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ABSTRACT

We show that for scalar theories without a cutoff the
asymptotic form for large energies W of the perturbation expansion
of the Low equation in the one-meson approximation is a double power
series in the coupling constant g? and bncs. The method applied by
Gell~Mann and Low to the photon propagator in electrodynamics is used
to show that if the crossing matrix has only one negative eigenvalue
this power series reduces to a series in a single variable
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where €,==‘9l(92W y and & is a constant. The series in ¥y is
evaluated for several interactions and for some crossing matrices with
no physical interpretation; for the former the series is a simple al-
gebraic function, while for the latter it usually diverges for all
values of y # o. We obtain the exact solution of the one-meson approxi-
mation for the symmetric scalar piom-nucleon interaction; it is a
multiple-valued function of g2, We compare perturbation approximation
to the determinantal function of Baker and the cotangent of the phase
shift, with the numerical solution of Salzman, for the symmetric pseudo-
scalar theory with a cutoff; they are found to be often accurate to a
few percent. We show that Chew and Mandelstam's approximate equations
for pion-pion scattering have no solution for positive coupling A ,

and that the perturbation expansion of the solution of their equations
for isotopic spin o pions diverges for A # o. For pions with I = 1 we

present calculations of the perturbation expansion to sixth order in X .
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I. INTRODUCTION

The next few chapters of this thesis are devoted to working
out variocus analytic and numerical features of the Low equation in the
one-meson approximation. In this chapter we shall review the basis for
the Low eguation; we shall then review the previous work on the one-
meson approximation, and discuss the questions that we shall study in
the following chapters.

The Low equation is an equation satisfied by the scattering
amplitudes for elastic (and charge-exchange) pion-nucleon scattering

1)

in the stalic model, It was derived by Low s bul beller references
are by Wicsz), and by Chew and LOWCB). We shall not derive the Low
equation here; we shall simply summarize the static model theory of

the pion-nucleon interaction, and list the properties of the pion-
nucleon scattering amplitudes discovered by Low and others which combine
to give the Low equation.

In the static model theory of the pion-nucleon interaction,
the pions are treated by the usual methods of relativistic field theory,
but the nucleon field is replaced by a fixed source [with a finite
number of spin and charge statesl] which can emit or absorb pions. The
source is required to emit or absorb pions one at a time; the form of
the Hamiltonian then depends only on the spin and number of charge
states of the nucleon, and the parity and number of charge states of
the pion. In practice the pion is pseudoscalar and has three charge
states, the nucleon has spin 1/2 and two charge states, and isotopic

spin is conserved. In this case the interaction is called the symmetric

pseudoscalar theory. For mathematical interest, and for possible
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application to strange particle interactions, one wishes to consider
other choices for the spin and isotopic spin of the nucleon, and the
number of charge states and parity of the pion. In particular, we
consider the symmetric scalar theory, in which the pion has isotopic
spin 1 but is scalar, and the nucleon has isotopic spin 1/2: the
ordinary spin of the nucleon now does not enter into the Hamiltonian.
There is also the charged scalar theory, which has only charged pions,
but otherwise is the same as the symmetric scalar theory.

The Hamiltonian for the symmetric pseudoscalar theory is

H o 2o TLmdlo o vbito) Ve (] oo gt 0] LK
<S' - ~
-t __,i;,_ f% g L [NL N L}g‘{;)l: (x)J & (/K.) c’.i(,j)C i

(1.1)
Here m is the pion mass, and ﬂi(x) is the field operator for the ith
meson field: the three mesons are represented by three real scalar
fields [the charged mesons correspond to the field operators dh;+?¢¢?
VR
and tfggij?‘ 3. The operator YTi(x) is the operator conjugate to
2
ﬂi(x) in the Hamiltonian formalism. The @ and T mutrices are the spin
and isotopic spin matrices of the nucleon source, and  (x) is the
spatial distribution of the source, which we shall assume to be
spherically symmetric about X = o. The field operators ﬂi(x) and
i(i(x) and the matrices o and ' are all operators in the Hilbert space
of the pion-nucleon system. They all commute except as follows:*

Lo, o (xD] = 03, §eamxt)
‘ ’ (1.2)

* Ve assume h=c= | .,
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3

LT, ) = 2 z2iellja)Ty (1.1)
k=

{where e(ijk) = 1 if ijk is an even permutation of 123, -1 if ijk is
an odd permutation of 123, and zero otherwise). The constant g, is the
unrenormalized coupling constant.

For the symmetric scalar theory the interaction part of the

Hamiltonian is

3

HI o Z Cjoj T3 C;')L (’x_ {)(K) c:{g% ) (1.5)

=

For the charged scalar theory the interaction Hamiltonian is

4 .
Hx = 2( Yo J T, b, (%) ¢ (<) A7 ) (1.6)

e

In the symmetric scalar theory, isotopic spin is conserved; in the
charged scalar theory one does not have isotopic spin, but there is
symmetry with respect to the simultaneous interchange of 1 for T
and proton for neutron: for example, the phase shift for ﬂj~proton
scattering is the same as the phase shift for 7 -neutron scattering.
In these static model theories only mesons in one partial
wave interact with the nucleon; for scalar theories only s-wave mesons
interact, while for pseudoscalar theories only p-wave mesons interact,
Thus the elastic and charge exchange pion-nucleon scattering is com~
pletely characterised by a set of phase shifts for the possible states
of total angular momentum and isotopic spin.

Define Saﬁu) to be the S matrix element for the scattering
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of a pion of energy w in the state o, and 1et‘éa(w) be the corresponding

phase shift:
L2 du ()
S. (w) = 7 ‘ (1.7)

In the theories mentioned above we assign the numbers a as follows

(let j be the total angular momentum, I the total isotopic spioj:

Theory -3 State
Symmetric Pseudoscalar 1 J= 5, I 5
2 )‘—'5_ ,I= % {er vice versa)
’ =2 T
Symmetric Scalar 1 T = —2‘-
2 - 2
T3
Charged Scalar 1 T p
2 L
Because of the symmetry between o and T the j=%, I= Z-  state has

the same properties as the 3= Z , L= é— state, in the symmetric

pseudoscalar theory.

