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ABSTRACT

The approximation of two-point boundary-value problems by
general finite difference schemes is treated. A necessary and
sufficient condition for the stability of the linear discrete
boundary-value problem is derived in terms of the associated
discrete initial-value problem. Parallel shooting methods are
shown to be equivalent to the discrete boundary-value problem.
One-step difference schemes are considered in detail and a class
of computationally efficient schemes of arbitrarily high order of
accuracy is exhibited. Sufficient conditions are found to insure
the convergence of discrete finite difference approximations to
nonlinear boundary-value problems with isolated solutions. Newton's
method is consideréd as a procedure for solving the resulting
nonlinear algebraic equations. A new, efficient factorization
scheme for block tridiagonal matrices is derived. The theory
developed is applied to the numerical solution of plane Couette

flow.
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Introduction

This thesis deals with the application of finite difference
schemes to two-point boundary-value problems. The assumption is made
throughout that these boundary-value problems have isolated solutions;
that is, the homogeneous, linearized problem has only the trivial
solution. The general theory developed places no restrictions on the
form of the difference equations.

In Chapter 1, the application of an arbitrary, consistent
difference scheme to a linear boundary-value problem is treated. 1In
the main theorem of this chapter, Theorem 1.16, the stability of the
discrete boundary-value problem is shown to be equivalent to the
stability of the associated discrete initial-value problem. This
associated initial-value problem employs the same difference equations
to approximate the differential equation, but initial conditions
replace the boundary conditions. From this result, it is clear that
a simple shooting method is, in fact, a specific procedure for solving
the discrete boundary-value problem.

Special emphasis is placed on one-step difference schemes in
Chapter 2. High order accurate difference approximations are developed
using both Taylor series and the integral form of the differential
equation. In particular, one-step schemes of arbitrary order are
derived which require the evaluation of a minimum number of new
functions (e.g derivatives of A(t), f(t)). The equivalence shown in

Chapter 1 is used to examine the stability of triangular difference



schemes.

In Chapter 3, the equivalence result of Theorem 1.16 is general-
ized to include all parallel shooting methods. Theorem 3.22 shows
that these methods are each a particular procedure for solving the
equations derived from approximating linear boundary-value problems.
The Method of Complementary Functions is examined in detail as an
example of methods for solving problems with separated boundary
conditions. The Method of Adjoints is also considered and it is shown
that this method is not in general equivalent to the discrete
boundary-value problem.

Nonlinear boundary-value problems are dealt with in Chapter 4.
The difference schemes examined in Chapter 2 are generalized to be
applicable to nonlinear differential equations. Following Keller [6],
existence and uniqueness of these discrete approximations is shown.

We note that Newton's method converges quadratically.

Chapter 5 is concerned with the practical problem of solving
the systems of algebraic equations arising from the approximation of
boundary-value problems with separated boundary conditions. These
equations are written in block tridiagonal form, Mx = b. The special
zero structure of this system is exploited to show that, with an
appropriate row switching strategy, such a matrix possesses a simple
block LU decomposition if and only if M is nonsingular.

A numerical example is presented in Chapter 6. The equations
considered model plane Couette flow. The Gap4 scheme, as derived in
Chapter 4, is used to discretize the nonlinear boundary-value

problem and Newton's method is employed to solve the resulting set of



nonlinear equations.

A consistent effort is made to use o to represent zero or
a zero vector and 0 for zero matrices, except in tables or equation
numbers. The numbering of theorems, equations, or tables is done

consecutively throughout each chapter.



Chapter I

Linear Two-Point Boundary-Value Problems

1. Existence Theory

We consider the system of n first-order, linear ordinary

differential equations:

ul(t) - A(t) u(t) - £(t) = o t € [0,1] a)

(1.1)
Bo u(o) + B1 u(l) - R =o0 b)

where u, £, B are n-vectors and A,BO,B are n X n matrices. Before

1

proceeding to the numerical approximation of (1.la,b), we present

an existence and uniqueness result convenient for our purposes.

Theorem 1.2. Let A(t) € dm[o,l] for some m = o. Define the

fundamental matrix X(t) as the solution of
X'(t) - A(t) X(t) = o X(0) = I. (1.3)

Then for each f(t) € cm[o,l] and B € En, problem (l.1a,b) has a

unique solution y(t) € cm+1[o,1] iff [B0+B1X(l)] is nonsingular.
Proof: The solution to the initial-value problem
u'(t) - A(t) u(t) - £(t) =0 u() =r

is in general



y(t) = X(t)r + X(t) /S xL(s) £(s) ds. (1.4)

Uniqueness for the initial-value problem insures that X(t) is
nonsingular on [0,1]. The boundary-value problem (l.la,b) has a
solution if and only if we can define an n-vector r such that y(t)

satisfies the boundary condition
BO u(o) + Bl u(l) - B = o.
This requires
B+ B, X(I)Ir - 8 + B, X(1) /X x1(s) £(s) ds = o
o 1 1 o *

Thus, (l.la,b) has a unique solution if and only if [B0 + By X(1)] is
nonsingular. That y(t) € cm+l[o,l] is an observation from the form
of differential equation (1.la).

viiA

2. Numerical Methods

Here we discuss some standard concepts of numerical analysis
and develop some notation. In approximating the solution of

(1.1la,b), we will employ a net of points {ti}l=J on [o0,1] and a net
i=o
function {vi}i—J defined on this net.
i=o

o i-1 i J
| | l

o i-1 i tJ=l

Each vi is an n-vector and we define V such that



where V is an n(J+1l)~-vector. We define the mesh widths
max
hi = ti - ti—l’ i=1,...,J, and ho = 1<i<J hi' We further require

that for each hi there exists a Ai ele,1], € > o, such that

This condition merely stipulates that
€ < min hi/max hi <1

and thus the mesh becomes dense in [o,l] as ho > 0.

max

The norm we will employ is IIVII = o<i<J

llvill and for

block matrices, the usual induced norm
max
[l ] = [lvl] =1 REVARD

In the n=1 case, this induced norm equals the maximum absolute row
sum, however this result does not generalize to n > 1. We may

easily produce the upper bound

J
]« 2% € 1y

where M is an n X n matrix element of the block matrix M.

ij
An approximation to the differential equation (l.la) may

be written as



i=1,...,J. (1.5a)

The boundary conditions (l.1b) are approximated by

Bo v + Bl A8 B=o. (1.5b)
We define the truncation error T to be

Ti[Y(t)] = Lh Y(ti) - ri i= l,.oa,J

where y(t) is any solution of the differential equation (1.la).
Similarly, we define a truncation error T associated with the

boundary conditions

[}

T, [y(©)] = B y(o) + B;y(1) - B

where y(t) is any solution of (1.1b). Note that T, will always be
zero. In considering the accuracy of approximations (1.5a), (1.5b),

we are concerned with y(t) a solution of (l.la,b) and we define

[ [y(0)] ]

T, [y()]
Tly(t)] = . .

.
-

.TJ[y(t)]J

Combining the discrete approximations (1.5a) and (1.5b), the

discrete boundary-value problem may be written as



1 T h
B, 0 ) 0 B, v, 8 [0
Mo M1 - M1 Mg |1 Tl e
. . . . . - sl=1 a1, .7
Mo My e Miz-1 My 1 179] EINN

More briefly, we will write
BhV -r=o0 (1.8)

where Bh is an n(J+1l) X n(J+1) matrix and r is an n(J+1l)-vector
with r, = B. Employing Euler's method to approximate the differential

equation (l.la), this formulation of the discrete problem becomes

- 11 .
B, 0 0 B, v01 8 ]
“Lliaee) 1, 0 0 {[v,| [ECt)
h1 o h
1.1 1
0 iy I-—A(tl) hoT e 0 Vol- f(to) =
2 2
{ 0 0 L ace. Lo lv| {£ee. )
by J-1" g { J—l‘

This example will be used throughout to illustrate various points of

interest.

Consistency. The difference approximation (1.5a) is said

to be consistent with the differential equation (1.la) iff
||T[y(t)]|| -+ 0 as ho > 0

where y(t) is a solution of (l.la,b). Euler's method provides an

example. If y(t) € cp[o,l], p = 2, then



P K-2 _(K)
1, [y(e)] = by ng h, y ;ﬁi-l) + O(hi).

Thus, Euler's method is consistent and we say that it is first-order
accurate because the leading term in the truncation error expansion
is linear in hi'

Order of accuracy. A numerical scheme has an order of

accuracy p > o if p is the largest integer such that
||tly(t)1]] < xnP
v o

for all nets with ho < H.
Stability. Let V be a solution to (1.8). The difference
scheme (1.8) is said to be stable iff there exist constants

Ko > o, and H > o, such that

V] < &y (el

for all nets with h0 < H. For the linear case, this condition is

equivalent to showing that a K 2 0 and H > o exist such that

~1
IR S

for all nets with h0 < H.

Convergence. The numerical scheme (1.8) is covergent iff

max

0<i<] |!y(ti) - vill > o0 as h0 >0 .

For convenlence, we define the n(J+l)-vector Y to be
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.y(to)w

y(t))

_y(;J)

-

A standard result may now be stated.

Lemma 1.10 Let the boundary-value problem (l.la,b) have the exact

solution y(t). Let the discrete boundary—value problem

Bovo + BV, - B=o a)

(1.5)
th. -r, =0 i=1,.04,J b)
i i

be consistent with (l.la,b) and stable. Then the method is convergent,

that is,
||Y - V|| +0o as h_ -—o.
o

Proof: The definition of the truncation error T[y(t)] combined with

(1.5a,b) gives

,Bh(YbV):T.

By hypothesis, the difference scheme is stable, thus there exist

constants K0 2 0, H > o such that
Y - v|] <& |]7]]

for all nets with h, < H. Also by hypothesis, the method is

consistent, that is

]l >0 as b ~o.



Hence,

max

IIY - VII = o<i<Jg

||y(ti) - Vill >0 ash ~o

)

For any particular scheme, we would like to be able to show
that the net function approximates the exact solution at the net
points: that the method is convergent. The truncation error and
order of accuracy are generally derived via Taylor's Theorem, as
was done in the example of Euler's method. In order to show that
Euler's method is convergent for the discrete boundary-value problem,
we need to prove that the matrix Bh in (1.9) has an inverse with
uniformly bounded norm as ho -+ o. Then by Lemma 1.10, this numerical
scheme would be convergent. However, even in this simple case, the
nonsingularity of Bh is not obvious.

In Theorem 1.2 the initial-value problem is used to prove
well-posedness of the boundary-value problem. As Keller [5] has
shown for the case of the centered-Euler scheme, this approach is
also useful in the numerical problem. If we approximate the solution

of the initial-value problem
u' - A(t)u - £(t) = o a)

(1.11)
u(o) = B b)

by Euler's method, the following equations result
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I 0 (v 1 |8 ]
1 1 ©
- = I-A(t) =1 v f(t)
h]_ (o] hl 1 [e)
1 1 ‘
S I-A(t. ) = I v £(t. )
h, J-1 h, | V7] i Jflj

Similarly, we define the discrete initial-value matrix Ih associated

with any Bh (1.7) to be

I 0 0

M, Moo M 5
I = . . . . :

Myg My .- MjJJ

To form Ih’ we replace Bo’ B, in the first block row of Bh with

1

I,0 respectively.

3. Convergence for linear boundary-value problems

The main result of this chapter is that a numerical scheme
applied to a boundary-value problem with a unique solution is stable
and consistent if and only if the associated initial-value problem'
is stable and consistent. It will be useful to prove several lemmas

first.

Lemma 1.12 (Factorization) Let Ih be the initial-value matrix

associated with EL. Then

BhV-r = Ihv + L{NV -~ £}

0.
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where L is a (J+1)n X n+l matrix

I o |
0 ry

L = . - ’
.0 rnJ

Proof: We take (1.7) to be the most general form of the boundary-value

matrix Bh.
Bo 0 4 o @ Bl
Mo M3 -ee My
By =|: : : ‘
Mo Mo Mg

r b
I 0 . & 0
Mo My -0 My
L=l . : '
Mo My - MJJJ
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It may be directly verified that L,N,{ are the proper factors,

but the sequence of operations below may clarify the derivation.

1 [B-10 ... 81V
0
BhV—r = IhV + . -r
0
o |
= IV + 1
. B -I o . B R
N ) oy |-
) o o o 1
0 rJ
L J

The identity r, = B is used here.

)

Lemma 1.13 (Reducing) Let L,N be pXq and qXp matrices respectively.

Let x and b be a p-vector and a g-vector respectively. Further, let

L have rank q < p. Then the matrix equation
(I +LN)x -Lb=o0 (1.14)

has a solution

if and only if
(I+NL) w=Db=o0

Proof: The sufficiency is trivial on substitution of Lw into (1.14).

Since L is a pXq matrix with rank q < p, the columns of L
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are linearly independent. Therefore, there exists a p X (p-q)

matrix L such that
R(L) + R(L) = EP.
We may write any vector x € EP uniquely as
x = Lw + Lw . (1.15)
Using this representation in (1.14),
L(w + NLw + NLw - b) + Lw = o .
The vector x is a solution of (1.14) if and only if
w=o0
and
w+ NLw + NLw - b = 0o .

The necessity follows.

H

Note that this lemma reduces the solution of p simultaneous

equations
(I+1LN) x-1Lb=o0
to solution of q equations, q < p,
(I+0NL) w-Db-=o.

Now we state and prove the main result of this chapter.
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Theorem 1.16 Let the boundary-value problem (1.la,b) have a

unique solution y(t) € Ql[o,l]. Then the following are equivalent:
a) The discrete boundary-value problem is stable, consistent
(and convergent).
b) The associated initial-value problem is stable, consistent

(and convergent).

