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Abstract

This work focuses on the applications in dynamics of recently developed continuum-
mechanical models of solid-solid phase transitions. The dynamical problems consid-
ered here involve only one space coordinate, and attention is limited to hyperelastic
materials that involve two phases. This investigation has two purposes. The first
is to determine the predictions of the models in complicated situations. Secondly,
the present study attempts to develop analytical and numerical approaches to prob-
lems that may be relevant to the interpretation and understanding of experiments
involving phase transitions under dynamical conditions.

The first problem studied involves the study of a semi-infinite bar initially in an
equilibrium state that involves two material phases separated by a phase boundary at
a given location. The end of the bar is suddenly subject to a constant impact velocity
that persists for a finite time and is then removed. Interaction between the phase
boundary and the elastic waves generated by the impact and subsequent reflections are
studied in detail, and the trajectory of the phase boundary is determined exactly. The
second task addressed involves the development of a Riemann solver to be applied to
the numerical solution of Riemann problems for two-phase elastic materials. Riemann
problems for such materials involve complications not present in the corresponding
problems that arise, for example, in classical gas dynamics. Finally, a finite-difference
method of Godunov type is developed for the numerical treatment of boundary-initial-
value problems arising in the model of Abeyaratne and Knowles. The method is

applied to specific problems.
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Chapter 1 Introduction

There are three levels of understanding phase transformations in solids: the micro-
scopic level, the mesoscopic level and the macroscopic level. The macroscopic level
deals with bulk averages across microstructures and is the domain of continuum me-
chanics and thermodynamics. Here we are concerned about models at the macroscopic
level, i.e. continuum models.

Continuum modeling of phase transformations has been a very active research area
recently. This has much to do with some remarkable properties of materials capable
of phase transformations, such as the shape memory effect, that can be exploited
for engineering applications. For example, shape memory alloys exhibit the capacity
to hysteretically recover significant deformation, absorbing large amounts of energy
in the process. They can therefore serve as energy absorbers or damping devices
in active control systems [82]. In addition, mechanical properties of a material can
sometimes be improved by phase transformations, such as in the toughening of certain
ceramics by stress-induced martensitic transformation of embedded particles [28]. In
the design of a mechanical device, or in the analysis of the toughness of materials, it
is the macroscopic behavior that is of primary interest.

The goal of continuum modeling of phase transformations in solids is to predict
patterns of microstructures, to understand why certain materials exhibit certain pat-
terns and to explain the macroscopic properties of the materials. The ultimate goal
will be to provide new perspectives on the development of materials whose behavior
is specified by engineering applications. Though there has been some progress in such

modeling, there is still a long way to go.
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1.1 Martensitic transformation

Most current continuum models for solid-solid phase transformations are concerned
with martensitic transformations or use martensitic transformations as a prototype.
In the following, a summary of the characteristics of martensitic transformation is
given ( [17, 20, 26], and [66]). The emphasis is on phenomenological observations.

The martensitic transformation is a diffusionless, solid-to-solid phase transfor-
mation in crystalline solids. The composition of the product phase is the same as
that of the original phase. The change during the transformation occurs in the crys-
tal structure, such as cubic to tetragonal, cubic to orthorhombic. Geometrically, the
transformation is characterized by a first- order change in crystal lattices. The phases
involved in the transformation are austenite and martensite. Austenite, which is the
stable phase at high temperature, has greater symmetry than martensite, which is the
stable phase at low temperature. This change of symmetry gives rise to variants of
martensite — identical crystal lattices of martensite which are oriented differently with
respect to the austenite lattice. During the austenite-to-martensite transformation,
volume changes are often small, and in some cases are zero within the limit of ex-
perimental error. The martensite crystals are usually flat plates, which thin towards
their extremities and so have a lenticular cross section. The plane of the lattice on
which martensite is formed is called the habit plane.

A martensitic transformation can be induced by changes of temperature as well
as by the application of stress. In a sense, the effects of temperature and stress are
interchangeable. In general the transformation should be considered as a thermal-
mechanical process.

We say a transformation is a thermoelastic martensitic transformation if marten-
site forms and grows continuously as the temperature is lowered, and shrinks and
vanishes as the temperature is raised. The thermoelastic transformation either on
cooling or on heating in the absence of external stress causes no macroscopic mechan-
ical effects. There are several critical temperatures for the transformation, denoted

by M,, My, A,, Af,To. The martensitic transformation begins spontaneously at the
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martensite start temperature M,, and as the temperature is lowered, more and more
material transforms until the temperature My is reached, at which the martensitic
transformation stops. Similarly, for the martensite-to-austenite transformation, as
the temperature is raised to A,, the reverse transformation begins, and martensite is
totally transformed back to austenite at A;. Ty is the transformation temperature,
at which martensite and austenite are equally stable in the absence of stress. In the
language of thermodynamics, at Ty, both martensite and austenite phases minimize
the free energy density.

A mechanical analogue to the thermoelastic martensitic transformation is the
notion of pseudoelastic behavior. Pseudoelasticity refers to the hysteretic loading-
unloading characteristic observed in the stress-induced martensitic transformation.
In this case, the transformation proceeds continuously with increasing applied stress
and is reversed continuously as the stress is decreased. When single crystals are
used, the direction of applied stress is very important, and some reactions maybe
inhibited or aided by a suitably oriented stress. Above M,, deformation may also
result in a martensitic transformation, even though the temperature is too high for
a spontaneous reaction, the highest temperature at which martensite maybe formed
under stress is called M,. In general, the martensite-austenite transformation can be
aided in the same way.

There are many alloys that are capable of martensitic transformations; examples
are NiTi, FeNiC, CuZnAl. A list of such alloys maybe found in table 1 of [26]. In
addition, ceramic materials such as Zirconia also exhibit this type of phase transfor-

mation.

1.2 Continuum models for phase transformations

in solids

To construct a continuum model for phase transformations in solids, one must char-

acterize the material by appropriate constitutive relations, and transformation con-
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ditions ( nucleation criterion and kinetic relations). There are many studies in this
respect, for example, those in [12], [16] and [54] for shape memory alloys and those
in [83, 84] for transformation plasticity. However there is as yet no well accepted
constitutive theory. For transformation conditions, one can refer to the review [29]
by Fisher et al. Another important issue is how to model the deformations associ-
ated with phase transformations. Two phases can be separated by a phase boundary
where certain quantities are discontinuous, as in models by Ball & James [14] and
Abeyaratne and Knowles[2, 5] , or the phases may be separated by a transition zone,
where certain quantities change rapidly but are still continuous such as in regularized
theory, for example [75, 85], or an order parameter approach may be used[31].

In the continuum mechanical theories of phase transformations, there are several
widely used approaches for continuum modeling, such as the linear elastic model
[49], models based on the Eshelby inclusion theorem and numerical simulations. The
Eshelby model is mainly used in the transformation plasticity analysis; it is for irre-
versible phase transitions. Linear elastic models are for thermoelastic phase transfor-
mations, especially thermoelastic martensitic transformations. In the linear elastic
model, one computes the elastic energy of a particle with known transformation strain
as a function of its moduli, shape and habit plane. One then uses it to measure the
energetic stability of the preferred habit, and one can sum up the elastic energy and
surface energy to predict the preferred shape plane, habit plane and composite state
as a function of volume. There are some limitations on the linear elastic model [18],
[90]. It linearizes the transformation strain, which is appreciable; it ignores the ro-
tational component of the finite strain which alters the crystallographic habit and it
produces a spurious degeneracy in the preferred habit plane that is not present in
crystallographic theory. Due to the limitations of the linear elastic model, it can miss
important details of microstructure of phase transformations [18].

Recently, there has been significant progress in the modeling of thermoelastic
martensitic transformations that make use of nonlinear thermoelastic theory. The
main approaches in this category include the minimization of energy upon which some

microstructures are successfully predicted by Ball & James [14] and Bhattacharya [17],



)
the Abeyaratne-Knowles model (cited hereafter as the A-K model) which qualitatively
predicts hysteresis [2], the shape memory effect [10] in martensitic transformations
and is consistent with viscosity regularized theory. Each of these approaches has
its advantages and disadvantages. The different approaches originated from differ-
ent techniques used to attack the nonuniqueness problem in the modelling of phase
transformation by finite elasticity. The nonuniqueness is due to the nonconvexity of

the strain energy or free energy function.

1.3 Finite elasticity theory for reversible phase
transformations

Ericksen [27] pioneered the research on the use of finite thermoelasticity theory to
model phase transformations in solids by considering the equilibrium of a bar of mate-
rial that can change phase. Now it is well established that a nonlinear elastic material
capable of phase transformation has a nonconvex free energy function, Abeyaratne
[1], Rosakis [73]. The nonconvexity, or more generally the loss of strong ellipticity,
of the free energy function, leads to the nonuniqueness of the solutions to boundary
value problems or initial-boundary value problems in finite elasticity even though
entropy conditions are imposed [2, 5].

In the setting of continuum mechanics, the nonuniqueness of solutions is due to
the lack of constitutive information about the phase transformation process. In order
to get a unique solution to a boundary value problem or initial-boundary value prob-
lem, various constitutive postulates are made, such as a maximum energy dissipation
criterion by Dafermos [25], absolute minimization of energy by Ericksen [27], Ball &
James [14], viscosity regularization [44, 75, 85] and postulates of a constitutive nature
at a phase boundary by Abeyaratne & Knowles [2, 3].

The above approaches are basically bulk theories with surface effects ignored. For
models that consider surface effects, one may refer to [37, 51, 59]. Though the surface

effect may be very important in some cases [22], in the following only the three widely
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used bulk theories and associated computation methods are briefly discussed.

Minimization of free energy

Absolute minimization of energy assumes that a material is conservative at every
particle including those on the phase boundaries, so that the material prefers the
equilibrium state which renders the appropriate energy functional an absolute min-
imum. In the models of this kind, there is no dissipation on a phase boundary in a
quasi-static process.

As the constitutive postulate implies, this approach can only be applied to the
investigation of the stable equilibrium state of a material. This work is a direct
generalization of Roitburd’s linear elastic model [72]. If finite elasticity theory is
adapted, the approach merges the advantages of the linear elastic model and the phe-
nomenological crystallographic theory. Many interesting results have been obtained,
especially for martensitic phase transformations. Ball and James [14] predicted ob-
served fine phase mixtures, Bhattacharya [17] predicted the wedge-like microstructure
in martensite and more recently James and Kinderlehrer [46] applied the approach
to meagnetostriction. Kohn and Muller [51], by including a surface effect, predicted
twin branching in martensite.

Though minimization of energy in finite elasticity has successfully predicted mi-
crostructures in martensite and other materials, the limitation of the approach is
obvious. It cannot be applied to the situations involving metastablity and dynamical

processes. For a comprehensive review of the approach one can refer to [18, 64]

Viscoelasticity

From a different perspective, one may take the view that the lack of uniqueness
of solutions is due to the elasticity model itself, and thus that a regularization of the
elastic theory by viscosity will remove the nonuniqueness: one can use viscoelasticity

theory as a criterion to select a solution from many solutions in the elastic theory.
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According to this philosophy a weak solution of an elastic theory is admissible only
if it can be obtained as the limit of a solution of a broader theory — viscoelasticity
in the limit of vanishing viscosity ( and possibly other higher order quantities, such
as capillarity). With linear viscosity regularization, the existence and uniqueness
of a strong solution are guaranteed [75]. This approach has been applied to phase
transition problems in one dimension [69], in two dimensions [85] and three dimensions
[50].

However as shown by Abeyaratne & Knowles [6], regularized theory may be viewed

as a continuum model with a special kinetic relation at phase boundaries.

The A-K Model

Borrowing from another viewpoint widely used in materials science, Abeyaratne &
Knowles postulated two additional constitutive relations on a phase boundary. One is
the nucleation criterion, which determines when and where a new phase will initiate
from a parent phase, and the other is a kinetic relation which determines the rate of
phase transformation, or in other words the propagation speed of phase boundaries.
The postulate has its counter part in materials science. In the model, the phase
boundary is a mechanism for dissipation.

Abeyaratne & Knowles showed that for a finite bar with a nonmonotonic stress-
strain relation, the boundary-value problem associated with a quasi-static process
has an infinite number of solutions [2]. In order to select a unique solution they
postulated a kinetic relation and a nucleation criterion on a phase boundary. Thus
they selected a unique solution which predicts material response that is qualitatively
in agreement with experimental observation in uni-axial tension tests. Later they
extended the idea to a fully dynamical mechanical theory, again selecting a unique
solution from many possible solutions [5]. This approach has also been applied to the
thermomechanical theory for a quasi-static process 7, 47]. For a dynamical phase
transformation, thermal effects cannot be realistically omitted. Recently Abeyaratne

and Knowles [8, 9] extended their approach to dynamical processes with heat con-
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duction or to adiabatic dynamical processes. In this theoretical development, they
considered only one-dimensional initial value problems. Jiang [48] has generalized the
A-K model to electrical-thermo-mechanical processes.

Pence [70] considered initial-boundary value problems for a semi-infinite bar, ac-
counting for the interaction of a single phase boundary with an acoustic wave. Lin
and Pence [55], [56] considered the large time behavior of a phase boundary in a finite
bar. For the example of multiple phase boundaries situations one can refer to [10].

Though there are many difficulties, the A-K approach has been applied to two-
dimensional problems. Fried [30] showed that materials with nonconvex free energy
can sustain smooth curved phase boundaries in antiplane shear equilibrium states,
and he also investigated the stability of a phase boundary in anti-plane shear. Rosakis
[74] shows that an inclusion of martensite in a austenite matrix must have cusps in
its boundary in a two-dimensional anti-plane shear problem. Rosakis and Tsai [87]
extended the result to a steady-state propagation of a twin in a infinite domain.

Now the main challenges for the A-K model are: (1) How to analyze one-dimensional
general initial-boundary value problems, so that one can compare predictions of the
model to more complicated experimental observations; (2) How to generalize the
model to higher dimensions: Construction or derivation of appropriate free energy

functions and kinetic relations, as well as appropriate nucleation criteria.

Computational methods

Due to the strong nonlinearity associated with the initial-boundary value problems
arising in the modeling of phase transformations, it is usually impossible to get explicit
analytical solutions for the ordinary initial-boundary value problems.

Various numerical methods have been applied to phase transformation problems.
The finite element method based upon a linear elastic model is widely used in the
simulation of martensitic transformation [90] and in the transformation plasticity
[32, 83]. Collins and Luskin [24], and Nicolaides and Walkington [65] investigated

solid-solid phase transformation problems numerically by the minimization of energy.
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Slemrod [83] applied a Lax-Friedrichs scheme to a system of conservation laws of
mixed type. This basically changed the original system of conservation laws into a
system with viscosity-capillarity regularization. Silling [78] used a dynamic relaxation
technique to model quasi-static phase transformation processes, and later he extended
his modelling to the dynamic growth of martensitic plates in an elastic material [79].
Swart and Holmes [85], Affouf and Caflisch [11] and Kloueck & Luskin [50] applied
numerical methods directly to the regularized theory. There is no uniqueness problem,
but the applicability of the regularized theory is limited. More recently Mamiya and
Simo applied the finite element method to the Abyaratne-Knowles model for the

quasi-static case [60].

1.4 Scope of this work

This work focuses on a one-dimensional dynamic mechanical model of phase transfor-
mation proposed by Abeyaratne & Knowles [5]. Only two-phase hyperelastic materi-
als are considered. The purpose of this investigation is two fold. First, to investigate
the analytical predictions of the model in some complicated situations, such as the
interaction of a phase boundary and a shock wave or the determination of the large
time dynamical behavior of a phase boundary in a domain with a boundary. Sec-
ondly, we analyze general initial-boundary value problems so that one can compare
the predictions of the model to experimental observations.

