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“The Road goes ever on and on

Down from the door where it began.
Now far ahead the Road has gone,

And I must follow, if I can,
Pursuing 1t with eager feet,

Until it joins some larger way
Where many paths and errands meet.

And whither then? I cannot say...”

—DB. Baggins
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Abstract

Interactions between and the structure of black holes, accretion disks, and
dense star clusters are investigated. Observed rapid gravitational microlensing
variability in the quasar Q2237+0305 is used in conjunction with numerical simu-
lations of microlensed quasar accretion disks to determine whether the observations
constrain theoretical accretion disk models. It is found that blackbody disks are
at least three times too large to account for the observed variability, and on that
basis it is argued that the optical emission is either nonthermal or optically thin.

Accurate, efficient, and general-purpose routines to compute geodesic tra-
jectories in the Kerr spacetime describing rotating black holes are implemented
and applied to several problems. The optical caustic structure of the Kerr metric
describing rotating black holes is determined and its possible relevance to rapid
X-ray variability in active galactic nuclei is discussed. It is found that the (pri-
mary) caustic is a small tube with an astroid cross section which extends behind
the black hole asymptotically parallel to the optic axis but displaced from it by an
amount proportional to the spin of the hole, and that the angular magnification is
unexpectedly high everywhere inside the caustic. Sample point source light curves
and the appearance of thick accretion disks around Kerr black holes are calculated
and the influence of caustics on them is assessed.

The dynamical evolution of the core of a dense star cluster around a Kerr black
hole and under the influence of star-disk interactions is examined. It is shown
that there are astrophysically plausible regimes in which star-disk interactions
can dominate all other dynamical processes. The effects of star-disk interactions
on single orbits are illustrated. It is found that star-disk interactions steepen
the initial density profile towards an equilibrium r~3 profile and simultaneously
increase the central density by up to two orders of magnitude. It is argued that
this process could self-limit when densities climb to such a level that collisions

between stars become important.
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Simulations of the dynamical evolution of the density cusp of a star cluster
around a massive black hole in a regime where stellar collisions dominate other
dynamical processes are performed. The calculations are done using a discrete
cluster of stars and a fully relativistic formalism. Versatile numerical methods are
developed and applied to this problem. A modified form of Kepler’s Equation
asymptotically valid in the Kerr geometry is derived. It is found that collisions
produce a constant density core which is mainly populated by stars on highly
radial orbits, in contrast to previous Fokker-Planck analyses in which an r—1/2
profile has been found. Collisional refilling of the loss cone is seen. Additional

applications of the numerical algorithms are suggested.



vi

Table of Contents

Acknowledgements . ........ ... . . . i
Abstract ... ... iv
Chapter 1: Introduction........ ... ittt 1
1.1 Microlensing: Intrinsic and Extrinsic............ . ... o L 1
1.2 Uncovering the Inner Structure of Active Galactic Nuclei............. 8
1.3 Dynamical Processes in Galactic Nuclei.................. ... ... ... 14
References. ... oo 20

Chapter 2: Microlensing and the Structure of Active Galactic Nucleus

Accretion Disks ... ... 25
2.1 Introduction . ... ..o 26
2.2 Accretion Disk Model........ ..o 26
2.3 Application to Q223740305 . ... ...t 31
2.4 DISCUSSION . o ettt ettt et e e 35
References. . ... oo 37

Chapter 3: Optical Caustics in a Kerr Spacetime and the Origin of

Rapid X-ray Variability in Active Galactic Nuclei..................... 39
3.1 Introduction...... ... 41

3.2 Null Geodesics and Caustic Surfaces ............. ... ... ... 43

3.3 Ray-Tracing and Caustic Structure.............. ... ... ... .. ... 47
3.3.1 Numerical Method ... ... . ... . 47

3.3.2 Location of Caustic Surfaces ............. ... ... ... 48

3.3.3 Caustics for Equatorial Observers ................ ... ... ... 50

3.3.4 Angular Magnification of a Point Source ...................... 52

3.3.5 Displacement from the Optic Axis and Transverse Sizes ....... 57



vil

3.3.6 Higher Order Caustic Surfaces ................................ 57
3.4 Light Curves of Orbiting Point Sources.................c.ccooii... 60
3.5 Observations of Thick Accretion Disks.............................. 69
3.6 DiISCUSSION ... .0ttt ittt 72
3.6.1 Magnification of Optical-UV Emission Line Clouds ........... 72
3.6.2 Magnification of X-ray Sources ............................... 73
3.6.3 X-ray Blazars ....... ... 75
Appendix A: Numerical Implementation of the Geodesic Equations...... 77
A1l Coordinate System......... ... ..o 77
A2 Equations of Motion ............. ... ... .. i i 77
A3 Integrations and Reductions to Elliptic Integrals................. 79
Appendix B: Weak Deflection Limit...........cooouiineoeoene .. 93
References. ... ... ... 100

Chapter 4: Dynamical Evolution of a Star Cluster Around a Rotating

Black Hole with an Accretion Disk .................................... 102
4.1 Introduction....... ... 104

4.2 Method and Assumptions.................cooiiiiiiiiini .. 107

4.3 Simulation Results.......... ... .. .. . . . 111
4.3.1 Single Star Results .......... ... ... ... ... ... . 111

4.3.2 Cluster Evolution Results ................................... 119

4.4 DiSCUSSION ... ..ottt 124
References.. ... ... 128

Chapter 5: Collisional Stellar Dynamics Around Massive Black Holes

in Active Galactic Nuclei ................... ... ... ................. 130
9.1 Introduction......... .. ... 132

5.2 Stellar Dynamical Processes in AGNS........ooooieieee . 136
9.2.1 Dynamical Influences on Cluster Evolution .................. 136

5.2.2 Effects of Kerr Black Holes ...............ccccoouiiiiiii oo, 140



Viil

9.3.1 Fundamental Parameters and Initial Conditions ............. 144
9.3.2 The Tidal Zone ........... ... .. . . i i, 146
5.3.3 The ‘Collision Finder’ Zone ...................ccccoiuiii .. 147
9.3.4 The ‘Statistical Collisions’ Zone .................c.c.coouui.... 152
5.3.5 The Reservoir ...........o i, 155
5.4 Simulation Results and Discussion ................coovuiieieen ... 157
9.4.1 Single Injection Models ............ ... ... ... ... .. ..... 159
5.4.2 Steady State Models ............ ... i, 175
8.5 ConcluSIOnS . .. ...ovuien i 185
Appendix A: Kepler’s Equation in the Kerr Metric..................... 196
Al Equations of Motion in the Kerr Metric ... ......ooovvieei. ... 196
A2 Orbital Elements and Constants of Motion ..................... 197
A3 The Modified Kepler’s Equation................................ 199
Appendix B: Collision Products Fitting Formulae ... ................... 203

References. . ..... ..o 205



Introduction

One of the charms of astrophysics, I find, is in its ability to intertwine an
enormous range of physical scales into the solution of a single problem, such as
using the physics of nuclear reactions to explain the heavy element abundance of
the interstellar medium. One of the investigations presented in this thesis (Chapter
2) contains a similar spirit; the predominant motif, however, is one of interaction—
specifically, the interaction of three probable components of active galactic nuclei:
massive black holes, accretion disks, and dense nuclear star clusters. The following
chapter uses observations of gravitational microlensing occurring on cosmological
scales together with the results of simulations to determine the extent to which
accretion disk models of active galactic nuclei (AGNs) can be constrained by such
observations. Attention then shifts to the massive black holes (MBHs) presumed to
be the central engines of AGNs and to investigations of the optical structure of the
spacetime around a rotating (Kerr) black hole and how it could influence observed
AGN emission, followed by studies of the dynamical evolution of dense star clusters
around MBHs, in which evolution is dominated either by interactions with an
accretion disk or by physical collisions between the stars themselves. Particular
attention is paid to the influence and importance of uniquely relativistic effects
from Kerr black holes, and considerable (as well as versatile) numerical machinery
1s developed to allow accurate calculation of these effects. The present chapter

reviews the basic issues important to the analysis.

1.1. MICROLENSING: INTRINSIC AND EXTRINSIC

The idea that gravity should bend light rays just as it does the trajectories

matter can be traced back nearly three centuries to Newton (1704) himself. The
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issue was not considered seriously, however, until after the publication of Gen-
eral Relativity by Einstein (1915). Einstein’s prediction that light rays grazing
the solar limb should be deflected by ~ 1.75" was at least crudely confirmed by
Eddington’s (1919) observations of stellar positions near the sun during the total
solar eclipse of 1919. Ensuing years saw elaboration of the basic theory, including
the realization that gravitational lensing could produce multiple images of a single
object (Eddington 1920; Einstein 1936). Zwicky (1937) argued that lensing of dis-
tant galaxies should be detectable. It was not until 1979, however, that theory and
observation finally met, when the chance discovery of the doubly-imaged quasar
09574561 was announced (Walsh, Carswell, & Weyman 1979) and in which the two
images, separated by ~ 6", are the result of lensing by an observable foreground
galaxy. The field has expanded rapidly since then, both theoretically and obser-
vationally, and today there are a few dozen secure or proposed lenses, including,
in addition to multiply-imaged quasars, the newer classes of radio rings (Hewitt
et al. 1988; Langston et al. 1989) and luminous arcs (Soucail et al. 1987; Lynds
& Petrosian 1989), both of which result when an extended background source is
nearly collinear with the observer and lens. Recent reviews of this sub ject can be
found in Blandford and Narayan (1992) and Refsdal and Surdej (1994); a detailed
treatment of gravitational lens theory is given in the monograph by Schneider,
Ehlers, and Falco (1992).

The qualitative image characteristics of most observed lenses can be under-
stood in terms of a very simple lens model in which the deflector is approximated
by a point mass. In this case the lens equation determining the apparent image

positions can be written as

6% — 6 — 6% =0, (1.1)

where § is the apparent angular separation of an image from the optic axis (the
line connecting the observer and deflector), ¢ is the true separation of the source

from the axis, and 6y is the so-called Einstein ring radius given by

AGM\ 12 M 12, op oy L/2
0 = ( =) ) ~ 3 <m) (1 Gpc) arcsec, (1.2)
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where D = D(z, zs) is an effective lens distance depending on the lens and source
redshifts and on the assumed cosmological model. Thus for off-axis sources, ¢ # 0,
two images are produced by the lens, one on each side, while for on-axis sources
there is axisymmetry about the optic axis and a ring image (of radius the Einstein
ring radius) is produced. If an extended source lies only slightly off-axis, two arcs
will be produced. Viewing the lens equation as a (multi-valued) mapping ¢ — 6,

1t is easy to see that the magnification of an image is given by the Jacobian of the

(%)

Thus a ring or arc image (which has 6 &~ 6;) suffers high magnification. Note that

transformation (in solid angle),

-1

0Qerc
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_'M _

M= (1.3)

6do

O acts as an effective ‘size’ of the lens: for ¢ < 6 the two images have similar
magnifications and separations from the optic axis while for ¢ > 6, there is one
nearly unaltered image at 6 &~ ¢ for which M a 1 with the other image at 0 < 0y
having M « 1.

Gravitational microlensing (Chang & Refsdal 1979; Young 1981; Paczynski
1986) is a variation of the basic lensing phenomenon which can occur when the
distribution of mass within the deflecting object (normally a galaxy or cluster of
galaxies for cosmological lenses) is inhomogeneous on small scales, as in a galaxy
composed of individual stars, and when the lensed object is sufficiently small
(roughly speaking, when its angular size is less than the ring radius of the individ-
ual stars). In this situation the lensed image seen telescopically (the ‘macroimage’)
actually consists of very many unresolved microimages, which are the multiple im-
ages produced by each individual mass concentration in the deflector; the charac-
teristic separation of these microimages is the ring radius, which for cosmologically
distant sources and stellar mass deflectors is ; ~ 1075 arcsec. It may seem at first
that the existence of microlensing is of only theoretical interest, since individual
microimages have no chance of being resolved optically in the foreseeable future,

but their existence can be indirectly inferred (and directly utilized) through the
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quite observable wariations in intensity that microlensing can produce. Suppose
for the moment that the deflector is a galaxy whose mass is mainly in the form of
stars. Microlensing-induced changes in macroimage intensity occur when there is
transverse motion between the background source and the lensing galaxy, which
over time alters the particular configuration of stars producing the microimages.
As the star field slowly changes, some microimages will disappear, others will be
created, and all will suffer some change in magnification. Thus the aggregate
macroimage will appear to vary even if the source itself does not, just as atmo-
spheric inhomogeneities cause stars to twinkle. Note that this is more than a
passing analogy—the gravitational lensing equation (in the weak field limit) can
be written in a form identical to that appropriate for physical optics by defining
an effective index of refraction n = 1 — 2®/c?, where & is the (Newtonian) gravi-
tational potential of the lens. This type of microlensing can be termed ‘extrinsic’
because the lensing objects lie outside the source and are unrelated to 1t; the
motivation for making this distinction will become clear below.

An important concept for the theoretical understanding of microlensing (as
well as macrolensing) is that of caustics. In precise analogy to physical optics, the
caustics of any gravitational lens are the continuity of source positions for which
the observer sees the (point) source infinitely magnified, in the geometric optics
limit. Isolated caustics can be classified using catastrophe theory into types such
as folds, cusps, and swallowtails according to the severity of the catastrophe (e.g.,
Berry & Upstill 1980). One fundamental fact of interest is that the number of
microimages changes by two whenever a source crosses a caustic surface, with a
pair of images being either created or destroyed at the interface. In real situations,
of course, finite source sizes and photon wavelengths allow only finite maximum
magnifications, although those magnifications can still be quite large. The utility
of caustics in the present case is the ease with which microlensing variations can be
understood using this framework. Imagining that the source motion lies in a plane,
it is clear that for each position in this source plane the observed macroimage will

suffer some net magnification as seen by an observer, which will change as the
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source position changes. Abstractly one can imagine magnification contours being
superimposed on the source plane, and in this way the apparent magnification
of any extended source lying anywhere in the source plane is easily computed by
convolving the source profile with the magnification map. The caustics of the
lensing distribution (actually their intersection with the source plane) appear as
high-magnification ridges in such a magnification map; an example is shown in
Fig. 1.1.

The prospect of observing microlensing variations in astrophysical lenses is
exciting because microlensing probes scales ~ 6y, which as noted above is ~
107% arcsec for stellar deflectors. For a distant quasar this works out to a lin-
ear size of ~ 10'% cm ~ 0.01 pc, about the same size as that inferred for the
continuum emission region in these objects (§1.2). There is thus the possibility
of gleaning information on conditions in cosmologically distant objects from re-
gions which cannot be resolved telescopically in even the nearest AGNs! Just
such microlensing variations were seen in the quadruple lens system Q223740305
in 1988 (Irwin et al. 1989); Chapter 2 examines whether the observations can
provide useful constraints on AGN accretion disk models. A more general review
of additional microlensing effects (not mentioned here) and their usefulness in
determining source structure is given in Rauch (1993).

In astronomical lenses deflection angles are always small (~ 1") and gravita-
tional fields are always weak. In AGNs, however, the presence of MBHs, if in fact
true, will lead to lensing in their vicinity in which deflection angles are not small
and gravity is strong. Depending on the detailed optical structure of the spacetime
around an MBH, such lensing could have noticeable effects on the emission pro-
duced in its vicinity. This kind of lensing can be called ‘intrinsic’ because the lens
in this case 1s an integral part of the object itself, as opposed to cosmological lenses
in which the deflector is unrelated to the source. For Schwarzschild (uncharged,
non-rotating) black holes, there is axisymmetry about the line of sight and the
optical behavior is similar to that of the (weak field) point mass described above.

The major difference in this case is that there can be more than two images of the
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Fig. 1.1: A portion of a microlensing caustic network (lensing magnification
pattern projected onto the source plane) produced by an intervening screen of
stars (point masses), showing both cusps (tips of diamonds) and interconnecting

folds. Axes scales are arbitrary.
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source; in fact, there are always an infinite number of images, although almost all
will be so highly demagnified that they are of no practical importance. To un-
derstand how this comes about, we need to step back for a moment and consider
more formally the propagation of light in general relativity.

In general relativity (and under conditions analogous to the geometric optics
limit of ordinary mechanics), the trajectories of light rays and all other massless
particles are described by null geodesics, which satisfy the equations of motion
which can be derived for any particular spacetime from the corresponding metric
components. The equations of geodesic deviation determine how the cross-section
of a small bundle of rays changes due to shearing and focusing effects as the
bundle propagates along its central null geodesic; caustics can be located by finding
the conjugate points of the ray bundle, which are the points at which the cross-
sectional area of the bundle vanishes.

In the spherically symmetric Schwarzschild spacetime, all geodesic motion is
confined by symmetry to a plane. The solution for null geodesics (which reach

infinity) in this case can be written

du\* 3 2 -2
¥r] =2u® —u*+b"", (1.4)

where r = 1/u is the coordinate distance from the hole, 6 is the azimuthal angle in
the plane of the trajectory, b is the impact parameter of the ray, and r and b are
assumed to be in units of GM/c?. Examination of (1.4) reveals that for b < 27
the cubic, whose roots determine the radial turning point of the trajectory, has no
positive roots and hence the photon is captured by the black hole, for b = 27 there
is a double root at u = 1/3 and the photon asymptotes to a circular orbit at r = 3,
and for 4% > 27 the photon escapes to infinity. For [ —27| < 1, the photon circles
the hole many times (near r = 3) before being captured or escaping—infinitely
many times in the limit 5> — 27. This means that for any given source position,
there are an unlimited number of rays which will circle the hole just the right
number of times to eventually intersect the source (almost all having b* =~ 27),

or in other words, the black hole creates an unlimited number of images of any
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source. As the number of revolutions made by the photon around the black hole
is extremely sensitive to b when that number is large, however, these images will
be quite strongly demagnified, since tiny changes in b (apparent image position)
lead to large changes in position in the source plane.

For a Kerr black hole, the symmetry about the optic axis is broken, photon
trajectories no longer lie in a plane, and the optical structure is more complex.
Examination of the optical properties in this case requires that the full machinery
of general relativity be used, with photon trajectories being accurately followed
using the equations of motion for null geodesics in the Kerr metric and with the
equations of geodesic deviation needing to be properly integrated to determine
caustic locations and local magnifications. The determination of the optical (caus-
tic) structure of Kerr black holes and its possible consequences for AGNs is the

subject of Chapter 3.

1.2. UNCOVERING THE INNER STRUCTURE OF AGNS

Active galactic nuclei have been observed in one or another of their various
incarnations for over half a century (e.g., Seyfert 1943, who referred to his objects
as “peculiar extragalactic nebulae”). Objects falling under the AGN umbrella
include Seyfert galaxies (Types 1, 2, 1.5, 1.8, ... ; e.g., Osterbrock 1993), BL Lac
objects and the related blazars and optically violent variables (OVVs), quasars
or quasi-stellar objects (QSOs; now essentially synonymous, originally the terms
were applied to radio loud and radio quiet objects, respectively), radio galaxies
(extended Fanaroff-Riley (FR) type I and II or compact core sources), and low
ionization emission line galaxies (LINERs). Starburst galaxies and ultraluminous
IR galaxies can also be included. A ‘typical’ AGN is characterized by strong
continuum emission spanning several decades in frequency, from far IR to X-rays,
with most of the power residing in the infrared and in the so-called Big Blue
Bump centered at UV energies (where the absolute emission is at a maximum);

some AGN are also strong radio sources, and a number have also been detected
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in gamma rays (Hunter et al. 1993; Bertsch et al. 1993). Very roughly, the
continuum flux as a function of frequency can be described by a power law of index
a® 0.5 -1 (F, xv™®) from IR to X-ray energies, although this is definitely an
oversimplification (e.g., Wills et al. 1985). In addition, all classes except BL Lacs
show some combination of broad (widths ~ 3,000—30,000 km s™*) and /or narrow
(widths ~ 200 — 1000 km s™') emission lines, which are believed to be produced
by the central (unresolved) continuum source energizing surrounding gas clouds;
the physical regions within the AGN in which the lines are produced are termed
the broad line region (BLR) and narrow line region (NLR). Observationally, the
main characteristics delineating the different classes are the strength or absence of
both their radio emission (and its morphology) and their broad or narrow emission
lines, and their variability and polarization properties (both of which can be rather
extreme in some objects). Although initially studied as separate phenomena on
the basis of their varied traits, more recently the trend has been to combine this
rather daunting list of objects into a unified framework in which differences in
viewing angle, opacity, etc., of a prototype object lead to bifurcations in observed
properties (e.g., Lawrence 1987). At the present time substantial unification seems
viable. A recent, detailed review of this subject can be found in Antonucci (1993).
| While progress has been made over the years in elucidating the physical condi-
tions present in AGNs, many of the constraints remain rather generic. This state
of knowledge is probably to be anticipated at this stage, for two basic reasons.
From the theorist’s point of view, real AGNs are expected to be very ‘messy’ sys-
tems, with MBHs, accretion disks, star clusters, magnetic fields, relativistic jets,
emission line clouds, star formation regions, and perhaps yet unknown compo-
nents all being potentially important, making the development of realistic models
a very complicated and uncertain proposition. Observationally, the issue is chal-
lenging because in almost all cases the active nucleus, and in particular the region
within which its power output is being generated, is spatially unresolved, so that
observations tend to produce only circumstantial evidence to which indirect (and

usually model-dependent) arguments must be applied before physical conclusions
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can be made. Thus while a rough estimate of the mass contained in the inner core
of an AGN (or normal galactic nucleus) can be convincingly made using simple
dynamical reasoning, the widely debated question (Tonry 1987; Dressler & Rich-
stone 1988; Kormendy 1994) of whether most of the mass is in the form of an
MBH has yet to be resolved with confidence, and new lines of investigation have
an opportunity to produce useful insights. On the theoretical side, this motivates
explorations to determine what effects are produced by specific AGN model com-
ponents, which of them are likely to be of importance in real systems, and which
are not; the present work constitutes one such exploration of a small region of
‘paradigm space.’ Discussion of some currently known constraints, and how they
have been arrived at, will help to put things into context.

The discovery of quasar redshifts (Schmidt 1963) was a major breakthrough
in constraining the nature of these most energetic members of the AGN family.
Spirited debate in the years after this discovery was given to how the large ob-
served redshifts were being produced, the main contenders being Doppler effects
(of either the source as a whole or of material within it) and gravitational redshift
due to emission inside a deep gravitational potential. The cosmological interpre-
tation of AGN redshifts, in which the redshifts are Doppler in nature and due to
the large recession velocity of the source as a whole, is now both well accepted and
well supported, the COBE results on the nature of cosmic background radiation
(Smoot et al. 1992) being one recent example in favor of the standard cosmologi-
cal interpretation of redshifts. This interpretation is important because it allows
distances to these objects to be estimated, which in turn determines the scale
of one of the most important physical parameters of an AGN: its power output.
The luminosities so obtained, assuming isotropic emission in the AGN rest frame,
range from Lo ~ 10*! erg s™! for a modest Seyfert galaxy to Ly ~ 10*7 erg s1
for a high power quasar.

A significant constraint on what could be generating such prodigious amounts
of power comes from the variability of the observed continuum emission, which at

X-ray frequencies can vary by factors of order unity on timescales of minutes
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to hours in some objects (Kunieda et al. 1990; Edelson 1994). By making the
simple (and perhaps naive) argument that significant variations cannot occur more
quickly than the light travel time across the source, emission regions < 0.01 pc in
size—and in some cases of order the size of the solar system—are obtained. If the
equally simple and naive argument is made that the emission, to be quasi-steady,
should not be greater than the Eddington limit, then a lower limit on the mass that
must be contained within this volume can be found, specifically, M = 108 Lyg Mg,
where L4g = Lpo1/(10*® erg s™!)—a substantial amount of matter to pack into a
region so small! Squeezing such large amounts of power out of such small volumes
on a sustained basis requires a process with high efficiency in converting rest
mass to radiant energy, apparently higher than nuclear or atomic processes can
reasonably provide, leading to the hypothesis that the ultimate energy source is
gravitational in nature (e.g., Robinson et al. 1964). Nearly all AGN models still
in serious contention work under this éssumption.

Estimates of physical conditions in the BLR and NLR can be gotten in sev-
eral ways. Observations of ionization states of different lines and of line strength
ratios, for instance, can be used together with photoionization models to com-
pute the temperature and density of the emitting gas (Ferland & Netzer 1983;
Aldrovandi & Contini 1985), which for the NLR leads to temperatures of ~ 104
K and densities (of the electrons) of ~ 10® — 10* cm™2, and for the BLR ~ 10*
K and ~ 10° — 10° ¢cm™3, respectively. The sizes of these regions—which in re-
ality are not really distinct and separate but represent average conditions at two
characteristic distances from the central ionizing source—can also be estimated
from photoionization models, giving sizes of ~ 100 — 1000 pc for the NLR and
~ 0.1 — 1 pc for the BLR. For a few nearby Seyfert galaxies, the NLR can be
resolved observationally (Osterbrock 1991), and their sizes so obtained are also
~ 100 pc. Although the BLR is too small to be resolved telescopically, reverbera-
tion mapping, in which the observed lag time between variations in the continuum
source and the changes in line intensities in response to those variations is used

with BLR models to determine the separation between the two, has been used to
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derive BLR sizes, generally giving results of ~ 0.01 — 0.1 pc, rather smaller than
the above order of magnitude estimate (Peterson 1993 and references therein).
From the sizes and the absolute line luminosities, filling factors for the emission
line clouds of ~ 0.01 are obtained.

In the ‘standard’ model for AGNs, which can satisfy all of the preceding con-
ditions, the central engine consists of a massive black hole in which fueling occurs
via an accretion disk, which is also responsible for generating the ionizing contin-
uum source upon which the BLR and NLR depend. This is the basic framework
that will be assumed in subsequent chapters. Theoretical arguments in favor of
accretion disks include their ability to solve the angular momentum problem—
that is, how to remove enough angular momentum from ambient material on large
scales to allow it to be accreted by the black hole—and perhaps also their creation
of an axisymmetric geometry, which might aid the formation of bipolar jets or
other outflows (Begelman, Blandford, & Rees 1984). Observationally, disks can
be argued for as the source of the Big Blue Bump, and they also appear able
to explain the properties of the low ionization emission lines (Ulrich 1989). The
black hole model is attractive because of its ability to generate high conversion
efficiency of rest mass to energy (up to ~ 40% for a maximally rotating black
hole) and because a black hole is a stable state gravitationally. Other models of
AGNs involving supermassive stars (Hoyle & Fowler 1963), star clusters (Spitzer
& Saslaw 1966; Colgate 1967), or dense starbursts (e.g., Terlevich 1992) do not
share the latter property, and are almost certain to collapse and form a black
hole during subsequent evolution; as indicated schematically in an oft-reproduced
diagram (Fig. 1 of Rees 1984), all roads lead to massive black holes.

Additional support for the black hole model exists in observations of normal
galactic nuclei. If the black hole model is correct, then many (and perhaps almost
all) normal galactic nuclei will possess MBHs in their centers, remnants of once
active nuclei that have exhausted their gas supply. The presence of these black
holes can be inferred by observing the light and velocity dispersion profiles of the

nuclear stars and the rotation curves of nuclear gas clouds; if an MBH resides in
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the center, cusps will develop in these curves as the center is approached (see §1.3
for additional information). Observations of several nearby galaxies, such as M31,
M32, and our own galaxy (Lugger et al. 1992; Genzel, Hollenbach, & Townes
1994) are consistent with their centers harboring black holes with masses ranging
from ~ 10°Mg for the Milky Way to ~ 3 x 10" Mg for Andromeda. A recent
HST observation (Harms et al. 1994) of M87 gives strong evidence for a central
mass of ~ 3 x 10°Mg; interestingly, this is essentially the same value proposed
by Sargent et al. (1978) in one of the earliest observational searches of this kind.
Overall, while it has not been definitively proven that MBHs inhabit either normal
or active galactic nuclei, it is fair to say that the case for them is already strong on
both observational and theoretical grounds, and appears to be getting continually
stronger.

Of the alternative models for AGNs mentioned above, the starburst model
is perhaps the most plausible. In this model, commencement of AGN activity is
envisioned as a step in the final formation of the young galaxy. The photoionizing
continuum is then supposed to be due to early-type main sequence stars, with
“warmers” (rapidly evolving, very massive (~ 100Mg) stars), supernovae, and
supernova remnants leading to the production of the narrow emission lines, non-
thermal emission and the BLR, and additional broad permitted lines, respectively
(Terlevich & Melnick 1985; Terlevich et al. 1987; Filippenko 1989). Low luminos-
ity Seyferts might contain only one active supernova remnant, allowing for rapid
variability, while in a luminous quasar the number could be of order 100 (Terlevich
1989). Although not a model of AGN activity itself, it has also been suggested
that the ultraluminous IRAS galaxies may be an early stage in the development
of quasars (Sanders et al. 1988).

The starburst and black hole models for AGNs lead to very different inter-
pretations of how such objects evolve. In the black hole model the evolution is
determined mainly by the continuity of the supply of accreted gas, where dormant
phases during times of depleted gas supply are punctuated by episodes of renewed

activity when the hole is refueled, as by close interactions with a neighboring galaxy
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(Byrd et al. 1987). The black hole continues to grow during these outbursts, which
implies that its mass increases exponentially with an e-folding time of ~ 10% yr, if
the growth is Eddington limited; note that this happens to be similar to galactic
dynamical timescales, which set the rate at which large scale accretion flows can
be funneled into the nucleus to support such growth (e.g., Hernquist 1989). In
the starburst model evolution is dictated by stellar evolution and the interactions
of supernovae and their remnants, and activity declines soon after star formation
rates have dropped to where the central cluster can no longer produce these ob-
Jects at the required rate. As in reality stars and black holes are likely to coexist
in AGNs, these models should perhaps be considered more complementary than
antagonistic, with starburst nuclei such as M82 being predominantly stellar-driven
and high power quasars corresponding to accretion-dominated objects.

Even within the standard black hole model, however, there are numerous un-
certainties. Is the accretion disk geometrically thick or thin? Is the local emission
blackbody? How is angular momentum transported within the disk? Is there a
Comptonizing corona? What is the nature of the intercloud region in the BLR?
Are magnetic fields important? As a general relativistic object, what special in-
fluences does the black hole impart on its surroundings? The list continues. To
gain insight into questions such as these requires careful, involved analysis of the

issue under investigation. This thesis explores a few specific ones.

1.3. DYNAMICAL PROCESSES IN GALACTIC NUCLEI

The final two chapters of this work are concerned with the dynamical evolu-
tion of dense, relativistic star clusters around an MBH residing in a (possibly active
or inactive) galactic nucleus. This section introduces the physical processes which
can affect such evolution. The history of this sub ject dates back nearly 30 years to
the work of Spitzer and Saslaw (1966) and Spitzer and Stone (1967), who simulated
the evolution of a compact cluster of stars undergoing collapse due to gravitational

relaxation and subsequent mass liberation from high velocity (disruptive) stellar
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collisions. These early models did not include black holes; the motivation at this
time was the possibility that energy release from the collisions themselves could
power QSOs (Woltjer 1964). Soon after (Colgate 1967) it was realized that the
cluster would undergo a merger period in which collision velocities were still small
enough that the stars would not disrupt, but coalesce instead. In this scenario,
the growth of massive stars would produce, on stellar evolutionary timescales,
high supernova rates that were hoped could account for observed quasar luminosi-
ties. The work of Colgate (1967) suggested they could; that of Sanders (1970)
argued against it in all but low luminosity objects. The discrepancy appears to
arise from the somewhat different assumptions made regarding collision outcomes,
which both authors estimated using simple analytical rules. Soon after this time
the black hole hypothesis described previously began its rise to prominence. Hills
(1975) suggested that tidal disruption of stars in the vicinity of an MBH and sub-
sequent accretion of gas might be the energy production mechanism in AGNs. A
flurry of activity by several groups (Bahcall & Wolf 1976; Frank & Rees 1976;
Lightman & Shapiro 1977; Young et al. 1977; Bahcall & Wolf 1977; Frank 1978;
Young 1980) began to examine in greater detail the effects of an MBH on the dis-
tribution function of a surrounding star cluster and the importance of tidal mass
loss induced by relaxation, which occurs when orbits diffuse into ones passing so
close to the MBH that the stars are tidally disrupted near periapse. The general
conclusion of these studies was that tidal mass loss alone was insufficient to fuel
higher power AGNs unless stellar densities were so high that other processes, in
particular stellar collisions, became even more important. Observational searches
for MBHs in galactic nuclei were also begun around this time (e.g., Young 1979).
Begelman and Rees (1978) reconsidered the work of Spitzer and Saslaw (1966) and
related studies and concluded that the evolution of such systems would result in
the formation of an MBH. Begelman, Blandford, and Rees (1980) explored AGN
models involving binary MBHs. The formation of initial ‘seed’ black holes by col-
lapse of a relativistic cluster of (collisionless) compact objects such as neutro.n stars

has also been investigated (Shapiro & Teukolsky 1986; Quinlan & Shapiro 1989;
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Lee 1993). More recent calculations of the dynamical evolution of galactic nuclei
(McMillan, Lightman, & Cohn 1981; Duncan & Shapiro 1983; David, Durisen, &
Cohn 1987a,b; David & Durisen 1989; Murphy, Cohn, & Durisen 1991; Quinlan &
Shapiro 1990) have tended to focus on performing Fokker-Planck simulations (in
which the star cluster is described by a phase-space distribution function whose
time evolution is governed by Boltzman’s Equation with various source and sink
terms) incorporating increasing numbers of active processes, including the effects
of growing black holes (modeled as Newtonian point potentials), stellar collisions,
tidal mass loss, stellar evolution, mergers, binary formation and heating, star for-
mation, and two-body relaxation. In the simulations performed as part of this
thesis, the dominant dynamical processes are stellar collisions and interactions
with an accretion disk (not mentioned above) and the resulting evolution of the
cluster distribution function (e.g., changes in the density profile), with relaxation
and tidal effects also making appearances; the remainder of this section discusses
these processes in greater detail.