Proof: (b => a) The Factorization Lemma (1.12) states that for the

boundary-value problem (1.8)
BV-r=ILV+L{N-E}=0. (1.17)

The initial-value problem is stable by hypothesis, therefore Ih is
nonsingular for all h0 < H, say. Left multiplying (1.17) by

I;l we obtain

-1

vV + Ih

L{NV - £} =0 .
Define Z and z by

Ih[zgz] =L (1.18)

where Z is an n(J+1)*n matrix and z is an n(J+l)-vector. From (1.18),

we note that Z satisfies

o H

1.z

O ses

and thus is an approximation to the fundamental matrix solution (1,3).

By Lemma 1,10, the discrete initial-value problem is convergent
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max

0<i<] HZi - X(ti)[! >0 ash ~o

and in particular

[lzJ - XQ)|| o as h, > o . (1.19)
By virtue of (1.18), we may write (1.17) as

V+ [2{z]{NV - £} = 0 . (1,20)

The edumns of the n(J+1)xn+l matrix [Z!z] are linearly independent
provided that r, # 0, 1 <ic<J, If the (+1)2E column of L is the
zero vector we remove it, replace § ={—§-] by & = [B] and the
degeneracy is removed., We complete the proof assuming rj # o, for
some j.

By the Reducing Lemma, (1.20) has a solution if and only if

[—Z—] satisfies

1 _ i

IHXn ; [o) (BO I)Zo + BlZJ{B]_ZJ w B

_____ T—— + e et i e ———— e = 0
o) E 1 o '

I
I
(1.21)

and the solution must be of the form

. w
V= [z iz] —-—} .
A

We recall that Zo = I and take A = 1, so that (1.21) is equivalent to

- = 2
(B0 + BlZJ)w R + BlzJ o . (1.22)

Compare this with the condition derived in Theorem (1.2) for the
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solution of the boundary-value problem (l.la,b). Existence and
uniqueness of the solution, V, of the discrete boundary-value

problem now hinge on the non-singularity of (Bo + BIZJ)' We write

) .

B0 + BlzJ = [B0 + BlX(l)] - Bl(X(l) -~ Z

J

By hypothesis y(t) is unique, and Theorem 1.2 states that

[Bo + B1X(l)] must be non-singular. It has already been shown that
||X(l) - ZJ|| > o0 as ho >0

thus, by the Banach Lemma, BO + BlzJ is non-singular for all nets

with hO < H, provided H is so small that for some p ¢ (o,1)
-1
l®, + B,Xx@)N™" B, (X)) -z)[[ <1 -p -
It is clear that the discrete boundary-value problem is stable since
I
V] < [tz {2]]] max {]|w|],1}

and Z and z are solutions of discrete initial-value problems, which
were assumed stable.
(a = b) The proof of this part is essentially the same.

Consider the discrete initial-value problem
Ih V-r=o0 . (1.23)
Following the Factorization Lemma (1.12), we may write

Ih V-r-= Bhv - L{NV + £}.

By hypothesis, the discrete boundary-value problem is stable, thus
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B, is non-singular and we may define [% 22] by

h
! o
1
~ 0 i Ty
B [z]2] = |. i =L . (1.24)
) NS B
1
0 } rJ

The Reducing Lemma (1.13) now implies that the solution V of (1.23)

must be of the form
ey 1 _.‘27_
V= [Z 1z] 1
and exists if and only if

Z0 W -8+ z =o0. (1.25)

Therefore, we wish to show that Zo is non-singular for all nets with
h0 < H, for H sufficiently small. Theorem 1.2 derives the solution

of the boundary-value problem to be
y(t) = X(O)r + x(t) SE XN(s) £(s) ds (1.4)
where r must satisfy
B+ B, X(1)]r - 8 + B. X(1) /& xL(s) £(s) ds = o
o 1 1 0 *
Thus, the solution to the boundary-value problem

XU(t) - A(t) X(t) = o a)
(1.26)

BOX(o) + le(l) - I=o0 b)

is given by

X(t) = X(t) R
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where R is an n X n matrix and must satisfy
[Bo + BlX(l)]R -I=20.

By hypothesis y(t) is unique, thus the matrix R is non-singular,
that is, X(o) is non-singular. We note that Z as defined in (1.24)

is a convergent approximation to the equations (1.26), hence

||§(o) -~ ﬁoll >oas h o

~

and, as before, Z0 is non-singular for all nets with h0 < H, where

H is sufficiently small. Now,
A1l ~
vl < 11z { 21]] max {|]w|],1}

and the discrete initial-value problem has a stable solution.

We recall that the order of accuracy of a scheme is determined

by the largest integer p such that
[ltly(®1]] <k v’ for all h =< H.

Corollary 1.27. Let the boundary-value problem (l.la,b) have a unique

solution y(t) ¢ cP

+1[o,l], for some integer p = 1. Let the discrete
approximations (1.5a,b) be p-order accurate. Further, let the discrete
initial-value problem associated with (1.5a,b) be stable. Then for

all nets with hO < H,
Z WP
|y - v|| <K n]

where V is the n(J+l)—vector'solution of (1.5a,b) and K is a constant
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independent of ho‘

Proof. The proof follows that of Theorem 1.16.

These results and the manipulations leading to them suggest
several further topics. Chapter II will be concerned with the
operational characteristics of various specific numerical schemes.
Theorem 1.16 will be exploited to determine the stability properties
of a particular class of schemes. We will examine asymptotic
error expansioné and discuss methods of increasing the accuracy of
discrete approximations. In Chapter III, we will enlarge upon
Theorem 1.16 and the equivalence of discrete initial-value and
boundary-value problems.

Dr. H, 0, Kreiss has recently published a paper [ 7]
dealing with the stability of discrete approximations to arbitrary
order systems of linear ordinary differential equations. Thus, it
appears that this chapter is perhaps a special case of Kreiss' results.
However, in Appendix A, we give an indication that Kreiss' work is
complementary to our own and not inclusive. Further, Theorem 1,16
gives a necessary and sufficient condition for stability of the

most general schemes, whereas Dr. Kreiss deals with k-step methods.
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Chapter II
Difference Schemes

In this chapter, we will examine some specific difference
schemes; of particular interest are one-step (two-point) methods.

One-step methods for linear problems have the characteristic form

Ly Vi =M vy P M50 Vi

These methods are of special interest for several reasons. They admit
nonuniform nets and, as Keller [ 5] has shown, piecewise smooth

solutions. In addition, the calculations involved in solving the

matrix equation

Bh V-r=o0

for separated boundary conditions are particularly simple. In this
case, the matrix Bh may be put into a block tridiagonal form which
possesses a simple LU-decomposition.

One of two methods is usually employed to generate difference
approximations to (1l.la) and evaluate their order of accuracy. The
first approach is via Taylor series and necessitates evaluating the

truncation error functions at some reference point tR(ti) where
-> ->
tR(ti) t, as ho o .

Quadrature formulae may also be used to generate useful approximations.

If we write (1l.la) in the equivalent form

u(t) - u(t) - SE A(s) u(s) + £(s) ds = o (2.1)
T



the application of quadrature is immediately obvious.

1. Taylor Series

The centered-Euler or Box-scheme (Keller [5]) illustrates

the use of Taylor series. Applied to (1l.la) the centered Euler scheme

is
1.0y 1 hy
Lyvs = E;[I'é‘ Aty 1/ vy E;[‘I‘E— Aty 101 v
Ty = £ty 10)
hy
where ti—l/Z = ti et

If we assume that y(t) € c2m+l [o,1] and let tR(ti) =t

i-1/2?

the truncation error is shown to be

m-1 h, 2k (2k+1)
1 y (2k)
Tyl =] GO - Ay (t,)
i WL 2 (2K) 1] 2+l R
(2.3a)
h, 2m
+0 ( (32-]:) )
and the leading term, O(hi), is
h, 2 (3) (2)
4T 1)y - Ay (e) .
G 743 R (2.3b)

Here the choice of t_ =

R ti—l/2 is important due to the symmetry of

(2.2). However, the first term of the truncation error expansion,

(2.3b), is invariant and hence the order of accuracy of any scheme
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must be invariant to the reference point t If we were to use

R
tR =t, ,, the truncation error is shown to be
i-1
2m-1 h? (2k+1) 1 k+1 (k)
T, Iy(e)] = ¥ ) L——k+1 -G ATy
k=2
¥ Lptl ky (0 (k-p) _ Lk (k)
-1 @FT ) Ay - GET (e (2.4a)
P R
p=o
2m
+ o(hi )

and the leading term is

2
e ( (3 ()
i)y Ay 1,02 _1.,() (D 1.(2)
7 173 i g Ay T g ATy - g f

4 (tR).(2.4b)

However, recalling that y(t) is an exact solution of (1.la), this

expression is shown to be equivalent to the following

2
h;

h,y2
{315 - 0

Thus, the leading term of (2.3a) is exactly the same as (2.4a) with

tR = ti—l/2 and tR = ti—l respectively. Note that the next terms

in each expansion are not the same.
The centered-Euler scheme may be generalized to an arbitrarily
high order by employing the exact form of the truncation error. In-

corporating the first term, O(hi), of the truncation error expansion
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A(t) and £(t), we must also evaluate A(z) (v), A(l)(t), f(z)(t),
f(l) (t) and various products of these functions.

Since the functions C(t) and g(t) will continue to appear,
we need to define these quaptities in more generality. The usual
procedure will be to evaluate y(p) (t) in terms of derivatives and

combinations of A(t), f£(t) and y(t). For simplicity, we define

dv (t)
Ly = C,(D)y() + g (t)

Y (2.6)

where C\)(t) is an n X n matrix and g\)(t) is an n-vector.
Thus,

y(o)(t) =y(t) =>C =1, g =o.

The terms of particular interest are contained in the following table.

v c, g,

o I 0

1 A f

2 A1 4p2 agre(D

3 | A@aa@aean® a2 | 2aWaa?ye + asD 4@
Table 2.7

Employing this notation, the fourth-order generalized centered-Euler

scheme (2.5) is



¢ +ic —(Ei\)sl—(c S DI CH
o 77 “17\Z ) 31 Wl 1t 09V (2.8)

h,\2
- {gl +(?£) %T (33‘332)] (ty_179) = ° -

In the next section, this method will be improved upon in the sense
that the functions Co’ Cl’ CZ’ and 03 will be used to define a sixth-

order—-method.

2. Quadrature Employing (2.1) we get

=a

t,
[y(ti)—y(ti_l>] -2 [T IA)Y(s) + £(s)1ds = 0 (2.9)
i i t,

i-

T ha
where y(t) is the exact solution to (l.la,b). If we apply the

trapezoidal rule to (2.9), the result is

%i”(ti)‘y,(ti-l” - 3 [ACe)y(E) + ACe, Dy(t, )]

1 2
-5 [E(e) + £(e; )1 = o).

Thus a second order accurate difference scheme (Trapezoidal Rule) may

be defined by

h,
i

1 by 1
n (P77 AR R | T A v

1
- —Z-[f(ti) + f(ti_l)] =o.
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This may be equivalently written as

1o chodeyw +2fe “ticle
n, 1% 7 “1't0Vy h| 7072 1 ti-17Vi1
1
- 5—[g1(ti) + gl(ti_l)] =0 (2.10)

using the functions in Table 2.7. This one-step method and others of
arbitrarily high order may be derived in a more general setting by

means of (2.9).

Lemma 2.11. Let b(t) e cm+l[a,b]. Also let polynomials pi(t) be

defined by
- a)
p (t) =1
. (2.12)
p,(t) = f p,-1(s) ds  v=1,2,... b)
g‘l)-l
where Ei € [a,b]. Then
o b
2 [Poeras ={ § 1¥p 0@
a k=0
a
b

+ 0™ [p ) 8™y as
a

max v
b) [a,b] |p,(0)] < [b-a]”,

Proof: Repeated integration by parts yields (a) immediately.

Induction on Vv yields (b). The induction hypothesis is started by
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(2.12a) and, formally, is
[Py g (] < Jomal L.

Thus,

t
EXCIES MU |b-a] Vet |< [b-a]”

i
2,
Innumerable schemes present themselves by way of this

Lemma. The Euler-Maclarin sum formula may be derived using polynomials

which look like

P, (t)

P, (t)

where the scale for each polynomial is necessarily different. Thus,

the Euler-Maclarin formula may be used to define a difference scheme
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of arbitrarily high order. A fifth-order method defined in this

manner is

1 by hi hi
)% "7 Gt 7 % 70 Gty
1 hl hi hi
" h, Cot7 Cp T3 Cy =550 C4 [ i)V

1 hy hi 1 by hi
281 "7 8 v 730 84((t)) “1 781 Y7 8 ~ 730 84((ti ) T O

One undesirable aspect of (2.13) is evaluating C4(t) and g4(t). In
ey, aP (v, AP

order to employ (2.13) we must evaluate A (v,
A(Y), f(s)(t), f(z)(t), f(l)(t), f(t) and assorted products and sums of

these functions.

3. Gap schemes Thus far, we have considered several one-step schemes.
The centered-Euler scheme was generalized in Section 1 to a fourth-
order accurate scheme. This increase in accuracy is bought at the
price of evaluating A(z)(t), A(l)(t), f(z)(t), and f(l)(t) in addition
to A(t) and f(t). In Section 2, the Euler-Maclarin Sum Formula was
used to define a fifth-order method, but this difference scheme

3 ey,

required evaluation of A f(B)(t) and all lower order derivatives.
Since each new function to be evaluated increases both programming
complexity and computation time, we want to examine high-order, one-
step methods with a minimum of derivatives required.

The centered-Euler scheme and the Trapezoidal Rule (2.10)

possess another useful property. Each of these difference schemes

has a truncation error expansion which contains only even powers of hi'
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For reasons that will become clear, see Section 6 on asymptotic error
expansions, we want to preserve this property in considering high-
order methods.