The main results obtained are:

e An approximate Riemann solver is developed for two-phase elastic materials.
Riemann problems for such materials involve complications not present in the

corresponding problems that arise, for example, in classical gas dynamics.

e An exact solution is obtained for the dynamical behavior of a phase boundary in
a semi-infinite bar. A thorough analysis of the solution reveals many interesting
phenomena. The solution can be used to illustrate that a phase boundary can

reach an equilibrium state at large time after the application of a disturbance
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of finite duration.

e A finite difference method of Godunov type is developed for the model. The
method is proved to deliver correct solutions. Through a numerical experiment,
it is shown that a dynamic solution converges to the static solution in large
time. With this method, it is possible to analyze any initial-boundary value

problem for the A-K model.
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Chapter 2 Preliminaries

The materials in the Abeyaratne-Knowles model are characterized by nonconvex
strain energy functions. These materials can describe stable deformations as well
as metastable deformations. In this model, phases correspond to disjoint deforma-
tion domains of a strain energy function. In the domains, a deformation is stable,
metastable or unstable. Based on the fact that an unstable deformation is not ob-
servable in solid-solid phase transformations, it is assumed that a deformation will
jump from one stable or metastable phase to another when certain critical conditions
are satisfied. This leads to the formation of a phase boundary.

The basic assumptions are:

(1) The deformation is C? away from shock fronts or phase boundaries; defor-
mation gradients are discontinuous across shock fronts or phase boundaries, but the
deformation is continuous.

(2)Two supplementary constitutive relations are postulated: a kinetic relation at
a phase boundary and a nucleation criterion.

The assumptions imply that the deformation at a phase boundary is coherent and
phase boundaries are kinetically driven. Unlike the situation in conventional shock
wave theories, a phase boundary is not the result of the overlapping of characteristics.

In the following, only the one-dimensional version of the model is presented.

2.1 Governing equations

Consider a one-dimensional bar with uniform cross section A that occupies the interval
[0,L] in an unstressed reference configuration. In a longitudinal motion of the bar,
the particle at z is carried to the point z + u(z,t) at time ¢, where the displacement

u is required to be continuous with piecewise first and second order derivatives on
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[0, L] for £ > 0. Let
Y= Up, U= Ut (2.1)

denote strain and particle velocity respectively. It is assumed that v(z,t) > —1 so
that the mapping z — = + u(z,t) is invertible at each time ¢.

The equation of motion and the compatibility equation are

(V) —pve = 0, (2.2)

ve—vn = 0. (2.3)

The characteristics for this system are:

dx
b
where ¢ = 11—1()11. The corresponding Riemann invariants along each characteristics

are:

v— /cd'y = constant,

along dz/dt = c(v);
v+ /cd'y = constant,

along dz/dt = —c(7).

If there is a strain discontinuity at = s(¢), jump conditions must hold

$(yr —7-) = —(vy —v-), (2.4)

o(1+) —o(v-) = —pé(vy —v-), (2.5)

where ()+, ()~ denote quantities right in front of the discontinuity and behind it.
Let

W(y) = /0 " o(v)dy (2.6)

be the strain energy per unit volume for the material. Consider the restriction of
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the motion to the time [¢1,?;] and to the piece of the bar that occupies the interval
[£1, 2] in the reference state. Suppose that 7 and v are smooth on [z1, To] in the time
interval [t,%,] except at the moving discontinuity z = s(¢). Let E(t) be the total

mechanical energy at time ¢ for the piece of the bar under consideration:

B() = [ Wz, 1) + 500z, )ds. 27)

1

A direct calculation establishes the the following work-energy identity:
o(zo)v(z2,t) — o(z1)v(21,t) — E(t) = f(t)$(1)A, (2.8)

where the driving traction {(t) is defined by
. Y+ 1
f=Fom) = [Ty —slotr) + ol —1-) (29)
The admissibility condition imposed on the phase boundary is
f(t)s(t) = 0. (2.10)

Under isothermal conditions the admissibility condition is a consequence of the second

law of thermodynamics, see [52].

2.2 Supplementary constitutive relations

Besides the equations of motion, the stress-strain relation, jump conditions and the
admissibility condition, two supplementary constitutive relations must be specified
in order to uniquely determine a solution of the system. The two supplementary
constitutive relations are the kinetic relation and the nucleation criterion. The kinetic
relation relates the phase boundary propagation speed $ to the driving traction f(t)
acting on the phase boundary. The nucleation criterion determines when a new phase

will be nucleated from the parent phase. These two relations are material-dependent
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only. In this work, we use the following kinetic relation and nucleation criterion:

1. Kinetic relation:

where ¢($) is a monotonically increasing function that may be discontinuous at

s=0.
2. Nucleation criterion:

Assume that there is a two-phase material, with low-strain phase A, high-strain

phase B, then for this material we have

f<fer <0 (2.12)
for a phase A-to-phase B transformation;
f2720 (2.13)

for a phase B-to-phase A transformation; f, f.- are critical driving tractions.

2.3 Trilinear materials

The simplest elastic material capable of phase transformation is the so called trilinear

material. The trilinear stress-strain relation can be expressed as:

H17, -1< Y < Ym)
o(7) =9 222 (y — ) +om, Ym < T < M (2.14)
p2 (Y = Ye), M <y < oo

where o = WY, oM = p(ym — 7T)-
We call =1 < 4 < 4m phase 1 or low-strain phase, v,, < v < 7yu phase 2 or
unstable phase and yar < y phase 3 or high-strain phase. The low-strain phase and

the high-strain phase are metastable phases, the third phase is the unstable phase.
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If we consider the martensitic transformation as our prototype, we can identify the
low-strain phase as austenite and the high-strain phase as martensite. Let ¢; = \/%,
: = 1,2 be the sound speeds in the low- strain phase and the high-strain phase.
It is easy to see that

H1 > 03.“2 > 077m <M.

To guarantee the noconvexity of the corresponding strain energy function, we require
that
1Ym > p2(Ym — ),

see Figure 2.1.

For this material the driving traction on a high-strain-low-strain phase boundary

1s

H27t
2

(g1 — p2)
2

fOr=ve) = (Y47 — YMYm) + (V4 + 7= — M — Tm), (2.15)

for a low-strain-high-strain phase boundary f (=, 7+) = = f(v=,v4)-

In an equilibrium state we can write the driving traction in terms of stress o:

TmIM — —”22% (Ym + 91 — Ye)- (2.16)

The Maxwell stress oo of the material is the unique stress for which f(o) =0 . It is

easy to show that f(o) is monotonically increasing, and f(o,,) <0, f(oar) > 0.
If we let 3 = pg = p then the Maxwell stress is

(om + onm). (2.17)

Og =

DO =

The strains corresponding to the Maxwell stress in the low-strain phase and high-

strain phase are

1
Y% = 5(%: + M — 1), (2.18)
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1
% = 5(%m + 1M +7)- (2.19)
The jump conditions become
Ay —7-) + 80y —v) = e, (2.20)
(vy —v)+8(v+ —v-) = 0. (2.21)
The Riemann invariants are
v % ¢y = constant. (2.22)

The jump conditions and the stress-strain relation imply that
|$| < ¢ (2.23)

for a phase boundary propagation speed.
In the following chapters, the special trilinear material with g3 = po is used
unless an otherwise specification is assumed. For this material, we can reformulate

the nucleation criterion in terms of strains for convenience.

e An alternative version of nucleation criterion

Assume that there is a two-phase material, with low-strain phase A, high-strain

phase B; for this material we have

Y2 Yer 2% (2.24)
for phase A-to-phase B transformation;

v<v < (2.25)

for phase B-to-phase A transformation. ¥>.,v., are critical strains.
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2.4 A more general material

The dynamics of a more general constitutive law for an elastic material capable of
undergoing a phase transition has been considered by Lin [57].

For this material, o(7y) is assumed to be a twice continuously differentiable function
that first increases with 7, then decreases and finally increases again as shown in
Figure 2.2. More precisely, it is assumed that there are three numbers v,y and

Yin With 0 < vm < ¥in < yum such that

4

>0,-1 <y <7,

=0,7 = Ym,

(1)} < 0,vm <7 <YM, (2.26)
=0,v =,

\ > 0,7 > vm,

and
<0,-1 <79 < %n,

o (’)’) = 0’7 = Yin, (227)
> 0"7 > Yin-

Further, it is supposed that o(0) = 0 and that o(y) = —o0, a'(y) — o0 as v — —1;
o(Y) = peoy+0or+0(1) as v — oo, where o and or are constants. The stress-strain
curve therefore consists of three branches, two of which are rising, while the other
is declining; it has a single inflection point at the strain v = +;, and is asymptotic,
at large tensile strains, to the straight line o(y) = peoy + or + O(1). As in the
trilinear material, (—1,Ym], (Ym,¥aM), [Yar,00) are identified as the low-strain phase,
unstable phase and high-strain phase. The low-strain phase and high-strain phase
are metastable.

This material can sustain rarefaction waves (fans) and shock waves, and the shocks
are dissipative. Trilinear materials cannot sustain fans and the shock waves in trilinear

materials are dissipation free.
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Figure 2.1: A trilinear material
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Chapter 3 Riemann problems

The study of a Riemann problem provides powerful tools towards the understanding
of the wave structures of the solution of hyperbolic systems and systems of mixed
type. As a matter of fact, the model considered here is developed through the in-
vestigation of various Riemann problems. Besides the theoretical significance of the
Riemann problems, their solutions can be used as building blocks for some compu-
tational algorithms for discontinuous solutions, as in the methods of Godunov type
and particularly the method developed in Chapter 6.

It is easy to check that there exist self-similar solutions for the governing equations
(2.2), (2.3). When we solve the governing equations for self-similar solutions, we can
reduce them and the related jump conditions to a group of algebraic equations. For
trilinear materials, the algebraic equations are quite easy to solve. But for a nontri-
linear two-phase material , it is not so easy to solve the algebraic equations. Recently
Lin [57] considered such a nontrilinear material and solved a Riemann problem with
special initial data.

In the following, a summary of solutions to Riemann problems for trilinear ma-
terials is given in Section 3.1. These solutions are to be used later in Chapter 6. In
Section 3.2, we first discuss some general features of solution to Riemann problem for
general two-phase elastic materials, then we propose an approximate Riemann solver.
Some remarks are made in Section 3.3 on trilinear materials and general two-phase

elastic materials.
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3.1 Solutions to Riemann problems: trilinear ma-

terials

Following the procedure described in [5], by using the entropy inequality and the jump
conditions, it is easy to show that Riemann problems for arbitrary trilinear materials

have the following features:

1. If there is no initial data in the unstable phase, then the unstable phase will

not appear later.
2. There cannot be two phase boundaries propagating in the same direction.

3. There are at most two phase boundaries in any solution of a Riemann problem;

if there are two phase boundaries, they propagate in opposite directions.

4. If ¢y # ¢3 we call a phase boundary supersonic if § > min(¢i, ¢2), subsonic if
§ < min(cy,cz). When a phase boundary propagates into the phase with larger

sound speed, then § < min(cy,c2). We always have s < maz(c, cz).

With these features, it is easy to solve the following Riemann problems.

Suppose we have a Riemann problem with initial data:

vL,YL, —oo<z <0,

v(x,0),v(z,0) = (3.1)

YR,YR, 0<z < o0,
for the governing equations (2.2), (2.3), using the special trilinear material given in
Section 2.3. Here we only seek self-similar solutions. The solutions to the Riemann

problem are given below for two cases.

Case 1. Initial strains vz, vg are in the low-strain phase.

Let
v(z, 1) = 6(3), (3.2)

1(e,t) = 4(3) (3.3)



and

{ 7 } =0 (3.6)

or
A
det =0. (3.7
Al
i.e.
T
v(?) = constant, (3.8)
o T
'y(—t—) = constant (3.9)
or
A= +ec (3.10)

So we have piecewise constant solutions with possible discontinuities at £ = +c. By
the alternative nucleation criterion, if %(vn —vr+ce(yr +9L)) < Yer, then there will

be no new phase initiated and the solutions are in the form:

UL, YL, —00< < —ct,
’U(II),t), 7($at) = vo,Yo, —ct<z<cl, (311)

VR,YR, ct <z < .
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We can determine (vg, o) by the jump conditions at the positions of shock waves,

r = *ct:
vy —vo — (7L — Y0) =0, (3.12)
vR — Vo + (YR — Y0) = 0, (3.13)
which give
1
Yo = 5;(7’1% — v+ ¢(vr + 1)), (3.14)
vo = vp, + ¢(Yo — VL)- (3.15)

(see Figure 3.1a)

By the nucleation criterion, if 51;(1712 —vr + ¢(yr + VL)) > Yer, then the above
solution is invalid. There is a new phase initiated at the origin. According to the
general features of Riemann problems, there are two phase boundaries propagating
in the opposite directions. In a procedure similar to that lead to (3.5), we can show

that the solution has the following structure (see Figure 3.1b):

4

VL, YL, —x<r< ““‘Ct’
v1,7M, —c<zr< —.ét,
v(:c,t),ﬂy(:v,t) =4 V9,72, —St<ax<st, (3.16)

V3,73, St<z<ect,

'UR,"YR, ct <r< oo

where
. csyr
71 - h - cz _ 3-27
cYr
=h
72 + c + é,
_ csyr
BT
25’7T
(51 =UL—C’)’L+Ch—2—“—.3,
-3

Ve = v, — ¢y + ch,
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2-

sy
v3 =vp+cyr — ch+ —,

ct— 8

1
h = E(UR — v + (YR + L))

The phase boundary speed s is determined by the kinetic relation,

%2(7'"1 + M — 11— 72) = d3(—3).

(3.17)

Case 2. The initial strains vz, yg are in the high-strain phase and low-strain phase

respectively.

There is only one phase boundary in the solution; see Figure 3.2 . The solutions

are: )
v, YL, —oo< <z < —ct,
Vey Y-y, —ct <z < st,
v(z,t),y(z,t) = < '
Viy Y4, S << ct,
| VR, TR, ¢t <z < o00.
where
T
. =h— ———
7 2(c+ 38)’

v =vp + 6(7— - 7L))

cYr
=h 4 —
v+ = v — c(7+ — TR),
1
h = 5-(vr = v+ c(vr +71))-

The phase boundary speed $ is determined by the kinetic relation,

PAT .
—(Ym + M — Y- — 74) = b13(8).
9

Riemann problems with other initial data can be solved similarly.

(3.18)

(3.19)
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For completeness, a special initial-boundary value problem corresponding to im-
pact is considered. The problem is defined in (0, o0), with the following initial condi-
tions :

v(z,0) = 19,0 < z < 00, (3.20)
¥(z,0) = 70,0 < z < 0 (3.21)

and a velocity boundary condition at z = 0:

v(0,1) = v, 0 < t < o0, (3.22)

where v, 1s a constant.
Case 1: The material is initially in the low-strain phase, i.e. v < 7.

If v, > vo + c(70 — Yer), then the solution is: (Figure 3.3a)

vy, =2 470, 0<z<d,

v(z,t),v(z,t) = (3.23)
Vo, Yo, Ct< T <00
If vy < vo + ¢(Y0 — Yer), then the solution is: (Figure 3.3b)
U, Y, 0 <z < st
U(:E,t),")/(:ﬂ,t) =94 Up,Yp, St<z < ct, (324)

Vp, Yo, ¢t < T < 00,

where

vot+cYo W evr
M=+ —,
c c c+ s

2.

