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by
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Doctor of Philosophy

Abstract

Thin film deposition is a manufacturing process in which tolerances may approach

the size of individual atoms. The final film is highly sensitive to the processing

conditions, which can be intentionally manipulated to control film properties. A

lattice model of surface evolution during thin film growth captures many impor-

tant features, including the nucleation and growth of clusters of atoms and the

propagation of atomic-height steps. The dimension of this probabilistic master

equation is too large to directly simulate for any physically realistic domain, and

instead stochastic realizations of the lattice model are obtained with kinetic Monte

Carlo simulations.

In this thesis simpler representations of the master equation are developed for

use in analysis and control. The static map between macroscopic process conditions

and microscopic transition rates is first analyzed. In the limit of fast periodic

process parameters, the surface responds only to the mean transition rates, and,

since the map between process parameters and transition rates is nonlinear, new

effective combinations of transition rates may be generated. These effective rates

are the convex hull of the set of instantaneous rates.

The map between transition rates and expected film properties is also studied.

The dimension of a master equation can be reduced by eliminating or grouping

configurations, yielding a reduced-order master equation that approximates the

original one. A linear method for identifying the coefficients in a master equation
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is then developed, using only simulation data. These concepts are extended to

generate low-order master equations that approximate the dynamic behavior seen

in large Monte Carlo simulations. The models are then used to compute optimal

time-varying process parameters.

The thesis concludes with an experimental and modeling study of germanium

film growth, using molecular beam epitaxy and reflection high-energy electron

diffraction. Growth under continuous and pulsed flux is compared in experiment,

and physical parameters for the lattice model are extracted. The pulsing accessible

in the experiment does not trigger a change in growth mode, which is consistent

with the Monte Carlo simulations. The simulations are then used to suggest other

growth strategies to produce rougher or smoother surfaces.
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Chapter 1

Introduction

Thin film deposition is a manufacturing process in which precursor material is

delivered to a surface on which it subsequently attaches, forming a solid layer of

material. The resulting film may be as thin as a few atomic layers, or as thick as

several micrometers. The deposition of a thin film is a critical step in the manu-

facture of integrated circuits, which has led to substantial advances in deposition

technology over the last 50 years [53]. Other applications requiring thin films in-

clude solar cells, mechanical coatings, and, more recently, microelectromechanical

systems and microfluidic devices.

The term thin film deposition encompasses a wide range of processes [53]. The

medium surrounding the deposition surface may be a gas, liquid, or an ultra high

vacuum. The precursor material may be produced by evaporation, through gas-

phase reactions, or by sputtering a target with ions. A bias voltage may be applied

to the substrate to generate a plasma in the gas phase, or to induce deposition in

an electrolyte solution. The choice of a particular process depends on the material

to be deposited, on the initial substrate, and on the manufacturing tolerances.

As device size in integrated circuits continues to shrink, increasingly stringent

manufacturing tolerances on thin films are required. Films must be more uniform

across large wafers, and contain fewer defects at the micrometer and nanometer

scales. The incorporation of larger numbers of layers in a single device also means

that each layer must contain fewer defects to maintain the same yield on the final
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device [53].

1.1 Sensing and control of thin film deposition

A common source of variation in film properties is a drift in deposition conditions

over time. Sensors are often used to measure and compensate for this uncertainty,

by either measuring reactor conditions like pressure or gas concentration, or by

directly measuring film properties. A wide variety of film and surface sensors are

used in practice, including pyrometry, x-ray and electron diffraction, and optical

spectroscopy [3, 25]. These sensors provide information ranging from temperature

to chemical composition to crystal structure.

Surface temperature is one critical deposition parameter, particularly at low

growth temperatures where the rate-limiting step to deposition is surface reaction.

In this regime, a uniform temperature must be maintained precisely across the

entire wafer to ensure uniform thickness in the final film. Thermal control is also

needed to track aggressive temperature trajectories that enable higher throughput

in single-wafer processing, as summarized in a survey article on rapid thermal pro-

cessing [50]. A typical control strategy includes pyrometer sensing to determine

wafer temperature, with subsequent adjustment of power to radiant heaters. The

author has also studied thermal control, particularly in the area of reactor de-

sign, to obtain a system with good thermal response, uniformity, and temperature

observation [17].

Control has also been applied to the delivery of precursor material to the wafer

[16, 61]. Thickness and chemical composition have been controlled using gas-phase

absorption measurements and ellipsometry. Both feedback and feedforward control

strategies have been developed and implemented, based on bulk low-order models

of precursor transport. In both of the examples cited, the sensors are closely tied

to the control objectives, which consist of step changes in surface composition.

When the transport of precursors in the deposition chamber does not admit

a simple low-order description, inlet conditions may be computed by applying
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optimization methods to the partial differential equations for a chemically reacting

flow. This approach has been developed and demonstrated in simulation for a

chemical vapor deposition process [47]. Optimal inlet concentrations are computed

to achieve a desired concentration profile at the surface in the presence of a time-

varying substrate temperature.

1.2 Models of thin film evolution

In the examples previously cited, the models describing the evolution of the con-

trol objective are based on continuum descriptions of heat transfer, fluid flow,

and chemical kinetics. However, other potential control objectives include film

properties like roughness, species segregation, and faceting. Control analysis and

design require a mathematical representation describing how the precursors ar-

range themselves on the surface, but low-order models for this type of behavior do

not generally exist.

Theoretically, one could build a complete mathematical model of thin film

evolution using quantum mechanical principles, but the large number of atoms

involved would make computation prohibitive. In practice, a model is developed

to describe a particular quantity of interest in the most compact manner that ade-

quately describes the relevant physical phenomena. Depending on the application,

the model may describe the motion of a collection of individual atoms, or a contin-

uum approximation may be used to describe behavior at macroscopic lengthscales.

In the later case, the model may be self-contained, or it may require input from

models at smaller scales. For example, quantum mechanical computations can

be used to provide atomic potentials for molecular dynamics simulations, which

subsequently provide rates of atomic transitions between sites on a crystal lattice.

1.3 Surface morphology

The focus of this thesis is on the evolution of the surface of a film. As material

is deposited on the surface (or removed during the reverse etching process), the
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mean thickness of the film changes. However, the surface height profile, or surface

morphology, also evolves as atoms are added or removed. In many applications,

an atomically flat surface is the desired morphology, to provide a smooth interface

in a layered device. Other control objectives include regularly spaced clusters of

atoms for a quantum dot array [36], or a pyramidal, faceted surface to enhance

optical absorption [63].

When atoms are deposited on a crystalline surface, the resulting film may be

influenced by the initial surface. If the underlying crystal structure of the film is

compatible with that of the initial surface, and if the temperature is sufficiently

high to enable reorganization of the deposited atoms, the film may be crystalline

and aligned with the underlying substrate. This process is referred to as epitaxial

film growth.

The evolution of a crystalline film is dominated by the presence of atomic-

height steps on the surface, and the attachment of atoms to these steps. As atoms

are deposited on a surface, they may diffuse along the surface or desorb back to

the surrounding gas. Surface diffusion and desorption enable a reorganization of

the surface during growth to lower energy configurations. Typically, the rates of

desorption and surface diffusion depend on the number of bonds each atom has,

such that an atom with more bonds is less likely to move. Consequently, a mobile

atom or cluster may eventually migrate to a step edge, which then increases the

number of bonds, and lowers its mobility. During deposition, mobile species are

constantly being created as atoms attach to the surface, leading to a net positive

flux of atoms into step edges, and therefore resulting in the propagation of surface

steps.

Step edges may exist in the initial growth surface, or they may be created

during growth. Parallel arrays of steps are usually present on the initial wafer,

since it will never be cut perfectly along the nominal crystallographic direction.

Steps also originate from defects either in the initial surface, or in the growing film.

The growth process itself may also produce steps, when mobile species collide with

each other and form clusters. The edges of these clusters provide additional step
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Figure 1.1: Scanning tunneling microscopy image of a Ag surface. The scanned

area is 176 nm×176 nm. Both islands and steps are visible. Reproduced from

Zhang et al., Surface Science, v. 406, 1998, pages 718-193, with permission from

Elsevier Science.

edges, whose propagation leads to further growth of the cluster.

The origin of steps, and the relative importance of step propagation and step

formation, strongly influence the evolution of surface morphology. Figure 1.1 is a

scanning tunneling microscopy image of a silver surface. Two steps span across

the image, originating from substrate miscut, while clusters of atoms have formed

between the steps. A very different surface morphology is shown in the atomic

force microscopy image of Figure 1.2. In this case, screw dislocations provide the

initial source of steps. As atoms migrate and attach to the steps, the steps wind up

into a spirals, which are anchored at the dislocation core. No cluster nucleation is

observed on this surface. Growth instead proceeds as atoms absorb on the terraces

and migrate to the step edges.

We would like to have a mathematical model that describes the range of mor-

phologies characteristic of epitaxial growth. When the surface features of interest
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Figure 1.2: An atomic force microscopy image of a YBa2Cu3O7−x thin film exhibit-

ing spiral growth. The scanned area is approximately 2µm×2µm. Image courtesy

of Jurgen Musolf, Superconductor Technologies.

are much larger than the distance between atoms, a continuum model may suf-

fice. A partial differential equation for the surface height describes morphology

evolution in terms of a current of atoms along the surface, according to

∂h

∂t
= F −∇ · j, (1.1)

where h(x, t) is the height at in-plane location x and time t, F is the flux of atoms

onto the surface, j is the current of atoms along the surface, and ∇ · j is the

divergence of the surface current. This approach was developed by Mullins [40]

almost fifty years ago and has been adapted more recently to surfaces evolving

during deposition [30]. In general, j is a function of h and its spatial derivatives,

while F is typically noisy in space and time, and is otherwise spatially uniform.

The right-hand side of equation (1.1) often includes the linear terms ∇2h and

∇4h, which represent evaporation and surface diffusion, respectively. Additional

nonlinear terms may also be incorporated.
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When the length scale of surface features of interest approaches the distance

between atoms, continuum assumptions are no longer valid. Physical models that

describe the interactions between discrete atoms include lattice models, in which

atoms are constrained to sites on a rigid lattice; molecular dynamics, in which

atomic interactions are described by potential energy wells; and ab-initio quan-

tum mechanics, through Schroedinger’s equation. The computational demands

associated with molecular dynamics and ab-initio methods make impractical the

simulation of many atoms over the minutes and hours associated with film growth.

The lattice model provides a good compromise between high fidelity and com-

putational tractability, and describes many dynamic features seen in epitaxial sur-

face evolution, like the propagation of atomic-height steps and the nucleation of

clusters. It is often manifested through stochastic realizations via a Monte Carlo

algorithm, in which atoms may occupy or vacate lattice sites based on the value

of a random number. This approach has gained popularity since the 1970’s, when

it became feasible to compute these realizations for surfaces of physically realistic

size [21, 28].

The computational demands of the Monte Carlo simulations are often high, and

alternative mathematical representations of the lattice model have been developed.

Ordinary differential equations may be formulated to describe cluster formation

through a series of rate equations for clusters of various sizes [59], according to

dnj

dt
= Uj−1 − Uj , (1.2)

where nj is the number of clusters with j atoms, and Uj is the rate at which single

atoms join clusters of size j to form clusters of size j + 1. An exact description

of Uj requires a solution of the full lattice model, but approximations have been

developed in terms of the nj and fitting parameters called capture numbers. While

this model is compact, it is designed only for the submonolayer regime, before the

clusters grow large enough to coalesce.

Level-set methods have been proposed recently to describe the propagation
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and merger of atomic-height steps [22], including the growth of clusters and their

coalescence. The level-set function φ is described by a partial differential equation

whose level contours represent atomic steps, according to

dφ

dt
+ v · ∇φ = 0, (1.3)

where v captures the velocity of the level contours. This model provides a compact

mathematical framework and captures a wide range of morphology dynamics, but,

like the Monte Carlo simulations, its computational demands are high.

1.4 Model reduction

It would be desirable to have a mathematical formulation of the lattice model

that captures the range of behaviors seen in Monte Carlo simulations with re-

duced computational demands. One might also be willing to accept some error in

the model, as long as it is not too large, if the computational requirements were

greatly diminished. Additionally, if one does not wish to capture the location of

every atom, but instead is only interested in a few spatially-averaged metrics, like

roughness and step density, then certain aspects of the lattice model might be

neglected with no associated error. Such ideas have been developed within control

theory. In particular, one may specify the inputs and outputs to the system, and,

using a mathematical representation of the system, compute a model of reduced

dimension whose map between inputs and outputs is close to that of the original

system. Previous work by the author [18, 19] and others [46] has been motivated

by this goal, but has not been successful in producing a predictive model useful

for optimization or controller design.

Algorithms and error bounds for model reduction of linear time-invariant sys-

tems have been developed and are widely applied [39]. These ideas have also been

extended to nonlinear systems, although in this case the error bounds do not extend

[33]. In recent years much research effort has been directed toward model reduction

of complex fluid flows [26]. In this class of systems, one spatially discretizes the
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partial differential equations that represent the physics to obtain a high-order non-

linear ordinary differential equation. Simulations are then performed, and a small

number of dominant spatial modes are extracted from this data using a technique

called proper orthogonal decomposition. These modes are projected back onto the

original partial differential equation, yielding a low-dimensional nonlinear ordinary

differential equation. While this method has been successfully applied to describe

low-order behavior in fluid systems, error bounds on the reduction do not exist.

In fact, preservation of the stability of the original system cannot be guaranteed,

such that the low-order model may be unstable, even when the original system is

stable.

We consider these ideas in the context of the lattice model, and contrast the

mathematical structures of the lattice model and the equations for fluid motion.

There is a probabilistic differential equation for the lattice model, which has an

uncountably-infinite number of states. This is in contrast to fluid systems, which

are infinite-dimensional since they are partial differential equations, but which may

be made finite-dimensional through discretization using a finite domain and a min-

imum viscous lengthscale. The number of lattice configurations may also be made

finite by assuming a lattice of finite extent, although the number is still generally

too large for direct simulation of any physically-realistic system. Consequently,

stochastic realizations with a Monte Carlo algorithm are used for simulation in-

stead of numerically integrating the differential equation, so that unlike the fluids

example, the state is not directly obtained in simulation. Therefore, it is not

straightforward to obtain dominant modes of the state from simulation, and even

if we could, we would not be able to write down the full equations on which to

project the modes. In the work of this thesis, the Monte Carlo simulations pro-

vide input-output data, from which low-order models are constructed, but proper

orthogonal decomposition is not used to obtain the states. In contrast, an earlier

study is included as Appendix B, in which proper orthogonal decomposition is

used to generate dominant spatial modes.
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Figure 1.3: Block diagram of the lattice model. The system is divided into a

static nonlinear function that maps macroscopic process parameters to microscopic

transition rates, and dynamic, bilinear block for the evolution of the probability

distribution.

1.5 Thesis overview and contributions

This thesis is about using control and control-oriented modeling to alter thin film

evolution. The lattice model, described in Chapter 2, is taken as accurate model

of the physics, and is manifested through master equations, kinetic Monte Carlo

simulations, and reduced-order models. Viewing the processing parameters as

inputs to the system, and expected film properties as outputs, we formulate the

lattice model as a control system. A corresponding block diagram is shown in

Figure 1.3. The system may be decomposed into two pieces, the first of which

is a static nonlinear function that maps the process parameters to microscopic

transition rates, and the second of which is a dynamical system describing the

evolution of the probability distribution. Because the transition rates multiply the

probability vector in the differential equation, the block is referred to as a bilinear

system.

We study the first block in Chapter 3 and use an averaging analysis to show

that fast periodic processing parameters may be used to produce new effective

transition rates, increasing the space of possible inputs to the second block. This

analysis exploits the fact that the transition rates change instantaneously with

the processing parameters, while the dynamic block does not. The set of effective

transition rates is quantified as the convex hull of the initial set, and may be

computed with linear programming techniques.
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In Chapter 4, we focus on the second block of Figure 1.3. We develop an ap-

proach to extract the dominant dynamics of the kinetic Monte Carlo (KMC) simu-

lations into a finite-dimensional master equation. The method requires only linear

computation, and is demonstrated in several solid-on-solid models. This com-

pact representation enables the application of control and optimization techniques,

which are impractical for use with the computationally intensive, noisy KMC sim-

ulations. We demonstrate the utility and predictive power of our reduced-order

models by applying gradient-based optimization and computing optimal tempera-

ture profiles.

The final chapter contains a combined experimental and modeling study of a

specific material system: germanium grown by molecular beam epitaxy (MBE),

using reflection high-energy electron diffraction (RHEED) as an in situ diagnos-

tic. We explore the effects of periodically varying the flux. In the range of inputs

accessible in our MBE chamber, we do not observe roughening or smoothening

due to time-varying process parameters. However, we do extract activation ener-

gies for use in KMC simulations. The simulations predict that the instantaneous

fluxes of MBE are not high enough to generate a significant effect relative to the

mean conditions, but that higher fluxes, as in pulsed laser deposition, could be

roughening, while temperature modulation could yield smoother surfaces.

The analysis and modeling approaches developed in this thesis provide a gen-

eral framework for obtaining compact representations of surface morphology dur-

ing thin film growth. These models are then demonstrated to capture key features

seen in kinetic Monte Carlo simulations, and to be useful for gradient-based op-

timization. However, the primary goal and contribution of this work is not to

propose a particular deposition strategy to minimize surface roughness, but in-

stead to develop general tools that exploit the underlying mathematical structure

of the master equation and that are applicable to a wide range of physical systems.

The approach developed in this thesis yields reduced-order predictive models that

can be used not only in optimization, but are also compatible with stability and

bifurcation analysis, and feedback controller design.
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Chapter 2

Control-Oriented Formulation of the Lattice

Model

This thesis is concerned with the evolution of surface morphology during epitax-

ial growth. It is known that the evolution is strongly dependent on the process

parameters, which we view as inputs that can be intentionally manipulated to

influence the surface properties. Dynamic features of particular interest are the

propagation of steps and the nucleation and growth of islands, which stem from

nearest-neighbor interactions in a distributed system of atoms. We require a model

that accurately captures the atomic-scale effects of the process conditions, and that

describes film properties of interest on the timescales of film growth. A lattice

model for crystal growth, introduced in Chapter 1 and described in detail in this

chapter, provides a good balance between these requirements. We thus take the

lattice model as our representation of the physics.

2.1 Lattice model

The two key components of the lattice model are the rigid lattice to which atoms

are constrained, and the mechanisms and rates of atomic transitions between points

on the lattice. The lattice represents the underlying crystal structure of the mate-

rial, and is assumed to be fixed. The transition mechanisms are defined in terms

of lattice configurations, in which unique configurations are distinguished by dif-
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Desorption Surface DiffusionAdsorption

Figure 2.1: Illustration of three common transition mechanisms for a two-

dimensional lattice associated with a one-dimensional substrate.

ferences in the occupancy of the lattice sites. Each unique transition mechanism is

associated with a set of configuration pairs, in which the first element of each pair

may transition into the second element. Three common transition mechanisms—

adsorption, desorption, and surface diffusion—are illustrated in Figure 2.1. The

dependence on the process conditions enters through the rates of transition asso-

ciated with each transition mechanism.

The lattice model captures many key features of thin film growth and has been

used extensively over the past thirty years as the basis for kinetic Monte Carlo

(KMC) simulations [6, 21]. Monte Carlo simulations provide useful predictions of

thin film growth, but the rule-based simulations are not conducive to mathemat-

ical analysis. For example, the simulations are not invertible; the evolution of a

film grown under particular process conditions can be computed, but the process

parameters required to achieve a film with particular film properties cannot.

Each KMC simulation is a stochastic realization of the lattice model, which

may also be described by a master equation [15]. The master equation defines

the evolution in time of the probabilities of each lattice configuration. Let the

symbol H denote a particular configuration, and kHa→Hb the transition rate from

Ha to Hb. Figure 2.2 illustrates two of the many possible configurations for a

one-dimensional substrate. In the figure, a transition mechanism from Ha to Hb
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Figure 2.2: Two possible configurations of a two-dimensional lattice associated

with a one-dimensional substrate, with corresponding transitions and transition

rates.

is the adsorption of an atom at the third site from the left. A transition from Hb

to Ha may occur through desorption at this site.

The number of configurations grows exponentially with the size of the lattice.

For a substrate of 100×100 sites and a maximum height of only 10, the number

of configurations is 10100×100. Although this number can be reduced by physical

assumptions and symmetry arguments, it is clearly impossible to directly simulate

the master equation for any realistic domain size. We use the structure of the

master equation in our analysis, but continue to perform simulations with the

KMC method.

The master equation may be expressed in terms of sums over all the configu-

rations
d

dt
PH(t) =

∑
H′

kH′→HPH′(t) −
∑
H′

kH→H′
PH(t), (2.1)

where t is time and PH(t) is the time-dependent probability of configuration H.

The first term on the right-hand side reflects transitions from other configura-

tions H ′ into configuration H, and the second term represents transitions out of

configuration H. Any mean property, such as island density or root-mean-square
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roughness, may be expressed as a linear combination of the probabilities:

〈Y 〉(t) =
∑
H

PH(t)Y (H), (2.2)

where Y is the quantity of interest, Y (H) is the value of Y associated with con-

figuration H, and 〈Y 〉(t) denotes the time-dependent expected value of Y .

Although there are a large number of configurations and possible transitions

between configurations, kHa→Hb may only take the m distinct values associated

with the m unique transition mechanisms, or a sum of multiple values, or zero if no

allowable transition between two configurations exists. The master equation may

be recast as a sum over the m transition mechanisms. We use the symbol kH→H′
i

to denote the transition rate associated with a particular transition mechanism,

and express the master equation as

d

dt
PH(t) =

m∑
i=1

(∑
H′

kH′→H
i PH′(t) −

∑
H′

kH→H′
i PH(t)

)
. (2.3)

Taking ki to be the rate of transition through mechanism i, note that kH→H′
i may

take only two values: zero, if no transition from H to H ′ is allowed via mechanism

i, or ki, if a transition through mechanism i is allowed.