Define the "cutoff function" v(k) as the Fourier transform

of the source function:

. LR- X%

wiik) = f pix) " A . (1.8)

Because p is spherically symmetric, v(k) is a real function depending
only on the magnitude of k. We now define the "scattering amplitude™
QQGU) by*

Se(oy = 1+ 20 RV* (k) Qu (w) (1.9)

Lo 7
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where k is now the meson momentum. We shall now measure energy and
momentum in units of the meson mass; thus

kR - Voo . (1.10)
We actually use equation 1.9 to define Qa only for scalar theories;
for pseudoscalar theories we use instead the definition

S (o) = b 2l K ur(k) Gu (w) ) (1.11)
(¥

In either case the definition of Qa(w) has been chosen so that in Born
approximation Qa is a constant independent‘gf W o,

The theorem of Low is that Qa(w) is the boundary value of
an analytic function of the complex variable w; precisely, that Qa(w)
is the limit of an analytic function of w as « approaches the real
axis from above, and that this function is analytic in the entire
complex plane except for two branch cuts on the real axis, one for
w > 1 and the other for we< -1 {see figure 1). We shall now define
Qaﬁo) to be this analytic function, but in order to be able to use
equations 1.9 or 1.11 we shall also define Qa(w) for w>1 to be the

limit from above.

The other properties of the analytic function Qa(w) are as

follows:
A Lim Qo (w7 w0
Wy T e ey
B.) Q«{w)y is real for 1< <«
C.)  Qu (o) = 9*au

* Qur function Q differs from any of the functions defined by Wick(z)
or Chew and Low -3 s but we find this definition more convenient for
our purposes.
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FIGURE 1

The region of analyticity of the scattering amplitude Qa(ﬁl), showing
the two cuts « »1 and w < -1. On the positive branch cut Qa(w)

is defined as the limit from above, as shown by the arrows.
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Do) Qu(-e) = = Z Aop Qp () (w not on a branch cut)
E) TenGo () = RU(R) | Qu(w) I* for 1<w<2, k= o=

(replace k by k? in & if the theory is a pseudoscalar theory).

In C. the constant g? is the renormalized coupling constant, and the
numbers aa are numbers which may be determined from the Born approxima-
tion to Qa’ Property D. is the Gell-Mann-Goldberger crossing theorem(h)
expressed in terms of the amplitudes of total spin and isotopic spin:

the crossing matrix Aa may be determined from the relation of the

B
total spin and isotopic spin states to the individual pion-nucleon
states. Property E. is the unitarity condition below the threshold
for meson production; for w>»2 this condition involves the amplitudes
for meson production. Statements A. andJB. are simple results which
can be deduced from perturbation theory, except that to obtain A.
easily requires that the cutoff v?(k) go to zero sufficiently rapidly
for large k.

For future reference, we give the values of a and AGB for

the three interactions we have considered:

Symmetric Pseudoscalar

— l - % e
Q. = - 'qor,s = b 2 ~
9
+ 2 " o (
Symmetric Scalar
- -c \ -1 4
Cks( Hc(‘_; S‘ ‘
| 2. |
Charged Scalar ,
Ao = | ! Fio . = °o
) )“ l e l i\ o \
Low(l) did not express his theorem in the form in which we

have stated it; rather, he proved that QaGd) satisfies an equation
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(known as a dispersion equation), which we may derive from the fact that
Qa is analytic, using conditions A, B, C, and D. Conversely, his
equation implies that Qa is analytic in the cut w plane (i.e. except
on the branch cuts «w > 1 and « < -1) and satisfies conditions B, C, D,
and unless Qa is extremely pathological, A. To obtain Low's equation,
we apply Cauchy's theorem to 92;!? s using a path C as shown in

figure 2:

Q <,) = _! L Qe (@) A, (1.12)

=3
w T _
2771 ¢ Wy = W W,

(note that the path C does not contain the point «,= o , for which
Ei%gﬁf;) is singular). We now expand the path C until it consists
of two large semicircles, two paths along the two branch lines, and a
little circle about «w,=0. As the semicircles increase in radius,
the integrals along them will vanish, by condition A; we are left with
integrals involving the discontinuity of Qa across the branch cut, and
the integral over the circle about w,=¢, Since Qa is real for real
values of «w not on the branch cut, the discontinuity of Qa will be
twice its imaginary part as the branch cut is approached from one side.
Thus we obtain (in the limit of e »o )
Qo () = J L lm G (@ v ce )
- e e o (1.13)
T Qo (o (o J VL T Qo (0, « te) Ao,
RS >y

By our definition of Qa we may omit the (¢ in the second term. From

crossing symmetry, for «>1 we have

L G- wwvie) = = 2 Auy Tm Ga (-(e) (1.14)

~ = Z, Hq(‘, _L__m Q’,s (@)
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FIGURE 2

Path of integration ¢ for Cauchy's Tntegral (note that it consists of

two parts).
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and hence (for values of ¢’ not on a branch cut)

O

Ty weme - (1.15)
+ I+ T Ay 2 [ T Qs (@) de,
é T 7 W, (w, +w) -

Equation 1.15 is the Low eguation, except that ImQa is usually expressed
as a quadratic form in Qa and the multiple-meson production amplitudes,
by means of the unitarity condition.

The one-meson approximation is obtained by neglecting multiple

meson production amplitudes in the unitarity condition, thus requiring

EL) T Qu = RU(k) 1Qa ]’ Hoc all wwi
This is not a very satisfactory approximation, from a formal point of
view, because the only limit in which this approximation becomes exact
(i.e. the only limit for which the ratio of any meson production ampli-
tude to Qa goes to zero) is the weak coupling limit. This approximation
can be justified only for low energies «w , in which case the imaginary
part of Qa;?§r%%bw energies might dominate the dispersion equation

1.15. In‘pérticular. one supposes that the A% ,f_ resonance in the
observed pion-nucleon scattering dominates the dispersion integrals

for the symmetric pseudoscalar theory, and since this resonance occurs
below the energies for which inelastic scattering is important, this
resonance should appear in the solution of the one-meson approximation.

(3 (5)

Chew and Low and Salzman and Salzman have shown that the solution
of the one-meson approximation for the symmetric pseudoscalar theory

does contain a resonance in the 3, state at the observed energy,
2.

32
2.
when the coupling constant g? has its observed value of .08 and the

cutoff v? (k) drops to zero for k at about the nucleon mass. Further-

more, in the calculations of Salzman and Salzman, the
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J_,~I and 7,,% states have small phase shifts for low energies.
py e

Thus the one meson approximation describes the general features of
low energy p-wave pion-nucleon scattering.

