(uy)

\

( ut uy >yl

sat(u;) = { 4.

; Mt < gy < wher denotes the input saturation function. For

min . min
Uu,; U < U,

z e R, |z(t)); = X%, |z:(t)| denotes the 1-norm.

A.2 Problem Formulation
Consider the IMC structure as shown in Figure A.1. Define
t
Y(t) = (P a)(t) + d(t) = /0 P(t — 7)a(r)dr + d(t) (A1)

Thus y' corresponds to the output of the constrained system. Because of the satura-
tion constraints, y'(¢) necessarily differs from y(t), the output for the unconstrained
system. In general, we would like to keep y' as close to y as possible. Mathematically,

we want to solve the following optimization problem instantaneously at each time ¢.

min [(f *y)(t) = (f * ¥ ) (Ol = min [(fPQ * e)(t) — (P @) (1)|x (A.2)
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where f is a filter such that fP is biproper. If P is strictly proper, then 4 does not
affect y' instantaneously and the minimization is meaningless. Since our ultimate
goal is to minimize |y(¢) — y'()|,, f must be diagonal in order not to introduce any
change in the output direction.

The minimization is carried out continuously for ¢ > 0. It is important to realize
that this instantaneous minimization differs from the minimization over a horizon.
For the conventional IMC structure displayed in Figure A.1, 4(t) = sat(u(t)) =
sat([f Qe(r)dr) is completely determined for any given e(t). Thus, in general, the
conventional IMC implementation does not solve optimization problem (A.2) which
optimizes the performance for the constrained system. In the next section, we will
show that a modified IMC structure actually solves the optimization problem (A.2)

instantaneously.

A.3 Anti-windup Design

We propose a modified IMC structure and show that it solves the optimization prob-
lem (A.2) instantaneously. The results are extended to the classical feedback struc-
ture. Several anti-windup algorithms are shown to be special cases. Furthermore,

from our problem formulation, we can see what these methods do and what the

consequences are.

A.3.1 IMC Structure

Figure A.2 shows the modified IMC structure where Q = (I+Q2)71Q,. Assume that
Q is biproper.! We have

u(s) = Qre(s) — Qau(s) = Qre(s) — (1Q7! — Na(s) 2 (A.3)

1Q is biproper if both @ and Q! are proper.
“Here zero initial condition is assumed. This is without loss of generality since @ is stable and
nonzero initial conditions can be incorporated into e(t).
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y
.
Figure A.2: Modified IMC structure
In the time domain,
u(t) = a(t) = (Q1 xe)(t) = (QQ™" + a)(t) (A4)

The following lemma states how f should be chosen such that the modified IMC

structure shown in Figure A.2 solves the optimization problem (A.2).

Lemma 16 Suppose that Q is biproper and that P = P. If fP|s=o 15 a diagonal
nonsingular matriz with finite elements and Q, = fPQ, then 4(t) resulting from the
modified IMC implementation (Figure A.2) is the solution of optimization problem
(A.2). Furthermore, if g = Df where D is a diagonal constant matriz, then the

closed-loop responses with f and g are identical.

Proof: Q1 = fPQ = u(l)—u(t) = (fPQxe)(t)— (fPxu)(t) = (F+1)(t) = (F5y)(t) =
yr(t) — y;(t). We have

ui(t) = %(t) = yr(t) — v (1), i=1,2,---,n. (A.5)

Since fP|s=« is diagonal, 4, j # 4, do not affect Y, instantaneously. Equations (A.5)
can be solved independently for each 4;(t). Consider the first input, ¢.e. © = 1. When
no saturation occurs at ¢ = t1, 41 (t1) = wuy(t1) = sat(u1(t1)) and |y, (¢,) — Yy (t) =0
Is minimized. Suppose that saturation occurs at t = ¢y, i.e. ui(ta) > u® or uy(t) <
u?®", we want to show that d,(ty) = sat(u1(t2)) also minimizes |y;, (t;) — Yy, (t2)].

Since 41(f2) affects y} (t,) linearly and U;(t2),j = 2,3,--+,n, do not affect Yy, (),
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Y5, (t2) — ¥, (t2)| is a convex function of 4, (t;) only. If d;(ty) = u1(t2) for which
15 (t2) — ¥}, (ta)| = 0 is not feasible, i.e. uy(ty) > uimee

or ui(ty) < uP™™, then the optimal solution which minimizes [y5 (t2) — f, (t2)]
must occur at the boundary, i.e. 4;(¢;) = sat(us(t2)). Therefore, choosing 4, (t) =
sat(u1(t)) minimizes |y, (t) — v, (¢)| for each t > 0. Since |y, (¢) — Yy}, (t)] is minimized
for each 1, [ys(¢) — y}()|1 is minimized.