We next rewrite equation (2.3) as a vector equation for the probability vector

x:
d

dt
x =

m∑
i=1

(
kiN

in
i x − kiN

out
i x

)
, (2.4)

where N in
i and Nout

i are matrices that represent the allowable transitions either

into or out of a configuration through mechanism i. N in
i and Nout

i contain mostly

zero elements, since a transition mechanism will likely not exist between two ran-

domly selected configurations. The nonzero elements take positive integer values,

determined by the number of distinct configurations that a particular configura-

tion can transition into or out of. As the last step we combine N in
i and Nout

i into
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a single matrix Ni = N in
i −Nout

i to arrive at our final form of the master equation

d

dt
x =

m∑
i=1

ki(u)Nix. (2.5)

Equation (2.5) is equivalent to equation (2.1)—only the notation is different. We

define u to be the vector of process parameters and explicitly state the dependence

of ki on our input vector u.

2.2 Kinetic Monte Carlo simulations

A major goal of this thesis is to replace the stochastic kinetic Monte Carlo simu-

lations with a compact differential equation. However, KMC simulations are used

throughout the work for the generation of reduced models, and for comparison

with the predictions of reduced models. The details of these KMC simulations are

described in this section.

2.2.1 Lattice and transitions

In this thesis we focus on the evolution of surface morphology during thin film

growth. With this goal in mind, we consider a lattice model that, with a small

number of parameters, is able to capture the interplay between the nucleation

of clusters, growth of islands, and propagation of atomic-high steps. We use a

cubic lattice in which each site has six neighboring sites—one on each side for a

total of four, one above, and one below. Lattice sites are not defined by their

spatial location, but instead by their connections to other sites. This formulation

allows for deformation of the lattice under stress, and in particular enables the

incorporation of crystal defects like dislocations. A dislocation is added to the

lattice by simply reassigning neighbors along a branch cut.

In the simulations we make the solid-on-solid (SOS) approximation, in which

no vacancies in the crystal are permitted; equivalently, every atom must have a

neighbor below it. Periodic boundaries are used to simulate an infinite surface,
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since an actual film is much larger than any simulation domain used in a KMC

simulation.

We consider a single-species system, in which every atom in the lattice has the

same properties. Allowable transitions include the adsorption of an adatom—short

for adsorbed atom—onto a surface site, the desorption of an atom from the surface,

and the diffusion of an atom along the surface. The transition rate for adsorption

is independent of the structure of the particular surface site, while desorption and

surface diffusion rates are dependent on the local coordination of the surface atom.

In general, adatoms are the most mobile species because they have no side bonds.

The transition rates are strongly dependent on the process parameters. In the

simulations, we use the simplest physically realistic models for these rates. For

example, we often assume that the adsorption rate kads is equal to the flux of

incident precursors F

kads = F, (2.6)

although it is also possible that only some fraction is actually adsorbed, and fur-

thermore that the fractional value is temperature-dependent. Desorption is based

on a bond-counting model

kdes,i = ν exp
(
−Edes,0 + i∆E

kbT

)
, (2.7)

where i is the number of occupied neighboring sites, ν is a vibrational frequency,

Edes,0 is the depth of the energy well when the atom has no side neighbors, ∆E is

the extra energy for each side neighbor, kb is Boltzmann’s constant, and T is the

temperature. Surface diffusion is represented similarly, although the parameter

values for the energies and vibrational frequency may be different. Throughout

the thesis, the particular transition rates and parameters are noted and described

in the context of each KMC simulation

This model captures many dominant features of surface morphology, including

those described in the introduction and pictured in Figures 1.1 and 1.2. Four

kinetic Monte Carlo simulations we performed are shown in Figure 2.3. In this
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(a) Step-flow growth (b) Two-dimensional growth and steps

(c) Three-dimensional growth (d) Spiral growth

Figure 2.3: Kinetic Monte Carlo simulations of various growth modes.

figure, each surface consists of a domain of at least 200×200 atoms. The dark dots

denote atoms with at least one empty side bond, indicating that they are either

adatoms or are on the edge of a step. The light dots are atoms with four side

bonds, and are part of an atomically flat terrace. The first simulation consists of

a surface with steps due to miscut. The adatoms are sufficiently mobile that they

quickly migrate to step edges after deposition. This keeps the adatom density low,

preventing nucleation of clusters. In the second simulation, the surface diffusion

rate is somewhat less. Some adatoms form clusters, while others attach to steps.

In the third image, the mobility is even lower. Many clusters form, and form on

top of other clusters, while the steps from miscut play a negligible role. In the

final simulation, screw dislocations have been introduced into the initial lattice

instead of straight steps. The surface mobility is high enough that adatoms do

not form clusters, but instead attach to the steps originating from the core of the

dislocation.

In contrast to our simple model, many other physical phenomena may also
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be described by the lattice model, including a more complex lattice, multi-species

chemistry, stress, surface reconstruction, and step edge energy barriers. The KMC

simulations of GaAs by Joyce et al. [28] include many of these examples. Exten-

sions of the methods developed in this thesis to these additional effects could be a

promising avenue for future work.

2.2.2 Incrementing time

Monte Carlo simulations are often used for the computation of equilibrium proper-

ties, in which the evolution in time is not a quantity of interest. The term kinetic

is added when the system’s evolution in time is also captured. In any Monte Carlo

simulation, one first specifies an initial configuration, and then determines all of

the direct transitions to other configurations. One of these transitions, with its

corresponding configuration, is selected based on a random number. Depending

on the particular algorithm, the transition rates may be used in selecting the tran-

sition, or the transition may be rejected based on these rates. If the transition

is selected, then the system is moved to the new configuration. This process of

selection and possible execution of transitions is then repeated many times.

We use the kinetic Monte Carlo algorithm described by Fichthorn and Wein-

berg [15] to capture the correct evolution in time. At each Monte Carlo step, all

possible transitions out of the current configuration are enumerated, along with

their corresponding transition rates. One of these transitions is then selected using

a random number, where the probability of a transition being selected is propor-

tional to its transition rate. This selection criterion is represented mathematically

as ∑r−1
j=0 kj∑R
j=0 kj

≤ ξ1 <

∑r
j=0 kj∑R
j=0 kj

, (2.8)

where event r is selected if the above statement is true. Note that r may take any

integer value from 1 to R, and that R is dependent on the current configuration.

Each possible transition has an associated transition rate kj . The event selected

depends on the {kj}, and on a uniformly distributed random number ξ1 between
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zero and one.

In this algorithm, transition r is never rejected. Before actually executing the

transition, a time step is computed according to

∆t = − ln ξ2∑R
j=0 kj

, (2.9)

where ξ2 is a second uniformly distributed random number between zero and one,

and ∆t is the time interval between the previous transition and the execution of

transition r. The transition to the new configuration is then executed, and the

entire process is repeated.

The transition rates are dependent on the process parameters, which are func-

tions of time. This is reflected in the KMC simulations only approximately, since

we do not know a priori what the values of ∆t will be for a given simulation, and

since the input is effectively held constant over the interval of time between indi-

vidual events. However, in simulations of large surfaces, ∆t is much smaller than

the timescale over which the inputs are varied, so the resulting input trajectory for

each KMC simulation is a good approximation to the desired continuously varying

input.

2.3 Stochastic differential equations

The master equation is one mathematical representation of the lattice model, and

is a deterministic differential equation describing the evolution of the probability

distribution. Alternatively, a stochastic equation may be formulated for the height

at each surface site, whose simulation is equivalent to the KMC method. This

equation has been analyzed in the context of the solid-on-sold lattice model [4, 60]

in the limit of large system size, in which the surface height becomes a continuous

variable.

Conditions under which one may pass from discrete to continuous variables in

a master equation have been developed recently by Gillespie [20]. In this work

it is noted that when the transition rates vary smoothly in the discrete variable,
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and furthermore when the discrete variable becomes large, it may be possible to

pass to a continuous representation. A notable example used in this work is the

connection between the master equation for chemical reactions, and the large-size

limit of deterministic chemical kinetics. Because the reaction rate in a chemical

reaction is typically a monotonic, polynomial function of the number of species (the

discrete variable), in the limit of a large number of species, the integer number of

species may be replaced with a continuous variable. However, the solid-on-solid

transition rules do not satisfy Gillespie’s criterion for passage to continuous time.

The discrete variable is the height at each surface sites, while transition rates

depend on the local surface coordination. For example, a change in height of

one atom may drastically change the transition rate for surface diffusion, while a

change in height of 0.5 has no physical meaning.

The work of Vvedensky et al. [4, 60] instead utilizes an expansion based on the

system size to obtain passage to the continuous limit. However, they conclude that

computation of the resulting equation for a mechanism like surface diffusion re-

quires a treatment of noise correlations that ultimately provides no computational

advantage over actually performing Monte Carlo simulations.

We have not identified a use for the stochastic differential equations in under-

standing and controlling the evolution of surface morphology, and thus focus in

the remainder of the thesis on the master equation representation, using Monte

Carlo realizations as our simulation algorithm.
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Chapter 3

Fast Periodic Inputs

We now analyze the effects of periodic process conditions for the particular case

when the process condition period is short relative to the timescales of film growth.

In this situation the film is not able to respond fast enough to keep up with changes

in the process parameters. Instead, the film evolves as if the transition rates were

replaced by constant effective transition rates. We employ the method of averaging

[62] to compute these effective transition rates. Similar application of the averaging

theorem has been applied to mechanical systems with periodic inputs [5].

3.1 Derivation of effective rates

The method of averaging may be applied to a differential equation of the form

d

dt
z = εf(z, t), (3.1)

where z ∈ R
n, ε is a constant, and f is a function with continuous first and second

derivatives. When f is periodic in t with period τ , such that f(z, t + τ) = f(z, t),

its average is defined as

f̄(ẑ) ≡ 1
τ

∫ τ

0
f(ẑ, t)dt, (3.2)

and the averaged equation is defined as

d

dt
ẑ = εf̄(ẑ), (3.3)
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with ẑ ∈ R
n. The averaging theorem relates the difference between z and ẑ to the

size of ε. Specifically,

|z(t) − ẑ(t)| = O(ε) (3.4)

on a timescale of O(C
ε ) if |z(t0) − ẑ(t0)| < O(ε) for some initial time t0. The

constant C is independent of ε. Refer to Wiggins [62] for further discussion and a

proof of the averaging theorem. Notice that when ε is small, the averaged equation

(3.3) is a good approximation for the original equation (3.1).

The averaging theorem may be applied to the master equation (2.5) when the

process parameters are periodic, i.e., u = u(ωt) with frequency ω = 2π
τ . Restating

equation (2.5) to emphasize the dependence on time, we obtain

d

dt
x =

m∑
i=1

ki (u(ωt)) Nix. (3.5)

Before applying the method of averaging, equation (3.5) must be in the form of

equation (3.1) with a small parameter ε. With this goal we rescale time by ω.

Defining a new time s ≡ ωt and ε ≡ 1
ω , equation (3.5) becomes

d

ds
x = ε

m∑
i=1

ki (u(s)) Nix. (3.6)

We also define a function g(x, s)

g(x, s) ≡
m∑

i=1

ki (u(s)) Nix (3.7)

and rewrite equation (3.6) as

d

ds
x = εg(x, s). (3.8)

Equation (3.8) is now in the form of equation (3.1), to which the method of averag-

ing may be applied. Note that when the frequency ω is sufficiently high, ε is small,

and the averaged version of the master equation will be a good approximation to
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the full equation. We next compute the average of function g, as in equation (3.2),

observing that the period in scaled time s is 2π:

ḡ(x̂) =
1
2π

∫ 2π

0
g(x̂, s)ds (3.9)

=
1
2π

∫ 2π

0

m∑
i=1

ki(u(s))Nix̂ds (3.10)

=
m∑

i=1

(
1
2π

∫ 2π

0
ki(u(s))ds

)
Nix̂, (3.11)

where x̂ ∈ R
n is the averaged state in analogy to ẑ of equation (3.2). Following

equation (3.3), the averaged version of equation (3.6) is

d

ds
x̂ = εḡ(x̂) = ε

m∑
i=1

(
1
2π

∫ 2π

0
ki(u(s))ds

)
Nix̂. (3.12)

We may express this more compactly by defining the effective transition rate keff,i

as

keff,i ≡ 1
τ

∫ τ

0
ki(u(ωt))dt =

1
2π

∫ 2π

0
ki(u(s))ds. (3.13)

An effective transition rate is simply the average value of the transition rate over a

period, and is not a function of time. The averaged version of the master equation

in scaled time s is
d

ds
x̂ = ε

m∑
i=1

keff,iNix̂. (3.14)

In physical time t the averaged version of equation (3.5) is then

d

dt
x̂ =

m∑
i=1

keff,iNix̂. (3.15)

The timescale on which the approximation is valid is O(C
ε ) in scaled time s but is

O(C) in physical time t, independent of the frequency.

The numerical value of the constant C is dependent on the transition rates ki

and the matrices Ni. In the limit of an infinite number of configurations, C may

approach zero. However, in the simulations we consider film growth on a finite
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domain, where the number of configurations is truncated and finite. (This finite

domain approximation is valid as long as the surface correlation length is short

relative to the domain size.) In this situation C may be small, but is constant and

is only a lower bound on the timescale. We explore the timescales of applicability

further in the simulations of Section 3.2.

Notice that the averaged master equation (3.15) has the same form as equation

(3.5); the transition rates ki are simply replaced by keff,i. Application of fast

periodic process conditions is equivalent to a film growth process with constant

transition rates keff,i. If these effective rates are not attainable with constant

process conditions, then altered film evolution may be possible. In practice, the

process parameters are bounded, so we let umin and umax be the minimum and

maximum values of u, and ask the question: do there exist effective transition

rates attainable with periodic process conditions in the range [umin,umax] that are

not attainable with constant parameters in [umin,umax]?

No single transition rate keff,i can be outside the set of the ki’s attainable with

constant parameters, since the effective rate is simply the time average over the

instantaneous rate. However, new combinations of effective transition rates might

be obtained. The ratio of the transition rates of various mechanisms strongly

affects the evolution and final properties of a film—for example, the ratio of flux

to surface diffusion is a key parameter in the evolution of island density and surface

roughness [13, 64].

3.2 Demonstration of effective rates in Monte Carlo

simulations

The effects of periodic modulation of the process parameters are demonstrated

through two simple models of film growth. Both models are based on a cubic

lattice, have periodic boundary conditions, and disallow vacancies in the crystal.

Additionally, the models contain only one type of atomic species. Three types of

transitions may occur in each model: (1) adsorption of an atom from the gas onto
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Model 1 Model 2

k∗
1(F

∗) = F ∗ k∗
1(F

∗) = F ∗

k∗
2(T

∗) = ν∗
2 exp

(
−E∗

2
T ∗

)
k∗

2(T
∗) = ν∗

2 exp
(
−E∗

2
T ∗

)
k∗

3(T
∗) = ν∗

3 exp
(
−E∗

3
T ∗

)
k∗

3(F
∗, T ∗) = F ∗ν∗

3 exp
(
−E∗

3
T ∗

)

Table 3.1: Transition rates for Models 1 and 2. The dimensionless transition rates

k∗
i are functions of the dimensionless process parameters F ∗ and T ∗.

the surface, (2) diffusion of an atom with no side neighbors along the surface, and

(3) loss of an atom with no side neighbors to the gas. Each atom may have at

most four side neighbors. An atom with one or more side neighbors may undergo

no transition and thus is permanently incorporated into the film.

Two process parameters are considered in each model: the flux F of precursors

to the surface and the surface temperature T , so that u = {F, T}. We assume

that we have complete control over the flux and temperature within preset upper

and lower bounds, such that u may be constant or a periodic function of time.

In this study we use dimensionless quantities. The timescale is taken from the

maximum flux Fmax and the energy scale is kb Tmax, where kb is Boltzmann’s

constant and Tmax is the upper bound on temperature. The lengthscale is set by

the lattice spacing a. A dimensionless quantity will be denoted by an asterisk in

the remainder of this section—for example, transition rate k∗
i = kiFmax, activation

energy E∗
j = Ej

kb Tmax
, and height h∗ = h

a .

The transition rates for Models 1 and 2 are given in Table 3.1. The first

transition mechanism is adsorption; its rate is equal to the flux F ∗ in both models

(unity sticking coefficient). The second mechanism is surface diffusion. It is a

thermally activated process with proportionality constant ν∗
2 and activation energy

E∗
2 , and is again the same in both models. The only difference between Models 1

and 2 is the transition rate for the third mechanism, which results in the removal
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of an adatom from the surface. In the first model, the third mechanism is a

thermally activated process, which is only dependent on the temperature, with a

proportionality constant ν∗
3 and activation energy E∗

3 . However, in Model 2 the

third mechanism is an etching process, which is thermally activated as in Model 1

but is also proportional to the flux. In Model 1, atoms desorb at high temperature

due to thermal effects, but in Model 2, high temperature and high flux must

coincide to remove atoms from the surface.

First consider the evolution of a film described by Model 1, which we investigate

through kinetic Monte Carlo simulations. The physical parameters are determined

by selecting the values of the transition rates at the upper and lower bounds of the

flux and temperature: k∗
1(F

∗
min, T

∗) = 0, k∗
2(F

∗, T ∗
min) = 0.01, k∗

2(F
∗, T ∗

max) = 1000,

k∗
3(F

∗, T ∗
min) = 10, and k∗

3(F
∗, T ∗

max) = 1000. As a final constraint we select

T ∗
min = 2

3 to obtain physically realistic activation energies.

Before analyzing periodic flux and temperature, we visualize the set of transi-

tion rates attainable with constant flux and temperature. Because there are only

three transition mechanisms, we may plot the transition rates against each other

and obtain the two-dimensional surface of transition rates. This surface is shown

in Figure 3.1. The surface is two-dimensional because there are two process pa-

rameters and is bounded because the process parameters have upper and lower

bounds.

Any combination of transition rates which is not on the surface of Figure 3.1

cannot be obtained with constant flux and temperature. However, periodic inputs

may produce a combination of effective transition rates which is not on the surface.

Consider the input pictured in Figure 3.2. The flux is set to the maximum value,

but the temperature alternates between its upper and lower bounds. The set of

effective rates associated with this periodic input may be computed with equation

(3.13), and is denoted by the asterisk in Figure 3.1. These rates are not achievable

with constant flux and temperature, and result in a decrease in desorption relative

to diffusion and adsorption. An effective transition rate is the time average of the

instantaneous rate over a period, and thus for the input in Figure 3.2, the effective
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Figure 3.1: The surface of transition rates achievable with constant process pa-

rameters for Model 1. The solid line guides the eye to the asterisk, which marks

the set of effective transition rates for the input in Figure 3.2. The instantaneous

constant transition rates used to generate the set of effective rates are marked with

squares.
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Figure 3.2: A set of periodic process parameters for Model 1.



29

0 10 20 30 40 50 60 70

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

 h*

 W
*

C
A

B

 F* = 0.50
 F* = 0.75
 F* = 1.0
effective

Figure 3.3: KMC simulations of Model 1: Roughness W∗ versus thickness h∗ for

various constant process parameters and for the set of effective transition rates.

The final values of various simulations are marked: (A) effective rate, (B) F ∗ = 1.0,

T ∗ = 0.73, (C) F ∗ = 1.0, T ∗ = 0.94.

rate is the average of the transition rates at {F ∗
max, T

∗
max} and {F ∗

max, T
∗
min}. These

instantaneous rates are marked by the squares in Figure 3.1. Any point along the

dashed line connecting the squares can be achieved by altering the duty cycle of

the modulation of Figure 3.2.

Periodic process parameters enable new effective transition rates, which may

ultimately result in altered film properties. We use kinetic Monte Carlo simu-

lations to contrast the mean thickness h∗ and root-mean-square roughness W ∗

obtained under constant and periodic inputs. Each simulation is run from t∗ = 0

to t∗ = 100, which results in a thickness of up to 100 layers. Simulations are per-

formed for representative values of constant flux and temperature, as well as for

the set of effective transition rates considered above. Figure 3.3 displays roughness

versus thickness for all of the simulations. Notice that the final combination of
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thickness and roughness for the effective case, marked by A, could not be achieved

by constant inputs in the fixed time interval we considered. The periodic input

suppresses desorption relative to diffusion, enabling a thicker, smoother film. To

achieve the same thickness in the same amount of time with constant inputs, the

roughness must double to nearly 1.5, as marked by B in Figure 3.3; this film is

grown under constant parameters with F ∗ = 1.0, T ∗ = 0.73. It is also evident from

Figure 3.3 that several constant parameter curves remain near to the effective rate

curve, particularly for growth at F ∗ = 1.0 and T ∗ = 0.94, which is marked by C

in Figure 3.3. However, in our finite time interval this curve does not extend to

point A. Thus, with constant flux and temperature we might be able to produce a

film similar to that produced with the periodic inputs, but the growth time would

be longer.

We will now analyze Model 2, whose transition rates are shown in Table 3.1.

The physical parameters for Model 2 are selected by first setting k∗
1(F

∗
min, T

∗) = 0,

k∗
2(F

∗, T ∗
max) = 1000, and k∗

3(F
∗
max, T

∗
max) = 10, 000. We also want k∗

2(F
∗, T ∗

min)

and k∗
3(F

∗
max, T

∗
min) to be negligible, and consequently set ν∗

2 = 1013, ν∗
3 = 1012,

and T ∗
min = 1

2 .

Figure 3.4 contains the surface of transition rates achievable with constant

inputs. Because the desorption rate is a function of both flux and temperature,

the shape of the constant input surface is qualitatively quite different from the

surface associated with Model 1 (Figure 3.1). We again select a periodic input

composed of two constant parameter settings, this time alternating between high

flux at low temperature, and low flux at high temperature, as pictured in Figure

3.5. The rates associated with these two constant settings are marked with squares

in Figure 3.4; the asterisk denotes the set of effective rates associated with the input

in Figure 3.5. Variations in the duty cycle of this input produce other effective

rates, which lie along the dashed line in Figure 3.4. The set of effective rates

is dramatically different from any combination of rates achievable with constant

inputs, which suggests that new film properties may also be obtained.