Perhaps the most basic dynamical process present in a star cluster (with or
without a central black hole) is that of two-body gravitational relaxation, in which
gravitational encounters between stars lead to slow modifications in individual
orbital parameters. Relaxation leads to the development of a core-halo structure
in which energy is continually transferred from core stars with high binding energy
to more loosely bound halo stars, causing the core to evolve towards even higher
densities and binding energies. The timescale for relaxation to occur in a cluster

of equal mass stars is given by (Spitzer & Hart 1971)

3

vrms

iy =
47(3/2)1/2G?m,p(r) In(0.4N,)

rms 3/rmy 1 p(r) -1
~ 2% 101 (—2 ) (£2) (
) (103 km s* M@> 106 Mg pc—3> e

(1.5)

for In(0.4N,) =~ 15, where N, is the number of stars in the cluster and v;ps is the
velocity dispersion; the logarithm term is essentially a Coulomb-type logarithm

expressing the fact that the many distant encounters contribute as much to the
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relaxation as the occasional close encounters (at least when N, > 1). In real
galactic nuclei ¢, can be either shorter or longer than a Hubble time.

The essential effect of an MBH on a cluster of stars in dynamical equilibrium
around it is to create a power law cusp in the density profile and velocity dispersion
in the vicinity of the hole (i.e., where the gravitational potential of the MBH
dominates). The precise value of the equilibrium power law depends somewhat
on the specific assumptions made, such as how the black hole came into being,.
An early scaling argument due to Peebles (1972), in which dynamical equilibrium
was taken to imply a radius-independent flow rate of stars towards smaller radii
(which occurs by gravitational relaxation), leads to a cusp of the form p(r) oc r=9/4,
As shown by Bahcall and Wolf (1976), the Peebles solution does not satisfy the
proper boundary conditions at large and small radii and actually implies diffusion
of stars away from the MBH; the self-consistent solution they proceed to derive has
the form p(r) oc #=7/4) which they show holds for both 1sotropic and anisotropic
(in velocity space) distribution functions, as long as the form of the anisotropy
is independent of radius. In these cases equilibrium is reached on a relaxation
timescale. If one assumes that an initially small black hole grows adiabatically in
the core of a larger cluster (due to gradual consumption of cluster stars), meaning
that the mass doubling timescale is much longer than the dynamical timescale
but much shorter than the relaxation timescale for the cluster, then for isotropic
velocities one finds p(r) o< r=3/2 (Peebles 1972; Young 1980) and for purely circular
initial orbits p(r) oc 77%/% (Young 1980); velocity dispersions in the isotropic case
rise as 7~1/2. In this case the cusp develops on the mass doubling timescale.

A modification of the 7=7/4 law results when tidal effects are taken into ac-
count (Frank & Rees 1976; Lightman & Shapiro 1977). Recall first that a star will
be disrupted by tidal forces when it passes within a distance r, & 2R (M /my)'/?
of the black hole (of mass M), at which point the star begins to overflow its Roche
lobe. As noted in Lightman & Shapiro (1977), the relaxation time can be thought
of as the timescale for the rms angular momentum of an orbit of binding energy

€ to change by Lmax(€), the angular momentum of a circular orbit of energy &.
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Thus within a relaxation time orbits will eventually diffuse into the ‘loss cone,’
which consists of those low angular momentum orbits, L < Lyin, which pass in-
side the star’s tidal radius; a star residing in the loss cone will be disrupted in a
dynamical time, unless the rms angular momentum transfer per orbital time AL
exceeds Ly, in which case only a fraction L2 . /L? remain in the loss cone long
enough to suffer disruption. As shown in the referenced papers, inclusion of loss
cone effects leads to a flattening of the =7/ cusp inside a critical radius (the
radius where AL ~ Ly, ), although the change in slope remains small until one
approaches relatively close to the tidal radius.

Physical collisions between the stars in a cluster occur on a timescale t.o ~

(n40cott (Vrel )vre) ™Y, where ny is the stellar number density, vye is the typical

2

2 . . . .
csc/ Vre1) 18 the collision cross section

relative velocity, and Ocoll(Vre) & 47 R2(1 + v
between identical stars of radius R, and surface escape velocity vesc (the first term
represents the geometric cross section and the latter is the enhancement due to
gravitational focusing). The amount of mass released in a collision depends, natu-
rally, on both the impact parameter and on Urel, as well as on the density profiles
of the stars themselves. Qualitative differences in the outcomes of collisions oceur
when vese < vpe and vese > Urel, as 1n the former situation collisions are highly
disruptive (unless the collision is at grazing incidence) while in the latter stars
tend to coalesce with relatively little mass loss. Early simulations such as Spitzer
and Saslaw (1966) computed the mass loss from collisions using simple analytic
prescriptions. In recent years the development of numerical hydrodynamics codes,
and in particular application of the method of smooth particle hydrodynamics
(Benz & Hills 1987; Davies, Benz, & Hills 1991, 1992; Lai, Rasio, & Shapiro 1993)
has allowed much more precise estimates of mass loss from stellar collisions to be
made, which the simulations described in Chapter 5 will make use of.

Finally, there is the effect of star-disk interactions (Syer, Clarke, & Rees 1991).
If an accretion disk is present around the MBH in an AGN that also contains a
dense star cluster, its dynamical effects on the cluster can be substantial. It is

obvious that each star will hit the disk twice per orbit. Assuming that the disk is
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relatively thin and its orbits nearly circular, the drag force experienced by the stars
during each plane crossing will preferentially remove radial and perpendicular (to
the disk plane) kinetic energy from the stars’ orbits, causing them to be slowly
ground down into increasingly circular orbits with smaller and smaller inclinations
to the disk plane. This process occurs on a ‘grinding’ timescale given by tgrind ~
tayn2+/(2Xq), where $q is the surface density of the disk and &, = m. /(7 R2)
is the effective surface density of the star. The grinding timescale is essentially
the time it takes a star to cumulatively interact with an amount of disk material
equal to its own mass. There are astrophysically plausible conditions under which
either tgring < tcon or tgrind > fcoll could prevail, making this effect of potential
importance in the dynamical evolution of an AGN; the case tgrind < teoll, taking

account of relativistic effects, is explored in Chapter 4.
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Microlensing and the Structure of
Active Galactic Nucleus Accretion Diskst

Kevin P. Rauch and Roger D. Blandford

California Institute of Technology

ABSTRACT

Rapid variability has been reported in two of the four, gravitationally-lensed
images of Q223740305 and this is attributed to microlensing caused by the inter-
vening stars. The associated constraints on the source size and properties are stud-
ied and compared with a variety of stationary accretion disk models. It is found
that graybody disks have a half-power radius 7 ~ 2x 10" (v /v) 7" L] 56 (e-1)70°
cm where v is the frequency, £ 46 is the luminosity per log frequency in units
of 10%% erg s~!, at the Lyman limit v, and € = 0.1e_; is the emissivity relative
to a blackbody. The reported microlensing variation in Q223740305 requires the
disk size to be over three times smaller than a blackbody disk of similar luminos-
ity implying that the optical emission is either non-thermal or optically thin. An
exploration of non-stationary disk models including orbiting, transient, hot spots

leads to a similar conclusion. Implications for models of AGN optical continua are

briefly discussed.

Subject headings: gravitational lenses - quasars

T First published in ApJ, 381, L39 (1991).
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2.1. INTRODUCTION

The lens system Q223740305 is at present the only one in which microlensing
effects have been convincingly detected; in 1988 the A image was observed to
brighten by ~ 0.2™ within 26d (Irwin et al. 1989). More recent monitoring has
produced evidence of a 0.3™ decline in image A over 3 months, a 0.2™ decline
in image B over 3 years, and a 0.4™ decline in image C over a similar timescale
(Corrigan et al. 1991). Several subsequent studies (e.g., Wambsganss, Paczynski,
& Schneider 1990; Witt, Kayser, & Refsdal 1993; Wambsganss & Paczyniski 1991)
have shown that the frequency and amplitude of the variations are fairly insensitive
to the masses of the stars producing the microlensing, due to the rather large
optical depths involved. This work examines the constraints one can hope to place
on the source itself. The next section discusses simple AGN accretion disk models.
Section 2.3 discusses the Q223740305 microlensing simulations. Conclusions are

presented in Section 2.4.

2.2. ACCRETION DISK MODEL

It is commonly supposed that the continuum emission from an AGN originates
from the surface of an accretion disk (e.g., Shields 1978, Czerny & Elvis 1987, Laor
& Netzer 1989). However, there is still no satisfactory model that can account for
the observed spectrum, polarization, and variability in detail. This has led some
researchers to doubt that a disk is even a good first approximation to the flow (e.g.,
Rees 1984 and references therein). In the simplest type of accretion disk model,
the binding energy liberated by the infalling gas is emitted locally as black body
radiation. If this happened over several octaves of radius, then a flux F, o« v!/3
rising with frequency would be emitted, contrary to the steeper, falling spectra
generally observed.

In some disk models this contradiction has been resolved by postulating a non-

thermal power-law continuum extending from the far infrared to X-ray energies.

The observed optical spectrum would be the sum of the disk and the non-thermal
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radiation, (augmented with hydrogen continuum radiation and blended iron line
radiation). However, there is now good evidence that the infrared emission long-
ward of 1u in normal quasars and Seyfert galaxies is re-radiation by hot dust
(Sanders et al. 1989).

Despite this, the observed continuum may still be quasi-thermal emission
from an accretion disk if the binding energy is radiated non-locally. There are
several mechanisms for transporting energy from small disk radius, where most of
the binding energy is liberated, to large radius. These include viscous transport
(e.g., Shakura & Sunyaev 1973), direct irradiation of a thick (e.g., Pringle 1981)
or warped (e.g., Bardeen & Petterson 1975) disk, and backscattering from high
altitude (e.g., Shields 1989). The net effect is to increase (steepen) the spectral
index. A second generalization of the original thermal disk models acknowledges
that a real disk is likely to possess a scattering atmosphere so that it radiates less
efficiently than a black body, increasing its local color temperature.

We first make a simple, empirical model of continuum emission from an accre-
tion disk by supposing that the power radiated per unit radius by the disk is arbi-
trary, but that there is an effective radius-to-frequency mapping v(r) = 10155 Hz.
If the local disk flux is f, = f(r)6(v — v(r)), then the observed angle-averaged flux
F,, is given by
dr

47rd2L1/0F,,0 =vL, = 4nvr(v)f(r(v)) 7
v

(2.1)

i

where vy = (1 4 2)7'v is the observed frequency, L, is the spectral luminosity,
and dy, is the luminosity distance to the AGN. More generally, we can use the
observed spectrum in an individual AGN to infer both f(r) and r(v), given a
suitable assumption about the emissivity. We also suppose that the emission is
gray so that the effective frequency varies according to v(r) ~ 3k[f(r)/ecs]*/* /A,
where o is the Stefan-Boltzmann constant, and € < 1 (taken for simplicity to be
constant over radius and frequency) is the emissivity relative to a black body. If we
model the spectrum shortward of 1y as a power-law, F,, o vy ¢, and normalize

the spectral luminosity to its value at the Lyman continuum, £ = 10%*¢L4 erg
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s™! =vrL,,, where v, = 3.3 x 10'® Hz is the Lyman continuum frequency, then

we can relate the radius of the source at a given frequency to £ using

r(v) oc e V2 L2y =BF)/2, (2.2)
The associated disk flux variation is

f(r) « e_(?ﬁ)ﬁﬁzr%, (2.3)

ignoring edge effects. This spectrum will only extend up to the frequencies that are
radiated close to the inner edge of the accretion disk from an area proportional to
the square of the hole mass. This depends upon the Eddington ratio £ = L/Lgqq.

The frequency, vmax, where v L,is maximized satisfies the scaling law

Vmax OX (525 [5=a ¢575 (2.4)
For a thin disk, ¢ < 0.3.

In order to estimate constants of proportionality in these scaling relations
and to test their robustness to detailed assumptions about the disk emissivity,
we have computed more sophisticated disk models which incorporate relativistic
corrections (Doppler and gravitational redshifts and light deflection near the black
hole) in a Schwarzschild metric, with a minimum disk radius equal to that of the
least stable circular orbit, and an emissivity f,(v(r)) = weB,(T(r)). For a nominal
spectral index @ ~ 0.5, £ ~ 0.3, and € = 0.1e_;, we find that half the luminosity

1s emitted within a radius

r(v) ~ 2 x 1016(6_1)*0'5£2651/ZI'7 cm,

Y, 0.4
6§> £4—60.2(6_1)—0.2.

(2.5)
V15 < Vmax,15 = (

We find that 90 percent of the luminosity is radiated within ~ 3r(v). (See Fig. 2.1.)
Several comments should be made about equations (2.2)-(2.5). Firstly, in

order to reproduce a spectral index o = 0.5, the power emitted per octave of

—0.3

disk radius < r? f must decay slowly with radius, typically oc r Secondly,
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Fig. 2.1: (a) Integrated spectrum vF, for an empirical thin accretion disk
model constructed to produce a spectral index o = 0.5 in the optical-near UV
with luminosity appropriate to a moderately powerful quasar. The spectrum at
frequencies below ~ 3 x 10'* Hz is presumed to be re-emission by thermal dust;
that above vy ~ 10'® Hz must be produced non-thermally. (b) Associated half-
power and 90 percent power radii for the same disk model. The size at high
frequency is sensitive to the assumptions made about the inner edge of the disk

at Tmin. However, the optical spectrum is quite insensitive to these details.

the disk effective radius at a given frequency increases with decreasing emissivity.
Black body emission produces the most compact sources. Thirdly, although the
spectrum near vpmax is not observed directly, there are indications that the con-
tinuum extends, with approximately constant slope beyond vy (Steidel & Sargent
1987). In the highest redshift and luminosity quasars (e.g., HS 1700+6416), the
spectrum may extend to too high frequency to be compatible with a simple disk
spectrum (Reimers et al. 1989). The frequency vmax is not sensitive to the Ed-
dington ratio and the emissivity as the scaling laws show. However, it is sensitive
to the spin of the hole and the inclination. Nevertheless, these sensitivities are

not apparent at lower frequencies where existing and anticipated microlensing ob-
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servations have been made. Fourthly, this simple gray atmosphere model cannot
describe the complexity of real disks and certainly fails to encompass the diversity
of the models. The inner regions of putative quasar accretion disks are radiation
pressure-dominated. The opacity is determined by the derived photospheric den-
sity, which depends upon the assumed viscosity prescription and (at temperatures
of interest) can be dominated by electron scattering (e.g., Czerny & Elvis 1987) or
bound-free transitions of hydrogen and helium (e.g., Ferland & Rees 1988, Laor &
Netzer 1989).

We have adopted the assumptions used in a variety of published generic disk
models to derive half-power radii. The emergent spectra are sensitive to the verti-
cal structure and radiative transfer which, in turn, depend upon the prescription
for angular momentum transport and energy release. Models in which the ratio
of the shear stress to the total pressure ay 2 0.1 are usually too tenuous to cool
via free-free and bound-free emission and a hot, Comptonizing corona may be
produced. These disks will radiate predominantly in the X-rays and, if viewed
directly, will not account for observed quasar spectra. Isothermal, homogeneous
disks with ay < 0.1 and electron scattering behave roughly like gray bodies with
e 2 0.3 and have similar sizes. Disks in which the shear stress is magnetic and
limited in magnitude to the gas pressure (e.g., Sakimoto & Coroniti 1981, cf. Bal-
bus & Hawley 1991) are effectively black (Laor & Netzer 1989). Provided that
r(v) & 30GM/c%, it is fairly insensitive to the details of the energy release near
the inner edge of the disk. Models in which an underlying power-law continuum is
re-processed by a blanket of cool, dense gas clouds (Ferland & Rees 1988) also radi-
ate nearly thermally and so have an effective emissivity at radius r approximately
equal to their covering factor.

We also considered a scenario in which lens motion is small compared to
the motion of a hot spot on an accretion disk. We must compare the vari-
ation of a microlensed disk with that produced by an unlensed control disk.

A hot spot on an accretion disk will orbit the black hole with a speed v ~
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35,000M81/2 rf;/z kms™! = 120,000(r/rmin)"*/? km s~!, faster than any con-
ceivable transverse velocity between the source, lens and observer, where Mjg
is the hole mass in units of 10®Mg. Since accretion disks rotate differentially,
hot spots will be transient, with brightness evolving on a disk-shear timescale,
7= 1.5(r* /(GM))'/? ~ 0.13Ms(r/Tmin )*/? d. We modeled this variation by sup-
posing that several hot spots are formed on the disk surface. At regular intervals
(of order 27), a bar was introduced at a random azimuthal angle, of width ~ 0.5
rad and between radii [r/2,2r]. This perturbation was taken to increase the local
effective temperature by a factor of up to five at peak, and from zero perturbation
to peak and back to zero on a time scale of ~ 47 ~ 7,,4. During this time, differ-
ential rotation sheared the bar into a spiral pattern. In this model the disk was
most variable at frequencies ~ v(r); at these frequencies the intrinsic disk variabil-
ity was ~ 0.05 mag. The precise form of the perturbations did not significantly

influence the results.

2.3. APPLICATION TO Q223740305

The foreground galaxy was modeled following Wambsganss et al. (1990), i.e.,
as a planar distribution of point masses. A Salpeter mass function was assumed
for the stars, f(m)dm o« m~=23% dm, with an upper mass cut-off at 10 Mg and
a lower cut-off of 0.1 Mg. The stars were placed uniformly and independently
within a circular aperture whose size was such that the total flux of the source in
microimages produced outside this area (or more importantly, its variation) was

negligible. The general lensing equation for this situation is

- 1+~ 0 - 4G Drs (6 —6i)
Gore(6) = - () Y M 2.6
(6) [ 0 1—7}9 & \DosDor, T (2:6)

Here v is the normalized shear and m; is the mass of the star at position 9_;-; the
average surface mass density (assumed to be all in stars) will be denoted o. The
values of 0,7 and angular distances D;; (2 = 1) were chosen as those for the A

image of Q223740305, as estimated by Schneider et al. (1988).
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The spectrum observed from Q223740305 has an index o ~ 0.7 (corrected
for reddening) over the range 5 x 10 Hz < v < 2 x 10'® Hz in the rest frame
(Nadeau et al. 1991). Yee (1988) gives the dereddened i-band magnitudes for
images A, B, C, and D of 16.89, 16.95, 16.94, and 17.44 in that order, for a total
of 15.53. Dividing by the total estimated magnification of 15 + 3 (Schneider et
al. 1988 and Kent & Falco 1988) and converting to luminosity units, noting that
the luminosity distance to this quasar is d; = 3 x 1028 hig em (Q = 1), gives
L =17x10%" h7? erg s~'. With the assumed spectrum this implies a bolometric
luminosity of L ~ 3 x 10*¢ h;?ergs™. We would estimate the error in this value
(at fixed h) as about a factor of two based on the uncertainty in the (unmeasured)
spectral index in the UV region. With Mp ~ —25.0 + Slog h, Q223740305 is
among the brightest 1% of quasars (Mp < —21.5 + 5log h) in its redshift range
(see, e.g., Boyle et al. 1987).

We have adapted our disk models to fit the de-magnified image of Q223740305
(Fig. 2.2). The rather high luminosity of this object forced vmax S 10'¢ Hz, if
one assumes € & 0.1 and ¢ < 0.3. Observations at a wavelength A, ~ 1p,
corresponding to a rest frequency v ~ 105 Hz found no color changes in image
A when the variations occurred (Nadeau et al. 1991). The half-power radius of a
blackbody disk model at this frequency is ~ 8 x 10'® c¢m. Other disk models are
at least as large.

We have repeated the microlensing simulations of Wambsganss et al. (1990)
and verify their conclusion that the source radius must be smaller than ~ 2 x 101°
cm in order to (typically) reproduce the independent micro-lensing variations in
the four images, assuming a lower cut off in the stellar mass function of ~ 0.1 Mg.
A smaller cut off mass requires an even smaller disk, although the dependence
is weak. A larger mass implies an unreasonably large transverse velocity of the
lens galaxy. Accretion disks are over three times too large to account for the
microlensing variation. In other words the disk brightness temperature must be
~ 10 times the equivalent brightness temperature of a thermal disk, or 2 2x 10° K

in the rest frame for the 1x observations. This result is quite robust as it will only
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Fig. 2.2: Disk model with gray emissivity € o~ 0.1, computed to reproduce
the observed spectrum of the quadruple-imaged quasar Q223740305 (assuming
h7s = 1). The half power disk radius at a rest frequency of ~ 10 Hz associated
with the best documented microlensing variation is 2 x 1016 cm., approximately ten
times larger than the maximum size necessary to account for these fluctuations.

The effective radius of a blackbody disk is ~ 7 x 10'® ¢m.

be strengthened by a reduction in either the emissivity or the Eddington ratio. An
unreasonably large increase in the magnification of all four macroimages to several
thousand would be necessary to reduce the disk size to permit microlensing.

We have used a disk containing transient brightness fluctuations to compute
its apparent light curve when placed behind the above microlensing screen of stars.
To ensure adequate resolution, the ray-shooting density was increased until the

results did not change. In addition, the position of the center of the accretion disk
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relative to the aperture center was varied over a small grid; this served both to
gauge the sensitivity of the variations to the specific area of the caustic pattern in
which the disk resided as well as the change in magnitude of the source as a whole.

When the brightness fluctuations were limited to less than five times the (lo-
cal) mean disk value, the resulting structure-induced light curve variations turned
out to be very small, in most cases less than 0.1 mag. The maximum variation in
any of the models, produced when two of the disk perturbations happened to cross
caustics almost simultaneously, was about 0.2 mag, half the size of the observed
variation in image A. It seems unlikely that such hot spots contribute significantly
to the observed variations. We therefore increased the ampli;tude of the temper-
ature fluctuations and varied their number and radial location until variations of
~ 0.5 mag appeared about once or twice a year. This required ~ 5 hot spots
located at radius r ~ 407y, with peak temperature T' ~ 2 x 10° K, a factor
100 larger than the mean temperature in the smooth disk models at this radius.
The spots themselves were ~ 10'5 ¢m in size. The high temperatures required
again imply that non-thermal emission is required in the source if disk structure
produces the observed variations.

We can understand the difficulty in producing large variability from N hot
spots of angular size a small compared with the typical inter-caustic spacing b. If
the spots move with speed v, then we expect the interval between high magnifica-
tion events to be At ~ b/(vN), the peak magnification relative to the mean flux to
be M ~ (b/a)'/2 N7, and the duration of the event to be 6t ~ a/v ~ At/(NM?).
Hence the brightness temperature of each hot spot will be proportional to N3,

while the duty cycle of the high magnification events obeys §t/At ~ N=1M~2.
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2.4. DISCUSSION

We have shown that the reported variation in the images of Q223740305 is
not compatible with a thermal accretion disk and requires brightness temperature
R 3x10° K at a blue rest wavelength. Although internal source motion may help
contribute to the observed variations in image A of Q223740305, it is unlikely to
be the major cause of them unless the source happens to lie exceptionally near a
caustic. A longer set of observations should be able to rule out this possibility.
We remark that of the four images, A is the least likely to show variations a
priors since it has the smallest optical depth. We have examined caustic networks
with parameters matching each of the four images, and in none of them is the
typical intercaustic spacing smaller than or of order the maximum inferred size
of the source. This observation is independent of whether internal structure or
bulk source motion is producing the variations in A, since the caustic structure
affects both of them equally. It is true that since caustics with shear tend to
cluster, one would expect microlensing events in any specific image to cluster as
well, but continued monitoring of the images is needed to settle this issue. The
characteristic timescale to obtain representative light curves for all images is of
order a century (Wambsganss 1991). Because of the small source size relative to
the caustic spacing, the magnitude and rapidity of variations are insensitive to
both the minimum star mass and the optical depth. What these parameters do
determine is the typical frequency of events, by fixing the intercaustic spacing.

In our application to Q2237+0305, we have computed disk models as de-
scribed in §2 that emit the observed spectral flux over the observed interval of rest
wavelength ~ 1 — 3 x 10'® Hz. We find that the required disk emissivity varies
o« r~ %, where 2.3 < ¢ £ 2.5. The Eddington number was limited to ¢ < 0.3. For
the black body model, we find r(1u) = 7 x 10'5A7) cm. Microlensing simulations
using a disk of this radius reproduced the reported variation (0.2 mag change in
~ 1 month) typically a few times per century. A gray disk model with e ~ 0.1

had 7(1p) ~ 3 x 10'°A7 cm, and an electron scattering disk with ay ~ 0.03 and
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bound free opacity as prescribed by, for example, Czerny & Elvis (1987) gave a
radius of ~ 9 x 10'5k;! cm but was unable to reproduce the spectrum.

Our most important deduction is then that the reported individual image vari-
ation in Q223740305 is unlikely to be produced by microlensing of a thermal (or
electron scattering) accretion disk. The source is required to have a supra-thermal
brightness temperature and yet not radiate excessively at higher frequency. A
significant, non-thermal contribution to the optical emission would satisfy this re-
quirement. Thin disk models are already known to have difficulty in accounting
for the observed low orthogonal polarization (Stockman, Angel, & Miley 1979) and
the observed absence of intrinsic Lyman continuum edges (Antonucci, Kinney, &
Ford 1989). The present result constitutes a third serious objection. In view of the
consequences for models of AGN, further monitoring of Q223740305 and similar
sources is well motivated.

Acknowledgements

We thank Robert Antonucci, Ruth Corrigan, Paul Hewett, Joachim Wambs-
ganss, and Howard Yee for advice and encouragement. Support by the National
Science Foundation under grant AST89-17765, NASA under grants NAGW-1301,
NAGW-2372 and an NSF graduate fellowship are gratefully acknowledged.



37

REFERENCES

Antonucci, R. R. J., Kinney, A. L., & Ford, H. C. 1989, ApJ, 342, 64

Balbus, S., & Hawley, J. 1991, ApJ, 376, 214

Bardeen, J. M., & Petterson, J. A. 1975, ApJ, 195, L65

Boyle, B. J., Fong, R., Shanks, T., & Peterson, B. A. 1987, MNRAS, 227, 717

Corrigan, R. T., Irwin, M. J., Arnaud, J., Fahlman, G. G., Fletcher, J. M., Hewett,
P. C., Hewitt, J. N., Le Fevre, O., Mc Clure, R., Pritchet, C. J., Schneider,
D. P., Turner, E. L., Webster, R. L., & Yee, H. K. C. 1991, AJ, 102, 34

Czerny, B., & Elvis, M. 1987, ApJ, 321, 305
Ferland, G. J., & Rees, M. J. 1988, ApJ, 332, 141

Irwin, M. J., Webster, R. L., Hewett, P. C., Corrigan, R. T., & Jedrzejewski, R.
I. 1989, AJ, 98, 1989

Kent, S. M., & Falco, E. E. 1988, AJ, 96, 1570
Laor, A., & Netzer, H. 1989, MNRAS, 238, 897

Nadeau, D., Yee, H. K. C., Forrest, W. J., Garnett, J. D., Ninkov, Z., & Pipher,
J. L. 1991, ApJ, 376, 430

Pringle, J. E. 1081, ARA&A, 19, 137
Rees, M. J. 1984, ARA&A, 22, 471

Reimers, D., Clavel, J., Groote, D., Engels, D., Hagen, H., Naylor, T., Wamsteker,
W., & Hopp, U. 1989, A&A, 218, 71

Sakimoto, P., & Coroniti, F. V. 1981, ApJ, 247, 19

Sanders, D. B., Phinney, E. S., Neugebauer, G., Soifer, B. T., & Matthews, K.
1989, AplJ, 347, 29

Schneider, D. P., Turner, E. L., Gunn, J. E., Hewitt, J. N., Schmidt, M., &
Lawrence, C. R. 1988, AJ, 95, 1619



38

Shakura, N. I., & Sunyaev, R. A. 1973, A& A, 24, 337
Shields, G. A. 1978, Nature, 272, 706

. 1989, Ann N.Y. Acad Sci, 571, 110

Steidel, C. C., & Sargent, W. L. W. 1987, ApJ, 313, 171

Stockman, H. S., Angel, J. R. P., & Miley, G. K. 1979, ApJ, 227, L55

Wade, R. A., Hoessel, J. G., Elias, J. H., & Huchra, J. P. 1979, PASP, 91, 35
Wambsganss, J. 1991, private communication

Wambsganss, J., & Paczynski, B. 1991, AJ, 102, 864

Wambsganss, J., Paczyniski, B., & Schneider, P. 1990, ApJ, 358, L33

Witt, H., Kayser, R., & Refsdal, S. 1993, A&A, 268, 501

Yee, H. K. C. 1988, AJ, 95, 1331



39

3

Optical Caustics in a Kerr Spacetime and
the Origin of Rapid X-ray Variability
in Active Galactic Nucleit

Kevin P. Rauch and Roger D. Blandford
California Institute of Technology

ABSTRACT

A detailed analysis of the optical caustic structure around rotating black holes
is given, including a discussion of their possible relevance to rapid X-ray variability
in active galactic nuclei (AGN). It is found that the primary caustic surface takes
the form of a small tube with an astroid (four-cusped) cross-section. At large dis-
tances behind the hole the tube is oriented parallel to the optic axis, but displaced
transversely from it by a distance asin 6y, where a is the spin of the hole in geo-
metrical units and  is the inclination angle of the distant observer from the pole.
The transverse size s and central magnification M, of the caustic are found to
vary asymptotically as s ~ 0.34 a? sin® 5 7! and M, ~ [22M1/2 /(a®sin? 8y)] r3/2
(where M is the hole mass), respectively, in agreement with the results of an
analytic, asymptotic analysis performed for 6, = = /2. The magnification is sur-
prisingly high everywhere within the caustic.

A fast, efficient, general-purpose code to trace geodesics in a Kerr metric is
described, the calculation of the caustic structure of the Kerr metric representing
an initial application. Sample light curves for point sources on geodesic orbits
crossing the caustics are computed; in general, the lensing dominates all other

features. The influence of caustics in computing the appearance of thick accretion

T First published in ApJ, 421, 46 (1994).
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disk models is examined. The importance of caustics in real AGN depends on the
geometry of the emitting matter; they could be important for disks and especially
for jets, in which a significant fraction of the emitting material can reside near a

caustic, for suitably oriented observers.

Subject headings: black hole physics — galaxies: active — accretion disks
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3.1. INTRODUCTION

The analysis of null geodesics has proven to be an extremely useful technique
for studying and describing black hole spacetimes. These investigations have often
taken the form of thought experiments involving point sources of light moving near
the event horizon, and have conveyed a good qualitative understanding of the
geometry of a spinning black hole (e.g., Misner, Thorne & Wheeler 1973, hereafter
MTW). They have done much to persuade physicists that, at least at the classical
level, a black hole spacetime is physically realizable and poses no challenge to
standard physical notions such as causality.

However, despite strong dynamical evidence (e.g., Remillard, McClintock &
Bailyn 1992; Kormendy & Richstone 1992), there is still no rigorous proof that
black holes actually exist in X-ray binaries or active galactic nuclei (AGN) and
have the geometrical properties predicted by general relativity. Such a proof would
almost certainly involve direct observation of matter in orbit near the event horizon
exhibiting a peculiarly relativistic effect such as Lense-Thirring precession. Now
X-ray observations of Galactic black hole candidates and, especially, X-ray loud
Seyfert galaxies sometimes show variation on timescales that are not much larger
than the time it would take light to cross a black hole of mass large enough
to satisfy dynamical or radiative constraints. In other words, we are probably
observing some radiation directly from the vicinity of a hole in these ob jects. This
motivates more detailed studies of light propagation in a Kerr metric and the
present paper constitutes one such examination.

Light rays are either deflected or captured when they pass near black holes.
Black holes can therefore be considered to be gravitational lenses. However, unlike
the lenses that are observed acting over cosmological distances (e.g., Blandford &
Narayan 1992), black holes in X-ray binaries and AGN can be strong deflectors
and the small angle approximation may be invalid. This does not change their
qualitative optical properties as gravit%tional lenses, although it does require that

quantitative measures of the lensing action be computed using the full equations of
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general relativity. In particular, as we describe below, the caustic surfaces formed
behind a Kerr hole have the same four-cusped cross-section as that associated with,
say, an elliptical galaxy; however, the point source magnification is surprisingly
large within and around this caustic surface.