Recalling Lemﬁa 2.11, we have the result

b m b
[ 52 - kzo(—l)k Bag (0 28 (®

b
+ D™ [ p ) 5™ () as.
a

If the sequence of polynomials {Pv(t)}gzz could be defined in such a

way that

p,(a) =p,(b) =o v=ntl,...,2n

then a difference method of order 2n can be defined which requires the
evaluation of A(n-l)(t), f(n_l)(t), and all lower-order derivatives.
For instance, a fourth-order method so defined requires evaluating
A(l)(t) and f(l)(t) where as the generalized centered-Euler scheme

needs A(z)(t), f(z)(t), etc.

Lemma 2.14 Let pzn(t) ='%T (t—a)n(t—b)n. Define the sequence of

polynomials {pv(t)}, V > o, such that

ap,,y; (6
Pv(t) - T de v=2n-1,...,0 a)
c (2.15)
Pv+1(t) = fg Pv(s)ds V=2n,... .
V

b)

_ atb -
ar =72, Eop41 T 2
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Then
a) {pv(t)} satisfy conclusion a) of Lemma 2.11.
B) |p,(t)] < |b-a]” v > 2n,
c) Pv(a) = Pv(b) =0 v=n+l,...,2n,
) py (@) =p, (b) = o r >n,

Proof: We can replace (2.15a) with

t
Py(e) = [ b, 1(e)ds po(t)=1
E\)

and the sequence satisfies conclusion a) of Lemma 2.11.

|2n

b. |p2n(t)| < |b-a and the result is immediate by

induction.

c. Immediate from (2.15a).

d. To prove this part of the Lemma, it is sufficient to

_ bta

show that pzr(t), r > n, is an even function about t > Without

loss of generality, we assume that E%Q = o0, thus €2r = o. By
hypothesis, jp, (t) is even about bta hence we assume that p (t)
> "2n 2 2(v-1)

is an even function.

t -t
Pav-1(0) = fopzv—z(s)ds = fo Pa(v-1) (8188 = =Py (-8).

Therefore, (t) is an odd function.

Pov-1
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Recalling the definition of P_(t), for L < n,PEL)(ti) = 0.

Thus,

m 2n!

dt

m
Py ty) g (
n

D™ e 2P ey

m! n! 2n-m
= ml@n)! (Za-m! (n,) :

Define aﬁ = (-l)k EE%%%E%%%— %% and (2.16) becomes
. n(ﬁ)t( v, - (DX
YiVimr Y L %\ PRV T €i-1)Vi-1

) “(hil){ (t) - (D* g (e, | =0

=1°‘k 2 ) (&'t gelti-)| T V.
k

o | 1 |2 3 4 5

2 |-1

4 (-1 |1/3

2n | 6 |-1 |2/5 | -1/15
8 -1 ([3/7 | -2/21 | 1/105

10 |-1 |4/9 | -1/9 1/630 | -1/945

Table 2.17

As examples, we write out the fourth-order and sixth-order schemes.
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Fourth-order scheme:

1 by h; 1 by
Bl% "7 T QY TR% T AT @

1 by 1 by
~ {281 " 1282 (tp) ~1 28 t 128 ((t5p) <O,

2 2
{22 —ii-g +ii—g (t)-lg+?—i~g + Tog83 f (t
281 7 5 8 T 12083 [ (54 7)1 281 * 582 F 12083 [ (Y

The matrices Cv and the vectors g, are defined in Table 2.7.

(2.19)

Dr. Keller noted that these gap schemes might be derived

using Hermite interpolation to estimate the function

b(t) = A(t)y(t) + £(t).

For the fourth-order gap scheme (2.18), we write

b(t) = H(t) + (b(t) - H(t))

where H(t) is the lowest order polynomial that matches b(ti), b(l)(t,),
i

b(ti_l), and él%ti—l)' In this case,
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t.-t t-t

i i-1
H(t) = b(ti_l) t b(ti) .
i i
(b(e,) - b(t, ) (t,-0)2(t-t, )
_ i i-1 _gl{t ) i i-1
h, i-1 2
i h,
L i
) 2
4| PCeg) - bty y) —bCD(ti) (t;-0)(e-ty o)
| by n?
i
Recalling the integral equation (2.1), we have
ti ti
y(t) =y, ) = [ H(s)ds = [ [b(s)-H(s)]ds -
t, t.
i-1 i-1
H(t) may be integrated exactly to get
h h?

y(e) - y(t, ) - 5= (e +be, 1+ o e - e,
£

= [b(s)-H(s) ]ds.
ti1

Since b(t) = }l%t), this formulation will yield a difference scheme

exactly the same as (2.18) with the truncation error

t.
1

. |
L1 = = [ 1 Dy ey 1as.

i t,
i-1
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4. Other Schemes We are particularly interested in one-step

difference schemes of the form (2.2), (2.5), and (2.18), thus only a
brief mention will be made of other methods. The integral equation

(2.1) suggests k-step methods of the form
1 k
Ef[vi—vi-k] - 2 Mi,i—pvi—p -r, <o i=k,...,J, (2.20)
i p=o

Note that (2.20) represents (J-k+1l)n equations in (J+1)n unknowns, and
kn more equation must be found to determine V uniquely. These extra
equations are given by the usual boundary conditions (1.5b) and by
"starting" m-step difference schemes, m < k, usually of lower order
than (2.20). In many cases the ''starting' scheme is a one-step scheme.

Combining all of these equations into the form

Bh V-1r=20

the initial-value matrix, Ih,is lower triangular. If the one-step
"starting" scheme is of lower order than the k-step method, the mesh
size, h(l), associated with the one-step method should be smaller than
that of the k-step method, h(k). If the methods are of order p and q

respectively (p < q), then Corollary 1.27 indicates that h(l) and

h(k) should be related by
h(1) = h() VP,

5. Stability of Triangular Difference Schemes All of the methods

mentioned here and most of those commonly used give rise to block

triangular initial-value matrices Ih' That is, they may be written
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in the form

IM, +M IM. M 0
IR B Tl © 1111 (2.21)

. . .
.
.

.
.
.

LJMJ0+MJ0 MJ1+MJ1 e JMJJ+MJJ

The factor of J appearing with all Mij's is a normalization of the
inverse of the mesh size. We would like to examine the stability of
families of matrices Ih of this form. The stability theory for discrete
initial-value problems is well-developed provided that a k-step
difference scheme is used and all Mij can be written as MijI’ Mij a

scalar. We are interested in a result which does not require these

two restrictions on Ih'

Lemma (2.22). Let Ih>be a matrix of the form of (2.21). Define

Dv, Nv, v=0,1, by
3 1
1
J(J I) B
JD°+D1 = JM11+M11 ,

i JMJJ'*-MJJ

[~ 0 q
JM10+M10 0

LJMJO-!-MJO - JMJ1+MJ1 cee OJ
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- 1
Let D be nonsingular and let ||D ll] i ||D1]|— d ]IN || =
o
2
and ||N1|, =ng, independent of J. Further, let E—-S 1. Then
o
d n
| -1
-1 do ol dp ™
th [l <e Fil L il . (2.23)
o o o
Proof: The matrix Ih is written as
Hl = JDO + Dl - JNO - Nl
or, equivalently
-1 -1 .
1 =J(, + D) - I+ TN
where
FI W
JI
J = and
JI |
-1 -1 -1y L
Ih =[Do+\J Dl-(NO+J l)] J

By hypothesis and the Banach Lemma, Do + JrlD is nonsingular for

1

d

J>J=1

— , and
o d0

-1
-1 -1 -1 - 1 -1 -1
Ih=1- o+ )ty ]‘Nl)] (o, + 7o)
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Since (D0 + J_]'Dl)_l is block diagonal and (No + J—lNl) is block

nilpotent, the product (Do + J-lDl)—l (N0 + J_lNl) is block nilpotent.
Thus,
17t - Jil -(n w7 o)yt w07 k(n +7 1oy Lt
h =0 o 1 o 1 o 1
J-1 | 4 1 k 14
= Eo L(1)0+J D@ TN | (DD T +)
where
i 3 1
1 ] 0
1
0 3 1
J1= . ’ J2= . .
1
L 0 | 7]
1 1 1 J-1 4 -l k
12 IS P | ) [(D0+J D) (N0+JN1)] [
o J1 k=0
1 J-1 k
-1 -1 -
+4o L 1) [(D+ D)) (N +J l-Nl)] Jl”
o Jvl k=0
d n d n
d n -1 2(—l-+ —l) 2 1 +.—l
< 2 —-l+—-l e do no -1 +2- e do n0
— 4 |d n d
ol o o o

y/4
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Combining Corollary 1.27 and Lemma (2.22), we state the following

Theorem without proof.

Theorem 2.24.

Let the linear boundary-value problem (l.la,b) have a
unique solution y(t) ¢ cl[O,l]. Also, let the difference scheme be

pth-order accurate. Let Bh be of the form

BO 0 LICNC I Bl

Bh = JM10+M1° JM11+M11 ‘e 0

.
.

LJMJ0+MJO JMJ1+MJl .o JMJJ+MjJ

where Mii is nonsingular for every i=0,...,J and ||M;l|| 5‘%

3

Ilﬁ;vll j_dl, independent of J. Further, let

00 My e ¥ 0o O] <

o°
||(MVo Myp oo My 53 0o 0| <ng,
2
and'E—_g 1. Then for ho < H, H sufficiently small,
o

1y - T P
Yy - vl| <& ng

This Theorem gives a precise estimate on the convergence of finite

difference solutions. However, we now want to look at a more detailed

accounting of the error incurred by approximating (1l.la,b) with a

difference scheme.
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6. Asymptotic Error Expansions

In Section 3, the gap schemes were derived so that the

truncation error expansion would have only even powers of hi' The

advantage of this arrangement will be evident in this discussion.

The general difference scheme is defined as

- = 0 i=
thi r:.L i=l,...,J

- = O .
Bovo + Ble B

The truncation error is here defined to be

t

Ti[z(t)] Lhz(ti) - i=1,...,J

T [2()] = B_z(t ) + B z(t)) - B

where z(t) ¢ cp+1[0,1].

a)

(2.25)
b)

For example, Euler's method has the truncation error, lettin
24

tr = Y10

P Z(k)(t

T,[2(0)] = Lz(ty) - £(e) + § by

k=2

. q)
2t O(hi)

In general, the truncation error will be assumed to be of the form

Ti[z(t)] = Lz(tR) - f(tR)

P+l
i

P
+ ) mp* F@a,nz(e) + omth
k=1

(2.26)
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where each Fk(A,f) is a linear differential operator of at most order
k+1 which depends, in general nonlinearly, upon A(k)(tR), f(k)(tR)

and all lower order derivatives. For Euler's method,

(k+1)
F 1 d

= 1
k (k+1)! dtk+l .

Theorem 2.27. Let the differential equatibn (1.1a,b) have a unique

solution y(t) e e%*110,1] where ACt) € ¢9[0,1] and £(¢) e c%[0,1].

Let

Bovo + Ble -B =0

thi - ri =0 i=1,2,...,J

be a stable, consistent difference approximation to (l.la,b). Further,

let the truncation error be given by
T [z(t)] = B z(t ) + B,z(t;) - B a)

Ti[z(t)] = Lz(tR) - f(_tR) (2.28)
b)

k
+ kzl(h_i) F (A, 0z(e) + 0mP*h

where z(t) € cp+1[0,l] and tR = ti + O(hi)' Also let

Fk(A(t), £(t)) z(t) € cv[O,l] where V = min{p-k,q-k}. Then for all

nets withho < H,H sufficiently small,

q+l

o ) (2.29)

k
v, = % yk(ti) hi + 0(h
k=0
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where yo(t) = y(t) and yk(t), k > 1, is defined by

k-1
Ly (8) + )} F__(Afy (t) = o a)
=0
(2.30)
By, (o) + By (1) = o b)

Proof: By induction and the continuity of Fk(A,f), A(t), and f(t),

it can be shown that

p=-k+1

v, () e ¢ [0,1]

Immediately upon substituting
= q
w(t) yo(t) + hiyl(t) +...+ (hi) yq(t)
into the truncation error expansion (2.28b), we get

§ k. k=1 q+1
T w(n)] = k=lhi {Lyk(tR) + mzoFm(A’f)ym(tR)} + 0(hy ),

Since yk(t) satisfy (2.30a), we have immediately
= qtl
T, w(t)] = 0™
and hence
L [v,~w(t,)] = 0(ad"h
h* "1 i i .

The boundary conditions and To[w(t)] clearly yield

BO[vo—w(to)]+ Bl[vJ-w(tJ)] =o0
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By hypothesis, the difference scheme is stable, thus

. qt+l
i ||vy = 2] <M, h_ <H.
Or equivalently,

- q q+l
vy Y(ti) + hiyl(ti) +...+ hiyq(ti) + O(ho )
/]

The expression (2.29) for v, - y(ti) is termed the asymptotic
error expansion. In the following discussion we assume that
y(t) € ¢ [0,1], A(t) € ¢ [0,1], and £(t) € ¢ [0,1]. Suppose that the
truncation error Ti[z(t)] has only even powers of hi’ that is,

F2k+1 = 0, k=0,1,.... The function yl(t) is defined by

Lyl(t) = 0
Boyl(o) + Blyl(l) = o.

Since the differential equation (l.la,b) has a unique solution,

yl(t) = o.