Kinetic Monte Carlo simulations of Model 2 are shown in Figure 3.6 for a range
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Figure 3.4: The surface of transition rates achievable with constant process pa-

rameters for Model 2. The solid line guides the eye to the asterisk, which denotes

the set of effective transition rates for the periodic input in Figure 3.5. The instan-

taneous constant transition rates used to generate the effective rates are marked

with squares.
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Figure 3.5: A set of periodic process parameters for Model 2.
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Figure 3.6: KMC simulations of Model 2: Roughness W∗ versus thickness h∗ for

various constant process parameters and for the effective transition rates. The

final values of various simulations are marked: (A) effective rate, (B) F ∗ = 1.0,

T ∗ = 0.79.
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of constant parameters and for the effective transition rates of Figure 3.5. We again

focus on the combinations of roughness and thickness that can be obtained up to

time t∗ = 100. The effective rate curve is qualitatively different from the constant

input curves—it lies almost completely outside the region containing the constant

input curves. Figure 3.7 shows the final surfaces of a film grown under the set of

effective transition rates (point A in Figure 3.6) and a much rougher film of the

same final thickness grown under the constant process parameters of F ∗ = 1.0 and

T ∗ = 0.79 (point B in Figure 3.6). A significant fraction of surface A is covered by

smooth terraces, while surface B is dominated by step edges. The physical mech-

anism for the smoothing associated with modulation is simple—under constant

process conditions the temperature must be raised to induce smoothing, which re-

sults in the loss of atoms due to desorption. The use of periodic parameters enables

the suppression of desorption, while still allowing smoothing through diffusion.

We derived effective transition rates associated with fast periodic process con-

ditions, but have not yet addressed what we mean by fast. Let us now consider

modulated growth at various frequencies and compare to growth at the corre-

sponding set of effective transition rates. We do not yet restrict the modulation

to be fast. In the context of the KMC algorithm, these two cases differ in the

correlation in time between individual events. As an example we consider mod-

ulated growth in which only adsorption occurs in the first half of a period, and

only surface diffusion occurs during the second half. When the period is long and

many atoms are adsorbed in the first half of the period, the typical time between

adsorption events will be shorter than for growth at the constant effective rates,

increasing the maximum instantaneous adatom density and island nucleation rate,

and potentially altering the overall evolution of the film. However, as the modula-

tion period approaches zero, at most one event will occur during each period, and

the distribution of adsorption events in time will approach the distribution of the

constant effective transition rates.

In the limit of an infinite number of surface sites, the time between events

approaches zero, so it is not practical to modulate faster than the time between
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(a)

(b)

Figure 3.7: KMC simulations of Model 2. Only a portion of the 200×200 domain

is shown. (a) Final surface of a film grown at the effective transition rates, marked

by A in Figure 3.6. (b) Final surface of a film grown at the constant parameters

F ∗ = 1.0, T ∗ = 0.79, marked by B in Figure 3.6. Each atom with four side

neighbors is light-colored—atoms with at least one empty side bond are dark.
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individual events. However, we may still be able to replicate the evolution of

the constant effective rates using modulated growth of finite period. One such

exception occurs when sites are spatially separated beyond the correlation length

of the film. We again focus on the example in which only adsorption occurs in the

first half of a period, and only surface diffusion occurs during the second half. If

two adsorption events occur sequentially at adjacent sites, a dimer will be created,

potentially leading to the growth of an island. But if instead the two adsorption

events occur sequentially, but separated by a large distance, no island will be

nucleated. A second exception occurs when a sequence of events may be lumped

into a single aggregate event, such as the adsorption of an adatom followed by a

series of diffusion events. When such aggregate events dominate the evolution, we

can replace the individual events by the aggregate event in the set of allowable

transitions, ultimately increasing the interevent time.

The fast limit is explored in simulation for Models 1 and 2 of Section 3.2, using

the periodic parameters of Figures 3.2 and 3.5. The modulation period is decreased

until the roughness vs. thickness curves approach the curve associated with the

constant effective transition rates. These simulations are plotted in Figures 3.8 and

3.9. In both cases the curve for a period of τ∗ = 0.01 is near the effective rate curve.

Contrast this with the typical interevent time for effective rate growth, which must

necessarily be less than the typical time between adsorption events only. Letting

N be the number of surface sites, the time between adsorption events is F ∗
N or

0.000025 for our 200×200 domain at the maximum flux.

As a final point we stress that the period required for effective rate behavior is

highly dependent on the transition mechanisms and rates, and thus the feasibility

of process parameter modulation must be assessed on an individual basis. However,

throughout the last decade various film growth processes have been developed to

deposit films under periodic process conditions. To modulate the flux of species

to the surface, two primary methods have been employed: (1) the use of valves to

switch flow between the chamber and a vent line [27], and (2) sequential exposure

to flux as the substrate rotates through different environments [44]. Methods for
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Figure 3.8: KMC simulations of Model 1 on a 200×200 domain. A variety of

modulation periods are simulated, as well as growth at the set of constant effective

transition rates.
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Figure 3.9: KMC simulations of Model 2 on a 200×200 domain. A variety of

modulation periods are simulated, as well as growth at the set of constant effective

transition rates.
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temperature modulation include resistive heating [48], laser irradiation [57], and

supplemental cooling with water and liquid nitrogen [14].

3.3 Convex hull interpretation of effective rates

Having shown by example that periodic process parameters can produce film prop-

erties unattainable with constant conditions, we will now precisely define the set of

all effective transition rates in terms of the set of all possible instantaneous transi-

tion rates. Recall that in the examples effective rates were constructed that were

on lines connecting instantaneous transition rates. This was accomplished by mod-

ulating between two settings of the process parameters. By alternating between

three or more settings, additional effective transition rates might be constructed;

and, in a more general setting, any continuous-time function of the process param-

eters could be approximated with a large number of constant segments.

We can express the effective transition rate as a sum over the constant segments

keff,i =
1
τ

r∑
j=1

ki(uj)(αjτ) =
r∑

j=1

αjki(uj), (3.16)

where τ is the period, αj is the fraction of the period spent at process condition

uj , and r is the number of different process settings per period. By definition,∑r
j=1 αj = 1.

The relationship between ki and keff,i may be expressed more precisely in terms

of convex sets [49]. A set, or collection of points, is a convex set if for every line

segment connecting two points in the set, the entire line segment is also in the set.

This definition is consistent with everyday use of the word “convex.” Consider

the sets shown in Figure 3.10. Set S1 is convex, while Set S2 is not, because the

dashed line connecting points in S2 is not contained in S2.

Clearly, not all sets are convex. However, beginning with a nonconvex set S

one can create a convex set, con(S), called the convex hull of S. This set can be

constructed iteratively by connecting every two points in S with a line segment,
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Convex Not convex

Set S 1 Set S 2

Figure 3.10: Examples of convex and nonconvex sets. The set on the right is not

convex, because a line segment connecting two points in the set is not in the set.

and then including all of the line segments in a second set along with all the points

in the original set. Every two points in the second set are again connected with

line segments and are included, along with the second set, in a third set. This

procedure is repeated until no new points are added. When this is achieved, the

set con(S) is obtained, which is by definition a convex set.

The concept of making a set convex is illustrated by Figure 3.11. The sets on

the left are not convex, and their convex hulls are shown in the right column. The

convex hull of a set may be the same dimension as the original set, or it may be

of greater dimension.

The procedure described above involves taking weighted averages of two ele-

ments of S, and adding those points to the set. Another way to express the convex

hull of a set S is in terms of three or more points in S. When the number of

elements of S taken at a time is not limited, only a single step (no iterations) is

required to construct the convex hull, so that x is in con(S) if and only if

x =
r∑

j=1

αjs
j , (3.17)

where sj are points in set S, αj are positive constants, and
∑r

j=1 αj = 1. Now

compare equation (3.17) to equation (3.16). If we define {k} to be the set of all

possible instantaneous transition rates, where each k is the m-dimensional vector

of the ki’s, and define {keff} equivalently to be the set of all effective transition
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Figure 3.11: Examples of nonconvex sets and their convex hulls. The dimensions

of these sets are also shown. The dark grey refers to the original set, which is

always part of the convex hull, while the light grey is the part of the convex hull

that is not in the original set.
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rates, then

{keff} = con ({k}) . (3.18)

That is, the set that includes all possible effective transition rates that are achiev-

able through periodic process parameters is the convex hull of the set of instanta-

neous transition rates. This result precisely defines the set of all possible effective

transition rates, given the dependence of the transition rates on the inputs, and

the upper and lower bounds on the inputs.

The convex set description of the effective transition rates is useful because

a number of theorems have been proven. We use one such theorem in the next

section to construct simple periodic process parameters for any achievable effective

transition rate.

3.4 Linear programming solution for periodic inputs

Computing the effective rates associated with a particular input requires only the

evaluation of equation (3.13), but the inverse problem is not as straightforward:

given a set of desired effective transition rates, compute the periodic process pa-

rameters to produce it, if they exist. Carathéodory’s theorem, a theorem in convex

analysis, provides an answer [49]. Specifically, the theorem states that the maxi-

mum number of points required to generate any possible weighted average is n+1,

where n is the dimension of the space containing the original set. In our case the

dimension of the space of rates is m, the number of transition mechanisms, so

any achievable set of effective transition rates can be obtained by periodic process

parameters which are composed of m + 1 constant segments. In the examples in

Section 3.2, three transition mechanisms are considered, so to achieve any possible

set of effective rates, no more than four segments are needed. We considered pro-

cess parameters with only two segments and obtained effective rates unattainable

under constant conditions.

The proof of Carathéodory’s theorem [49] suggests a two-step method to con-

struct a desired effective rate as the weighted average of m+1 constant-parameter
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rates. First, a weighted average of a large number of constant-parameter rates is

computed which is equal to the desired effective transition rates. The number of

rates included in the average is then reduced to m + 1. If the desired effective

rates cannot be expressed as a weighted average of constant-parameter rates, no

solution to the first step will be found. The computation requires discretization of

the surface of constant-input rates, after which the fraction of the period spent at

each point is computed as a linear program [31]. Matlab code for this problem is

included as Appendix A.
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Chapter 4

Model Reduction and System Identification

The infinite dimension of the solid-on-solid master equation complicates both sim-

ulation and analysis of its dynamics. Stochastic simulations using Monte Carlo

techniques can provide good predictions of physical properties of interest, but an

equivalent solution to the analysis problem has not been identified. In this chapter,

we examine several approaches to reduce the dimension of the system by reducing

the number of configurations. The resulting reduced-order model is still a master

equation, whose expected properties approximate the expected properties associ-

ated with the original system. A system identification technique is then developed,

enabling the coefficients of either the original or the reduced master equation to

be extracted from simulation data using a single linear computation. The chapter

concludes with the introduction of an alternate form of the lattice model, in which

the number of adsorption events executed replaces time as the dependent variable.

This model advances in discrete steps and may provide a better low-order rep-

resentation for typical behavior seen in Monte Carlo simulations. An analogous

discrete identification process is developed, again using only linear computations.

The example systems explored in this chapter consist of one-dimensional sur-

faces with a small number of sites. They are chosen to capture important features

associated with surface evolution, while remaining computationally tractable for

the analysis developed in this chapter. The study of larger, more realistic domains

is reserved for Chapter 5.
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4.1 Configuration reduction in the lattice model

If the initial state of the system is unconstrained, such that any configuration

may initially be occupied, then it is not possible to eliminate any configurations

from the master equation. However, if the set of initial configurations is restricted

to some subset, then the number of configurations in a master equation may be

larger than the minimum number needed to capture the evolution of the system.

For example, any configuration that is initially occupied with zero probability will

continue to be occupied with zero probability if there exists no path of transitions

from an initially occupied configuration. In other words, the set of configurations

may be partitioned into subsets that are connected via transition mechanisms, and

if no configuration in any subset is initially occupied, than no configuration in the

subset will ever be occupied. All configurations in the subset may therefore be

eliminated from the master equation.

Another situation where the number of configurations is not minimal is when

there exist redundant configurations or sets of configurations. In this case multiple

configurations may always evolve in the exactly the same way, and may therefore

be grouped into a single configuration. The initial state will again influence this

grouping. For example, two configurations that are identically connected to the

remaining configurations will not evolve identically if their initial probabilities

differ.

In the preceding two examples, it is possible to reduce the number of configu-

rations in a master equation while incurring no error in the evolution of expected

properties. However, it may be that these criteria are only approximately satisfied,

and that a reduced-order master equation may be obtained that approximately

predicts the evolution of expected properties of the original system. Such ideas

have been developed within the economics community for probabilistic discrete-

time Markov chains [34, 55], which may be viewed as a discrete-time analog of the

continuous-time master equation. In particular, it was recognized by Lange [34]

that if states always evolve in a fixed ratio, they may be grouped into a single state
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via a linear coordinate transformation. Simon and Ando [55] later considered sys-

tems that can be decomposed into weakly coupled subsystems. Transitions within

each subsystem are fast, while transitions between subsystems are slow. When

this is true, the short-time behavior may be estimated by ignoring any coupling

between subsystems, while at long times the subsystems may be assumed to be

internally at equilibrium (and therefore with states at fixed ratios), so the dynam-

ics are approximated by transitions between subsystems. Thus, in the short-time

limit, the system dimension is reduced to the number of states in a subsystem,

while at long times the system dimension is reduced to the number of subsystems.

Ando and Simon [55] also note that states may evolve in fixed ratios either because

they are strongly coupled, or because they are similarly coupled to the rest of the

system. In either case, one might consider the coordinate transformation of Lange

[34].

We view the reduction of master equation configurations as primarily an issue

of timescales, and first define a time, tf , as the maximum time over which we are

interested in the evolution. There may be transitions that rarely occur over this

timescale, but which over much longer times would be important, as described in

the preceding paragraph. We may thus choose to eliminate these transitions from

the master equation, and, by eliminating the transitions, remove the possibility of

ever transitioning into certain configurations. These configurations may then be

removed from the master equation.

There may also be a minimum timescale over which we wish to resolve the

evolution of the master equation. For example, in the solid-on-solid master equa-

tion adatoms may hop from site to site at a timescale much faster than the time

in which islands nucleate and steps propagate. One may thus choose a time step

∆t < tf that is small enough to capture the evolution of morphological features,

but not of individual atomic transitions. In the following development, we assume

for convenience that nt ≡ tf/∆t is an integer. To guarantee that extreme oscilla-

tions are not occurring between the time steps, one should examine the eigenvalues

of the master equation to ensure sufficient damping of modes with period smaller
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than ∆t. However, once ∆t has been established, the configuration set may be

reduced by identifying configurations that achieve their equilibrium ratios with

each other in times less than ∆t. These configurations may be then grouped into a

single configuration via a coordinate transformation, in which one new coordinate

is the sum of the probabilities over the group, while others represent differences

between the coordinates, which are exactly zero in the fixed-ratio limit.

We quantify the approximation introduced by the configuration reduction by

considering the map between a probability distribution at time j∆t and at the

next time step (j + 1)∆t, where j = 0, 1, ...nt. The input vector u is assume to be

fixed between the time steps, with constant value uj in the jth interval, although

one could also use fast periodic inputs to obtain constant effective transition rates

over the interval. A discrete-time version of the master equation is thus obtained:

xd[j + 1] = Aujxd[j], (4.1)

defining

Auj ≡ exp

(
∆t

m∑
i=1

ki(uj)Ni

)
, (4.2)

and with matrix Auj ∈ R
n×n, and discrete-time probability vector xd[j] ∈ R

n

representing the probability distribution at t = j∆t.

Next consider a map associated with some approximation to the original sys-

tem, for example due to the removal of a transition. This matrix is referred to

as Ãuj ∈ R
n×n, and is associated with another probability vector x̃d[j] ∈ R

n, to

obtain an approximating system

x̃d[j + 1] = Ãuj x̃d[j]. (4.3)

We wish to quantify the error associated with the approximation, and compare

the probability distributions using the one-norm, ‖ · ‖1. This norm is the sum of

the absolute value of the elements for a vector, and the maximum column sum of

the absolute value for a matrix. It is particularly useful for probabilistic systems,
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since the one-norm of a probability vector is one, and the one-norm of discrete-time

stochastic matrices like Auj is also one. Comparing the two systems, we obtain

‖xd[j + 1] − x̃d[j + 1]‖1 = ‖Aujxd[j] − Ãuj x̃d[j]‖1 (4.4)

= ‖Aujxd[j] − Ãujxd[j] + (4.5)

Ãujxd[j] − Ãuj x̃d[j]‖1 (4.6)

≤ ‖Aujxd[j] − Ãujxd[j]‖1 + (4.7)

‖Ãujxd[j] − Ãuj x̃d[j]‖1 (4.8)

≤ ‖Auj − Ãuj‖1‖xd[j]‖1 + (4.9)

‖Ãuj‖1‖xd[j] − x̃d[j]‖1. (4.10)

Using the fact that ‖xd[j]‖1 = 1 and ‖Ãuj‖1 = 1, defining εuj ≡ ‖Auj − Ãuj‖1,

and assuming that xd[0] = x̃d[0], we obtain a recursive equation for the bound

‖xd[j + 1] − x̃d[j + 1]‖1 ≤ εuj + ‖xd[j] − x̃d[j]‖1 (4.11)

at time (j + 1)∆t. Thus, with each additional time step, the maximum additional

error incurred is εuj . Because we are only considering a maximum time of tf , we

may impose a maximum acceptable value on εuj to ensure that the error after

tf/∆t time steps is sufficiently small.

We now explore physical situations in the solid-on-solid lattice model in which

an approximate equation, associated with Ãuj , exists such that εuj is small for the

range of uj that is of interest, and such that the approximate version admits a

configuration reduction.

4.1.1 Weak coupling and configuration elimination

Let us first consider the weak-coupling limit [55], in which the states may be

arranged such that

Auj = A∗
uj

+ ∆Auj , (4.12)
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where A∗
uj

∈ R
n×n and ∆Auj ∈ R

n×n. We define εuj ≡ ‖∆Auj‖1. Furthermore,

A∗
uj

=




(A∗
uj

)1

(A∗
uj

)2
. . .

(A∗
uj

)N




(4.13)

is a block-diagonal matrix, with N decoupled subsystems described by the (A∗
uj

)r, r =

1, ...N . The matrix A∗
uj

is a stochastic matrix, such that all elements are positive

and the columns sum to 1, as is (consequently) each block (A∗
uj

)r. The columns of

∆Auj thus sum to 0. We consider the coupling between the subsystems to be small

if εuj is small, and may then use the block diagonal matrix as our approximate

system, such that Ãuj ≡ A∗
uj

. Although the system described by Ãuj is not of

reduced dimension, its dimension may be reduced without error by eliminating all

subsystems that are not represented in the initial condition.

We now consider the idea of decoupling in a solid-on-solid lattice model with

four sites on a one-dimensional surface. The boundary conditions are periodic.

Ideally, one would list all possible configurations, and then apply the reduction

ideas previously described, but even for a small surface, the number of configura-

tions is infinite—one associates with each surface site an integer height, which may

take a value from 0 to ∞. However, for finite times and with some basic physical

assumptions, one may eliminate from consideration certain configurations that are

highly improbable. For example, one might select a finite maximum and minimum

height, thus making the number of configurations finite.

Instead of considering all configurations and then eliminating some, we select

an initial configuration, and then add configurations to which the system is likely

to transition. We refer to this process as enumeration of configurations. The

set of configurations identified during the enumeration will depend both on the

initial configuration and the transition mechanisms. This process is performed

iteratively. One first defines a set of possible initial configurations, and then applies
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Figure 4.1: One example of a weakly coupled configuration. Transitions from A

to B are much slower than transitions from B to C. When the minimum timescale

of interest is much greater than that of the fast transition, the system may be

approximated by the structure on the right, in which B is completely decoupled

from A and C.

the microscopic transition rules to determine all configurations linked to the initial

set by one transition. These configurations are added to the configuration set. This

process is repeated until no new configurations are added.

When adsorption is one of the transition mechanisms, configurations will con-

tinue to be added at each iteration, and some additional criterion is required to

close the enumeration process. One could consider a finite time, and therefore

a finite number of adsorption events. Alternatively, one may reject individual

transitions that, while not impossible, are highly unlikely. We wish to distinguish

transitions based on their importance during the enumeration process, and only

add configurations to the configuration set if they contribute significantly to the

dynamics via Au. Configurations are not rejected explicitly during the enumer-

ation process, but instead transition paths are rejected, which may subsequently

reduce the number of configurations added at each iteration.

We use as our criterion the level of coupling between configurations, and con-

sider, in this example, configurations with the structure illustrated by Figure 4.1

to be weakly coupled. If there is a separation of transition rates such that the
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rates of transitions entering configuration B are much less than any single transi-

tion leaving it, and such that the rate leaving is much greater than 1/∆t, then at

the end of each time step, the system will be found in configuration B with very

small probability. We may then approximate the connectivity graph as shown in

Figure 4.1, by effectively assuming that the transition rate leaving B is infinite.

Configuration B is thus completely decoupled from the other configurations in the

approximate system.

As a brief aside, we contrast this assumption with a singular perturbation

assumption, in which configuration B would be assumed to be at its equilibrium

value [32, 45]. While this might also produce a good estimate of the system, the

resulting model would be nonlinear in the inputs and state matrices, and would

therefore not be a master equation. We will exploit the structure of the master

equation in the work that follows and therefore do not further explore a singular

perturbation approach.

At each iteration in the enumeration process, we formulate a master equation

and corresponding Au for a preselected ∆t and for the range of u of interest. Con-

sider now a time step ∆t = 0.01 s and particular inputs such that kads = 1 s−1 and

kdif,0 = 102, 103, and 104 s−1. The enumeration process is illustrated by Figure

4.2, which we initiate with a flat configuration, labeled as configuration A. In the

first iteration, only one new configuration is identified, which is labeled as con-

figuration B. We do not distinguish here between translations and reflections of

configurations, since they all evolve identically in this example. However, the mul-

tiplicities are accounted for in constructing the master equations. Configuration

B is accessed through an adsorption event, while no new configurations are found

through adatom diffusion. We then apply the weak-coupling criterion to a master

equation based on configurations A and B, using the microscopic transition rules

for adsorption and diffusion. For kdif,0 = 103 s−1,

Au(kdif,0=103 s−1) =


0.961 0

0.039 1


 . (4.14)
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Figure 4.2: Enumeration of configurations for the four-site adsorption-diffusion

example. At each iteration, the current configuration set is expanded by executing

each possible microscopic transition on each configuration in the initial set. These

configurations may then be rejected if they fail the test pictured by Figure 4.1.