In §3.2 of this paper, we summarize the connection between the null geodesic
equation, the equation of geodesic deviation and caustic surfaces for the partic-
ular case of a Kerr metric described using Boyer-Lindquist coordinates. In the
following section, we describe a new numerical approach for fast integration of the
geodesic equations in this background. This method involves solving some of the
differential equations that characterize the rays analytically in terms of elliptic
functions and elliptic integrals; the details are given in Appendix A. Although our
present concern is mainly with massless particles (i.e., photons), our code is also
applicable to timelike geodesics and we make use of this generality in §3.4. We use
this approach to compute the shapes of caustics (the loci of point sources whose
images an observer sees, in the geometric optics limit, as being infinitely magni-
fied) in a Kerr spacetime. We also compute and display magnification contours
for stationary surfaces behind a black hole. In the weak deflection (large impact
parameter) limit, these results are in agreement with a perturbative calculation
given in Appendix B. In §3.4, we present the first of two illustrative applications,
a calculation of the light curves that would be observed from point sources moving
on relativistic geodesic orbits passing close to or through a caustic. The second
illustration, in §3.5, consists of computing the fluxes that would be observed from
thick and slender accretion disks as a function of inclination angle. Although
these examples are somewhat artificial, they do give an understanding of the con-
ditions under which emitting elements close to caustics can temporarily outshine
relatively unmagnified sources. Finally, in §3.6 we consider possible astrophysical

applications of these calculations.



43

3.2. NULL GEODESICS AND CAUSTIC SURFACES

When a point mass acts as a gravitational lens, light rays are deflected through

an angle

a = 4GM/bc?, (3.1)

where M is the mass of the lens and b, the asymptotic displacement distance of
the ray from the optic axis, is the impact parameter. The optic axis is defined
by the straight line extending from the observer through the mass. (Henceforth,
we shall use units in which G = ¢ = M = 1, so that the deflection angle is now
4/b.) This expression is only valid in the weak deflection limit when the Robertson
expansion of the metric tensor can be used. A source of small extent lying on the
optic axis a distance r behind the lens will create an Einstein ring image of linear
radius bg = 2r'/2 if we assume that the source is much closer to the lens than the
observer. If the source is displaced from the optic axis by a small distance ¢, then
two diametrically opposite tangential arcs will be created with impact parameters
b satisfying b* — (b — b2 = 0, one just inside the Einstein ring, the other just
outside. As surface brightness is conserved (we ignore cosmological corrections for
the moment), the flux magnification due to the lens is simply the ratio of the solid
angle subtended by the images to that subtended by the source in the absence of

the lens at the observer. It is easily calculated to be

M = [1 — (b—E) 4} (3.2)
b
(e.g., Schneider, Ehlers & Falco 1992). The magnification M — oco as ( — 0.

If the deflection angle is O(1), then the impact parameter necessarily becomes
comparable with the gravitational radius (equal to unity with our units) and the
ray must be traced through the general relativistic spacetime. Also, we can no
longer treat the mass as a point—it can be no more concentrated than a black
hole. The simplest case to consider is the Schwarzschild geometry describing a non-

rotating black hole. If we work in Schwarzschild coordinates, then the deflection
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angle a can be computed as a function of impact parameter in the integral form

du
o = / T g (3.3)

which can be evaluated analytically in terms of an elliptic integral of the first kind,

K(¢|m) (Darwin 1959; cf. Fig. 25.7 of MTW).

Non-singular, circularly symmetric, transparent lenses behave slightly dif-
ferently. Suppose that the lens is axisymmetric on the observer’s sky but has
a finite core radius with central surface density ¥. Sources more distant than
Tmin = (47X)7! can be multiple-imaged if they are close enough to the optic
axis. On displacement away from the optic axis, the images will be tangentially
stretched and magnified, as for a point mass lens. Sources ever more distant from
the axis will be radially stretched as they approach the radial caustic of the lens
and the corresponding bright images converge to the radial critical curve, which
lies within the Einstein ring (the tangential critical curve). The radial caustic is a
circle. The tangential caustic remains a degenerate line coincident with the optic
axis. Either one or three collinear images will be created by a transparent lens.
(It is possible to create more than three images under special circumstances, but
this does not happen generically.)

Now, let us break the circular symmetry by giving the gravitational field an
elliptical perturbation with ellipticity e. The most immediate consequence is that
the images will no longer be collinear. A source located close to the optic axis
and sufficiently far from the lens will create four images straddling the tangential
critical curve and a fifth one, usually quite faint, close to the optic axis. If the
source moves in the vicinity of the optic axis, the four bright images will move
around the tangential critical curve, occasionally brightening and coalescing or re-
emerging in pairs. The locus of the source positions where these images coalesce
is the tangential caustic which has now unfolded from a line to a surface of cross-
sectional width ~ ebg o er!/2. This surfaces has four cusped ribs roughly parallel
to the optic axis and is similar to an astroid curve in cross-section. As the source

crosses this surface and the two images appear or disappear, the magnification
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diverges inversely as the square root of its distance from the caustic. This is
known as a fold catastrophe. When the source approaches one of the cusped ribs,
three images are transformed into one image or vice verse and this is known as a
cusp catastrophe (e.g., Berry & Upstill 1980).

An alternative view of caustic surfaces, which we shall exploit in this paper,
is as singularities in bundles or congruences of rays. Consider a ray congruence
traveling backward in time from the observer. The rays will be sheared (though
not converged) by the matter-free spacetime through which they propagate. Even-
tually the cross section of the congruence will collapse to a line. The place where
this happens is said to be conjugate to the observer. Rays are tangent to the caus-
tic surface at the conjugate point so the surface can be thought of as the envelope
formed by all of the rays leaving the observer.

When the gravitational lens is a Schwarzschild black hole, the core radius
disappears, along with the central demagnified ray (which must cross the event
horizon), and the radial caustic. Furthermore, as the lens is circularly symmet-
ric, the tangential caustic degenerates to a line. However, there is a new effect
(discussed in MTW): the formation of multiple caustics. All rays with impact
parameter b > by = 4.4573 will cross the optic axis behind the hole and form a
tangential line caustic outside the horizon. Rays with impact parameter in the
range b, = 5.1566 < b < V27 = 5.1962 will circle the hole and form a second
caustic on the optic axis on the observer side of the hole. Rays with impact pa-
rameter satisfying by = 5.1944 < b < /27 will form a third caustic behind the
hole and so on. The number of caustics formed will tend to infinity as the impact
parameter approaches the critical impact parameter for capture, b, = /27, and
these rays will circle the hole many times close to the photon orbit at r = 3. There
is a corresponding sequence of unbound rays with v/27 < b < b, = 5.3570, etc.,
which also form multiple caustics. The existence of multiple conjugate points is
illustrated in Fig. 3.1, which plots three rays of equal impact parameter (specifi-
cally, |b] = 5.1980 < b} = 5.2027) but differing impact angles (measured relative

to an arbitrary axis in the plane perpendicular to the observer’s line of sight); in
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Fig. 3.1: A plot of three rays (distinguished by differing line thicknesses)
with impact parameter vectors of equal magnitudes (specifically, |b] = 5.198) but
differing directions traveling around a Schwarzschild black hole. Points conjugate
to a distant observer (residing at z = co,y = 0,z = 0) are produced where the

rays converge; three are produced for this set of rays. See §3.2.
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this particular case three conjugate points, where the rays are focused and cross,
are produced (the observer lies at = oo, y = 0, z = 0, where the three rays
also ‘converge’). The sphere marks the event horizon of the Schwarzschild hole.
There are, therefore, an infinite number of caustic surfaces for any observer. How-
ever, although a point source located on any of these caustics will be infinitely
magnified (in the geometric-optics limit), the volume of the high magnification
region diminishes rapidly as the order of the caustic increases and, in practice, it
is only the primary caustic behind the hole that is likely to be associated with
large brightness fluctuations.

Finally, let us turn to the Kerr metric. We again break the circular symmetry
and the line caustics of the Schwarzschild hole develop astroid cross sections, just
as with a Newtonian elliptic potential. There is, however, one additional effect
to be anticipated: the displacement of the caustics (both primary and secondary)
from the optic axis by the dragging of inertial frames. These effects will now be

demonstrated.

3.3. RAY-TRACING AND CAUSTIC STRUCTURE

3.3.1. Numerical Method

Throughout this paper, we assume the geometric-optics limit is applicable,
so that all photon trajectories are described by the usual null geodesics. Since
integration of the equations of geodesic deviation requires extensive computation
of the geodesics being followed, considerable effort was devoted to designing an
efficient and accurate code to compute arbitrary (timelike or null) geodesics in a
Kerr metric. In particular, the equations of motion were recast as definite integrals
in a modified Boyer-Lindquist coordinate system (in whichr - u =1/r and § —
p = cosf), and the associated equations of motion were integrated analytically
(in terms of elliptic functions and integrals) wherever practical. Geodesics are
parameterized using a pseudo-radial variable which we denote by @, monotonic

with respect to the affine parameter, which is defined to be simply w unless u is
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multiple-valued (as for bound orbits), in which case @ is the total (absolute) range
of u traversed as the affine parameter is varied monotonically (see Appendix A).
In short, this allows (%) to be computed analytically. The remaining integrals
(for ¢(a@) and #(@)) can be written, in principal, in terms of elliptic integrals of
the third kind and elementary functions; however, it is faster (and much easier)
to evaluate them numerically. A Gauss-Kronrod (fixed abscissa Gaussian-style;
e.g., Piessens et al. 1983) integration scheme tailored to the general form of the
integrals was implemented to obtain both high accuracy and maximal speed. In
addition, the program employs several transformations in certain instances (e.g.,
for geodesics which travel many times around the black hole before escaping to
infinity) to maintain accuracy. The resulting routines are very robust and have
been extensively tested. The numerical implementation is detailed in Appendix
A.

The code was tested in several ways. To test the reduction of the integrals to
elliptic functions and integrals, two complete versions of the code, one performing
the integrals numerically and one analytically, were written and checked for agree-
ment by tracing sample geodesics (over 107 in all, spread more or less uniformly
through the parameter space) and comparing the results. Results in the New-
tonian and Schwarzschild limits (e.g., orbital precession, orbital times, deflection
angles, and time delays) were also checked, as were Kerr-specific results such as
Lense-Thirring precession rates for bound orbits and known analytic results (e.g.,
radii and impact parameters for photon orbits in the equatorial plane). How-
ever, the most stringent verification of the code, in our opinion, is the fact that
the computed shapes of the caustic surfaces are consistent with the expectations
of catastrophe theory and agree with the asymptotic analytic results derived in

Appendix B.

3.3.2. Location of Caustic Surfaces

To map out the caustic surfaces, the geodesic deviation equations were inte-
grated numerically in a form compatible with the ray-tracing routines. In partic-

ular, the metric and connection coefficients (and their derivatives) were computed
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in the modified coordinate system and the affine derivatives d /dX\ were replaced

with d/du. Explicitly, the deviation equations become

a g€ [e4 dY‘Y [e 4
+ (85K foe + 2fT5 K] —— + T KRV = 0. (3.4)

g
du?
Here 6}, is the Kronecker delta, f(@) = usynp~2VTU (ie., d/d)\ = f(a)d/du; see
Appendix A), and Y is the separation 4-vector. These equations can be reduced to
a system of first-order ODEs in the usual manner. One disadvantage of using 4 as
independent variable in this situation is that the derivatives d /dt become infinite
at a turning point of u; in this situation we rescale @ into a new coordinate which
removes the square-root divergence in f. We used the Bulirsch-Stoer method

(Press et al. 1992) to integrate the ODEs with an accuracy of ~ 10~7.

We note that the locations of the caustics can also be computed using the
optical focusing equation (Schneider et al. 1992). Although it is simple in abstract
form, numerically it is somewhat less convenient to work with than the deviation
equations, in particular because the focusing equation requires calculation of the
Weyl tensor (the trace-free part of the Riemann curvature tensor) and the Ricci
tensor when computing the value of the shear along the ray, whereas the curvature
tensor drops out of the deviation equations almost completely, leaving only a
derivative of the connection coefficients, as can be seen in equation (3.4).

The caustics are located by propagating two initially orthogonal, spacelike
separation vectors Y; and Y, backward in time along a ray until they become
linearly dependent, as measured relative to a pair of orthonormal basis vectors
(perpendicular to the ray) which are parallel-transported along the ray. At this
comjugate point, the magnification, which is inversely proportional to the area
spanned by the separation vectors, becomes infinite. There are two ways to set up
the two initial separation 4-vectors Y;* and Y. For distant observers (uo < 1),
space 1s essentially Minkowskian and we take the initial Y1 2 to be the orthonormal
basis vectors themselves, with the initial derivatives dY /diu = 0 (conceptually this
makes infinity the starting conjugate point, where the ray bundle converges). For

relatively nearby observers (ug > 1073), we do the opposite, taking Y1 = Y, = 0
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initially (the usual way to make the observer be one conjugate point on the ray)
and their derivatives equal to the initial orthonormal basis vectors. The results
presented below are all for distant observers, the relevant case for our applications.
We computed a number of caustic slices for observers at a modestly distant ry =
1000 from the hole for comparison; the results were extremely similar, the caustics
for the closer observer being slightly larger and displaced from the caustics for the

distant observer.

3.3.3. Caustics for Equatorial Observers

For the distant observer we take ug = 0 and there are then two parameters
left to vary in computing the caustic surfaces, the observer inclination 8, and the
spin of the hole a, which we take to be non-negative without loss of generality. The
qualitative results are as follows. As described in §3.2, for a = 0 (Schwarzschild
geometry) there is symmetry about the line of sight and the caustic surface de-
generates into a line (the optic axis) on which point sources are seen infinitely
magnified, as an Einstein ring. For a > 0, the symmetry is broken and the caus-
tics are no longer degenerate; we find that the line becomes a small tube extending
behind the hole, with a simple astroid cross-sectional shape, more or less distorted
depending on the distance of the caustic behind the hole. For observers in the
equatorial plane of the black hole, ug = 0, the cross-sectional area is maximized,
as is the transverse displacement of the caustic tube from the optic axis (which,
we find, approaches a far from the hole, in agreement with the asymptotic analysis
presented in Appendix B), for any given a; the area also increases monotonically
with a. As the observer inclination increases, the size and displacement both de-
crease, until the tube again degenerates onto the optic axis for observers on the
pole, where there is rotational symmetry about the line of sight. Near the horizon,
the caustic tube is ‘stretched’ perpendicular to the equatorial plane and spirals
into the horizon like a winding ribbon, making an infinite number of revolutions
before crossing the horizon as @ — 1 (but a finite number for a < 1). The (pri-

mary) caustic surface for the maximally rotating case is shown in Fig. 3.2. In this
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Fig. 3.2: A representation of the primary caustic surface in an extreme Kerr
geometry for a distant equatorial observer. The sphere denotes the event horizon.
Formally, the caustic winds around the horizon an infinite number of times for this
special case (a = 1) before crossing it; only one revolution is shown. The inset box
shows a magnified view of a small section of the caustic. The surface is a small

tube with a 4-cusped cross-section.
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figure, the sphere represents the event horizon and the inset box gives a magnified
view of a short section of the caustic tube, in which the astroidal cross-section can

be easily seen.

3.3.4. Angular Magnification of a Point Source

For po # 0, we present the quantitative results as a set of representative
caustic slices (tube cross-sections) and magnification contours plus a set of figures
showing scaling relations for the displacements from the optic axis and widths of
the caustics as a function of a, pig, and z'. The slices are plotted using a pseudo-
Euclidean coordinate system related to Boyer-Lindquist coordinates by (z,y,z) =
(rsinfcos ¢, rsinfsing,rcosd), plus a rotation about the y-axis for observers
out of the equatorial plane, (z',y',2') = (zsiné + zcos8,y,zsinf — z cos §), so
that the observer always lies along the z'-axis (at z' = oo) and sizes, etc., are
measured in y' — 2’ planes perpendicular to the line of sight (planes of constant
z'). The line y' = 0,2z’ = 0 defines the optic axis. In Figs. 3.3a-d, caustic
slices for the case of an equatorial observer in an extreme Kerr (a = 1; cf. Fig.
3.2) metric are plotted for ' = —100, —40, —5,0; Fig. 3.4 shows a plan view of
the intersection of the same caustic surface with the equatorial plane near the
horizon, showing the first three revolutions of the ribbon-like caustic around the
hole (the inset panel shows the caustic tube at greater distances). Figs. 3.5a-
¢ show iso-magnification contours corresponding to the slices in Figs. 3.3a-c,
respectively; these are the angular magnifications (of apparent flux) that a point
source at that position at rest in the Boyer-Lindquist frame would have, due to the
combined effects of multiple-imaging and magnification of each individual image.
For moving sources, the angular magnification must be combined with the variable
gravitational redshifts and Doppler shifts due to the source motion (obligatory
inside the ergosphere). Note that the magnifications are high everywhere inside
the caustic; this is the result we most wish to emphasize. This point is made
clear by Figs. 3.6a-d, which present the minimum magnification inside the caustic

as a function of distance behind the hole, for three values of observer inclination
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Fig. 3.3: Shownin each figure is a cross-sectional slice, at a fixed distance behind
the hole (z' = —100, —40, —5,0 for Figs. 3.3a, 3.3b, 3.3¢, and 3.3d, respectively;
all lengths are in units of the hole mass), of the caustic surface of a maximally
rotating black hole and distant equatorial observer. The relative scales on each
graph are equal (dy'/dz' = 1) to show proper proportions; note how the caustic

becomes thin as it approaches the horizon (Fig. 3.3d; cf. Fig. 3.4).



Fig. 3.4: A plan view of the same caustic surface plotted in Figs. 3.3a-d, showing
the behavior of the caustic near the horizon (represented by the dotted circle),
where the caustic becomes ribbon-like as it winds slowly towards the horizon (only
a few revolutions are shown). The inset panel shows a macroscopic view of the

caustic tube.

from the pole (8, = 30°,60°, and 90°), each figure having a fixed value of a
(= 0.1,0.5,0.866, and 1, respectively). The noise at large distances is numerical

error. We find that the magnification scales asymptotically as
Mo ~ 22732 [(a? sin® 6p); 1> 1. (3.5)

Also note (in Figs. 3.5a-c) that outside the caustic, the magnification is very high

only near the cusps, which we justify in Appendix B.
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Fig. 3.5: Figs. 3.5a-c show the same caustic slices (although on slightly different
scales) as Figs. 3.3a-c, with 2’ = —100, —40, —5, respectively, now superimposed
with contours of constant angular magnification (see §3.4). In Fig. 3.5a the
contour levels are M = 3500, 5000, 7500, 10000 and by 10000 thereafter. In Fig.
3.5b the levels are M = 1000, 1500, 2000 and by 1000 thereafter; in Fig. 3.5¢ the
levels are M = 75, 100 and by 100 thereafter. The magnification is high (> 100)
everywhere inside these caustic sections (cf. Fig. 3.6d); outside them it is very

high only near the cusps, although still large over an extended region.
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Fig. 3.6: Each figure plots the minimum magnification inside the caustic as a
function of distance z' behind the hole for several values of observer inclination
from the pole (6 = 30,60,90 degrees) for a fixed value of the spin of the hole
(a = 0.1,0.5,0.866, 1, respectively). Asymptotically the magnifications vary as

M ~ 22MY/213/2 [(a? sin’ 6,) (the fluctuations at large radii are numerical noise.)
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3.3.5. Displacement from the Optic Azis and Transverse Sizes

Figs. 3.7a-d are analogous to Figs. 3.6a-d; each plots the displacement of
the caustic center, (yg, zy), for four values of observer inclination from the pole
(6o = 1°,30°,60°, and 90°), each figure having a fixed value of a (= 0.1,0.5, 0.866,
and 1, respectively). Clearly z{ is small in all cases, i.e., the caustics are nearly
centered on the y'-axis. The asymptotic behavior of ¥}, is found to be Yo ~ asin by
for [2'| > 1; the behavior of y) near the horizon can be read off of Fig. 3.4.

Figs. 3.8a-d are analogous to Figs. 3.7a-d, only now showing the cross-
sectional sizes Ay’ and Az’ instead of the displacements. The numerical noise at
large radii, also present in Figs. 3.6a-d, is caused both by the caustics becoming
very small (worsening the relative error) and by the cumulative buildup of error in
the integration of the deviation equations. Note that Ay’ ~ Az’ at all plotted radii
(although near the horizon Ay’ < Az'; cf. Figs. 3.3d and 3.4). Asymptotically
the total widths satisfy

.34a*sin” 6
swAy'NAz'NM—O; > 1. (3.6)
r

Note that since s oc 7! for large r, the caustic surface encloses a finite volume;
this expresses the rapid fall-off with distance of the influence of the hole’s spin.
The uncertainty in the numerical coefficients in equations (3.5) and (3.6) is a

few percent.

3.3.6. Higher Order Caustic Surfaces

As discussed in §3.2, there exist multiple caustic surfaces for any given a
and po, which are associated with rays traveling multiple times around the hole
(near the photon orbit) before being captured or escaping to infinity. In the
Schwarzschild case, these higher order caustics are located on the optic axis (both
behind and in front of the hole), whereas for general a they are found at all
azimuthal angles. They appear to have the same astroid cross-section as primary

caustics. We have not attempted to map their locations extensively because, unlike
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Fig. 3.7: Analogous to Figs. 3.6a-d, now plotting the coordinates of the caustic
center (relative to the optic axis). The coordinate 2, of the center is always small.
The derived asymptotic value for v}, is y) ~ asinfy, —2' > M, which agrees with

the analytic asymptotic results derived in Appendix B.
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Fig. 3.8: Analogous to Figs. 3.6a-d, now showing the cross-sectional widths
Ay" and Az' of the caustics. Asymptotically the widths become s ~ Ay’ ~ Az’ ~
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numerical noise.
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the primary caustic, the image magnifications are not large everywhere inside the
secondary caustics. This is due to the fact that near the photon orbits, small
changes in impact parameter produce large changes in deflection angle, causing
ray congruences to defocus very quickly—the images are highly demagnified except
for sources very close to such caustic surfaces. The volume within which sources
close to higher order caustics suffer greater than unit magnification was found to

be negligibly small.

3.4. LIGHT CURVES OF ORBITING POINT SOURCES

To examine the impact of the caustics on X-ray variability, we have calculated
a series of light curves of point sources following geodesic orbits around the hole,
some passing inside or near the caustic and others well outside it. The general
magnification of orbiting sources due to lensing has been examined many times
(e.g., Cunningham & Bardeen 1973; Karas, Vokrouhlicky, & Polnarev 1992 and
references therein); however, since these authors did not calculate the detailed
caustic structure, they did not study the highest magnification regions, nor did
they compute the probability of encountering these high magnifications. Deter-
mining the possible influence of these regions on the observed total emission (from
AGN in particular) is our motivation for doing the calculations described in this
section.

Computing observed light curves is straightforward in principle. First, one
must find all images (of which there are infinitely many, strictly-speaking) of the
source at a given location; then for each one, compute both its angular magnifi-
cation and overall relativistic (Doppler plus gravitational) red- or blueshift. Since
each image has a different time delay, the light curves for each individual image
must be combined asynchronously to produce the light curve as a function of ob-
server time. Inside the caustic there are four bright images; outside it at most two
are bright. In computing the light curves we tracked these bright images plus the

two next brightest (those traveling once around the hole in either direction) to
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estimate the total error due to neglected images, which was found to be less than
1 percent.

The images for the initial source position were found by searching on small
grids, centered around the locations the images would have in a Schwarzschild
geometry or around the relevant critical curve, as appropriate. (Since it is much
easier to follow a known merging image pair for sources passing out of caustics
than to find a new one when crossing into a caustic, the initial source position was
normally taken to be inside the caustic, which was then followed forwards and
backwards in time to create the total light curve.) Subsequent image positions
were estimated by extrapolation of the previous positions and Newton-Raphson
techniques were then used to converge on the new positions. The frequency shift
g = Vobs/Vem Was computed from ¢ = (Uobs - Pobs)/(Uem - Pem ), Where u; is the
4-velocity of the observer or emitter and p; is the 4-momentum of the observed or
emitted photon. The light curves produced assumed the emitter to have a power-
law spectrum with index a = 0.5 (I, &< v~%), typical of AGN X-ray spectra. The
intensity at fixed observation frequency transforms as ¢g3*“. In total the observed
light curve is computed from

Svops(tobs) o [ Z ‘Mi(tret,i)19?+a(tret,i)] Vobes (3.7)
images i
where t,c1,i(Tobs ) is the retarded time and M (t,¢q,:) is the associated magnification
for image <.

The general features of the light curves for point sources that cross the caustic
surface can be deduced from the preceding results. (We reinstate the specific
angular momentum of the hole a and its mass M as physical lengths and use Mg
to denote the actual hole mass in units of 10° Mg.) From equation (3.6) we can

write the width of the caustic surface at radius r as

in 0 2 1
s~ 5 x 1010 <GSII1 ) ]\46 (L) cm (38)

M M

for 7 > M. A point source approaching the caustic surface well away from the

cusp lines will produce two images on the Einstein ring, each with magnification
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~ (Mr)}/? /¢ where ¢ >> s is the distance of the source from the center of the
caustic. On ingress at the caustic, two extra images of the source will be created
on the Einstein ring with a magnification that is initially infinite and subsequently
declines in inverse proportion to the square root of the normal displacement of the
source from the caustic, which we denote by 2 = 10%z¢ cm (cf. Schneider et al.
1992). This is characteristic of a fold catastrophe. When the source is close to
the center of the caustic, there will be four images, spaced roughly equally around
the Einstein ring with combined magnification given by equation (3.5). Closer
to the caustic, the two brighter subimages will have a combined magnification of
M ~ (Mo /2)(22/s) 1% ~ 1700(r/asin 6)(ze /M) /2. On egress, another pair
of subimages will brighten, coalesce when the fold caustic is crossed and then
vanish.

A point source will therefore be momentarily infinitely magnified after it
crosses a caustic. The timescales involved are, however, extremely short. If we
assume that the source moves with the virial velocity v ~ 300,000(r/M)~*/? km
s71, then the elapsed interval until or since the closest caustic crossing is At ~

30z¢(r/M)'/? ps, or in terms of the magnification,

5/2 ind\ 2 M,
At ~ 90 (L) <asm > 6 5 (3.9)

M M M?

for At < (asin8/M)* Mg (r/M)~1/?% s.

All of these features are exhibited in the accurate light curves that have been
calculated. We first consider a nearly circular orbit with radius r = 50 M in the
equatorial plane of a maximal Kerr hole of mass 107 My, (Fig. 3.9). The observer
is supposed to reside in the equatorial plane. Figs. 3.10¢-d show the resulting
light curve. A minimum magnification Mg ~ 7500 is produced within the caustic
for ~ 2 s, consistent with the above estimates. (Eq. (3.9) actually underestimates
the true At in this case because it assumes two dominant images, true close to
a fold, but not true near the center of the caustic, where all four images are of
comparable brightness.) The two sharp spikes corresponding to ingress and egress

are clearly visible.
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Fig. 3.9: The geodesic orbit of the point source whose light curves are plotted
in Figs. 3.10a-h; it is a nearly circular orbit at a radius » = 50 from the hole.
The observer lies in the plane of the figure at =’ = co. Arrows labeled ‘begin’ and
‘end’ mark the orbital positions corresponding to the beginning and ending of the
plotted light curves and show the direction of motion. The small square shows (in

projection) where the orbit crosses the caustic surface.

When the source trajectory passes closer to the cusps, a slightly more complex
light curve ensues. This is because one of the two original subimages will be highly
magnified before the caustic is crossed (cf. Figs. 3.3a-¢) and the two additional
subimages are formed. This effect can be clearly seen in Figs. 3.10a-b, where the
source path just misses the cusp on the caustic and both spikes develop secondary
spikes. These secondary spikes are in evidence even when the path passes outside

the caustic and one of the two subimages is highly magnified (Figs. 3.10e-f).
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Fig. 3.10: Light curves for a point source moving on the orbit shown in Fig. 3.9.
The observer time t,,s assumes a hole mass M = 107 Mg and scales o« M. Figs.
3.10a-b are for an orbit crossing nearly through the center of the caustic; Fig.
3.10a is the complete light curve and Fig. 3.10b is a detailed plot of the caustic
crossing (the spike in Fig. 3.10a) showing the very rapid variability in the flux as
the source crosses the caustic. The double-peaked structure in Fig. 3.10b is due
to the source passing close to, but outside the cusp (smaller peaks) before crossing
into and then out of the caustic itself (higher peaks); the path taken by the source
through the caustic is shown in the inset box in Fig. 3.10b. Figs. 3.10¢-% are as

Figs. 3.10a-b only with the source’s orbit tilted slightly so as to cross the caustic
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Fig. 10 (cont.): in different places (or outside it), shown schematically by their
respective inset diagrams. Figs. 3.10c-d are for an orbit crossing just inside the
caustic; Figs. 3.10e-f for an orbit passing just outside of it; and Figs. 3.10¢-4, for
an orbit passing 100 caustic widths outside of it. In all cases the lensing spike is
the dominant feature in the light curves. The values of AE/E in the figures give
the fraction of the total observed energy (over one orbit) received while the source
suffered magnification M > 3; for sources crossing the caustic, a large fraction of

the received energy is the result of passage through the high magnification region.
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Fig. 3.11: As Fig. 3.9 except the point source orbit is a highly elliptical one

passing close to the hole, with periapse at r = 4 and apoapse at r = 60.

When the distance of closest approach to the caustic greatly exceeds the caus-
tic width s, the magnification contours are roughly circular and the magnification
is given by equation (3.41). This is exhibited in Figs. 3.10g-A.

These figures are all quite symmetrical. Less symmetrical results can be seen
when the source orbit is non-circular (Fig. 3.11). In Figs. 3.12a-h we display
the corresponding light curves, analogous to Figs. 3.10a-k for the nearly circular
source orbit. In this example, periapse and apoapse are 4M and 60M respectively.
The magnification is dominated by the central lensing spike. The most extreme
manifestation of the orbital asymmetry is the strong Doppler de-boosting that
can occur when the source motion at periapse is directed away from the observer.
Note that in Figs. 3.12¢-h, where the source passes no closer than ~ 100s to the

caustic, the Doppler demagnification is as large as the magnification due to the
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Fig. 3.12: Exactly analogous to Figs. 3.10a-h except the source follows the
elliptical orbit of Fig. 3.11. In this case, the lensing spike is still the dominant
feature except for Fig. 3.12¢ (where the orbit passes 100 caustic widths away from
caustic), where it is comparable to the final dip in the light curve, which is caused
by severe Doppler de-boosting as the source passes periapse while traveling almost

directly away from the observer.
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gravitational lens action.

So far, we have confined our attention to the case of a point source. Real
sources necessarily have finite size, h = 10°h¢ cm. When h < s, only those
trajectories that pass close to or cross the caustic are significantly magnified. The
high magnification spikes will be rounded off, relative to those of a point source,
when the distance of the center of the source from the caustic z < h. The maximum

magnification will therefore be
Mumax ~ 1700(r/asin 6)(he /M)~ /%, R < s. (3.10)

If h R s, then the caustic will be unresolved and the maximum magnification for
a source crossing the caustic can be found from equation (3.41),

1/2
Mumax ~ 3 x 10° (%) (&) . k2, (3.11)

as long as Mpax > 1.

3.5. OBSERVATIONS OF THICK ACCRETION DISKS

For a second application of the ray-tracing routine, we consider accretion
disks in orbit around a massive black hole in an AGN. The appearance of thin
accretion disks has already been considered by several authors including Luminet
(1979), Sun & Malkan (1989), Laor, Netzer, & Piran (1990), Fukue (1988), Fukue
& Yokoyama (1988), Rauch & Blandford (1991) and Jaroszynski, Wambsganss,
& Paczynski (1992), who have treated the disk as an infinitely thin, black body
emitter. Both integrated fluxes and the appearance of the disk have been computed
for a variety of assumptions. The influence of gravitational lensing can be seen in
an enhanced flux from the far side of the disk and that of the Doppler-gravitational
blueshift in the creation of a hot-spot at the approaching ansa.

Real accretion disks are likely to be quite thick, particularly in AGN accreting
at rates approaching the Eddington limit. The finite disk thickness is responsi-

ble for moderating both of these flux-enhancing effects because the front side of
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the disk obscures the backside when the observer is located near the equatorial
plane, although the details of the eclipse are hard to model (see Madau 1988 for
a Newtonian treatment).

We consider a simple family of “slender” accretion disk models; cf. Biehle &
Blandford (1993). These disks are supposed to be barotropic and to have specific
angular momentum ¢ = —ug4/u, specified in the midplane through the relation
Ur,m/2) = (Lo + €17)/?, where £y and ¢; are constants. It is further supposed
that the photosphere coincides with an isobar. The only non-zero components of
the acceleration, ag = u®ug,q, are a, and ag and these can be expressed as the

gradient of a scalar potential A,
h=lne— /dﬁQ/(l - Q0), ie, a=-VP/w=Vh, (3.12)

where w is the relativistic enthalpy density, Q(£) is the angular velocity, and e is the
specific energy, given by e = (2¢'%¢ — g' — ¢##¢2)~1/2 We can use equation (3.12)
to determine where a particular ray hits the disk surface.