C 8T

Up = Vp + —

4 C2—82’
_Yot+Ccy v CSYT

YYo= " —

The phase boundary speed $ is determined by the kinetic relation:

BT .
—é—(vp + % = Ym — M) = $31($).
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Case 2. The material is initially in the high-strain phase, i.e. v > 7.
If vy < vo + (Yo — %), then the solution is the same as (3.23)(Figure 3.3a).
If vy > vo + (Yo — Z.), then the solution is the same as (3.24)(Figure 3.3b). But

$ is determined by the kinetic relation:

BT (o + 10 = = 1) = 1a8). (3.25)

3.2 Solutions to Riemann problems: general two-
phase elastic materials

By general two-phase elastic materials, we mean a material that can be characterized

by a strain energy function W(~) such that
o W(y) >0,
o o(3) = W(x), 5(0) = 0,6/(0) > 0,
e —d(7)>0,-1<7< Ym,

- O'I(")’) < 0,’)’m <7 < TM,
- UI(7) > 0,7 > M.
We call —1 < ¥ < 7, low-strain phase, 7, < v < yu unstable phase and v > v

high-strain phase.

3.2.1 General features of solutions to Riemann problems

As in the case of trilinear materials, one can use the entropy inequality and the jump

conditions to demonstrate the following features of the Riemann problem:
1. Two fans cannot propagate in the same direction, neither can two shock waves.
2. Two phase boundaries cannot propagate in the same direction.

3. A fan and a shock wave cannot propagate in the same direction.
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4. When a phase boundary and a fan or a shock propagate in the same direction,

the phase boundary cannot travel faster than the fan or the shock.

With these features in mind, one can easily determine all the possible solution struc-
tures for any initial data for a Riemann problem. However it is not easy to determine
which solution structure is the right one for specific initial data. Lin [58] proposed a
nontrilinear two-phase elastic material, and he solved a Riemann problem with special
initial data and demonstrated that one can uniquely determine a solution through

the kinetic relation and the nucleation criterion.

3.2.2 An approximate Riemann solver

It is not easy to obtain explicit analytical Riemann solutions for a general two-phase
elastic material capable of phase transition. To solve the Riemann problem numer-
ically requires the iteration of highly nonlinear equations. In practice, it is time
consuming, and the convergence of the iteration cannot be guaranteed. Motivated
by Roe’s scheme [71] for the computation of shock waves, an approximate Riemann
solver is proposed. The idea is to determine Riemann solutions by solving a constant
coefficient linear system of conservation laws instead of the original nonlinear system.

For conservation laws (2.2), (2.3), we approximate

Here c is a constant.

We consider a Riemann problem with initial data in different phases only, which
means U; = (v, %), Ur = (vr,7) with 4;, 7, in the high-strain phase and the low-
strain phase respectively. The algorithm for the approximate Riemann solver reads

as:

1. Let ¢ = (”—ipl’-l)l/ 2 ¢ = (ﬂ:—'l)l/ 2. Then we approximate the general stress-



28

strain relationship o(v) by the following trilinear stress-strain relation:

Pcz(’Y—’Yr)‘l'U(’Yr), -1 <7y <7,
6(7) =\ Zm=Bt(y — ) + 60, Ym <V < In, (3.27)

pct(y — ) + () M <y < 00

where &, = pc(m — ¥-) + (%), oM = pci(ym — 1) + o(m).
Solve the conservation laws for the trilinear material for the UL, U}, which

are U right behind and in front of the phase boundary. The phase boundary

propagation speed $; is determined by the kinetic relation.

2. From the conservation requirement in hyperbolic regions, we improve the linear

coeflicient matrix A in the following way:

) = f(U™) = AU, — U™, (3.28)

~

From which we have

a(n) — U(T:YE) )1/2,

(i =) (3.30)

Cz=(

¢, = o(v — ‘7(’7-7-))1/2'

T =) (331
Then we can approximate the general stress-strain relationship () by an im-
proved trilinear stress-strain relation which has a form the same as that in step
1. We solve the new approximate conservation laws for the new trilinear stress-

strain relation for the U?*!, UZ*! which are U behind and in front of the phase

boundary. The phase boundary propagation speed s, is determined by kinetic

relation.

3. If |, — $n-1] < €, then we have the following approximate solutions: § = $,,

U_=U" Uy =U",

4. If o'(y) > o'(7-), then we replace the left shock by a rarefaction wave in
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—(-U;(ll)l/2 < %< —(5'-%-?;1)1/2. If o'(7,) > o (74), we replace the right shock

p

by a rarefaction wave in (5—%12)1/2 <2< (9—%’1’))1/2,

It can be easily checked that the above algorithm satisfies the three conditions
suggested by Roe [71] in hyperbolic regions. As the phase boundary is not known
priori, the above “linearized” conservation laws are still in fact nonlinear.

We apply the approximate Riemann solver to two Riemann problems for a hypo-

thetical nontrilinear stress-strain relation:

— 00071 | 14 64y — 0.953,—1 < v < —0.9,

1+

o(v) =14 v(7* — 4.4y +5),-0.9 < v < 4, (3.32)
950
950 4 55.87 — 399.8,4 <y < 0

with v, = 0.770646,va = 2.1629. This stress-strain relation is that for a material
model proposed by Lin [57].

Test 1. 1-shock, 1-subsonic phase boundary, 1-shock

initial condition: (v, g1, vy, gr) = (0,2.5,-0.5,0.5), p = 1 and w = 0.5.

methods Approximate Riemann solver Exact Riemann solver

$ —0.14070 -0.15547
V4 —0.10279 —0.11767
Y4 0.23198 0.24046
V- 0.23859 0.26024
- 2.65840 2.67122

Test 2. 1-shock, 1-subsonic phase boundary, 1-rarefaction wave
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initial conditions: (v, g1, vy, g-) = (—1.6,2.7,0.1,0.1), p = 1 and w = 0.5.

methods Approximate Riemann solver Exact Riemann solver

$ 0.49437 0.51091
vy ~0.10773 —0.06913
- 0.20767 0.18677
v_ —1.39407 —1.40610
y_ 2.80966 2.80359

For “exact Riemann solver,” we mean a procedure to obtain Riemann solutions
from original nonlinear equations by numerical iteration. An algorithm proposed
by Shacham [76] for the numerical solution of constrained nonlinear algebraic equa-
tions is used here. From the two tests, we see that the approximate Riemann solver
works resonably well, with an error for phase boundary propagation speed is less than
7%.

There are several advantages of the approximate Riemann solver over the “exact
Riemann solver.” When using the “exact Riemann solver,” we have to make an initial
guess of the solutions, we may encounter degenerate situations with Jacobian deter-
minant zero, and we cannot always guarantee that the numerical solutions satisfy the

entropy inequality. There are no such troubles for the approximate Riemann solver.

3.3 Remarks

The motion described by trilinear materials is much simpler than that described by
general two-phase elastic materials. Trilinear materials can describe phase bound-
aries, but it cannot describe rarefaction fans. However, from the general features of
Riemann problems for trilinear materials and for general two-phase elastic materials,
we see that the behavior of phase boundaries described by trilinear materials is qual-
itatively the same as that described by general two-phase elastic materials. So the
trilinear material model is a good approximation as far as phase boundary behavior

is concerned.
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(b)

Figure 3.1: Form of solution to Riemann problem with initial data in the low-strain
phase
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Figure 3.2: Form of solution to Riemann problem with initial data in the low-strain
phase and high-strain phase
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Figure 3.3: Form of solution to a special initial-boundary value problem
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Chapter 4 Modeling of Martensitic

transformation induced by a tensile pulse

Under circumstances that lead to quasi-static thermomechanical responses of phase
transforming materials, the predictions of the models of the kind developed by Abe-
yaratne & Knowles have been extensively and favorably compared qualitatively with
corresponding experimental observations, e.g. see [2], [47] and [10]. There are sit-
uations where inertial effects cannot be ignored, e.g. phase transforming materials
subjected to dynamic loadings. Here we apply the model presented in Chapter 2 to
describe the dynamics of martensitic transformations induced by tensile stress pulses
in impact experiments.

From an impact experiment, Meyers & Guimaraes [61] found that a tensile pulse
produced by the reflection of shock waves at a free boundary generated martensitic
transformation in a Fe-Ni-C alloy, while compressive waves only produced disloca-
tions. Snell et al. [81] also observed martensitic phase transformation in a disc-shaped
Fe-Ni-C alloy in an impact experiment. The transformed region was formed near the
free surface of the disc, rather than the impact surface. Later, Meyers [61] showed
that the distribution of the martensites in Snell et al.’s experiment was due to a ten-
sile pulse. In 1986, Thadhani & Meyers [86] investigated the kinetics of martensitic
transformation induced by a tensile pulse in a delicately designed one-dimensional
experiment. Meyers [62] and Thadhani & Meyers [86] analyzed the martensitic trans-
formation induced by a tensile pulse. This martensitic transformation, observed in
Fe-Ni-C alloys, provides us a prototype for one-dimensional continuum modeling of
phase transformations in a dynamical process.

Here we formulate a mathematical problem corresponding to the Thadani & Meyer
experiment. The problem to be solved in the modeling is more complicated than

common initial-boundary value problems because there are interactions between the
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impactor and the specimen.

4.1 Formulation of the problem

The main concern here is to use a model of the kind developed by Abeyaratne &
Knowles to describe the dynamics of martensitic transformations induced by a tensile
pulse in impact experiments. For a particular experimental set up one can refer to
[86] of Thadani & Meyers .

In an impact experiment, we have an impactor and a specimen. Assume the
impactor is a single-phase material bar with length [, while the specimen is a two-
phase material bar of length L. The impactor moves at a constant speed vg prior
to impact, while the specimen is stationary. At time t=0, the impactor hits the
specimen. It is assumed that at ¢t = 0, the impactor occupies the interval [—[,0),
while the specimen occupies the interval (0, L].

In the modeling, we take the undeformed impactor and the specimen in [—!, L]as
the reference configuration. We assume the material of the impactor is an elastic
material which is characterized by the stress-strain relation ¢ = u'y. The material
of the specimen is assumed to be the special trilinear material defined in Section
2.2. Here we can interpret the high-strain phase of the material as martensite, while
the low-strain phase is austenite. Denote by p,p the densities of the two materials
respectively. Further, let ¢ = \/E, ¢ = \/g be the the speeds of the sound waves in
the two materials.

As initial conditions, we take

v, —-I<z<0,
v(z,0) = (4.1)
0, 0<z<L

and

0, —I<z<,
v(z,0) = (4.2)
0, 0<z<L.
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The boundary conditions are:

o(—=1,t)=0,  o(L,t)=0. (4.3)

In an impact experiment, the impactor and the specimen are in contact for a time
t* after the impact; subsequently the two are separated. Thus we have the following

interface conditions:

o(0+,1) = o(0—, 1) (4.4)
(04, ) = v(0—, t) (4.5)

when ¢ is in (0,t%);
o(0+,8) =0,  o(0—,t) =0, (4.6)
v(0+,1) > v(0—, 1) (4.7)

when ¢ is in (t*, 00).
It should be noted that ¢* is not known in advance, but rather is determined as
part of the solution of the problem. This makes the impact problem more complicated

than a standard initial-boundary value problem.

4.2 Analytical solution of the problem for short
time

We further assume that a low-strain-phase to high-strain-phase transformation can
happen only under tension. It is also assumed that L > %/ for simplicity of analysis.

For the problem formulated in Section 4.1, we have piecewise constant initial data
and constant boundary values. We can construct a solution to the problem by using
the solutions of Riemann problem. In a procedure similar to the one used in Chapter
3, we show that the problem has a solution that can be illustrated by Figure 4.1 at
the initial stage.

This is a piecewise constant solution. In this case, the governing equations reduce
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to a group of algebraic equations. From jump conditions at z = ct and = = —c't and

continuity conditions at ¢ = 0, we have

v —vg—c(y- —0) =0, (4.8)
vy + ey =0, (4.9)
Vo = vg, (4.10)
W = e (4.11)
It follows that,

ve=oe = :0%,[%) (4.12)

v
1= ‘Z(ng (4.13)

Vo
= s (4.14)
As L > %1, the reflected shock wave from z = —[ will reach the interface z = 0 earlier

than the reflected shock wave from = = L, as shown in Figure 4.1. Denote by ¢* the
time the reflected shock wave in the impactor reaches # = 0. Right before ¢*, the

particle velocity in the impactor is:
v=v_+cy. < vy (4.15)

Thus we have v(0—,t*) < v(0+,t*), which means the impactor and the specimen are
separated at time t* = f,l This suggests that we can ignore the impactor after ¢*.

For 0 < t < t*, we have

v = v(0,1) = (4.16)
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and

n=70,8) = ————— (4.17)

in the specimen.
For ¢t > t*,
o(0,t) = 0. (4.18)

We can view the impact on the specimen as an incident wave with finite duration,
see Figure 4.1. When the front of the incident wave z = ct reaches the free end, it is

reflected. In region II, the reflected wave and the incident wave cancel each other,

V1 — Uy — C(’)’l —_ ")/2) = 0, (419)
2 = 0, (4.20)
that is
vy = 2v; > 0, (4.21)
and
Y2 =0. (4.22)

Here the fact that 4, = 0 is due to the boundary condition at £ = L. When the
reflected wave front encounters the rear of the incident wave, a tensile pulse emerges,
which can be found by solving a suitable Riemann problem. Two situations have to
be taken into account, depending on whether a phase transition occurs.

Case 1: No phase transition occurs. When the magnitude of v is small enough,
there is no new phase initiated. At the point in space where the reflected wave front
collides with the rear of the incident wave, we have a Riemann problem with initial
data vy = vy =0, v, = 74 =0, vg = vy = 2v1, Yg = 2 = 0. We can obtain v and
~3 by solving it:

v

T3=—=-m>0, (4.23)

C

V3 =CY3 =V > 0. (424)
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The necessary condition for the solution to be valid is that, v3 < 7., where
Yer is the critical strain for nucleation of a low-strain phase to high-strain phase

transformation. The necessary condition can be written in term of vg:

cu

vo < ¢(1+ ;L—,Z)'ycr. (4.25)

Under this condition, there will be no additional phase transformation later. It is
easy to show that the bar will be in tension and compression alternatively as time
goes on, see Figure 4.2.

Case 2: A phase transition occurs. When vy > ¢(1 + Z_”%)%” a new phase is
initiated due to the generated tensile pulse. We can determine the deformation state
at this time by solving a Riemann problem with initial data vy, = v4 =0, v, =4 =0,
vR = v3 = 2v1, YR = 72 = 0. As demonstrated in Chapter 3, there are two and only

two phase boundaries at the nucleation point, see Figure 4.3. By the jump conditions

at shock waves and phase boundaries, we have

v —vp—clyu—y) = 0,
vnz—vr+c(ns—vr) = 0,

w(yz — 1) — gy — pé(viz —vn) =
viz — v — $(mz — 1) =

ez — 1) — vz + ps(viz —vi3) =

~

.OOOP
NN e~ S e~ e~
=
[\]

o0
~—

vi2 —viz+ $(112 —M13) =

The deformation state in the bar right after the initiation of the new phase is

given by
. cé')'T
mo= SN T g (4.32)
_ ar
M2 = ity ey (4.33)
cs
M3 = M- —%, (4.34)
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c2éyr
tu = N T T (4.35)
vz = —cv, (4.36)
cts
vz = —M + o2 _:Yzz . (4.37)

The solutions (4.32) - (4.37) are expressed in terms of §, where s is determined by
kinetic relation f = ¢(§). Thus the state of the bar is totally determined. We can
now determine when and where the phase transition occurs.
When
L> 51 (4.38)

and

1

vo > (1 + %)% (4.39)

a new phase will be nucleated at time ¢,,:

I L
th = =+ —. (4.40)
¢ ¢
The position of the nucleation point is
le
Tn=L— = (4.41)
c

Prior to interaction of the shock waves and the phase boundaries, the new phase
will grow. When interaction of the phase boundaries and shock waves occurs, the
phase boundary speeds of the two phase boundaries will change. We can determine
each interaction between a phase boundary and a shock wave by solving a suitable
Riemann problem. The situation gets quite complicated as time goes on and it is
impossible to describe all interactions for large time. There are at least two possible
cases for the interaction of shock waves and phase boundaries; see Figure 4.4.