Configurations that fail the test are surrounded by the gray boxes, while configu-

rations that pass are included in the next iteration. The process ceases when no

new configurations are added in an iteration. The integers are the coefficients in

the state matrices of the master equation.
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The associated master equation includes only an adsorption transition from A to

B, and is thus independent of the diffusion rate. We now search Au for decoupled,

or nearly decoupled, subsystems. We could consider the off-diagonal element of

0.039 to be small, resulting in a decoupled system with no transitions. However,

we wish to consider growth over multiple layers, which, with ∆t = 0.01 s, implies

hundreds of time steps. Thus, an error of 0.039 added at each time step would

not be small. We therefore conclude that configuration B should be accepted, and

move on to a second iteration.

In the second iteration, three new configurations are identified through ad-

sorption transitions from configuration B. No new configurations are added via

diffusion, although diffusion transitions are possible between the new C configu-

rations, as seen in Figure 4.2. We again formulate the master equation, this time

for a configuration set of A, B, C1, C2, and C3, yielding

Au(kdif,0=103 s−1) =




0.961 0 0 0 0

0.038 0.961 0 0 0

0.001 0.038 1 1 1

0.000 0.000 0 0.000 0

0.000 0.000 0 0 0.000




(4.15)

for kdif,0 = 103 s−1. We observe that the fourth and fifth configurations (C2 and

C3), are nearly zero, since every element in the fourth and fifth rows is small.

However, C2 and C3 are not completely decoupled from the system, since their

values will contribute to the probability of C1 at the next time step. The physical

situation is not that there are only slow transitions into C2 and C3, but that

configurations C2 and C3 quickly transition into C1, since diffusion is much faster

than adsorption. Configurations C2 and C3 are shaded in gray in Figure 4.2,

indicating that they would be eliminated according to the criterion of Figure 4.1.

We thus construct an approximating master equation in which transitions into C2

and C3 are redirected into C1. This is equivalent to assuming infinite transition
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Iteration 1 2 3 4

εkdif,0=102 s−1 0 1.3 × 10−2 2.5 × 10−2 4.7 × 10−2

εkdif,0=103 s−1 0 1.4 × 10−3 3.9 × 10−3 1.1 × 10−2

εkdif,0=104 s−1 0 1.4 × 10−4 3.8 × 10−4 1.1 × 10−3

Table 4.1: Error associated with the approximating map at each iteration in the

enumeration process.

rates for these events. The resulting approximating map for kdif,0 = 103 s−1 is

Ãu(kdif,0=103 s−1) =




0.961 0 0 0 0

0.038 0.961 0 0 0

0.001 0.039 1 1 1

0 0 0 0.000 0

0 0 0 0 0.000




. (4.16)

The difference between the exact and approximating maps, as measured by the

the previously defined εu, is given in Table 4.1, along with the ε values for the

other diffusion rates, and for subsequent iterations in the enumeration process.

The values of ε are the maximum one-norm error that can be added during one

time step for a particular set of inputs. As the diffusion rate increases, the assump-

tion that transitions from C2 and C3 to C1 are infinitely fast becomes a better

assumption. If one chooses to make this type of assumption at each iteration, then

the enumeration process closes with the four-configuration system in Figure 4.2.

Note that the values ε in Table 4.1 do not represent an overall error in the

evolution of the final system, as compared to the original infinite-configuration

system. We simply use the values of ε as guidelines for selecting important config-

urations, by assessing at each iteration the difference between a system based on

the current configurations, in relation to a system in which the new configuration

is included.

The final four-configuration system of Figure 4.2 represents the limiting be-

havior of high diffusion, in which the surface evolves in compact, two-dimensional
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Figure 4.3: Another example of a weakly coupled configuration. If configuration

B is rarely occupied, due to fast transitions out of it, then transitions from B to

D through a slower transition mechanism are unlikely.

islands, returning to a flat configuration at the end of each monolayer of growth.

We also mention two other simple models, and their limiting cases. If we had

considered desorption instead of surface diffusion, in the limit of high desorption,

the limiting case would have been only the single flat surface, since each adatom

would desorb before another adsorbed. Alternatively, if the surface had contained

a step due to miscut, and the surface evolved under adsorption and either surface

diffusion or desorption, the limiting case would be the propagation of the step,

with configurations corresponding to various locations of the step.

We would ultimately like to capture behaviors more complex than these lim-

iting cases, and now consider a different criterion in the enumeration process, as

illustrated in Figure 4.3. In contrast to Figure 4.1, configuration B is now kept in

the system, even though transitions leaving it are much faster than those coming in.

However, configuration B has a small probability (as measured by the elements of

its corresponding row of Au), so transitions out of B through the slower mechanism

are quite rare. The enumeration process, using this criterion, is shown in Figure

4.4. The first two iterations are not shown, but neither result in the rejection of

any transition or configuration. However, configurations C2 and C3 are deemed to

be unlikely, since they may only be entered by adsorption, but quickly transition
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Figure 4.4: Enumeration of configurations for the four-site adsorption-diffusion

example, with the rejection criterion pictured in Figure 4.3. During the first two

iterations, no configuration is rejected, but the shaded boxes denote configurations

rejected in iterations 3 and 4. The integers are the coefficients in the state matrices

of the master equation.
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Iteration 1 2 3 4

εkdif,0=102 s−1 0 0 3.8 × 10−3 2.1 × 10−2

εkdif,0=103 s−1 0 0 9.6 × 10−7 3.0 × 10−3

εkdif,0=104 s−1 0 0 9.6 × 10−9 3.0 × 10−4

Table 4.2: Error associated with the approximating map at each iteration in the

enumeration process of Figure 4.4.

out through surface diffusion. Thus, new configurations in the third iteration that

are only accessed through adsorption from C2 and C3 are examined for decoupling,

as reflected by ε in Table 4.2. Note that the values of ε in Table 4.2 are less than

the values for Table 4.1 for the same inputs and transition rates. The criterion of

Figure 4.3 is less severe than that of Figure 4.1, and ultimately leads to a closure of

the enumeration process with the nine-configuration system shown in Figure 4.5.

While this system still only captures the smooth two-dimensional growth mode, it

is able to capture the dependence of adatom density on the diffusion rate.

4.1.2 Grouping of configurations

After a configuration set has been determined through enumeration, one might

wish to further reduce the number of configurations. We consider the system of

Figure 4.5, and, instead of looking for configurations that we may decouple from

the system, we instead look for configurations that evolve in a fixed ratio, either

because they are tightly coupled to each other and come to equilibrium with each

other at a timescale less than ∆t, or because they are similarly coupled to the

rest of the system. Examination of Figure 4.5 suggests that E1 and E2 might be

grouped, since they are closely coupled via fast surface diffusion. C2 and C3 are

not closely coupled to each other, but might be expected to evolve similarly, since

they are both accessed when half a monolayer has been deposited, and since they

are both accessed via adsorption, and transition out through surface diffusion. We

consider both (E1, E2) and (C2, C3) as candidates for grouping.

We estimate the ratio in which the configuration pairs evolve by examination of
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Figure 4.5: Configurations and connectivities for the four-site master equation

under adsorption and adatom surface diffusion, as determined by the enumeration

process pictured by Figure 4.4. The configurations grouped within the boxes may

evolve in a fixed ratio, and are subsequently grouped into a single configuration.
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εkdif,0=102 s−1 5.0 × 10−2

εkdif,0=103 s−1 8.0 × 10−5

εkdif,0=104 s−1 5.9 × 10−9

Table 4.3: Error associated with grouping configurations.

the corresponding rows of A. For the highest values of surface diffusion, we observe

a ratio of C2/C1 = 2, and E3/E2 = 1.5, while at lower diffusion the ratios are

less constant. The appropriateness of these groupings is quantified through ε. We

formulate an approximating master equation in which C1 and C2, and E2 and E3,

are force to evolve in the fixed ratio associated with high surface diffusion. This

is the coordinate transformation of Lange [34], which incidentally is equivalent

to projecting the original equation onto only the new coordinates that represent

probabilities (not differences of probabilities). The values of εu for three values

of the diffusion rate are given in Table 4.3. Note that in this case, because we

started with a finite configuration set, εu now represents the error associated with

the reduction. This new system now has seven configurations, not nine, since

two pairs have been grouped. At the lowest diffusion rate considered, the error

associated with the grouping could be greater than one after hundreds of time

steps, although the error will be small at the higher rates. Also realize that the

inputs can be changed at each time step, so the diffusion rate could potentially be

lower briefly to 102 s−1, as long as it is not maintained there.

4.1.3 Example: six-site lattice model

We now examine a slightly more complex system: a six-site lattice with adatom

adsorption and surface diffusion, in the limit of kdif,0 
 kads. Kinetic Monte

Carlo simulations of this system are shown in Figure 4.6, for kads = 1 s−1 and

kads = 1 × 104 s−1. Three measures of surface properties are plotted: fractional

monolayer coverage, root-mean-square roughness, and adatom density. The mean

of 1000 KMC realizations is shown, along with two individual realizations. Note

that although the roughness and adatom density reach a minimum when the first
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Figure 4.6: Kinetic Monte Carlo simulations of a six-site one-dimensional lattice

with kads = 1 s−1 and kads = 1×104 s−1. Surface measures of monolayer coverage,

root-mean-square roughness, and adatom density are shown for two individual

realizations and for the mean over 1000 realizations.
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Figure 4.7: Nineteen configurations for a six-site solid-on-solid master equation, in

the limit of high surface diffusion. Configuration grouped within the dashed boxes

evolve similarly, and are grouped into a single configuration.

layer is complete, the mean shows little oscillation due to variations in the time at

which each layer is completed.

The number of possible configurations in the KMC simulations is infinite, since

there is no restriction on the maximum height. We begin the enumeration proce-

dure for this system, with the goal of determining a finite approximating configura-

tion set. The enumeration process begins with a flat surface and follows according

to the criterion of Figure 4.3, in similar fashion to the four-site example of Figure

4.4. The enumeration closes with the nineteen configurations of Figure 4.7.

A master equation is constructed by applying the microscopic transition rules

for adsorption and surface diffusion to the configurations of Figure 4.7, and to all

translations and reflections of these configurations. The state dimension is then

reduced back to nineteen by observing that all configurations differing by only

a translation or reflection are equally probable, and by applying an appropriate

coordinate transformation. The resulting nineteen-state master equation is then

numerically integrated for transition rates of kads = 1 s−1 and kads = 1× 104 s−1.
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The expected surface properties of coverage, roughness, and adatom density are

plotted in Figure 4.8, and are compared to the mean properties of the KMC sim-

ulations shown previously in Figure 4.6.

The error associated with the reduction to a finite, nineteen-configuration set

is small. We now further reduce the number of configurations by grouping con-

figurations that evolve together. In particular, we group the configurations in the

dashed boxes of Figure 4.7. These groupings denote configurations that have the

same coverage and differ only by the location of the adatom. We suggest based on

physical arguments that when the probability of one such configuration increases,

so will the others, both because they are coupled to each other and are similarly

coupled to the rest of the configurations. The evolution of configurations H1, H2,

and H3 is plotted in Figure 4.9, again with kads = 1 s−1 and kads = 1×104 s−1 and

an initially flat surface. We group the configurations according to the coordinate

transformation proposed earlier, in which one new coordinate for each group is

the sum of the probabilities for each, while the other coordinates represent differ-

ences between the configurations. We take the mean ratio of the configurations

from simulations like Figure 4.9, perform the coordinate transformation, and then

truncate the coordinates corresponding to differences in probabilities.

The remaining eleven configuration are pictured in Figure 4.10. This figure

illustrates not only the configurations, but also their connectivities through ad-

sorption and adatom diffusion. The source of the oscillatory behavior in the KMC

simulations stems from the cyclic paths generated by adsorption. This eleven-

state model provides a good approximation to the original nineteen-state system,

as shown in Figure 4.11.

4.2 System identification for master equations

In the previous examples, the state matrices and the output matrix were con-

structed based in microscopic transition rules, using an approximating configu-

ration set. We now develop a method to determine the coefficients in a master
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Figure 4.8: Comparison between the mean over 1000 KMC simulations, and the

expected value predicted by the nineteen-state master equation. In both cases,

kads = 1 s−1 and kads = 1 × 104 s−1. Error bars denote a 95% confidence interval

on the mean of the KMC simulations.



63

0 0.5 1 1.5 2
0

0.5

1

x 10
−4

time (s)

pr
ob

ab
ili

ty

H1
H2
H3

0 0.5 1 1.5 2
0.2

0.4

0.6

0.8

time (s)

pr
ob

ab
ili

ty
 r

at
io

P(H2)/P(H1)
P(H3)/P(H1)

Figure 4.9: The evolution of three configurations that evolve similarly. The con-

figurations are pictured in Figure 4.7.



64

A

B C

D

EF

G

H

JK

I

Adatom surface diffusion

Adatom adsorption

Figure 4.10: Configurations and transitions for the eleven-state reduced master

equation, for transition mechanisms of adsorption and adatom surface diffusion.
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equation using simulation data. This idea is then extended to identify coefficients

in a reduced master equation. Once the reduced configuration set has been de-

termined, the system identification procedure provides an alternative to directly

computing reduced state matrices, e.g., via a coordinate transformation.

The computation of the potentially large number of coefficients in the master

equation is aided by the linearity of the system. Because we are using data to

compute the coefficients, we convert the master equation to discrete time with a

small time step ∆t, and approximate equation (2.5) with

xd[j + 1] = (I + ∆t
m∑

i=1

ki(u)Ni)xd[j] (4.17)

yd[k] = Cxd[j], (4.18)

where xd[k] ∈ R
n is the discrete-time probability vector at t = j∆t, j = 0, 1, . . .,

and I is an n-dimensional identity matrix. We use a notation similar to that of the

previous section, but note here that ∆t should be sufficiently small to capture the

fastest behavior, so that the first-order Taylor expansion of the matrix exponential

is accurate.

We now further define the state matrix as

Au = (I + ∆t
m∑

i=1

ki(u)Ni). (4.19)

When u is held constant, Au is also constant and may be identified using purely lin-

ear computation. In particular, we construct the generalized observability matrix

Ou, which is defined as

Ou =




C

CAu

CA2
u

CA3
u

...




(4.20)

for our discrete-time master equation. The observability matrix is prominent in
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linear systems theory, system identification [29], and model reduction [39], and is

used to describe the relationship between the state of a system and its output.

Again holding u fixed, we observe that Ou may be constructed from simulations

of equations (4.17) and (4.18). The jth column of Ou is equal to the output column

vector {yd[0],yd[1],yd[2], ...}, generated from initial condition xd[0] having prob-

ability one in the jth configuration. The observability matrix may alternatively

be generated using kinetic Monte Carlo simulations. Once again, the jth column

of Ou is equal to the expected values of outputs, after initiating the simulation in

the jth configuration.

Once Ou has been constructed, the output matrix C can be extracted as the

first block of O, while Au may be determined in a straightforward linear least

squares computation, exploiting the shift property of Ou:




C

CAu

CA2
u

...

CAnt−1
u




Au =




CAu

CA2
u

CA3
u

...

CAnt
u




, (4.21)

where nt is the number of time steps performed in the simulations.

The linear least squares computation is guaranteed to give the globally optimal

solution for Au, in which optimal means that the two-norm of the residual is

minimized. However, this may not be the optimal solution for our application.

In particular, we know that the continuous-time state matrices Ni are stochastic

matrices, in which the columns sum to zero, the diagonal elements are non-positive,

the off-diagonal elements are nonnegative, and the eigenvalues never have positive

real part. These properties guarantee the conservation of probability, and may be

enforced through linear equality and inequality constraints in a constrained linear

least squares solution to equation (4.21). In particular, we constrain each element

of Au to be nonnegative, and constrain the columns to sum to 1, the analogous

properties of a discrete-time stochastic matrix. When ∆t is small, this also enforces
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the stochastic properties of the Ni in continuous time. We further note that an

element of Au(p, q) may be set to zero using additional equality constraints, to

eliminate the possibility of a transition from configuration p to configuration q.

Such a constraint would typically be justified based on physical arguments.

The identification algorithm developed in this section produces Au, but does

not independently yield the state matrices Ni. However, because Au is linear in

Ni, several observability matrices may be constructed for different (but constant)

transition rates, which are then assembled into a single constrained linear-least

squares problem, yielding Ni, i = 1, ...m.

There may or may not be a unique solution to the constrained linear least

squares computation. This computation is guaranteed to yield a solution with

the minimum two-norm of the residual, but if the problem is underconstrained,

this solution may not be unique. The condition for unique determination of Au

depends not only on the rank of Ou, but also on the equality constraints imposed.

We suggest only that if the problem is underdetermined, one could either used

more data in the identification, select additional outputs to provide more informa-

tion about the state, or perhaps reduce the number of configurations, if some are

redundant or are not contributing to the output. Alternatively, if the problem is

underdetermined, then the connectivity implied by the least squares solution to

Au may be sufficient to describe the output of interest.

The system identification algorithm is demonstrated using the six-site system

considered earlier in this chapter. The two state matrices (for adsorption and

surface diffusion) and the output matrix are computed using KMC simulation data

with initial conditions in each of the eleven configurations of the reduced system,

for 0.5 s with data saved at 0.1 s intervals, and with two sets of transition rates:

kads = 1 s−1 and kdif,0 = 1×104 s−1, and kads = 1 s−1 and kdif,0 = 1×102 s−1. At

each set of conditions, 1000 realizations are performed and averaged. This data

is then used to compute the state matrices with and without constraints. The

results are shown in Figure 4.12 with adsorption rate varied randomly at 0.1 s

intervals between 0 and 1 s−1, and diffusion rate varied between 0 and 2×104 s−1.
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Figure 4.12: System identification of the six-site lattice model. The identification

procedure is applied with and without constraints, and both systems are compared

to a direct integration of the master equation. The inputs are randomly varying

at 0.1 s intervals, with an adsorption rate between 0 and 1 s−1 and a diffusion rate

between 0 and 2×104 s−1.
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The constrained system compares much better with the original master equation

than does the system obtained with the unconstrained computation. In the latter

case, the eigenvalues of the state matrices have positive real parts, making the

system unstable. Because it is straightforward to include linear constraints in the

optimization, we will always include them in computations in the remainder of this

work, which will guarantee that the identified system is also a master equation.

4.3 Alternate formulation of the master equation

A high-dimensional master equation is the mathematical representation underlying

the morphology evolution of KMC simulations like those pictured in Figure 2.3.

However, there may be circumstances in which the expected value of the film mea-

sures predicted by the master equation differs from typical behaviors observed in

individual KMC realizations. We observe this effect in Figure 4.6, in which individ-

ual realizations exhibit oscillations correlated with the deposition of a monolayer,

but in which the expected values exhibit little oscillation. The disparity between

the expected and typical behaviors is due to a dephasing effect, stemming from

randomness in the adsorption times. The variation in phase is particularly great

in this small, six-site system, since each adsorption event results in the deposition

of a large fractional coverage. In the opposite limit, as the number of sites grows

large, the dephasing effect diminishes.

Ultimately, we would like to model the behavior seen in large KMC simulations

with low-order representations, and thus seek a mathematical framework that is

capable of capturing the types of behavior seen in large lattice systems. We thus

reformulate the lattice model and master equation to eliminate the dephasing ef-

fect due to the random adsorption. We simply take the total number of adsorption

events as the dependent variable, instead of time. Because the adsorption mech-

anism is site-independent, the mean time between adsorption events is known a

priori, as well as the distribution of times, which is a Poisson distribution [15].

Additionally, over many events the time can be correlated with the total number
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of adsorption events using the adsorption rate kads.

The mean time between adsorption events is 1/(kadsN), where N is the num-

ber of surface sites. Note that this is the mean time between adsorption events

anywhere on the surface, and that each adsorption event may occur with equal

probability at any site on the surface. The distribution of adsorption times τ

follows the Poisson distribution:

P (τ) = kadsN exp (−kadsNτ). (4.22)

We develop an alternate, discrete formulation of the master equation by com-

puting the probability distribution immediately following each adsorption event.

Between these events, the system evolution is governed by the remaining transition

mechanisms.

The adsorption event is represented by a discrete-time stochastic matrix, which

we call Ad
ads. To guarantee the conservation of probability, each element must be

nonnegative, and each column must sum to one. An adsorption event is then

executed by multiplying the probability distribution by Ad
ads. Column j of Ad

ads is

constructed by considering the probabilities of being in each of the n configurations,

after beginning in configuration j and executing an adsorption event. This idea is

illustrated by Figure 4.13, with corresponding matrices,

N1 =




−b 0 0 0

b −c − d 0 e

0 c 0 0

0 d 0 −e




Ad
ads =




a
a+b 0 0 0

b
a+b 0 0 0

0 c
c+d 0 1

0 d
c+d 0 0




,

where adsorption is considered to be mechanism 1, and N1 is the continuous-time
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Figure 4.13: Sample graph for adsorption, to illustrate the construction of a

discrete-time adsorption matrix.

state matrix for adsorption. Both N1 and Ad
ads reflect the adsorption transitions

pictured by the connectivity graph of Figure 4.13, but serve different purposes.

Note that N1 does not contain the transition from 1 to itself, while Ad
ads incorpo-

rates this null transition since there is a nonzero probability that no configuration

change will occur as the result of the adsorption event. Conversely, the coefficient

e for transition from 4 to 2 is not specified explicitly in Ad
ads, since it is the only

transition out of configuration, and therefore must occur when an adatom adsorbs

on configuration 4.

Adsorption events are executed by multiplication of Ad
ads with the probability

distribution at adsorption times specified by the Poisson distribution. Between

these points in time, the probability distribution is integrated continuously over

the remaining i = 2, ...m mechanisms. If we assume that the input is constant over

each of these intervals, we obtain

xs(t) = exp


 m∑

i=2

ki(ur)Ni(t −
r∑

q=1

τq)


Ad

ads exp

(
m∑

i=2

ki(ur−1)Niτr−1

)
Ad

ads...

Ad
ads exp

(
m∑

i=2

ki(u2)Niτ2

)
Ad

ads exp

(
m∑

i=2

ki(u1)Niτ1

)
xs(0),
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where xs(t) ∈ R
n is a stochastic realization of the probability distribution, τj is the

time between adsorption events j−1 and j, uj is the corresponding input for the jth

interval, and t >
∑r

q=1 τq and t ≤ ∑r+1
q=1 τq. Note that {τj} may be precomputed,

since it is subject only to the Poisson distribution, and is not dependent on the

probability distribution.