Assume that y2k_l(t) z o, k=1,2,...,vV, then y2v+l(t) is

defined by
2v
Wounn® * 1 Py 09 (0 = o
(2.31)
BYaur1 (@) ¥ Byypy (1) = o
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2
v, - y(t.,) = - vy, (t.,) + 0(h4)
i i 2 2 71

=

because the hi and hi terms are nonvanishing in (2.32). However,

closer examination of Fz and F4 yields the following identities:

1) d? d
Foz =% -;:2 [Lz(tp)-£(t )] - 2A Frllz(e)-f(tp)]
(2.33)
+1 (a2-4a Dy [Lz(t)-£(t)] |
Fog=—t a [Lz(t)-f(t )] - AAQE [Lz(t)-£(t )]
4% 120 | b R R | 2e3 R R
2
+ 6a%-2aD) & (e -£(e))] (2.34)
dt

- 4P 22D 22 Wy & prae)-£(ep)]
+ 4P aeaa P a2a Dy D) 1o (e y-£(e ) ]}.
Thus, yz(t) is defined by

Ly,(t) + F,y(t) =0 .

However, from (2.33) it can be seen that
Foy(t) = o,

thus, yz(t) = 0. In a similar fashion we can show that y4(t) = o,



-48—

Theorem (2.27) and the identities (2.33) and (2.34) show that for the
Gap6 difference scheme

h\6 h, 8
v, =y = (3;;) ve(t;) + 0 (I571) a) (2.35)

where y6(t) is defined by

dy6(t)

5 " AWMy (t) + Fo(A,Dy(t) =o

b) (2.35)

Boy6(°) + Bly6(l) =0 .

7. 1Increased Accuracy We will consider two methods of increasing

the accuracy of numerical solutions to the differential equation
(1.1a,b). These methods are, by name, Richardson h + o extrapolation
and Fox's method of Deferred Corrections (Fox [ 2], Pereyra [9]).
Both methods rely on the entire truncation error series rather than
the order of accuracy. Richardson extrapolation employs a solution
of the discrete problem on two different nets to eliminate successive
error terms; the method of Deferred Corrections uses a solution to the
discrete problem to approximate the first truncation error term.

To illustrate the method of Deferred Corrections we look at

the centered-Euler method (uniform mesh)

SIy(e)=y(t; D1 = 5 At ) y(e 4y (e, D] = £(t; )
(2.36)

2 4
1l(h 1 (3) _ (2) h
= 2(2) {3 YUty ) T A 00 (ti—l/Z)}+ 0 ((2) )-
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disadvantages. At the boundary t=0, the quantity vfl must be defined
and thus we have to examine the solution outside the domain of interest.
Also, the solution procedure for v is significantly different than
(2.38) where the approximation to the first truncation error term is
included. Evaluation of higher-order derivatives of y(t) is at best a
delicate procedure and must be done with the utmost care.

Richardson extrapolation avoids these particular problems.
Once two solutions are calculated, each on a different net, the power
structure of the asymptotic error expansion is used to eliminate the
,leading error term at those points common to both nets. For example,
the sixth-order gap scheme has an asymptotic error expansion of the

form

h 6 8
v, = y(t,) +(§;) vt + 0.

If we solve the discrete problem twice for'{vi(l)} and {vi(Z)}, then

6 8
) yg(ty) + 0,
2

v, (1) = y(Ep) +(

6
h, (2)
v, (2) = y(t;) +(—§——) yg(t) + 0% .

Let ti(l) = tj(Z), where ti(l) is the ith'point of the first net and

tj(2) is the jth’point of the second net.

Define 6 6
v hi(l)vj(Z) - hj(2)vi(1)
6 6
hy(1) - hy(2)
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then

w, = y(ti) + 0(h8).

This elimination procedure may, of course, be carried on as long as

is practical, that is, until the continuity of y(t) or round-off

errors make further refinement unproductive.
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Chapter III

Parallel Shooting

This chapter examines the relationship between implicit
finite difference procedures and discrete initial-value techniques.
The proof of Theorem 1.16 yields the following result: If both

the boundary-value procedure

h r =o0 (3.1)

I o
0 Ty
" -
Ih[Z;ZI <1 , a)
L0 rJ—
(Bo + BIZJ)W =B - BlzJ b) (3.2)
IV _ ,
Vi = Zi w + z; c)
. . Iv BV | .
have unique solutions, then Vi = Vi , 1 =o0,...,J. That is, the

procedure (3.2a,b,c) is actually a method of solving the equations
(3.1). The main result of this chapter states that any parallel
shooting technique is also equivalent to (3.1) and, thus, to
(3.2a,b,c).

Parallel shooting includes such procedures as simple

shooting, Method of Complementary Functions, and the Godunov-Conte
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orthogonalization procedure (for example, see Section 2 on the

Method of Complementary Functions). We include a separate treatment
of the Method of Complementary Functions in order to illustrate

the important case of separated boundary conditions. For completeness
the Method of Adjoints will be discussed even though it has no simple

relationship to (3.1).

1. Parallel Shooting

The boundary-value problem of interest is

—g—‘g— - A(t)u - £(t) = o t ¢ [0,1] a)
(3.3)
Bo u(o) + B1 u(l) - B = o. b)

The simple shooting method (Theorem 1.2) uses the solution of (n+l)
initial-value problems to generate the solution of (3.3a,b). In
parallel shooting, the interval [o0,1] is divided into K nonoverlapping

subintervals, [T

v? Tv+1], and separate initial-value problems are

solved on each subinterval. The solution of (3.3a,b) is constructed
by requiring continuity at Tv, V=1,...,k~1, and satisfaction of
the boundary conditions (3.3b).

Discrete parallel shooting methods mimic this procedure.

T J. On this net,

Vv,J
v .
We place a net {ti}i=o on each subinterval [Tv-l’ v

a discrete initial-value problem is solved with initial conditions
v Y . .
Zo’ z,- These n+l initial conditions are arbitrary except that

: \Y
we requlire the n X n matrix Zo be nonsingular. This initial-value

solution can be represented as
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e - 1 T ] .
[ 0 ee. 0 z¥ |z zv 1Y
(o] || (o] (o] ‘l (o]
RV} AV} ) AV IR Y [
Mo M1 oo My 2y 17 0 v
v l l

: , o = 1z (3.4)
: : : : Do
AV] AV} RV} v v ! \Y
M MY iee M z¥ oz 0 ! r

N Iy | J\); ij ; Jv_|
or, equivalently we write
[} ]
Vv
zﬁ [z’ !z"] = [R ir\)]. (3.5)

In parallel shooting, it is sometimes necessary to state an
initial-value problem on some interval [Tv, TV+1] backward by
formally giving n+l “'boundary' conditions at Tv+l rather than
"initial" conditions at Tv. However, Theorem 1.16 states that for
all nets with h0 < H, H sufficiently small, the solution to this
backward problem is equal to the solution of (3.4) with Zz and zz
appropriately chosen. Thus, in order to examine the most general
parallel shooting methods, it is sufficient to consider discrete
initial-value problems of the form (3.4).

Defining ZV, 2z’ by (3.4), the solution of any initial-value
problem on the net {t}_)}i__\_)o is given by
vV _ V.V v -
vi—ziw +zi v=1,...,K (3.6)
Thus, the continuity requirements for parallel shooting are

v, =v V=1,...,k-1 (3.7)

In order to meet the boundary conditions, the following relationship

must be satisfied



1 K
BO vO + B1 VJK
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(3.8)

Combining (3.5), (3.6), (3.7), and (3.8), the parallel shooting

solution, VPS

[B Z1 0
oo

1 2

-Z z

Jl o

0 0

, 1s given by

V., Vi V \
Ih[z 1z ] = [R

K

. 0 BlzJ
. e 0 0
K~1 K

PS v v
i ~ %5 ¥
v-1
Vv
s,=2J;, J
i=1

ir”]

-

wl ]

b)

c)

Stability. For the purposes of this discussion, the discrete

parallel initial value problem is said to be stable if

[Hap™| =¥

In the proofs to follow, define the nJv x n(Jv+l) matrix

M’ via the relationship

(3.10)

(3.9)
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The initial-value matrix Ih associated with a parallel shooting

procedure is

1

Mlo.

.« . M
J,.J

1
- 1 (3.11)
h M2 '
10 .
) i
. MJ 3

For convenience, we will write this matrix as (k = 3)

0= 2 (3.12)

where the (1,0) block element of 1 is the (SV+2, Sv+1) block

element of Ih'

Theorem 3.13. Let (3.3a,b) have a unique solution y(t) € cl[o,l].

Let the difference scheme be consistent with (3.3a). Then the
following are equivalent:

a) The discrete initial-value problem is stable.

b) The discrete parallel initial value problem is stable.
Proof: b) = a) The matrix Ih can be factored in the following

way
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A

By hypothesis [I(IX)‘l[| X, Vv =1,...,K, then

max {K<, 1}

IA

)™

a) => b) Without loss of generality, we will consider
the case in which the interval [o,1] is divided into 3 subintervals,
Kk = 3. The first step is to show that the matrix Tk, defined below,

is nonsingular.

¥
2
- I
Ih = h
o
- -1
1
M.
) o
I
I 0
2
M].O.
) .2
L) .M
Jad5
3
Mlo L] .
.M
3.3
L 3"3 |
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By using the Factorization Lemma (1.12), the Reducing Lemma (1.13),
and the convergence of the initial-value problem, it can be shown

that
‘h 1 .

where Kl is independent of ho'

Let Vl,VZ,V3 be nJj, n(J2+l), nJ3—vectors respectively.

Consider the n(J+1l) equations

r - - r -
Ml V1 _9__
Ii v =] g? (3.15)
5 .
A"
I M3J. ] bOJ

where g2 is any n(J2+1)—vector. Since T£ is nonsingular, for each

g2 there is a V2 such that

2.2 2
Ih Vo =g" .

Recalling (3.14), we find that

\

1
A 2
vy [T < [ 22 ) T = & [ ]e™]] . (3.16)
V3
Thus,
2,-1
Hap < x.

This argument is valid for any v = 1,...,K, thus we have

Hap™ s x, Ve 1k,

Y/
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Before proceeding with the theorem which will tie all
three of these discrete methods together, it is convenient to

present two lemmas.

Lemma 3.17. Let Cl’ C2 be nonsingular m X m matrices. Let Cq and
C2 be related by
C1 = 02 + C2 LN (3.18)

where L, N are m X q, q X m matrices respectively. Further, let

L have rank q < m. Then the q X q matrix [I + NL] is nonsingular.

Proof. By hypothesis Cl is nonsingular, therefore for each b ¢ Eq,

there exists a unique m-vector, x, such that

Clx = C2 Lb .

Recalling (3.18), this equation can be rewritten as
[CZ + C2 LN] X = C2 Lb
or equivalently as

(I +#1N)x = Lb , (3.19)

The Reducing Lemma (1.13) states that (3.19) only has solutions of

the form

where
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(I + NL)w = b.

Since a unique x, solution of (3.19), exists for every b, the
matrix (I + KL) must be nonsingular.

/)

Lemma 3.20. Let the n(J+k) X n(J+k) expanded boundary-value matrix

Bﬁ be defined by

-
B, 0 By
1
M1o ’ :
' 1
M
Iy
B - -t . (3.21)
h M2 oo e
1o .
2
. . M
)
-I I
L SE.
Let the boundary-value matrix Bh be nonsingular. Then Bh is
nonsingular.

Proof. Suppose that Bﬁ is singular, then there is a n(J+K)-vector

VE such that

Bﬁ vE = o [[vE]] =1 .

L
However, if we delete the K-1 elements v, 1= Sv+v, v=1,...,kK-1,

from VE and collapse VE to form a n(J+l)-vector, V, then
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BhV =0,

By hypothesis Bh is nonsingular, thus [[V[[ = o. Note that for

each element v? deleted from VE to form V

E_ _E

v, =V,
i i-1

and v?_ appears as an element of V. Thus,

1

[IVEL) = o

. . e E .
and by contradiction, we have Bh nonsingular.

Now, we state and prove the main theorem of this Chapter, which

will include Theorem 1.16.

Theorem 3.22. Let (3.3a,b) have a unique solution y(t) e cl[o,l]‘

Let the difference scheme employed be consistent with (3.3a). Denote

by BV, IV, and PS the following methods:

BV. Discrete boundary-value procedure, (3.1) ,
IV. Discrete initial-value procedure, (3.2a,b,c),

PS. Discrete parallel shooting procedure, (3.9a,b,c).

Let one of the discrete problems (3.1), (3.2a), and (3.9a) be

stable.

Then, for all nets with ho < H, H sufficiently small,
i) Each method uniquely defines an n(J+l) vector as an
approximation to y(t) on that net, and

ii) This approximation is the same for each method.
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Proof: Note that stability of (3.1) is equivalent to (3.2a) or (3.9a).

Re 1i). Theorem 1.16 proves that methods BV and IV uniquely
define approximations to y(t). To show that method PS uniquely
defines an approximation it is sufficient to show that the nk X nx
matrix in (3.9b) is nonsingular. Without loss of generality, we
consider the case where Kk = 3. Thus, we want to show that the

3n X 3n matrix P, defined by

! 3]
B 2. 0 B,Z)
3
Pz -z z) 0 ,
1
0 -2 z)
2 -

is nonsingular. From conclusion i), B

h is nonsingular, hence by

Lemma 3.20, Bg is nonsingular. Recall the n(J+l)-vector r in

(3.1a), and define the n(J+k)-vector rE by

T
E
(r) = [Brqy...vx_ OT ceer, OT S N I
1 S1 Sl+l 82 82+l J
Consider the matrix equation
BE vF = :E, (3.23)

h

Define the expanded parallel shooting matrix Ig by
‘ - 7

1
Ih

ol
—t

o o e e e e e o e e
’»

7w




-63-

Recélling the parallel shooting method (3,%9a,b,c), equation (3.23)

can be written as

E E_ -E E-l- E
Ih A" = Ih(Ih) L[NV + £] (3.24)
where
gL} o lo !4t (Zi)—l B - z)
- L) ) L2
L = 0 —‘: R 0 : r , F = (22)-—1 ZZ
i 1 3 1.3 o o
0O + 0 1R ;1 —
(23)—1 Z3
S o __
and - R
[ 1.-1 1.-1. ]
- ! —-
Efo) (1 BO) 0 ... 0 }0 .. 0 (Zo) Bl
0 (zi)‘L 0 ... O .. 0
N = 37I3
0 . 0 0 ... ()~ 0
o L
}
] ) ) o «.. o | o ]

In general, L is a n(J+k)x nK + 1 matrix, & is an (nk + l)-vector,

and N is a nk + 1 x n(J+K) matrix. Recalling Lemma 3.17, we note

that

(I - NL)

is nonsingular, where

Zl 0 o ! zl

-1~ 1~ 9 .