Besides the numerical calculations of Salzman and Salzman,
the other investigation of the one-meson approximation of importance
to us is the work of Castillejo, Dalitz, and Dyson<6). This will be
reported later in this chapter.

We have seen that in the one-meson approximation Qa(w) is
required to have a number of properties: to repeat, Qa@“) is to be
analytic in the cut w plane (excluding the branch lines o1 and
W= .1), satisfy properties A to D and the simplified unitarity condi-

tion E'. We now observe that these properties are all simplified

forms of properties of the scattering amplitudes for fully relativis-

tic theories. In particular the following features are common to the

one-meson approximation and to relativistic field theories:
(1). The unitarity condition relates the imaginary part of the
scattering amplitude to a quadratic form in the amplitudes for various
Processes.
(2). The crossing relation is linear in the scattering amplitudes.
(3). Some form of analyticity requirement on the scattering amplitude
as a function of one or several complex variables.

I do not wish to make a detailed comparison here, since in a
later chapter we shall study the approximate equations of Mandelstam and

Chew(7)

for the pion-pion scattering amplitudes, when we shall see mare
precisely the analogy between the one-meson approximation to the Low

equation and the properties of some fully covariant scattering ampli-

tudes. But since every property used to define the scattering
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amplitude in the one-meson approximation has some {(more complicated)
analogue in covariant field theory, 1 think it is interesting to
discover any further properties of the solution of the one-meson
approximation, whether or not this solution really approximates the
exact solution of the static model.

Since in field theory, apart from the Low eguation all cal-
culations have been based on perturbation theory, we shall study in
the next few chapters the perturbation expansion (in powers of g?) of
the solution of the one-meson approximation. If we assume that inte=-
gration and summation may be interchanged, equation 1.15 and the uni-
tarity condition E' uniquely define & power series expansion of Qa if
the lowest order term is reguired to be geaa; it is this power series
that we shall investigate.

Our original purpose for studying the perturbation expansion
of the one-meson approximation was to see whether one could obtain a
useful approximation from the first few terms when the coupling con-
stant g2 is too large for the first term to be a good approximation.
An ideal example for investigating this problem is the symmetric
pseudoscalar theory, using the cutoff used by Salzman and Salzman, for
then we have thelir numerical solution to compare with any proposal for
a perturbation approximation. There are two proposals for using per-
turbation theory that we shall examine, both of which are obtained by
analogy with the Schrodinger equation. One is the determinantal
method as extended to field theory by Marshall Baker(8>; this method
derives from the result that for the Schrodinger equation for a particle
in a central potential, the scattering amplitude can be expressed as

the ratio of two entire functions of the strength of the potential.
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(O
The other method is derived from one of the Lippman—Schwinger(’)

variational principles, with a trial function taken from perturbation
theory(lO). Both these methods are formally wvalid only for the
Schrodinger equation, but they both lead to formulas involving only
the scattering matrix: with some modification these formulas can be
calculated for the scattering matrix of field theory, if inelastic
scattering is neglected. We shall not consider whether these formulas
can be extended to cases where inelastic scattering is important.

Considering that neither of these methods have any basis in
field theory, we shall find that they can be surprisingly effective.
We shall examine them as applied to the symmetric pseudoscalar theory
with the cutoff of Salzman and Salzman. We shall also give & brief
resume of the basis for these methods in the Schrodinger theory, using
the square-well potential as an example.

There are a number of questions that can be asked concerning
the solution of the one-meson approximation, apart from its numerical
value for physically useful parameters. The first is whether a solu-
tion exists, and if so whether it is unique. Castillejo, Dalitz, and
Dyson(6) investigated this problem for the charged scalar theory, and
showed that for the charged scalar case there are an infinite number
of solutions. This result has been obtained for the symmetric pseudo-
scalar theory also; it arises because the same set of equations may be
derived from other Hamiltonians in which the nuclecn in the absence
of 77 mesons has a number of excited states with energies greater than
the rest mass of the meson. When the coupling is turned on these
states disappear as such, but they still affect meson-nucleon

scattering(ll).
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In this work we shall not be concerned with the multiplicity
of solutions of the one-meson approximation, because for reasons stated

earlier we wish to examine the perturbation series defined by the one-

meson approximation, and this is unique.

With respect to the perturbation series, several questions
arise (among others); they are
1) Does the series converge for some value of g??

2) If the radius of convergence of the series is finite, can the sum

of the series be analytically continued beyond the radius of conver-
gence?

3) If so, is the analytic continuation still a solution of the equations
of the one-meson approximation?

4) Is the analytic continuation a single-valued function of g??

These are very general questions, such that their answers for
the simple problem of the one-meson approximation could easily be
relevant to the far more difficult problem of covariant field theory.
In field theory it has been shown that perturbation theory is totally
divergent (i.e. diverges for all values of g except g = o) for a
scalar field interacting with itself(la-ls); otherwise nothing is known
about any of these questions.

We shall be able to investigate these questions only for
special choices of the cutoff function v2(k); in particular we shall
consider only scalar theories with the cutoff equal to 1 for all k.

For some parts of our investigation we actually require that v2(k) be
equal to ome only for large values of k, but it seems pointless to
retain this freedom. This special choice of the cutoff has the advan-

tage that the perturbation series depends logarithmically on k for
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large k, and this gives the one-meson approximation an added similarity
to field theory, where perturbation theory also contains logarithms.
Specifically, we shall see that for large energies «w the perturbation

series for the one-meson approximation becomes asymptotically*

&~

Ru () = 9*Qa ~+ GYCuy v e B%cn LT e (1.16)

We shall be able to calculate the coefficients Cun, and find that the

result is essentially the same result as had previously been obtained

for the photon propagator in guantum electrodynamics(16’l7); we shall

then see that both results can be derived by the same method.

This choice of the cutoff also has the consegquence that even
for very small values of g?, the higher orders of the perturbation
series are important when « is large, as is evident from equation 1.16.
Thus our questions 2-4 are relevant even to small values of g2, They
are easier to investigate for this case because the power series
simplifies when « 1is large, although it is necessary to include more
terms than those included in equation 1.16; we must in fact include
all terms in any order which do not vanish in the limit w-w-e {in par-
ticular, lower powers of the logarithm of the energy--i.e. terms varying
as g", g% lne, etc.). Only a few of the terms not included in equation
1.16 can be evaluated, for the photon propagator, but for the one-~
meson approximation we shall obtain them all.