If g = Df, Equations (A.5) become

ui(t) — 44(t) = Dulyy, (t) — v}, ()], i=1,2,---,n. (A.6)
where D = diag{Dy;,--,Dy,}. Before saturation occurs, the system is uncon-

strained and 4(t) = u(t) does not depend on D. Assume that system saturates
for input 1 at ¢ = ¢y, then 44 (¢,) = w7 or 1, (t;) = u". As long as the right hand
side of Equation (5) does not become zero for i = 1, input 1 stays saturated and Uy (%)
is constant during this period. Input 1 becomes unsaturated only if the right hand
side of Equation (5) becomes zero for s = 1 which is not a function of D;;. Therefore,
the system comes out of the saturation at the same time regardless of what D;; is.
Similar arguments can be used when more than one input saturates. Therefore, the

closed-loop responses for f and g are identical. O

Remark 50 If fP|;_., is not diagonal, then Y%, (t) may also be affected by 4,(t),j # i,
instantaneously. The convezity argument would not work since |yy, (t) — Y5, (t)] is also

affected by ;(t),j # 1.

Remark 51 f must be diagonal in order not to introduce any change in the output
direction. However, f for which fP|s=o is diagonal may not be diagonal. To get
around this problem, we can design a diagonal f for P such that f]slszoo s diagonal.
P can be chosen arbitrarily close to P. QQ; must be strictly proper to be implementable.

This can be achieved by choosing f appropriately.

Remark 52 @Q is usually minimum phase and always stable. If Q is minimum phase

and @ non-minimum phase, then (I + Q3)~! must be unstable. Therefore, Q, must
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be minimum phase and stable to guarantee internal stability of the closed-loop system.

f must be chosen such that fPQ is both minimum phase and stable.

Remark 53 For the modified IMC structure, the input 18 kept saturated for an opti-
mal amount of time until |y;(t) — y;(t)| becomes zero. Thus, in general, the perfor-

mance is greatly improved when f is appropriately chosen.

Different controller factorizations can be obtained by choosing f differently. We
discuss two special cases here.
Case 1: f = P~'. The optimization problem (A.2) becomes rrgn |u(t) — 4(t)];. The
solution corresponds to the conventional IMC structure which “chops off” the control
input resulting in performance deterioration. However, stability of the closed-loop
system is guaranteed.
Case 2: f is such that Q; is a constant matrix. The optimization becomes
min |Q1]e(t) — €'(t)]]1, where €'(t) = (@~ % 4)(¢). This factorization corresponds to
the Model State Feedback proposed by Coulibaly et al. [17] for SISO systems. The
same factorization has also been proposed recently by Goodwin et al. [34] where @
is chosen to be Q(00). Thus, these are special cases of the factorization we present.

The performance in this case is greatly improved, but stability of the closed-loop
system is not guaranteed. If the dynamics of PQ are slow, however, minimizing the
weighted controller input error (e(t) — €/(t)) may not be a good way to optimize
the nonlinear performance. After the system comes out of the nonlinear region,
the controller takes no action to compensate for the effect of the error, e(t) — €'(t),
introduced during the saturation.

In Case 1 f was chosen to guarantee stability while f was chosen to enhance
performance in Case 2. Therefore, f can generally be tuned to trade off performance
and stability of the constrained system. It should be pointed out that f in Case 2

was not an extreme choice.

A.3.2 Classical Feedback Structure



Figure A.3: Classical feedback structure

Figure A.4: Classical feedback structure with anti-windup

For stable systems, the IMC structure shown in Figure A.1 and the classical feedback
structure shown in Figure A.3 are equivalent. The results for the modified IMC
structure can be extended directly to the classical feedback structure to obtain the
anti-windup structure shown in Figure A.4. The controllers K; and K, are defined

as follows:

Kl = Ql (A7>
Ky(s) = Qy— P (A.8)

Hanus et al. [39, 40] suggested the following

K1 = K(c0) (A.9)
Ky(s) = KiK'(s)—1 (A.10)
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where K = Q(I — PQ)~!. This factorization corresponds to f = K;Q~'P~!. There-

fore, Hanus’ conditioning technique minimizes | K [e(t) —€'(¢)]];. In general, f chosen

in a such way is not diagonal in general. While this does not matter for SISO sys-

tems, it introduces undesirable change in the output direction and results in poor

performance (see Example 3) for MIMO systems.

A.4 Examples

In this section, several examples are shown to demonstrate the effectiveness of the

proposed method.
Example 11 Consider the following plant:

2

P(s) = 1005 + 1

The IMC controller designed for a step input is

Qs) = 100s + 1

Case 1. Choosing f = 2.5(20s + 1) ? gives

Ql == 25
4
@ = 100s +1

Case 2. Choosing f = 50(s + 1) gives

50(s + 1)
20s +1
99

100s + 1

Q1 =
Q@ =

3The constant 2.5 is such that Qs is strictly proper.