L= () L={o 1 2z 1o Iz
1

0 23 ! z3

(3.25)

When the proper substitutions are made, it is clear that (I - NL)

is nonsingular if and only if P is nonsingular.

Re ii). Theorem 1.16 is sufficient to prove that
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V' =V . Recalling (3.,23), the Reducing Lemma (1.13) states

that

V =1 -

where the n-vectors, LT must satisfy

= -

1 3
_Yl_ g - Boz0 - BlzJ3
P _Yg; = L -0
LA Jl 2
z2 - 22
J2 3 |
Now, we have the relationship
'
VE , 01 < Jl
PS E .
Ve o=V J1+l <1ic< 52
vE S+l <i<S
| it2’ 27 7 7 7 73

Recalling (3.23) and the definition of Bﬁ, we note that

m ok .

J1+J2+l

E
J1+J2+3
E

] J l+J 2+J 3+2 J

<

& e
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and thus it is clear that

L]

Unfortunately, Theorem (3.22) contains no information on
the numerical stability of any parallel shooting techﬁique. To
say that a unique solution to the difference equations (3.9a,b,c)
exists is not to say that it can be accurately approximated
numerically. It is well-known that a simple shooting method may
produce disastrous numerical solutions if the linearly independent
solutions of (3.3a) grow at different rates. For example, consider

the problem ‘

it~ Co —g0v = £(©)
1 1 1 o
u(o) + u(l) = 8 .
1 1 11

This problem has a unique solution for all f(t) € c[o,1] and
B e Ez, because the matrix

B, + B, X(D] = (3.26)

l+e l+e
is nonsingular. However, if we try to invert this matrix numerically,
on a machine with less than 85-bit accuracy, the computer will
consider (B0 + BIX(l)) singular, because 1 + e—60 will be represented

as 1. Thus, no matter how close ZJ gets to X(1), this matrix will
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be numerically singular due to round-off error. For this reason,
methods which are equivalent in the sense of Theorem 3.22 may yield

greatly different numerical solutions.

2. Method of Complementary Functions

The Method of Complementary Functions (Goodman and Lance [31])
is used to approximate the solution of (3.3a,b) when the boundary
conditions are sepa;ated. That is, the boundary conditions (3.3b)
can be written as

(Bo) u(o) + ng_ u(l) = (Bo)

where B is a p X n matrix of rank p, B, is a ¢ X n matrix of rank
q, p+q=mn, and Bo, Bl are a p-vector, g-vector respectively. In
this section, we use the convention that a single matrix in parentheses,
(Bo), has p rows and a single matrix in brackets, [Bl]’ has q rows.

The original equations (3.3a,b) can now be rewritten as

du(t) _ A(t) u(t) - £(t) = o a)
dt (3.27)

(B) u(e) = 8)  [B;]u(®) = [8;] + b

In what follows, we assume that the boundary-value problem (3.27a,b)
has a unique solution y(t). If the boundary-value problem has

a unique solution, then there exists a vector N, such that

@ n, = (8))

o)

where no is orthogonal to the null space of (BO). Let the orthonormal
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q
set {ni}i=l span the null space of (B ), then
(ni, n) =o 1 <ics<gq.

With these notions in hand, the solution of (3,27a,b) can be
characterized in the following way. Solve the g homogeneous

initial-value problems

dxi(t)

i
It - A(t) x(t) =0 a)
(3.28)
x (o) = 1] b)
and the inhomogeneous problem
dxo(t) 0
g " ACt) x (t) - £(t) = o a)
o (3.29)
x (o) = Ny -+ b)
The unique solution of (3.27a,b) is given by
i (o)
y(t) = § a; x(t) + x (t) (3.30)
i=1
where the constants Oy i=1l,...,q, are determined from
[B,] 3 o, x7(1) + [B,] x°@) = [8,] (3.31)
1 i 1 i *

i=1
In the introduction to this chapter, it was stated that
the Method of Complementary Functions is a special case of parallel
shooting. This is the best point at which to make this relationship
clear. Parallel shooting naturally contains the case of simple
shooting. In order to characterize y(t) by means of simple shooting,

solve the n homogeneous initial-value problems
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d

T X(6) = ACe) X(t) a)
(3.32)
X(0) = C b)
and the inhomogeneous problem
22 - ae) x(e) + £(8) a)
(3.33)
x(0) = ¢ b)

where C is a nonsingular n X n matrix and ¢ is an n-vector. Now,

y(t) = X(t) a + x(t) (3.34)

where the n-vector o is determined by

(B

22| X(o) + o). X(1) a =

(o] [3,]

(8.) (B.) (0)

Sl o220 sy - || xqy . (3.35)
8,1 [o] 5,1

The result of specializing the simple shooting procedure (3.32a,b),

(3.33a,b), (3.34), (3.35) by taking

C = {(BO)T Ty eee nq} > © =T (3.36)

is the Method of Complementary Functions.

The discrete Method of Complementary Functions (hereafter
reference to the Method of Complementary Functions will imply the

discrete procedure) is derived by solving equations (3.28a,b),
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(3.29a,b), (3.30), and (3.31) numerically. Solve the q homogencous
discrete initial-value problems
n, |

o

1. 25 =]. i=1,...,q (3.32)

1, 2° = : . (3.33)

For convenience, we write (3.32), (3.33) as

- , -
z 1 2°
o; o
1
]
Q { rl
1 0O :
Llzi27] = i (3.34)
]
]
0 = rJ

- . .t . i
where Z is a (J+1)n X q matrix with its 1 h column being z'. The

discrete approximation to y(t) is given by

CF
A

Y7 w20 (3.35)
1 1 1

where

(8,12, w=[8] - [B;]z] , (3.36)
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The initial-value equation (3.34) may be formally written as

r - - r~ -1
(8,) 1M1, © (@)
T 0 Y 0 ZO |Z0 1
[2,] ! (1] ! [o]
| |
| 1
M. - Mg oeee Myol|Zy 22 0 o
1o J %1
| = ; . (3.37)
. . | o [
. . . . | e i .
. . . . . } i
% }
{ i
My, My e Mplizy ey 10,1 o |

The first n(q+l) equations of (3.37) state that the columns of ZO
are orthonormal and belong to the null-space of BO, and also that
B z° = 8 and 2° is orthogonal to the null-space of B . Now,

o "o o o o
we want to show that V' calculated via (3.37), (3.35), and (3.36)

is a solution of the equations
Bh V-r=o0.

The discrete boundary-value problem is

1ir b
s, ][ 4 )]
o ces o [Bl] Vo [B. ]
[0] - L
BV|
Mo Mppocvr Myggaa Mg (Vi) o= | T, (3.39)
BV
LMo M1 My o Mg |V [ Ty

Recalling the Factorization Lemma (1.12), this matrix can be written

as
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- . -
(OIE (8)
[I]E [o]
, T
T . I D e b N LR
i . o o o 1
P
E
L 0 : I'J ]

where T£ is the n(J+1l) x n(J+1) matrix in (3.37). Left-multiplying

1
by Ih and recalling (3.37), this equation is shown to be

T
(z_]1[0]...[-B,] (8.1
VBV = [z Ezo] _o o 1- VBV + 1
o o o 1

The Reducing Lemma (1.13) states that

. [w]
vV o 1z | 2°] [‘“‘} (3.39)

where w and A are determined from

T i
[ZO][OJ-..[_Bl] i o [W] [Bl]
I - : Z1 z —_—— = —
i
0 0 ... O ' A 1
When this is unraveled, we have
= - o =
By Zyw =8 Bz, A=1, (3,40)

Recall (3.35) and (3.36) and compare with (3.39) and (3.40) to

show that
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3. Method of Adjoints

The Method of Adjoints completes the study of solution
procedures for discrete boundary-value problems. This method
introduces the adjoint equation which can not be defined via linear
transformations of the original problem. For this reason the
equivalence exﬁibited between boundary-value techniques and parallel-
shooting procedures is lacking here. A good explanation of the
Method of Adjoints is found in Goodman and Lance [ 3].

The problem considered in [ 3] is a very special one:

j—‘: - A(t)u = £(t) a)
u () = 8 i=1,...,p b) (3.41)

ui(l) = Bi i=p+l,...,n, c)

The adjoint differential equation is

du L
E’E+ A (t)u = 0 o (3'42)

From (3.41), (3.42), the following relationship is derived
=— (uu) —~uf=o0. (3.43)
Integrating this expression, we obtain

—% —% 1 =%

u (Du(l) - u (0)uo) = fo u (s)f(s) ds . (3.44)

By solving the adjoint problem n-p times with initial conditions
Gv(o) = gv, v = p+l,...,n, the equation (3.44) results in a set of

n-p (or q) equations for the quantities ui(o), i=p+l,...,n.
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T P -V 1 —%
L=g+1uL (O)UL(O) = Bv - Lél uL(o)BL - fo u (s)f(s)ds

vV =p+l,...,n.

Now, the initial conditions u(o) are explicitly known and the solution
of a single initial-value problem determines y(t).
If we use the same discretization for (3.4la,b,c) and
(3.42), (3.44), it is not in general true that the solution of the
. . . VMA , BV .
discrete Method of Adjoints, , is equal to V' . However, if we
employ the centered-Euler scheme this equivalence does hold. The

discrete analogue to (3.44) is naturally

J h
~% MA —% i - - %
VyVy TV Ve .Z 5 (vi + vi_l) £(t,_ 1) = o. (3.45)
i=1 2
From the difference equations
h. h
1 i * - 1 i * -
RIFT7 A G Divy - 5 T-7 Ay Dy, =o
i 2 i 2
and
h h
1 i BV 1 .. i BV _ _
p, (L -7 Alty Lovyt - ¢ (=57 Aty Dyvy = £(e- D
i 2 i 2 2

the following identity can be derived

-%x BV -% BV

1 _ 1= *
ﬁi(vi Vit Vi Viwl) = 2(vi + v, .) f(ti_ 1). (3.46)

Upon summing from i = 1,...,n, this identity yields

=n

—* BV _ -* BV

%
vV VJ vo o 1—1) i-

3V

g b
= J = (vi + v,
i=1

]

BV BV .
Thus, V  also satisfies (3.46) and Vi = V?A, i=o0,.0.,J.
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Remember that this equivalence has been shown only if the centered-
Euler scheme is used to discretize the Method of Adjoints. Identities
similar to (3.47) can be derived for any number of other difference
schemes, but the summation which yielded (3.48) does not in general

- show equivalence.
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Chapter IV

Nonlinear Two-Point Boundary-Value Problems

This chapter deals with numerical approximations to the

solution of nonlinear two-point boundary-value problems of the form

= = f(u,t) t € [o0,1] a)
(4.1)
b(u(o),u(l)) = o b)

where u, f, b are n-vectors. After Keller [6], we are interested in
isolated solutions of (4.l1la,b). The solution of (4.1la,b) is isolated

if the linearized boundary-value problem

g—‘f = £, (), )w a)
4.2)
by (y(0),y(1))w(o) + b,(y(0),y(1))w(l) = o b)

has only the trivial solution. Note that we have used the notation

Bg(xl,...,xn)

gi(xl""’xn) - 0x, )

When considering the discrete problem, we will also examine
Newton's method as a means of calculating an approximation to y(t).

The n(J+l)-vector Y is defined to be
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y(t,)

Y = <

-

y(ty)
where y(t) is an isolated solution of (4.la,b). We also define

{x , X € En, [lx - g(t)[[ < pl,

Sp[g(ﬁ)]

Spl8(e)] = {lxysevesxp) [ x; € S [g(t)], 0 <4 <3},

1. Finite Difference Schemes

Each of the difference schemes discussed in Chapter 2 can
be modified to make it applicable to nonlinear differential equations

of the form (4.1a). Thus, the centered-Euler scheme (2.2) becomes

1
= - 1
hy f( > [Vi +v, t ) (4.3)

v, -V ] _ L
i-1°?° i 5

i i-1

for a general nonlinear equation. If equation (4.la) is linear in

u, that is,
f(u,t) = A(t)u + g(t),

then the difference equation (4.3) reduces to (2.2).
The nonlinear analogue of the integral equation (2.1)

is clearly
u(t) - u(t) - fi £(u(s),s)ds = o . (4.4)

As in Chapter 2, quadrature formulae and integration by parts can

be used to generate consistent numerical schemes. In this manner the
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general form of the trapezoidal rule is shown to be

=3

i
Vi - vi“l - 2 [f(vi,ti) + f(vi“l,ti—l)] = 0> (4.5)
Again note that if f(u,t) is linear in u, then (4.5) reduces to
(2.10), which is the trapezoidal rule applied to a linear problem.
The Gap schemes can be derived in the same manner as in

Chapter 2. Recalling Lemma 2.11 and Lemma 2.14, it can be shown

that

n h
n LK (RHL) K _(K+1)
y(t) =y, )+ Kzl o G Iy () = CDT T (e )]

2n
= O(hi )

where the constants {uﬁ} are given by Table 2.17. In order to derive

: 2
Gap 40 We need to evaluate 9—§§§l . Using the differential equation
(4.13),

2

d

——%- = £,(y,t) fly,t) + £,(y,t)-
dt

Thus, we define the nonlinear Gap4 scheme by

Ly, - v 1 - 3Gt + £,

i-17%1-1) ]
i

h
i
+ ii-[fl(vi,ti) f(vi’ti) + f2(vi,ti) - fl(vi—l’ti—l) f(vi—l’ti—l)

- fz(vi_lsti_l)] =0, (4.6)

This is a fourth-order accurate scheme if y(t) e cs[o,l].