The time and location of nucleation depend on the geometry and the material
properties of the impactor and specimen, but they do not depend on the magnitude

of vg directly. On the other hand, whether there are disconnected high-strain phase
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regions or not depends on the magnitude of vy, among other factors. From the
solutions, we see that the transformed region or regions are away from either ends of
the specimen. This analytical prediction is in qualitative agreement with experimental
observations [81, 86]. But we cannot determine the ultimate equilibrium positions of
the phase boundaries because we only have short time solutions at the current stage.
We have to use a numerical method to obtain information for the long-time evolution
of phase boundaries and the final equilibrium state of the bar. This will not be done

here.

4.3 Comments

As shown in Section 4.2, the approach of Abeyaratne and Knowles can be applied
to martensitic transformations that arise in impact experiments. Compared with the
analysis of Meyers [62] and Thadhani & Meyers [86], this approach has the following
advantages: It can predict the critical vo for the initiation of martensitic transforma-
tion, it can predict possible reverse transformations (high-strain phase to low-strain
phase), as in Figure 4.4, and it can also predict the martensitic transformations by a
successive tensile stress. Furthermore the approach of Abeyaratne and Knowles can
describe the long-time behavior of phase boundaries, including the final equilibrium
state of the specimen. Because the model is a one-dimensional continuum model,
it is unable to give any information about the microstructural changes during the
transformation or the morphological features of martensites.

Within the one-dimensional continuum mechanical frame work, the modeling can
be improved in several ways. For example, an adiabatic assumption may be used
instead of the isothermal model used here. This is because the isothermal assumption
does not strictly hold at a phase boundary in a dynamical process associated with

the martensitic transformation.
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m

VI II
t* I
0,0

Figure 4.1: Schematic diagram for the impact problem
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Figure 4.2: Form of solution to case 1: alternation of a tensile and a compressive
wave
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Figure 4.3: Form of solution that involves nucleation of a new phase: a)nucleation of
high-strain phase; b)The transformed region in the bar: the shaded region corresponds
to high-strain phase
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(a)

H I i

(b)

Figure 4.4: Form of solution: a) low-strain phase is initiated from high-strain phase;
b)a tensile pulse induces high-strain phase
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Chapter 5 Large time dynamical behavior of a

phase boundary: an exact solution

It has been shown by Abeyaratne & Knowles [5] and James [44] that the motion of
a phase boundary is dissipative in a nonlinear elastodynamic theory for solid-solid
phase transformations. Thus one expects that the dynamical system associated with
phase transformations may reach an equilibrium state at large time, or from an energy
perspective, the dynamical system will eventually reach a minimum energy state.

Recently, Lin & Pence [55], [56] made an effort to solve this problem in a one-
dimensional setting. Due to the formidable analytical difficulties in solving a fully
dynamic problem and then identifying the large time equilibrium state, they attacked
the problem by an approximate energy approach. They showed that total energy
dissipated is the energy necessary to settle the dynamical system into a new minimum
energy state.

Here an attempt is made to obtain an analytical solution for the large time dy-
namical behavior of a phase boundary in the frame work of Abeyaratne & Knowles
[2, 5]. In order to obtain an analytical solution for the phase boundary motion at
large time, we choose the simplest possible problem. A semi-infinite bar intially pos-
sessing a single phase boundary is considered. The material of the bar is assumed to
be trilinear, with common elastic moduli in the two metastable phases. We make no
approximations in obtaining our analytical solution.

Unfortunately the approach to get the exact solution to this problem cannot be
used to solve the problem of finite bar considered by Lin & Pence [55], [56]. A
numerical approach is inevitable for the finite bar problem.

The initial-boundary value problem to be solved is formulated in Section 5.1. In
the problem we assume that the material is the special trilinear material defined

in Section 2.3. The kinetic relation is assumed to be the simplest one, f = ws,
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where w is a constant. There is a preexisting phase boundary. In Section 5.2, we
analyze the short time behavior of the phase boundary due to an external disturbance.
We determine restrictions on the external disturbance and material parameters that
prevent the initiation of new phase boundaries. We solve the problem for large time in
Section 5.3, relying on the assumption that there is only one phase boundary at any
time. Simple nonlinear recursive formulae are obtained for the motion of the phase
boundary and the deformation in the bar. In Section 5.4 we consider the problem
formulated in Section 5.1 for general monotonically increasing kinetic function ¢(3).

Numerical calculations that support our analytical results are carried out in Section

3.5.

5.1 Formulation of an initial-boundary value prob-
lem

A semi-infinite bar is under consideration. The material of the bar is assumed to be
the special trilinear material defined in Section 2.3. The motion of a phase boundary
is governed by kinetic relation f = ¢(8), with ¢(8) = ws. As defined in Chapter 2, f
is the dynamical driving traction on a phase boundary, and $ is the phase boundary
propagation speed. The nucleation criterion is the one given in Section 2.2.

Initially, the bar is in the low-strain phase for 0 < z < so, and in the high-strain
phase for sp < ¢ < co. The bar is in equilibrium state. Thus the phase boundary at
S is initially stationary. From the kinetic relation, f = ws, we conclude that f = 0,

so that the bar is initially in Maxwell state:

v(z,0) =v; = 0, (5.1)

_ 1
(z,0) =7 = 5(% + M — 1) (5.2)
for 0 <z < s¢;

v(z,0)=vF = 0, (5.3)



47

1
v(z,0)=vf = 5 (¥m +vm1 + 1) (5.4)

for sop < = < 0.
At t = 0, the end of the bar is suddenly subjected to a velocity vy which is
maintained constant until time ¢* and then reduced instantly to zero. The boundary

conditions can be described as:

v(0,1)

vo, 0<t<tr, (5.5)

v(0,8) = 0, t>t". (5.6)

This boundary condition is equivalent to the following displacement boundary

condition:

u(0,t) = wvot+up ,0<¢ <t (5.7)

u(0,t) = vot* +uop, t>t%, (5.8)

where ug is the initial displacement of the particle at * = 0 with respect to a reference

configuration.

5.2 A short time analysis

In this section we will solve the problem formulated in Section 5.1 for short time. We
assume that there are no new phase boundaries nucleated due to the interaction of
the original phase boundary and the incident wave or due to the boundary condition.
We will determine restrictions on the vy and the kinetic relation that assure that this
assumption is valid.

As we have piecewise constant initial data and boundary values, we can solve
the problem by dealing with suitable Riemann problems. It is easy to show that
the solution is piecewise constant; see Figure 5.3. The governing equations are then

reduced to jump conditions on shock waves and jump conditions and the kinetic
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relation on the phase boundary.

At first the incident compressive wave propagates toward the stationary phase
boundary. The strain 7o (Figure 5.3) can be determined by the jump condition on
shock AB:

vo— Yy +c(vo—7)=0, (5.9)

SO

U — -
Yo = ‘?0 +% <7 - (5.10)

On shock CD, the jump condition is,
v—vo+c(y—7)=0. (5.11)
Due to boundary condition, we have

T = T, (5.12)
(5.13)

e
I
=

When the leading edge of the incident wave reaches the phase boundary, the
incident wave is both reflected by the phase boundary and transmitted through it.

The jump conditions on the phase boundary and shock waves are:

(vf —vg)+ec(vi =) = 0, (5.14)
p(vf = 1) — s +psi(vf — o) = 0, (5.15)
(v —v)+40F —) = 0, (5.16)
(vf —vo) —c(yy —7) = 0. (5.17)
Solving (5.14)-(5.17), we find that
_ 51T
] vo + et &) (5.18)
W o= =y 4 o (5.19)
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+ — __(_:S_llT_ 20
'Ul Vo 2(C— él), (5 )
voo Yoy by ST 5.21
Y1 c+70 +2(C—-.§1). ( : )
Here 3, is determined by the kinetic relation, f = ws, i.e.,
U - .
T(’YM +Ym =W =) = wéi. (5.22)

The velocity v and strain v are determined from jump conditions on the shocks

FD and DE,

v—vy te(y-n) = 0, (5.23)
v—0—cly—%) = 0. (5.24)
Thus
CS1YT
T 5.25
v 2(c+ $1) (5:25)
Tm + M cyr
¥ 5 et i) (5.26)

We determine v; and 4; from a jump condition
v—v1+ec(y—m)=0 (5.27)
and boundary condition. We find that

v = 0, (5.28)

Ym + VM _ (c - él)’)’T
2 2(c+ $) )

" (5.29)

Now we determine vF,v§ formally. The corresponding jump conditions are

w(vd — 1) —pg ) + $2(vi —vy) = 0, (5.30)
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(vf —vy)+ 8 —v) = 0,
U;—’U—-C(‘y;-—’y) = 07
vf —vi++clvy —7) = O

From equations (5.30)-(5.33),

- . 1 __ar
72 - 2(7771 +7M) 2(C+é2),
p L _em
Y2 = 2(7m +'7M)+ 2(6—32).

Therefore, the driving traction f on phase boundary $; can be expressed

mr
2
pYTC3a

2(c? — 32)°

(Y0 +Ym =75 =)

It is easy to show that f is monotonically decreasing with respect to s,

kinetic condition f = ws, we have,

_pYgcs
2(c? — $?)

= LUS.2.

There is only one solution of (5.37), namely

$9=0.
Thus we have
vy =0,
Y2 =Y
vy =0,
T =%

(5.31)
(5.32)
(5.33)

(5.34)

(5.35)

as

(5.36)

. From the

(5.37)

(5.38)

(5.39)
(5.40)
(5.41)

(5.42)



51
Therefore, after the passage of the incident wave, the phase boundary will be station-
ary for while.
Certain restrictions must now be imposed to assure that there is no new phase

boundary nucleated.

Restrictions on the short time analysis

First we require that
230

— > " (5.43)

c
This is because that it is assumed in the above analysis that the shock wave reflected
by the phase boundary will reach z = 0 at time ¢ > ¢*.

Secondly, we require that v belong to appropriate phases. To check this, it is
necessary to check whether a Riemann problem with initial data v, and g in the
low-strain and high-strain phases respectively has a solution that satisfies phase seg-
regation conditions. For the Riemann problem with initial data (vr,vz) and (vr,Yr),
where 77, belongs to the low-strain phase and yg belongs to the high-strain phase

(Figure 5.4) we have
T

+ _

Yt =h+ e —3) (5.44)
- T

=h-— ,
7 2c+3) (5:45)
where
1
h = Ec‘(vR + cyr — vL + cyL). (5.46)

By the phase segregation condition, we require that ¥+ > yps and v~ < %,,. Then we

have

AT
— = h< g
™M s " T

T
+ ———2(c T g)‘ (5.47)

The expression (5.47) can be expressed in term of the driving traction f. From

Chapter 2, we have
KT -
f= 5 (M +vm —7 =97 (5.48)
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So

2 2
wyr T wr T
(7M—’7m_c2_32)<f< (7m_7M+C2—52)

. : (5.49)

Inequality (5.49) can be illustrated in the f — $ plane as in Figure 5.5. The shaded
region in Figure 5.5 is the place where (5.49) is satisfied.

In order to have a solution which satisfies phase segregation conditions, the curve
corresponding to kinetic relation f = ws must lie in the shaded region in Figure 5.5.
So we further require that

0 <w < wo. (5.50)

We can determine an upper bound wp for w by determining the slope of the line
which is tangent to the curve f = £ (ym —ym + c_c;}%) and passes through the origin.

This gives
2
-1
wo = Hﬂ_?f y—-———, (5.51)
¢ y

where y satisfies
2 3 TM — Ym

Y + —27’;—‘ =0. (5.52)

Thirdly, we require that v,7; are in the low-strain phase. It can be shown that
this requirement is equivalent to the inequality
Y™ + Ym c—35

2 20t TS (5.53)

where $ is determined by (5.22). The equation (5.22) can be rewritten as

2vg c 2w

= (5

cyr 2 —8§0 0 vk

)s.

The inequality (5.53) can be simplified as
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thus the restriction on vg is

cYr ( C 2w
2

2 \F—a

O<v < )S.() (554)

where $p = ¢ EZ—} and ¢, = B,

When the three conditions (5.43), (5.50) and (5.54) are satisfied, there is no new
phase boundary nucleated, and after the initial interaction between the phase bound-
ary and the incident wave, the phase boundary will remain stationary for a while.

If w > wpy, we cannot find solutions of Riemann problems that satisfy the phase
segregation condition. If vp is too large, then (5.54) will be violated and new phase
boundaries will be nucleated.

The result that the phase boundary will remain stationary for a while obtained
here was first postulated by Pence [70]. By using the approach of Abeyaratne &
Knowles, we obtain the result rigorously and impose appropriate explicit restrictions
on initial data, boundary data and material parameters. This result can be general-
ized to situations, with “square incident wave” replaced with “arbitrary pulse,” the

kinetic relation replaced with f = ¢(3), and the material can be an arbitrary trilinear

material.

5.3 Large time phase boundary behavior: motion
of the phase boundary

Recursive formulae for (v,7)

From the assumption that no new phase boundary is nucleated, the solution to be
found can be illustrated by the £ —¢ plot shown in Figure 5.6. As in Section 5.2, we can
show that the solution is piecewise constant. Thus the phase boundary propagation
speed $(t) is piecewise constant in time as well. The part of the trajectory of the
phase boundary that separates regions +k (see Figure 5.6) corresponds to phase

boundary propagation speed $x. The part of the trajectory that separates regions
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+k corresponds to the phase boundary propagation speed s;. We denote particle
velocities and strains in regions +k by v¥ and i, in regions +k by 5 and 7§, and
SO on.
From boundary conditions,we have v; = 0 and v; = 0. From results obtained in

Section 5.2, we know that

5 = 0, (5.55)
o7 = 0, (5.56)
T = Yoo (5.57)
oy = 0, (5.58)
W= - (5.59)
Now we will show by induction that
si = 0, (5.60)
;7 = 0, (5.61)
Y= % (5.62)
3t = 0, (5.63)
W= %, (5.64)
Y = Yo (5.65)

for all i.

Assume that

5 = 0, 69
W =+, 5.70



Y& = Yoo (5.71)

in regions +k. Then in regions £k + 1, from jump conditions on the phase boundary

and shock waves, we have

771-:+1 Upp t 3k+1(’7k+1 Yer) = 0, (5.72)
#(T = 1) = BT + P8k (B — k) = 0, (5.73)
i —vd + (Y —d) = 0, (5.74)
Vg1 = Okt1 — (Ve — To41) = 0, (5.75)
Oks1 — O — (o411 — ;) = 0. (5.76)
From (5.72)-(5.76), we find that
Yerr = V& =0 (5.77)
__ Ym + M T
= — : , 5.78
7k+1 9 2(C + §k+1) ( )
—+ Ym T IM T
= + —. 5.79
T+t 2 2(¢ = Sk41) (5.79)
The driving traction f on the phase boundary (Sx41 ) is
“yr - _
f = ) (’YM + Ym = Vg1 — ’)’I:-+1)
_ BYECikp (5.80)

= 5 =2 ~°
2(c? — 3k+1)

From kinetic relation f = w541, we obtain 5x4; = 0. From (5.72)-(5.76), we find

Ske1 = 0, (5.81)
T = O, (5.82)
Yerr = Yoo (5.83)
o, = 0, (5.84)
Y = 1 (5.85)
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Ye+1 = Yo -

So (5.60)-(5.65) hold for all 2.