In order to compute the observed radiation, we assume that the disk is
radiation-dominated and that electron scattering dominates the opacity, so that

the emergent flux F satisfies the local Eddington condition

F = (é) a, (3.13)

where xr is the Thomson opacity.

The radiation flux is evaluated in the rest frame of the fluid and then propa-
gated to infinity. (We ignore, for simplicity, the influence of external irradiation.)
We deal with the total flux, rather than the spectral flux, as the latter quantity is
more model-dependent, ¢f. Rauch & Blandford 1991; however, qualitatively similar
effects would be seen if we were to use the spectral flux as long as the observation
frequency is high enough that the flux is dominated by the inner regions. At lower
frequencies the effective disk size is larger and relativistic effects are less impor-

tant. We have computed the observed flux, allowing for the Doppler shift from
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Fig. 3.13: Total (frequency-integrated) flux as a function of inclination angle,
cos™! p, from three different accretion disk models around an extreme Kerr black
hole. The thin disk has an asymptotic full width of ~ 25M, the slender disk of
~ 120M, and the thick disk reaches a maximum width of ~ 230M at a radial
distance (cylindrical radius) of ~ 180M. Fluxes have been normalized to agree
when the disks are viewed face-on. Note that the slender and especially the thick
disk are less luminous than the thin disk when viewed at large inclination angles

due to obscuration of the bright, innermost regions. See §3.5.

the surface as in §3.4, as a function of py for three disk models: a thin disk, a
slender disk, and a thick disk. The results are displayed in Fig. 3.13. Note that a
modest flux enhancement is possible when a thin disk is observed from the equa-
torial plane, but that this enhancement is not present for a thick disk on account

of obscuration. The high brightness hot-spot associated with those parts of the
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inner disk moving towards us with relativistic speed can be seen in thin disks, but
not in slender and thick disks. This is relevant to discussions of microlensing in
Q223740305 (Jaroszyniski et al. 1992; Rauch & Blandford 1991). The hot-spots
associated with those parts of the disk intersecting the caustic are also obscured

1n these models.

3.6. DISCUSSION

In this paper, we have described a general routine to trace geodesics near a
Kerr black hole and have applied it in two idealized situations. Many of the man-
ifestations of focusing by a Kerr hole are quite distinctive in theory and an unam-
biguous observation of them would provide incontrovertible proof that spinning
black holes really can be found in AGN (or, alternatively, binary X-ray sources).

How likely is this to happen in practice? There are four conditions that must
be satisfied. First, the source must be sufficiently compact that it will fit inside the
caustic at the radius where the source crosses it. Second, the magnification must
be great enough that the flux from a single, highly magnified source dominate that
from the remainder of the AGN. Third, the observations must be made with large
enough temporal resolution that the caustic crossing can be detected. Finally,
there must be enough discrete emitting elements satisfying these three require-
ments that caustic crossing happens with sufficient frequency to make monitoring
individual AGN for it a practical proposition. Satisfying all of these conditions

simultaneously is very difficult in practice, though not impossible.

3.6.1. Magnification of Optical-UV Emission Line Clouds

The nature of the gas flow close to an AGN black hole is still a matter of
conjecture. In particular, it is not clear whether or not a disk (for which there
is some evidence at large radius) is present all the way down to a few gravita-
tional radii or if the flow becomes quasi-spherical. In addition, the radii at which

the optical-UV continuum and perhaps the highest ionization emission lines are
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formed is uncertain. One possibility (e.g., Ferland & Rees 1988, Celotti, Fabian
& Rees 1992) is that radiation emitted non-thermally very close to the hole’s
event horizon is re-processed by a blanket of small gaseous clouds emitting close
to their black body limits at effective temperatures T' ~ 3 x 10* K. If this were
the case, then the absorption cross sections per ion, o, would be so large for
this gas that the effective Eddington limit would be reduced by factors ~ 1000
from the Thomson-Eddington limit. In order to confine such clouds, it would
be necessary to invoke strong 2 10* G magnetic fields, so that the gas would
have a filamentary form with characteristic thickness that might be as small as
h ~ kT /Uraac ~ (Usaa/10% ergem™3)~1 km.

The observed flux from an AGN should fluctuate as these filaments cross the
caustic with speeds determined by the motion of the magnetic footprints. The

maximum expected relative variation is given by

SF  (sh)'/* hMumax(h)

F 4nr2C
1/h —-1/2
~ s (;> (ﬁ) C7Y hgs (3.14)

where C' is the covering factor and M,.x(h) is given by equation (3.10). The
maximum fluctuation expected is therefore § F/F ~ 0.1(asin 8/M)?(r/M)~5/2C !
which is always small unless C' < 1, in which case the clouds will not reprocess
much of the nonthermal radiation. Therefore, we do not expect to see rapid

variations under such a model.

3.6.2. Magnification of X-ray Sources

Another possibility is that the central black hole in an AGN is surrounded by a
cluster of stars containing X-ray luminous, accreting compact objects. It is a little
easier in this case to imagine that one of these might create a transient flash when
it moves behind a black hole as the background emission is either optically thin
or has a small covering factor. There are many possibilities; however, we will only

consider one specific example. Suppose that there are N individual black holes of
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mass ~ 10 Mg at a characteristic distance r from the black hole accreting gas from
their surroundings. (Some of them may also have binary companions, acquired
through physical collisions.) Their intrinsic luminosities will be proportional to
the mean gas density through which they move. If we denote the satellite holes
with the subscript *, and assume that they emit X-rays with radiative efficiency
per unit mass of accreted gas of e, ~ 0.1, and that the central black hole emits
X-rays with a radiative efficiency of ex ~ 0.003, then their individual luminosities

will be related to the mean luminosity L by

(@) G G e

If we assume that the mean radial velocity of the gas v, is ~ 1073 of the local

Keplerian speed, and that the stars are concentrated in an equatorial band sub-
tending a solid angle Q@ ~ 1 sr at the central black hole (and assumed also to
contain the observer), then L, ~ 3 x 107°M; %L, and an individual accreting star
will outshine the remainder of the AGN when the magnification M > 3 x 10*M2.

Now suppose that the emitting surface of a compact X-ray source has linear
size h ~ 30 km. Using equation (3.10) and assuming that asinf ~ M, we find

this requires that the star make a caustic crossing at a distance satisfying
30037 < = <2 % 101 M. (3.16)
M
The mean interval between caustic crossings is given by

S

5/2 7/2
LA 15 (L) M,
N(GM)' /2 M) W
S 2 x 108

> MM, (3.17)

Therefore, a cluster of a few hundred ~ 10 Mg black holes in a low luminosity
AGN could conceivably produce observable flashes of duration given by equa-
tion (3.9), At ~ (r/100M)'/2 ms. Accreting neutron stars can produce more
highly magnified sources though it will be even harder to resolve them tempo-

rally. Main sequence stars on tightly bound orbits which fill their Roche lobes
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near periapse can suffer tidal stripping of gas, which could also modulate the ob-
served continuum emission. The characteristic period of such modulations would
be P ~ 7(Gp.) % ~ 3(ps/po)~1/? hr; however, because of Lense-Thirring pre-

cession and advance of periapse, the modulation would be only quasi-periodic.

3.6.3. X-ray Blazars

For our final example, we turn to X-ray emitting BL Lac objects and violently
variable radio loud quasars, known collectively as Blazars. In these objects, it is
widely supposed that the X-rays originate in outflowing jets directed towards the
observer. These jets are believed to have relativistic outflow speeds so that we
only see the approaching jet, amplified by relativistic beaming. However, if the
speed is no more than mildly relativistic, inhomogeneities in the counter-jet might
occasionally be subject to strong magnification by the intervening black hole and
outshine the approaching jet. One way in which this might happen is if the jet
encounters an obstacle.

In this case, the emitting region is likely to be too large to actually resolve
the caustic. The maximum magnification is therefore given by equation (3.41) by
M ~ bg/(, where ( is the distance of the source region from the caustic. For
example, a source of size ~ 10!° cm at a distance r ~ 1016 c¢m from a ~ 108 Mg
black hole and at a distance ¢ ~ 10! ¢m from the caustic can be magnified by
M ~ 10, which may, in some sources, exceed the magnification of the approaching
jet due to relativistic beaming. As a receding source is likely to be moving nearly
parallel to the caustic, it may be magnified for quite a long time. Unfortunately,
as with the MACHO project (e.g., Griest & Hu 1992), it will be far more difficult
to recognize the variation as being due to gravitational lensing as it will not have a
particularly distinctive form. (Compare, for example, Fig. 3.10b with Fig. 3.10f.)
Nevertheless, it may be worth scrutinizing the existing observational database for
any evidence of gravitational lensing events.

In conclusion, although the probability of any of these effects being observable

is not high, the importance of a positive identification of any one of them is so
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large that it is worth scrutinizing existing X-ray observations of AGN to search

for high amplification events.
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APPENDIX A

NUMERICAL IMPLEMENTATION OF
THE GEODESIC EQUATIONS

Al. COORDINATE SYSTEM

We use units where G = ¢ = M = 1. All calculations were done using a
modified Boyer-Lindquist coordinate system with coordinates (t,u, p, @), related
to the usual Boyer-Lindquist (¢,7,68,4) by u = 1/r and i = cos 6, with t and ¢ un-
changed. This has the advantage of bringing infinity into finite spatial coordinates
and of replacing all trigonometric operations with algebraic ones. In addition, this
means that certain special observer positions can be exactly represented numeri-
cally, such as 1 = 0 instead of 6 a2 3.14159 . .. for the equatorial plane, so that the
code can straightforwardly detect and treat these special cases. In terms of the

modified coordinates, the non-zero covariant metric components are:

— 1 + 2'11, — 52 . — ﬁz
gt = 52, Juu = u4(1 _ 2U +a2u2)7 guu - 11,2(]. _‘,Uf2)
_ Q=) [u? +a® (5% + p®) + 2u(1 - p?))] —2au(1 — p?)
9o = 52 3 Jtp = Gopt = —52—.)

where p? = 1 + a?p%u?.

A2. EQUATIONS OF MOTION

In standard Boyer-Lindquist coordinates the contravariant components of the

momentum of timelike or null geodesics around a Kerr black hole are (e.g., MTW)

dt _ . (r? + a?)
t— 7 — 2 —_ 2 _ ~ 7
p = P { a(aEsm 6—L.)+ A P}
P’ = % = p"%054n {Q — cos® [@*(m? — E?) + L? csc? 6] }%
p'r = —;lf\ = p—zrsgn {P2 — A [m2r2 + (LZ - G,E)2 + Q]}%
d¢  _ a
¢ e — 2 — 2 _
p = =7 { aFE + L, csc 9—|—AP},
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where p? = r?244a? cos? 4 (=u=2p? above), P = E(rz-i—az)——[/za, and A =r2—2r 4
a®. The constants of motion are the angular momentum, L,; the energy at infinity,
E; the rest mass, m; and Carter’s constant, Q = pi+4-cos? § [a2(m2 — E?%) + L? csc? 9]
(Carter 1968); 7sgn and 6y, (= #1) are two independent, arbitrary signs (al-
though fixed for any particular geodesic). For computation it is convenient to use
dimensionless quantities throughout. To this end, define ¢ = —pe¢/pt = L./ E,
¢* = Q/E? v = E/m, and a new affine parameter ' = E\ (note that it is pos-
sible for ¢? to be negative, but this causes no problems). After converting to the

modified coordinates, the momentum components become

_dt _ (u™?+a?), _
pt:W:p 2{—a[a(1—u2)——€]+-—A——(u 24 a? —al)
d
Pt = d*)lf, = ﬂsgnp_z\/M
u _ du _
p Eﬁzusgn/} 2\/5

d¢ 0 a
é _ —_ -2 ) -2 2
p =0 =P { a+1__#2+ (u™*+a aﬁ)},

where U = (1—y72)4-2y2u+ [a2(1—7_2)——q2—82]u2+2[(a-€)2 +¢*|u®—a%g?u,
M= ¢+ (a% — ¢ — 2)u? — a%ut, &2 = (1 —47%)a® (for photons, a* = a?),
Usgn, fsgn = F1 are the arbitrary signs, and p and A are as above (with r —
u~1). Note that this new normalization implies p; = —1 and p,p” = —y 2 for all
particles.

For observers far from the black hole, the constants of motion ¢ and q? are eas-
ily expressed in terms of impact parameters. Following Cunningham and Bardeen
(1973), define a and § as the observed impact parameters of a ray measured per-
pendicular and parallel, respectively, to the spin axis of the black hole projected
onto the sky. Then for an observer at polar coordinate pg = cos 8y from the spin
axis of the hole, one finds £ = —a(1 — p2)? and ¢ = B2 + pi(a® — a%). The
inverse transformation is @ = —4(1 — p2)~32, f = +(q® — pd[?/(1 - u?) - &2])%;
for ingoing instead of outgoing rays, the signs of « and 8 should be reversed.

The roots of the quartic U determine the radial turning points of the par-

ticle trajectory. For massless particles such as photons (v72 = 0), U does not
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admit quasi-periodic, elliptical-like orbits (except for the circular photon orbits;
see Bardeen 1973), so that all null geodesics either “emerge” from the horizon at
u=up=1/(14(1 —az)%), reach a minimum value of u (a maximum radius), and
then plunge back into the horizon (assuming a finite turning point, i.e., umn > 0),
or start from infinity, reach a maximum value of u (for Ymaz < u4), and then re-
turn to infinity. For massive particles quasi-elliptical orbits are of course possible;
for any particular U, the allowed region(s) is that for which U is non-negative.
The roots of the quadratic (in u?) M determine the polar turning points
and allowed region (for the given constants of motion) in like fashion. For null
particles, M always has two roots less than unity, and at least one non-negative
root; call them My, with M_ < My < 1. If M_ < 0, then the turning points
of p are symmetric about the equatorial plane and equal to Tuy = :i:\/M__l_ ; for
M_ > 0, the particle is trapped between M_ < u? < M, . For massive particles,
it is additionally possible to have 0 < M, <1 < M_ (these are the quasi-periodic

orbits), where —uy < p < py again holds.

A3. INTEGRATIONS AND REDUCTIONS TO ELLIPTIC INTEGRALS

In integrating the equations of motion, we found it most convenient to use u
as the independent variable. Although this may seem unnatural from a theoretical
point of view, the “obvious” choices such as the affine parameter \' or the time ¢
are not as useful computationally, since they themselves are expressed as integrals
over du (and du) and require prior knowledge of u and y to compute. Since
u is not in general single-valued along the geodesic, we defined a single-valued,
monotonic (with respect to '), pseudo-radial variable @ as follows. Given an
initial starting position ug, and turning points Umin < ug < Umez, let & = u
until a turning point is reached. Just after wmqz, where u starts decreasing again,
let ©@ = Upmqer + (Umaz — u), and just past the next turning point, Umin, @ =
Umaz + (Umaz — Umin) + (¥ — Umin), and so on; this defines @ for all @ > wuy.
Values @ < ug are defined similarly: @ = wpn — (U — Umsn ) after the first turning

point (um;, ) but before the second, & = wp;n — (Umaz — Umin) — (Umaz — u) after
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the second but before the third, and so on. The mapping u — @ can be written
compactly as @(u) = ug + fuuo |du'|; note that |du/du| = 1 always. Replacing the
affine parameterization with @ greatly simplifies the calculations.

Given 4, the polar variable y(%) is then uniquely, implicitly defined by

n(a) dy' w(@) g

o VM@, O
where it is understood that whenever a u— or u—turning point is crossed, the
corresponding integrand changes sign (making each integral a monotonic function
of @). The amount of computing involved in the caustic calculations required a
ray-tracing code as efficient as readily practical. For this reason the preceding
equation was inverted analytically using standard elliptic functions and integrals.
For reference, these reductions are listed in Tables 3.1 and 3.2, along with any
special parameter values they correspond to.

Tables 3.1 and 3.2, inversion of f:l du' /v/M = I for p(p1,I), is the complete
list of cases occurring for timelike and null geodesics. The tables assume that range
reduction has already been done, i.e., that there is a solution 1 between pi,,,;, and
Hmaz for the given p; and I (in particular, this requires |I| < Ijnaz, with equality
possible only for 11 = fmin OF fimez). As an example, we give the computation
for the case a* > 0, ¢ # 0 (M_ < 0); for this case, M(u) = a*(u? 4+ A2)(B% — pu?),
where A> = —M_ >0 and B> = M, = p% . First rewrite the p-integration as

/ £oodt / B+ dt / B+ dt
w VM@ S VMG e M@

Substituting the form of M for this case and rearranging gives

1.

R s dt
(A* + B?)2 _ =
/,L [(t2 + A?)(B? — t2)] 2
I dt
(4* + B*)?
/m (22 4+ 42)(B2 ~ 12)]

— |a|(A? + B?)2 1.

NI

Our notation for the elliptic functions and integrals is that of Abramowitz and

Stegun (1964), with the addition that we define z = tan ¢ and write the elliptic
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integrals F(¢ |m1) as F(z|m1), etc. Note that we are using the complementary
parameter m; = 1 — m instead of m, which has certain numerical advantages.

From Abramowitz and Stegun (Chapter 17),

2 2)3 ‘ dt = m =cn'1gm1
@+t T g R = (),

with tan® ¢ = (d/y)? — 1 and my = ¢2/(c? + d?). This gives

(2 ) =r([(22) ]

from which the entry in the table immediately follows (except that for p; < 0 the

m1) = al(A® + B},

sign s; becomes relevant).

Tables 3.3-3.6, reduction of fuul du' /U = I(u) for I(u) is a complete list of
cases for the specialized problem of null geodesics (the program for computing
timelike trajectories currently does this integral numerically), except that the pos-
sible case a # 0, ¢* < 0 (2 equal) is not included because it was not encountered
in practice and is of no particular physical interest, since the merging roots are
negative. The cases with equal roots listed in the tables all have positive merging
roots; these correspond to the limiting circular photon orbits.

Besides greatly speeding up the computation of p(i) (by a factor of ~ 40, it
was found), using elliptic functions and integrals can deliver nearly machine accu-
racy over a very broad range of parameter values. In practice, the limiting factor
is the accuracy to which the roots of the quartic U are computed; in particular,
rays which travel many times around the hole before escaping back to infinity or
being captured, for which U has nearly a multiple root, can be especially taxing
numerically. In addition, the u—integrations for ¢ and ¢ (see below), which have
the form fuu: h(u)du/\/U, suffer a logarithmic divergence (like [™°du/(u —c)) for
nearly coincident roots and require special treatment to maintain high accuracy
in those cases. The program (for null geodesics only, at present) implements two
changes of variables for these cases, one for a conjugate pair of 1maginary roots

with small imaginary part (and with real part between the limits of integration u;
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and ug), and one for nearly equal real roots (in this case the smaller root will be
the radial turning point umaz ). In the former case, U contains a factor (u—c)?+d?,
|d| < 1, from the pair of roots ¢ + di; to remove the divergence, the program uses
the following identity:

U2 Y2
/ Au)du T = / h(c + dsinhy)dy,
uq [(u — 6)2 + d2] 2 Y1

where y; = sinh™" ((u; — ¢)/d). In the latter case we have U o (¢ —u)(d —u), with
d > c and d — ¢ < 1. In this situation the identity used is

VR - Hd - e)(eoshy — 1)dy
/m [(c—u)(d —w)]* / i

with y; = —cosh™ (1 4 2(c — u;)/(d — c)). These transformations are used when

necessary (as determined by prior testing) to preserve accuracy.

The integral for ¢(i) can be written as (cf. Cunningham & Bardeen 1973)

w@ g2 g u 2(a — Lu+ ¢ du

. Ko dp a= i
u) = + lson + Usgn ’
9(i) = Go + treg /“ L—W2 VM "y (g — D(ufu_ —1) VT

where ug = [14(1— az)%] ~'. This slight rearranging of ;f, d)' is especially useful

for geodesics confined to the equatorial plane, where the first term vanishes. In
principle, both integrals can be decomposed into a combination of elliptic integrals
and elementary functions, but it is much easier (as well as computationally faster)
to do them numerically. The program uses a Gauss-Kronrod integration scheme to
remove the (z — xo)‘% type singularities that occur at the turning points of u and
p- The p-integral suffers an additional singularity when |x| — 1; this corresponds
to trajectories which pass very close to the pole, where ¢ changes rapidly. To

alleviate this problem, the change of variables

L= e,

where y; = —(1— )" 2 tan™? (s — 1)/ (1 —u4)] 2, is performed by the program

/‘“ h(p)du 5 v h(ps — (1 — py) tan?[y(1 — py)2])dy,

when needed, which was found to maintain accuracy until at least 1 — py $ 1078

(approximately one arcmin from the axis).
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After similar rearranging, the coordinate-time integral becomes

u() d " 2a(a —Ou® +a®u?+1 ] d
. I ala — O)u® + a*u” + u
tu:t+sn/ a? 2—+U3n/[ } -
(@) =totpagn | @z o | iy — Dufus 1)) VT

The p-integration is readily written in terms of elliptic integrals of the second

kind, E(z|m1), and this was done in the program. For the case @* > 0, ¢®> # 0

(M- < 0) examined above, for example, the reduction proceeds as follows:

. / IR I
sgn -
! Ho \% M

o2 # (1% + A%)dt 2 Boodu!
foam -/u &l [(£2 + A2)(B? — 2)]? /u VM(p)

JMM{@v+wﬁE@wan

I

— A2 u /u d—u’
po ﬂsgn sgn e \/m )

where as in the previous discussion z%(u') = tan? ¢ = (u4 /p')? — 1, A2 = —M_,

B? =M, = 4%, and my = —M_/(My — M_). The U integral is already available

from the calculation of u(%) and is not recomputed. (The above derivation ignores
the range reduction and sign issues mentioned in the discussion of Tables 3.1-3.2).
There is no divergence as |u| — 1 here. The u-integration was done numerically,

in the same manner as for ¢(a).
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TABLE 3.1
Inversion of f:l du' |IvM =1

Case My =pf M_=p2 p(pa, I)?
a?=0 [0,1] [y Sinz
240,42 =0 [0, 1] 0 s1pi4 sechz
at>0,¢>#0 (M- <0) [0,1] <0 s1p+cn(z|my)
@2>0,¢7£0(M_>0) (M_,1] >0 sipydn(z|mi)
at <0 [0,1] > 1 s1p4 cd(z | my)

2 In Tables 3.1 and 3.2, s; = sign(u1) (if g1 = 0, s1 = sign(])).

TABLE 3.1 (continued)

Case It ..
a=0 n(0? +¢?)7%
a>#0,¢°=0 00
Q%> 0,¢ #0 (M- <0) 2K(my)/[|a|(My — M_)7]
@ >0,q" #0 (M- >0) K(m1)/(lalp+)
a* <0 2K(my)/(—a>M_)3

b [az = |f“m“ dy! |/ .

min
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TABLE 3.2

Definitions for Table 3.1

Case z(p1, 1)
@ =0 sin™' (£2) + (> + €2)3 1
@ #£0,¢>=0 sech_1|£—l| — sy|a|p I
@ >0,¢" #0 (M- <0) F([(&)?-1]* my ) = silal(My — M_)¥T

1
@ >0,¢%#0 (M- >0) F ([%;A;—_f] ? ml) ~ sila|psd
1
@ <0 F ([g—%—gﬁ%] i m1> —si(—a?)bu_I

TABLE 3.2 (continued)

Case M i B

a*=0 —Ht
a’?#0,¢>=0 0 sypq

@’ >0, #0 (M- <0) 3% —py  py
@’ >0, #0(M->0) 5=  sip- sipg
a* <0 -3 —ue py

* p must lie between fimin and fmaz.
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TABLE 3.3
Reduction of fuul du' [\U = 1(z,m;)*

Case Br® B B
a=0,0+q¢*>27 (3, 1) (0,1 <0
a=0,0%+q¢*>27 (3:3) (0, 3 <0
a=0,0%+q¢* =27 3 3 —%
a=0,0+¢* =27 1 4 —3
a=0,0+q¢* <27 complex B <0
a#0,¢°=0,0=a
a#0,¢2=0,0=—a complex B ~la=3

a#0,¢>=0, |l # a (3 real) > B2 >0 <0
a#0,¢>=0, |l # a (3 real) > [, >0 <0
a#0,q¢*=0, |l # a (2 equal) = [, (5.1] <0
a#0,¢>=0, |l # a(2equal) = f [5,1] <0
a#0,¢>=0, |l # a (1 real) complex B <0
a#0,¢* <0 (2real) complex B <0
a# 0, ¢* <0 (0 real) complex® b1 complex®
a#0, ¢*> > 0 (4 real, distinct) > fy > f33 >0
a# 0, ¢*> > 0 (4 real, distinct) > [y > [ >0
a#0,q* >0 (4 real, 2 equal) > [ = [ (%, 1)
a#0,q% >0 (4 real, 2 equal) > [ = f3 (i,l)
a#0,¢% >0 (2 real) >0 complex B2

2

* Listed are the cases for photons (constant vy~ = 0); extension to timelike

geodesics is straightforward in principal.
b The B; are the roots of U.
¢ Roots ordered so that ®(8;) > R(f;) and (6;) > 0.
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TABLE 3.3 (continued)

Case B4 Uy u € [,]4
a=0,0+q%>27 Bs [0, Ba]
a=0,64q¢ >27 oo [Bi,uq)
a=0,0+q¢%=27 Ba [0, 82)
a=0,0+¢ =27 o oo (Briug)
a=0,0+q¢% <27 Bs [0,uy)
a#0,¢°=0,0=a 0 [0,u4)
a#0,¢°=0,0=—a Bs [0, uy)

a#0,¢>=0, || #a (3 real) B [0, B2]
a#0,¢>=0, |l £ a (3 real) 0o [Bi,uy)
a#0,¢*=0, |l # a (2 equal) e Bs [0, B2]
a#0,¢* =0, |¢| # a (2 equal) oo (Br,uq)
a#0,¢° =0, [¢|#a(1real) e Bs [0, uy)
a#0,¢* <0 (2 real) <Pz B [0,u4)
a#0, ¢* <0 (0 real) B3 c3 [0,uq)
a#0, ¢*> > 0 (4 real, distinct) <0 B4 [0, B3]

a#0,¢* >0 (4 real, distinct) <0 B (B2, B1)
a#0,¢* >0 (4real, 2 equal) <0 B4 [0, B3)
a#0,¢* >0 (4real, 2 equal) <0 b1 (B2, P1)

a#0,q>>0 (2 real) <0  py [0, 51]

d Range of the radial coordinate is u € [Wmin, Umaz]; if Umar > uy occurs
Umaz — U4 1s implied. If upe, lies outside the horizon (umaer < ug) the

trajectory is hyperbolic-like, otherwise the ray is captured.



88

TABLE 3.4
Definitions for Table 3.3

Case I(z,m;) m
a=0,02+¢>27 (u<f) e1F(z | my) bl
a=0,0+¢>>27 (u>p) c1F(z |my) iy
a=0,0+¢> =27 (u< B) #tanh“l
a=0,0%+q¢% =27 (u> f) —%tanh_lzc

a=0,0 ¢ <21 aF(e|m)e 1400t

a#0,¢?=0,{=a T

a£0,¢=0,0=—a e1F(z | my ) 2-/3
a#0,¢>=0, 6] #a(3real, u < f) c1F(z|my) Ef; m;
a#0, =0, |0 £a@realu>p)  aF(e|m) (=5

a#0,¢°=0, |l #a(2equal, u< B2) citanh™!z
a#0,¢>=0, |¢|#a (2equal, u > B1) ¢y tanh™! z

a#0,¢*=0, ¢ # a(l real) aF(z|my)* %+§%”C—tc3

640, ¢ <0 (2 real) F(e [y Pamba e’

a#0,¢? <0 (0 real) aF(z|my) (%};;—2?)2
a#0,¢*> >0 (4 real, distinct, u < 3) a1 F(z |my) %
a#0, ¢*> >0 (4 real, distinct, u > ) aF(z|mq) Eg—i:%%%%g%
a#0,q* >0 (4real, 2 equal, u < f33) ¢ 1n|z]
a#0,q* >0 (4real, 2 equal, u > f35) ¢y In|z|

a#0,¢*>0(2real) aF(z|my)* (C4+CS):c:£fl‘ﬂ4)2

® If the absolute-valued quantity in the corresponding definition for z(u) is
negative, F(z | my) should be replaced by 2 K(m) — F(z | m1 ), where K(m;)
is the complete elliptic integral of the first kind.
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TABLE 3.4 (continued)

Case z(u)
a=0,0+¢*>27 (u<p) [,‘;7‘_@3}%
a=0,0+¢>>27(u>p) [%]%
a=0,0"4¢ =27 (u < f) (2u +1/3)7
a=0,0+¢=27(u>p) (2u +1/3)"32

00,04 g <o sy
a#0,¢>°=0,0=uq u
@#0.4 =0 0= T
a#0,¢*=0, | #a (3real, u < B,) [};2‘_"3]%
a#0,¢>=0, 0] #a(3real, u> B) [%%
a#0,¢2=0, 0] #a (2 equal, u < B) [ﬂ f;f
a#0,¢2=0, 0] £ a (2 equal, u> f) [ﬂ AL
a#0,¢>=0, |¢| # a (1 real) %
a#0,¢* <0 (2real) 'lz_fzgz)l
a#0,q¢* <0 (0 real) \r(ﬁl)(1+uc?)c+cz(u c3)
a#0, g% >0 (4 real, distinct, u < fs) [gg:%%%] :
a#0,¢%> 0 (4 real, distinct, u > f,) [E—%%J%

a#0,q¢> >0 (4real, 2 equal, u < B3) ¢y + 2(eotlea(r—wu=pl )

(B1—B4)(Bs—u)

a#0,q¢* >0 (4real, 2 equal, u > ) ¢ + 2(03+([;?(_ﬁ;34_)?;i1:§?4)]7)
a#0,q¢>>0(2real) Hz—%%)ﬂ
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TABLE 3.5

Auxiliary definitions for Tables 3.3 and 3.4

Case

(6]

a=0,0+¢>27(u<fa)
a=0,0 4 > 27 (u>f)
a=0,0+q¢* <27
a#0,¢>=0,f=—a
a#0,¢*>=0(3real, u < )
a#0,q¢%>=0(3real,u>p)
a#0,q>=0(2equal, u < f)
a#0,q¢*=0(2equal, u> )
a+#0,q¢>=0, |l #a (1 real)
a#0,¢* <0 (2real)
a# 0, ¢* <0 (0 real)
a#0,q*>0(4real, u < f33)
a#0,¢%>0 (4real, u > fo)
a#0,q¢>>0(2equal, u < f3)
a#0,q?>>0(2equal, u> )

a#0,¢*>0(2real)

2 [a2

2
[(ﬂl —ﬂa)(f7+q§)]

=

_ {__2____J
(B1—B3)(£2+¢?)
[2¢2(€% + ¢*)]

4c21

-1
2

=

] -

[/31 ] la —€]7!

[m }%|a—€| -1

[52 ]%Ia—ﬁ !

(2¢2) "2 |a— ¢!

(“02‘120405)—%

2(cs + c5)7H(—a?g?)E
(B — Bs)(B2 — B4)]
—2[a?¢*(B1 — B5)(B2 — Ba)]

(aq?es)”

(a*q*c3)”

(aquC4cs)_5

2

1
2

—-1
2

=

2
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TABLE 3.5 (continued)

Case o c3
a=0,0+q¢*>27 (u < fB)
a=0,0+¢*>27(u>p)
a=0,0+¢ <27 [B5(38; — 1))
a#0,¢*=0,0=—a 245
a#0,¢* =0 (3real, u < f3y)
a#0,¢>=0(3real, u>p)
a#0,¢>=0(2equal, u<p)
a#0,¢>=0(2equal, u > B1)
a#0,¢° =010 £a(1real)  [Bs(385 + )]} =
a#0,q%<0(2real) [%{%]%
s 3
a#0, g% <0 (0 real) [jfjf;j)_;((;‘*(;j;)’i} R(B1) + e23(1)

a#0,q*>0(4real, u < fs)
a#0,¢*>0(4real, u > f3)

a#0,q¢>>0(2equal, u < f3) 2B3=B1=PB4

51— Fa (Br — B3)(Ps — P4)

a 7é 07 q2 >0 (2 equal» u > ﬂ2) %ﬁ?—flﬁ@_ (131 - 63)(133 - ﬂ‘l)

a#0,¢% >0 (2 real) HZ—"_’}—;} :
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TABLE 3.6

Auxiliary definitions for Tables 3.3, 3.4, and 3.5

Case c4
a#0,¢% <0 (2 real) [(R(81) = )" + (3(81))°]*
a#0,¢* <0 (0xeal) [(R(A1) - R(8))" + (3(4) + ()]
a#0,q¢* >0 (2 real) [(R(B2) — ,31)2 + (3([32))2]%

TABLE 3.6 (continued)

Case cs

a#0,¢% <0 (2 real) [(R(B1) = B:)” + (3(81) 7] ?
a#0,¢* <0 (0real) [(R(B1)—R(B:))+ (S(Br) — S(Bs))]
a#0,¢% >0 (2 real) [(R(B2) — B:)” + (3(82)*]?

ol
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APPENDIX B

WEAK DEFLECTION LIMIT

In this appendix we present a perturbative treatment of light focusing by a
Kerr black hole for an observer at infinity and located in the equatorial plane
po = 0,60 = 0. We restrict attention to null geodesics with impact parameter
b>> 1. (Distances are still measured in units of the mass M.) The generalization
to arbitrary observer inclination is straightforward, though algebraically involved
and introduces no new principles.