For other than large values of the energy we can examine only
the charged and symmetric scalar theories, for I have been unable to

solve any others. The power series expansion for the charged scalar

* For the exceptional case of the charged scalar theory, all the c..,
are zero.



-] B

(6)

theory was obtained by Lee and Serber ; it has no unusual properties.
We shall present the solution of the symmetric scalar theory and
discuss its properties (it may have been obtained previously by W. K.
HaymanilS), but no published account of it exists).

This summarizes the problems we shall investigate concerning
the one-meson approximation. The specific arrangement of the material
into chapters is as follows: In chapter II we develop the method for
obtaining the asymptotic form of the perturbation expansion of Qaﬁﬂ)
when w 1is large, and give the result for the various theories
(symmetric scalar, symmetric pseudoscalar*, etc.). In chapter III we
give the asymptotic form of the perturbation series for a general class
of mathematically constructed crossing matrices AGB {i.e. not deriving
from any choice for the nuclear and mesonic isotopic spin). In chapter
IV we give the solution of the symmetric scalar theory. In chapter V
we review the determinantal and variational methods for improving
perturbation theory for the Schrodinger egquation. In chapter VI we

present calculations on how well these methods work for the Low eguation

in the one-meson approximation.

* i.e, using a, and Aa from the symmetric pseudoscalar theory, but
replacing kv 2{k) by k.
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II. ASYMPTOTIC FORM OF THE LOW EQUATION FOR LARGE ENERGIES

In this chapter we develop a method for studying the
asymptotic form for large energies of the perturbation expansion of
the solution of the Low equation in the one-meson approximation. We
treat only scalar theories without a cutoff, as stated in the intro-
duction. We shall show that for large values of the energy « , any term
in the perturbation expansion of the amplitude Qa is a polynomial in
[ w4y neglecting terms of order e Qur method then consists in
reducing the calculation of these polynomials to the calculation of
a single power series: for simple cases (such as the three interactions
mentioned in the previous chapter) these single power series can be ob-
tained by inspection from a knowledge of the first few terms. The
reduction of the asymptotic form to a single power series requires that

the crossing matrix A have only onc cigeavalue -1 (the recst being

ap
+1; see below). At the end of this chapter we shall show how the
arguments which Gell-Mann and Low(16) used to investigate the photon

propagator can be applied to this problem; this only gives an alternate
proof that the asymptotic form can be reduced to a single power series

when Aa has only one eigenvalue -1, but it serves to strengthen the

B
analogy between the Low equation and field theory.

In section B of this chapter we derive a set of equations
for the asymptotic form of the perturbation series. In section C we
present the method for reducing the solution of these equations to the
calculation of a single power series; a series for which an hour's time

on a desk calculator yields twelve or so terms (for a simple interaction).

In section D we give the asymptotic forms for the symmetric scalar and
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symmetric pseudoscalar theories {and two others) (for the pseudo-
scalar theory k? v2(k) is replaced by k), and show that they satisfy
the equations. 1In section E we discuss the results. In section F we

apply the method of Gell-Mann and Low to this problem.
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BQ
We begin by restating the properties of the amplitudes Qa
which lead to the Low equation, in the cone-meson approximation.

These properties are

A Live S () = o

s S SO (2] .
B.) @« (w) is real for . <« «w<i
Cod  Gu (o) = 97w

De) Qu(~w) = - & MApu@s(w) (© not on a branch cut) ,
2y
E.) T Qe () = j@%[ P G () T (> i1)
(SN
F.) G« (w) is analytic in « except for branch points at « = + 1,

and branch lines on the real axis for twl=21; we define Qaﬂd) on the

branch line « > 1 to be the limit from above:

G (UJ} == i o o+ c'e‘) fovr s v 0
€ =>or

For property k. we have put v3(k) = 1. Frrom these properties we obtained

the Low equation:

Oy
Qu () = 9%Aa + @ [ U T Qu () de,
T | w oy (W, o)
QO
+ 2 Aas ‘ L @4 () Aw 3
2 © T lj Sy ta iy T 00 b (2.1)

The purpose of this section is to derive a modified set of
conditions A.~F. and a modified Low equation, whose perturbation ex-
pansion will give precisely the asymptotic form we seek.

First we note that the c¢rossing matirix must have two proper-
ties as a direct consequence of the crossing condition D. They state
that A2 = 1 and that a is an eigenvector of A with eigenvalue -1:

& A

. o

=3

AL = OSwx (2.2)

)
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Z Ao{p CL‘& e Gl (2-3)

{(the second condition must hold if crossing symmetry is to hold separately
for each order in perturbation theory). For our methods to be useful

we must also require that A have only one negative eigenvalue; since

A? = 1, A can have only + 1 and - 1 as eigenvalues, and so this condition
means that the matrix A will appear to be the unit matrix to an arbi-
trary vector except for its component along the vector a--that is, A

will have the form
Aa(& . g-\}'h( {5 \,. qu y(\g ) (2. L")

where the KB are a set of numbers that determine the component of any
vector along the vector a. It can be verified that the crossing
matrices reported in the previous chapter all have this form. This

form is not valid for all theories that one can comstruct; in particular
the crossing matrix for the pseudoscalar interaction of 2 particles

(nucleons with isotopic spin one) with T mesons has three negative

eigenvalues. Because of equation 2.3, the K's must satisfy

Ko Ay = -2 (2.5)

g
Symmetric Pseudoscalar < R
¢ 7 |7
-4
Symmetric Scalar . 2
< & —3« } L

Charged Scalar
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For the purpose of what follows it is convenient to restate
the crossing condition D. Condition B. implies the Schwarz reflection

principle holds:
(2.6)

Qo (X)) = Ge (o)

for w not on a branch cut. This means we can rewrite D. as

D) Qe (—wr) = (2.7)

- Z Flag D (o
f. ap Dg ( ) ,

which has the advantage of involving Qa(w) only for values of W in

the upper half plane.