Coupled with any of these difference schemes, the boundary
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conditions (4.1b) are approximated by b(vo,vJ) = o. Employing
the trapezoidal rule, an approximation to the solution of (4.la,b)

can be determined from the following set of n(J+l) equations:

b(v_,v.) =
0’"'J (4.7)

l]=0 1<ix<17J,.

1 1 «
Npvy = h, bvpmvs gl - 3 [EGt) + £0y g5t )

More concisely we write

b(vo,VJ) =0 a)
(4.8)
N.v. = o b)

where thi = o0 may represent any difference approximation of the
differential equation (4.1a).
The truncation error associated with such a difference

scheme is defined to be

IA
[ N
IN
(=

T, Iy(0)] = Npy(ey) 1

where y(t) is a solution of (4.la,b). The truncation error associated

with the boundary condition is

T, Iy(®)] = b(y(o), y(1))

and is always zero. Denote the n(J+l)-equations (4.8a,b) by
nv) = o (4.9)

where the n(J+l)-vector V is
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.

2. Existence of Solutions

We will now consider the question of existence of solutions
to systems of nonlinear equations of the form (4.8a,b). As a prelude,
let us examine the result of applying these nonlinear difference

schemes to the linearized problem.

Lerma 4.10. Let the boundary-value problem (4.l1a,b) have an isolated

solution, y(t). Let

LV - r =0 . (4.11)

be the n(J+1) equations which result from the application of the

difference scheme (4.8a,b) to the linearized problem:

- £ G, + 5 (0) a)
(4.12)
b, (y(0),y(1))w(o) + b,(y(0),y(1))w() = B b)

where g, B are n-vectors, and g(t) € cl[o,l]. Let the difference
scheme be consistent and stable when applied to a linear two-point
boundary-value problem with a unique solution, z(t) € cz[o,l]. Let
£(r,0) € IS [y(8)] X [o,10 and b(x,y) € €S [y(0)] x S [y(W1].
Then for all nets with ho < H, H sufficiently small, L is nonsingular

and
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-1
HZ ™[] = &,
where K.o is independent of ho.

Proof. By hypothesis, equation (4.12a,b) has a unique solution
z(t) € cz[o,l]. 'Also, the difference scheme is stable when applied

to (4.12a,b), thus there exist constants Ko > 0, H > o such that

vl <&y [lel] s
for all nets with ho < H. This is equivalent to

1271 < &,

Theorem 4.13. Let (4.1la,b) have an isolated solution y(t) € cz[o,l].
Let the hypothesis of Lemma 4,10 hold. Let the difference scheme
(4.8a,b) be consistent with (4.l1la,b), and let the Jacobian matrix

nV(V) be continuous for V « Sp [y(£)]. Further, let nV(V) be

o
such that
[z - ny || >oash >o (4.14)
and
llnv(vl) - nV(VZ)[I < Kl llvl - Vzll
where (4.15)

Vl’ VZ € Spo[Y(t)]-

Then for each p, o < p < Po? po sufficiently small and for all nets
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with ho < H(p), H(p) sufficiently small, the n(J+l) equations
nv) =o

have a unique solution W ¢ Sp[y(t)].

Proof: We define the vector function
VW) = v - L7 @ .

If this has a solution, V(W) = W, then n(W) = o. The Contracting
Mapping Theorem will be used to show that a unique solution exists.

That is, we need to show that for some A e (o0,1)

1) |y -v@]|] = @-2Npe
ii) |IW(V1) - W(V2)|| < X|!Vi - VZII, where

Vis V, € Sply(0)]-

Re 1)

- v || = [T || s g |ty ]
By the hypothesis the numerical scheme is consistent, hence
[tly(®1l[ >0 as hy >0 -
Re ii)
o) = v || = 157wy - ) - 275y - nep) ||
< 1N 1z - V) - (@) - n@) |-

Now, we employ the mean value theorem
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1
n;) - n,) = fo ”V(SV1 + (1-s)V,)ds (V; - V,)
and immediately
1
llw(vl) - w(vz)[] <k || -  ony(sv; + (l—s)Vz)dsH vy = v,
1
< KO{HL - nV(Y)|| + ||fonv(Y) - ny(sv; + (1-5)V,) as||} x
I |V1 - V?_I I .
By hypothesis nV(V) is continuous, thus
1o @ = @] s &Ry + 15 = ny® 1} [y, - v,][.
By hypothesis, property (4.14),
[z - nV(Y)|| > o0 as h > o.
Thus, let N and H(po) be sufficiently small such that
A=K {Kp + Ho - nv(Y)ll} e (0,1)

and condition ii)is satisfied. Let H(p) be sufficiently small such

that

K, |Itly(®)1]]
P

< (1-A) . (4.16)

Then Y(V) is a contracting map for V ¢ Sp[y(t)] and there exists
a unique solution W € Sp[y(t)].
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Corollary 4.17 (Convergence). Let the hypothesis of Theorem 4.13

hold. Then, if n(W) = o, W ¢ Sp[y(t)],
!lw - YII *> 0 as ho > o.

Proof. It is sufficient to prove that for any € > o, there exists

an H such that
W -¥]] <e

for any net with h0 < H. However, this is the conclusion of

Theorem 4.13 with € replacing p.

Y

Corollary 4.18. Let the hypothesis of Theorem 4.13 hold. Let

the difference scheme (4.8b) be pth order accurate,

[tly(®1]] = &, vP .
Then, for all nets with h0 < H, H sufficiently small,

[[w - ¥[] < x5 BE.

Proof. From the proof of Theorem 4.13, we know that W ¢ Sp[y,t]

if p < Po> h0 < H(po), and

|[ly(e)1]]
p

IA
f

where A ¢ (0,1) and fixed. By hypothesis

|[tly()1]] < &, v°
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and therefore

| K, [lt]] K K,

p p o’

IA

Theorem 4.13 states that W ¢ Sp[y(t)] is a solution if

K K

©°2.p -
by s (-,

thus it must be true for

KOKZ P
P =1 ho *

Hence,

[l - ¥[| < &P

V2

What difference schemes satisfy condition (4.14)?
It would appear to be fortuitous indeed if any scheme had the

property that

however this is the case for many common difference schemes. As
examples, the centered-Euler (4.3) and the Gap4 (4.6) schemes will

be examined.

Gap4. Application of the Gap4 scheme to the linearized problem

(4.12a,b) yields the following n(J+1l) equations
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by (7(0),y(1))IV, + b,y (y(0),y@))v = B 5
2
1 by hy 4.19
E;—'{I -5 10t F 95 (£ G008 + £,G,,t))
b
2 )

2 1 i 1
+ £ Gty - h, I+ 550t +15 (1G4t x
2 .
EGypoti) + a0yt ) F O vy = sy 1sisT

where the right-hand side of (4.19b) is written simply as s; because
it is not of particular interest here. From (4.19a,b), we can
completely characterize the elements (Lij) of L.

Let the (i,j)th n X n block element of nV(Y) be Nij' Then

3b(vo,vJ)

Noo = -—j;a:———‘ = bl(Y(O)’Y(l))

v0=y(0),VJ=y(l)

and N =1L . Similarly, N . =1L ., j=1,...,J. From 4.6, it can
00 00 o] oj

be shown that

. _ vy

i,i-1 .

V=Y
1 hy hi
Y T +5= 80y 90t ) Y15 10y 95t5 E0; 458, )
+ £2 (y t, .) + £ ,(y t, D1} =1
1 U1t 12931081 i,i-1 -
Similarly,
N, = L i=1,...,J.
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Thus, the Gap, scheme satisfies condition (4.14) and in fact
? 4

L= nV(Y) .

Centered-Euler. The centered-Euler scheme satisfies equation (4.14),

however L is not equal to nV(Y). Employing the centered-Euler scheme,

(43),the Jacobian matrix nV(Y) has the following nonzero n X n

block components:

N, = b, (v(0),y (1)) N g = by(y(0),y(1))
N S S S Ei,f & Iy, + 1, t, _ 1D}
i,i-1 by 2 12 Y17 Vi1 i -3
N -l—-‘{I—P—i-f(}-[ + 1, t; _ D}
i1~ Ry 2 12 Vi T Vi1t R -5

The matrix I has these n X n block elements

L, = by (y(0),y(1)) Loy = by(y(@),y(1))
h
- - L X
L1 =T w7 50 by D}
h
1 i
Lii = 5 {1 - 3 fl(yi_ !2._,ti 1)}

Thus, we have

[z = mg@ I <57 15 O Ly

a)

b)

c)

b)

c)

(4.20)

(4.21)

%) - fl(yi_l,ti_ _;-_)ll

max
+ i Hfl(yi_ _;;’ti_ _2];_) - fl(yi’ti— %-,) l l .

Clearly for f(u,t) € cl[Sp[y(t)] x [0o,1]] and y(t) € cl[o,l],
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property (4.14) holds. Note that the quantity
[z = ngD ]

. . t
need not approach zero like hz in order for a p h order accurate

scheme to satisfy

[w-y[] <x

P
3ho'

3. Solution of n(V) = o by Newton's Method

In the previous section it was shown that under certain

conditions a solution exists to the n(J+l) nonlinear equations

b(vo,vJ) =0

We would like to examine a specific procedure for solving these
equations, namely Newton's method. That is, we want to show that

each iterate defined by

nv(vv’l) & - v v =0 (4.22)

exists uniquely and that the sequence (VvV} converges when V° 1is
judiciously chosen. The proof of the following theorem is identical

to that given in Xeller [6], with the appropriate generalizatioms.

Theorem 4.23 Let the hypothesis of Theorem 4.13 hold and let W

be the n(J+l)-vector of that theorem where

nW) = o.
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Let V° be such that V° e Sp[y(t)] and H_V° - W|| is sufficiently
small. Thén for all nets with ho < H, H sufficiently small, and
for all p, o < p < Po> Pg sufficiently small, the Newton iteration
(4.22) uniquely defines a sequence {Vv} and this sequence converges
quadratically to W,

Proof: As noted before, see Keller [6].

Chapters 1 and 3 examined the equivalence between shooting
methods and implicit techniques for linear boundary-value problems.
In the next section, we want to define a nonlinear shooting

procedure and study its relationship to the method described here,

4., Equivalence of Shooting and Implicit Schemes for Nonlinear Problems

The nonlinear shooting scheme has the same underlying idea as in

Chapter 1. The initial-value problem

-f% = £(x(t),t) t e [0,1] a)

(4.24)
x(0) = ¢ b)

is discretized, solved, and then the initial condition x(0) = ¢ is
wiggled until the discrete boundary condition b(c,uJ(c)) = o0 is
satisfied.

For example, the following system of equations result if

we use Euler's method to approximate (4.24a):
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u =c a)

(4.25)

1 ' .
P [ui - ui—l] = f(ui—l’ti—l)’ 1 <ic<J. b)

Note that these equations can be solved explicitly, however an

iteration scheme must be employed to satisfy the nonlinear boundary

condition

b(uo,uJ) =0 . (4.26)

The application of Newton's Method to solve (4.26) is straight

v v-1

forward
v-1
: du_(c” )
v-1 v-1 v-1 v-1 J
[by(e” Thusle”™ ™)) + byle” “yuyle” 7)) e 1(c"-c
5y =0 (4.27)
du
However, the n X n matrix e must be evaluated at each step. This
matrix is determined by solving the variational equations
auo =1 a)
dc
(4.28)
au au 'au
1 i i-1 , _ i-1
b, e -5 1= f10y . g) 5> 1=isd b

A discrete shooting procedure results from combining (4.25a,b),

(4.28a,b), and (4.27):

)ﬂ
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u  =c a)
L N L R N T b)
hy Y17 Y-l i-1°%5-1
(4.29)
v o—
Po =1 c)
1 .V Vg Vo v
By (1~ Pyl = B0y 008500 By d)

v+l

{bl(c\)’ u\J)) + bz(c\)’ U.?].)) Pg} [C - C\)] +b(C\),U§) = O e)

An alternative to this procedure is Newton's method as
described in the previous section. That is, Newton's method is

employed to solve the system of equations

b(VO,VJ) =o0 a)
(4.29)
1’---[v -v, .1 =f(v t, <) - b)
hi i i-1 i-1°7i-1
This results in the following iteration scheme
V Vvl v V V. VL Vv VoV,
bl(VO’VJ)[Vo -vo] + bz(vo,vJ)[vJ —VJ] + b(vo,vJ) =0 a)
l—-[v\)+1—v\)] - l—-[vv ~wv? 1=f (v ..t )[vv+l—v v ] (4.3
hi i i hi i-1 "i~-1 1V4i-1°"i-1 i-1 "i-1
b)
1 v v AY .
- E;-[vi—vi_l] + f(vi—l’ti—l) , l<ic<J.

It has already been shown that {Vv} exists and converges.

It is clear that in each case the method defines a solution

of the same set of equations:
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nv) = o .

The implicit method (4.31a,b) applies Newton's method to each of the
n(J+l) equations of (4.30a,b). The shooting method (4.29a,b,c,d,e)

formally separates the first n equations from the remaining nJ,

bﬁ%,gp = 0 a)

_ (4.32)
n() = o b) .

In lieu of this set of equations, the shooting method substitutes

the equations

u = ¢ a)
© (4.33)

n) = o b)

which can be solved exactly when an explicit difference scheme is
used to approximate (4.23a). Then the initial value c is varied

until an initial value is found such that
b(c,uJ(c)).= o .