In Appendix A, we give first order differential equations for the evolution
of the four dependent variables ¢, i, u, ¢ in terms of a modified affine parameter
A'. We perform a perturbation expansion in inverse powers of b. It is convenient
to introduce an angle ¢ so that the two components of the impact parameter
introduced in Appendix A are o = bcost), § = bsiny. As po =0, £ = bcosp,
and ¢? = b%sin4). It is also convenient to change the modified affine parameter

A’ to x, defined by
dx = p~2bd)\ (3.18)

First consider the equation for x. In view of the singularity due to the vanish-
ing of M near periapse, it is easiest to differentiate du/dy to obtain a non-singular
equation,

2
.. a 2
ot = gy u(l —247), (3.19)
where a dot designates differentiation with respect to y. We chose to integrate
along an ingoing null geodesic starting at the observer (y = 0) and extending past
the hole so that the signs of «, 3 should be reversed with respect to Appendix A.
Equation (3.19) must be solved subject to the initial conditions (0) = 0, 2(0) =

sint. The right-hand side of this equation is smaller than the left-hand side by
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O(b7?), and so we can neglect it to obtain the zero’th order solution satisfying the

boundary conditions.

(= sint sin x (3.20)

This solution clearly responds to rectilinear propagation in a flat space without a

black hole.
We now solve equation (3.19) perturbatively, by writing g = sintsiny +

6u(x), where the perturbation 6, satisfies the differential equation

.o 2
Op+6, = Z—zsinz/)sinx(l —2sin® ¢ sin? x) = F(y). (3.21)

This equation must be solved subject to the boundary conditions § «(0) = 5#(0) =

0. The solution is

X
by = / dx'sin(x — x')F(x")
0

a? sin
1662

[8(sin x — x cos x) + sin® ¢(12x cos x — 9sin x — sin 3x)]. (3.22)

This perturbation accounts for the leading correction introduced by a Kerr hole
on the light propagation.

Next consider the perturbation equation for the inverse radius coordinate, u.
Again we remove the singularity near periapse by working with the second order

differential equation obtained by differentiating du/dy. We obtain

2 2
i+ u=3u? + ‘2—2”(1 — 2ub? sin? o) — @C—O;’/’—“ (3.23)
good to second order in 5~'. To leading order, we ignore the right-hand side to
obtain
u = S“;X. (3.24)

Again this solution corresponds to rectilinear propagation in a flat space. If we
now retain only the first term on the right-hand side of equation (3.23), we can
solve for the first order correction to u, A,(x). A, satisfies

Ay + A, = gz—sin2 X- (3.25)
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Solving this equation subject to Au(O) = A4(0) = 0, we obtain
Ay =b7%(1 — cos x)2. (3.26)

This correction accounts for the leading correction attributable to a Schwarzschild
black hole. The ray, with impact parameter b is deflected by the hole onto the
optic axis (x = 7), when u = A, = 4b=2. This verifies that, to lowest order, the

deflection angle & is

& = bu = 4/b. (3.27)

The leading corrections attributable to the spin of the hole can be computed
by writing u = b~" sin x +b7%(1 — cos x)? + 6,. Retaining the remaining terms on

the right-hand side of equation (3.23), we find that

6acosy | a’?

E sin? x4 E sin y(1—2sin? 4 sin® x). (3.28)

Sut+6y = £3~ sin x(1—cos x)* —

The first term on the right-hand side describes the second order correction to the
Schwarzschild deflection. The second term, which is directly proportional to the
specific angular momentum a, is traceable to the dragging of inertial frames and
acts differentially on opposite sides of the hole. The third term o a2 is due to the
quadrupolar distortion caused by the hole’s spin. Solving this equation according

to equation (3.22), we obtain

5 — 5sinx + 32sin2y — 3sin3x — 60y cosy  acos(24 — 32cos x + 8cos2x)

1663 803
N a®[7sin x — 4x cos y — sin 3y + cos 2¢p(9sin x — 12y cos x + sin 3y)]
3263 '
(3.29)
Finally, we expand d¢/dx to obtain the perturbation equation for ¢.
: cos ¢ au
¢ = + —(2 — abucos ) (3.30)
1—p? b

(Note that we do not need to resort to the second order differential equation in this

case as there are no turning points for ¢.) To leading order, we need only retain
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the first term on the right-hand side of equation (3.30) and substitute expression
(3.20). The solution for the undeflected ray behind the hole can be expressed in

the form
sin x cos ¥
(1 — sin? x sin? )1/2

This can, indeed, be recognized as the equation for the flat space ray. Now, once

(3.31)

¢=7r—sin_1[

more, we augment ¢ by a perturbation d4, substitute u = sin sin y + 0, into the
first term on the right-hand side of equation (3.29), to obtain,
_ sin2¢sinxb, asin x(2 — asin sin )
¢ (1 — sin® ¢ sin? x)?2 b2 ‘
The solution to equation (3.32) is obtained by simple quadrature,
a® cosp [2(sin2x — 2x) 4 sin? {6y — sin 2x(3 + 2sin® x)}
8b2 (1 — sin? ¢ sin? )

(3.32)

0p = %(l—cos X)+ :
(3.33)
Once again we can identify terms associated with the dragging of inertial frames
(o< @) and the quadrupolar distortion (c a?2).

We can now recover the equation for the caustic far behind the hole. We define
a source “plane” to be the surface u = 4/by, where by is the Einstein ring radius
for a source located a distance u~! behind the hole, and introduce coordinates

b b
£=(m— ¢)Z» n=n (3.34)

on this surface, assuming that |¢], |n] < b2 /4. Next introduce y = 7 — 0y, where
|6x] < 1 in the vicinity of the caustic. To leading order in an expansion in b~ we
obtain, from equation (3.24), u = 6x/b. We can then iterate for §,, substituting
X = 7 in equation (3.29) to obtain

4b 4 157  8acosy  wa?(1 + 3cos 2¢)

-2 _= (3.35)
TR b 4h? b2 862

We next substitute this expression for 6y into expansions for x,n, incorporating
equation (3.22), (3.26), (3.29) and (3.33) to obtain, after some algebra,

£ = B(b)cosp + C(b) cos 2¢
(3.36)
n = B(b)siny + C(b)sin 2¢
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where the coefficients of the third harmonic terms all vanish. The two coefficients

B, C are functions of the impact parameter b and are given by

2
B(b) =b— %E - 1—2%
. (3.37)
E
Zh

C(b) =

Note that the terms oc a? have all vanished to this order. The coefficient B must

be expanded to first order about the zero’th order impact parameter by by writing
b=1bg + 6. As C = O(b~1)B, it is not necessary to expand C(b).

In order to understand the mapping represented by equation (3.36), consider

a ring of rays whose impact parameters form a circle of radius by and whose

center is displaced from the center of the black hole by a distance 0, — a along

the equatorial direction % = 0. In this case, §, = (6, — a) cos ). Substituting this

particular perturbation into equation (3.37), we obtain the circle’s map on the

source plane given by the equation
(E+a—26,)%+n* =82 (3.38)

Therefore, these circles map onto circles in the source plane displaced by the same
amount 6, — a and of radius §,. In particular, for 6, = 0, the circle degenerates to
a point located at £ = —a,n = 0. This is the caustic and the corresponding critical
curve is a circle displaced by —a from the Einstein ring for a Schwarzschild black
hole along the equatorial direction. Therefore, to the order of our perturbation
expansion, the caustic surface for a distant observer is a line displaced by a from
the optic axis.

We can also use our perturbation expansion to calculate the magnification of
a point source located close to the optic axis. To do this, we must calculate the
Hessian for the transformation equation (3.36). We write o = bcos ), f = bsinp.

The Hessian is

H(e,f) = 5> o1 — o2 21 . (3.39)
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A straightforward evaluation gives
2 2 271/2
H(&m) = = [(€+a)* +27] 7. (3.40)
E

The image magnification, M, which is the reciprocal of the Hessian, is then in-
versely proportional to the distance ¢ = [(¢ + a)? + n%]1/2 of the source from the

caustic line, i.e.,

by
M= 32 (3.41)

per image, giving a total magnification of ~ b, /¢. This is the standard relation
for a point mass.

In the numerical computations, the line caustic unfolds into a four-cusped
surface as expected. In order to reproduce this, the perturbation expansion must
be pursued to higher order. The width of the caustic cross section is O(u) =
O(b™%). In order to compute it, it is then necessary to expand éu to O(b7%)
instead of 0(6™°) and éu,6¢ to O(b~*) instead of O(b~2). This is straightforward
in principle, though lengthy in practice, and we have not attempted this calculation
as the lower order results are sufficient to interpret and verify our numerical results.

There is one asymptotic relation which can be quickly derived and which
provides a final check on the computations. Although we have not computed the
combined magnification of the four images for a source lying at the center of the
four-cusped caustic, flux conservation requires that it be inversely proportional to
the size of the caustic. Following Blandford & Kovner (1988), we consider a nearly

circular, normalized Newtonian potential of the form
® = f(b°/2) + ey (b) cos 2p: e < 1, (3.42)

where the function f(z) describes the circularly symmetric deflection and the
function t2(b) cos 2¢p describes the elliptical perturbation. In this notation, the

radius of the Einstein ring satisfies f(b%/2) = 1 and the Hessian is given by

5d 180 1 0% 8 /108\]2
(1‘%2“) (“m*ﬁa?)“[é—b <m)J S
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For a source at the center of the caustic, the four images are located close to the

Einstein ring at ¢ = 0,7/2, 7, and 37/2. The Hessian for each image evaluates to

&2f
Ho = ety (b)) =5 (02/2). (3.44)

However, we can also set H = 0 to locate the caustic and find that, asymptotically,
the total width of the caustic is given by

s = 86—%)2&’—‘3—) (3.45)

(Blandford & Kovner 1988). Now to lowest order, when b > 1 we can treat the
black hole as a Newtonian point mass and take f(z) = (b%/2)In(2z) so that

Hy = :t86—1’b2-2(~b?—) - :1:33—. (3.46)

bE E

The total asymptotic magnification for a source located at the center of the caustic

therefore satisfies

4 _ 4 (3.47)

Moy =
* 7 [Hy| s

This result depends only on the existence of a small elliptical perturbation to the
circular symmetry, not on the details of the gravitational field close to the black
hole. It should therefore be applicable to the present problem, and equation (3.47)

is in fact satisfied by our numerical results.
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Dynamical Evolution of a Star Cluster
Around a Rotating Black Hole
with an Accretion Disk:

Kevin P. Rauch

California Institute of Technology

ABSTRACT

The dynamical evolution of the core of a dense star cluster brought into the
equatorial plane around a massive Kerr black hole is examined. It is assumed that
the black hole dominates the potential and that the evolution of the cluster is
driven by stellar interactions with an accretion disk lying in the black hole’s equa-
torial plane, and that stellar collisions and two-body relaxation are unimportant.
It is shown that there are astrophysically interesting circumstances under which
these assumptions are valid. A set of diagrams exhibiting the time development
of the stellar density profile and the distributions of semi-major axes, orbital ec-
centricities, and orbital inclinations of the model system are presented; plots of
the latter three quantities against each other and as a function of time for a few
illustrative individual orbits are also given. It is found that the main effect of star-
disk interactions on the cluster, besides the general circularization and alignment
of orbits with the disk, is to steepen the initial cusp profile towards an equilibrium
p+ o r73 stellar density profile and to increase the central density (by several
hundred very close to the black hole). Relativistic effects were found to affect the
cluster properties significantly only at very small radii (S 10 M, where M is the

mass of the hole and in units where G = ¢ = 1); in particular, the location of the
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last stable orbit limits the cluster’s inner extent. By significantly increasing the
central stellar density, star-disk interactions could self-limit themselves by making
stellar collisions important; the future evolution of the cluster in this case will
probably depend on the relative balance of the collisional, alignment, and stellar

evolutionary timescales.

Subject headings: stellar dynamics — galaxies: nuclei — accretion disks
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4.1. INTRODUCTION

There is a promising opportunity to deepen considerably our understanding
of the dynamical evolution of active galactic nuclei (AGNs), and galactic nuclei
in general, in the next decade. On the observational front, the prospects of a
repaired Hubble Space Telescope (HST) and a new generation of large, ground-
based telescopes with adaptive optics should allow galactic nuclei to be studied
both on smaller angular scales and over a larger range of frequencies than ever
before. Observations by HST of the nuclei of M32 (Lauer et al. 1992b; Lugger et
al. 1992) and M87 (Lauer et al. 1992a), for instance, already provide evidence for
stellar cusps which continue into the center as far as the current resolution limits
of the data, giving information on conditions in the nuclear star cluster within a
parsec (in the case of M32) of the galaxy’s center. Such observations could finally
provide convincing evidence for the existence of central compact masses, commonly
supposed to be massive black holes, that are often thought to reside in the centers
of galaxies (for an overview of the observational evidence so far, see Kormendy 1994
and references therein), but in any event should markedly improve our knowledge
of the distribution of stars and gas in the central parsec of nearby galaxies. On
the numerical front, computing power is now approaching that needed to perform
N-body simulations of globular clusters with realistic numbers of stars, putting
analogous calculations in the context of galactic nuclei on the visible horizon. The
dynamical evolution of AGNs, however, is likely to be quite complicated because of
the components that they might contain in addition to dense central star clusters,
such as massive black holes, accretion disks or other large scale gas flows, magnetic
fields, possible star formation, etc., and the interaction of all of these elements is
not well understood. The present paper investigates one piece of this evolutionary
jigsaw puzzle: the dynamical evolution of the central regions of a dense star cluster
around a Kerr black hole with an accretion disk, in a regime where the black hole
dominates the potential and star-disk interactions dominate the evolution of the

cluster.
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Several groups have investigated the dynamical evolution of AGNs (e.g., Dun-
can & Shapiro 1983; David, Durisen, & Cohn 1987a,b; Quinlan & Shapiro 1990;
Murphy, Cohn, & Durisen 1991). All of these studies performed calculations using
an orbit-averaged Fokker-Planck formulation to follow the evolution of the central
star cluster, in which processes such as physical collisions between stars, stellar
evolution, and interactions with binaries were incorporated in a statistical manner.
These studies assumed that either no central black hole, or only a small “seed”
black hole, was present initially, with focus being placed on the probable time of
formation or on the rate of growth of the black hole, as well as on the overall dy-
namical evolution of the cluster. Although the Fokker-Planck formalism provides
a good approximation on larger scales where there are many stars present in each
zone followed, in the inner regions, where the numbers are small, the continuum
approximation becomes a poor one. In addition, if there is a black hole present in
the center, general relativistic effects, which would be difficult to include properly
in an orbit-averaged calculation, will become important in its vicinity. Both of
these problems can be overcome by using N-body methods in this region.

The orbital evolution of a single star interacting with an accretion disk has also
been examined previously (Syer, Clarke, & Rees 1991; Karas & Vokrouhlicky 1993;
Artymowicz, Lin, & Wampler 1993). The qualitative effects of an accretion disk on
an orbit initially inclined with respect to it are to cause the orbital plane to align
with the disk, to increase the orbital binding energy, and to circularize the orbit
(assuming the disk material is traveling on nearly circular orbits), due to the small
momentum kicks and kinetic energy losses the star suffers upon crashing into the
disk twice each orbit. The detailed physics of the star-disk interaction is uncertain;
in those studies (as well as this one) it was assumed that the interaction was well
described as an impulse applied to the star at the point of intersection with the
disk, in the form of a drag in the direction of the star-disk relative velocity. This
approximation should be a good one when the disk is thin and the stellar orbital
velocity is supersonic with respect to the local disk sound speed. Artymowicz et

al. (1993) proposed a disk-induced ‘star-trapping’ process to explain metallicity
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enrichment in AGNs. The work of Syer et al. (1991) explored star-disk interactions
in the Newtonian regime, and also speculated on the possible evolutionary paths
traversed after the star has been brought into the plane of the disk. Karas &
Vokrouhlicky (1993) contains a brief treatment of the process in the relativistic
case. Some of the calculations presented here are complementary to those of Karas
& Vokrouhlicky and examine the evolution of the orbital parameters of a single
star in greater detail, also using a fully general relativistic treatment. In addition,
the time evolution of the density and distribution of orbital parameters for a star
cluster around a (rotating) black hole is also considered. This work is part of a
larger project to investigate relativistic effects of rotating black holes and the Kerr
spacetime in the context of AGNs.

This paper uses an N-body approach (i.e., one in which individual stars are
followed) to examine the dynamical evolution of a dense star cluster around a
rotating, massive black hole possessing an accretion disk, subject to a number of
restrictions (explained in § 4.2). A few illustrative results for the time development
of orbital characteristics for individual stars are also given. The aim is to study not
only the manner in which the cluster evolves, but also the importance of relativistic
influences on that development, as judged, for instance, by its dependence on the
angular momentum of the black hole. General relativistic effects on the stellar
orbits are included accurately using an efficient, high precision code to follow
geodesics in the Kerr spacetime that has been developed previously (see Rauch &
Blandford 1994 for a description). The routines evaluate some of the equations of
motion analytically in terms of elliptic functions and elliptic integrals for fast and
accurate calculation of the geodesic trajectories. That code was then integrated
into an N-body routine that traced the time evolution of a cluster of stars under the
influence of star-disk interactions. The following section describes the assumptions
used in the calculations and the range of conditions over which they are likely to
be valid; results of the calculations are presented in § 4.3. Discussion is given in

the final section.
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4.2. METHOD AND ASSUMPTIONS

The computational model consisted of three components: a central massive
black hole, an associated accretion disk lying in the equatorial plane of the hole,
and a surrounding star cluster. To restrict attention to the influence of star-disk
interactions on the evolution, and to keep the problem numerically tractable, the
calculations assume that:

1) The central black hole dominates the gravitational potential.

2) The accretion disk is thin, and the stars impact the disk supersonically.

3) Star-disk interactions dominate the evolution of the stellar orbits.
The first constraint merely requires that the mass of the black hole be much larger
than the mass of the cluster (and disk) interior to the maximum radius considered
in the simulations. In this limit, each star essentially follows a geodesic orbit
around the hole (except when it is interacting with the disk), which is traced in
the simulations using the Kerr code mentioned previously. The simulations used a
canonical black hole mass of 108 My, making this approximation a very good one,
although the results can be scaled to any hole mass for which the assumptions are
still valid. The second assumption allows the star-disk collisions to be treated as
impulsive interactions, as noted previously—or at least until the star’s orbital plane
becomes nearly aligned with the disk, when the star will skim through the disk for
most or all of its orbit. In this limit the drag force felt by a star passing through the
disk due to both dynamical friction produced by the disk (Ostriker 1983) and the
excitation of disk normal modes (Artymowicz 1993) are unimportant, each being
smaller by a factor ~ (vesc/vorn)* (< 1072 in the case considered here) than the
‘ballistic’ drag caused by the sweeping up of intercepted disk material (cf. eq. (2)
of Artymowicz et al. 1993). Validity of the final condition requires that two-body
relaxation, physical collisions between stars, and tidal disruption of stars passing
close to the black hole be unimportant relative to star-disk collisions. The relative
timescales for these processes in the fiducial model are given below; except perhaps
for stellar collisions, all of these other processes turn out to be unimportant in the

present case.
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The use of the fast Kerr code allowed simulations with up to 10* particles to
be performed. The simulations were done as follows. One specific model consisting
of 10* stars was calculated to allow a reference model to be followed in as much
detail as possible. To estimate the dependence of the results on the prescription
for the surface density of the disk, the star-disk interaction, and the initial stellar
density profile, a number of smaller simulations (using 1000 stars) were done, in
which one of the prescriptions was varied from that of the reference model, the
evolution recomputed, and the results compared. Each model is specified by the
mass and angular momentum of the black hole, and the functional forms for the
surface density of the disk (assumed to remain constant over time), the initial
density profile of the cluster, and the star-disk interaction itself. The mass of
the black hole was fixed at Mg = (M/10® M) = 1 in all models, and the star
cluster was truncated at an inner radius rmin = 10 M (approximately the tidal
radius for the stars) and an outer radius of 7ax = 10* M (we will use units in
which G = ¢ = 1). The reference model assumed a maximally rotating black hole.
A real cluster would of course extend far beyond rpa.x (= 0.05 Mg pc); limiting
attention to this region is the result of several factors. First, since rpa.x > M,
relativistic effects will be unimportant outside this region. Second, the number of
stars that can be included limits the range of radii that can be considered before
small-number statistics make the results hard to interpret. In addition, at some
larger radius (~ 105 M in this case) the cluster and disk mass will become large
enough that the black hole will no longer dominate the potential, contrary to the
assumption. The cluster was initially spherically symmetric and isotropic, giving
it a wide range of initial eccentricities and orbital inclinations.

The validity of the assumption that star-disk collisions dominate the evo-
lution depends on both the density of the disk and the density of stars in the
cluster. It is easily seen that in these simulations, tidal disruption and two-body
relaxation are relatively unimportant; for a 1028 Mg black hole, the tidal radius
re ~ Ry(M/M)'/? is approximately the horizon size for solar-type stars, and the

two-body relaxation time ¢, ~ v3/(7G?*M?Zn,) ~ 10*%(n./10" pc™3)~? years at
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rmax- Stellar collisions, however, may or may not be important. To see this, note
that the timescale for a star to be aligned with the disk is approximately the time
needed for the star to intercept (in total) a quantity of disk material equal to its
own mass. Since the star hits the disk twice per orbit, the alignment timescale
relative to the orbital time is talign /torb ~ T4/(224), where &, = M,/(7R2) is
the effective stellar surface density and 4 is the disk surface density. To get
an estimate for £4(r), the Novikov-Thorne (1973) thin accretion disk model was
used. Assuming moderate values of 0.1 for both the accretion rate relative to

the Eddington limit, £z, and the mass to luminosity conversion efficiency, €, one

obtains
_ 7/10 B
~ —3 g -1/2 (@ \TH5 (L 3/ ,
Ya(r) ~2x107° My (0.01> - <M) Mo /R (4.1)
and
—7/10
talign 1/2 a \4/5 [l 7 r \ 3/4
R YTl — — 4.2
orb 100 M8 <001> € (M) ( )

(for solar-type stars), where a is the viscosity parameter; torp/M ~ 2m(r/M)3/?
in these units. Note that since r, o« M2 for above solar mass main sequence
stars (e.g., Kippenhahn & Weigert 1990), ©, o« M %2 varies slowly with the
stellar mass and the results of the simulations should be insensitive to the assumed
mass spectrum; although most of the simulations used a range of masses for the
stars (following a Salpeter distribution between 0.1 and 10 Mg,) since it incurred
negligible cost, runs with equal (solar) mass stars confirmed this to be the case.
(For sub-solar stars, the relation is more like 7, o« M%® but the conclusion is
still valid.) The timescale for physical collisions between stars to occur is teoy ~
1/(47 R%n4vorb) (note that since Vorb/Vesc» > 1 in the region under consideration,
there is no gravitational focusing enhancement to teoll); assuming a cusp density
of the form n,(r) oc r=7/* (e.g., Bahcall & Wolf 1976), as assumed in the reference

model, gives

talign 47T7"p*(7') ~1/4 a \4/5 [l —7/10 ,0*(1 pc)
~ ~ 0. . = _PAIPY) ) (43
teoll 24 (T) 0.03 M8 <001> € 106 M@ pC_3 ( )
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Hence for a $ 0.1 or p.(1pc) S 10" Mg pc™?, the alignment timescale is shorter
than the average collision time and star-disk interactions dominate; evolution in
the regime where collisions dominate will be considered in a future paper. For the
reference model, tajign(Tmax) ~ 107 years (and hence stellar evolution effects will
also be unimportant for the initial development of the cluster in this scenario).
For convenience, future references to the ‘fiducial accretion disk model’ will mean
an a-disk with parameter a = 0.01 and to the ‘fiducial stellar density model’ will
imply p«(r) = 10% (r/1 pc)~7/* Mg pc=3. Note that the fiducial disk model has
a total mass within radius rmax of ~ 2 x 107(a/0.01)=*/% My < M, hence self-
gravity in the disk (which could induce fragmentation within the disk) should be
a small effect in these simulations; similarly, the star cluster’s mass within radius
Tmax 18 ~ 2 X 10° (p.(1pc)/10° Mg pc™3) Mg, well below the hole mass.

The reference model used p.(r) oc r=7/% and T4(r) = 1073r~1/2 Mo/RE
(the fiducial disk model of eq. (4.1) was not used because, due to the more
rapid 773/ fall off in surface density, using it would have required that each
star be followed for too many orbital periods before being brought into the disk
plane than was computationally feasible); note that since no star-star interactions
are included, the absolute value of the stellar density is not relevant (i.e., the
final density is directly proportional to the initial value), and was in any case
limited by the number of stars that could be followed. Dependence on these
choices was estimated by examination of the results of smaller simulations in which
a(r) = 1074712, 103 and 10737~} M@ /RZ and pu(r) o< r~! and « r73
were individually substituted for the original prescription for $q or p,.

The star-disk interaction was computed as follows. The point of intersection
of the orbit with the disk plane was solved for numerically for each passage through
the disk. The 4-velocities of the star and disk at the intersection point were then
transformed to the locally non-rotating frame (e.g., Misner, Thorne, & Wheeler
1973), and the star’s 4-velocity was then Lorentz boosted from that orthonormal
frame into the local rest frame of the disk. Let P, be the star’s usual spatial

3-momentum in this latter frame. Using the impulse approximation, the change
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in the star’s momentum due to the drag induced upon passing through the disk is

Aswe tzd WRzzd VUrel 2d vrel)
6p=-"PTC P o — x Prao=— | — Pre, (4.4
M, : M, \vs : ACH Lo (44)

where Agwept is the effective disk area swept out by the star as it passes through
the disk, vl and vy are the star’s velocity relative to and velocity component
perpendicular to the disk (in the disk’s rest frame), respectively, and it is assumed
that all disk material impacted is given the same velocity as the star (but is not
actually accreted by the star). This form is similar to one used by Karas &
Vokrouhlicky (1993) and essentially identical to the one used by Artymowicz et al.
(1993), and implicitly assumes that the disk thickness is greater than the size of the
star (as it typically would be). The star’s new momentum was then transformed
back to the coordinate frame, the new constants of motion were computed, and
the perturbed orbit followed until the next disk intersection, where the process was
repeated. To judge the sensitivity of the results on this prescription, the factor
(vre1/v1) was replaced with (1+wv)/v1) in some simulations; the latter form would
be appropriate if the disk was infinitely thin (the two forms differ by a factor of
V/2 at most). Orbits were evolved until they were brought within ~ 1° of the disk
plane; in the reference model, this required ~ 10* — 105 disk crossings per star.

Results of the calculations are described in the following section.

4.3. SIMULATION RESULTS

4.3.1 Single Star Results

The evolution of a cluster dominated by star-disk interactions is essentially
an ensemble average of the (independent) development of each star’s individual
orbit. To allow easier interpretation of the full simulations, the results for a single
star are given first. The time-varying quantities of interest are the semi-major
axis, a, the eccentricity, e, and the inclination with respect to the disk, z. Figures
4.1, 4.2, and 4.3 each plot on a semi-log scale several a(t), e(t), and i(t) curves,

respectively, for an orbit with initial parameters ap = 10%, eg = 0.95, and several
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Fig. 4.1: The semi-major axis, a, as a function of time for five orbits under the
influence of star-disk interactions in the potential of a 10® My, maximally rotating
black hole. To avoid clutter the curves have been truncated some time after the
asymptotic value has been reached. Initially, each orbit has ay = 10* (in units
of M) and eccentricity e = 0.95 but differing inclinations ¢y with respect to disk
plane (marked). Highly inclined orbits become very tightly bound; in this case,
orbits with 79 & 135° were captured by the black hole. The physical time scales
linearly with the hole mass and inversely with the disk surface density (the plotted
value assumes M = 10® Mg and Zq(r) = 2 x 107% (r/M)~%/* Mg RG?).



113

1 T T [ T T 1 [ T T I ! | T I T =

- a,=104 .

0.1 =

=001 -

) — .

0.001 |- -

- i,=35° ]

: i,=55° -

I 1,=95" i =75" |

O'OOO]. | 1 1 | l 1 1 1 | I | | | 1 I | | | |
0 5x10% 105 1.5%108 2x 105
t (yr)

Fig. 4.2: As Figure 4.1 but showing the eccentricity e as a function of time. At
late times (roughly where the inclination has dropped below ~ 20 — 30°) e falls

exponentially. Note the semi-log scale.
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Fig. 4.3: As Figure 4.1 but showing the inclination with respect to the disk ¢ as
a function of time. The inclination, like the eccentricity, decreases exponentially

once it is lower than ~ 20 — 30°; in this region, e 7 (cf. Figure 4.6).
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values of ¢y (marked). The absolute value of the time coordinate given assumes
the parameters Mz = 1 and Zq(r) ~ 2 x 1073 r73/* Mg R3® (the fiducial disk
model) and scales as ¢ o ag’/ % My 27", assuming a fixed functional form for ©g
(recall also that ag is in units of M here). The rate and extent of the orbital
development is strongly dependent upon the initial orbital inclination; orbits with
large inclinations evolve much faster than those with smaller inclinations, as noted
by Syer et al. (1991). This is due mainly to the fact that highly inclined orbits
are quickly driven into tightly bound, short-period orbits, because of the relatively
large kinetic energy and angular momentum losses suffered by the star on passing
through the disk with a velocity vector nearly anti-aligned with the disk’s. Note
also that both e(¢) and i(¢) decrease exponentially (with the same time constant)
at late times, the transition to exponential behavior occurring when the inclination
falls below ~ 20 — 30°. Until this happens, a decreases more quickly than either
e or ¢, and after the transition begins to approach a constant value.

The relative timescales are more easily seen in Figures 4.4, 4.5, and 4.6, which
plot curves of e vs. a, 7 vs. a, and e vs. 1, respectively. The tick marks on each
curve are spaced at equal time intervals (although the size of the time step is
somewhat different for each curve). For large values of e, the orbital size shrinks
much more rapidly than the eccentricity, largely independent of the inclination;
once the eccentricity finally does become relatively small, both a and e decrease at
similar rates (Figure 4.4). Likewise, for large inclinations both the semi-major axis
and the eccentricity of the orbit decrease at nearly constant inclination (Figures
4.5 and 4.6). Note also that e(t) o ¢(t) for ¢ < 30° (i.e., when both e and ¢ decrease
exponentially) and that e undergoes stochastic oscillations when the inclination is
large (Figures 4.4 and 4.6). In contrast to Karas & Vokrouhlicky (1993), it was
found that only highly retrograde orbits (roughly speaking, those with ¢q > 135°)
became captured by the black hole before being brought into the plane, at least for
large enough orbits (those with initial periapses 2 100). Rapidly rotating black
holes in particular captured retrograde orbits less frequently than Schwarzschild

holes, due to the fact that stable (prograde) orbits exist closer to the horizon of
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Fig. 4.4: Similar to Figure 4.1 but now plotting e against a for several orbits.
For large ey, e varies slowly as a decreases, while for smaller e, both quantities
decrease at similar rates (until a eventually stabilizes). The tick marks on the
curves denote increments of equal time, with approximately 10 years between

each. The orbit marked 7y = 155° was captured by the black hole.
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Fig. 4.5: As Figure 4.4 but now plotting i against a for several orbits. For

10 & 10°, a decreases at nearly constant ¢ almost until it reaches its asymptotic

value.
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a rotating black hole than a non-rotating one—as long as the initially retrograde
orbit becomes prograde by the time it has sunk close to the horizon, the hole’s
angular momentum helps “prop up” the orbit near the horizon, giving it a little

more time to align with the disk and avoid being captured.

4.3.2 Cluster Fvolution Results

Results for the cluster evolution are given as successive snapshots showing
the distributions of a, e, 7 and the stellar density profile at several stages of the
evolution (Figures 4.7, 4.8, 4.9, and 4.10, respectively). Each figure consists of four
panels showing the state of the cluster initially, at two intermediate times, and at
a later time when all stars have been either aligned with the disk or captured, for
the reference cluster model described in § 4.2. The qualitative features of the de-
velopment of the a, e, and ¢ distributions are just what would be expected on the
basis of the previous discussion. As the evolution progresses, the orbits with small
ag evolve rapidly relative to the larger orbits, creating a small-a hump which sub-
sequently expands outwards to larger radii (Figure 4.7). The initially symmetric
(about ¢ = 90°) distribution of inclinations becomes increasingly skewed towards
small values, and early on becomes especially deficient in highly retrograde orbits,
due to the more rapid development of these orbits (Figure 4.9). The eccentricities
also become increasingly peaked at small values, as expected (Figure 4.8).