Now for real values of w>1 define

(2.8

&t (co) = Poc () -+ L Foe (m)

By letting w approach the real axis from above we obtain from equation
2.1 the result
Pe (w) = F%aAu + Lol Fatw)
T 0w (@ —w)
ey (2.9)
where P,V. stands for Cauchy Principal Value. The unitarity condition

E becomes
(2.10)

Fo (@) = oty { P (w0) -t F;:(w‘)}
[FN) »

The perturbation series for Pa(“) and Fa(w) are defined by

assuming expansions of the form

(z.11)

8

Pulwy = Z 977 Foo () |

(2.12)

e
-, (w) = E ';ho«(“)>9ln ;
Ny
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substituting in equations 2.9 and 2.10, and requiring the coefficients

of each power of g to be equal. We obtain immediately
Pl & o (2.13)
Fioe = @ (2.14)

and evidently if we know the first m terms of P and F, the eguations
allow us to calculate Fn+‘ and then Pn+1; thus any term in the series
can be obtained by performing a finite number of integrations.

Now consider the nature of Pna and Fna for large « . We
begin by proving, by induction, that Pnu becomes a polynomial in £,
of degree n-1, while Fna becomes a polynomial of degree n-2.

First we note that this statement holds for Pza and F;a' and
that the unitarity condition (equation 2.10) guarantees the statement
for Fn+1,a if it holds for up to nth order in P and F. Thus we have

only to examine the dispersion equation 2.9.

Let us define

Pra = Pau Pl (2.15)
Fm o = VE”D( . ;‘—"':o( ) (2.16)

where P and F are the asymptotic forms of P and ¥_, and P!
n« nc na no no
and F! are the remainders; by assumption P  and F_ are polynomials
no na no
in 4+, and we shall assume F'na to be of order _i_ for large « {(neglecting

wd

factore of 4~w). To find the naturc of ﬁna we consider equation 2.9

for large © ., The contribution of F‘na to Eﬁa is just a constant:

oo

ﬁéy‘ = - ‘,i‘ :F:"\O( (‘*)') CZ{_L«)' -t (i)_—_ /1q J F;‘q_; (Wl) J(—-\D‘ (2017)
o LA T S / A . J

l [Z5 3 © wdy
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which becomes by the identity 2.A4:

<X
LQ"‘O(. oA Z KP [ F:\I'\(_g (‘*’«) d(‘ol (2.18)
8 a0 ey -
I
Thus for large w ,
paval
PY\“ (L\)) = Ci"‘o& -+ &> PV f EY\Q& (L_t)l) C‘{.U);
B ST EANER)
- (2.19)
+ : Ao(‘»s "‘_‘i Prlp (i) d—"‘)l .
2 T STl vy

We can obtain the nature of the integrals by considering

their effect on a power of (nw . Consider the crossed integral:

define
feoe)
(2.20)

la g} 1
L™ w, A,

L () = & L
T % W (w+ @)

3

We evaluate this integral by dividing the range of integration

at w,=w, and expanding the denominator in partial fractions for w,<w:

w Ly
Libdl ! j ,é’/vtml—f)__n o{uo‘

3 j (/nm O it - b L
T QI O
(2.21)

1

»

o T ey de,
T e b\).(“oi*‘w)
The first integral is elementary; the second and third are

evaluated by making a change of variable w,=wZ, We note that the

lower limit of the second integral may be changed to o since we assume

«> is large. Thus

i
L j (o ws + L t)m“ ‘%{:—

Lon (Y = a7 w
e o
>0

o [ (faw o Gt (2.22)
o (t"") .

“‘ 1

Using the binomial theorem we find that Im(w) is a polynomial

in fnw of degree m+l, the coefficients being integrals over t
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independent of w . Evidently the same analysis can be applied to the
uncrossed integral {(the principal value gives no difficulty) and since
Fﬁa is of degree n-2 in fnw it follows that Eﬁa is of degree n-l.
This proves our statement. Also it follows that the errors P‘na and
F'nu are of order :% as assumed because our approximations were to
replace !5;3? by 1 in the unitarity condition 2.10 and to replace 1
by O as a limit in eguation 2.21, both of which cause errors of order

U

w

We observe that the coefficients of the highest power of £

in Ena and §na can be computed without knowledge of the other terms,
e.g. that the coefficient of L+’w in Eia may be computed without knowing
the constant term in'iiaf If we wished to compute these terms only,

we should need only the first term in Im(w) and the right hand side of

equation 2.19 would reduce to

w o
— b J oot {w) EQ_'S_L‘)& _*ﬁ,l_f, qu J F;:n(g (W\) C__:{_—.‘{)l
w oA w, T3 i w

which is a much easier expression to use. Thus it is convenient to
obtain the asymptotic forms by first computing the £n""w term in

—

Ega and the 4« term in Fna’ for all n, then the 4% term in

w*ﬂl

o and so forth. Formally this amounts to writing Ea and Fa as

power series in g whose coefficients are power series in ( g"-fnw ),

The first step is to obtain the decomposition of equation
2.19 in the form suggested by equation 2.272, without putting in the
explicit form of Fﬁa' This means expanding Fﬁa(dt) by Taylor's theorem:

Eoo (0] = Fow () +(imt) cf Fro (w)

gj_ Lo w (2.23)

+ (Ll t) AT Pax (@) 4 .
+ (./(/'(,(//n.w)l .
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For convenience we shall obtain the decomposition not of eguation

2.19 but its analogue for the entire asymptotic series Pa and F ., We

define*
[~
‘30 L 9L —+ ZZ Y ‘:Lhu gln
La =N [ ) -
Then in analogy with equation Z2.22 we obtain
P () = Yo A — L J Foo () dw,
T e

e o f ["g e LR

e« ol

0

5
+ 2 Aw@nL{ } P (wt) dt J
# &k ) !

Gt LR o] de
'r)_' ((L LKW) -t

3

F. (wt) _<le

L(t+

Q)

I F

-4

|

o

(2.24)

Fe (wt) d¢
€(t-1)

(2.25)

|

The second, third, and fourth terms (the latter inside the parentheses)

come from the uncrossed integral; f&(wt) and Fe(wt) are to be expanded

as in the third term. Now define

i€ A .
€, = uww-¢w.¢_{j;uﬁgcaA+j gﬂmﬁ_dc}

e=a arnTlond . ive € (&)

[ oo
S R R L
nw s © S \ {:p—;)
Br\ = C,r\ + Cn ;
and & = Yo Ao
T

(and similarly for #, ); using the identity 2.4 we obtain

2
Yu (2) = Dol + du & Kp 1 f £y (z,) dz,
e 9 >
+ 2 b, A" P (2) 4+ ae O <md.
n=o (122 - n=o

- [ i
S o Ke ot F
s 0

A E

Fo (&)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

*

The constant 8o and the constant g; to be introduced subsequently,

are to be thought of as power series in g introduced only to obtain

compactness in the following expressions.
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We include for future reference the form of equation 2.25

when fu (w) is not expanded:

O

— ¢ f
P‘,{ (wY = 9o At ~+ & PV ) F£o< (‘*{13 déwl PR A J f_i;: (Ni) \'./{wl
™ oW, (W - ) ar o -

N -
i w (W +w, [ S N

CE A a e Bled de o [ G e d :
‘ “ ) {2.31

and the unitarity condition

o e i 3N
P = P + (2.32)

Bquations 2,31 and 2.32 can now be used to define F& and 5&.