The principal difference is that the shooting procedure
satisfies the last nJ equations exactly and the implicit Newton
procedure does not. That is,

-V =,V -V
n(@’) =o , nv’) =xr",

where in general llfvll # o.

Theorem 4.34 Let the hypothesis of Theorem 4.16 hold. Let the

shooting Newton iterates be {Uv}, v e So[y(t)], and let the implicit
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Newton iterates be {V'}. Let ﬁ(Vv) = ;V’ [[EV[[ > 0. Then UV # v,
Proof: Define
r’ = n@”) - n@w")

As in Theorem 4.13, the mean value theorem is employed in the

following way
r¥ = fi nv(st + (l-s)Vv)ds (Uv - Vv).

By hypothesis, is continuous on Sp[y(t)], hence

Ny

¥l < [16” - v°l]

As in the proof of Theorem 4.13, it can be shown that the matrix
fi nv(st + (1-s) Vv)ds is nonsingular, thus Q > o. Immediately

from the above,
o < [IT|] = [1£”]] < [[v” - v"]]

Thus, |[U¥ = V|| >0 = v’ # v'.

This theorem states that the iteration sequences defined by implict
Newton and shooting Newton are not the same, even though they are

used to solve the same set of nonlinear equations.
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Chapter V

Block Tridiagonal Matrices

This chapter develops a computational method for solving
the systems of linear equations that have arisen in previous
chapters. That is, we will develop a technique for solving the

n(J+1l) linear equations
Bh V~-~r=o0
or, when the boundary-value problem is nonlinear, the equations
v 1
ny @Y - vy £ @Yy =0

generated by Newton's method. More specifically we are interested
in matrices which result from the approximation of two-point
boundary-value problems with separated boundary conditions. That

is, problems which may be written as

u'(t) = £(u,t) t € [0,1] a)
bo(u(o)) = 0 ‘b) (5.1)
bl(u(l)) = o c)

where the boundary conditions (5.1b) and (5.1lc) represent p and q
conditions respectively, p + q = n.

To illustrate the form that these matrices will take,
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consider the approximation of

u' = A(t)u + £(t)

t € [o,1] a)

B0 u(o) = B

by Euler's method.

are

o

Bl u(l) = Bl

b)

(5.2)

The resulting finite difference equations (J=2)

B 1 .1 [
(Bo) \A (8,)
f(t)
1 1 o
-=1-A(t) =1
hl o hl
- =1 - A(t =1
h2 1 h2
B
i- [ 1]- LVZJ |- [81] ]

where we have used the convention that a single matrix in parentheses,
(Bo), has p rows and a single matrix in brackets, [Bl], has q rows.

The matrix of (5.3) can be rewritten in block tridiagonal form

Ao B1 0 vo r,
Cl A1 32 vy = rl
0 C2 A2 Vo r,

where each Ai’ Bi’ Ci is an n X n matrix. Block matrices of this

type have a very special zero structure: the first p rows of Bi
and the last q rows of Ci are zero rows.

The solution procedure of interest is a block LU

decomposition:
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A, B I k D, B,
c, A B, |-= L, I D, B,

c, A L, I D .
i 2 "2 | 2 1 2

Ideally, we would like to show that this decomposition exists
if the matrix Bh is nonsingular. Unfortunately the result is not

that clear, For example, if A(t) in (5.2a) is a &4 X 4 diagonal

matrix and (Bo) (1 o 0 0), then

»
o
[e]
o

b
o
[e]
(o]

and Ab is clearly singular. No matter how small ho becomes, this
matrix will remain singular. However, if the Sth row of Bh is

interchanged with the an row, then

Ao is nonsingular, and the LU factorization can proceed. Thus,
a row switching strategy will be included in the decomposition

procedure.

1. Block LU Decompostion

The block tridiagonal matrix M is considered in the following
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where each Ai’

first p rows of each Bi be zero and the last q rows of C

B,
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Ci is an n X n matrix.

(5.4)

We also require that the

zero. Such a matrix M will be referred to as a block tridiagonal

matrix with p/q zero structure.

The straightforward block decomposition is

where the matrices Li’ Di are defined by

Once the LU decomposition is completed, the standard procedure is

adopted to solve MV = r:

LW

uv

T,

W.

a)

b)

(5.5)

(5.6)

(5.7)
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The n(J+l) vectors W and V are defined by the recursion relations:

w =7
o o
(5.8)
w, =r, — L, w,
i i i i-1
and
D.v._=w
J ’
g (5.9)
D, v, = w, .

i Vi 5% "By Vin

If it should occur that some Di is singular, then these recursion
formulae will have to be altered to allow for the appropriate row

interchanges.,

Lemma 5.10. Let Mo, M denote n(m+l) X n(m+l) block tridiagonal

matrices with p/q zero structure. Denote the block elements of

o o 0o O o
M, M by Ai’ Bi’ Ci and Ai’ Bi’ Ci respectively., Let M be

. . o . . .
nonsingular. Then either A.o is nonsingular or by an interchange

of rows (p + 1,...,p + n) of M° a matrix M can be formed such that

A0 is nonsingular.

o

Proof. m = o. Immediate because Mp = Ab'

m > o. Let (Sp) be the p X n matrix composed of the first
p rows of Ag. Let Sn be the n X n matrix whose first q rows are
the last q rows of Ag and whose last p rows are the first p rows
of Ci. With these definitions in hand, the matrix M° can be

written as
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(Sp) (0) . 0)
S
n
W = 0 Q
L 0 =

where Q is an (nm+q) X nm matrix. By hypothesis M° is nonsingular,
thus the rows of (Sp) are linearly independent and the (n+p) X n

matrix S defined by

;)

S
n

has rank n. These two conditions imply that there are q rows of
Sn which, together with the rows of (Sp), form a set of n linearly
independent row vectors. Thus, by interchanging the appropriate

o . . .
rows of M we can form a matrix M such that Ab is nonsingular.

Similar rows. Define rows of a block tridiagonal matrix with

p/q zero structure to be similar if by interchanging these rows

the matrix remains block tridiagonal with p/q zero structure.

Theorem 5.11. Let M° be an n(J+l) x n(J+l) block tridiagonal

. ’ o .
matrix with p/q zero structure. Let M  be nonsingular. Then
by an interchange strategy among similar rows of M° a matrix M

can be formed such that M has a block LU decomposition of the form



-99-

- 1T 7
I D, B,
L I D T
M=| L L By
.' \. .D
L I J
L J 4 L .}

where each Di’ o <1i < J, is nonsingular.

Proof. Recalling Lemma 5.10, there is an interchange strategy

among rows (p + 1,...,p + n) of M° that forms an M1 such that

1 1 ]
.
[ 1 D, B
1 1 o
Ml Ll I Dl B2 .

= I o .0 ‘o
. C; 4 By

L I | o ' o
i €5 A1 ]

where Di is nonsingular and Ml is a block tridiagonal matrix
with p/q zero structure. Assume that there exists a matrix Mk with
the following properties:

i) Mk = Fk Gk

where
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and

1 1
Do B1
5
0 D ok
N l. Bk
ok o
. 0 Dy Bun
G = c° o ' .
k+1 +1 'Bo
- . J
o ‘o
{ 7 A1

ii) Each D;+l, o<ic<k-+~1, is nonsingular, and

iii) Mk is a block tridiagonal matrix with p/q zero
structure formed by an interchange strategy of similar rows of
v,
Since Ml>has properties i), ii), and iii) it is sufficient to show that
k k+1 o
from M~ we can proceed to M . By hypothesis M~ is nonsingular,
thus Mk must be nonsingular. Define the n(J+1-k) X n(J+1-k)

matrix H by

k o 7
D B
o) o .
Cer1 %41 *0
H = B
) .03
‘o ‘o
C A
L J JJ

noting that H is block tridiagonal with p/q zero structure. The
matrix Mk is nonsingular if and only if H is nonsingular. Recalling
Lemma 5.10, there is an interchange strategy among rows (p + 1,...,p + n)

of H which produces an H such that
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r s r k+1 k .
I Dt B
k+1 k+1 o}
I O D1 B
H = 0 I Co o ‘.
2 Pke2 C o
- . . B
X ) . By
) cy el
] 0 I} { Cs Aj ]

where D§+l is nonsingular. Note that an interchange of any rows

(p+1,...,ptn) of H is equivalent to an interchange of rows

k+1 k+1 k
K+’ Dk , Bk’ and
k+1 k+1 - Fk+l Gk+1

Dk+l in this manner, we have found M

(nk +p+1,...,0k + p + n) of M. By defining L
which has properties
i), ii), and idi).

Corollary 5.12. Let M° be an n(J+1l) X n(J+1) block tridiagonal

matrix with p/q zero structure. Let P be a permutation matrix of

the form

——
e

where Ip is the p X p identity, Iq is the q X q identity, and each

Pi is an n X n permutation matrix. Then the following are equivalent
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a) M is nonsingular .

b) There exists a permutation matrix P such that

where each Di’ o £1i < J, is nonsingular.

Proof: a) => b). The proof is exactly that of Theorem 5.11.
b) => a). Immediate from hypothesis.

Using this result, a block tridiagonal factorization can

be designed to solve the equations
MV =1r

where M is a block tridiagonal matrix with p/q zero structure.

Recalling Corollary (5.12), the equations can be written as
LV ="Pr

which allows solution via (5.6), (5.8), and (5.9). The only
problem remaining is the practical one of determining each of
the permutation matrices Pi comprising P. Each Pi can be found

as the LU decomposition (5.6) proceeds.

Theorem 5.13. Let M be a block tridiagonal matrix with p/q zero

structure. Let M be nonsingular. Let r, V, W be n(J+l) vectors
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defined by
rO V'O WO
r = : ’ vV = : ’ W= : .
rJ VJ WJ

Then the following procedure can be used to find the solution of

MV = r;

I. Forward substitution

A. Starting values: D = A
o o’ "o o

B. Iteration procedure (k = o0,1,...,J-1)

1. If the current Dk is singular, interchange rows

(kn + p+ 1,..4,kn + p + n) of M in order to form

a nonsingular Dk and form new Wi Tpg by
interchanging corresponding elements.

2. Compute: Lk+l = Ck+l D;l

D1 = M1 ~ L Brn

W, =r

)l T Tkl T Tkl Yk

II. Back substitution (k = J,J-1,...,0)

A. Compute v, via Dk Vi = W Bk+l vk+l

Proof: The proof is the same as the proof of Theorem 5.11.

Thus far only one method of decomposing the matrix M has

been considered: the natural extension of the usual LU decomposition

to block matrices. Consider an LU decomposition where U rather
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than L has a unit diagonal;

(o} 1 o 1
Cl Al 32 = Cl Dl 1 U2 .
C2 A2 C2 D2 I

i
D =A u. =p Ll B
o o i i-1 “i°
(5.14)
D, = A, - C.U, .
i i'i

Allowing for rdw interchanges, this. decomposition can always be
performed, however it has a practical disadvantage. 1In the LU
decomposition (5.6), Li has the same zero structure as Ci’ namely
the last q rows are zero. Thus, the matrices L, U can be stored
in the same locations as the original matrix M. However, from
(5.14) it is clear that U, is in general a full n X n matrix, and

this decomposition requires pnJ more stqrage locations than M.

2. A Split decomposition

Another possibility is the factorization

M = UL

where U has a unit diagonal. That is, in the case J = 2, we have

A0 Bl I Ul Do
Cl A1 B2 I U2 Cl D1
C2 A2 I C2 D2 .



Corollary 5.15.

matrix with p/q zero structure,

of the same form as Corollary 5.12.

equivalent:
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Let M° be an n(J+l) X n(J+1l) block tridiagonal
Let P be a permutation matrix

Then the following are

o . .
a) M is nonsingular.

b)

where each Di’ o <1i

b)

a)

Proof.

where qy

matrix with q/p zero structure.

=> a)

,n(J+L)-i+l

There exists a permutation matrix P such that

]
g
=

I
-
[

IA

J, is nonsingular.

Immediate from hypothesis.

=> b) Let Q be the n(J+l) x n(J+l) permutation matrix

1. Then M° = QMOQ is a nonsingular tridiagonal

Recalling Corollary 5.11, there

exists a permutation matrix P such that

where M is a

Note that QQ

M="P

P =10

block tridiagonal matrix with q/p zero structure.

M

I, then we have

o

=PM =1UL

where P = QﬁQ, U= Qi, and L = ﬁQ.

/)
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Rather than pursuing this UL decomposition directly, we will
examine a hybrid or split procedure. The matrix M might be

factored in the following way:

A0 Bo I D Bl
1 Cl Al B2 = Ll I U2 Dl (5.16)
C2 A2 I C2 D2 .

This decomposition is a hybrid of the LU and the UL decompositions

discussed previously.

Theorem 5.19. Let M be an n(J+1l) X n(J+1l) block tridiagonal matrix

with p/q zero structure. Let P(s) be a permutation matrix of

the same form as Corollary 5.12. Then the following are equivalent:

a) M° is nonsingular.
b) TFor each integer s, o < s < J, there exists a
permutation matrix P(s) such that M = P(s)M’o has a split factorization

of the form:

M= P(s)M° = FG (5.20)
where

" -

L1 I
F = .t ’

Ls I Us+1
T °.
.".,UJ
L T |
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and each Di’ o £1i < J, is nonsingular.

Proof: The proof is sketched here. The only element of F or G
that is not guaranteed existence by Corollary (5.12)

(Li’ i=1,...,s; D,, i = 0,...,s8-1) or Corollary(5.15)

(Ui’ i=s5+l,...,J3; Di’ i=s+l,...,J) is Ds‘ In order for the

factorization (5.20) to exist, DS must be defined to be

Ds = As - LsBs - Us+lcs+1'

Since DS is given in terms of known quantities, the proof is complete.