The stellar density profile shows considerable evolution (Figure 4.10). Of all
the different prescriptions for the disk surface density, initial stellar cusp profile,
etc., that were examined to judge the sensitivity on the results of the assumptions
made in the reference model, only changes in the initial density profile of the
cluster produced noticeable changes in the ‘final’ appearance of the cluster, and
even here the effects were not large (in reality the cluster density would still change
somewhat, as more distant stars inside or near the loss cone passed into the central
regions, but this occurs more slowly, on the two-body relaxation timescale for the
outer cluster). As seen in Figure 4.10, the initial density profile p.i(r) pT/4

used in the reference model evolves to a final state well fit by another power
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Fig. 4.7: The distribution of semi-major axes for the reference cluster model
(§ 4.2) at four specific times during its evolution under the influence of an accre-
tion disk, showing the initial distribution, two intermediate ones, and the final
distribution (which is reached when all stars have been essentially aligned with

the disk). The main effect of star-disk interactions is to broaden the distribution

and shift it toward smaller radii.
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Fig. 4.8: Same as Figure 4.7 only now showing the distribution of eccentricities.

The orbits are circularized in an orderly fashion.



1000

100

N(i)

10

1000
100
z

10

1

t=0

p-s

Illl]llll,l!lllll

TTTTT
L

TT IIIIHI

i

i 111 I 1111 I 11t I 1 I~
0 50 100 150

t=10° yr

'TTT l TTTT l rrrr I I IE

_I 1 1| I T I 111 I | I”_
0 50 100 150

i(°)

122

1000

100

10

1

1000

100

t=10% yr
EI 17T [ | ' TTTT l T ]E'
i
_l 111 I L1 l | I | l—
0O b0 100 150

t=10" yr
?I 1T FrT | LI | I I'g‘

IIIIII

1l Illllll

JII‘“LLIIIII;IIII
50 100 150

i(°)

Fig. 4.9: Same as Figure 4.7 only now showing the distribution of orbital incli-

nations. The highly retrograde orbits evolve much more quickly than the others,

either becoming captured or stabilizing at small radii, causing the distribution to

become deficient in these orbits early on. Simultaneously, the less inclined orbits

are driven towards smaller inclinations in a more orderly manner. At late times

all stars which were not captured have been brought into the disk plane. About

7% of the stars in the simulation were captured.
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Fig. 4.10: Same as Figure 4.7 only now showing the evolution in the stellar
density profile. Initially p, o« r~7/4, while at late times the profile is well fit by
px < 77298 for 1 2 10 (the falloff in density for r 2 10° is due to incompleteness,
an artifact of having truncated the initial cluster at a radius of 10*). The accretion
disk drives the profile towards an ‘equilibrium’ r~3 value and increases the density

close to the black hole at the expense of large radii (see § 4.3.2).
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law, pir(r) oc r=2:684£0:03 for > 10; the final density profile is incomplete for
7 > 1000 due to having initially truncated the cluster at r = 10%, but the power
law should still apply here as long as sufficient time has elapsed for those larger
orbits to evolve, at least at radii where the black hole still dominates the potential
(r S 10%). The cluster becomes denser at smaller radii at the expense of larger
radii as the stars become more tightly bound under the action of the disk. It
turned out that in this model, the density at r ~ 3000 was the same at late
times as at early times; at smaller radii the cluster was denser at late times (by
a factor of over 100 near the black hole), and less dense at larger radii. For
px,i(r) o< r~1, the final density profile was found to be prt(r) oc p72:62£0.03
small change. For p, i(r) oc 7™* (equal numbers of stars per decade of radius), the
final density profile was p, (r) oc r=3:03%0.03 essentially identical to the initial one.
The main effect of the disk on the cluster, besides the generic ones of alignment
and circularization, thus appears to be to drive the density profile towards an
equilibrium r~% distribution, in which stars are uniformly distributed in logr.

The consequences of this are discussed further in the following section.

4.4. DISCUSSION

We have shown that there is an astrophysically plausible regime in which an
accretion disk around a massive black hole in an AGN or other galactic nucleus
would dominate the dynamical evolution of a star cluster, through the process of
star-disk interactions. In the innermost regions of the cluster that were consid-
ered in this paper, where the velocity dispersions are high (> 1000 km s™1), only
physical collisions between stars would be expected (in some cases) to compete
with a disk in this respect, except possibly for tidal disruption of stars near the
black hole, if the black hole is only ‘modestly’ supermassive (M ~ 10° - 107 Mgp).
Because of the steepening of the cusp profile and accompanying increase in the
central densities (by several hundred times near the horizon), however, even if the

evolution is originally dominated by the disk, densities could rise sufficiently to
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make stellar collisions important again, preventing the cluster from being driven
entirely into the plane of the disk. The subsequent evolution under these circum-
stances will likely depend upon the extent to which the orbits had been circularized
and aligned with the disk at the time collisions became important, as the relative
velocities between the stars, upon which the outcome of the collisional processes
depend, could be considerably smaller than the absolute Keplerian velocity of the
orbits if the stars are nearly comoving. If the relative velocities became less than
the stellar escape velocities (~ 500 km s™1), qualitatively different collision prod-
ucts, such as merged objects, could be produced. This same factor would also
work to decrease the absolute rate of collisions, however, since the collision rate
would also be tied to the typical relative velocity, which would no longer be the
(much larger) orbital velocity. At this point, the timescales could become long
enough for stellar evolution effects to become significant. It is quite possible that
the longer term development (> 107 years in this case) of the nucleus will depend
strongly on the detailed balance between these different evolutionary timescales.
A series of supernovae occurring in the inner disk could destroy the disk in that
region entirely, for example, leaving behind a tightly bound population of neutron
stars and stellar mass black holes. The orbits of such a population of objects
(which may also include white dwarfs, if the timescales are long enough) would no
longer be significantly modified by either collisional processes (between the com-
pact objects themselves) or by further interactions with the disk, as the timescale
for both processes would increase by a factor (Ro/Rco)? ~ 10* for white dwarfs
and ~ 10° for neutron stars or black holes; for the reference cluster, the original
timescale (at ~ 0.1 pc) of ~ 107 years now becomes longer than a Hubble time.
The phase space distribution at this point becomes ‘frozen in,” and in principle
contains information on the density of the accretion disk around the time of freeze-
out, regardless of conditions in, or even the existence of, the accretion disk at later
times. If the black hole continued to (slowly) accrete matter, the orbits would
each adiabatically conserve their angular momentum L and their component of L

perpendicular to the equatorial plane L, (Lee & Goodman 1989; see also Young
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1980), so that the flattening of the cluster would be preserved. Although colli-
sions between the remnants and remaining main sequence (MS) stars or giants
could still be important, the significance and outcome of such events would again
depend on the relative velocities involved. In high speed encounters, for example,
the remnant would “core” the larger star’s envelope but would emerge relatively
unscathed (although the MS star could be disrupted), whereas in a low velocity
encounter with a giant star, e.g., the compact object could be captured by the
larger star and a common envelope system could be formed (Davies 1993).

Overall, relativistic effects on the results were subtle. Because most orbits
were nearly circular and not very highly inclined by the time the typical orbit be-
came relativistic, precession effects, such as the Lense-Thirring (L-T) precession of
the orbital plane, could not significantly influence the orbits at that point. Orbits
passing near the black hole that did have large inclinations, which were subject to
large amounts L-T precession, were ultimately captured and hence did not affect
the late-time density distribution. Inside ~ 10 M , however, relativistic dynamics
were very important; in particular, the radius of the smallest stable (prograde)
circular orbit (= 6 M for a non-rotating hole and M for a maximally rotating one)
strongly influences the locations of the inner edge of both the accretion disk and
the cluster in this region. Outside ~ 10 M relativistic effects did not noticeably
influence the gross properties of the cluster (cf. Figure 4.10).

There are other effects which could conceivably limit the importance of an
initially dominant star-disk interaction. A dense enough cluster, for instance,
could impart kinetic energy to the disk at a faster rate than the disk is gaining
binding energy through mass accretion. For the fiducial cluster model, the binding
energy inside rp.x is easily estimated to be Ep ~ 2 x 1056 erg; the typical star
decreased its semi-major axis by about a factor of ten over the course of the
simulation, hence roughly 2 x 10°7 erg was transferred to the disk in the ~ 107
years that it took for the cluster to be brought into the disk plane. Since the
average energy transfer rate (~ 10*® erg s~!) this implies is much less than the

Eddington luminosity limit of ~ 10%® erg s~ for a 108 Mg black hole, an extremely



127

dense cluster (p.«(1 pc) 2 10° Mg pc™?) would be needed for this effect to become
important. The evolution of a cluster this dense would most likely be dominated
by stellar collisions, not star-disk interactions (cf. eq. (4.3)). Observed galactic
nuclei have central densities ~ 10° — 107 Mg pc™® (Lauer 1989 and references
therein). Another possible limitation is feedback of some of this binding energy
into internal degrees of freedom of the stars. Since the binding energy of each star
to the hole exceeds its internal binding energy by a factor ~ (vVorb/vesc)? > 1, only
a small fraction of the dissipated energy would need to be deposited internally to
disrupt the star before it becomes aligned with the disk plane. One way this could
happen would be through excitation of oscillations inside the star as it successively
smacks into each slab of disk material, which could conceivably build up faster than
they could damp out. Since there is no reason for the oscillations to be in any
way in phase with the impulses imparted by subsequent collisions with the disk,
the degree of excitation will most likely be a random walk process. Whether stars
would be disrupted by this process before their orbits are aligned with the disk is
an important question whose answer depends on where within the star the modes
are excited and damped. The calculation of this effect should be amenable to an

analytic treatment and seems worthy of further investigation.
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ABSTRACT

Simulations of the dynamical evolution of the density cusp of a dense star clus-
ter around a massive black hole are performed in a regime where stellar collisions
dominate other dynamical processes and the black hole dominates the gravita-
tional potential. The calculations are done fully relativistically using a cluster of
~ 10* discrete stars on geodesic orbits computed from the equations of motion of
the Kerr (rotating black hole) metric, allowing relativistic effects to be accurately
included. Numerical methods are developed to directly solve for collisions between
geodesic orbits, without approximation, over part of the cluster and to statistically
select collisions in an adaptive, self-consistent manner over the remainder of the
cluster; useful by-products of these routines include an exact, compact procedure
for determining the constants of motion from the orbital elements for bound Kerr
orbits and a modified form of Kepler’s Equation asymptotically valid in the Kerr
geometry. Collision outcomes are determined using fitting formulae derived from
an extended series of smooth particle hydrodynamics simulations of high velocity
stellar impacts performed independently of this analysis. It is found that colli-
sions produce a constant density inner core in the collisionally dominated region

of the cusp which is mainly populated by stars on highly radial orbits. This is

 To be submitted to The Astrophysical Journal.
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flatter than the r=1/2 law seen in Fokker-Planck calculations; the origin of the
discrepancy is not yet understood. Many grazing collisions are found to produce
relatively little fractional mass loss even when a head-on collision would result
in complete disruption, and a significant low mass tail consisting of post-collision
stellar fragments develops in the stellar mass distribution. Collisional refilling of
the loss cone is seen. The versatility of the simulation techniques makes them

usable in a range of problems.

Subject headings: stellar dynamics — galaxies: nuclei — black hole physics
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5.1. INTRODUCTION

Current observations continue to add support to the hypothesis, now over a
quarter century old (Lynden-Bell 1969; cf. Hoyle et al. 1964), that many (if not
all) galactic nuclei contain massive black holes (MBHs) at their centers. Recent
HST observations of M87, for example, give strong evidence of a central mass of
~ 3 x 10° Mg (Harms et al. 1994). Observations of M31 (Richstone, Bower, &
Dressler 1990; Bacon et al. 1994), M32 (Richstone et al. 1990; Lauer et al. 1992)
and the Galactic Center (Genzel, Hollenbach, & Townes 1994), are consistent with
central MBHs in the mass range ~ 3 x 10" Mg in M31 to ~ 10° M, for the Galac-
tic Center. In addition, there are strong theoretical arguments in favor of this
postulate. The leading explanation of energy production in active galactic nuclei
(AGNs), for instance, involves accretion of gas (usually in the form of an accretion
disk) onto MBHs having masses in the range ~ 10® — 109 Mg, and essentially all
plausible alternatives, such as supermassive stars or dense starbursts, are almost
guaranteed to produce an MBH during the course of their evolution if one is not
already there (e.g., Rees 1984). Additional support can be found in the dense
(p ~ 10° — 108 Mg pc™2) nuclear star clusters that have been directly observed
in several nearby galaxies, including the Milky way (Lauer 1989 and references
therein; Genzel et al. 1994). Besides the dynamical evidence for MBHs that
observations of their central velocity dispersions and light profiles have already
provided (see Kormendy 1994 for a review), numerical simulations of the dynami-
cal evolution of these clusters themselves indicate that they are probably unstable
to the formation of moderate mass (~ 10°Mg) black holes, which would subse-
quently grow to ~ 10° — 108 M, through continued consumption of stars from the
surrounding cluster (Quinlan & Shapiro 1990). In spite of all this, however, there
is still no definitive proof that the central mass concentrations in galactic nuclei
of the central engines of AGNs must be MBHs. Thus there is impetus from both
sides of the debate to determine the probable influence of MBHs in galactic nuclei

(active or not), either as a physical exploration because their existence is quite
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likely, or, by uncovering unique, observable black hole signatures, as a possible
way to help prove (or disprove) their existence.

From a physical standpoint, the existence of dense star clusters in galactic nu-
clei makes it a near certainty that collisions between stars will play an important
role at some point during the cluster’s dynamical evolution, at least at small radii,
since both relaxation processes (which lead to eventual gravothermal collapse of
the core) and central MBHs will tend to drive the inner regions towards higher
densities and velocity dispersions until collisional processes become significant.
Historically, before accretion onto a black hole came into favor as a way to power
AGNs, several authors examined the evolution of nuclear star clusters (without
black holes) in which, after a period of relaxation, stellar collisions became the
dominant dynamical process, in part to see if the energy released in the collisions
themselves could explain the luminosity of quasars (Spitzer & Saslaw 1966; Spitzer
& Stone 1967; Colgate 1967; Sanders 1970). Spitzer & Saslaw (1966) and Spitzer
& Stone (1967) studied clusters with high velocity dispersions (vrms 2 10® km s™1)
in which collisions were presumed to be disruptive, using a simple geometric model
of mass loss from stellar collisions to compute the mass liberation rate, finding a
peak luminosity of ~ 10*® erg s™! for a cluster of 108 stars with an initial radius of
0.05 pc. Colgate (1967) pointed out that when collisions first become important,
they Would occur at low enough relative velocity that coalescence would occur in-
stead of disruption, and argued that the resulting buildup of massive stars, which
would subsequently lead to a high rate of supernovae, could generate enough lu-
minosity to explain energetic AGNs; a similar study by Sanders (1970) reached
the opposite conclusion. A common feature of these studies is that they all used
simple, qualitative prescriptions to calculate the outcome of a collision. The con-
flicting result of Colgate and Sanders, most likely resulting from the somewhat
different prescriptions each used, highlights the uncertainty such an approach can
introduce.

On the technological side, the continuing growth in computer power is allow-

ing increasingly realistic simulations of both the dynamical evolution of galactic



134

nuclei and of the hydrodynamics of stellar collisions to be performed. The more
recent studies of the evolution of galactic nuclei (Duncan & Shapiro 1983; David,
Durisen, & Cohn 1987a,b; Quinlan & Shapiro 1990; Murphy, Cohn, & Durisen
1991) have used the Fokker-Planck method including progressively larger num-
bers of dynamical processes to examine cluster evolution, taking into account such
processes as two-body relaxation, tidal disruption, stellar evolution and mass loss,
loss cone effects, binary formation and heating, and stellar collisions. Although
these studies represent major advances over previous research, they do have lim-
itations. We note for one that it is assumed in these studies that the cluster can
at all times be described by an isotropic distribution function f(&); additionally,
since by nature the Fokker-Planck approach is a statistical one, the above pro-
cesses can only be included in an average sense. These studies have used the same
or similar prescriptions for determining the outcomes of stellar collisions as used
in the early studies, leaving them subject to the same uncertainties; advances in
hydrodynamics simulations, however, and in particular the development and ap-
plication of smooth particle hydrodynamics (SPH) techniques to the problem of
stellar collisions (Benz & Hills 1987; Davies, Benz, & Hills 1991, 1992; Lai, Rasio,
& Shapiro 1993), promise to greatly improve this shortcoming.

The purpose of this paper is to examine the dynamical evolution of the inner
core of a dense star cluster around a massive black hole in the regime that stellar
collisions dominate the evolution and the black hole dominates the potential, using
a different (and more versatile) approach than has been used previously. Specif-
ically, the cluster is modeled using a discrete collection of stars whose orbits are
accurately traced using the geodesic equations of the Kerr (rotating black hole)
metric. The intention is not only to compute the evolution of cluster properties
such as the density profile, orbital distributions, and collisional mass liberation
rate, but also to determine the importance of relativistic effects on the evolu-
tion, in particular as regards rotating (Kerr) against non-rotating (Schwarzschild)
black holes. In the evolution of: twisted accretion disks (Bardeen & Petterson 1975:

Kumar & Pringle 1985; Pringle 1992), for instance, Lense-Thirring precession as-
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sociated with Kerr black holes causes the inner portions of the disk to align with
the equatorial plane of the hole (the Bardeen-Petterson effect). It is conceivable
that the inherent anisotropy of the Kerr spacetime could manifest itself in the
present case as well, since we will be considering the innermost regions of the
cluster for which relativistic effects on orbits are noticeable. Additional discussion
of Kerr effects is given in §5.2.2. The use of discrete stars also makes it easy to
include a stellar mass spectrum and to follow its evolution, which could be sub-
stantial (Lee & Nelson 1988). Since the use of individual stars does restrict the
volume around the hole that can be treated, due to the limited number of stars
that can be included (~ 10* in these simulations), the approach adopted here can
be considered complementary to Fokker-Planck analyses, which are appropriate
in the opposite limit of large volumes (where difficult-to-include relativistic effects
are much weaker) and numbers of particles (which creates a well-populated phase
space distribution).

As explained in §5.3, collisions between stars are found using a hybrid method
in which collisions between the innermost (~ 500) cluster stars are solved for
directly, without approximation, with collisions between the remaining (~ 10%)
stars being randomly selected to occur at a dynamically computed rate that takes
account of the current conditions in the cluster. This approach offers several ad-
vantages. First is its ability to allow the stars closest to the black hole, which
are affected most strongly by relativistic effects, to be treated with a minimum of
approximations, which could mask or bias subtle relativistic influences. Second,
since finding collision events explicitly (especially between general quasi-elliptical
Kerr geodesics, as is being done here) is expensive, the use of a zone of randomly
generated collisions allows a much larger total volume and number of stars to
be followed at minor additional cost. It is also versatile in that each individual
strategy has enough flexibility to be used in several different ways, the simula-
tions presented here representing only an initial application. The collision finding
algorithm, for instance, can, with minor revision, be used to evolve a cluster un-

dergoing two-body relaxation (gravitational ‘collisions’) in the vicinity of a Kerr
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black hole. Another application is to sticky-particle type simulations in a Kerr
environment, which could be useful for investigating the evolution of relativistic
disks, for example. The adaptive behavior of the routine which randomly selects
collisions makes it usable even when the distribution is changing rapidly or is sig-
nificantly anisotropic. A modified form of Kepler’s Equation asymptotically valid
in the Kerr metric and a compact, exact procedure for computing the constants
of motion from the orbital elements for an arbitrary quasi-elliptical Kerr orbit,
derived in Appendix A (both are used by the collision finding routine), are also
generically useful.

To alleviate as much as possible the uncertainties alluded to previously, the
outcome of each individual collision (characterized by the mass loss and vector
change in velocity suffered by each star), however it is found, is computed using
fitting formulae derived from the results of a detailed set of SPH simulations of
high velocity stellar collisions prepared independently of this work (Davies 1994).

The remainder of this paper is organized as follows. In §5.2, the basic dy-
namical processes relevant to the simulations are briefly reviewed; some discussion
of the properties of Kerr black holes is also given. Section 5.3 explains in detail
how the simulations were performed as well as the assumptions and simplifications
made. Results and discussion are given in §5.4, and conclusions are offered in §5.5.
Finally, Appendix A derives the modified Kepler’s Equation, and Appendix B lists
the SPH fitting formulae and gives related discussion.

Except where units are specifically given, this paper uses dimensionless vari-
ables defined by taking G = ¢ = M = 1, where M is the mass of the black hole.
Hence distances are measured in units of GM/c?, time in units of GM/c3, and

velocities in units of c.

5.2. STELLAR DYNAMICAL PROCESSES IN AGNS

5.2.1 Dynamacal Influences on Cluster Evolution

The physical processes which in principle can affect the evolution of a star

cluster include two-body relaxation, tidal (i.e., loss cone) effects (if the cluster
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contains a black hole), stellar collisions and mergers, stellar evolution and mass
loss (supernovae), star formation, the creation of binaries and heating through bi-
nary encounters, and in the case of a cluster in an AGN, possibly also interactions
with an accretion disk. For highly relativistic clusters’ energy losses due to gravi-
tational radiation can also be important (e.g., Lee 1993; Quinlan & Shapiro 1989),
although this is mainly relevant for clusters composed of compact objects such as
neutron stars or stellar mass black holes, not main sequence stars. In the cluster
cores treated in these simulations, which extend to distances of rse ~ 102 — 10
from the MBH depending on the model, the typical velocity dispersion is quite
high, vims ~ Vorp = TS_C1/2 ~ 0.03 ~ 10,000 km s~* (the choice of notation rsc
will become clear in §5.3), much larger than the surface escape speed of solar type
stars, vesc ~ 600 km s™!. Because of this, binaries and relaxation effects will be
unimportant compared to collisions in determining the local dynamical equilib-
rium, and collisions will lead to eventual disruption of stars instead of mergers.
As explained in §5.3.5, in some simulations relaxation is included in a limited way
to account for injection of new stars into the inner core from the exterior regions
of the cluster, but it is otherwise neglected. The short evolution times of most
of these cores (~ 10° — 10® yr) should make stellar evolution processes of little
importance, especially since the more massive, quickly evolving stars also tend to
be the first to collide due to their larger geometric cross-sections, and it was not
included here; star formation is similarly neglected.r

If the AGN contains an accretion disk, it will affect the evolution of the cluster
through star-disk interactions (Syer, Clarke, & Rees 1991; Karas & Vokrouhlicky
1993; Artymowicz, Lin, & Wampler 1993; Rauch 1994). The main effects are
circularization of the orbits and alignment with the plane of the disk due to the
drag force suffered by the stars as they hit the disk twice per orbit. It was originally
hoped to include in the present paper, in the manner of Rauch (1994), simulations
containing an accretion disk; preliminary calculations, however, indicated that

results might be sensitive to how star-disk collisions are treated, and to allow for
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a more careful treatment, this class of simulations will therefore be explored in an
upcoming companion paper.

If evolution is dominated by relaxation, the effect of a central black hole
(treated as a Newtonian point mass) on an isotropic cluster is to create a density
cusp p o< r~7/* within the hole’s sphere of influence ry, ~ vl (Bahcall & Wolf
1976). However, the existence of black hole horizons, and, for holes < 10°M,),
a tidal radius, creates a loss cone which will modify (flatten) this cusp at small
radii (Frank & Rees 1976; 4Lightman & Shapiro 1977), due to tidal disruption or
direct consumption of stars entering the loss cone, which occurs on a dynamical
timescale. Collisions will further modify the cusp solution, and one of the results of
these calculations will be a quantitative estimate of this effect in the vicinity of the
MBH. Hills (1975) suggested tidal mass loss and subsequent accretion of gas onto
the black hole as a possible way to power AGNs. It is now generally agreed that this
mechanism liberates insufficient amounts of gas to account for the more powerful
AGNs unless collisional processes predominate. By incorporating the results of
SPH simulations of colliding stars into the analysis, one aim of this paper is to
realistically estimate the mass liberation rate produced by these collisions. Tidal
mass loss is also accounted for in the calculations, but as shown in §5.4 this mass
loss rate is significantly below the amount lost in collisions.

'To summarize, in all calculations presented here disruptive collisions dominate
the dynamical evolution of the cluster, and relaxation enters in a very limited way.
Although expected to be of secondary importance, tidal effects are also included
as the cost of doing so is trivial in our approach. To determine the range of
cluster densities and radii over which these assertions are valid, we now compare
the relative importance of these three processes more carefully. To this end, it is
useful to define dimensionless, orbit-averaged collision, relaxation, and tidal depths
defined by 7; = § dt(r)/t;(r), where the corresponding timescale for process 7 is
t; and the integral is over a complete orbital cycle of the particular star under
consideration. Thus, for instance, 1 /Teoll 1s the average number of orbits traversed

between collisions, to,t, /T is the orbit-averaged relaxation time, and process i
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dominates process j whenever 7; > 7;. The respective timescales are given by
teoll ~ (Nuovrel) ™, tr ~ 03, /[15G*m?2n, In(0.4N,)], and ¢, ~ (1 — €?)t,, where n,
is the number density of stars, o ~ 47 R? is the collision cross-section (neglecting
gravitational focusing, since viel > vesc), Vrel (R V2 vor1, for an isotropic cluster)
is the typical relative velocity between stars, vo;, = [1/7 — 1/(2a)]'/? is the star’s
orbital speed, and N, is the total number of stars in the cluster. The semi-major
axis and eccentricity of the orbit are a and e. The tidal timescale t, is the typical
time needed for the orbit to diffuse into the loss cone (assuming the loss cone orbit
has € = 1). Note that 7; for an orbit with a(l—¢€) ~ ry (where ry ~ 2R*(M/m,()1/3
is the tidal radius) is essentially the function ‘¢(E)’ of Lightman & Shapiro (1977),
defined as the ratio of the mean square change in angular momentum per orbital
period due to relaxation to the width of the loss cone itself; thus 1/(1 + 7,) is
approximately the fraction of orbits lying near the loss cone which enter it (and
disrupt) each orbital period. Assuming n, = 10%n¢(r/1 pc) /4 pe3 and M =
108 Mg Mg, the numerical values of these depths are approximately

2
Teoll & 5 x 1074 n6M8_3/4 (%) [a(l — e)] _3/4,
©

2
_ - « 14 €)%/4(5 — 3¢)
-~ 10~15 3/4 [T ( 5/4 1
e &4 x 107" ng My v 1= a’, (5.1)

) [

T~ 4 x 1071 n<5M8_3/4 (

Note that a is still in units of M; in physical units, M = 5 x 10~%Ms pc. The con-
dition 7con R 7; implies a < 10° (assuming solar type stars), almost independent
of ¢; it follows that collisions are more important than relaxation in determining
the distribution function at radii r < 10° = 0.5Mjs pc, independent of the absolute
density. Similarly, tidal effects are more important than relaxation for r < 7.,
where 7y ~ 1 for re;it(1 —€) ~ ry, which implies req ~ 5 x 10% né/mMB_”39 (again
assuming solar type stars). To complete the triad, the condition for collisions to
dominate over tidal effects, .o > 7, implies a < 2000 7":511/1113» where rmin = a(l—e).

Hence in the region where collisions dominate over relaxation, they also dominate
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loss cone effects, except for a class of high eccentricity, large a orbits that violate
the last inequality. Motivated by these considerations, the cluster initial conditions
were chosen to be a truncated r~7/* power law with amin ~ 7 and amayx ~ 10°
(see §5.3.1).

The numerical values for the orbit-averaged timescales, t; = torb/7:, are

R\ 2
feon 2 0.2ng ' My* (R ) (1— &)~/ yr,
®

tem 2 x 1010 i pg7 /4 ( - (1=t ity (5.2)
! ¢\ Mg (1+€)5/4(5 —3¢)| ™™ 77

-2
ty~ 2 x 101 s Mt (;;;) {(1 +(2)—1_/:();/i 36)} rift oy
These specific relations are only valid within the (r~7/) cusp, which extends to a
radius r, ~ 1 X 106n6—4/5M8_1/5 ~ 5n6_4/5M§/5 pc, outside of which the cluster,
not the black hole, dominates the potential. Table 5.1 lists r,, and the maximum
radii for which each timescale is shorter than a Hubble time, ~ 10'° yr, for several
hole masses, assuming solar stars and €2 = 0.5 (the mean value for an isotropic
cluster). Astrophysically the mass M = 10°Mg could correspond to a modest
Seyfert galaxy or to the Galactic Center, M = 3 x 10" Mg to a bright Seyfert
or M31, and M = 10° My to a typical quasar or a nucleus such as M87’s. Note
that collisions are always important in the cusp and that relaxation processes are
negligible for nuclei with very massive black holes. Since the r~7/% cusp is created
on a relaxation timescale, the last point suggests that a well-formed cusp has not
had time to develop in these nuclei; however, initial adiabatic growth of the black
hole, which occurs on timescales much shorter than t;, creates a similar cusp,
between r~3/2 for isotropic orbits to r~%/% for purely circular orbits (Young 1980).
The 7~7/* form should therefore provide a reasonable description of the cusp even

in this case.

5.2.2 Effects of Kerr Black Holes

One feature of the collision code is its use of a fully relativistic formalism for

the computation of stellar orbital trajectories and collision center-of-mass frames,
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TABLE 5.1

Maximum Radii for Dynamical Evolution Within a Hubble Time

4/5 —4/9 —4 —4

M (M) (pc) (M) (pc) (M) (pc) (M) (pe)
1x10°Mg 3x105 0.2 9x10° 0.05 >r, >rn >rm >
3x10'Mp 2x10° 2 7x10* 01 >r >r >r >
1x10°Mg 1x105 40 4x10®° 02 <1 - <1

using the Kerr metric to model the spacetime environment. This is the appro-
priate model for astrophysical black holes where they dominate the gravitational
potential, as in these simulations. This section gives a short review of the physics
of Kerr black holes. For a detailed review of black holes in an AGN environment,
see Blandford (1987).

In general relativity, all black holes are completely specified by three parame-
ters (e.g., Misner, Thorne, & Wheeler 1973), their mass M, angular momentum J,
and charge @, with the additional requirement that Q2% + (J/M)? < M? (violation
of this constraint results in a naked singularity, not a black hole). In astrophysical
contexts, () is essentially guaranteed to be unimportant dynamically, as even a
small relative excess of charge would be quickly quenched by accretion of charged
particles due to the greatly mismatched strengths of gravity and electromagnetism.
The angular momentum of the hole, however, can be substantial. (The remainder
of this discussion will assume @ = 0 and define j = J/M2.) This is particularly
true for black holes in AGNs, which are expected to be spun up by accretion of
matter (as from an accretion disk) to near maximal values, j ~ 1, regardless of
their initial j (Bardeen 1970; Thorne 1974).

Both Kerr and Schwarzschild (j = 0) black holes exert qualitatively new ef-
fects on orbits compared to Newtonian gravity. In the Schwarzschild case spherical

symmetry ensures that orbits still lie in a plane, but due to precession bound or-
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bits no longer close on themselves; asymptotically far from the hole this precession
amounts to 67 /[a(1 — €?)] rad per orbit (cf. eq. (5.17)). In the Kerr case the angu-
lar momentum introduces a preferred direction, and in general orbits no longer lie
in a plane, although for distant orbits the motion can be well approximated by a
slowly rotating planar orbit. Physically this non-planarity (or precession of the ef-
fective orbital plane about the spin axis of the hole) is the result of Lense-Thirring
precession. In an AGN environment Lense-Thirring precession can have impor-
tant consequences, such as the Bardeen-Petterson effect, as mentioned in §5.1.
Another qualitatively new feature is the creation of a region of unstable orbits.
In the Schwarzschild case circular orbits inside 6 are unstable (and do not exist
at all inside 3M), and small inward perturbations will cause them to spiral into
the hole; additionally no quasi-elliptical orbits exist with rpyin < 4M. For Kerr
holes these radii depend on both j and the orbital inclination, but qualitatively
speaking, retrograde orbits become unstable at larger radii and prograde orbits
are stable to smaller radii. A dynamical consequence of this is the creation of a
loss cone even for objects which cannot be tidally disrupted by the hole. A final
new property we will mention is the presence of negative energy orbits around
Kerr holes, which exist only within the ergosphere (the region near the horizon in
which frame-dragging forces all trajectories to rotate in the sense of the hole); the
significance of these orbits is explained below.