The constants bn and Cn may be expressed in terms of the

Bernoulli numbers:*

— " 4 al’l+| _2 -

b'—l”\—i (_li:)_‘ L ] 5 b;n o, (2.33)

Cav—y -~ (%n‘)l [ e - 2] , Can T, (2.34)
where Bi= o, Ba=ob ) ete

Eguation 2.31 looks very similar to the eguation we began with. To
complete this section we show that it is equivalent to a set of con-

ditions similar to conditions A-F for Qa(u). Let
Qu (W) = Pulw) + LB, (w) (w>o), (2.35)

In perturbation theory (we are still thinking of all variables
as power series in g?) Q;@ﬂ) is simply a polynomial in #ww , and there-

fore has an analytic extension into the uvpper half plane. Ye now

* See the Appendix to this chapter,
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define Q&(w) to be this analytic extension, with a branch line along
the negative real axis because of the branch point in A£nw at w=o,

The series éé(w) has the following properties:

A.) Lim Q“_C.‘:‘i\) = o |
w -H &0 (78]
D.) a“" Q-‘wk)* = - 2 Hﬂlé 6/3 () ( Tr w > o) R
&
E.) N 50« () = | 5°‘<w)\1 ( w > o) .

F.) Qo (w) 1is an analytic function of w for Imw » o

These properties allow us to obtain equation 2.31 except for the con-
stant term. We write Cauchy's theorem for gé:@ﬁ) y for w in the

XY
upper half plane and using a path in the upper half plane; now let
the path approach the real axis except for a large semicircle which we
can neglect because of A, The only point on the real axis which gives

trouble is w;=¢, so0 the path must avoid this. Then let « approach the

positive real axis. We now have

@m ( ) = [ N 5 (L\)I) CQ-‘-O
ww 2T .Aia w.:(w/:z:r-:fe) ‘ > (2.36)

with the path-= to c¢ detouring the point w,=c. For the part of the

path —i<«,<i, divide the integrand into two parts

L - ) (2.37)

w.(w.—Q'—Lé) w (W~ &) PRI .

The integral over the first term does not become singular as the path
approaches the point w,=o0, TFor Lhe second Lerm we can let the path

be the upper half of the unit circle, which we shall denote by C:

Qoo (W) - =) J f—Qm (o) dw, o é?ici(go-) cle,
AT L W (W w) 2l 4w w-Ce
o ) (2.38)
T “),. j ,_33‘_(“ ‘.LV e ()L(")l — L j Qe (030) CQ'LO.'
2iTe v gy (W —(&) 2T L Wy .

C
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Now take the real part of this expression; we use the relation

= PV L ar o (e mw)
Wi— W - Wy o>

) (2.39)

and the fact that on the unit circle

Adw, 1is imaginary; thus
CA.J|

- 1
P (@) ho T Qu (i) e, PV Jem Qu (i) dw,
. e e o Yo VT
w0 wy (wi - o) o Wy - b
oS
- A‘J‘Z PV f I.m a\\’-‘O& le) (J-wq
ARt e e B

T o, (wp— ) Ty

— /( Re (\i“ C“)l) ‘?{'L\?I
é @D -

(2.40)
The path C is invariant except for a change in direction, under the

transformation «,~»-»%; thus since

*4£iﬁ9ﬁ) 9§@'

- w oy

we can take half of the last integral and rewrite it using crossing

symmetry:

PR J Re Qe (o) 6{@, B l; ( Re Qe (“‘*)“\) ‘__;( C:.Lfi;)
arme o w2 20T —,

(2.41)
S Pragy J Re Q,é (w,) oo,

C

Now we can apply crossing symmetry to the remaining integrals over

negative w,, and in this last integral substitute A

=9

+a K. ;
af afB aKB’
we obtain
P <w) = Ao 2 Kf f Re. “C.?;s((».n) A,
€& a7 & .
' <l
o v ) Fo(w) dw, o« o orove ) (w) e
T a (»\JI—‘J« T ' w‘(w‘—w)
1 [
T e Z AQ[‘{ N j jp::_; (wf) a{w‘ -+ NJ f:;,, (w,) o(w,
T s e e ;o AN

o wl.._cv‘

oy Cooy v W } , (2.42)

which agrees with equation 2.31 1T the first term is 9.cle

Thus we have shown that the asymptotic form @aﬁﬂ) of the
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perturbation series is uniquely defined by the following requirements:

W = oo “S
O Z e [ Re Gu(w) duw, = 9

¢ a2 ),
D) ZSO( (“L\)*)% T ::SA A"“r“ 5@<“’) Clom w > o)
E) LTen Gulw) = | Qu (w1 (wod

F) &e («) is analytic in w for Im w » © 5

where the path C is the upper half of the unit circle, from w, =-1 to
©, =1. There is no reguirement corresponding to B of the complete

theory.
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C.

In this section we develop a method for solving the
equations of section B.