We may not need to know the probability distribution at all times, but instead

would be satisfied with the probability distribution at the discrete times following

each adsorption event. In this case we formulate a discrete master equation

xd
s [j + 1] = Ad

ads exp

(
m∑

i=2

ki(uj+1)Niτj+1

)
xd

s [j], (4.23)

where xd
s [j] ∈ R

n is the probability vector after j adsorption events.

A simulation of equation (4.23) is a stochastic realization, since it depends on

the Poisson-distributed adsorption times {τj}. However, we may instead compute

the expected probability after j adsorption events:

〈
xd

s [j]
〉

=
∫ ∞

0
· · ·

∫ ∞

0

∫ ∞

0
Ad

ads exp

(
m∑

i=2

ki(uj)Niτj

)
· · ·

Ad
ads exp

(
m∑

i=2

ki(uj)Niτ2

)
Ad

ads exp

(
m∑

i=2

ki(uj)Niτ1

)
xd

s [0]

k1(uj)N exp (−k1(uj)Nτj) · · ·
k1(u2)N exp (−k1(u2)Nτ2) k1(u1)N exp (−k1(u1)Nτ1)dτ1dτ2 · · · dτj

=
j∏

q=1

Ad
ads

〈
exp

(
m∑

i=2

ki(uq)Niτq

)〉
xo,

by integrating over the Poisson distribution for each of the uncorrelated adsorp-

tion times, assuming a known initial probability distribution of xd
s [0] = xo, and

integrating sequentially, beginning with τ1. Defining

Â(uj) ≡ Ad
ads

〈
exp

(
m∑

i=2

ki(uj)Niτj

)〉
(4.24)

according to the Poisson distribution, we finally obtain the discrete evolution equa-
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tion

xd[j + 1] = Â(uj)xd[j], (4.25)

where xd[j] ∈ R
n is the probability distribution after j adsorption events. The

matrix Â(uj) is a discrete-time stochastic matrix, such that the columns sum to

one and the elements are positive, as required for a probabilistic system. However,

there is now no direct map back through a matrix exponential to continuous-time

state matrices. Â(uj) is now a nonlinear function of ki(u) and Ni, although the

linearity in the probability vector has been preserved.

Synchronizing changes in the input vector with each adsorption event would

pose many practical challenges. Of course, if the input is held constant, there

is no difficulty. At this point in the development we are not actually interested

in implementing a control strategy that would be synchronized with individual

adsorption events, but are more concerned with identifying a suitable mathematical

structure to represent the behavior of large lattice systems. In a system with

many surface sites, the time between adsorption events is very small, and if one is

interested in changing the inputs at larger times, one may approximate the number

of adsorption events with the mean time to deposit them. Before we move on to

large surfaces and their KMC simulations, we demonstrate the discrete model on

another small surface.

4.3.1 Example: adsorption-desorption

The discrete formulation of the lattice model is demonstrated with a six-site model

evolving via adsorption and adatom desorption. Kinetic Monte Carlo simulations

are performed for an adsorption rate of kads = 1 s−1 and adatom desorption rates

of kdes,0 = 100 and 1000 s−1. Each set of rates is simulated 1000 times, with

output measures computed and saved not at discrete intervals of time, but instead

immediately after each adsorption event. The simulations run until 12 adsorption

events have occurred.

A corresponding master equation is also constructed, by first selecting an ap-
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propriate finite set of configurations. We take here a more data-driven approach

to the identification of configurations, by adsorbing up to seven atoms at random

locations on the surface, allowing no desorption. We then eliminate configurations

considered to be improbable, in which two or more adatoms are stacked on top of

each other, or in which four or more layers are occupied with fractional coverages.

The resulting configuration set consists of 65 configurations. The continuous-time

state matrices are constructed based on this configuration set, and are then used

to compute the discrete maps of equation (4.24), one for each of the two desorption

rates considered.

Configurations that evolve in fixed ratios were determined through simulations

of the master equation. The time-dependent probability of each configuration was

compared against every other configuration, and those that evolve together were

grouped together through a coordinate transformation, yielding a reduced state

dimension of 24.

Figure 4.14 shows the simulation results for both desorption rates considered,

and compares the KMC simulations, the 65-state discrete master equation, and

the reduced discrete master equation. All three simulation methods compare well

within the error bars of the KMC simulations, which denote 95% confidence inter-

vals. The predictions of thickness begins to diverge at the end of the low desorption

rate simulations, which could be improved if additional rougher configurations were

added to the configuration set.

The system identification procedure is now applied to this discrete model. The

algorithm proceeds similarly to that developed for continuous-time master equa-

tions. KMC simulation data is used to generate output data, with simulations

performed at both desorption rates and with initial conditions at each of the 24

configurations in the reduced set. Ensembles of 1000 simulations are used to com-

pute the expected output, and an observability matrix is constructed for each set

of transition rates considered.

In the identification of the continuous-time system, the individual state matri-

ces Ni are computed in the constrained linear least squares computation. However,
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Figure 4.14: Comparison of the evolution predicted by KMC simulations, a 65-

state master equation, and a reduced-order model, with kads = 1 s−1 and two

values of the desorption rate.
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in the discrete model the Ni do not appear linearly, and instead a single stochastic

matrix is generated for each set of transition rates, corresponding to Â(uj) in equa-

tion (4.25). Thus, we exploit the linearity of the state in the identification process,

but can no longer exploit the linearity of the Ni. Recall also our earlier refer-

ence to a singular perturbation approach to configuration reduction. We rejected

this approach because it did not preserve linearity in transition rates, although

in the discrete model the linearity is lost for other reasons. The connectivities

determined through the system identification procedure likely include effects like

setting probabilities of additional configurations to their equilibrium values.

The evolution of the identified system for inputs not used in the identification is

not explicitly captured, and we use linearly interpolation to obtain the state matrix

at intermediate values of the inputs. While this is only an approximation, a linear

interpolation between stochastic matrices produces another stochastic matrix, so

stability is guaranteed. Additionally, the continuity of the matrix exponential of

equation (4.24) guarantees that the state matrices change continuously with the

transition rates.

We demonstrate the identified model in Figure 4.15, comparing an ensemble of

KMC simulations to the predictions of the identified model. The desorption rate

is held at 100 s−1 during the first six events, after which it is raised to 200 s−1.

The state matrix for kdes,0 = 200 s−1 is computed via a linear interpolation of

the matrices for 100 and 1000 s−1. Notice that the surface follows a roughening

trajectory during the first half, but then levels out after the desorption rate is

raised.



78

0 2 4 6 8 10 12
0

0.1

0.2

0.3

number of adsorption events

th
ic

kn
es

s 
(m

L
)

0 2 4 6 8 10 12
0

0.2

0.4

number of adsorption events

ro
ug

hn
es

s 
(m

L
)

0 2 4 6 8 10 12
0

0.1

0.2

number of adsorption events

ad
at

om
 d

en
si

ty
 (

1/
si

te
)

master equation
identified system

Figure 4.15: Comparison between an ensemble of KMC simulations and the

reduced-order model obtained through system identification. The adatom desorp-

tion rate is 100 s−1 during the first six events, and 200 s−1 during the remainder,

while the adsorption rate is held at 1 s−1.
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Chapter 5

Application to Large Lattices

In the previous chapter, we demonstrated model reduction and system identifica-

tion techniques on small lattice systems. Based on this investigation, we observe

that the number of configurations and corresponding state dimension may be larger

than is necessary to capture the film metrics of interest. The number of configura-

tions may be reduced either because some configurations are not occupied, because

they only provide fast transition pathways, or because redundant configurations,

or sets of configurations, exist.

In the examples of the previous chapter, we considered one-dimensional surfaces

with a small number of surface sites. In such systems, the configurations could

be enumerated explicitly to construct the state and output matrices. The master

equation was then formally reduced, either by modifying the state matrices, or by

performing a linear coordinate transformation.

Ultimately, we are interested in the evolution of large surfaces, in which the

coordinated interaction of a large number of atoms leads to the large-scale features

seen in the simulations of Figure 2.3. In such cases, the large number of possible

atomic arrangements makes the enumeration process impractical, even for the sim-

plest behaviors like two-dimensional nucleation and growth. Instead, we observe

that there are many configurations that have the same film metrics (roughness,

step density, etc.) and that these groups of configurations tend to evolve sim-

ilarly. Because it is not feasible to list all configurations and then group them
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through a coordinate transformation, we postulate that such groups exist, and, as

in the small systems considered previously, select one microscopic configuration

to represent each group. When considering a particular growth mode, such as

spiral growth or two-dimensional nucleation, one would expect that some groups

of similar configurations that will be accessed frequently, while others will not.

Selection of the configuration set requires an understanding of the physics,

and may require iteration on the part of the user. These configurations may be

constructed directly, or may be extracted from KMC simulations. The states of

the reduced master equation are then the probabilities of each of the configuration

groups. Once the states of the master equation have been established, it is straight-

forward to apply the system identification algorithm of Chapter 4 to compute the

associated state and output matrices—the observability matrices are constructed

using KMC simulations with each of the representative configurations as an initial

condition. In this chapter, a master equation determined by this process is referred

to as a reduced-order model (ROM).

It would be desirable to have a systematic way of determining the states of the

master equation. Data-driven methods have been used to identify a reduced num-

ber of modes in high-dimensional systems, with particular success in complex fluid

flows [26]. Linear combinations of the states are selected as the new states, which

are orthogonal and which capture the maximum amount of energy, as measured

by the two-norm. The full equation is then projected onto the modes, yielding a

reduced-order model.

A similar idea has been applied to surface evolution in film growth [18, 46],

including work by the author that is reported in Appendix B. In both of these

studies, spatial modes were identified via KMC simulation. However, it is not

clear how one can formulate an analogous evolution equation using spatial coor-

dinates as the states, since the states in the master equation are probabilities of

configurations. No reduced-order model was developed in either study, as there

was no original equation on which to project the spatial modes. One might in-

stead envision selecting linear orthogonal modes based on the original probability
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coordinates of the master equation. In fact, this is the idea underlying each of our

reduced coordinates, which are interpreted as the sum over the probabilities of all

configurations in the group, and are therefore orthogonal. We restrict ourselves

to this type of coordinate, because we wish our reduced-order model to also be a

master equation. One could consider developing a systematic algorithm to identify

the best modes of this form. We also note that, in general, the task of identify-

ing modes through KMC simulations is complicated by the fact that the states

(probability distribution) are not available directly, even in simulation, since the

simulations are stochastic realizations, and the number of possible configurations

is extremely large.

In this work, we postulate the configuration sets, and then identify correspond-

ing reduced-order models, leaving the systematic identification of coordinates as

future work. We consider two physical scenarios in which time-varying process

parameters produce altered surface morphology. In both cases, KMC simulations

are first used to identify a model. The model is then used to generate optimal

process parameters that minimize various cost functions.

5.1 Example 1: transition from smooth to rough growth

We first consider the evolution of a surface through adsorption and adatom surface

diffusion. The adsorption rate is fixed, while the temperature, and thus the diffu-

sion rate, may vary within a limited operating range. At the maximum temper-

ature, the surface approaches the limiting behavior of two-dimensional nucleation

and coalescence, while at the minimum temperature, the surface demonstrates

three-dimensional roughening after only a few layers of deposition. The applica-

tion of periodic inputs usually leads to a roughening of the surface when compared

to growth at the mean values of the process parameters. This roughening is at-

tributed to the creation of compact rough features when the instantaneous adatom

density is high [58]. These features do not decay fully when the adatom density is

lowered, ultimately yielding a rougher surface. We demonstrate this effect in KMC
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Figure 5.1: Comparison of roughness and adatom density predicted by kinetic

Monte Carlo simulations and a reduced-order model. KMC simulations are per-

formed on a 300×300 lattice at temperatures of 500, 550, and 600 K. Configurations

used as states in the reduced model are denoted by ‘x’s and are chosen to represent

limiting behaviors of the system.

simulations, identify a reduced-order model using KMC simulations, and then show

that it also predicts the roughening effect of periodic inputs. The model is then

used to generate optimal temperature profiles.

The KMC simulations are performed on a 300×300 domain, with kads = 1 s−1,

kdif,0 = 1013 exp (Edif,0/kb/T ) s−1, and Edif,0/kb = 10000 K. The temperature is

allowed to vary between 500 K and 600 K. The plots on the left side of Figure

5.1 show KMC simulations at three constant temperatures. Oscillations in both

roughness and adatom density are indicative of smooth island nucleation and coa-

lescence behavior, which decays faster at lower temperature. The ‘x’s on the plot
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mark representative points—and corresponding configurations—that we consider

important in the evolution. In particular, ten smooth configurations at uniform

intervals of surface coverage are extracted from the first layer of growth at the

highest temperature, while corresponding rougher configurations are taken from

the simulations at the lowest temperature after several layers of deposition. After

identifying these 20 configurations, we construct two configurations from each: one

with all adatoms removed, and one with adatoms added randomly to produce a

density of 10−3 site−1.

The configuration set consists of these 40 configurations, yielding 40 corre-

sponding states in the reduced-order model. The observability matrices for the

identification are constructed by performing 120 KMC simulations, using the 40

initial configurations, and performing simulations at 500, 550, and 600 K for 0.1 s.

Only a single realization is performed for each combination of initial condition

and temperature. The simulation domain is sufficiently large such that the fluc-

tuations, as seen in Figure 5.1, are small. However, the fluctuations do introduce

noise into the observability matrix, which ultimately tests the robustness of the

identification technique. We do generally expect the algorithm to be robust, since

it is based on a linear least squares computation.

The discrete identification algorithm is used to compute a single state matrix

at each of the three temperatures used in the simulation, as well as to generate the

output matrix. We choose to identify a discrete equation, and not a continuous

master equation, because we wish to capture the oscillatory behavior associated

with island nucleation and coalescence, as observed in the KMC simulations, and

to do so using a small number of configurations. In a continuous-time master

equation, we would observe the dephasing effect seen in Figure 4.6, so we choose

to index the probability distribution by the number of adsorption events that have

occurred.

Because we are dealing with a dependent variable that measures adsorption

events, and because the configurations exist only at intervals of 0.1 mL, the prob-

ability distribution is actually only computed after a series of adsorption events
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have occurred, resulting in the deposition of 0.1 mL. The state matrix may thus

be viewed as a map from one coverage level to the next. This picture is manifested

in the constraints on the linear least squares computation. From one timestep

to the next, a configuration is only allowed to transition to a configuration with

a coverage of 0.1 mL greater than its own. All other transitions are set to zero

using equality constraints. The state matrices are additionally constrained to be

stochastic, with all elements nonnegative, and columns summing to one.

The evolution of the reduced, identified model is pictured by the plots on the

right side of Figure 5.1 for the constant temperatures used in the identification.

Note that the dependent variable is the time, not the number of adsorption events.

In the limit of a large domain, the time to deposit 0.1 mL fluctuates little from the

mean time, so we substitute back to time, despite our use of the discrete model.

The qualitative comparison between the KMC simulations and model predic-

tions is good. A notable exception is the initial adatom density, whose initial spike

is not captured by the model. First note that the reduced model is discrete, and

in fact does not resolve the fast initial transient of the KMC simulation. How-

ever, the model prediction at 0.1 s does compare well with the KMC simulation.

Additionally, the reduced model is not capable of predicting an adatom density

of 4 × 10−3 site−1, since all the states either have adatom densities of zero or

1 × 10−3 site−1. The output predicted by the reduced model is always a convex

combination of the outputs of each configuration, since the state is a probability

vector that sums to one. Thus, if we had wanted to capture a higher adatom

density, we would have had to include at least one configuration with this density

as a state. As a general point, the output predicted by the model is restricted to

the convex hull of the outputs for each configuration, which must be kept in mind

when selecting the configuration set, i.e., the configuration set should include the

limiting, or extreme, configuration that are to be predicted by the reduced model.

The simulations of Figure 5.1 were conducted at the same temperatures as

those used in the identification. A better test of the model would to simulate an

intermediate temperature. We simulate a temperature of 530 K in Figure 5.2, by
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Figure 5.2: Comparison between KMC simulations and the reduced-order model

at a temperature not used in the identification. To simulate 530 K, the state

matrices for 500 and 550 K are linearly interpolated, either by temperature or by

adatom diffusion rate.

linearly interpolating between the state matrices at 500 K and 550 K, using alter-

nately the temperature and the diffusion rate for the interpolation. The roughness

and the adatom density for 530 K lie at intermediate values between those for

500 K and 550 K, as we expect based on the physics. Because the differences

between the outputs at 500 K and 550 K are not large, we do not see significant

differences between the interpolation methods. This is the desired situation—

neither interpolation method provides the correct state matrix for 530 K, so we

must identify matrices at intervals of temperature in which the growth behavior

does not change dramatically. We also make the general comment that because

the state matrices is stochastic, a linear interpolation yields another stochastic



86

matrix, which thus preserves the stability and probabilistic interpretation of the

states. This is of critical importance and makes possible an interpolation between

the state matrices.

In the previous simulations of the reduced-order model, the initial configura-

tion was the atomically flat surface, and yielded an initial condition of probability

one for the corresponding state vector. This configuration was one of the represen-

tative configurations used to generate the model, but we now consider an initial

condition not in the configuration set. An initial condition is generated with a

KMC simulation at 500 K for 1 s (and 1 mL). The roughness and adatom density

for this system are not consistent with any single state in the reduced model, so

we instead computed a linear combination of probabilities that yields the same

output. This probability distribution was then used as the initial condition for

the reduced model. A simulation at a different temperature, 600 K, is shown in

Figure 5.3, comparing the reduced model to the analogous KMC simulation. The

quantitative comparison between the roughness is not perfect, but reduced model

does capture the transition to the smoother growth at 600 K, versus the decaying

oscillations of 500 K seen in Figure 5.1. We do not expect perfect quantitative

comparison between the simulations, but rather strive for reasonable quantita-

tive comparison, and good prediction of the trends associated with changes in the

process parameters.

With the goal of predicting the effects of time-varying process parameters, we

now consider a periodic temperature profile in which the temperature switches

between 500 K and 600 K at 0.2 s intervals. Simulations of the Monte Carlo

and reduced-order model are plotted in Figure 5.4, along with simulations at a

continuous temperature of 577 K, whose a diffusion rate equals the mean diffusion

rate of 500 K and 600 K. Note that in both models, the roughness is lower under

the constant temperature, and that the maximum instantaneous adatom density

under periodic temperature is much greater than under continuous growth. The

reduced-order model predicts the same trends as the Monte Carlo simulations:

the periodic temperature leads to an elevated instantaneous adatom density, and
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Figure 5.3: Evolution of reduced-order model, and comparison with KMC, begin-

ning with an initial condition that does not correspond to a single state in the

reduced model. To generate the initial condition for the identified model, a con-

strained least linear squares problem was solved to find a probability distribution

that yielded the appropriate outputs.
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Figure 5.4: KMC and ROM simulations of growth with temperature switching

between 500 and 600 K every 0.2 s. This evolution is compared to growth at a

constant temperature of 577 K, which yields a diffusion rate equal to the mean of

the diffusion rates at 500 and 600 K.
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ultimately produces a rougher surface, as compared to growth with the mean

diffusion rate.

We now continue on to the computation of optimal temperature profiles. The

reduced-order model is well suited to this application, due to its low computational

demands. The cost function to be minimized is

Cost = W (Nsteps) + α

Nsteps∑
j=1

|Tj − minT | + β

Nsteps−1∑
j=1

|Tj − Tj−1|2, (5.1)

where Nsteps is the number of time steps considered in the optimization, W (Nsteps)

is the final roughness, and α and β are the coefficients that reflect the cost asso-

ciated with a high temperature and with a fast temperature change, respectively.

We fix β at 2×10−3, and perform the optimization for three values of α: 2×10−4,

7× 10−4, and 4× 10−3. This cost function reflects not only the final surface prop-

erties, but also operating costs and reactor constraints associated with changing

the temperature input.

Optimal temperature profiles and roughness trajectories are plotted in Figure

5.5. In general, a high temperature leads to a smooth surface, but as α is raised,

a high temperature is increasingly penalized in the cost function, resulting in a

lower overall temperature. Note also that raising the temperature at the end of

growth is more desirable than raising it at the beginning, since the cost function

only reflects the final roughness.

Table 5.1 lists the value of the cost function for the three values of α, and for

different temperature trajectories. The cost for the optimal trajectory is compared

to the cost for constant growth at T = 500 K and T = 600 K, and for the periodic

growth strategy of Figure 5.4. The cost for the periodic temperature is high, due to

the instantaneous switching of temperature between its minimum and maximum

values, and therefore the cost is not strongly dependent on α. The difference in

cost between T = 600 K and the optimal temperature is quite small for the lowest

value of α, since a high temperature is not penalized much, but the costs diverges

for increasing values of α. In the opposite limiting case of large α, a constant
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Figure 5.5: Optimal temperature profiles computed using the identified model and

the cost function of equation (5.1), with β = 2 × 10−3 and with three values of α.

α = 2 × 10−4 α = 7 × 10−4 α = 4 × 10−3

T = 500 K 0.441 0.441 0.441

T = 600 K 0.347 0.397 0.727

periodic T 10.0 10.0 10.2

optimal T 0.346 0.368 0.420

Table 5.1: Values of the cost function, equation (5.1), for various temperature

profiles and values of α, with β = 2 × 10−3.
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temperature of T = 500 will become optimal.

This type of optimization study would be impractical to perform with KMC

simulations, due to their inherent noise and high computational demands. (See

Section 5.3 for an analysis of the computational costs of direct optimization using

KMC simulations.) However, by extracting the essential dynamics of the KMC

simulations into a reduced-order model, we may apply tools like optimization to

study the dynamics of surface morphology evolution.

5.2 Example 2: synchronized nucleation

We now consider a second example of surface morphology evolution in which time-

varying temperature produces altered morphology. In contrast to the previous

example, time-varying temperature may be used here to produce a surface with

desirable properties that are unattainable using a constant temperature profile. In

particular, we consider a temperature trajectory that is low during the beginning

of a layer, and high near the end [37].