(5.86)

Now we solve for velocities and strains in regions +k and k. From results obtained

in Section 5.2, we know vy, v1, vi, 7, vy and +;i. Assume v;, ¥;, v7, 77, v¥ and

4 are known, and consider regions +(¢ + 1). From jump conditions on the phase

boundary and shock waves,

p(vhi = 1) — pvig) + psin(vihy —vigy

)
(vz‘trl — )+ 'éi+1(’)’i-:-1 —Yiy1) =
Vi — v = (¥ = %)
)

vi —v; ey -

+ + + +
Vi1 — Vg t+ C(’Yi+1 ~% =

Solving (5.87)-(5.91) for the v’s and v’s yields

Vi = %(—cfzﬂ +evg — (o7 + )
Va1 = —;-(—cfzﬂ bt 4 A
v = %(—cf1f+l +eo1g = (v + 7))
Y = %—(—ci.fﬂ o+ L)

From these results, we infer the following simple formula:

o Syr
v; + ¢ =—c+é_+c73'.
1

(5.92)
(5.93)
(5.94)

(5.95)

(5.96)

From the derivation we see that (5.96) holds for ¢ > 2, but it is easy to show that it

also holds for : = 1. So we have the following formulae for v, for all regions +k;
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setting z; = éc'?, then

YT 1 1

Vigr = 2 (—1+x,-+1 + 1+.7:1-)’
Y = %(—1+7;+1—11T$i+273),
v = C;T(_l—lxiﬂ 1‘i$i)’
W = G - T 20)).

Here z; is determined by the kinetic relation through recursion

T; 1 .
p— = : = 1,2,
1+ (1—x3+1+“)$+‘ ’ 3
and
2'1)0 1
eyr (1 —z? +a)z,
where
2
a= —f; > 0.
KT

(5.97)
(5.98)
(5.99)

(5.100)

(5.101)

(5.102)

(5.103)

Now we have all the formulas required to determine the motion of the phase boundary

and the deformation in the bar at any point in space-time.

Analysis of recursive formulae

Lemma 1: |z < 1,7 =1,2,3,4...... and there is one and only one z;

that satisfies (5.101) or (5.102).

Proof: Let

then

f'(=) +a+

R (1 —z2)?

(5.104)

(5.105)

By the entropy inequality (2.10), it can be shown that, |$;] < ¢, i.e. |z;] < 1. So
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f'(z) > 0 and f(z) is monotonically increasing in the (—1,1). It is easy to see that

f(z) — +o00 as r approaches 1 from below, and f(z) - —oco as z approaches —1

from above. Thus there is only one z, that satisfies (5.102). Similarly for any given

i, there is one and only one z;;; that satisfies (5.101). This completes the proof.

Lemma 2: z; > 0,z9%k—1 > 0,22k < 0 and z2,—1 > —(1 + a)zy for

f(0) =0,
f($1)=cg;)—; 0

so 1 > 0.

Now we prove zgx_; > 0, z9r < 0 by induction. For &k =1,

ZTok-1 =71 > 0,

I . 1
0>—1+m1 _(1——x§+a)x2'

Notice that

1
s +a) >0,

1—235

(

so that

Top =T < 0.

Assume k =1, 2951 > 0,29 < 0; then

T 1
0 < — - i+1y
Tham ~ 1-ady, T om0
T2i41 1
0 > — = i+2
TF 2o 1= 9«”%5+z + a)Taiz2

so that

T2i41 > 0,.’1,‘2“.2 < 0.

(5.106)

(5.107)

(5.108)

(5.109)

(5.110)

(5.111)

(5.112)

(5.113)

(5.114)
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Thus k=1+1,z9k_1 > 0,22 < 0. So z9x—; > 0,29 < 0 for all £.

From
T2k—-1 1
1 + Tok~1 - 1-— ‘T%k + a)$2k,
as Tok—1 > 0, z9r < 0, we have:
T N S = +a)(—zak) > (1 + a)(—z2%)
2k-1> 7 T 2o 1— 22, 2%k 2k )5
i.e.
22l o> 0 (5.115)
l+a 2k ) '

This completes the proof.
Theorem 1: When t — oo, s — 0.

Proof: From (5.101), we have:

— 1
_1 izzzz:_l = (1 _ m%k + a)xzk,
1
B 1 ‘::‘2;2]5 = (m + a)m2k+1a
S0
= 1
1 12:32:—1 1 12:321; - (1 -z, + a)x%(f_:iTH + a)Tok41.

It follows that

Tok—1 > (14 z2k-1) (14 a)zak41

1-— Tok
> (1 + a)$2k+1,

i.e.
]

0< < .
:E2k+1 (1 +a)’°

(5.116)

This leads to

lim xor4; = 0.
k—o0
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By (5.115)
pigg, o =0,
so that
Jim =0

which shows that

$§—0 as t— .

To prove the next theorem, a known result about the convergence of infinite

products is cited below as Lemma 3 without proof.

Lemma 3: Assume ¢, =1+4a, (n=12,3,..

). For large enough n,

if a, > 0 (or a, < 0), the necessary and sufficient condition for M2, ¢, to

converge is that > .2, a, converges.

Lemma 4: S2k=1_ 5nd converge.
n_l 1 -z

”"1 1-Zok—y

Proof: By (5.116), it can be shown that

T2k+1 z
1-— T2k+1 (1 + a)k"'l - 1

As
S

lim (Falti-t ! <1

k—oo —"(H_Z)k_l 1 +a
ZR21 (Traybery converges, so does 302, TS

By (5.115) and z2; < 0,
Tk 1
- < — T NE
1— 1z ok < (14 a)k

o0 X oo I
As 3772, —1_(1+a.)k converges, so does » oo, T

(5.117)

Theorem 2: s; > sg, and limg_,o Sk < M.él(l + i), where M is some

finite number.
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Proof: Denote the period of time that s = sx by t; , the phase boundary position
at the beginning of é; by s, the k-th incident wave’s time interval by t, see Figure
5.7.

From the definition, we have t; = t*,s; = so,

te — 25)3 _
bk = o+ (B - c)Sk-l—itk—ﬂc-
C — Sk [}
_ Ct—k
B C——ék’
le., B
b = — Lk (5.118)
T Tk )
_ _ _ Cc+ Sk -
thpr = te +2(ts — tk) = .ktk,
C — Sk
le.,
— 1+:Ck_
thyl = t 11
k+1 1 — Tx ks (5 9)
and
. teT
ka1 = Sk + Skt = Sk + ———, (5.120)
1-—- Tk
From (5.118)
- 1+ zp-
s = M t
k“ll Tk !
2z 2T9k1
= "M, (L+ o 1+ ).
R (L 7o) 2, (L4 o

By Lemma 3 and Lemma 4, there exists M (fixed) such that

2z9k

pe (14 )< M, M2, (1+ ) < M,

1 — 2951 1 —zo

and hence

too < M?t* < c0.



Since
we have
M >0z, (1 + 12-?2:_1) b (L 12-??:;_1
On the other hand, since
14 12_:”":% 1,
we have
fe= 7ML (14 12—1;-) <+ 12—9’;;1)'

Therefore, there exists M, such that for all k
te < M.
By (5.118) and the fact that z; decays exponentially with k, there exists M such that
ty < M, for all k.
Now let us find so,. We have

Sk+1 = 81+ S1t1 + Sota + ..o + Skl

But
fee] ) B o B 1
Eszk—1t2k—1 < MCZ Top_1 < Mgl(l + _) < 00,
k=1 k=1 a
so that
[o e] . B oo _ 1
> —datar < Mced zap < Mé1= < oo,
k=1 k=1 a

SO Y52, —Saktox converges. Thus

_ . 1
S0 < M$1(1+~) < co. (5.121)
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Now we verify that sx > so.

5 5 Taktok
2%k+1 = S2k
* 1 — o ~ _
x1ty 212 Tog—1tok-1  Taklok
s+ (( + )+ ( ))-
1—-.731 1—(132 1—$2k_1 1—$2k
Toi—1loi-1 | Taita _ g, Tt + T2 >0
=ty ————— ,
1 -z 1 -y 1 -z
so that,
S2k4+1 > S1,
$2k+1t—2k+1
Sok+2 = S2k+1 T E > S2k+1-
— Tok+1

This leads to

S8k > 81 = Sp.

Restrictions on parameters

It has been assumed that there is no new phase boundary initiated. Now we check
whether this assumption has been satisfied.

It is obvious that the strains 4i in regions +k and strain #; in region k belong
to appropriate phases. We check whether 'yfc':, Yk, Y1 and vy, belong to appropriate
phases for all k. In the following we show that these strains belong to appropriate
phases when the restrictions (5.43),(5.50) and (5.54) are enforced. The proof is by
induction.

When k = 1, we know that v&, v, yrx and vsx belong to appropriate phases from
Section 5.2.

Assume v, vk, v1x and vy belong to appropriate phases when k = 3.

Since v, and 7%, are obtained by solving a Riemann problem with initial data
(vgi,vs:) and (8F,41), and since v7; belongs to the low-strain phase, 7;" belongs to

the high-strain phase, then i, belong to appropriate phases if (5.43) is satisfied.
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From the recursion formulae (5.97) - (5.102) and jump conditions (2.4), (2.5) on

shock waves, we find that,

i — Ym + ™ _ YT
ik 2 21 + ziy1)

(5.122)

If : + 1 is even, then > Wm0 Vg1 < Yme If 741 is odd, then

T
2(14wiy1)
—m-% > _ﬁﬁll—)’ 80 Yri+1 < Y11 < Ym. Thus the strain 74, belongs to the
low-strain phase.

Similarly, we can show that 7;4; is in the low-strain phase.

From the jump conditions on shock waves,
1,__
Vi1 = 5(7,4_1 + Yig1)- (5.123)

As 71, < Ym and Yit1 < Ym, Vit1 < Ym, We conclude that 'yff, Yk, Y1k and i belong
to appropriate phases when k£ =1 + 1.

We have shown that the assumption holds for all time if restrictions (5.43), (5.50)
and (5.54) are satisfied.

Interpretation of the analysis

For a semi-infinite bar initially in a two-phase equilibrium state with a single phase
boundary, we see that, due to an impacting square wave, the motion of the phase

boundary has the following features:

1. The phase boundary moves forward when the square wave hits it for the first

time. The phase boundary moves in the following way:
forward — stationary — backward — stationary — forward....
The phase boundary moves more slowly when moving backward than it did the

last time it moved forward.

2. The phase boundary speed decays exponentially to zero. There is a single effec-
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tive material constant that determines the decay of phase boundary propagation

ST — 2wc
speed: it is a = e i 0.

3. The phase boundary position is always to the right of its initial position, and

its final position is a finite distance away from its initial position.

5.4 Results for other kinetic relations

An important generalization that may be considered is to replace the kinetic relation

f = ws with the following kinetic relation:

37(f_f*) ’ f>f*a

'ulj(f'i"f*) ) f<"'f*,

where f, and w are positive materials constants. This kinetic relation is of interest
because it involves a barrier against phase boundary motion.
For the kinetic relation (5.124), the initial state given in Section 5.1 need not be

a Maxwell state:

v(z,0) = 0, (5.125)

v(z,0) = 75 (5.126)
for 0 <z < sp;

v(z,0) = 0, (5.127)

v(z,0) = % (5.128)

for sp < < o0.
But we require o(sg,0) = o(sd,0), i.e. 7§ — 75 = 7 and —f. < fo < f., where
fo= (m+mW -7 — %)

It is clear that we can solve the initial-boundary value problem for the kinetic
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relation (5.124), using a procedure which is exactly the same as that explained in
Sections 5.2 and 5.3. We will not repeat the procedure. In fact the expressions for
particle velocity and strain in this are the same as those given in Sections 5.2 and 5.3;

the recursive formula for phase boundary propagation speed is, however, different.

Short time analysis

As there is a barrier against the phase boundary motion, the phase boundary will
remain stationary when it interacts with an incident wave, provided that vy is small

enough. If this is the case (Figure 5.3) from (5.18) - (5.21), we have

vy = o, (5.129
" = 1%, (5.130
vf = o, (5.131

R e T g

W o= —%Jr%}*- (5.132

Accordingly, the driving traction on the phase boundary is

f = %(%+7M—7-—7+)

= fo+ %T"Uo < fas (5.133)

le. v < ﬂ%l
If v < 5(%2, then the incident wave is totally transmitted through the phase
boundary and the phase boundary remains stationary for ¢ > 0.

If vo > %&l, then $; # 0. The solution is again given by (5.18) — (5.21), but
the phase boundary propagation speed will be determined by f = f. + ws, i.e.

(s + @)y = = (up — LSy

5.134
1 -} oyr i (5.134)

The notation here is the same as that in Section 5.2.
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As in Section 5.2, we can show that $; = 0, and we can also also derive the restric-
tions on vy and other parameters that assure that there is no new phase boundary

nucleated.

Large time analysis

The strain and particle velocity in the bar are given by (5.66) — (5.71) and (5.97)
—(5.100); see Figure 5.6. The driving traction on the phase boundary that separates
regions +(z + 1) is

2
W z;
f=to- ;Xr+a+1—;%)' (5.135)

We consider z, first. From the short time analysis, we know z; > 0. It can be

shown that
T 2(fu+fo), _, 1

(1 g 2 )= (1 — 2 + a)z,, (5.136)

Ty 2(f. + fo) .
< — 59 = 0; 5.137
1+ 7oty > (5.137)

2(f« .
n_ ALth) (5.138)

1+ 1Y%
Furthermore, by induction we can show that zo;_; > 0 and z5; < 0. The recursive

formulae for the phase boundary speed are

T2i-1 2(fut+fo)y _, 1
(1 + T2i-1 HYE )= (1 — z2, +a)zyi, (5.139)
T2 2(fs — fo)\ _ 1
(1 + T * Y2 )= (1 -2 + a)Tait1. (5.140)
According to the kinetic relation (5.124),
i— 2(f« )
T2i—1 < (f« + fo) 5 dgr = 0; (5.141)

1+ 221 1YF
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L2i 2(f« — fo) .
— iv1 = 0. 5.142
1+ o > Tz S ( )

We can show that z,;_; and —z; decay exponentially as i — co. Let Z; be the
solution to (5.140) and (5.141) when fo = 0; then we know that Z,;,_; and —Z,; decay
exponentially. For a given vy, it is easy to show that z; > z; > 0.

If 2, < 0, then from,

z 1 _
= +151 = (1 — + a)Z, (5.143)
T1 .
_1 + :El = (1 _ ;i-% + CL)IEQ, (5.144)
21 2(futfo) 1
- - = . 14
(1+:L'1 ,U’)’% ) (l—w%+a)m2 (5 5)

One can show that 0 > z, > %, > Z;. By induction, we can further show that
Zoi—1 > Tai—1 2> 0 and —Z9; > 9; > 0. So x9;,—; and —x4; decay exponentially. Thus
if z; # 0, it only takes finite time for z; to reach zero; see (5.141) or (5.142).

We can replace the kinetic relation in the initial-boundary value problem formu-
lated in Section 5.1 by a monotonically increasing continuous kinetic function #(s).

If we require that

% >0, (5.146)
8(3)] > 6'(0)3, (5.147)
¢'(0) > 0, (5.148)
$(3) = —¢(—3), (5.149)

then we can obtain similar results on phase boundary motion similar to those in
Sections 5.2 or 5.3. Similarly, if ¢($) is a monotonically increasing function with a
discontinuity at s = 0, then we can obtain results similar to those for kinetic relation
(5.124).