To solve equations 2.30 and 2.3%2 let us assume the expansions*

B <0 _ ]
Po(z) = & Pan(z)e2”t
N=O
k"o’ ;k
jrove / < — - 20t
Foa () = & o (z) 9 (2.43)

L=

(which means we have redefined Pan and ?;n). We can substitute these
expressions in equations 2.30 and 2,3%2; if we differentiate equation

2,30 with respect to z we shall obtain differential equations for P

an
and fﬁn’ For example, for n=0 and n=1 we obtain the equations
5 _ 2
Foz) mac G Ze [ R0 Gode ) (2. 11)
— .
F\,((«,, <Z) = F)@(O (%)
(2.45)
F;n(%) = El o Exofz)
A =
z . . (20!‘}6)
T e 2 Ky { J B @Az, « A Fe }
e @ Az )
Far (2) = 2 Beo (2) Py (2) + Fol (2) (2.47)

Equations 2.44 and 2.46 may be differentiated once with
respect to z yielding differential equations for ?;0 and 5;1; they also
give the value of 5;0 and 531 at z=0 so that the solution of the

equations is unique. Thus for n=0 we may write

Fee $z) = awx W(z) (2.48)

b

We may assume expansions in gé rather than g, because the bn and
c, vanish for even n.
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and obtain for u(z) the equations

W (o) = | ,
(2.49)
du - ow,

Ax ( ;
where 6 = 5 ., ak . 2.50
Solving these equations, we have

d_k‘- - ed=z s -V = 0=z - ,

W “

and Puco (2) = A o . (2.51)
i—- @Z

s

We could go on to solve the equations for Pdi’ fzw, etc, in
the same manner, but it is simpler to assume the form of the sclution

and then to show that it is correct. Let g, be & power series in 8,°

o0
27+
9‘: g, -+ Z 5\—\90

mn=
so that conversely 8, ic a power seriesc in gy

an+ |

9, = 9, =« 2 8, 9, (2.52)

{(define also Xca 1). We shall leave the coefficients 5£ to be determined

later. Then assume

= - e B 9")_\’\*’]

- ﬁzé P (1—oz)y""! . (2.53)
s 2

— +

F. = 2 £, 9" ) (2.5L)
"= O (‘_Q%)zﬁ*‘l

where the Pen and fan are constants, and now

Zz = 9, Lrw , (2.55)

ar

Recause of the change in the definition of 2, equation 2.30 is medified
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by replacing 8, by g4 everywhere except in 824" Substituting these

assumptions in eguation 2,30 gives

20

. . s wo - - e

Zo 20 [ L Tn ‘ = Z Z b S (2/7-9- i-p-m).J & 9.1 > 1[;,(1
n= = = T "

(~©%& o g2=0 [a.ﬂ‘rl).’ ("’&‘k)“:ﬂ‘:—m
o a2n-+1 an+1
+ac] = [ 8 Z R (o - ] (2.56)
n=o 73;3—0-') o ~ (1-0%)

+ S5 Ky Z 2 Con (2] &m{;ﬂ (,.*9’“#>
a3 m=o0 ¢=a T | —o 2
(alri)!
Because b2m and C,y 3re zero only odd powers ol g,/1- 0z appear
on the right hand side (except for the constant terms) which justifies
our assuming only odd powers in the expansion of 5&. From this equation

we may extract equations for the Jn and Pan’

8, = ' 2 kst (2.57)
Sove & el 27
Fon = Z Bne 92 ﬂ%o‘ﬁ‘“" + a"‘;—K(S QQF‘IC‘V‘W ﬁ‘/"“‘" (2.58)
r=| oo Pl
where
Bor =  Br _(an! [ 274 ) (2.59)

)l (zn-ae+1))]

Cop = Be _(an)! [ 22" 2] ) (2.60)

ey (an- ae )l

Croe = 1 . (2.61)

Can+1)
The unitarity condition becomes

4 n-l

'ﬁ,(“ = Z_ /PD;.(- /FO(II’\~(“ -+ Z 'f]xp ‘S"N)n~‘«,.‘ . (2062)

IO =

[}

Equations 2.58 and 2.62 give for n > 0 a set of linear inhomo-
geneous equations for Pon and fan’ agsuming the coefficients in lower

orders to be known. Substituting equation 2.62 into equation 2.58
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gives an equation for Pon in terms of a constant Von which includes

all lower-order terms:

Foorn = 2 G 2. l<ﬁ /F/,Zso 'Hsr) + Vin (2.63)
Cana & &8 ’

To show that we can solve this equation it is sufficient to find
u = %; KB P, Ppnj since Pg, = g We find
U = 2 Un =+ Z Ke de Van (2.6%4)

S = >

and we see that there is no difficulty. It is evident that our method

would not have worked if 5& had had to be expanded in g, instead of

gf for then the factor which is here (2n+l) would have taken on the

value 2; thus the importance of the bm and . vanishing for even m.
Using equations 2.58 and 2.62 I have computed the first five

coefficients Pon and fan for @& number of theories, i.e. the symmetric

scalar and pseudoscalar and the symmetric scalar 2-T interactions.

The resulting numbers sometimes show no pattern, sc I have also com~-

puted the expansion of the reciprocal of 5&. Define

Lo(z) = Re ! - P _ P (=) (2.65)

Ree () Pl = F. (2)

(we note that ITm ‘ - =1 ).

Re ()

We may write the expansion of La(Z):

Co(z) =2 Ao 2 T (2.66)

For the theories I have looked at the {'s are sufficiently simple for

one to obtain the remainder of the series by inspection. For example
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we give in Table I the coefficients p , £ , and 1 for the symmetric
an’ “on an

scalar theory.

Pin f1n 211n Pn f;n 1zn

n=20 -2 b -1 1 1 1
1 1k -40 -3 ~1 ~1 0

2 ~122 364 0 1 1 0

3 1094 -3280 0 -1 -1 0

4 -9842 29524 0 1 1 0

Table I: coefficients p , f , and 1 for the symmetric
an’ Tan an

scalar theory.
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D.

In this section we report the asymptotic form of the pertur-

bation expansion of Qa for various theories, and prove that they are

correct.
For each theory define
— 9‘ (2.67)
\‘5 |- &%
(we recall that ¢-= glkatii and 2 = 2. Lnw and that g, is a

T

power series in g defined through equations 2.2k, 2.52, and 2.57). By
the method outlined in section C,I have obtained the asymptotic forms
which follow,
1.) "One Dimensional" Theory

This is the simplest form of the Low equation but does not
derive from any physical theory. We consider a single amplitude Q.

with a = -1 and A = -1, giving K= 2 and € = 2. I obtain

Q = —Y (2.68)

4ty

2.) Symmetric Scalar Theory

I obtain © = 2 and

Q\ = - QY o,
-~y zl
- Cmegiiesey) (2.69)
Q1 - WW-L_
Ci-1y)
%,) Symmetric Pseudoscalar Theory
9 = 2 and
Q= oy (1+397) ,
(= tyy> (1+304)™
Qa = —9C1-397) (2.70)
(1={g)* (1+30Y)
Qg - 29

(1=C(9)™
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h,) Symmetric Scalar S-w Interaction.
This theory is the same as the symmetric scalar theory except
that in the coupling Hamiltonian the v matrices are those of disotopilc

spin one rather than isotopic spin 1/2. 1In this theory

N -2 - QU ~6 10 B 2
L., = — Aw.= L -5 3 < ]<,e =il o3 {2.‘?1)
) & 4 o 5
' 203 5

where a = 1,2,3 are the isotopic spin 0,1,2 amplitudes respectively.