When the surface evolves under a constant high temperature, the adatom den-

sity on the surface is low, leading to the nucleation of a relatively small number of

islands. As these islands grow, they produce large terraces on which new islands

may nucleate. In contrast, at a low temperature, the adatom density is higher, and

many islands are nucleated. Because the adatoms are less mobile at lower temper-

atures, new islands also nucleate on top of existing islands prior to the complete

coalescence of the first layer. Both scenarios lead to three-dimensional growth and

roughening of the surface. In general, as the temperature is raised, a smoother

surface is produced, but a periodic growth strategy can sometimes produce an even

smoother surface. If the temperature is lowered at the beginning of each layer, a

large number of islands are nucleated. If the temperature is then raised following

nucleation, the adatoms will be less likely to nucleate on top of existing islands,

since the existing islands are smaller.

We produce this effect in KMC simulation, and then identify a reduced-order
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model that also captures this behavior. The KMC simulations are again performed

on a 300×300 lattice, with kads = 1 s−1, kdif,i = 1013 exp ((Edif,0 + i∆E)/kb/T ) s−1,

Edif,0/kb = 9000 K, ∆E/kb = 2500 K, and i is the number of side bonds. The

temperature is restricted to the range 400 ≤ T ≤ 500 K.

KMC simulations of this model are pictured on the left side of Figure 5.6. In

addition to the roughness and adatom density of the previous example, the step

density is also included now, since we wish to distinguish between configurations

with equivalent coverage, but with differing island densities. At the highest tem-

perature, persistent oscillations are observed over 10 layers, although at the end

of each monolayer, the roughness does not go back to an atomically flat surface.

In contrast, at the lowest temperature, the surface becomes much rougher, with

highly damped oscillations.

As in the previous example, we select representative configurations from the

KMC simulations to use as states in the reduced-order model. The ‘x’s in Figure

5.6 denote these configurations, which represent a range of fractional coverages,

roughnesses, and step densities. Each configuration is then further simulated to

produce surface with no adatoms, and with an adatom density of 4× 10−3 site−1,

yielding a final configuration and state dimension of 80.

These configurations are then each simulated with KMC for 0.1 s at temper-

atures of 400 K, 450 K, and 500 K. A state matrix is generated for each of these

three temperatures through the identification process, as described in the previ-

ous example. The right side of Figure 5.6 displays the evolution predicted by the

model at these three temperatures. The comparison in Figure 5.6 is good, both

qualitatively and quantitatively. Notice that the adatom density predicted by the

model is noisy, since the original KMC prediction is also noisy.

We now simulate a periodic temperature strategy, in which the temperature

is 400 K during the first half of each monolayer and 500 K during the second

half. This strategy is compared to growth at a constant temperature of 500 K.

The roughness at the end of each layer is lower under the periodic temperature

profile, due to enhanced layer completion prior to nucleation of the next layer.
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Figure 5.6: Comparison of roughness, step density, and adatom density predicted

by KMC and ROM simulations. A 300×300 lattice is used for the KMC simula-

tions. Configurations used as states in the reduced-order model are denoted by

‘x’s and are chosen to represent limiting behaviors of the system.
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β = 10−3 β = 10−4 β = 10−5

T = 400 K 0.608 0.608 0.608

T = 500 K 0.311 0.311 0.311

periodic T 1.77 0.422 0.287

optimal T 0.302 0.282 0.261

Table 5.2: Values of the cost function, equation (5.1), for various temperature

profiles and values of β, with α = 0.

Figure 5.7 shows Monte Carlo simulations, and simulations with the reduced-order

model, using this periodic temperature trajectory. Both models predict that the

roughness at the end of each layer is lower with the periodic temperature profile.

This periodic temperature strategy may produce smoother interfaces than con-

stant temperature, but is not necessarily the best strategy. As in the previous

example, we perform an optimization study, using the cost function of equation

(5.1). In this study, we set α = 0, with no penalty on the magnitude of the tem-

perature, but instead vary β, the penalty on temperature changes. These results

are shown in Figure 5.8, for three values of β: 10−3, 10−4, and 10−5. When the

penalty on temperature changes is high, it is best to hold the temperature near its

maximum values, but as the penalty is reduced, a reduction in the cost is produced

by lowering the temperature near the beginning of the second layer. Little benefit

is obtained by lowering the temperature during the first layer, although for the

lower values of β, the temperature is lowered slightly from its maximum value.

Table 5.2 summarizes the costs for the three values of β considered, and for con-

stant, periodic, and optimal temperature trajectories. Notice that as the penalty

on temperature changes is lowered, the periodic strategy considered nears the op-

timal cost.
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Figure 5.7: Simulations of growth at 500 K, and with a temperature of 400 K during

the first half of each layer, and 500 K during the second half. The predictions of

kinetic Monte Carlo simulations and the reduced-order model are compared.
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Figure 5.8: Optimal temperature profiles computed using the identified model and

the cost function of equation (5.1), with α = 0 and for three values of β.
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5.3 Computational costs

In the previous sections we computed trajectories for the process parameters by

first computing a low-order model and then applying a gradient-based optimization

algorithm to the low-order model. However, this optimization algorithm does not

exploit any specific feature of the reduced-order model—only the input-output map

between process conditions and film properties is used. One could instead imagine

using the KMC simulations in the optimization, eliminating the need for the low-

order model. Even if the computational effort for KMC simulation is greater than

for the reduced model, the cost of the system identification might be sufficiently

high to make direct KMC optimization less expensive.

To compare the two approaches, we define CROM to be the total computational

cost associated with identification of and optimization on a reduced-order model,

and similarly define CKMC to be the computational cost of the optimization using

KMC simulation data. We do not take into account the inherent noisiness of KMC

simulations, and instead assume that the optimization may be performed using

individual realizations (not ensembles), which might yield an underprediction of

CKMC.

We further define cROM to be the typical computational cost of one second

of simulation of the reduced-order model, cKMC to be the typical cost of one

second of KMC simulation, τopt to be the length of time in seconds over which

the optimization is to be performed, τID to be the length of time in seconds for

each simulation used in the identification, nopt to be the number of simulations

required for the optimization, and nID to be the number of simulations required

for the identification, i.e., the produce of the state dimension and the number of

different inputs used.

The total costs may now be expressed approximately in terms of these new
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variables:

CROM = nopt τopt cROM + nID τID cKMC (5.2)

CKMC = nopt τopt cKMC. (5.3)

This is only an approximation, since the computational cost per second of simu-

lation time is not constant, and depends on the process conditions. The purpose

of these expressions is to aid in understanding the factors that contribute to the

total computational cost. Also realize that this comparison assumes that the re-

duced model is only used for a single optimization, even though it may be used

repeatedly once identified.

We now consider the example of Section 5.2. A model with 80 states is iden-

tified, using three different inputs settings, yielding nID = 240. Each simulation

runs for τID = 0.1 s. The value for cKMC is taken from the fastest simulations, at

400 K, using chronological time in seconds to measure to the computational cost,

such that cKMC = 67. The cost of the identification alone is thus 1600 s.

The temperature is optimized over τopt = 2 s of growth, which takes approx-

imately nopt = 2000 simulations to converge. The computational demand of the

reduced model is approximated based on the length of time required for the total

optimization, such that cROM = 0.025. These estimates yield computational costs

for the optimization algorithm of 100 s and 270,000 s for the reduced model and

KMC simulations, respectively. Adding in the cost of the identification, we arrive

at CROM = 1700 s and CKMC = 270,000 s. These costs are only estimates, and are

intended to represent the order of magnitude of the computational cost. In this

case the cost of optimizing on the KMC simulations is two orders of magnitude

greater than optimizing on the reduced model.

Note first that the cost of the optimization on the reduced model is an order

of magnitude less than the cost to identify the model. This is true primarily

because cROM � cKMC. In this limit, the ratio of the total costs is strongly

dependent on the ratios of τopt and τID, and nopt and nID. When the cost of
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identifying the reduced-order model is much less than the cost of optimizing on

the KMC simulations, we may view the reduced model as an efficient way of

encoding the gradients observed in the KMC simulations, instead of computing

them from KMC during every step of the optimization. As a final note we also

mention that the issue of noise in the KMC realizations might actually be the

biggest huddle to applying a gradient-based optimization algorithm, and that the

linear least squares computation used in the identification is an effective method

for determining gradients in the presence of noisy data.
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Chapter 6

Model System: Germanium Homoepitaxy

During thin film deposition, the surface is randomly bombarded by atoms, which

then attach to the surface. The stochastic nature of this incoming flux leads

to a roughening of the surface. At high growth temperatures, the smoothening

influence of surface diffusion counteracts the roughening, resulting in an atomically

flat surface. Flat surfaces are often required in the manufacture of layered devices,

but low growth temperatures may also be required to prevent dopant diffusion, to

prevent degradation of a previously deposited layer, or to minimize manufacturing

cost. It would be useful to be able to deposit smooth surfaces at low temperatures.

The conditions under which a thin film is deposited are generally held fixed

throughout deposition. However, time-varying conditions may sometimes produce

smoother surfaces than continuous growth at the average, minimum, and maxi-

mum conditions. This intentional modulation of temperature or flux can produce

smoother surfaces when synchronized with the monolayer growth time [51]. Faster

pulsing, as in a pulsed laser deposition (PLD) process, can also provide smoother

surfaces than continuous growth by molecular beam epitaxy (MBE). These two

processes were compared in experiment and simulation by Taylor and Atwater [58].

Simulations predict that the energetic effects of PLD contribute to smoothing, and

that the time-varying flux alone would actually roughen the surface.

To separate the effects of pulsed flux from those of energetic flux, we deposit

germanium in a molecular beam epitaxy process, generating pulsed flux by pe-
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riodically blocking the wafer with a shutter. The chamber is equipped with a

reflection high-energy electron-diffraction (RHEED) gun, which provides contin-

uous real-time information throughout growth. We compare the RHEED signals

associated with pulsed growth over a range of temperatures, growth rates, and

pulse durations, and interpret the data in the context of atomistic surface models,

existing STM studies, and various physical models of RHEED. Germanium was se-

lected as our material system because it is relatively isotropic and has a very weak

Schwoebel barrier, which simplifies our interpretation and comparison to models

of surface evolution. We deposit germanium on highly oriented germanium sub-

strates that are aligned with the (001) direction to minimize the number of steps

due to substrate miscut.

6.1 Previous work

Scanning tunneling microscopy

Studies using scanning tunneling microscopy (STM) provide images of atomic ar-

rangement [11, 42, 43]. The STM measurements cannot be performed during

growth, but are used in “quench-and-look” experiments, in which growth is in-

terrupted and the surface quickly cooled to obtain images associated with various

points in time during the growth process. Particular studies have focused on island

nucleation during low temperature growth [42], and surface smoothening during

annealing [11].

Reflection high-energy electron diffraction

RHEED can be used as a real-time sensor to obtain information about the surface

morphology as the film evolves. RHEED has been used to study the growth

of Ge(001) over a range of growth parameters. In growth on highly oriented

surfaces, persistent oscillations have been observed in the RHEED pattern that

are correlated with the growth of individual atomic monolayers [1, 2, 7, 56]. On

surfaces with higher miscut, oscillations are not observed, but decay in the RHEED
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pattern is associated with a roughening of the surface [9, 10].

RHEED interpretation

The diffraction of electrons from a crystal surface requires consideration of quan-

tum mechanical phenomena, and is particularly dependent on the distribution of

electrons in the crystal. However, in certain cases a kinematical approximation

is valid, in which the incoming electrons are assumed to only scatter once before

leaving the crystal surface [35]. In this approximation, the RHEED pattern is

simply the Fourier transform of the autocorrelation function of the surface height.

This interpretation makes comparison to simulated surfaces straightforward [41].

The kinematical approximation has been used in the past to interpret RHEED

patterns of Ge(001) [9]. We continue to explore the validity of the kinematical

approximation during growth of Ge and during periods in which the Ge flux is

blocked and the surface is allowed to reorganize through diffusive processes.

Depending on the angle of the incident electron beam, electrons scattering from

adjacent layers in the crystal may interfere constructively or destructively. Within

the kinematical approximation, the dependence of the RHEED pattern on surface

morphology has a particularly simple interpretation for the latter “out-of-phase”

diffraction condition. The integrated intensity of the specular spot depends on the

relative numbers of surface sites on even and odd layers. Scattering from adjacent

layers interferes destructively, while sites differing by two levels add constructively.

When the distribution of heights is known, surface coverage Θ may be directly

tied to the intensity of the specular spot I. For example, in two-level growth

I(t)/I(0) = (1−2Θ(t))2 [12], while on a statistical surface I(t)/I(0) = exp(−4Θ(t))

[9].
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Figure 6.1: Photograph of the molecular beam epitaxy chamber.

6.2 Experimental apparatus

6.2.1 MBE chamber

Germanium deposition was performed in a molecular beam epitaxy (MBE) cham-

ber, which is pictured in Figure 6.1. Key features relevant to the experiments

include an electron-beam evaporative germanium source, a cryopump to obtain

ultra high vacuum conditions, a tungsten filament sample heater, a quartz crystal

thickness sensor, and a RHEED gun and phosphor screen for real-time analysis of

the growing film. The germanium source is located in the base of the chamber,

and is separated from the sample by a shroud and a shutter—when retracted, the

molecular beam of germanium impinges on the substrate. A schematic of the in-

terior of the growth chamber is shown in Figure 6.2. Figure 6.3 is a temperature

calibration of the tungsten filament heater. A type-K thermocouple-instrumented

silicon wafer was used in the calibration. Further detail on the MBE chamber may
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Figure 6.2: Schematic of the molecular beam epitaxy chamber.
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Figure 6.3: Temperature calibration of tungsten filament heater with a

thermocouple-instrumented silicon wafer.
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Figure 6.4: Layout and key features of the data acquisition system for RHEED.

The diffraction pattern on the phosphor screen is collected here with a lens and

photodiode, but may alternatively be captured with a camera.

be found in [23].

6.2.2 RHEED

RHEED is the primary diagnostic in this work. The electron gun is directed at

the growing surface at a glancing angle; the diffraction pattern from the surface is

then visualized on a phosphor screen, which fluoresces when impacted by electrons.

The image on the phosphor screen is collected by one of two methods. The first

uses a CCD camera, which is linked to a framegrabber in a personal computer. We

use the software package k-space from KSA to acquire and processes these images.

With this method we may independently analyze the intensity of multiple features

in the diffraction pattern. However, the rate of image acquisition is limited by the

camera and framegrabber. When a higher acquisition rate is needed, we instead

focus a particular diffraction feature onto a photodiode, and collect the output

voltage directly into a personal computer. Figure 6.4 shows the key features in the

sensing and data acquisition. The screen is mounted in a viewport on the wall of

the chamber, and the photodiode and lens are located outside the chamber.

Typical RHEED patterns seen during our Ge growth are pictured in Figure 6.5.
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In Figure 6.5(a), the RHEED beam is oriented along the (110) crystallographic

direction. In this configuration, we obtain a symmetric pattern in which the spots

correspond to diffraction from atomic planes parallel to the surface. In our analysis,

we are particularly interested in the central, or specular, spot, which results from

reflection of the RHEED beam. Figure 6.5(b) is the RHEED pattern obtained

after an in-plane substrate rotation of 3◦. The specular spot is still visible in

the center, but the other diffraction spots are now weaker and have been rotated

down relative to the specular spot. This particular orientation minimizes multiple

scattering of the electrons on the surface, which make RHEED interpretation more

difficult.

6.2.3 Experimental procedure

Our germanium wafers are from Eagle Picher. They are lightly doped (n-type), and

are specified to be oriented 0.05◦± 0.02◦ from the (001) crystallographic direction.

The wafers were originally 2” in diameter. However, we cleaved the wafers and

grew on smaller pieces.

Each sample was cleaned by sonicating it sequentially in acetone, methanol,

and filtered water. The sample was then dried and placed in a UV-ozone cleaner

for 10 minutes to oxidize the surface. Final cleaning steps include further sonica-

tion in water and a dip in 5% solution of hydrofluoric acid to make the surface

hydrophobic. The sample is then blown dry and attached to the sample block. For

more background on surface preparation for germanium, see [8].

The block is loaded into the MBE chamber through a load lock, and is baked at

250◦C for several hours. A typical base pressure after this bake is 1 × 10−10 torr.

The substrate is then heated to 450◦C to drive off remaining impurities and to

induce the (2 × 1) surface reconstruction, as seen by Bragg rods in the RHEED

pattern. As a final step in our surface preparation, a 5000 Å buffer layer of Ge is

deposited at temperatures of 500◦C and a rate of 1 Å/s. At this point, we achieve

a RHEED pattern like that shown in Figure 6.5.

A typical growth pressure is 3× 10−9 torr. We deposit films at rates from 0.05
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(a)

(b)

Figure 6.5: Typical RHEED pattern for Ge growth on a Ge(001) highly oriented

wafer: (a) 0◦ off (110) azimuth; (b) ∼ 3◦ off (110) azimuth. The angle of incidence

is 5◦ and the electron energy is 17 keV.
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to 1 Å/s at temperatures from ambient to 560◦C. We are primarily interested in

low-temperature growth between 200 and 300◦C and deposit tens of Angstroms

at these temperatures. Between each low temperature deposition, we raise the

temperature to 500◦C and grow a 1000 Å buffer layer at 1 Å/s to return to a

smooth surface, as indicated by RHEED. The typical electron energy for RHEED

is 17 keV, with an azimuthal angle from (110) of 3◦ and an angle in the out-of-phase

diffraction conditions near 5◦.

6.3 Experimental results

6.3.1 Submonolayer deposition

To determine how the surface will respond to continuous and pulsed flux, we

investigate surface evolution during the deposition of half a monolayer, and its

subsequent reorganization following deposition. For this purpose five temperatures

(230, 260, 280, 290, 305◦C) and two growth rates (0.05 and 0.4 Å/s) are used.

Growth proceeds for either 2 or 16 s, depending on the growth rate, followed by

40 s during which the flux is blocked by a shutter. Plots of intensity versus time

have the same general features as the data in Figure 6.6. Instead of showing all of

the curves, we plot in Figure 6.7 the intensity at the end of growth and at the end

of the 40 s recovery period.

Notice first that the relationship between the four curves at each temperature

is nearly independent of temperature. The lowest intensity is associated with

growth at the higher growth rate at the end of the deposition period. After these

surfaces are allowed to recover for 40 s, the intensity increases substantially. In

fact, across the range of temperatures, the intensity after recovery for the higher

growth rate is similar to the intensity of the lower growth rate at the end of the

deposition period. This collection of data is consistent with an island nucleation

and coarsening interpretation. At a fixed temperature and at the higher growth

rate, the island density should be greater, resulting in a larger initial intensity

drop. However, the coarsening rate during the recovery period is also higher since



109

0 20 40

0.5

1

time (s)

no
rm

al
iz

ed
 in

te
ns

ity

(a)

1/4 mL
1/2 mL

0 20 40

0.5

1

time (s)

no
rm

al
iz

ed
 in

te
ns

ity

(b)

1/8 mL
1/4 mL

Figure 6.6: Normalized intensity of the specular spot during growth and recovery

at 290◦C for various submonolayer doses and growth rates: (a) 0.8 Å/s, (b) 0.4 Å/s.



110

230 240 250 260 270 280 290 300 310
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

temperature (° C)

no
rm

al
iz

ed
 in

te
ns

ity

F = 0.4 Ang/s, growth
F = 0.05 Ang/s, growth
F = 0.4 Ang/s, final
F = 0.05 Ang/s, final

Figure 6.7: Intensity of the specular spot at the end of 1/2 mL of growth, and

after 40 s of recovery.
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the islands are small and close together.

Error in the intensity measurements is attributed to uncertainties in the tem-

perature and the amount of material deposited per pulse. The temperature cali-

bration in Figure 6.3 shows a linear relationship between heater current and tem-

perature, with some variation visible in the range of temperatures considered in

the parameter study. The temperature variations are attributed to changes in

contact resistence due to thermal expansion, which we expect to be greater in the

instrumented wafer because it is larger and thicker than the germanium wafers

used during growth. Nevertheless, we observe a temperature variation of ±10◦C

near 250◦C, which we take as our temperature error. We translate this into in-

tensity using the data in Figure 6.7, observing a typical slope in intensity versus

temperature of 0.003/◦C, or ±0.03 in normalized intensity for ±10◦C.

The pulse time is precisely regulated by a computer-controlled shutter, so error

in the coverage per pulse stems from the the electron-gun source. This variation

is assessed using the data presented later in Figure 6.10 of Section 6.3.3, in which

intensity oscillations indicate the growth of an individual monolayer. An analysis

of three runs at identical conditions shows a standard deviation of 0.06 mL per

monolayer of deposition, or 0.03 mL for our 1/2 mL pulses. We estimate the

sensitivity of intensity to coverage using the data shown in Figure 6.6 to obtain an

intensity uncertainty of 0.03 for the 1/2 mL pulses. Combining the two sources of

error, our standard deviation for the intensity measurements is 0.04, as reflected

in the error bars of Figure 6.7.

6.3.2 Multilayer growth

The study of individual submonolayer pulses suggests that a slower instantaneous

flux rate provides a smoother surface after a single pulse. We next present RHEED

data for a series of pulses, resulting in the growth of multiple layers. Figure 6.8

shows the RHEED intensity during pulsed growth at 305◦C with different pulse

lengths and growth rates, for a total of 10 pulses. In (a) the flux is 0.2 Å/s. The

shutter is opened each cycle for 2 s, and then closed for 40 s. After the completion
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Figure 6.8: Integrated intensity of the spectral spot for pulsed growth at 305◦C.

In all three cases, 10 pulsing cycles are executed: (a) 4 Å are deposited in pulses

of 2 s on, 40 s off at 0.2 Å/s; (b) 10 Å in pulses of 4 s on, 40 s off at 0.2 Å/s; (c)

3 Å in pulses of 0.5 s on, 40 s off at 0.8 Å/s.
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of 10 cycles, the quartz crystal monitor records a total deposition of 4 Å. In Figure

6.18(b), the flux remains unchanged, but the pulse length is increased to 4 s,

resulting in 10 Å of deposition. Finally, in Figure 6.18(c), the flux is increased

to 0.8 Å/s, with pulse length 0.5 s and a total deposition of 3 Å. During the first

pulse, the intensity seems consistent with the cubic lattice model and our previous

interpretation of RHEED. The initial decay of (a) is less than (b) or (c), due to

larger coverage in (b) and growth rate in (c). However, after multiple cycles, the

intensity approaches a steady state value that is not sensitive to growth rate or

coverage in the range of conditions accessible to us. Instead, at the end of 10 cycles,

the intensity is near 0.75 in all cases.