For the special trilinear material considered here, and for a large class of kinetic
relation, we have shown the phase boundary will return to an equilibrium state after

a long time.
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5.5 A numerical calculation

To gain an impression of the analytical results we have obtained so far, a numerical
calculation based upon the recursive formula is carried out. As the purpose of the
calculation is to visualize the analytical results, the parameters chosen are not real

physical data and the their units are not specified. The parameters used are as follows:
L.u=1p=1

2. v =157 =2, =1

3. c=.,/t=1
p
4. 75 = 2(y +Ym — 1) = 0.75

5 74 = 3(ym +m + 1) = 2.25
6. Vg = 0.25,80 = l,t* = 1,0) =0.5

It is easy to check that this set of parameters satisfies (5.43), (5.50) and (5.54). The
numerical results are listed in Figures 5.8-5.12 to show the large time behavior of the
phase boundary.

From Figure 5.8 we see that the phase boundary propagation speed oscillates as
time increases and it decays very fast even with a < 1. After only about ten interac-
tions of the phase boundary and the reflected wave, the phase boundary propagation
speed is too small to observe. So are the variations of particle velocity and strain;
see Figures 5.9 and 5.10. From the numerical results we see that sg < s, < $3; see
Figure 5.11. The bar is not strictly in an equilibrium state when time approaches
infinity; see Figure 5.12. This is due to the fact that the waves transmitted through

the phase boundary propagate in a non-dissipative medium to infinity.

5.6 Remarks

The approach used here cannot be applied successfully to an arbitrary initial-boundary

value problem, such as the finite bar problem considered by Lin and Pence [55], [56].
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Even for the problem formulated in Section 5.1, if the material of the bar is char-
acterized by a nontrilinear but non-monotonic stress-strain relation, we cannot solve
the problem analytically. A numerical method must be used.

But for the first time, to the best of our knowledge, we have provided an exact
solution to a nontrivial initial-boundary value problem in a nonlinear elastodynamic
theory of solid-solid phase transformations. Using this solution, we have shown that

a phase boundary will reach an equilibrium state at a large time.
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Figure 5.3: A schematic figure for the short time analysis
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Figure 5.4: Form of solution to a Riemann problem with initial data in different
phases

/

Figure 5.5: Admissible region for the kinetic relation
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Figure 5.6: A schematic x-t plot
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Figure 5.7: Definitions of sy, tx, tx
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Figure 5.8: Decay of the phase boundary propagation speed
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Figure 5.9: Variation of strains on both sides of the phase boundary

Figure 5.10: Variation of particle velocities on both sides of the phase boundary
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Figure 5.11: Trajectory of the phase boundary
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Figure 5.12: The deformation state in the bar at ¢ = 0o
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Chapter 6 A numerical method of Godunov type

6.1 Introduction

Though there is much work on the computation of phase transformation problems as
mentioned in Chapter 1, we are not aware of any work on the computation of the dy-
namics of phase transformations involving kinetically driven sharp phase boundaries,
such as those arising in the A-K model.

Unlike classical shock waves, a phase boundary should not be viewed as a conse-
quence of overlapping characteristics. The emergence of a new phase boundary is a
consequence of the local instability of a deformation. So numerical methods developed
in the last ten years for classical shock waves in computational fluid dynamics (CFD)
cannot be applied directly to phase boundary propagation problems. However we are
able to build upon techniques developed in CFD and develop a numerical method
capable of computing dynamical phase transition problems. Classical methods for
shock wave computation include the following:

(1) Front tracking schemes. For recent activity on the subject, we refer to Glimm
et al. [33, 34], Hyman [43], Moretti [63], and Oran & Boris [67]. An advantage of front
tracking methods lies in the fact that the shock front is sharply computed without
any numerical dissipation. However the implementation of such a method is more
difficult if complex flow features such as shock wave interactions must be taken into
account.

(ii) The shock capturing schemes,. These represent a more standard methodol-
ogy. In particular the first-order accurate Godunov method [35] and its higher order
extensions have received much attention in recent years. This research culminated
with works by van Leer [88], Colella & Woodward [23], Harten, Osher et al. [41], and
others. The implementation of shock capturing methods is generally straightforward.

Shock fronts are not sharply computed, but usually spread out over a few mesh cells
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only; this is satisfactory for most applications. Several methods that further sharpen
numerical shock fronts have been developed: see Harten & Hyman [38] for a self-
adjusting grid method, and Harten [40] for the technique of subcell resolution applied
to ENO schemes. To combine the advantages of tracking and capturing methods, it
may be advantageous to hybridize the two techniques: tracking strong shock waves
but capturing those with weak strength [21], [77].

As our first attempt to develop a numerical method for the Abeyaratne-Knowles
model, we develop a method of Godunov type for a one-dimensional setting. In this
method, a phase boundary is tracked while a shock wave is captured. By doing this
we avoid mathematical complexity at a phase boundary or at a nucleation site arising
from supplementary constitutive relations. In the following, we develop an algorithm

for the cases involving trilinear materials, then we extend it to nontrilinear materials.

6.2 The general approach

We note that the equation of motion and the compatibility equation (2.2), (2.3) can

be written in the form of 2 x 2 conservation laws:

Ui+ f(U): =0, (6.1)
where
v=1"4 s0n= —a(v)/p
v -
and
0 —< Vg
f(U)a: = d
-1 0 Yz

As the solutions of the Riemann problem for (6.1) involving trilinear materials
are known explicitly, it is natural to develop a method of Godunov type. The stan-
dard Godunov method could be applied in principle; however it does not produce

the correct solution. We observe that a phase boundary is rather different from a
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conventional shock wave, and numerical methods for shock waves cannot be applied
directly. Our objective is to design a method that does not introduce numerical values
in the unstable region, i.e. strains in the interval (ym,va), of system (6.1).

We first sketch Godunov’s method, and then we explain how it has to be modified
to meet present needs. We use the following notation. As variable meshes will be

used, we denote by z% , the spatial grid points at time ¢,. Subsequently [x;.‘_l ST 1 ]
2 2 2

represents a computational cell, z7 is the center of the cell, and h} = a7 , — 27,
2 2

is the cell width at time t,,. We denote by k, the n-th time step, and we set: ¢, =
"1 km,to = 0. If U(¢,z) is given, the cell average of U in the cell j and at time ¢,

is defined as:

n o __ _}_ x;‘+l
U = / S Ultn, ) de. (6.2)

Given the approximate solution {U?} at time t,, the Godunov scheme consists of two
main steps:

(i) Solve a Riemann problem at each cell interface T3 L with the initial data
(U2, U (j=.--,-1,0,1,...). The solution at the time ¢ = t,4, is known on the
whole space interval and at least in the time interval [t,, tni1].

(ii) Compute the cell averages at time t,4; in each computational cell and obtain
{up+).

Step (i) can be performed for a phase boundary problem in the same way it is
done for a problem admitting conventional shock waves only. The Riemann solution,
including the effect of the kinetic relation and the nucleation criterion, is known
explicitly. Step (ii), however, should not be carried out when a cell contains the two
possible phases because from a physical standpoint, it is meaningless to compute an
average over quantities in different phases. As a matter of fact, if we do compute
averages over quantities in different phases, we may obtain a value for the strain
falling in the unstable phase — unstable phases do not arise in the physical model
if initial data are metastable. Moreover such values may lead to instability in the

computation. To avoid computing averages over a phase mixture, we must know the

position of a phase boundary exactly so that we can confine averaging to a single
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phase. When we are away from phase boundaries, we want to take the advantage of
shock capturing schemes. So our strategy is to develop a front tracking/capturing
method that tracks the phase boundaries and captures the standard shock waves.

The method is as follows: first the space is discretized in such a way that a phase
boundary is at a grid point (a cell interface). If at time ¢, a phase boundary is located
at one grid point, the computation will proceed as follows:

(i) Compute all quantities at time ¢,,; from the approximation at the time t,,
including the phase boundary propagation speed determined by the kinetic relation
and the location of the phase boundary at t,4;.

(i) Shift the grid mesh according to the movement of the phase boundary so that
the phase boundary is still a grid point.

This approach is typical of the so-called Largrangian algorithms. To implement
the idea, a moving mesh has to be used. The method will be presented in three steps:
first an algorithm for an initial value problem with a single phase boundary will be
described. In a second stage it will be extended to the initial-boundary value problem.
Then the algorithm will be further modified to include the nucleation of new phase
boundaries at the boundary of, or inside, the computational domain, and the possible
collision of two phase boundaries. For definiteness, we shall restrict the presentation
of the method to the case in which Riemann solutions only involve initial data in
different phases, i.e. vz, in the low-strain phase, g in the high-strain phase. Assume
that at time ¢, an approximation of the solution is known, and the phase boundary
occupies a grid point. The speed of the phase boundary at the time ¢, will be denoted
by V™. As seen in Section 2.2, it is determined from the kinetic relation by solving a
Riemann problem. As a consequence, the location of the phase boundary is known.
At the time t,4;, the mesh is shifted uniformly according to: x;‘i'% = :c;?+ L + Vrk,.
An explicit formula for the scheme can be derived in the following way.

Consider an element T (abcd) about the cell 7 in (¢, ) plane (Figure 6.1). Integrate

the conservation laws (6.1) over the element 7"

/ /T (U, + F(U)s)dzdt = 0.
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From Green’s Theorem, we have
/T F(U)dt — Udz = 0, (6.3)
which leads to the following cell-averaged form of the conservation laws:

tnti
Ut = U= [ W WU, UR) - VU U, Ut

— [ U3, UL) - VU (U], U 6.4

Here U*(Ur,URg) is the constant value along cd or ab of the Riemann solution with

initial data (Ur, Ug). If we introduce the notation:
f1U) =fU) -V,
then (6.4) takes the following form:
Urt! = (f"(U*(U,"Ha up) = F1U(UF, UL ). (6.5)

One has to be careful when a phase boundary is being dealt with. Suppose z; L

is a phase boundary. Then the Riemann solution at z; L in the cell jp is:

U*( Jo+1» n) u- (U;:>+l’ JO)
and the Riemann solution at jo + % in cell jo + 1 is:
U*( jo+1? U;:)) U+(U_;:)+l’ Jo)

where U* and U~ are quantities in the front of the phase boundary and behind it

respectively. So

Uptt = Jo—hn (MU (Up 41, UR)) = FHU(UR, UR ), (6-6)
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k" FR(TT*(TTN n rn n n
i = U — = (MU (U2, U ) = MU (U 40, UR))- - (6.7)

Jo+1

We summarize the algorithm as follows:

1. Compute the speed of propagation of the phase boundary from kinetic relation

(3.19).

n+1 —
i+3

%, + V"k,.

2. Shift grid points according to: = el
2

3. Compute U*! from (6.5).

4. Repeat steps (1)—(3).

This algorithm differs from a shock capturing scheme in that it involves a moving
grid and it utilizes a special solution to the Riemann problem when the moving
discontinuity is a phase boundary. This special solution makes use of the kinetic
relation.

When V" = 0, this algorithm reduces to the Godunov method. When applied
to conventional shock wave problems, the above algorithm is a standard Largrangian
method combining shock tracking and shock capturing. Several methods of Godunov
type can be used to implement the above idea, such as Godunov, MUSCL, PPM, or
ENO schemes. Not every variant in each class of schemes can be used in a straight-
forward way, however. The scheme needs be “tested” on a cell containing a phase
boundary: cell averaging across the phase boundary must be avoided. If this is not
possible, the scheme should not be used for phase boundary problems. For instance,
several schemes are based on analytically solving a linear advection equation, and
extrapolating the result to a general scheme for nonlinear equations: this in general
would not produce the desirable property we require here-no numerical interior points
to describe a sharp phase boundary. We observe that one can use a scheme in cells
(I) which do not contain any phase boundary, and another scheme in cells (IT) where
a phase boundary is located. Such hybridization should be done carefully however in
order to keep the same accuracy in both regions I and II.

Schemes that can be applied include: the first-order Godunov method , a variant

of the MUSCL scheme [68] (a second order method), and some even higher order
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schemes. In fact any scheme whose numerical flux is constructed through solutions
based on solving Riemann problems at cell interfaces can be used. In the numerical
experiments we present in Section 6.5, we implement the Godunov method and a

slope-limiter scheme.

6.3 Propagation, initiation and interaction

In any computational cell, we distinguish three cases:

(i) propagation of a phase boundary,

(ii) nucleation of a phase boundary at a boundary point, or nucleation of two
phase boundaries in the interior of the domain,

(iii) interaction of two phase boundaries.
The interaction between a shock wave and a phase boundary is taken care of auto-
matically since shock waves are captured. In this section, we present details about the
algorithm for the computation of the propagation of a single phase boundary. With
some modification, the algorithm allows us to treat the nucleation and the interaction

of phase boundaries.

6.3.1 Propagation of a phase boundary

One obvious shortcoming of the algorithm described in Section 6.2 is that the grid
points are shifted uniformly: it cannot be applied to an initial value problem with
multiple phase boundaries or to an initial-boundary value problem. For example, if
we have two phase boundaries moving at different speeds, then it is impossible to
shift mesh uniformly to make the two phase boundaries locate at grid points at the
same time. We therefore need to shift grid points locally. As a consequence we will
have a locally nonuniform mesh due to two cells moving with the phase boundary in a
certain way. Assume at time iy, T, . 1 represents a position of the phase boundary. At
time t,41, jo + 3 moves to a new position. Instead of letting all grid points move with
the phase boundary, we move only the point z;, +1- But subsequently the locations

of j0,70 + 1 are changed (Figure 6.2).



85
By doing this, the size of cells jo and jo + 1 will change as time goes on: one cell
will shrink, the other will be enlarged. When one cell is too small, we adjust the
location of one grid point.

The modified algorithm then is as follows:

1. Compute U}t from (6.5) with V™ = 0 for all of the jth cell not containing the

phase boundary.

2. Compute the phase boundary propagation speed V" from the kinetic relation
for the jth cell containing the phase boundary.

3. Shift grid points locally by distinguishing two cases:

fvr <o

o If [z , —z" ;| > 2 then shift the point jo + 1 and compute the cell
Jo— Jo+3 2 2

2

averages in the cells 7o and jo + 1 from the formulas:

R k"

U}:,H = 'h’?]-i(il Ui — W(fn(U_( i+ UR)) — f"(U*(U}f),U};_l)),
Jo Jo

and

n hno n k" FNTT*(TTN n m n n
= e Un = e (MU (U 42, Uy )) = fH(UF (U 41, UR))-

Jo+1 Jo+1

o Otherwise adjust the location of the grid point jo — % in the following way:

— Move the point jo — % to the right side of the phase boundary, and
re-label it jo + 3, so that the cell [z;, +5 T, +%] keeps a “regular” size.

Re-label the phase boundary jo — %
— jo — 1,70,jo + 1 are changed accordingly for the three adjusted cells.
Then recompute the cell averages associated with the modified cells. The for-
mulas are similar to those used in the last step, see Figure 6.4.

If V™ > 0, the procedure is similar to that for the case V* < 0:
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o If !a:;.‘”% - x;.‘o_l_%l > %, then shift the point T ot only, and compute the
cell averages in the cells jo and jo + 1.

3

5, and compute the

o Otherwise modify the location of the grid point 70 +

cell averages for the adjusted cells.
4. Repeat (1)—(3).

It should be noted that the restriction |67f—| < % is necessary in our algorithm for the
stability of numerical computation. This is due to the fact that computational cells
can shrink as time evolves. Also a shrunk cell must be large enough compared with

normal cell size in order to avoid local time-marching.

6.3.2 Initiation and interaction

Though the above algorithm is presented for the case of a single phase boundary,
it can treat multiple phase boundaries and the interaction of phase boundaries as
well. When phase boundaries are separated by at least one grid point (i.e. two cells),
the algorithm in Section 6.3.1 can be used without modification. When two phase
boundaries are sufficiently close to each other, i.e. typically when there is no grid
point separating the two phase boundaries, some modification is necessary. This is
the subject of this subsection.