Note that this split procedure includes the LU factorization (s = J)
and the UL factorization (s = o) as special cases. The general
‘algorithm for solving MV = r is given below where any quantity not

previously defined is assumed to be zero.

Solution of MV =1 (0 < s < J)

N

I. Decomposition procedure

A. TForward (i = o,1l,...,8-1)



II.
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1. Compute: D, = A, - L.B,
i i i'i

2. Interchange strategy: If D, is singular

interchange rows (ni + p + 1,...,ni + p + n) to form

nonsingular Di’ and new Bi+l’ Ci+l’ Ai+1‘ Change
Tis Togg accordingly.
3. Compute: w, =T, - Liwi—l
L =c. ..ot
i+l i+174
B. Backward (i = J,...,s+l)
1. Compute: Di = Ai - Ui+1ci+l

2. If D, is singular, interchange rows
(ni - q-1,...,ni -~ q - n) to form nonsingular

Di’ and new Bi Ci’ Ai—l' Change r.s T,

-1’ i-1
accordingly.
3. Compute: we =T, f Ui+lwi+l
-1
Ui = BiDi
C. Split point
1. Compute: DS = As - LsBs - Us+l Cs+1
Vs T rs_-LsWs-l - Us+1ws+l
Solution routine
A. Split point
1. Solve for vyt stS =W

B. Backward (i = s-1,...,0)

1. Solve for vi: Divi =Ww; - B

C. Forward (i =s+l,...,J)

|
£

i
(@]
<

1. Solve for v,: Div, =w, = Cv, ,
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The numerical example cited in Chapter 6 uses s = o exclusively.
In some cases however it has been found that the split point
s = (J+1)/2 yields good numerical results when the s = 0, s = J

decompositions are unsuitable.
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Chapter VI

A Numerical Example: Plane Couette Flow

In this chapter, equations modeling plane Couette flow
are used as a test case for some of the theory presented previously.
This particular example was chosen because for certain special
cases the exact solution is known and can be shown to be an isolated
solution (see Chapter 4). The equations are given in F. K. Moore [ 8]
as a similarity solution of the Navier—~Stokes equations describing
the motion of a compressible, viscous fluid contained between two
parallel surfaces. These walls are in relative motion and each is

kept at a constant temperature.

LU LG T et i

U
. L
x\
' W/ /a4
Fig. 6.1

The usual no-slip boundary conditions are imposed at the walls, and
the yariables of interest are T(t), the normalized temperature
distribution, and u(t), the normalized x-component of velocity.

In accordance with our previous notation, t is used as the independent

variable. The equations will be considered in the following form:
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du _ -
a-° u(o) = o
dT _ 1 -2 _
Fra ——U(T) Ku T(o) = A
(6.2)
dT _ .1'__- =
e T um " wi) =1
du _ 1 - _
at = um © T =1

where U(T) is the viscosity-temperature relation.

1. Isolated Solution

In the case where X = o, the differential equations (6.2)

reduce to

T CRIOR T =70,
(6.3)
%%—= %TT)G(o)’ u = u(o),

with the same boundary conditions. These equations are easily
integrated if we restrict the viscosity-temperature relation to

be of the form

u(r) = ™.

An exact solution for (6.3) is shown to be
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Sl L- Aa+1]
YT T »
=_ 1 _ o0+l
T= o+l [1-2A"71,

1
T = % @-e) + 0%,

1

u = I%X {[Xu+l (1-t) + t]a+l _

The homogeneous, linearized problem becomes

where

and

dw _
Er A(t)w

Bow(o) = 0

A(t) =

Blw(l) =0
o o o]
o o o
7% o T
(o} —aT—u+l- o

J
1l o
o 1Y}

A},

(6.4)

Substituting the exact solution from (6.4) into A(t), it can be shown

that the linearized problem has only the trivial solution, and thus,

the solution (6.4) is isolated.

2. Numerical Procedure

The Gap4 will be employed to approximate the differential
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equations in (6.2). Substituting ¢(T) = u—l(T) and letting

[y, ® ] [ G ]
Yz(t) T(t)
A PSS I I 15
t t

LY4( )_J i u( )‘

in (6.2), this two-point boundary-value problem can be written as:

L - £ 2)
(6.4)
B y(o) = [i] B,y(1) = [i] b)
where

- o -

K 6(r,)7;
f(y) = ¢(Y3)yZ ’ BO = Bl ={g g i i].

i ¢(y35)y, ]

In order to use the Gap4 scheme, the vector fyf must be evaluated.

Let o = (abec d)T, then

. -
K $(c) ¢'(c)ba’
f @E@) = F) = | .2 40y ®o(e) + ¢'(c)) )

¢(c) ¢'(c) ab J

The Gap4 difference approximation is given by
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hy h?
NV = vy -V m g L) + £y D]+ 5 [FGv) - Fv,_ D] = o
(6.5)
i=1,...,J.
Coupling these difference equations with the discrete boundary
conditions,
A 11
Bo v, = {1] Bl vy = (l]’ (6.6)

yields 4J+4 nonlinear equations which must be solved in order to
evaluate V. Newton's method is employed to solve these equations.

Define the 4X4 matrices Nl(a), Nz(a) by

Nl(a) - Bg;a) , Nz(a) - Bgéa) .

Thus, again letting a = (a b c d)T,

[ o o o o |
1 2Koa o K¢'a2 o
N (o) =
o o o'b o
L ) o ‘a oJ
and
o o o o |
t 2 Tty t 2
2abdo’ Kd¢p'a K(d¢") 'ba o
2 4
V@ =1 2ap(kete') o a?(ko%H00")" o
dd'b $o'a o o
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where ¢, ¢' are understood to stand for ¢(c), ¢'(c) respectively.

Newton's method yields the following linear difference equations:

h h2
i1, v i 2,V w1 vV
[I-5 N @)+ N eI - v)
h 2
_ i 1,V 12,V vil _ v
[T+ N P+ VNV PIG T - v )
\Y
= —Nh Vi'

These difference equations may be put into a form

ny ) @V - vy = ),

where the matrix, nV(Vv), is block tridiagonal matrix with 2/2 zero
structure. The split'decomposition routine (s=0) was used to solve
. V1 Y .

each of these equations for (V - V). 1In each case considered,

the initial guess, Vo, was taken to be

vW=lo o XA+ -Vt @-ne "

3. Numerical results

These computations were performed in double precision on

an IBM 360/65. Three separate cases are reported here:

i) K=o, u(T) =T,
ii) K= -1, u(T) = T,
iii) K = -1, u(T) = T3/2.

The left-hand boundary condition, T(o) = A, was taken to be T(o) = 1/2,
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In each case, ten uniformly spaced net points (J=9) were placed
on the interval [o0,1]. Newton's method was used to solve the
equations (6.55, (6.6) and the iteration procedure was terminated
when the residual, lIn(VV)||, was acceptably small (<10-8). The

results of these calculations are summarized in Table 6.7.

* V .
(K,0 ) \Y [ Inev) ]| Time (sec.)
(o,1) 0 .11D 00 2,51
2 .1169D-04
3 .5071D-10
(-1, 0 .1111D Q0 3.67
1 .1072D 00
2 .5452D-02
3 .1363D-04
4 .1242D-09
(-1,3/2) 0 .1111D Q0 4.64
1 .1004D 00
2 .1157D-01
3 .7149D-04
4 .6233D-08
* o

Represents the viscosity relation u(T) = T

Table 6.7

Note that in each case the Newton iterates exhibit quadratic
convergence.

An exact solution is known for case i), (o,l), so a more -



detailed inspection of the numerical solution is in order.
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exact solution for K = o, u(T) = T is

y(t) =

1
G

1
LZ{Q;

3/

3/8

[1-t] + t

[1-t] + t)ll2

1/2

1
7t

-

The

(6.8)

The approximations to yl(ti)’ Vi and y2(ti)’ V,os are constants

for all 1i:

Vi1

Vi2

.750009065843 D 00,

.375004532921 D 00.

Recalling the exact solution (6.8), the corresponding errors are

.907 D-05 and .453 D-05 respectively. Let |vi3 - y3(ti)| = e,

and vy, =y, (e[ = ey

COMPARISON OF NUMERICAL SOLUTION
WITH EXACT SOLUTION

i)t Vi3 ei3><105 Vi e14X105
0 0 0.5 .000 0.0 .000
111/9 .5773 4657 9715 .370 .1546 9315 9431 .729
212/9 .6454 9323 1862 .395 .2909 8646 3724 .803
3(11/3 .7071 0324 9064 .351 L4142 0649 8128 .711
414/9 .7637 5972 0205 .295 .5275 1944 0410 .594
51(5/9 .8164 9433 7894 .229 .6329 8867 5788 465
612/3 .8660 2378 3185 .168 .7320 4756 6369 .337
717/9 .9128 6988 9405 .031 .8257 3977 8811 .021
818/9 .9574 2660 7059 .050 .9148 5321 4118 .106
9] 1 1.0 .000 1.0 .000
Table (6.9)
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The maximum error occurs in the approximation of the constant

function yl(t) = u(t), thus
[lv - Y|] = .907 D-05.

For this example, the Gap4 scheme yields an extremely accurate
numerical solution on a comparatively sparse net. Also, Newton's
method exhibits quadratic convergence once an "acceptable" initial

guess has been found.
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Appendix A

Ordinary Differential Equations of Higher Order

In a recent paper H. O. Kreiss [7] examined difference

schemes used to approximate linear two-point boundary-value problems:

q® n-1 dk
SL+ ] oA () == F@) a)
dt~  k=o dt

(A.1)

L ,
. W 1y -
1y RO+, @ yP Wl =g

b)
L = 0,c00yn-1

where Ak are n*n matrices and y,F,g are m~vectors. At first glance,
a treatment of equations (A.la,b) seems to be more general than
the equations (l.la,b) considered in Chapter 1. However, we give
an indication here that the theory of Kreiss [7 ] and the theory
developed in Chapter 1 are actually concerned with the same class
of proBlems.

As an approximation of (A.la), Kreiss considers difference

schemes of the form

n-1
_ n < k
L v, =S (WD v, 4+ kzo A (t,mDy v,
(A.2)
i = I‘,..-,J'—S
. -1
where D+ is the forward difference operator (D+ Vi1~ h (vi - Vi-l))'
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The discrete boundary conditions are written

L

k§ {BkL(o h)D v, + BkL(l h)D v } = gL(h)
(A.3)

L=0,.0.,0-1
where D_ vy o= D+ vl_1
We will consider only the case in which (A.2) is "as compact
as possible™, that is, r+s=n. With this restriction, (A.2) and (A.3)
represent m(J+l) equations in m(J+l) unknowns, Vi i=20,...,J. For

this case, the difference equation (A.2) can be written as

n-1 K

. . N )
L, vy = Ah(ti,h)D+ v o+ kgo Ak(t h)D+ Vi, = F

(A.4)

i=r,...,J-s

where Kn(ti,h) is an m*m matrix and replaces the difference operator
So(h).
The boundary-value problem (A.la,b) can be written as a

first-order system by defining

ey = y® .,

Thus, a first-order system of equations equivalent to (A.1a,b) is

n-1

QE—SEl- + 1 Ho ) = T a)

az(t) _ K+l

dt (t) k = 1,0-.,11"1 b)

(A.5)

Z B, ) &) + 3, W) D) -
k=0 o)

L =o0,...,0"1.
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It remains to show that, in some sense, (A.2), (A.3) can be
considered as an approximation of (A.5a,b,c).

Analogous to the definitions (A.5b), define the m~vectors,

w%, k=1,...,n, by
i
1 .
w, =V, 1i=0,040,J a)
‘ ‘ (A.6)
k _ _k+l .
D+ wyo= W, i=0,.0.,J-k. b)
Substituting these quantities into (A.2) and (A.3), we get
n-1
- n - k+tl _ =
An D+ wi—r + z Ak Wi—r B Fi
k=0
(A.73)
i=1r,i0.,J-8
and
Lo K+l | = I+l
kZo {B (o, )w " + B (L,Ww ) =g (h)
(A.7b)

L = 0,...,11"1.

Kreiss defines the difference scheme (A.4) to be consistent with
(A.la) if

o n-1

A - 1|+ I 1R (g0 - A (2] = 0B).

k=0

Thus, if the difference scheme (A.4) is consistent, then clearly
(A.7a), (A.6b), and (A.7b) form a consistent approximation of
(A.5a,b,c). Thus, we have N equations in N unknowns

2 _ n])), and the only difference between (A.7a,b),

(N = m(aJ - 3[n
(A.6b) and the approximations considered in Chapter 1 is that the

variable w? is only defined for i = o,...,J-k+l.
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In order to mimic Chapter 1, we introduce %{n2+n)

new equations. This can be formally done by expanding the range

of i in (A.7a) from J-s to J+r-1 and the range of each i in (A.6b)

from J-k to J-1. The only restriction we place on these new
equations is that
n-1
- n - ktl _ =
+ = F,
An D+ Vir kgo Ak Vir Fl

i=J~stl,c..,J+r-1

be consistent with the differential equation (A.5a).

n-1

- n = ktl _ o .

A.n D+ Vi_r + Z Ak Wi_r = Fi i=r,i00,J4r-1
k=0

D+ WE = w§+1 k=1,...,n, i=0,i0.,J-1

L
- k+l |, = k+l, =
kzo {8, (o, )w." " + B (1,mw "} = g (h)

L=o0,...,n-1

In this way equations (A.9a,b,c) define a consistent difference
approximation of (A.5a,b,c) where Wl = V, V being a solution of

2,...,Wn}, of the

(A.2), (A.3). Thus, a stable solution, {wl,w
difference approximations (A.9a,b,c) yields a stable solution,
V, of (A.2) and (A.3). In addition, the theory presented in

Chapter 1 provides a necessary condition for stability where no

a)

b)

(A.9)
c)

restrictions are placed on the form of the difference approximations.
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