The steady-state intensity does not exhibit a strong dependence on growth rate

or coverage, but is dependent on the growth temperature. Figure 6.9 show RHEED

intensity for growth at 230◦C. At this lower temperature, the steady state intensity

has decreased near 0.4–0.5. In Figure 6.9 (a), 12 Å are grown in 10 cycles of 2 s

on and 40 s off at a flux of 0.4 Å/s, while in (b), the flux is lowered to 0.05 Å/s,

the growth time is raised to 16 s, for a total of 7 Å.

The intensity shows a strong dependence on the growth temperature, but ap-

pears to quickly reach a steady-state value that is independent of growth rate or

thickness. While the intensity for submonolayer coverage is dependent on growth

rate and coverage, this dependence is not observed in multi-layer growth.

6.3.3 Synchronized pulsing

As reported previously in the literature [1, 2, 7, 56], we have observed oscillations

in the spectral spot intensity at glancing angles of incidence. The period of the

oscillations is similar to the monolayer frequency, when correlated with the film

thickness measurement obtained with a quartz crystal monitor. The oscillations

are most pronounced at glancing angles less than 1◦, far from 5◦ angle at which we

study submonolayer pulsed growth. It is difficult to imagine that these well-defined

persistent oscillations are occurring due to a periodic mechanism that is not the

monolayer frequency. However, as observed by Aarts [2] with photoemission mea-
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Figure 6.9: Integrated intensity of the spectral spot for pulsed growth at 230◦C.

In both cases, 10 pulsing cycles are executed: (a) 12 Å are deposited in pulses of

2 s on, 40 s off at 0.4 Å/s; (b) 7 Å in pulses of 16 s on, 40 s off at 0.05 Å/s.
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Run Description α β

1 Constant growth 0.0126 0.0138

2 Short recovery 0.0113 0.0142

3 Constant growth 0.0094 0.0128

4 Long recovery 0.0108 0.0163

5 Constant growth 0.0143 0.0178

Table 6.1: Exponential fit to ∆I = αeβt.

surements, the occurrence of persistent oscillations in RHEED do not necessarily

indicate smooth layer-by-layer growth. Berrie et al. [7] observe bimodal oscil-

lations, which they attribute to a bilayer growth mechanism. However, bimodal

oscillations are also reported to exist due to dynamical scattering [38].

We show in Figures 6.10 and 6.11 five growth runs performed sequentially,

separated by only by the growth of a 1500 Å buffer layer at 450◦C. Growth occurs

at 270◦C at a rate of 0.3 Å/s. The runs are labeled as Run 1–Run 5 in the

order in which they were performed. In all runs, growth proceeds for 70 s,

but in Runs 2 and 4, growth is interrupted at the end of each of the first five

layers (as measured real-time by the RHEED oscillations) for periods of 5 s and

60 s, respectively. Substantial recovery in the intensity can be seen during these

pauses, particularly during the long pauses of Run 4. We look for changes in

the signal following this pulsing by comparing the oscillations after the pulsing

sequence to the oscillations of Runs 1, 3, and 5. The amplitudes of the oscillation

are plotted in Figure 6.12 as a function of the growth time. We also fit the decay

in the amplitude to an exponential of the form ∆I = αeβt for each of the five

runs. The values of the parameters are given in Table 6.1. The outlying values

for both parameters are associated with the continuous runs, such that the decay

associated with the pulsed growth cannot be distinguished from the continuous

growth. This is also reflected in the statistical analysis shown in Table 6.2, in

which the parameters for the pulsed growth are contained within one standard

deviation of the parameters for continuous growth. The pulsing seems to have
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Figure 6.10: Germanium growth at 0.3 Å/s at 270◦C. The ‘O’ denotes an opening

of the shutter, and the ‘C’ denotes closing. Runs 1, 3, and 5 were performed under

identifical conditions. Displacements in the intensity curves are arbitrary.
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Figure 6.11: Germanium growth at 0.3 Å/s at 270◦C. Growth is interrupted at the

conclusions of each of the first five layers, for (a) 5 s; (b) 60 s. The ‘O’ denotes an

opening of the shutter, and the ‘C’ denotes closing. Displacements in the intensity

curves are arbitrary, and the curve for Run 4 in (b) is broken up into 3 segments,

with the initial segment plotted at the top.
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Figure 6.12: Amplitude of the intensity oscillations of Figures 6.10 and 6.11. The

‘x’s denote the three continuous growth runs, the ‘o’s are associated with the

short pauses of Run 2, and the squares with the long pauses of Run 4. The decay

associated with pulsed growth is indistinguishable from continuous growth. The

parameters for the exponential fits are given in Table 6.1.

α β

mean 0.0121 0.0148

standard deviation 0.0025 0.0026

Table 6.2: Statistics for the exponentials fit to Runs 1, 3, and 5.
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little effect on the subsequent evolution of the surface, or at least cannot be seen

in the intensity of the RHEED specular spot. This is consistent with Aarts’ earlier

statement that RHEED oscillations may be a better measure of film thickness than

of surface morphology [2].

6.4 Comparison with simulation

6.4.1 Interpretation of RHEED signal

We have examined the validity of the kinematical approximation in Ge growth

at low temperatures, using the camera and framegrabber to simultaneously ana-

lyze various features in the diffraction pattern. The decay in the intensity of the

specular spot during low temperature growth is shown in Figure 6.13. As the tem-

perature is lowered, the decay approaches the value associated with a statistical

surface. We expect this limit at low temperature, since surface diffusion becomes

negligible and the random deposition of atoms dominates the evolution. This ex-

ponentially decay has previously been observed by Chason et al. [9]. Also notice

that after an initial decay, the RHEED intensity reaches a steady state value. We

see this steady-state intensity over the range of temperatures studied, and observe

that it is not consistent with the two-level or stochastic interpretations mapping

intensity to coverage.

In our interpretation of the specular spot intensity, we must be sure that other

diffraction features are not impinging on the specular spot and artificially con-

tributing to the measured intensity. We investigate this issue by collecting line

scans through the specular spot during growth at 125◦C in the same run shown in

Figure 6.13. A horizontal line scan reveals the contribution of the background to

the measured intensity, while a vertical line scan shows the relative intensity of the

specular spot and the Bragg rods, which might impinge upon the specular spot

during growth. Line scans at the beginning and end of growth are given in Figure

6.14. In both scans, the intensity of the specular spot is large, while the surround-

ing intensity is within a few bits of zero. We conclude that even at the lowest
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Figure 6.13: Decay of the integrated intensity of the RHEED specular spot during

growth at 125◦C and 210◦C at a rate of 0.4 Å/s. Growth proceeds for 10 s, after

which the shutter is closed. The decay is compared to the decay for stochastic

growth for an equivalent monolayer coverage Θ, using 1.4 Å = 1 mL. As the

temperature is lowered, the decay approaches the stochastic limit, but retains a

small nonzero steady-state component for the temperatures considered.
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Figure 6.14: Line scans through the specular spot for the growth at 125◦C shown

in Figure 6.13: (a) line oriented vertically, along the Bragg rods; (b) line oriented

horizontally, perpendicular to the Bragg rods. The Bragg rod and background do

not contribute significant intensity to the measured specular spot intensity.
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temperature growth considered, the intensity of the specular spot is not corrupted

by other diffraction features. However, in our photodiode measurements of the

spectral spot intensity, we continue to measure and subtract off the background

intensity for each growth run.

We now continue on with the kinematical interpretation, and consider the

evolution of the specular spot first during growth, and then during subsequent

recovery, as pictured in Figure 6.6. The main features in this plot are the decay

in intensity during growth and the subsequent signal recovery. This recovery is

not consistent with a straightforward mapping between surface coverage and signal

intensity. Post-growth, the coverage is not changing, but the intensity is increasing.

During this recovery phase, we expect the surface atoms to rearrange through

adatom diffusion and detachment from islands, leading to island coarsening.

In the kinematical approximation, the RHEED pattern is ideally the Fourier

transform of the surface autocorrelation function. However, imperfections in the

measurement system result in a smoothening of the features, primarily via diver-

gence of the electron beam. In some situations, this loss of spatial coherence is

modeled by convolving the RHEED pattern with a Gaussian instrument response

function. The width of the Gaussian corresponds to a critical distance on the sur-

face at which the electron beam is no longer coherent [24]. The effect of convolution

with the Gaussian eliminates contributions to the RHEED pattern that originate

from atoms at distances greater than the transfer width. However, in our inter-

pretation, we consider a nominal intensity resulting from pure reflection, which is

diminished when electron waves interfere destructively from layers differing by an

atomic layer. In this interpretation, we do not wish to eliminate the contribution

from sites that are far apart. Instead, we should do exactly the opposite and sub-

tract out destructive interference only from sites that are within the transfer width.

This interpretation is clearly tied to a very different view of the RHEED specular

spot intensity, which is that the intensity decay is proportional to the density of

steps on the surface [54]. If we consider destructive interference only within some

region surrounding the step edges, we obtain the same result. A consistent picture



123

includes two limits: when steps are close together, the interference model is valid,

but when terraces between steps are large, the step density model is appropriate.

In the intermediate regime, we expect intensity to be inversely correlated with step

density.

6.4.2 Simulation of experimental conditions

Submonolayer deposition

We now compare the experimental data shown in Figure 6.7 with kinetic Monte

Carlo simulations of surface evolution. We assume a cubic lattice with unit cell

1.4 Å and with activation energies for diffusion and detachment based on a nearest-

neighbor bond-counting scheme, with adsorption rate kads = F , diffusion rate

kdif,i = ν exp (−(Edif,0 + i∆E)/(kbT )), where F is the Ge flux, ν is a vibrational

frequency, Edif,0 is the activation energy for adatom diffusion, i is the number of

nearest-neighbor side bonds, ∆E is the additional activation energy associated with

each side bond, kb is Boltzmann’s constant, and T is the substrate temperature.

In the simulation study, we use the standard vibrational frequency of 1013 s−1,

and consider various values of Edif,0 and ∆E.

We also note that the crystal lattice of germanium is a diamond lattice, not a

cubic lattice. However, cubic lattice simulations capture many important features

of surface evolution, such as island nucleation and step propagation. In the cubic

lattice model, kdif,0 is the rate of adatom diffusion, kdif,1 is the rate of dimer

dissociation, and kdif,2 is the rate of atom detachment from compact clusters.

Consequently, one can expect to capture the main features of Ge(001) surface

evolution that are described by the relative rates of adsorption, surface diffusion,

and detachment. Altered rates of surface diffusion for adatoms diffusing up or

down steps are not included in the simulations of germanium. Ehrlich-Schwoebel

barriers at steps may eventually cause mound formation in very thick germanium

films [11], but are unlikely to significantly impact surface evolution for films of only

a few atomic layers [42]—the additional energy barrier at steps has been reported
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as only 0.024 eV.

In the kinetic Monte Carlo simulations we use step density for comparison

with experimental intensity measurements. As discussed in Section 6.4.1, the step

density is assumed to be monotonically decreasing with increasing intensity, for

equivalent coverage and temperature. Furthermore, Figure 6.6 is used to estimate

the magnitude of step densities that should be resolvable with RHEED. In Figure

6.6, coverages varying by a factor of two have been deposited under otherwise

identical conditions. We thus assume that the island density between each pair is

fixed, and therefore that a ratio of coverages of 2 yields a step ratio of
√

2 ∼ 1.4.

For the similar growth conditions of the parameter study, step densities differing

by this ratio are deemed to be visible in the RHEED intensity.

We now present the results of the kinetic Monte Carlo simulations for the

experimental conditions of the data in Figure 6.7. Values of Edif,0 = 0.60, 0.65, and

0.70 eV and ∆E of 0.20, 0.25, and 0.30 eV are used in this study. While additional

parameter values were explored, these values of ∆E provided the best agreement,

while Edif,0 was centered around a previously reported value [42]. Results for two

temperatures are shown in Figures 6.15 and 6.16.

At both temperatures shown we observe a similar relationship among the four

curves. At the highest bond energy, the step edge density after growth at 0.4 Å/s

does not approach the value for growth at 0.05 Å/s, while for ∆E = 0.25 eV,

greater recovery is observed. At this intermediate bond energy, we near the pre-

viously identified ratio of 1.4 between the curves, so we are less confident that the

intensities would not be the same. However, we get the best agreement between

the experimental results of Figure 6.7 and the simulation results for ∆E = 0.20 eV,

regardless of the adatom diffusion rate specified by Edif,0. We conclude that the

recovery measurements are highly sensitive to ∆E, are most consistent with a

value of 0.20 eV, and are not very sensitive to Edif,0. At smaller values of ∆E,

the simulations exhibited extreme fluctuations at the temperatures of interest, be-

cause the detachment rate is extremely high and islands do not remain compact.

Consequently, we take 0.20± 0.05 eV to be an upper bound on ∆E, based on the
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Figure 6.15: Simulated step edge density at 230◦C immediately following growth,

and after 40 s of recovery: (a) ∆E = 0.20 eV, (b) ∆E = 0.25 eV, and (c) ∆E =

0.30 eV.



126

0.58 0.6 0.62 0.64 0.66 0.68 0.7 0.72

−0.05

−0.04

−0.03

−0.02

−0.01

E
dif,0

 (eV)

−
st

ep
 e

dg
e 

de
ns

ity
(a)

0.58 0.6 0.62 0.64 0.66 0.68 0.7 0.72

−0.06

−0.04

−0.02

0

E
dif,0

 (eV)

−
st

ep
 e

dg
e 

de
ns

ity

(b)

0.58 0.6 0.62 0.64 0.66 0.68 0.7 0.72

−0.08

−0.06

−0.04

−0.02

0

E
dif,0

 (eV)

−
st

ep
 e

dg
e 

de
ns

ity

(c)
F = 0.4 Ang/s, growth
F = 0.05 Ang/s, growth
F = 0.4 Ang/s, final
F = 0.05 Ang/s, final

Figure 6.16: Simulated step edge density at 280◦C immediately following growth,

and after 40 s of recovery: (a) ∆E = 0.20 eV, (b) ∆E = 0.25 eV, and (c) ∆E =

0.30 eV. Error bars for standard deviation over 6 KMC runs are shown in (a) for

Edif,0=0.65 eV.
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Figure 6.17: Error in island densities between KMC simulations and the exper-

iments of [42]. Error is measured by the two-norm of the percent error at each

temperatures, with contours shown at increments of 0.2.

parameter study.

An activation energy for adatom migration has been determined by a previous

study by VanNostrand et al. [42] to be 0.65 eV. This value was extracted from

low temperature STM studies of island density, using only the lowest temperature

portion of the total data set and assuming no detachment. We used our Monte

Carlo model to compare simulated island densities to those reported in [42] for

temperatures of 155◦C and 230◦C and for the range of parameters used in the

previous set of simulations. Figure 6.17 is a contour plot showing the error be-

tween the island densities of the KMC simulations, and those reported in [42].

The error is defined as the two-norm of the percent error at each of the two tem-

peratures considered. The best agreement is obtained for parameter values of

{Edif,0, ∆E} = {0.65, 0.20} eV and for {Edif,0, ∆E} = {0.60, 0.25} eV. Because

the first set of parameters agrees best with our estimate of ∆E and with the
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value of Edif,0 reported previously [42], we ultimately arrive at parameter values

of Edif,0 = 0.65 ± 0.05 eV and ∆E = 0.20 ± 0.05 eV.

We further compare our activation energies to an annealing study on Ge(001)

[11], in which the activation energy for smoothening of large surface features is

reported as 1.9±0.25 eV. This energy is argued to be the sum of the formation and

diffusion energies for the mobile species. In our microscopic model, the formation

energy for an adatom from a kink site is 1.05 eV, while its activation energy for

surface diffusion is 0.65 eV, for a total of 1.70 eV—consistent with the annealing

study.

Multilayer growth

We now use the parameters previously obtained for the cubic lattice model to

make predictions about growth strategies based on time-varying conditions. First

the conditions of the two of runs of Figure 6.9 are simulated, with corresponding

step densities plotted in Figure 6.18. In both cases, the step density decays during

growth and recovers when the source is shuttered. The decay of the higher growth

rate is greater, but in both cases, the surfaces remain smooth and do not show any

overall decay or recovery over multiple pulses.

We also simulate growth under the conditions shown in Figures 6.10 and 6.11

in which persistent RHEED oscillations are seen. Step edge density is plotted in

Figure 6.19 for growth under continuous flux, and with one-monolayer pulses sep-

arated by 5 s pauses. In the simulations, the surface remains smooth, as measured

by the oscillations, during both strategies, so one would not expect the pauses in

growth to substantially alter evolution—in the simulations, both growth strategies

result in growth by two-dimensional island nucleation and coalescence.

6.4.3 Simulation of alternative growth strategies

Further simulations were performed to contrast the experimental conditions with

alternative growth strategies. Figure 6.20 shows simulation results for lower growth

temperatures, in which the growth temperature is restricted to the range of 75–
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Figure 6.18: Kinetic Monte Carlo simulations of multilayer pulsed growth. The

physical parameters are those determine previously for Ge(001): ν = 1013s−1,

Edif,0 = 0.65 eV, and ∆E = 0.20 eV. The growth conditions correspond to experi-

mental conditions of T = 230◦C and F = 0.4 and 0.05 Å/s. Pulse times of 2 s and

16 s, respectively, result in the deposition of approximately half a monolayer per

pulse. Ten pulsing cycles are simulated, with 40 s pauses between the pulses. The

faster growth rate results in a slightly higher step density.
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Figure 6.19: Kinetic Monte Carlo simulation of roughness evolution at 0.3 Å/s and

270◦C, with Edif,0 = 0.65 eV, ∆E = 0.20 eV, and ν = 1013s−1. The growth condi-

tions match those of the experiments of Figures 6.10 and 6.11, while the physical

parameters are those determined for Ge(001) from the submonolayer experiments:

(a) continuous flux (b) 5 s pauses after each of the first five monolayers.
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Figure 6.20: Kinetic Monte Carlo simulations of roughness evolution at a mean

flux of 1 mL/s and temperatures between 75 and 150◦C. The physical parameters

are those identified for Ge(001): Edif,0 = 0.65 eV, ∆E = 0.20 eV, and ν = 1013s−1.

In (a), the temperature is held constant throughout growth, while in (b) contin-

uous growth is compared to a pulsed-MBE strategy in which 1 mL is deposited

during the first 0.2 s, with the remaining 0.8 s having no flux. In (c) constant tem-

perature growth is compared to a temperature synchronization strategy, in which

the temperature is lowered to 75◦C during the first 0.2 s of each layer, after which

it is raised to 150◦C.
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150◦C. We first simulate growth under constant conditions, with a flux of 1 mL/s

and a range of temperatures, as shown in Figure 6.20(a). At the highest temper-

ature, roughness oscillations are seen, which indicate a smooth two-dimensional

surface. These oscillations decay as growth proceeds. However, note that the

maximum remains near 0.5, indicating that at a coverage of 0.5, the surface is still

two-dimensional. We next compare continuous growth to a pulsing strategy like

those used in the experiments, in which a dose of one monolayer is deposited, fol-

lowed by a pause in which the flux is zero. A comparion is made in Figure 6.20(b)

for growth at 150◦C between a continuous flux of 1 mL/s, and a pulsed flux with

1 mL deposited in 0.2 s, follow by a pause of 0.8 s. There is no substantial change

in the final roughness after 10 layers are deposited, indicating that the evolution

under pulsed flux is not significantly different than under continuous flux.

We next make a comparison between continuous growth and growth under a

different pulsing strategy, in which either temperature is lowered at the begin-

ning of each layer, or alternatively the flux is raised. Either method can lead to

smoothing by increasing island density, thereby reducing three-dimensional nucle-

ation. Figure 6.20(c) demonstrates this effect. We compare continuous growth

at 150◦C to growth in which the temperature is lowered to 75◦C during the first

0.2 s of each layer, after which it is raised to 150◦C. The final thickness under

this synchronized nucleation strategy is substantially lower than under continous

growth. However, in both cases the roughness at 1/2 mL coverage is 0.5, so at

half coverage, in both cases the surface is two-dimensional. The benefit of the

synchronization strategy is to reduce island density and delay the initiation of a

new layer before the active one has been completed, providing a surface closer to

an atomically flat one after the deposition of an integer number of monolayers.

A final comparison is made between continuous flux and a periodic flux profile

reminiscent of pulsed laser deposition. One motivation for this study was to test

the hypothesis [58] that the time-varying flux is generally roughening, and that

the smoothening effect observed in PLD is the result of energetic effects. Based

on the experiments, and the simulations of the experiments, we see no evidence
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that pulsed MBE creates a significant smoothening or roughening effect. However,

simulations with the higher fluxes seen in PLD do generate roughening. The results

of this simulation study are shown in Figure 6.21. Simulations are performed for

the germanium parameters determined earlier in the chapter, and for the silicon

parameters used in [58].

We use a pulse time of 5 µs, as in the PLD simulations of Taylor and At-

water [58]. The number of pulses per second is varied, with the instantaneous

flux adjusted to maintain a mean growth rate of 1 mL/s. With low pulse rate and

high instantaneous flux, a significant roughening effect is seen, which is diminished

as the pulse rate is increased. When the pulse rate becomes large, we expect to

recover the continuous flux evolution, and do for a pulse rate of 100 pulses/mL,

with corresponding instantaneous flux only twice that of continous growth. Our

lattice model and simulations are thus consistent with the predictions in [58] that

an intense pulsed flux without energetic effects is roughening. We further conclude

that at typical temperatures and growth rates of MBE, the maximum instanta-

neous flux is not high enough to create significant roughening.