Since a phase boundary has to be a grid point when a new phase nucleates,
the cells near the new phase boundary will be very small at the initial stage. In
the meantime, the large difference in cell sizes may lead to computational instability.
Therefore local time-marching and local mesh regridding and refinement are necessary
in general. Here we emphasize that:

(1) a phase boundary has to be at a grid point;

(2) conservation of physical quantities has to be preserved when local mesh re-
gridding or local mesh refinement is carried out;

(3) local time marching has to be ended at a regular time step.

The collision of two phase boundaries can be treated as in the method of Shyue

[77] for the collision of two strong shocks. After the collision of two phase boundaries,
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two possible situations arise:
(a) no phase boundary comes out of the collision;
(b) two phase boundaries nucleate at the position of collision.
Case (a) is a conventional shock wave issue, and Case (b) involves a nucleation prob-

lem. Both cases can be treated. The nucleation criterion presented in Section 2.2 is

used for Case (b).

6.4 Consistency and entropy condition

It would be interesting to investigate the mathematical properties of the front track-
ing/capturing method presented in this paper. Questions to be addressed would
include consistency, stability, the entropy condition, and strong convergence. The nu-
merical analysis of the method is complicated by the fact that a locally non-uniform
mesh is used. The main difficulty concerning convergence is proving that the kinetic
relation and nucleation criterion are satisfied by the scheme in the limit as the mesh
sizes go to zero. This section is devoted to some preliminary investigation of the
properties of our algorithm.

From Section 6.2, the numerical flux in the method is
FU},UF) = f(U(UR,, U7) = VU™ (U, U7),

and, in general,

F(U,U) = f(U) = VU # J(U).

It might seem that the algorithm is not in conservative form, and so might be not
consistent with the conservation laws (6.1). In fact, let us recall that the mesh is
being shifted as time goes on. Therefore let us rewrite the conservation laws (6.1) in
a moving coordinates. Let z be a point in the moving coordinates, the the coordinate
of the point in the fixed coordinates is zo + V'¢. For the purpose of the algorithm, we

write

DU _dU, o0, oU
Dt T dt TtV T Ve T o
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so that from (6.1), we obtain the following equation:

DU, 0

— + 5 (f(0) = VU) =0, (6.8)

Thus the algorithm is in fact a conservative scheme for the Equations (6.8), and, in
view of (6.8), it is not hard to check that it is consistent: assuming that the scheme
converges in norm, the limit must be a solution to the conservation laws (6.1).
Observe that because the algorithm is a Godunov-type scheme, analytical solu-
tions to the Riemann problems are used. Those solutions satisfy the entropy criterion
(2.10). The projection step in the Godunov scheme preserves the entropy criterion as
well. Therefore the entropy condition is satisfied in a discrete sense, and therefore in
the limit if the scheme is convergent. So the algorithm is a consistent, conservative,
and entropically admissible method. The Lax-Wendroff Theorem can be applied to
show that the approximate solutions provided by the algorithm will converge to a
weak solution to the conservation laws (6.1) as the mesh size approaches zero. This
analysis however does not apply to the initiation criterion or the kinetic relation. In

Section 6.5, we demonstrate the convergence of the algorithm numerically.

6.5 Extension to more general materials

Our front tracking/capturing method in principle can be applied to any material
although we so far only present the method for trilinear materials. And it is of both
theoretical and practical interest to apply the method to more general two-phase
materials, such as those defined in Section 3.2. We observe that explicit analytical
Riemann solutions for a general two-phase elastic material capable of phase transitions
are not easily available. Solving Riemann problems is done numerically by an iterative
method for nonlinear algebraic equations. In practice, this is time-consuming, and
the convergence of the iteration method cannot be always guaranteed because we
cannot always have good initial guess of solutions.

One way to proceed is to use the approximate Riemann solver proposed in Section
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3.2. The approximate Riemann solver can be applied to our front tracking/capturing

method. As in Section 3.2, for the conservation law (6.1), we approximate

0 -2 Vg 0 - Vg
f(U), = g R = AU,.
-1 0 Yz -1 0 Ve
Here c is a constant. The original conservation law is approximated by

Uy + AU, = 0. (6.9)

Construction of numerical flux for an approximate Riemann Solver. Consider a
Riemann problem with Uy, and Ug as initial data that involves no phase boundary
or phase change. Let F'(Ur,Ugr) be the numerical flux at z = 0 and U*(%) be the
solution to (6.9) for the initial data. For M sufficiently large, according to (6.3), we

have

/O Y Uds = MUn + F(UL, Ur) — f(Ux) (6.10)

for conservation law (6.1);
M, .
/0 U*dz = MUR + AU*(0) — AUR (6.11)

for conservation law (6.9).

To preserve the conservation property, we require that
M M,
/ Udz = / Udz.
0 0
Thus we obtain from (6.10) and (6.11) that
F(Ur,Ug) = AU*(0) + f(Ug) — AUk. (6.12)

Approximate Riemann solution in this case can be computed by the Roe’s approxi-

mate Riemann solver [71].
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Following the procedure in Section 6.2, and the idea above, we obtain the following

approximate flux at a phase boundary that is propagating with the speed V:
AU, U = AU* = VU™ + f(U,) — AU,, (6.13)

where U* is the approximate Riemann solution at the phase boundary. We emphasize
that the conservation of U is guaranteed by the approach used here. On the other
hand the propagation of a phase boundary is determined by simply using the above
flux into the algorithm in Section 3.2. Using an approximate Riemann solver, we can
compute propagation of phase boundaries associated with general two-phase elastic

materials.

6.6 Numerical results

We implement our numerical method by using Godunov scheme and a slope-limiter
scheme, which is equivalent to a variant of the MUSCL scheme [68]. It should be
pointed out that the slope-limiter in the MUSCL scheme, based on the so-called min-
mod limiter in our code, is determined unilaterally instead of bilaterally by minmod
when a phase boundary is present in a cell. In test 1, we apply our method to a
Riemann problem whose solutions take values in a single phase at all times, i.e. there
is no phase boundary. The results of the test show that the front tracking method is
equivalent to the standard shock capturing approaches for shock wave problems.

In Tests 2-6, the material is the trilinear material defined in Section 2. The kinetic
relation is given by f = wsé. The material constants are: = 1,p = 1,w = 0.35, v, =
0.5,y = 1.0,9r = 0.75. 7 = 0.5,7% = 1.0. In the computations, time step k
is 0.001 (time unit), mesh size A is 0.01 (length unit), if not otherwise specified. In
applicable diagrams, the analytical solutions are represented by solid lines, numerical
solution by dashed lines or dots.

In the following, we use CFL to represent (wave speed)(time step)/(mesh size).
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We measure global error by the discrete /;-norm defined by
o™ = ¥ 107 1A, (6.14)
J
for discrete grid function U™.

6.6.1 Test 1: A conventional Riemann problem.

Initial data vy, = 0.2, = 0.3,vr = 0.4,7r = 0.1 are used in the computation. Here
vz and g belong to the low-strain phase and there is no new phase initiated. We use
the usual shock capturing schemes Godunov method and MUSCL to calculate the
problem. We also use our method to calculate the problem. Our method delivered

identical results to those delivered by the usual shock capturing schemes.

6.6.2 Test 2: A single phase boundary.

The initial data are vy, = 0.7,v; = 0.3,vg = 0.1,y = 1.2. The strain v belongs
to the low-strain phase, the strain g belongs to the high-strain phase. Therefore we
have a single phase boundary. We compute the propagation of the phase boundary by
our tracking/capturing method. The numerical results are compared with the exact
solution that is known from Section 3.2; see Figure 6.5, 6.6. The convergence of the
front tracking/capturing method is demonstrated in the following table, where the

error is measured by the /;-norm for particle velocity or strain.

mesh size e (Godunov scheme) e’ (slope-limiter scheme)

2h 1.6210~2 7.7310-2
h 1.1510~2 491103
h/2 8.1510~3 3.1510~3

where h = 0.01, CFL = 0.1(fixed), time ¢ = 0.2. In this particular test, the errors
for particle velocity and strain are about the same, so in the above table, we list only

one error for each scheme.
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The results suggest: the method converges to the exact solution when the mesh
size reduces to zero and it tracks the location of the phase boundary accurately; the

fronts of sound waves are somewhat smeared out in the results.

6.6.3 Test 3: Nucleation of a phase boundary at an end
point

Nucleation of a phase boundary at the boundary of a bar is quite common in bar
impact experiments [36]. In this test we only consider a very simple situation: a
semi-infinite bar, which is in an initially undeformed state, is impacted at the end
z = 0 at time £ = 0. The boundary condition here can be described by v(0,t) = v,
where v, is a constant. The initial state of the bar is: v(z,0) = 0,7(z,0) = 0. In
order to initiate a phase boundary at the boundary of the bar, the magnitude of v,
has to be large enough, |vs| > ¢¥er. In this calculation, we take v, = —0.6 so that we
can have a nucleation at the end point. In the real computation, at the first several
time steps, the nucleated phase boundary is very close to the end of the bar, so local
time marching is necessary. After the first time step we relocate the first grid point
to the phase boundary. We do local time marching in the two cells that contain the
phase boundary until it is 1% cells away from the end of the bar. We continue the
computation by the algorithm in Section 6.3.1. It should be noted that time step in
local time marching is adjusted according to the size of the first cell. The smallest
time step in the local time marching is about 1/12 of a normal time step, and local
time marching lasts 10 normal time steps. Numerical results are in good agreement

with the exact solution; see Figure 6.7 and 6.8.

6.6.4 Test 4: Nucleation of two phase boundaries

Due to interactions of shock waves, a new phase may be initiated in the interior of the
domain, so that two phase boundary will be generated from a single grid point. For
the regridding of cells around the new phase, we can proceed as in test 3, then proceed

by local time marching until the distance between the two new phase boundaries is
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no less than twice the regular cell size. However this mesh technique does not work
sometimes because the big difference of mesh sizes may produce errors that lead to
numerical instability. This suggests that local mesh refinement is necessary.

We consider the nucleation of two phase boundaries in a Riemann problem that
involves only the low-strain phase initial data. The initial data is taken to be: vy =
—0.1,7; = 0.2,vgr = 0.5,y = 0.4. In the computation the mesh size in the refined
region is 1/10 of regular size, the smallest time step in local time marching is 1/10
of regular time step. The numerical results are compared with analytical results in

Figure 6.9 and 6.10.

6.6.5 Test 5: Collision of two phase boundaries

We construct special initial data which give rise to two phase boundaries colliding
at some finite time. The initial data are piecewise constant in three regions that we
refer to as L, C, and R. We choose: vy = 0.789,y, = —0.4,v¢c = 0.,7¢ = 1.125,vp =
0.,vr = 0.375.

When two phase boundaries are so close to each other that there are no grid points
in between, we treat the three cells which contain the phase boundaries as a group
with no further regridding in these cells. After the interaction, the whole domain
under consideration is in phase 1. Comparison between the numerical results and

analytical results are given in Figure 6.11 — 6.13.

6.6.6 Test 6: Impact on a semi-infinite bar with an initially

stationary phase boundary

In this example, we consider the effect of the impact on a semi-infinite bar initially in
two phase equilibrium state with a single phase boundary. We compare the computed
phase boundary position to that of the exact solution obtained in Chapter 5.

A semi-infinite bar is located in [0, 00) in the reference state, and a phase boundary
is initially located at = 1.995 in equilibrium state. The strains in the bar are

v = 0.375,v = 0 for z in [0,1.995), and v = 1.125,v = 0 for z in (1.995,0). At
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the time ¢ = 0, the bar is loaded by a velocity whose time-history is a given square
wave. The duration of the square wave is 0.5 (time unit), the amplitude of the square
wave is 0.15 (length unit/time unit). The numerical results are shown in Figures
6.4 — 6.16. When compared with the exact solution, the numerical prediction of the
position of the phase boundary is accurate. For fixed CFL, we check the convergence
by changing the mesh size and the time step with A = 0.01, CFL = 0.1 and S is the

distance that the phase boundary has moved from its original position at time ¢ = 3:

mesh size |(Sea:act - SNumerical)/Sezactl

2h 2.45%
h 1.58%
h/2 0.84%

These results suggest that the numerical solution converges to the exact solution as
mesh size goes to zero. Roughly speaking, the accuracy of the method is of order
O(h? + k) when a slope-limiter scheme is implemented. Improvement of the accu-
racy in space can be easily implemented, but the improvement of accuracy in time
integration requires substantial change of the formulation of the algorithm, (6.4).
As before, the fronts of sound waves are smeared out slightly. This contributes
to the error in the calculation of phase boundary propagation speed, and thus the
position of the phase boundary. In the computation, the boundary values are carefully

chosen so that there is no other phase boundary nucleated at any time in the bar.

6.6.7 Test 7: An example for general two-phase materials

We use our numerical method and the proposed approximate Riemann solver to
compute the problem involved in Test 1 and Test 2 of Section 3.2.

A first-order Godunov scheme is used in the implementation. The results for
the two tests show that our front tracking method works well when an approximate
Riemann solver is used. Here we only present the results for test 1 of Section 3.2.2, see

Figures 6.19, 6.20. The error in the computed phase boundary position is 3.81%. For
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fixed mesh size, the error decreases slowly with the decrease of the time step, 3.80% for
time step 0.001/2, 3.79% for time step 0.001/4. For fixed CFL, the decrease in mesh
size does not improve the accuracy of computation. This “locking” of accuracy is due
to the inherent error of the approximate Riemann solver. To remedy the deficiency,
we propose the following procedure: use Riemann solutions from the approximate
Riemann solver as initial guesses for the exact Riemann solver; use the Riemann
solutions of the exact Riemann solver to construct numerical flux. It only takes one
or two iterations for the exact Riemann solver to converge when the solution from
the approximate Riemann solver is taken as initial guess. Using this procedure, we

have the following results:

mesh size 1(Sea:act - SNumerical)/SexactI

2h 0.753%
h 0.479%
h/2 0.283%

mesh size el (velocity) e2(strain)
2h 2.72 x 1072 1.816 x 1072
h 1.712 x 1072 1.157 x 1073
h/2 1.014 x 1072 6.724 x 1073
h/4 5652 x 10~ 3.748 x 1072

where h = 0.01, CFL = 0.1(fixed) and £ = S is the position of the phase boundary
at time ¢ = 0.2. Here el and e2 are errors of the particle velocity and strain measured
by the {;-norm. If we compare these results with those obtained from the Godunov

scheme in Test 2, we can see that the results obtained here converges at a higher

order.
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6.7 Discussions

Our tests demonstrate that our tracking/capturing method can treat initial-boundary
value problems in the modeling of solid-solid phase transformations. The method is
shown to be consistent, entropically admissible and convergent. Though the fronts
of sound waves are smeared out slightly in the method, phase boundaries are still
accurately tracked. It should be noted that for a real shock (Test 7), even a first-
order method can give a relatively sharp shock front. With the methods investigated
here, we are capable of applying the Abeyaratne-Knowles model to initial-boundary
value problems of practical interest.

Numerically, a locally nonuniform mesh, which changes with time, is used in
the tracking/capturing method. The mesh technique is straightforward and easy to
implement in simple problems but it seems that the technique is more troublesome
to implement in more complicated situations. A limitation of the proposed method is
that a phase boundary should be a grid point. A systematic mesh technique should be
developed. There is an extensive literature on adaptive mesh refinement techniques,
for example, Berger & Colella [15]. The smearing of the fronts of sound waves can be
prevented by applying an “artificial compression technique”; see for example [40].