In a dynamical sense, Schwarzschild black holes are ‘dead’—their potentials
can power AGNs through release of binding energy of inspiraling matter (up to
~ 6% of the rest mass), but their own rest-mass energy cannot be released. This
is not the case for Kerr holes, whose spin energy can be extracted, up to a point,
by several mechanisms (decreasing M in the process). One of these is the Penrose
process (Penrose 1969), in which a particle on a negative energy orbit can cross the
horizon and reduce the hole’s mass. Energy can also be extracted electromagneti-
cally (Blandford & Znajek 1977). In the calculations presented here, however, such
effects have little chance to operate, and in terms of possible influences on clus-

ter evolution, the salient relativistic effects are precession and possibly loss cone
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effects; collision dynamics might also be influenced by the anisotropy of the Kerr
spacetime (frame-dragging effects). Note that optical observations can only resolve
distances ~ v;fs ~ 1% 10%(vobs/10% km s71) 72 ~ 1Mz (vobs/10® km s 72 pc, on
which scales these effects will be quite small, and hence that direct observation of

these effects is implausible.

5.3. NUMERICAL METHOD

Each stellar cluster considered in the numerical simulations was separated into
four distinct radial regions. The innermost zone, which will be termed the tidal
region, normally contains few (if any) stars and delineates the volume around
the black hole within which stars will be tidally disrupted should they enter.
Immediately outside this zone lie the innermost stars of the cluster itself, in what
will be called the ‘collision finder’ (CF) region; in this zone, physical collisions
between the stars were found by advancing each star whose orbit crossed the CF
region along its respective geodesic trajectory and searching for close encounters
between all such pairs of stars whose orbits could possibly cross. Outside the CF
region (which at any given time extends from ry out to a radius to be called r¢r) lies
the ‘statistical collisions’ (SC) region, in which individual collisions were not solved
for iteratively but were made to occur, by suitably altering the orbital phases, at a
rate equal to that expected from each star’s orbit-averaged collision timescale. This
zone extends out to some fixed radius rsc; typically rsc/rer ~ 5 — 10. Finally, the
outermost region (not present in all simulations), labeled the ‘reservoir,” consisted
of all other stars in the cluster. The dynamical evolution of this region was not
considered in the simulations and its only purpose, when applied, was to feed
new stars into the inner regions to allow a steady state within the inner zones
to be reached. The details of how each of these regions was dealt with, as well
as the zone-independent assumptions employed, are explained in the following

subsections.
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5.3.1. Fundamental Parameters and Initial Conditions

Each simulation is characterized by specific values or treatment of the follow-
ing elements:
a) the mass M and angular momentum j of the black hole,
b) the initial distribution function of the cluster, f(&,L,L,),

c) the input stellar mass spectrum,

d) the number of stars in the CF (§5.3.3) and SC (§5.3.4) zones, and

=
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e) the presence or absence of the outer cluster reservoi

One additional element, which was treated the same way 1n all simulations, is
the determination of the outcome of a collision, for which the results of SPH
simulations of’colliding stars, performed independently of this work, were used
(Davies 1994); for details, see Appendix B.

Hole masses in the simulations ranged from ~ 10° to ~ 10° My, roughly cover-
ing the range suggested by observations of galactic nuclei (see §5.1 for references).
Most simulations used j = 1, for which any precession-induced effects would be
maximized; to judge the significance of the black hole’s spin on the results, a few
runs were repeated using j = 0.

In the Newtonian point-mass potential ¥ = 1 /r, all five orbital elements—
the semi-major axis, a, eccentricity, e, inclination, 7, argument of periapse, w,
and argument of the ascending node, Y—are constants of the motion. The corre-
spondence to energy and angular momentum is £ = 1/(2q), L? = a(l — €?), and
L. = Lcosi. We are using the conventions that & > 0 is the binding energy and
that 0 <4 < 7, where ¢ = 0 corresponds to a prograde orbit in the equatorial plane
of the hole and ¢ = 7 to a retrograde orbit in that plane. In the Kerr spacetime ge-
ometry, geodesics possess only three constants of motion, which for quasi-elliptical
orbits can be equated with a, ¢, and i—or, (almost) equivalently, £, L, and L,—
with precession effects leading to non-conservation of w and Y. (Strictly speaking,
L is not conserved for Kerr orbits; ¢f. Appendix A.) The simulation code was

equipped to create clusters with a distribution function (in an externally imposed
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Newtonian potential ¥ = 1/r) of the form

I{gn_3/2 epLz/Lx?nax(g) 6qu/L7 gmm S g S gmax ;

f(gaLaLz) = {0 (53)

) otherwise,

where L2 . (€) = 1/(2€) is the maximum possible angular momentum for an orbit
of energy £ and the normalization,

(n — 3)pg N«
V273(eP —1)sinhq(Emar — E77%)

min

K= (5.4)

is such that the total number of stars in the cluster is [ fd’rd®v = N.. As
explained below, p and ¢ are anisotropy parameters for velocity and real spaces,
respectively, and n is the power law index of the radial density profile.

The value of K can be easily derived as follows. Create polar coordinates
in both real space, (r,6,¢), and velocity space, (v,n,£). It is convenient to
let cosp = 7.0 and £ be the corresponding azimuthal angle. By performing
the coordinate transformation (r,6,¢,v,1n,6) — (€,L,L.,v, ¢, £), noting that
E=1/r —v%/2, L = rusiny, and L, = rvsinfsinysiné, and then integrating
over dv d¢ d¢, one finds [ d3r d*v — (V27)3 [ £73/2d€ dL dL, (each integral being
done over all allowed ranges of each variable), from which the result for K follows.
Since f(€,L,L,)/N, can also be thought of as the joint probability distribution for
the orbital parameters a, €, and 7, it follows therefore that the probability distribu-
tions of a, ¢, and ¢ are independent and given by P(a) = (3—n)a?™"/[a’;" —a® "]
(where 2amax = 1/Emin and 2 amin = 1/Emax), Ple) = 2pee‘p‘2/(1 —e7P), and
P(i) = gsini e?°°t/(2sinh ¢). By creating the appropriate number of orbits with
elements drawn from these distributions, a cluster with the distribution function
(5.3) will be produced. Note that although this formalism is entirely Newtonian,
once the elements of an orbit were drawn, the orbit was created using a procedure
appropriate for the Kerr metric; for details, see Appendix A.

The specific analytic form of eq. (5.3) was chosen for its simplicity, ease in
producing the desired initial density profile, and for its ability to model the overall

effects of a cluster evolving in the presence of an accretion disk (cf. §5.2.1). For
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p=4¢g=0, f= f(€) only and the cluster is isotropic in both real and velocity
spaces. For p # 0 the velocity dispersion is anisotropic, with orbits becoming
increasingly radial on average as p tends to large negative values and increasingly
circular for large positive values of p; in real space the cluster remains spherically
symmetric. For ¢ # 0 symmetry in real space is broken, with orbits being pref-
erentially retrograde for ¢ < 0 and prograde for ¢ > 0. To good approximation,
the density p(r,0) = [ fd®v scales as p & ™" for amin < 7 < Gmax (and fixed
6), independent of p and ¢. In fact, all simulations reported here used ¢ = 0
for the initial cluster; the value of p ranged from 0 to 10. Previous theoretical
investigations into the equilibrium distribution function of a star cluster around
a black hole, each making slightly different assumptions, give values of n in the
range n ~ 3/2 — 9/4 (Peebles 1972; Bahcall & Wolf 1976; Young 1980). All runs
presented here used n = 7/4, the Bahcall-Wolf result, with N, chosen so that
p(1pc) & 10° — 10" My pe™®, in line with observations of real (but dense) nuclear
star clusters. As explained in §5.2.1, the values ami, = 7y (the tidal radius) and
amax = 10° (the approximate radius beyond which relaxation is more important
than collision) were used.

Most simulations used initially equal mass stars, specifically M = Mg or
M =10Mg. When a range of initial masses was included, a Salpeter mass function
with 0.4Mg < M < 4Mg was used for convenience, and all masses were assumed

to follow the same distribution function.

5.3.2. The Tidal Zone

The tidal zone, which is normally devoid of stars (except for those few in the
process of disruption), extends from the event horizon of the black hole out to the
tidal radius of the cluster stars, and is the region within which a passing star will
be tidally disrupted by the hole. Since the tidal radius r; ~ 2R.(M/m )3 =
4.4M;2/3(m*/M@)1/3 (assuming R, o mE/B) is mass-dependent, this region is
of definite size only for clusters with equal mass stars. During the simulations,

r¢ was computed individually for each star, and whenever a collision placed the
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surviving star on an orbit passing within its own r¢, it was removed from the
simulation and its mass added to the ‘tidal disruption mass loss’ total, M. When
setting up the cluster initially, if the randomly drawn orbit happened to pass
inside its tidal limit, it was simply rejected and another orbit created until one
not suffering this condition was obtained; to help keep this from occurring in the
first place, amin = 1/(2Emax) (see the previous section) was normally taken to be
the tidal limit of a typical mass star in that simulation. When adding stars from
the reservoir (see §5.3.5) during the course of a simulation, however, such an orbit
was not rejected but instead the associated mass was immediately added to M;,
and no star was actually added to the inner cluster; this procedure allows the mass
loss rate due to stars entering the tidal loss cone, Mt, to be realistically estimated
and compared to the collisional mass liberation rate, Mcoll~ In most simulations,
however, the tidal radius was small and close to the horizon, and in all cases it
turned out that M, < M.y (see §5.4). In simulations possessing a steady state,
the ratio of the two mass loss rates should be roughly M;/Meon ~ L2/L%. (< 1
for the specific parameters used in most simulations), i.e., the fraction of orbits
inside rsc which also cross r¢, the L; being defined such that orbits with L < L;
pass inside r;. Overall, therefore, the tidal zone was expected to play a small role

in most of the simulations, and such was indeed found to be the case.

5.3.3. The ‘Collision Finder’ Zone

The CF zone is not so much a specific region of space as it is a region of orbital
parameters. It consists merely of those Ncp stars with the smallest periapses,
and extends from the inner boundary of the cluster (set by the tidal radius) out
to a radius rop determined by Ncp and by the current conditions within the
cluster. In this region actual collisions between the stars are solved for, without
approximation. This is done by advancing each star in the CF region along its
quasi-periodic geodesic trajectory .(also computed exactly from the equations of
motion in the Kerr geometry), orbit by orbit, and searching for close encounters

between all overlapping pairs of orbits; the precise method used to accomplish
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this is given in complete detail below. In an ideal universe containing unlimited
computing power, one would set Nocrp = N, and solve for the true collisions over the
entire cluster; in the real universe and with current CPU technology, the algorithm
used to sift through the orbits in search of collisions reached its practical limit at
Ncr ~ 500, for which runs covering physically worthwhile periods of time took
~ 1 week on a state-of-the-art desktop workstation. Although not large by N-body
standards, this number did allow a significant portion of the innermost region of
the cluster, the part which can be affected by relativistic effects most strongly,
to be treated without approximations (excluding the uncertainties in the SPH
fitting formulae), which could conceivably introduce bogus effects or mask real
ones, as in the question of whether or not the anisotropy of the Kerr metric can
act to leave post-collision stellar remnants in preferentially low-inclination orbits,
for example. It is also important to remember that unlike Newtonian N-body
simulations, in the present case the gravitational force is not 1 /r?, coordinate
time is not the computationally convenient independent variable, and in general
the orbits being followed neither lie in planes nor close on themselves, all of which
make the problem of searching for collisions considerably more challenging (and
time-consuming). Since it was nonetheless desirable, and in some cases necessary,
to extend the radial range and total number of stars present in the simulations, an
intermediate region that could contain ~ 10* stars was created in which collisions
were not solved for but were forced to occur at a self-consistent rate; the treatment
of this region is described in §5.3.4.

In broad terms the functioning of the collision finder can be understood as
follows. Imagine separating the continuous geodesic trajectory of each star into
a series of segments, each segment beginning at one periapse and extending to
the next (future) one; for orbits lying far from the black hole these segments are
nearly ellipses and have a well-defined orbital plane, but in general neither of
these properties will hold. Now consider finding all collisions (close encounters)
between a specific (but arbitrary) pair of stars in the CF zone; obviously, only

stars whose orbits overlap radially need be considered, for they cannot possibly
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collide otherwise. Associated with each orbital segment is the corresponding time
interval that the star lies within that particular segment, and it is likewise clear
that only those orbital segments that overlap in time need be examined further
for close encounters. Thus by considering in turn each successive orbital segment
for one of the stars and finding for each those segments of the other star’s orbit
which overlap in time, an exhaustive search for collisions between that pair of
stars will result; by repeating this procedure for all possible pairs of stars in the
CF region, all collisions occurring within the cluster will be found, and this is the
basic strategy used by the collision finding routine. What remains to be worked
out is an efficient method for finding close encounters between any given pair of
orbital segments, or more appropriately, since in fractional terms exceedingly few
segments will actually have a collision point, for rejecting non-colliding orbital
segments as quickly as possible. Although to some this strategy may seem rather
awkward and roundabout, it manages to substantially avoid the computational
problems suffered by conceptually simpler time-based algorithms. In time-based
approaches, such as the step-by-step N-body integration of the evolution of a
globular cluster, time is the natural variable of integration, and searching for
collisions is in principle a near triviality, since at each time step the position
and velocity of each particle are already known and close encounters (or nearest
neighbors) can be hunted for directly. In the Kerr spacetime, however, a much
more efficient solution to the geodesic equations can be obtained if radius (or, in
principle, the polar angle) is used as the independent variable instead of time, since
when this is done the equations of motion can be recast as definite integrals, some
of which can be solved (and even inverted) analytically (for details, see Rauch &
Blandford 1994). Once this is done, one can efficiently find the value of coordinate
time given the radius, and it is not even necessary to integrate around each orbit to
find the successive times of periapse passage, or in other words, since the geodesic
solutions are space-based, whole series of orbits can be ‘skipped’ essentially for
free, a property not shared by methods attempting solution in the form of a set

of ordinary differential equations. The collision finding strategy was designed to
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exploit the aforementioned properties of the space-based Kerr geodesic routines,
making it well-suited to the problem at hand.

Synchronization presents a special problem. Since the orbital periods of in-
dividual stars can vary widely, keeping the orbital segments of one star in step
with those of every other star requires careful treatment. This was dealt with
by dynamically creating a stack frame containing, for each star, all segments of
that star’s orbit traversed between fixed starting and stopping times, the number
of segments needed being directly proportional to the star’s orbital period. All
collisions occurring within the given time interval are then found by comparing
corresponding pairs of segments, the starting and stopping times are incremented,
and the entire process is then repeated.

Clearly, quite a large number of pairs of orbital segments, ~ (tmax/ t_o,b)N%F
(~ 10'° in the simulations), where ., is the maximum time reached in the
simulations and 1, is an average star’s orbital period, need to be examined in
the course of a run; hence it is crucial to be able to discard pairs without a collision
point as quickly as possible. The heart of the collision finding algorithm lies in its
application of a series of increasingly refined (and time-consuming) ‘cuts’ to the
particular pair of segments, designed to reject as quickly as possible pairs which
don’t collide, without falsely rejecting pairs that do. As these are competing
goals, a suitable balance between speed and accuracy needs to be achieved, and in
practice acceptability was defined as a false rejection rate (the fraction of collisions
not found by the algorithm) of < 1%.

As the existence of time is not to be denied regardless of its computational
liabilities, central to this endeavor was the development of a modified version
of Kepler’s Equation valid in the Kerr geometry, derived as an expansion in § =
1/[a(1—¢€*)] and valid to O(65/2). Although orbits in Kerr do not, in general, lie in
a plane, the non-planarity of any single orbital segment will be small as long as the
orbit does not pass too close to the hole. Thus by approximating single segments
as lying in a mean orbital plane defined by the star’s position and velocity vectors

at apoapse (where relativistic effects for a given orbit are smallest) and applying
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the modified Kepler’s Equation, the approximate position of the star in that plane
as a function of time can be economically computed. In this way the basic strategy
one would use to seek a collision between two Newtonian elliptical orbits can be
applied to the Kerr segments with (conceptually) only minor amendments. The
modified Kepler’s Equation and related formulae are derived in Appendix A.

In final detail the segment rejection algorithm works as follows. Having ex-
cluded all pairs of stars whose orbits do not radially overlap, the following cuts
were applied to each pair of segments until the possibility of collision was excluded
or, in the end, confirmed. First, the modified Kepler’s Equation was used to find
the time intervals during which each star resided in the radial overlap zone, in
which all collisions must of course occur; if the time intervals did not overlap,
the pair was rejected immediately. If this failed, use was made of the fact that
each segment lies nearly in a plane. Were each orbit strictly planar, clearly they
could collide only along the line of intersection of the two planes; for small devi-
ations from planar motion, a collision point must lie somewhere near the line of
intersection, unless the orbits are almost coplanar. Quantitative estimates of the
maximum perpendicular deviation from the mean plane over a single orbit were
made and used to reject segment pairs whose spatial separations at the line of in-
tersection exceeded this limit; if a collision appeared spatially possible, the times
at which the stars crossed the line of intersection were computed and exclusion
was attempted on that basis. A complication over the Newtonian case is that due
to general precession inside the mean orbital plane, one periapse-to-periapse orbit
can cross the line of intersection more than twice, and possibly many times, each
at a different radius, so that one must be careful to test all possible intersection
points for overlap before rejecting a pair of orbits. F inally, if a close encounter
was found by this procedure and the pair still could not be rejected, the full Kerr
routines were used to find the exact point of closest approach of the orbits, using
the approximate location as an initial estimate. If the minimum distance found
was less than the sum of the stars’ radii, a collision was flagged and sent to the

collision processing routine (cf. Appendix B).
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To verify that the collision finder was working properly, tests were done with
full scale clusters (Ncp > 100) similar to those used in the actual simulations in
which numerous randomly selected pairs of stars were given initial conditions that
put them on a collision course at a known time and place in the future, normally
many orbital periods ahead. The false rejection rate was then found by counting
the number of collisions missed by the collision finder; the accuracy of the recovered
collision coordinates and minimum distance was also checked. In all tests the loss
rate was < 2%, with < 1% being the typical case, and the recovered collision
parameters were accurate. Additionally, during the production runs histograms of
the recovered minimum collision distances (i.e., impact parameters) were tallied
and examined and the resulting distributions agreed with that expected from an
equal-areas probability law, giving runtime assurance that no bias against the
recovery of collisions with any particular impact parameter was being introduced.
The rate at which collisions were being found was also examined and found to
be consistent with estimates based on the average collision rate determined from
the initial distribution function. A foreseen exception is with the outermost stars
in this zone, most of whose collision probability is due to stars in the SC region,
where these particular CF zone stars spend nearly all of their time. Qualitatively
this should not alter the results, since the absolute number of collisions involved
with these stars is small, and otherwise identical simulations redone with only a

SC zone (which does not suffer from this problem) showed this to be the case.

5.3.4. The ‘Statistical Collisions’ Zone

Conceptually the SC zone is distinguished from the CF zone solely by its
method of “finding” the collisions occurring between its Nsc stars; in practice
this zone contained most of the stars included in a given simulation and spanned
most of the included volume, these useful increases in size and number being
the motivation for its introduction, as mentioned previously. Unlike the CF zone

the SC region possesses a fixed radial boundary rsc, which was chosen to be the
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largest radius such that all orbits (in the average sense) passing within rsc could
be physically included in the simulations.

The treatment of collisions in the SC region proceeded as follows. At the be-
ginning of each iteration—one iteration being the time interval covered by a single
CF stack frame (§5.3.3)—the orbit-averaged collision depth, 7con, was computed
for each star in the SC zone from the expression

=2 [0y [
a(1—¢) teon(r) a(1—e) Ur(r)tcon(r)

— 24%/? /1+6 ﬁ*(am, e(a:n)) (Tcolt (VrelUrel) Tdz
B 1—e  [Q+e—2)(z—1+e)l/

(5.5)
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where v2(r) = [a(14¢€)—r][r —a(1—¢)]/(r?a) is the radial component of the star’s
orbital velocity, oot (vrel) = m(Rx + R)?(1 + vZ./v%,) is the cross section for the
given star (of radius R, and surface escape velocity vesc) to collide with one of
radius R at relative velocity vrel, and 7.(r, 0)(0con (Vrel )vrel) is the local collision
rate for that particular star’s orbit, averaged over the current cluster distribution
function. Note that 7oy implicitly depends on both the orbital elements of the
star and the distribution function of the cluster.

The determination of n, and the averaging procedure require explanation.
Since the integral for 7., was being computed every iteration for each of Ngc ~
10* stars, the values of 74 and {ocol(vrel )vrel)—the latter quantity requiring in
principle a multi-dimensional integration over the distribution function to find
the proper average—needed to be economically calculable. To compute the mean
cluster density n, = n.(r,0) (axisymmetry of the cluster was assumed), a 2-
dimensional grid spanning the relevant decades of radius and range of § was created
anew every iteration, and by computing the fraction of time that each of the Nsc
stars occupied the discrete bins, the average occupation of each bin (which could
thus be < 1 in principle), i.e., the average number density, was found. Although
the average occupation was calculated assuming the orbits were Newtonian, be-
cause the mean occupation in r — 6 space depends on the argument of periapse

w and because the amount of relativistic precession (change in w) suffered was
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typically ~ 0.1 — 1 rad per orbit, the average occupation was itself computed as
the average of the mean occupations for w = 0 and w = 7/2 (any two orthogo-
nal directions would have been adequate). A proper averaging requires integration
over w and would have been prohibitive, but as the mean occupation was normally
found to vary by at most a factor of two between w = 0 and w = 7/2, averaging
the two was satisfactory for present purposes. The mean density obtained by this
procedure is only accurate for r < rgc. To compute the mean density at larger
radii, a least-squares fit to the distribution function given in eq. (5.3) was done
on the stars in the SC zone to estimate the current effective values of n, p, and ¢,
and by matching the easily calculated density of the resulting model to the actual
density at rsc, the profile for larger radii was obtained.

The value of (ool (vrel)vrel) Was approximated by

<Ucoll(vrel)vrel> ~ F((R* + R)2>(<vrel> + 'Uezsc/<vrel>)a

which in tests was found to be accurate to < 10%. The value of (( R, + R)?) was
found by direct averaging over the stars in the SC region. Computation of (vre)(r)
was done by first defining gcon(r) = (vre1)(7)/vorb(r) and then pre-computing a (5-
dimensional!) table of values A and B such that g.on(r) ~ A+ Br, depending on a,
€, t, p (the velocity space anisotropy parameter), and ¢ (the real space anisotropy
parameter) (dependence on n, the power law index for the density, was extremely
weak and was neglected), from which the values of A and B for the given star
were interpolated, allowing very efficient calculation of (ccon(vrel )vrel)-

Most of the preceding, rather elaborate procedure was done to allow rea-
sonably accurate computation of 7.,y when an accretion disk was added to the
simulations, which causes all three parameters n, p, and ¢ to systematically in-
crease over the course of a simulation. Comparison of the values for 7.0 computed
by this run-time procedure with accurate routines which explicitly performed the
multi-dimensional integrals for each individual case showed the above procedure
to have typical errors of ~ 10 — 20%, with few values off by more than 50%,

which was deemed quite acceptable, particularly since 7.. affects only the rate at
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which collisions were made to occur, not the circumstances or outcomes of those
collisions—by way of analogy, if the dynamical evolution of the stars in the SC
zone is like a movie, then the value of 7, doesn’t alter the movie’s ending, only
whether it progresses at normal speed or in slow motion (if 7con is too small) or
fast forward (if it’s too large).

Once the value of 7., was computed for a star, it was given the opportunity to
suffer a collision that iteration with probability 1 —e~7!. The result of doing this
for all stars was a list of stars that were to suffer a collision that iteration, which
were then randomly paired off with each other and set up to collide by suitably
altering the orbital elements w and Y for each, with the radius of the collision
point being randomly drawn from a probability distribution properly weighted
by the input density profile. Subsequent treatment of the collisions was handled
identically as for ones found by the collision finding algorithm.

The results of the simulations indicate that the above procedure produced
collisions nearly indistinguishable from ones which would have been found by the
collision finder, as judged by the smooth transition between the two regions or
similarity in form in the histograms describing the circumstances and outcomes
of the collisions (cf. §5.4.1 and Figs. 5.7-5.8). This afforded confidence in doing
simulations lacking a CF entirely, allowing a considerably greater number of models
to be examined. Repeating a simulation with and without a CF zone also allowed
the significance of the loss in collision probability for the outer CF stars mentioned
in the previous section to be estimated. Since in absolute terms the number of
collisions occurring in the SC region was considerably larger than in the CF region,
this loss of probability was not found to alter the results noticeably. Complete

results are given in §5.4.

5.3.5. The Reservoir

The ‘reservoir’ consists of all stars not explicitly included in the simulations,
i.e., all stars with periapses greater than rsc. The dynamical evolution of these

stars is not considered here, and because of the longer timescales involved at
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greater distances, that which can be expected to occur during the time interval
covered normally would not be substantial in any event. However, relaxation
processes in the outer cluster would lead to the occasional injection of a star into
the inner parts that are being treated numerically, and to reach a quasi-steady
state solution this action must be taken into account. On the other hand, there
are plausible circumstances under which a one time injection of stars could occur,
such as the tidal disruption of a globular cluster or dwarf spheroidal passing close
to a larger galactic nucleus, in which the stars would be slowly consumed without
replenishment. To examine this latter case, some of the runs did not include
the reservoir at all but instead allowed the cluster to slowly deplete itself until
densities dropped to such a level that collision timescales became very long. For
the simulations in which it was desired to reach a steady state, the injection of
stars by the reservoir was treated as follows.

By Jean’s Theorem, since £, L, and L, are all conserved in a 1/r potential
(as well as in the Kerr geometry, with suitable identification of the constants of
motion), any distribution function of the form f = f(&,L,L,) is a solution of
Vlasov’s Equation and describes a valid equilibrium state, assuming relaxation is
the dominant dynamical process. In equilibrium, the rates of relaxation into and
out of an orbit of given a, ¢, and ¢ must be the same, so that the distribution of
orbital parameters is time-independent. Hence the newly relaxed parameters of
those reservoir orbits which have changed so as to bring them inside rsc must follow
the same distribution as the orbits already inside rsc, and the orbital elements of
each star injected can be had by the same procedure used to set up the initial
cluster, which was described in §5.3.1. What remains to be computed is the
rate at which these stars should be added to the inner cluster. To estimate this,
recall that the relaxation time for a star on a given orbit can be thought of as
the timescale on which the orbit’s mean square angular momentum changes by
L. (&) =1/(28) = a (e.g., Lightman & Shapiro 1977). For a star with given a
and e such that a(1 — €) > rgc, we want to know the average length of time it will

take for this star to diffuse onto an orbit with a'(1 — €') < rs¢; by then averaging
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over all relevant a and e using the distribution function, the net rate at which stars

should be added will be found. The rate of change of L? can be written

d(L?*) L2 Tr
~ max — 5.
dt t, 2mall?’ (5.6)

where the orbit-averaged, dimensionless relaxation depth 7 is given by
a(l+e) a(l+e)
Tl.(a’ e) = 2/ dt(T‘) = 2/ l__
a(l—e) tl‘(r) a(l—e) ’U,«('I’)tr(’f‘) (57)

1+e _ _3/2 1—n
=Cqg3™ " (2/z —1) z dzx o 3en
=Ca /1_5 (14+e—a)(z —1+¢)2/2 = Ca” "g(e),

where the relations t,(r) ~ 03, (r)/[156G*m2n.(r) In(0.4N,)], v2,, = 2/r—1/a (the
star’s orbital speed), v2 = [a(1 + €) — 7][r — a(1 — €)]/(r?a) (the radial component
of vorb), and n,(r) = ner~™ have been used, and C = 15n0(m./M)? In(0.4N,).
The dimensionless function g(e) can be approximated to < 25% by gle) ~ (5 —
3e)(1+€)* ™ /[2(1—¢)] (this formula becomes exact as € — 1). Now the given orbit
will diffuse into the region r < r¢c when the condition L? < LI ~a(l—¢€. )
is met, where a(1 — enin) = rsc. The amount of time this takes is At(a,e) ~
2ma®/? (€2, —e*)/7.. The distribution function was then used to average this result
over the outer cluster to derive the net injection rate. For n = 7/4, p =q =0,
n«(1pc) = 10°ng pc™3, and M = 108 Mg M, the numerical value of this injection

timescale is

tini 2 5000M3/4n =1 [ X - o (5.8)
i.N r’ .
1j g Mg - 106 y

and is a very slowly increasing function of p. For solar mass stars, note that
this implies an average mass injection rate of ~ 10~ — 1072 Mg yr~! for typical
simulation parameter values; this is roughly comparable to the rate required to

power a moderately luminous Seyfert galaxy.

5.4. SIMULATION RESULTS AND DISCUSSION

The numerical results will be presented in a set of diagrams for a series of six

fiducial models encompassing a range of hole masses, densities, and initial amounts
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TABLE 5.2

Parameters for the Fiducial Models

Model Mg p min/max m® ng reservoir?
1 001 0 04/4.0My 10 no
2 03 0 1.0/10Ms 1 no
3 10 5 10./10.My 01  no
4 03 0 1.0/1.0Mg 1 yes
5 001 10 0.4/40 Mg 10 yes
6 03 5 04/40My 1 yes

* Salpeter mass function (f(m) oc m™2%) assumed.

of anisotropy. For convenience the models have been assigned reference numbers;
these and the corresponding parameters are listed in Table 5.2. The five variable
parameters are the mass of the hole, M = 108MsM), the velocity anisotropy
parameter of the initial cluster, p, the initial stellar mass spectrum, f(m), the
density scale ng = n,(1pc)/(10° pc~3), and whether or not the reservoir was
included to reach a steady state in the core or instead the stars were allowed to
deplete themselves. As can be seen in Table 5.2, in fact the value of ng was always
kept the same for a given value of Ms; this was essentially done for convenience to
keep the number of stars within a fixed number of gravitational radii comparable
for each model, giving them similar dynamic ranges in radius. Most results scale
easily with ng so this is not a significant restriction. In addition, the input clusters
were all spherically symmetric (flattening parameter ¢ = 0) with initial densities
p(r) o< r~7/% All models presented here used j = 1 for the spin of the MBH;
the comparison models computed using j = 0 showed no perceptible difference
from the corresponding j = 1 model and are not shown. We will comment on this
issue in §5.5. A rather large number of plots have been included here for perusal,
and commenting on each individually would become quite tedious. Instead of

this an integrated discussion of each model will be given, highlighting the salient
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Fig. 5.1: Cluster mass depletion rates due to collisions, tidal disruption, and post-
collision stars whose orbits are either captured by the hole or unbound (ejected)
with respect to it, for cluster model 1 (see Table 5.2 for numerical parameters
and text for definitions thereof.) The approximate scalings at late times are t~0-5.
Collisions from this initially rather dense (ng = 10) cluster can support Eddington-

limited accretion for ~ 10° yr (at 10% conversion efficiency).

features or differences compared with other models. We begin with the models

not incorporating a reservoir.

5.4.1. Single Injection Models

Models 1-3 did not include a reservoir and hence display continually decreas-
ing densities and collision rates. Such models could correspond to a sudden influx
of stars to the nucleus as from a tidally disrupted globular or close interaction

with another galaxy, which are afterwards gradually depleted through collisions
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and consumption by the black hole. They are also useful as a reference to com-
pare to similar steady state models, which include injection of new stars from an
extended outer cluster (§5.4.2). The fundamental quantities of interest are the
mass loss rates over time and the evolution of the density profile and stellar mass
spectrum. Other useful diagnostics shown for some of the models are the chang-
ing distributions of orbital parameters a, €, and y = cos: (or equivalently the
distribution function f(€,L,L.,)).