2(20s + 1)

(A.11)

(A.12)
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The input is constrained between the saturation limits £1. The responses to a unit
step disturbance with the conventional IMC and the modified IMC implementations
are shown in Figures A.5 and A.6 along with the unconstrained responses. The figures
illustrate the sluggishness of performance of the conventional IMC implementation
when the closed loop dynamics are much faster than those of the open loop. For the
conventional IMC implementation, the saturation effectively “chops off” the control
input resulting in performance deterioration. The modified IMC implementation
keeps the control signal saturated for an optimum length of time as discussed in
Section 3 resulting in improved performance. f in Case 1 corresponds to minimizing
le(t) — €'(t)| while f in Case 2 corresponds approximately to minimizing |y(t) —y/(t)|.
The control input in Case 2 stays saturated until y(¢) ~ y'(¢) while the control input
in Case 1 stays saturated until e(t) = €'(t). In Case 1, the difference between y(t)
and y'(t) resulting from the difference between e(¢) and €'(¢) during the saturation is

not compensated as can be seen in Figure A.5.

Example 12 This example is taken from Doyle et al. [26] where the conventional
anti-windup method did not result in a stable closed loop system. The plant is a

fourth order lag-lead butterworth:

P—02 32+2§1w18+w§ s* +2§2w13+w12 (A13)
§% 4+ 261we s + w3 §% 4+ 26we8 + w3
where wy; = 0.2115,ws = 0.0473,&; = 0.3827 and & = 0.9239.
The IMC controller is
s+1
= —— A.l4
@ (16s+1)P ( )
. 5(16s+1) .
Choosing f = —1(6(5—11)1 gives
5
Q1 = 16
5
Qa(s) = -
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/ Solid: unconstrained
/ Dotdash: Case 1
/ Dotted: Case 2

Dashed: conventional IMC with constraints

1 1 1 1 1 1 1 1

10 20 30 40 50 60 70 80 90
Time

Figure A.5: Example 11—Plant output responses
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Solid: unconstrained

Dotdash: Case 1
Dotted: Case 2
Dashed: conventional IMC with constraints

(saturated value of unconstrained input—not visible)

10 20 30 40 50 60 70 80 90
Time

Figure A.6: Example 11—Controller output responses
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6 T T T T T T T T T
4 _\‘; Solid: Unconstrained i
Dotted: Modified IMC
Dashed: Conventional IMC
260 \ _
of B

Output

- 8 I \I 1 ! 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200

Time
Figure A.7: Example 12—Plant output responses

The input is constrained between the saturation limits =+1. Figure A.7 shows the
responses for a disturbance input with step of magnitude of 5 at time ¢ = 0 and a
switch to —5 at t = 4. The performance improvement over the conventional IMC
implementation is significant. Furthermore, the off-axis criterion [12] can be used to

show that the closed-loop system is globally asymptotically stable.

Example 13 Consider the following plant:

10 4 -5

P(s) = ——
(%) = To0s 71

(A.15)
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Both inputs are constrained between the saturation limits £1. A setpoint change of

[0.63 0.79])7 is applied. The IMC controller designed for a step input is

100s+1 | 4 9

10205 + 1) (A.16)

Q(s) =
3 4

Two values of f , one diagonal and one non-diagonal, are chosen to see how f (diagonal

or not diagonal) affects the closed-loop performance.

Case 1.
4 5
f = 10(s+1)
3 4
Q1 = fPQ
@ = fP-1I
Case 2.
f = 25(s+1)I
5 _ 10 I s,
100s +1 _3
0.1s+1 4
Q1 = fPQ
Q = fP-1I

The responses for both cases and the conventional IMC implementation are shown in
Figure A.7. As we can see, choosing f to be a diagonal nonsingular matrix is crucial

to obtain good nonlinear performance.
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Solid: unconstrained i
| Dotted: Case 1
Dashed: Case 2
. ; Dotdash: conventional IMC 7

! L1 1 |

20 40 60 80 100 120 140 160 180 200

Time

Figure A.8: Example 13—Plant output responses
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A.5 Conclusions

We have proposed an anti-windup scheme which optimizes the error between the
constrained and the unconstrained outputs of the system. The method generalizes
the Model State Feedback for SISO systems proposed in Coulibaly et al. [17] and
Hanus’s conditioning technique. In particular, the Model State Feedback corresponds
to choosing f such that @); is constant; Hanus’s conditioning technique corresponds to
choosing f such that @; = K (o00); the factorization proposed by Goodwin et al. [34]
corresponds to choosing f such that Q; = sl_ljglo Q(s). Furthermore, from our problem
formulation, we can see what these methods do and what the consequences are. As
shown by Example 3, the performance for @); = K(o0) for MIMO systems may suffer
when K (0o) is not diagonal. Examples illustrate that this scheme provides graceful
degradation of performance.

The attractive features of the scheme are its simplicity and effectiveness. The
filter f can be tuned to trade off performance and stability of the constrained system.
However, a rigorous and nonconservative stability analysis needs to be developed.
Recently, Campo [9] and Kothare et al. [48] unified all existing AWBT schemes
and developed a general framework for studying stability and robustness issues. The
importance of this work lies in that model uncertainty can be taken into account sys-
tematically and powerful theory exists to analyze the closed loop system for stability
and robustness. However, their analysis is based on the standard conic sector nonlin-
ear stability theory. Therefore, the results could be potentially conservative. Another

drawback for all AWBT schemes is their inability to handle output constraints.
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