6.5 Discussion and conclusions

We have used RHEED as a real-time diagnostic to examine the evolution of ger-

manium surface morphology under pulsed flux. The intensity of the specular spot

is dependent upon growth rate, temperature, and coverage for submonolayer de-

position. However, for multilayer growth, the intensity is only dependent upon

temperature within the range of growth rates accessible with our electron gun

source. One might alternatively attribute the loss of sensitivity to a change in

growth mode to rough three-dimensional growth. However, our RHEED pattern

throughout growth indicates an atomically smooth surface—faint Bragg rods are

consistent with the presence of atomic-height steps. Additionally, another study

has reported that even at our lowest growth temperature, we should expect two-

dimensional growth up to at least 50 monolayers, before three-dimensional mounds
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Figure 6.21: Kinetic Monte Carlo simulations of pulsed growth. Growth in pulses

of 5 µs is compared to growth with continuous flux. In all cases the mean flux

is 1 mL/s. (a) Physical parameters are those for Ge, with a growth temperature

is 150◦C. (b) Physical parameters, including step-edge barriers, are taken from

Taylor and Atwater [58] to represent silicon. The growth temperature is 400◦C.
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appear [42] (our experiments consist of less than 10 monolayers).

We conclude that a straightforward application of the kinematical approxima-

tion for RHEED is not warranted based on our data. Instead the analysis of the

RHEED data is limited to the submonolayer regime, where the specular spot inten-

sity is dependent on both the growth rate and coverage. The intensity is compared

for surfaces with equal temperature and equal coverage, and it is observed that the

intensity decay is greater when the growth rate is higher. We thus assume only a

monotonic dependence between step density and intensity. This enables an esti-

mation of bond energy for the cubic lattice KMC simulations, based only on the

conjecture that when temperature and coverage are equal, equal intensity implies

equal step density. The kinetic Monte Carlo simulations predict a bond energy of

0.20 eV, using a vibrational frequency of ν = 1013 s−1 and an adatom diffusion

energy of 0.65 eV. This model is consistent with our data, with previously reported

activation energies [11, 42], and with a comparison between our simulations and

previously reported data [42].

In the multilayer growth experiments, differences in the RHEED intensity due

to changes in the instantaneous flux are not observed over multiple layers of growth,

and the interpretation of the RHEED pattern is uncertain in this regime. Sim-

ulations of the same experimental conditions were performed, which predict that

faster instantaneous growth rates increase the step density slightly, and in all cases

two-dimensional nucleation and coalescence is the dominant growth mode. The

experiments and simulation are consistent with the explanation that pulsed-MBE

does not result in a significant effect.

We also simulated growth under the synchronized nucleation strategy, and

under intense flux pulsing characteristic of pulsed laser deposition. A smoother

interface is obtained using the synchronization strategy, while intense flux pulsing

was roughening. While the pulsed-MBE strategy may not be an effective at gen-

erating altered morphology, the simulations do predict that other strategies using

time-varying flux and temperature would produce unique surface properties.

At the conclusion of this study, several promising directions for future investi-
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gation are suggested. For the purpose of producing smoother films at low temper-

atures, our simulations suggest that the synchronized nucleation strategy could be

beneficial for Ge(001) at low growth temperatures. Previous studies on Ge(111)

[37] show that the synchronization can prolong the existence of RHEED oscilla-

tions. Connections between this growth strategy and final surface morphology

could be of great utility in germanium, and particularly in silicon, and should be

investigated experimentally.

It is also clear from the experimental work that while RHEED is sensitive to

surface morphology, and provides real-time information during growth, a straight-

forward interpretation based on the kinematical approximation is not justified.

Further development of RHEED models based on multiple scattering would be

beneficial, particularly ones that can be run in real-time during growth to en-

able feedback control. However, in the absence of such models, calibration of the

RHEED signal to STM measurements could also be tremendously useful. Our

chamber is not equipped with an STM, and we instead relied on another STM

study to complement our RHEED data [42]. It is clear that RHEED and an STM

provide different types of information each with its own advantages, and that in

a surface study such as ours, the combination of the two would be particularly

useful.
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Chapter 7

Conclusions and Future Work

7.1 Thesis summary and contributions

This thesis brings together theoretical, simulation, and experimental work in mod-

eling the evolution of surface morphology during thin film deposition. The dynam-

ics may be expressed through local interactions within a large collection of discrete

atoms. The difficulty with such a high-dimensional representation arises when the

computational demands of simulation become high. Although it may be feasible

to make predictions, computing gradients or inverting the input-output map may

be impractical.

The goal of this work has been to identify simpler descriptions and interpreta-

tions of the input-output behavior observed in a high-dimensional lattice model. In

Chapter 3, the use of fast periodic processing conditions was examined, exploiting

the mathematical structure of the master equation, and in particular the nonlinear

map from macroscopic process parameters to microscopic transition rates. Appli-

Static
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Rates
Transition Bilinear

Differential

Equation

Properties
Film

Expected 

Figure 7.1: Block diagram of the lattice model.
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cation of the averaging theorem to the master equation suggests that when the

period of oscillation is faster than the response time of the surface, the surface

evolves according to constant transition rates that are the average of the instanta-

neous values applied. Because the maps from process parameters to inputs may be

nonlinear, these effective transition rate may not be attainable with constant re-

actor conditions. This analysis requires consideration only of the transition rates,

despite the extremely high dimension of the evolution equation. The set of all

possible effective rates is the convex hull of the set of instantaneous rates, so linear

programming techniques may be employed to compute the input trajectories.

The averaging analysis opens the space of possible transition rate inputs into

the second dynamic block. These rates act as inputs for the bilinear differen-

tial equation that describes the probability distribution. Although fast periodic

processing parameters yield new constant effective inputs, one also needs to un-

derstand the effect of inputs that vary more slowly. Because it is not possible to

explicitly formulate the differential equation, due to its high dimension, the known

linearity of the state was combined with the KMC simulations to identify low-order

master equations that capture the transfer of probability between groups of sim-

ilar microscopic configurations. This model was demonstrated to be compatible

with a gradient-based optimization algorithm, through which optimal time-varying

process parameters were computed for various cost functions.

The effect of time-varying process parameters was also studied in the model

system of germanium, through experiment and simulation. Germanium was de-

posited onto germanium substrates in an ultra high vacuum process, using reflec-

tion high-energy electron diffraction as a morphology sensor during growth. The

experimental data were used to determine parameters for the lattice model and

KMC simulations, and as well as to test periodic growth strategies. The identified

model predicts that within the range of inputs available in the molecular beam epi-

taxy process, a periodic growth strategy would not produce significantly different

morphology over constant conditions, which was consistent with our experimen-

tal observations. The simulations also predict that more intense flux pulsing or
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temperature modulation can produce altered morphology.

In this thesis, specific problems in surface morphology control have been stud-

ied, such as the synchronized nucleation strategy of Chapter 5, and the particular

material system of germanium in Chapter 6. However, at this point in time the

greater contribution seems to be the generality of the approaches developed here.

Both the averaging method and the KMC model reduction may be applied to any

system described by a master equation. At the outset of this work, the master

equation was viewed as an abstract representation, without much utility due to

its uncountable dimension. However, the model reduction approach and exam-

ples have demonstrated that behavior seen in KMC simulations is characteristic of

master equation dynamics, and that the master equation is a good mathematical

structure on which to base the system identification.

7.2 Future directions

Because the dimension of the master equation is extremely large for all but the

simplest systems, we do not attempt to compute state matrices for physically re-

alistic surfaces. Instead, we borrow the mathematical structure of the underlying

master equation, and then use Monte Carlo simulations for model identification

and for demonstration of our ideas. This is a strategy common to both the av-

eraging analysis and the model reduction. In the former case, we suggest that

the timescales of surface evolution are slower than the input period, which in a

finite dimensional system could be supported by the study of the eigenvalues of the

state matrices. However, in the lattice model, we not only have an infinite number

of eigenvalues, but also have an uncountable number of configurations, for which

there are few mathematical results. Similarly, in the model reduction work error

bounds were proven for finite-dimensional systems, after which the ideas, but not

the bounds, were extended to larger systems.

One of the strengths of the control theory is its attention to rigor and its

quantification of performance via norm bounds. In this work, we have extended
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ideas that are quantifiable to uncountably infinite spaces, which work quite well in

demonstration. However, further study of these approaches and their associated

bounds is warranted, and might be accomplished either through the development

of better theoretical constructs for uncountable spaces, or by formally reducing

the system to a more tractable form.

Another approach presented here that could benefit from future study is the

identification of a reduced configuration set that forms a finite-dimensional state

space for the identified models. Methods have been developed to compute reduced

coordinates in high-dimensional systems, and in particular to generate these modes

from data. However, we have chosen to restrict ourselves only to coordinates repre-

senting probabilities, so that we preserve the stability of the associated stochastic

matrices. It would be useful to have a method that would produce optimal coordi-

nates within this constraint, or alternatively to develop a less constrained method

that also guaranteed stability.

In this thesis we integrated theory, simulation, modeling, and experiment to

investigate the effects of time-varying process parameters, through periodic forc-

ing and open loop optimization. We placed less focus on the issue of feedback

control, which ultimately would also be part of any practical implementation. We

hope that eventually the overall approach advocated in this thesis will be applied

in experiment, from first-principles modeling and KMC model reduction to com-

putation of optimal inputs to sensor integration and finally to demonstration of

optimal trajectories coupled with sensor feedback. At the initiation of the research

in this thesis, it seemed that the biggest barrier to implementation of a coherent

control strategy was the lack of a suitable model for both computation of optimal

open-loop trajectories and for design of feedback controllers. However, at the con-

clusion of this thesis, a path has been identified to reduce large lattice models. We

now see no single barrier to the implentation of control strategy based on physical

modeling, but instead see many practical challenges. One of the greatest may be

the difficulty in sensing. While many in-situ exist, they typically do not provide

direct state information, and may require extensive modeling for interpretation.
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We view the sensor development issue as distinct from the dynamics of the evolv-

ing system, but note that both must be addressed in order to implement control

in practice.

The modeling results presented in this thesis were developed in the context

of thin film deposition and, in particular, the evolution of surface morphology.

The lattice model with its associated master equation captures many important

features, so we took the lattice model to be the actual physics, and then subse-

quently searched for simpler representations of it. Many other physical effects,

beyond surface morphology, may be captured by the lattice model, including mul-

tispecies effects, faceting, grain growth, and surface reconstruction. Additionally,

lattice models capture bulk effects including magnetization and species interdif-

fusion. Furthermore, master equations provide probabilistic representations of

many systems, and are particularly important in small systems where fluctuations

are important, like quantum computation and intracellular chemical reactions.

The methods developed in this thesis are not specific to surface morphology, film

growth, or even lattice models. Many potential applications exist in other fields

and should be actively pursued.
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Appendix A

Computation of periodic process conditions

% Matlab code 9-21-01 Martha Gallivan

keff = [1.0; 500.005; 505]; % Desired effective transition rates.

% Define physical parameters.
m = 3; % Three transition mechanisms.
Fmin = 0; % Define the bounds on the process
Fmax = 1; % parameters.
Tmin = 2/3;
Tmax = 1;
vdif = 1e13; % Define the vibrational frequencies
vdes = 1e7; % and activation energies.
Edif = 23.0258509299405;
Edes = 9.21034037197618;

% Discretize process parameters and compute transition rates.
F = [Fmin:(Fmax-Fmin)/10:Fmax]; % Discretize the process parameters.
T = 100*log([exp(Tmin/100):(exp(Tmax/100)-exp(Tmin/100))/10:exp(Tmax/100)]);
np = length(F)*length(T); % Number of parameter settings.
kconst = zeros(m,np); % Compute the transition rates at
for i = 1:length(F) % each setting.

for j = 1:length(T)
kconst(:,i) = [F(i); vdif*exp(-Edif/T(j)); F(i)*vdes*exp(-Edes/T(j))];

end
end

% Solve for the fraction of time spent at each setting.
v = [ones(1,np); kconst];
Aeq = v;
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beq = [1; keff];
LB = zeros(np,1);
UB = Inf*ones(np,1);
lambda = linprog([],[],[],Aeq,beq,LB,UB);
[v*lambda [1; keff]]

% Reduce the number of settings to m+1.
for j = np:-1:m+2

n = null(v);
mu = n(:,1);
L = max(lambda)/min(abs(mu));
for k = 1:j

if (mu(k) > 0)
L = min(L,lambda(k)/mu(k));

end
end
lambda2 = lambda - L*mu;
[Y,I] = min(lambda2);
v = [v(:,1:I-1) v(:,I+1:j)];
lambda = [lambda2(1:I-1); lambda2(I+1:j)];

end
[v*lambda [1; keff]]

% The vector lambda contains the fractions of the period spent at each
% of the kc rates.
kc = v(2:m+1,:);

% Solve for the process parameters from the transition rates.
F = kc(1,:);
T = Edif./(-log(kc(2,:)./vdif));
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Appendix B

Spatial modes

In this study, we explore the dynamics of film growth on a vicinal surface using a

kinetic Monte Carlo (KMC) model, over a temperature range spanning the transi-

tion from step flow growth at high temperature to island growth and coalescence

on terraces between rough steps at low temperature. We use the technique of

proper orthogonal decomposition (POD) to identify spatial modes that represent

the major features of the surface profiles.

B.1 Kinetic Monte Carlo simulations

We studied the surface morphology of a growing crystal with a kinetic Monte

Carlo model. We consider a single-species material on a cubic lattice, and we

increment time as in Fichthorn and Weinberg [15] to achieve a physically based

time. Vacancies in the crystal are prohibited. We define transition rates for adsorp-

tion, desorption, and surface diffusion based on a nearest-neighbor bond-counting

model:

kads = γPj

√
1

2πmkbT
(B.1)

kdes,i =
kbT

h
exp

(
−Edes,0 + i∆E

kbT

)
(B.2)

kdif,i =
kbT

h
exp

(
−Edif,0 + i∆E

kbT

)
, (B.3)
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where i, ranging from 0 to 4, is the number of adjacent side neighbors, kads is

the adsorption rate, kdes,i is the desorption rate for a surface site with i nearest

neighbors, and kdif,i is the diffusion rate for a surface site with i nearest neighbors.

The Boltzmann constant is denoted with kb, Planck’s constant is h, the sticking

coefficient is γ, the mass of the particle is m, temperature is T , and the precursor

partial pressure is Pj . The chemistry model has four free parameters: three ac-

tivation energies and a constant in the adsorption rate. The activations energies

Edes,0, Edif,0, and ∆E are the depths of the potential energy wells associated with

the occurrence of a surface event. Specifically, Edes,0 is the energy for the desorp-

tion of an atom with no side neighbors, Edif,0 is the energy for the diffusion of an

atom with no side neighbors, and ∆E is the additional energy barrier associated

with a single side neighbor.

We performed simulations on a 256 × 256 domain and deposited 4 layers of

atoms. Eight equally spaced steps were inserted into the initialized lattice, and

periodic boundary conditions were used to simulate an infinite train of steps.

The transition rate parameters were γ(2πmkb)−0.5 = 5
√

KPas−1, Edes,0 = 2.64 ×
10−18J , Edif,0 = 3.02×10−19J , and ∆E = 7.59×10−20J . The activation energy for

desorption is sufficiently high such that desorption is negligible in the simulations.

We considered a nominal partial pressure Pj,o = 1 Pa and nominal temperatures

To of 950 K, 1050 K, and 1150 K.

The temperature range was selected to span the transition from step flow

growth at high temperature to growth primarily by island nucleation at low tem-

perature. At intermediate temperatures, both processes contribute, as shown in

Figure B.1. This figure shows that the islands are not distributed randomly on

the terrace. Since the steps are sinks for adatoms, the adatom density is highest

away from the steps, and it is here that islands preferentially nucleate.

Layer-by-layer growth via island nucleation and step growth results in a peri-

odicity at the monolayer growth frequency that is usually detected as oscillations

in the measured RHEED signal. This behavior is seen in plots of the step edge

density and of the root-mean-square roughness. These measures are plotted in
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(a)

(b)

(c)

Figure B.1: Monte Carlo simulation at 1050 K at various stages of growth: (a)

0.16 layers, (b) 0.54 layers, (c) 1.0 layers.
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Figure B.2: Roughness and step edge density from a KMC simulation at T = 1050

K.

Figure B.2 for the simulation pictured in Figure B.1. The oscillations decay due to

roughening of the step edges. Note in Figure B.1 that the step edge is not straight

at the completion of one layer of growth.

The oscillations in surface properties are influenced by the spatial non-uniformities

imposed by the steps. Because the islands are concentrated near the original cen-

ter of the terrace, the collision of steps with islands happens suddenly. Once the

steps have collided with the islands, the surface becomes smoother. Notice that

in Figure B.1(b) the steps have not yet collided with most of the islands, while

in Figure B.1(c), the step has merged with the islands, creating a minimum in

roughness and step edge density.

To better understand the spatial distribution of islands, we examine the shape

of the surface height profile for a range of growth conditions, from step-dominated

growth at 1150 K to island-dominated growth at 950 K. We also consider growth

under sinusoidally varying temperature and precursor partial pressure in an at-

tempt to excite different spatial modes. To obtain spatial profiles across the ter-

race, we average the surface height over the direction parallel to the steps. We also

average over the eight steps to yield the surface height profile for a single step as a

function of the distance along the terrace. Spatial profiles throughout the growth

of four layers are shown in Figure B.3. At low temperature, islands grow between

the steps and dominate the growth. As time advances, the surface becomes more
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Figure B.3: Surface height as a function of position in the direction perpendicular

to the step, for KMC simulations at (a) 950 K, (b) 1150 K.

disordered, which may be seen in the smoothening of the surface profile. At high

temperatures, growth occurs as adatoms attach to the step edge. The propagation

of the step is the dominant spatial feature in this limit. Notice that the verti-

cal scale is greatly expanded, so that the initial stepped surface appears to be a

sawtooth wave.

B.2 Proper orthogonal decomposition

We use a method called proper orthogonal decomposition (POD) to extract the

typical shape of the surface height profile [26]. The input to POD is a collection of

“snapshots” of data. As output, the POD method returns a series of orthogonal

spatial modes, which are ordered in decreasing importance. The root-mean-square

error between the snapshots and their projections onto the first n modes possesses

the minimum root-mean-square error that any n orthogonal modes could (where

n is an integer from 1 to the number of snapshots). Thus, the POD modes are

considered to be optimal. If low-order behavior exists in the spatial profile, the

first few POD modes will capture a large percentage of the total spatial profile.

In this study we take as our snapshots all of the spatial profiles plotted in Figure

B.3. In Figure B.3(b) the surface maintains a typical shape which propagates in
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Figure B.4: The first five spatial modes of surface height, obtained by proper

orthogonal decomposition. The percentages denote the amount of energy captured

by each mode.

time. To capture more energy in fewer POD modes, we preprocess our snapshots

with a procedure called template fitting [52], in which the spatial profiles are shifted

to line up with each other.

The first five spatial modes determined by POD are plotted in Figure B.4. The

first mode captures 96.6% of the energy, meaning that the root-mean-square error

between the KMC surface profiles and the projections onto the first mode is only

3.4%. The shape of the first mode represents the overall shape of the original step

in the KMC simulations. Its corners are rounded, consistent with the smoothening

of the profiles seen in Figure B.3. The second mode contains 2.7% of the energy,

totaling 99.3% for the first two modes combined. This mode has features on its

ends which, when added to the first mode, can sharpen or smooth the overall
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Figure B.5: The size of the projection of the first five POD modes onto the snap-

shots (a) 950 K, (b) 1150 K (shown in Figure B.3).

shape. The feature in the center of the second mode represents island growth on

the terrace. The third, fourth, and fifth modes are also shown in Figure B.4. They

contain little energy. The most dominant features of these modes are on the right

side. As in the second mode, the features on the right side resemble sinusoids in

various phases with each other. These modes can be combined to reconstruct a

traveling wave.

The projection size of each snapshot onto each mode is shown in Figure B.5.

At the low temperature, the first mode decreases during growth while the second

mode increases. This represents an overall roughening of the surface. In addition,

oscillations in the second mode occur once per monolayer, signaling that the spa-

tial height profile is oscillating near the monolayer frequency. The higher modes

do not appear to contribute significantly to the spatial distribution. At the high

temperature, when step flow dominates, oscillations are not evident. The sharp

sawtooth-like shape of the step becomes smoother as the step becomes more dis-

ordered, as seen in a decrease in the first mode and an increase in the second

mode.
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Figure B.6: Surface height as a function of position perpendicular to the step,

from a KMC simulation at 1050 K with oscillating growth conditions: (a) original

snapshots, (b) reconstructed surface height.

B.3 Comparison to other snapshots

We have demonstrated that the POD method generates modes in which the first

few modes capture the majority of the KMC spatial height profile. Next we test

these modes on the spatial profiles of a KMC simulation associated with an in-

termediate temperature, 1050 K, at which both islands and steps grow. The new

snapshots are shown in Figure B.6(a). In addition, we vary the temperature and

partial pressure sinusoidally near the monolayer frequency, with amplitudes of 25

K and 0.95 Pa. We might expect that different spatial modes would be present

in such a case. By projecting these profiles onto the previously computed modes,

we test whether or not the previously computed modes represent overall spatial

features of film growth on steps.

We project the spatial height profiles of the new simulation onto the previously

computed POD modes. The energy captured by the first five modes is 94.7%.

While it is not as good as the 99.8% captured for the original data set, most of the

energy is captured. This is quite remarkable considering that the spatial profiles

contain different features. Because both islands and steps contribute to growth,

there is a stationary feature, the islands, and a traveling feature, the steps, in the
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Figure B.7: The size of the projection of the first five POD modes onto the snap-

shots in Figure B.6(a).

spatial profile. Template fitting cannot align both features, so a traveling wave

is present in the final snapshots. During the early stages of growth, the first,

second, third, and fifth modes all appear significantly in the response, as shown

in Figure B.7. The second, third, and fifth modes contain spatial oscillations near

the right side which when combined represent the traveling wave. Even though

these modes did not play a large role in the spatial signals from which they were

derived, they were captured and play a significant role for other growth conditions.

The reconstructed spatial profiles are shown in Figure B.6(b). They appear very

similar to the original spatial profiles.

B.4 Conclusions

We studied the surface morphology of film growth on a vicinal surface with a kinetic

Monte Carlo simulation. To better understand the role of spatial non-uniformities,

we searched for characteristic shapes of the surface height. The proper orthogonal

decomposition technique produced spatial modes from the kinetic Monte Carlo

data. These modes captured 99% of the spatial height profiles for the data used

to generate the modes. For simulations performed at another growth condition,

the modes captured 95% of the profile.
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