The results for model 1 are given in Figs. 5.1-5.8. This model consists of a
108 Mg black hole and an isotropic, relatively dense cluster containing a range of
stellar masses. Figure 5.1 shows the mass release rates as a function of time into
four different channels: collisional, tidal, captured, and ejected. The collisional
mass loss is simply the total amount of gas unbound from colliding stars. As this
mass is typically ejected at high velocity and at random angles from the radial
direction, roughly half of this mass would be expected to remain bound to the hole
and half to be lost from the core; in all simulations this mass loss rate is also the
largest of the four, usually by factors of a few. The tidal mass loss rate consists of
the mass of all tidally disrupted stars, and in the single injection models represents
those stars which, after suffering a collision, found themselves on a modified orbit
crossing their tidal radius; for the models including a reservoir, it also includes
orbits driven into the loss cone by relaxation processes. The captured mass rate
is due to stars whose post-collision orbits have so little angular momentum that
they cross the horizon and are consumed; although related, this mass was not
included in the tidal mass loss because nearly all of the former will be bound to
the hole and is likely to plunge into it with little energy release, whereas in the
latter case roughly half the mass is likely to be bound and the rest unbound to the
hole, and this mass could take many dynamical times to be accreted. The ejected
mass rate is due to stars whose post-collision orbits are no longer bound to the
hole and hence these stars are ejected from the core in a dynamical time (if not
from the nucleus itself). The pattern in Fig. 5.1 was typical, with collisional mass

loss being largest, followed by ejected mass, with tidal losses a sometimes close,



161

t=0 t=8x10%2
6\ 16 _lll I'TT IIII:'lllllllllyl:Il: ? 16 _IIIIIIIIIIIIEIIIIIIIII}II:II:
I u : ] | - : ]
a 14 P ERE: a2 E
= 12 | 4 S 12F ]
© 10 — — = 10 — -
Q n ] Q - ]
w OF S = 13
2 6 _III‘IIIIIII’;III'HIII!I 3 6 -llllll‘lll';ll]l!lllllr
01 2 3 4 5 6 01 2 3 4 5 86
log r log r
=7 3 t=6x104
6\ ].6 _IIII!IIIFII'EII)illl(l)III}IT{ ;.3\ 16 llllllllllllil?ﬁllll'l}:{
i - ; ] i - : ]
a 141 3 alr E
s 12 1 SLi1z2E =
o 10 - ~ 10 | =
Y - ] 3 " .
@ OF 11w 8F -\
‘9‘ 6 [ 1||1||11|l£|1:ln:|1||_ "9' 6 —Illlllllllll:lllllllll 1
01 2 3 4 5 6 01 2 3 4 5 6
log r log r

Fig. 5.2: The density of cluster model 1 at several epochs. The dashed line
denotes the value of rq. (= 1400M ~ 107* pc), the maximum simulation radius;
outside this limit the density is incomplete. Collisions lead to the development of

an inner core of nearly constant density (within statistical fluctuations).
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sometimes distant third, with mass loss by direct capture being smallest. Since
the cross-section for capture is inside that for tidal disruption (unless the hole is
so massive that the horizon size exceeds the tidal radius), one would expect the
capture mass rate to lie below the tidal rate under normal circumstances, and this
was indeed the case in most models. In Fig. 5.1 the approximate late time scaling
of these rates is oc ¢+ 705,

The evolution of the density in model 1 is shown in Fig. 5.2. As will be
seen more clearly in the other models, the collisions produce a core of nearly
constant density which increases in radius as evolution continues. In this case the
simulation was terminated before the core was well-developed. Figure 5.3 displays
the evolution of the mass spectrum. When a range of masses is included, the
qualitative trend is the production of a low mass tail consisting of surviving post-
collision stellar fragments and depression of the high mass part of the spectrum, as
these stars have the largest cross-sections and so will collide sooner on average than
the other stars. In single injection models the mass spectrum will be substantially
altered when most stars have had an opportunity to collide, but for steady state
models the addition of new stars stabilizes this process, as discussed below. Figures
5.4-5.6 show the distributions of orbital parameters at several epochs for model 1.
As with high mass stars, stars with small semi-major axes have shorter collision
timescales and thus will be preferentially removed from the cluster, as seen in Fig.
5.4. Since all stars in the simulation have a(l — €) < rsc, the large-a orbits are
biased towards high € and hence removal of the small-a stars leads to increasingly
eccentric remaining orbits, as shown in Fig. 5.5. Returning to the question raised
in §5.1 concerning the possibility of Kerr effects producing a flattening of the
cluster during the course of its evolution, Fig. 5.6 show the distribution of orbital
inclinations including the difference between the first and last. The short answer
is that no evidence of this or any other type of non-sphericity was found in any of
the simulations; this will be discussed further in §5.5.

Of the six models shown here, only model 1 used the collision finding algo-

rithm; the rest were done with fully randomly selected collisions. This was mainly
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Fig. 5.3: The mass function of cluster stars at several times for model 1. The
larger geometric cross-sections of high mass stars leads to their depletion relative
to other stars, with post-collision stellar fragments creating an excess of low-mass
stars. The overall effect is small here as most stars had not collided when the

simulation was terminated.
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Fig. 5.5: The normalized distribution of eccentricities of included stars for

model 1. Velocities in the cluster core become progressively anisotropic as or-

bits with small €, which of necessity have relatively small values of a since they

must cross rsc, tend to have highest collision frequencies (cf. Fig. 5.4). Dashed

lines are 1 — o error bars. Scales have been chosen so that an unbiased sample of

stars obeying the distribution function (5.3) will have a line of slope —p on these

plots; in this case, the initially isotropic (p = 0) cluster does not produce a flat

line because the stars are biased by the requirement that they have a(1—¢€) < rgc.
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Fig. 5.6: The normalized distribution of inclinations p = cost for model 1, with
1 — o error bars (dashed lines). The lower right panel plots the difference between
the ¢ = 6 x 10* and ¢ = 0 distributions, which is consistent with 0, and hence
there is no statistically significant evidence indicating the development of spatial
anisotropy (such as flattening towards the equator) in the cluster. These curves
are typical; in no model was any significant departure from spherical symmetry

detected.
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Fig. 5.7: Histograms of various collision statistics for model 1; the solid curve
is for statistically selected collisions (see §5.3.4) and the dashed is for those found
explicitly using the algorithm of §5.3.3. Fig. 5.7a shows the distribution of relative
velocities in the (relativistic) center-of-mass frame. Fig. 5.7b plots the distribution
of relative mass loss suffered per collision; the peak at Am/m = 1 is from stars
suffering complete disruption in a collision. Figs. 5.7¢ and 5.7d show the deflection
angles suffered by the stars, on log scales for A8 < 0 and A8 > 0, respectively.
Positive values of A8 denote deflections towards the center-of-mass. Note the
smooth transition between collisions found explicitly and statistically. See text for

discussion.
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done out of desire to examine the late-time behavior of the models; in particu-
lar, use of the collision algorithm was too time-consuming to be able to follow
the evolution until a steady state was finally achieved in those models including
the reservoir. Figures 5.7 and 5.8 show diagnostic output from which the relative
performance of the collision finding algorithm and the statistical collisions routine
can be ascertained. Figure 5.7 plots for both routines the distributions of relative
velocities, mass loss of each star, and deflection angles of the collisions produced
by each routine. The quite similar appearance of these curves indicates that the
randomly drawn collisions are basically indistinguishable from those that the col-
lision algorithm would have found. There are systematic shifts in the relative
velocities and deflection angles, but these are real differences arising from the fact
that the collision algorithm is always applied to stars at the smallest radii, where
velocities are systematically larger and hence where collisions will tend to produce
smaller deflections. Figure 5.8 shows the distributions of the recovered collision
spacetime coordinates; once again the two routines produced very similar results,
except for a slight tendency of the statistical collision routine to underproduce
collisions near the poles, which comes about because the routine selects pairs of
orbits to collide without regard to their inclinations, thereby forcing the collision
to occur at or below the lesser of the two inclinations, leading to excess collisions
near the equator at the expense of the poles. However, as no evidence of nascent
spatial anisotropy was found at large or small radii (where collisions were found
directly), it seems unlikely that this minor shortcoming had any detrimental effect
on the results. For these reasons most runs were done with entirely statistically
selected collisions as they are much faster, with the collision algorithm being used
in a few runs to search for relativistic influences and to act as a control.

Figures 5.9-5.13 show the simulation results for model 2 and are analogous
to Figs. 5.1-5.5 for model 1. This model consisted of an ‘AGN-class’ black hole
of 3 x 10" Mg surrounded by an isotropic, moderately dense cluster of equal solar
mass stars. One thing of note in Fig. 5.9, which shows the mass release rate, is

the near equality of M, and Mcap, due to the much smaller tidal radius (ry ~ 10
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Fig. 5.9: Mass liberation rates for cluster model 2 (cf. Fig. 5.1). For this medium
density cluster (ng = 1), Eddington-limited accretion rates can be sustained for
< 10® yr, assuming 10% efficiency, before asymptotically declining; at late times

Mi xt1.

as opposed to ~ 100 for model 1) associated with model 2’s larger hole; the rates
decrease at late times as ¢t=!. The development of the constant density collision
core is readily apparent in Fig 5.10. Qualitative results for the remaining figures
match those for model 1, except that in general the effects are more pronounced
due to the more advanced state of evolution.

Figures 5.14-5.18 show the corresponding results for model 3, consisting of
a ‘quasar-class’ black hole (M = 10° M) and a modestly dense and anisotropic
cluster of high mass stars. Note the very small tidal contribution to the mass loss
in Fig. 5.14; for this model 7y ~ 2, which is so close to the horizon (at r = 1) that

nearly all orbits inside ry plunge directly into the hole; asymptotically the rates
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Fig. 5.14: Mass loss rates for cluster model 3, consisting of a very massive
(Ms = 10) black hole inside a relatively low density cluster (n¢ = 0.1) containing
only high mass (10Mg) stars. Tidal effects are especially weak in this case as
the tidal limit is nearly inside the horizon even for these large stars (which also
prohibited meaningful calculation of the tidal curve at general times, hence the

truncation of it). Scaling at late times is approximately M; o t=1-3,

scale approximately as oc 71, Qualitative behavior of the remaining figures is

similar to the other models; see the figure captions for a few additional comments.

5.4.2. Steady State Models

As we are simulating only the inner cusp of a presumably more extended
nuclear cluster, the normal expectation is that new stars will occasionally enter
the simulation region through relaxation processes. The way this was accomplished

in these calculations was described in §5.3.5. Models 4-6 are three examples of
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Fig. 5.19: Mass production rates for model 4. This model includes injection
of stars from the outer cluster by relaxation and hence the rates reach a steady
state. The steady state rate of Mcou ~ 1075Mg yr~! could be sustained for
over a Hubble time under the assumed conditions, although the luminosity would

correspond at best to that of a modest Seyfert galaxy (Lyo < 10%? erg s™1).

the outcome of this procedure. We mention first that no simulations of quasar-
class black holes are shown here as they were found to be uninteresting due to
their very large relaxation times and hence slow injection rates, which did not
produce a steady state mass loss rate within a Hubble time; for the same reason,
the equilibrium rate would in any case be quite small.

Figures 5.19-5.22 exhibit the results for model 4, consisting of an AGN-class
black hole and an isotropic cluster of equal solar mass stars. This model is identical

to model 2 (Figs. 5.9-5.13) except for the injection of new stars. As seen in Fig.
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Fig. 5.23: Mass liberation rates for model 5. The smaller hole mass (Mg =
0.01) and higher densities (ne = 10) compared with model 4 (with Mz = 0.3
and ne = 1) results in a substantially higher equilibrium gas production rate

(due to much reduced relaxation times and hence more rapid injection rates),

Mcon = 0.1M¢ yr—!, which could in principle support Eddington-limited accretion
for ~ 107 yr until the cluster substantially depletes itself.

5.19, the mass loss rates reach a steady state after ~ 108 yr; the equilibrium
collisional mass loss rate, which dominates all others, is M.y ~ 10™5ne Mg yr1.
The remaining figures show behavior comparable to the corresponding diagrams
for model 2; one difference occurs in the mass spectrum (Fig. 5.21). Here continued
injection leads also to an equilibrium mass spectrum representing the balance
between the fraction of stars in the final state which have or have not suffered

significant collisional mass loss, unlike the single injection models in which the
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spectrum is increasingly deformed once nearly all stars have collided once or more.
In this model the equilibrium low mass tail contained only ~ 5% of the stars in
the simulation.

Model 5 is similar to model 1 except that here the cluster was moderately
anisotropic (p = 10) and the reservoir was included. The results are given in Figs.
5.23-5.27. Compared with the previous steady state model, the equilibrium mass
rates are much higher, Mcou ~ 107%ng Mg yr~!, due mainly to the shorter relax-
ation times as well as the anisotropy of this cluster, which results in systematically
smaller eccentricities of the included stars (Fig. 5.27) and hence shorter orbital
periods and larger collision rates; the evolutionary trend, however, is still towards
increasingly eccentric orbits. The low mass tail in the equilibrium mass spectrum
(Fig. 5.25) is a substantial fraction of the total; in fact, ‘equilibrium’ is rather
a misnomer here since the collision-induced tail continually grows at a slow rate
relative to the remaining spectrum even in the steady state models because these
low mass fragments have smaller cross-sections and so collide less frequently on av-
erage than newly injected stars, and this process is visible upon careful inspection
of the figures.

The results for the final model are displayed in Figs. 5.28-5.30, and is similar
to model 4 except that a range of stellar masses and a small amount of anisotropy
in the cluster are included. The results are comparable and the equilibrium mass
loss rates are similar though systematically smaller in this case by a factor of two,

which is also the difference in injection rates due to the anisotropy.

5.5. CONCLUSIONS

One of the motivations for these simulations was to search for relativistic influ-
ences on cluster evolution around a massive black hole, which is normally treated
as a Newtonian point potential in Fokker-Planck calculations. In this regard the
results are perhaps disappointing, as their was little evidence for relativistic ef-

fects of any type in the results outside of the mass loss rate due to stars on plunge
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Fig. 5.24: Density evolution for model 5. In ~ 105 yr a constant density core

has already substantially developed. The completeness limit (dashed line) is rgc =&

9200 ~ 5 x 10™* pc.
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Fig. 5.26: Semi-major axis distributions for model 5.
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Fig. 5.27: Eccentricity distributions for model 5; the initial cluster in this model
is more strongly anisotropic (p = 10) than the other models shown, with few very
eccentric orbits. Qualitative evolution still proceeds towards smaller effective g-

values, and the cluster is nearly isotropic by the time the simulation was stopped.
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Fig. 5.28: Mass production rates for model 6. This model is similar to model 4
except that a range of stellar masses are used and this model begins with a mod-
erate amount of anisotropy (p = 5), which results in a somewhat lower injection

rate and equilibrium Mcou; qualitatively the results are similar (cf. Fig. 5.19).

orbits, which was generally small. In particular the spin of the hole did not quali-
tatively alter any of the results and no evidence of flattening due to the anisotropy
of the Kerr metric (or anything else) was found. From a different perspective this
is also perhaps to be expected. One reason is that the existence of a tidal ra-
dius, in some cases well outside the horizon, prevents stars from approaching the
hole too closely (and surviving), where relativistic effects are largest. The main
problem is probably one of mortality: whereas many relativistic influences such
as precession are secular in nature and most noticeable when allowed to build up
over time, in the present situation stars generally suffer complete disruption after

only a few collisions, preventing the buildup of any such effects. This does not,
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Fig. 5.29: Density evolution for model 6. The completeness limit is rsc ~ 1200 &

3 x 1072 pe.
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TABLE 5.3

Model Parameters for Nearby Nuclei

galaxy Mg ng  Meon (Mg yr™)

GC 0.02 0.3 6 x 1077
M31 0.4 0.3? 3x1075
M32 0.02 0.1 7x1078
M87 20 1?7 3x10~*

however, detract from the promise of the general methods of simulation presented
here, as their versatility allows them to be adapted to a range of problems, and
only a portion of the method’s generality has been exploited in this application.
The statistical collisions routine performed well, and its ability to dynamically
keep pace with a changing and possibly very anisotropic cluster distribution was
also only partially utilized, which simulations including an accretion disk, now in
preparation, will make more complete use of. Finally, nearly ‘immortal’ systems,
such as those undergoing relativistic relaxation instead of physical collisions, can
in principle develop a long-term memory of previous interactions, allowing the
growth of secular effects to take place, and the collision algorithm does not require
major modification to simulate such processes.

Putting aside these issues, overall the results presented here are in line with
previous investigations of the role of collisions in galactic nuclei. Specifically, these
results continue to support the notion that collisions will dominate over tidal
processes whenever mass liberation rates approach values capable of sustaining
AGN-like luminosities. In a related note, it was found here that the collision-
induced tidal disruption rate, which is due to post-collision orbits being such as to
cross their new tidal radius, was often larger than the rate produced by relaxation;
in effect, collisions can serve as a mechanism to refill the loss cone on timescales
characteristic of the collisions instead of the much longer relaxation timescales. It

was also found that the rate of ejection of stars from the core normally exceeded
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the combined tidal disruption rate, which effectively removes potential energy
stores from the black hole’s vicinity. On the issue of how in detail will collisions
modify the local distribution function of the cluster, these simulations indicate
that the main effect is the creation of an essentially constant density core in the
collision-dominated cusp around the MBH. This is flatter than the o r~1/2 power
law normally found in corresponding Fokker-Planck calculations (e.g., Duncan &
Shapiro 1983; Murphy, Cohn, & Durisen 1989). Although it is unclear to us
what the cause of this discrepancy is, it is possible that the small numbers of
stars or simplified treatment of collisions used in the Fokker-Planck treatments
are becoming inadequate at these radii; this matter requires further investigation.
We note, however, that observations of the Galactic Center (GC) favor a flat inner
core to the nuclear star cluster instead of a rising cusp (Genzel et al. 1994),
although in their discussion of collisional effects in the GC, Genzel et al. do state
that an »~3/2 form cannot be ruled out with present data. To better put the GC
and several other galactic nuclei into context with the simulations, we list in Table
5.3 the approximate model parameters and estimated steady state mass loss rate
in the associated model for the GC, M31, M32, and M87.

In velocity space the main influence appears to be a trend towards an in-
creasingly anisotropic core dominated by nearly radial orbits. Results for the
modification of the stellar mass function by collisions indicate that a substantial
collision-resistant (due to their small cross-sections) low mass tail can be produced,
which could in essence ‘hide’ a significant amount of material in low mass objects.
We note that this does not occur if one assumes that stars colliding at high speeds
always suffer complete disruption, as has sometimes been assumed—on the con-
trary, what was found here (cf. Fig. 5.7b) is that most collisions, which as a
matter of geometry tend to be at grazing incidence rather than nearly head-on,
produced rather small fractional mass loss even when a head-on collision results in
complete disruption. An issue related to these simulations but outside the scope of
this paper concerns the detailed physics of stars colliding at moderately relativis-

tic velocities, as was sometimes the case here (cf. Fig 5.7a); namely, there could
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be qualitative changes in the manner of shock propagation and subsequent mass
loss, for instance, or novel effects on collision-induced nuclear reaction processes
with unexpected consequences. As the existence of dense nuclear star clusters
and massive black holes together essentially guarantees that such ultra-high ve-
locity collisions will occur, serious examination of this question would appear to

be interesting beyond the realm of pure physics.
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APPENDIX A
KEPLER’S EQUATION IN THE KERR METRIC

This appendix derives a generalized form of Kepler’s Equation valid for quasi-
periodic geodesics in the Kerr metric to O(8%/2), where § = 1/[a(1 — €?)] (the
inverse of the semi-latus rectum) is assumed to be a small parameter; also given
is a compact, exact method for deriving a geodesic’s constants of motion given
its orbital elements. (Note that we will change notation slightly and denote the
eccentricity of an orbit by the usual e instead of €, which was done earlier to avoid
all possible confusion with e = 2.71828. .., which will not be a problem here.) To
our knowledge these results have not been published elsewhere. The results given
in §A3 should be considered a generalization of the work of Darwin (1961; see also
Darwin 1959), who introduced the relativistic anomaly y, which we will make use
of, and essentially derived the modified form of Kepler's Equation valid to O(d) in
the Schwarzschild geometry, although he did not actually write the result in such

a form or refer to it by that name.

Al. EQUATIONS OF MOTION IN THE KERR METRIC

The calculations explained below were done in a modified Boyer-Lindquist
coordinate system with coordinates (t,u,u,¢) that are related to the standard
Boyer-Lindquist coordinates (¢,7,6,¢) by u = 1/r and g = cosd. As shown in
Rauch & Blandford (1994), which also used these coordinates and which should be
consulted for further information, the geodesic equations of motion in the modified

coordinates take the form

dt _ r A P
pEo =0 2{—1 [J(l—uz)*ﬁ]Jr@—A—]—)(u 2+12—J€)}

d _
p“zd—%:Sﬂp VM

o (5.9)
puE'CW:Sup_2\/ﬁ

d¢ _ . 4 J : .
QS:_: 2) S =2 2_€
p¥ = p {j+1—u2+Au +7 ])},
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where U = (1=y7%) 42y 2u+ [j2(1—772) = ¢® = 2]u? +-2[(j — £)* 4 ¢*] u® — j2q2ut,
M=¢-(+@+0)u+ 72 =52y = 1), p* = u 2+ %% A =
u"?—2/u+j2 and S,, S, = +1 are arbitrary signs. The (dimensionless) constants
of motion are £ = L,/E, ¢* = Q/FE?, and v 2 = m?/E?, where L,,E,m, and Q,
the angular momentum component, energy at infinity, rest mass, and Carter’s
constant, respectively, are the usual dimensional constants of motion. As before,
the angular momentum of the hole itself is j. The normalization of the affine
parameter \' is such that p, = —1 and p,p* = —v~2 for all particles. All the
formulae given in the following two sections were derived by suitable expansion

and/or manipulation of the preceding equations of motion.

A2. ORBITAL ELEMENTS AND CONSTANTS OF MOTION

Presented in this section is a simple, exact procedure for computing the con-
stants of motion £, ¢, and y~2 for a generic quasi-periodic orbit, given the cor-
responding orbital elements a, e, and #; formal definitions of the orbital elements
themselves are also given. First recall that quasi-periodic bound orbits occur
when the quartic U, whose roots determine the radial turning points of the orbit,
possesses four positive real roots (neglecting the special case 7%¢% = 0) and the
particle’s radial motion is trapped between the two smallest roots (smallest in u
coordinates), say Umax and Umin < Umax; all such orbits have v=2 > 1 and ¢ > 0.
For these orbits the polynomial M can be factored into M = F(p —p?)(p? —p?),
where 0 < py < 1 < p_; thus the p coordinate is trapped between +u,. We
define the orbital elements a and e the same way they would be defined in the
non-relativistic case, namely by setting umax = 1/[a(1—¢)] and umin = 1/la(1+€)].
We see two reasonable ways in which to define the inclination of the orbit; if ; =0
the orbits are strictly planar and the definitions become equivalent (and agree
with intuition), but for j > 0 they are slightly different. The two definitions are
tant = @‘1\/11_2 and sinz = p4, with the additional condition that 7 > 7/2 when
¢ <0. Numerically the two definitions agree to several digits even for highly rela-

tivistic orbits (a(1 — e) ~ 10), so for our purposes it should not matter which one
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is used. In this paper the former expression was used as the definition of i because
of its simpler relation to the constants of motion.

Having formally defined the orbital elements, the method for computing
the constants of motion from these elements—assuming the orbit they describe
actually exists—can be derived in the following manner. Define the constant
b= (€2 + ¢*)'/%, which implies that £ = bcosi and ¢* = b%sin’i. By writing U
in the form U = —j2¢%(u — u1)(u — ug)(% — Umax)(¥ — Umin) (where Umax(a, €)
and umin(a, ¢) are known), expanding, equating the resulting coefficients with the
original expression for U given in §A1, and replacing ¢ and ¢2 with their expres-
sions in terms of b and 7, one obtains a system of equations from which U1, Usg,
and 772 can be eliminated, resulting in the end in a quadratic equation in b with
coeflicients depending only on a, e, i, and j, easily solved for b, from which £, ¢2,
and 772 can then be computed. Note that the quadratic in b would have been a

quartic if not for a fortuitous cancellation. The equation determining b is
Byb* — 2B1b+ By = 0, (5.10)

where

By =1+j%6%[2(1 4 €®) — 46(1 — €?) + j26%(1 — €*)?],
By = jé*cosi[(3 + €?) — 48(1 — €?) +7%6%(1 - €*)?],
By = _5{ [1—28(1— )] [1 — 26(1 + )] + j262 [~ 5(1 — €2)?
+sin®1(2(1 + €?) — 6(3 — 2e2 — ¢*) +7%68%(1— €)?)] },
6 = 1/[a(1 — €?)], and the positive root is to be taken. This procedure will always
succeed even if the input orbit is invalid (e.g., if its traversal would require crossing
the horizon), but in this latter case the values of a and e derived from the actual
roots of U will not be the same as those originally given the procedure, so a

consistency check should be made for orbits passing close to the horizon (6 20.1).

For § < 1 we have
b= 5*1/2{1 + 26 — jcosi(3 4 )83/ + [2(2 +€*) + 7% cos® i(1 + e?)] 62
— 8j cosi(l+ e2)6%/% + 0(8%)}.
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The expressions for the constants of motion are ¢ = bcos i, ¢ = b%sin?4, and

L _ 180 =) [(1-%)¢ + (G~ 0]

v e g . (5.11)

For § < 1 we have

Y =14 (1—e?)6+ (1 e)26% 4 (1— )P [1— €2 — (j — £)2 — ¢*]8° + O(5%).

A3. THE MODIFIED KEPLER’S EQUATION

Following Darwin (1961), define a relativistic anomaly y which is related to

the particle’s radial coordinate u by
u(x) = 6(1 + ecos x), (5.12)

so that periapse and apoapse always occur at y = 0 and X = m, respectively,
regardless of the amount of precession the orbit is undergoing. For nearly Newto-
nian orbits, § < 1, x¥ will be almost the same as the true anomaly v familiar from
celestial mechanics, and hence its time evolution will be closely approximated by
Kepler’s Equation,

M =1 —esiny, (5.13)

where the mean anomaly M = 27t [torb = t/a®/? and the eccentric anomaly
is related to the true anomaly by (14 ecosv)(1 — ecostp) = 1 — e2. Clearly, by
suitably expanding the equations of motion in powers of § < 1, the relativistic
corrections to Kepler’s Equation can be found; here they are given to O(8%/2).
It is convenient to define a variable ¢ according to
Y B SR /2 du’
qm—lm{me ~1)] oD

which upon expansion in § becomes

, (5.14)

((x) = {1438 — 65 cosi§®/? + [54 + 3¢% + j2 cos® i (14 + €?) — j2(2 + €2)]6% /4
—jcosi(42+362)55/2}x+ {1+1[9+7%2cos?i — 1) — 2j cosi §/?

+ecos x(3 — j%sin?i)/4]6 — j cos1 (32 + 3e cos X)63/2}6e sin y + O(6%).
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By inverting the integral relation [* dy'/v/M = [* du'//U to find x, one obtains

the ezact solution

p(¢) = pysn(Co + ¢ | (ua/p-)?), (5.15)

where sn(z | m) is a Jacobian elliptic function with parameter m and the phase (o

is akin to the argument of periapse. Note that since

[y = sini [1 —j%cos?i(1 — )62 /2] + 0(8*),

2
(ﬁi) = j2sin2i (1 — e2)6? + O(8%),
/.L_

we have p(() = sin¢ sin((o + ¢) + O(sin: 62). Using this lower order expansion for
p when calculating the expansion for ¢(x) = fox(dgb/du)(du/dx)dx' gives

$(x) = ¢o + tan™"(cos tan ¢) + A¢(x) + O(sini §%), (5.16)

where ¢g is akin to the argument of the ascending node and

A(x) = {[4+(2 + €)(—j cosi8'% + (6 4 17)8)] x
+[4+ 4+ ecos x)(—j cosi6'/? 4 (6 +j2)5)]esinx}% 8% + 0(8°).

In the mean plane of the orbit, which for a given periapse-to-periapse orbital
segment was defined as the plane spanned by the position and velocity vectors at
apoapse, the effective true anomaly is v(x) = ((x) + cosi Ad(x), and thus the

precession in the mean orbital plane per orbit is given by
Avp = v(27) — 2m = 21(38 — 45 cos i §%/%) 4+ O(8?). (5.17)

The first term, 676 = 67 /[a(1 — e?)], is the well-known lowest order Schwarzschild
value of the precession and the second represents the lowest order Kerr correction.

The concept of a (fixed) mean plane was found to be useful down to radii
r ~ 10 (for j ~ 1), below which the perpendicular deviation of the true orbit from
the mean plane over a single orbital period can be of order the radius itself. Since

the errors in all of these formulae are secular in nature, to avoid accumulation



201

of errors, the collision finder algorithm (§5.3.3) used the accurate Kerr geodesic
routines to reset (o and ¢ to their optimum values for each orbital segment.
Finally, the modified form of Kepler’s Equation follows from expansion and
integration of dt/dy = (dt/du)(du/dx)(dx/di), where 1 is now taken to be the
eccentric anomaly corresponding to x, i.e., (14 ecos x)(1—ecost)) = 1 —e?. Note
that since the p? term in dt/du enters at O(6?), a solution accurate to 0(8°/%)
need only use p(x) ~ sin sin({o + x) during the derivation. The result for #(y) is
%ﬂ = {1 +3(1 —€?)8[1 — jcosi 621 4 (7 — €*)§)
+ (24 152 cos? )6 }y
. {1 + (1 — €2)8[—j cosi 61/2[1 + 2(2 — e cos )] (5.18)
+ (24 357 cos?i)6] fesin )

1
+ ‘2‘{[15 — 24 cosi51/2]X — j%sin®4 cos(2¢y + X) sin X}(l — e2)3/282,

The value of the orbital period is simply to,p = t(27) — to which in addition to a is
seen to depend on both e and (o. By rewriting the expansion using M = 27t /o,

one arrives at the modified Kepler’s Equation with errors O(§%),
M =1 —ésiny + Ay, (5.19)

€= {1 -(1 ——62)6[3—2]'0081'51/2{1 + (1 +6e* 4+ 6(1 — e?)!/2 +ecosy)é}

5 (1041862 +15(1 — €)1/2 4 252 cos? 1) be,
1
Ay = 5{[15 — 245 cosi 82| (x — o) — 7% sin® i cos(2(o + X) sinx}(l —e2)3/262,
Because 0 < € < e and Aty ~ O(6?), the inverse solution 1)(M) can be computed
very economically by first finding the solution vy corresponding to Ay — 0 and
then correcting 1) treating Aw as a small perturbation, ¢ ~ ¥y — Ay /(1 —
€costpg). It was found that the relative error in the solution obtained in this
way was normally no greater than that inherent in the expansion itself, except

perhaps at larger distances, where the absolute error was still quite small. It was
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also found empirically that excluding the term involving (p in Ay and cos x in
€ did not noticeably worsen the error in 1 compared to its true value, allowing
an additional gain in efficiency. This allowed the inverse solution (M) to be
computed with little more work than is needed in the Newtonian case, greatly

improving the performance of the collision finding procedure.
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APPENDIX B

COLLISION PRODUCTS FITTING FORMULAE

The outcome of a collision between a pair of stars, characterized by the mass
loss, angular deflection, and change in speed and radius suffered by each, was
computed (except for the new radius, see below) from fitting formulae derived
from the results of SPH simulations of high velocity stellar collisions performed
for this work by Davies (1994). The fits to each of the derived quantities depended
on three dimensionless variables describing the circumstances of the collision: the
mass ratio, ¢, the relative velocity of the stars, Bre, and the impact parameter in
units of the sum of the stellar radii, b = b/( Ry ; + Rs.2), each of which ranges from
0 to 1. The relative speed as well as the vector changes in each star’s velocity
were computed in the orthonormal center-of-mass frame, each star’s 4-velocity
being transformed from the Boyer-Lindquist coordinate frame to the center-of-
mass frame and back using the expressions appropriate for the Kerr metric at the
point of collision.

Useful fitting functions could not be obtained for the change in radii because
of noise limitations in the hydrodynamic results as well as physical uncertain-
ties about the post-encounter equilibrium state of the star. Additionally, the
post-encounter radius is likely to vary (shrink) with time as the star sheds any
excess thermal energy acquired during the collision, which will occur on a Kelvin-
Helmholtz timescale (~ 107 years for solar type stars). Because of these inherent
uncertainties, the new radius was crudely approximated as being equal to that
of a main sequence star having the same mass as the surviving star. Although
the actual surviving fragment will probably be somewhat larger than this initially,
those outer layers will also be less dense and more loosely bound than an unper-
turbed main-sequence envelope, leading to less deflection and mass loss during
glancing collisions. Hence it may not be so unreasonable to use the smaller radius

in subsequent calculations, since the collisions resulting from the additional cross
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section presented by the outer layérs might do rather little further damage to the
star anyway.

Most of the SPH simulations used ¢ = 1 to determine basic dependence of
the derived values on B and b; estimation of the g dependence of the results
was based on a smaller number of simulations in which models originally using
g = 1 were redone using ¢ = 1/2 and ¢ = 1/4. The stars were taken to be n = 3

polytropes. The fitting formulae are (it is assumed ¢ = ma/my < 1)

fsﬂ _ émy + dmy ~ qo.zﬂl.zsepl(i)) émy /my ~ 00
m mi + mo rel T dmay/my ’

861 ~ 86y ~ [1 —2/(Pa(b) + Ps(B) B22)] 702,

vy —~ vy ~ 2—2.75_Py(b) —0.5_Ps(b)
~ Nﬂrel e +'Brel € ’
U1 V2

where Py (b) = 5.5530—2.86075—10.52555%, P,(b) = 0.573664-0.182515—0.1315552,
Py(b) = 107°(3.057 — 4.825b + 2.616?), Py(b) = —16.138 — 7.26b, and Ps(}) =
0.417 — 15.96b. These fits reproduce the SPH results to within errors ~ 10%; the
true accuracy of the formulae as applied in the simulations described in this paper
is not so easily quantified, most notably because of the need to extrapolate the
results to relativistic impact velocities Bre] ~ 0.1 — 0.5, the maximum velocity for
which SPH results were obtained being fre; ~ 0.05. However, since it is clearly
not possible to compute detailed encounter models for each of the thousands of
collisions occurring over the course of the simulations, some standardized strategy
is necessary, and the use of hydrodynamics simulations to provide a quantitative
foundation for calculating the collision products allowed as much microphysics as

practically feasible to be injected into this part of the simulations.
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