In order to compute propagating phase boundaries for general two-phase elastic
materials, we have to use an approximate Riemann solver for the case with nucleation.
There are some subtle issues related to this case. On the other hand, we cannot tell
how well the solution of the approximate Riemann solver proposed here approximates
the exact solution in general at current stage. However it has been shown that we
can avoid the disadvantages of the “exact” Riemann solver (time consuming, may
not converge) and approximate Riemann solver (relatively poor accuracy), by using
the Riemann solutions from the approximate Riemann solver as initial guess of exact

Riemann solver.
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Figure 6.2: Local shifting of a grid point



98

. s 3 _l_ H 1 +.1_ . . 3
]0-% o1 Joos Jo J0™3 o+l jo+3
b2 f ——# i
th+1
t
n . . . . . . i .3
3 dol ol jo iors  dotl o

Figure 6.3: Calculation of cell averages for the modified cells
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Figure 6.4: Solutions to Riemann problem with initial data in the low-strain phase
and high-strain phase at t=0.5 by front tracking: (a) the strain distribution; (b) the
velocity distribution
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Figure 6.5: Trajectory of the phase boundary determined by front tracking method
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Figure 6.6: Solutions to the problem involving nucleation of a phase boundary by front
tracking at t=0.2: a. the strain distribution; b. the particle velocity distribution
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Figure 6.7: Trajectory of the phase boundary
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Figure 6.8: Solutions to the problem involving nucleation of two phase boundaries by
front tracking at t=0.2: a. the strain distribution; b. the particle velocity distribution
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Figure 6.9: Trajectories of phase boundaries

0.3

0.2

0.1

Figure 6.10: Trajectories of phase boundaries for the problem involving collision of
phase boundaries
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Figure 6.11: The strain distribution : a. initial strain; b. strain after collision, t=0.8
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Figure 6.12: The particle velocity distribution : a. initial state; b. velocity after
collision, t=0.8
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Figure 6.13: The strain distribution in a semi-infinite bar at different times
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Figure 6.14: The particle velocity distribution in semi-infinite bar at different times
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Figure 6.15: Trajectory of the phase boundary determined by front tracking
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Figure 6.16: Solutions to a Riemann problem with initial data in high-strain/low-
strain phases: a. the strain distribution; b. the particle velocity distribution
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Figure 6.17: Trajectory of the phase boundary
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Chapter 7 Large time dynamical behavior of a

phase boundary: Numerical computation

In Chapter 5, an exact solution was obtained for a semi-infinite bar initially in an
equilibrium state with a single phase boundary subject to an incoming pulse. This
solution shows that the bar ultimately returns to an equilibrium state.

It is interesting to check whether or not a dynamic solution converges to an equi-
librium state predicted by a static theory. A finite bar problem is considered. Lin
and Pence [55], [56] solved the finite bar problem approximately using an energy
approach in which the interaction of reflected Waves is ignored. Because the implica-
tions of this approximate assumption are not clear, it is desirable to investigate this
problem further.

The numerical method developed in Chapter 6 is used here for this investigation.
We can determine the dynamical state of the bar as well as the dissipation and the
total energy of the bar at any time. The numerical method can also be used to analyze
this problem for nontrilinear materials.

The initial-boundary value problem to be solved is formulated in Section 7.1. We
present a brief analysis of energy and dissipation in the system under consideration
in Section 7.2. A boundary value problem which corresponds to the initial-boundary
value problem formulated in Section 7.1 is formulated in Section 7.3, and a metastable
static solution to the boundary value problem is presented. In Section 7.4, the nu-
merical solution is presented for the special trilinear material defined in Section 2.3,
as well as for the nontrilinear material given by (3.32). The results include the strain
and particle velocity distribution in the bar at various times, the dissipation due to
the moving phase boundary and the total energy of the bar. The prediction of the nu-
merical solution for large time is compared to corresponding static solution mentioned

above.
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7.1 Formulation of an initial-boundary value prob-

lem

A finite bar occupies the interval 0 < z < L in its undeformed reference configuration.
The bar is assumed to be made of a two-phase elastic material, either the special
trilinear material defined in Section 2.3 or the two-phase material defined by (3.32).
The kinetic response function is assumed to be ¢($) = ws and the nucleation criterion
is taken to be the one given in Section 2.2. It is assumed that, at ¢ = 0, the bar has a
single stationary phase boundary located at z = so. The portion of the bar in [0, so)
is in the low-strain phase, while the remainder of the bar is in the high-strain phase.
Because of the kinetic relation assumed, the bar must necessarily be in the Maxwell
state of stress initially. The bar is assumed to be fixed at z = L, and it is impacted
at the end z = 0 at time { = 0. Thus the initial conditions and boundary conditions
can be expressed as follows.

Initial conditions:

v(z,0) =0,

0 <z < sp;
v(z,0) =9
v(z,0) =0,

so<xz<L.
7(2,0) = 7¢

Here v¢ and 7; are strains in the high-strain and low-strain phases, respectively, that
correspond to the Maxwell stress; for the trilinear material, v = %('ym + M — 1)
and 7§ = 3(¥m + 1M + 7).

The boundary conditions are

v, 0 <t < ¢,
v(0,8) =4 (7.1)
0, t>t*

and

v(L,t) = 0. (7.2)
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For the formulation given here, according to the initial conditions, the bar is initially

stretched.

7.2 Energy and dissipation

As shown in Chapter 2, the total accumulated dissipation at a phase boundary at
time ¢ is

Dit) = [ )3, (7.3)

where f(t) is the driving traction at the phase boundary at time ¢ and $ is the phase
boundary propagation velocity.

The total energy in the bar at time t is

B(t) = [ (Wr(a,0) + po*(z, 0)de (7.4)

where W is the strain energy per unit undeformed volume, W(v) = [ o(v')dy'.

In our analysis, we assume that vg is small enough to assure that only one phase
boundary is present for all times; thus no new phase boundary is nucleated by the
impact.

Two-phase materials

For general nontrilinear two-phase elastic materials, the shock waves as well as
phase boundaries are dissipative. If the rate of work done on the bar by the impact
is denoted by w(t), and the rate of dissipation at all shock waves is Dshock(t), in a

procedure that is similar to that lead to (2.8), we have (over the whole bar):
w(t) — E(t) = D(t) + Donock (t),  t <15 (7.5)

— E(t) = D(t) + Dhoo (t), 1> ¢". (7.6)

Trilinear materials
For trilinear materials, the shock waves are dissipation free, so that phase bound-

aries are the only source of dissipation. For the particular boundary condition given
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in Section 7.1, the rate of work done on the bar by the impact is

Vo

w(t) = u(— — Y0 Jvo (7.7)

c
and the energy identity (2.8), for z; =0, z2 = L, reduces to

Vo

Hvo(— =) = E(t)=D(t), t<t5 (7.8)

— E(t)=D(@t), t>t~. (7.9)

From (7.9), we see that the total energy of the bar will decrease after time *, in

fact we can integrate (7.9) from ¢* to ¢ > ¢*to obtain

E(t) = B(O)+u(= =% )wt" + D()

1 _ 1 1
= D(t)+ 5#(70 )280 + ('2‘#%271 + 5#(% + M — 1) (VM — Ym)

1 Y% o .
+ u(8 +r = 29m)(9 — 1)L = s0) + w(= = )wt™ (7.10)

From (7.6) or (7.9), we expect that the total energy of the bar will decrease until

the bar reaches a new equilibrium state.

7.3 Equilibrium state of the phase boundary

It is interesting to check whether the equilibrium state determined by the dynamical
model is identical to the equilibrium state determined by a static theory. For a given
boundary condition, no matter whether our material is a trilinear or nontrilinear two-
phase material, the equilibrium state of the bar must be a Maxwell state. There are
infinitely many solutions that can satisfy the given boundary condition.

In the following numerical analysis, the vg is assumed to be small enough to assure
that only one phase boundary is present for all times; thus no new phase boundary is
nucleated by the impact. The purpose here is to compare the numerical solution to a

corresponding static solution. We seek a static solution with single phase boundary
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for the bar for a given displacement boundary condition. Then there is only one static
solution.

For the static problem, we have the following boundary conditions:
u(0) = —(s075 + (L — s0)7g) + vot” (7.11)

u(L) = 0. (7.12)

As the bar must be in a Maxwell state in equilibrium state, the stress in the bar is
uniform, namely, the Maxwell stress. Thus the equilibrium equation for the bar is

satisfied automatically. Assume the phase boundary is located at s, then

—(s76 + (L —s)v5) = u(0),

i.e.
o Lyg + u(0)

+

= 7.13
Yo — Yo ( )

The total energy in the bar, corresponding to the intial condition in Section 7.1, is

7 Yo / / s ! /
Eo = so/o o(y)dy' + (L - 50)‘/0 a(y)dy'. (7.14)

The total energy of the equilibrium state in the bar, when (7.11) and (7.12) is imposed,
is
. Yo 2’
0 N Jn! 0 N g
E = S,/o o(v)dy' + (L — s)/o o(y)dy'. (7.15)
Then the change of the total energy of the bar in the above two states, according to

the static theory, will be
T
AE = (s—so) [* oly)dy
Y
= (s —s0)(%0 — 7 )o0, (7.16)

where o is the Maxwell stress: oo = o(vd) = o(7).
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7.4 Numerical solutions

Trilinear materials. In the following computation, all the material parameters are
the same as those used in Section 5.5. We consider the initial-boundary value problem
formulated in Section 7.1.

Example 1. Let L = 4, sp = 1.995. Thus initially the portion of the bar in
[0,1.995) is in the low-strain phase with v = 0.375,v = 0, while the remaining part
is in the high-strain phase with v = 1.125,v = 0. The imposed particle velocity v at
z = 0 is 0.15, the duration of the impact t* is 0.5. The results are shown in Figures
7.1-7.5.

Figures 7.1, 7.2 show the distribution of strain and particle velocity in the bar at
different times. The evolution of the dynamical state is illustrated by these figures:
the particle velocity approaches zero for large time, and the strain approaches the
strains that correspond to the Maxwell stress in the two phases.

We can see more clearly that the bar approaches equilibrium state kinematically
and energetically. The trajectory of the phase boundary shown in Figure 7.3 is dif-
ferent from that in a semi-infinite bar due to the reflection of waves at both ends
of the finite bar, but the phase boundary is evidently approaching an equilibrium
position. At ¢ = 20, the phase boundary is at = = 2.0948, which is quite close to the
equilibrium position z = 2.095 according to the static solution (7.10).

From Figure 7.4, we see that the total energy of the bar monotonically decreases
and asymptotically approaches a constant value — the energy of a new equilibrium
state. At t=20, the total energy of the bar is 0.818. The total energy of the new
equilibrium state is 0.817 according to the static solution (7.12). From Figure 7.5,
we see that the dissipation due to the phase boundary increases monotonically and
approaches a constant value.

The phase boundary is still oscillating around its ultimate equilibrium position
at ¢t = 20 as shown in Figure 7.3. Besides, the negative of the work W done by the
impact is 0.017, the energy dissipated is D(20) = 0.008, so the energy E(20) should
be 0.820, which equals to E(0) — W — D(20). But the computed energy, which was
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computed from (7.2), rather than (7.7), is 0.0818. The discrepancy is due to numerical
dissipation. The bar has not reached its equilibrium state yet, but is quite close to
it. The computed energy of equilibrium state is expected to be slightly smaller than
that determined by static solution.

It should be noted that, due to the reflections from both ends and from the phase
boundary, there should be many sharp wave fronts moving back and forth in the bar.
But there are only two bumps in Figure 7.1, 7.2. We give two explanations for this
numerical phenomenon. Firstly, as the phase boundary is initially near the center of
the bar, the waves reflected and transmitted at the phase boundary overlapped into
two groups of waves. On the other hand, shock wave fronts are smeared out in the
computation. So when the wave fronts forms two groups, we see only two bumps.

Example 2. In this example we set so = 0.995, which means the phase bound-
ary is initially near one end. All the other parameters are the same as those used
in example 1. The results are shown in Figure 7.6-7.10. We see more clearly the
interactions among shock waves in Figures 7.6 and 7.7. Before the reflected shock
waves from z = 4 hit the phase boundary, the phase boundary behaves as if it is in
a semi-infinite bar. A dramatic change in the trajectory of the phase boundary is
observed in Figure 7.8, when compared with that in a semi-infinite bar. At time t=20,
the phase boundary is located at = = 1.098, energy dissipated in the bar is 0.009.
The total energy of the bar is 1.099. From the static solution, the total energy of the
new equilibrium state is 1.098, and the equilibrium position of the phase boundary is
1.095. The bar has not reached equilibrium state yet, but is quite close to it.

Example 3. Large time dynamical solution. As in the situation for semi-infinite
bar, it takes an infinitely long time for the phase boundary to settle down in its
equilibrium state. So in the real computation it will take a very long time for the
numerical approximation to approach equilibrium solution. In order to see this, we
recalculate Example 1 with vp = 0.01 and ¢t* = 0.01. From the computation we
get s = 1.99513 at t=49.999 (50,000th time step). From static solution we have
s = 1.99513. The computed result is numerically the same as that given by the static

solution.
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It is interesting to compare the large time dynamical behavior of a phase boundary
in a semi-infinite bar and in a finite bar. There are two major differences between
the phase boundaries in the two bars: The phase boundary in the semi-infinite bar
reaches its equilibrium state much faster than does the phase boundary in a finite
bar at a comparable situation. The absolute distance moved by the phase boundary
in the semi-infinite bar is less than that predicted by static theory, while the phase
boundary in the finite bar moves exactly the same amount as predicted by static
theory. Compared with the finite bar, in a semi-infinite bar, a large portion of the
energy is transported to infinity, and thus there is much less energy for the phase
boundary to dissipate.

For a material with a general up-down-up stress-strain relation such as that con-
sidered by Lin [57], we expect the phase boundary will reach its equilibrium faster
than it does for trilinear materials. This is due to the fact that shock waves for the
nontrilinear material are dissipative.

Nontrilinear two-phase material. Here we consider the nontrilinear material
defined by (3.32). For this material, the Maxwell stress is oo = 1.0234, the Maxwell
strains in the low and high-strain phases are v}, = 0.261121 and 42 = 2.67221 respec-
tively.

Example 4. Let L = 4, so = 2.005. The material of the bar is assumed to be the
one defined by (3.32). Thus initially the left portion of the bar is in the high-strain
phase with v = 2.67221 and v = 0, while the remainder is in the low-strain phase
with ¥ = 0.261121 and v = 0. The imposed particle velocity at z = 0 v, is 0.15, the
duration of impact t* is 0.5. The results are shown in figures 7.11- 7.15.

The overall behavior of the solution obtained for the nontrilinear material is quite
similar to that for a trilinear material obtained Example 2. At ¢t = 20, the phase
boundary is at £ = 1.97033, the total energy in the bar is 5.43039. According to the
static solution, the equilibrium position of the phase boundary is at z = 1.97389, the
total strain energy in the bar is 5.4266. But we do observe some differences: there are
sharp wave fronts as well as rarefaction waves in Figures 7.11 or 7.12, especially at

= 0.55, but as in Example 2, when ¢ becomes large, we do not see any shock waves,
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but only two bumps in strain or velocity profile. The total energy of the bar decreases
continuously though the phase boundary moves and stops alternatively as in the case
of the trilinear materials; this is because the shock waves in the nontrilinear material
are dissipative.

Thus we have shown numerically that, for the initial-boundary value problem
formulated in Section 7.1, the finite bar with a single phase boundary will return
to an equilibrium state after a disturbance of finite duration, whether the two-phase

material of the bar is trilinear or not.
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Figure 7.2: The particle velocity distribution in a finite bar
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