I obtain @ ~ 1 and

25\ = g
I+ 20y
Q, = — 9 . | (2.72)
Ci+20y)(1—1Y)
53 = — H ,,,,,,
(1-ty)

Note that because 6 = 1, y is different here than in the other examples.

To prove these results we must show that the amplitudes Q;
satisfy the conditions A, C, D, E and F given on page 31 . It is evi-
dent that our expressions for 6; can be expanded in powers of g, and
that the coefficients are polynomials in {n « . This is sufficient to
satisfy conditions A and F. We can satisfy C by using it to redefine
gy in terms of g, [we expect this definition to be equivalent to
equations 2.52 and 2.57 but it is unnecessary for us to prove thisl.
We are left with showing conditions D and . It is easy to see that
they satisfy unitarity, for if we denote the denominator of our ex~
pression for é; by Aa our expression has the form

Qe = = T A= (2.73)
/qaﬁ
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Hence

T L — Fu - =1 ) (2.74)

Z’é‘#\‘ 502 + E(,:.

We have left to demonstrate crossing symmetry. We shall prove crossing
symmetry for the symmetric scalar theory; the proof for the other
examples is analogous.

The crossing relation is given by equation 2.7. The trans-

formation w = - w* becomes for y,

L o= ! - /61/\(&) -~

9 =N

-2 /Q'VL(AJ* - 20 = LI 1‘: (2075)
=1 T yw

3

(for «s in the upper half plane), and hence

Yy - g _ (2.76)

f—2lg™*

Thus crossing symmetry requires

{ Q« (_;£1A)}* = - %ﬁewqﬁg<s> , (2.77)

{ 5,(~ﬁi%)§* = —ay (ivaly)

T Cvaiy) (i) (2.78)
- ! B [ (—13)~ng<l+3i3)]
2 (1 +3eyy(1—Y) ’
G, (_9* \T = Yy
R
(2.79)

= __ iaa(&%) - Y9 i+ 369)]
21+ 30y ) (1-y) ‘

Since AaB = 4 \';‘ T \ we have demonstrated crossing symmetry.



E,

In this section we discuss the results reported in section D,

The expressions é& have been shown to be the asymptotic forms
of the complete solutions Qa only when both are expanded in perturba-
tion theory. Thus we cannot say whether é& approximates Qa when ¢ is
large but g is also large enough that the perturbation series diverges.
However, for the one example for which the solution Qa is known ag is
the asymptotic form of Qa for large y ;3 this is the Yone-dimensional®
theory. In the one-dimensional theory the solution may be found by

6)

the method of Dyson el al. i it is

Q = - 39 . (2.80)
|- 2{1Jw2~xm[w+m]fzwm@j} )
v P ’ O

For large <3 we obtain

Q= _- ¢

I-E{L%wqﬂﬁml~l;£{
rag

(2.81)
- T
I = %l{z;lnw——in} ’
if
9\ = 9 o
| — EQ/Q/V\:L-:Z.]_Q__ (2-82)
T

From equations 2.67 and 2.68 we find that Q is equal to the
right hand expression in equation 2.81, and one can verify that eguation
2.82 also holds.

There are two properties of the sum of the asymptotic power
series which are interesting to note. The first is its behavior for

very large (0 (keeping g? fixed).
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We find for very large (o that y —~ -1 which is small,
Bl ta)

and therefore

Re = - a«T ) (2.83)
G/Q/\/\.(A)

R (2.8%)
@l/ém_lfﬂ

Irf a; is the asymptotic form of Qa’ it follows from equation 2.84

that a dispersion integral over Fa without subtractions, i.e.

[+a)

! j Fx (Nl)w d e,

| wy = W

converges, and from equation 2.33 we find that Fk goes to zero for large

)y, hence Qa satisfies an unsubtracted dispersion relation

oY
Qu (@) = L T Gul@0) dey (2.85)
TT__DC w.——m-—ié

Although it is interesting, I do not believe this result is of any use.
The other question is whether Q& has any singularities in
the upper half « -~plane, in which case the dispersion relation for Qa
would be incorrect (again assuming Qa is asymptotic to 5&). We find
that a singularity occurs only in the one-dimensional theory, where

5 has a pole at

b+ iy =0, (2.86)
or
[ - %{__{2] L o -+ Lgl = O )."e. W = L e 29, , (2.8’7)

and hence a has a singularity for ) large and on the positive imaginary
axis if g, is small and positive. For the symmetric scalar and pseudo-

scalar theories é& has poles for

-ty = 0o oy |+ zixj:: @)

2

) (2.88)
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icee 1 - 29 hna TP (9) =0 (2.89)
o

and neither equation can be satisfied for «) in the upper half plane.
The same holds true for the symmetric scalar 5-T interaction.

Finally, we note that the method of transforming the disper-
sion equation 2.9 into a differential equation 2.30 is generally
applicable to dispersion relations when it is known that the amplitudes
in question behave logarithmically for large < , although it is un-
likely that in more complicated situations one will be able to get as
muchdinformation as we have obtained for the Low equation. Even in
the Low equation for the symmetric pseudoscalar Z2-7n interaction, for
example, the differential equations for the terms ?&o(z) and ﬁao(z) are
coupled, non-linear first order equations which I have been unable to

solve analytically,
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F'

e c—

(16)

In this section we apply the ideas of Gell-Mann and Low
to the one-meson approximation. We shall show that they give an alter-
nate proof that when the crossing matrix has only one negative eigen-
value the asymptotic form of the perturbation expansion of the one-
meson approximation depends only on the variable y.

Ordinarily one defines the renormalized electric charge e
in terms of the low-energy behavior of electrons and photons. As a
result the only dimensional constant which enters gquantum electrodynamics
is the electron mass m, and therefore quantities such as the photon
propagator depend in a complicated way on m. Gell-Mann and Low dis-~
covered that if one renormalized quantum electrodynamics in terms of
the behaviour of photons at a non-zerc four-momentum squared (say A2),
thereby introducing an alternative unit of length, one could then let
the mass ol Lhe electron go to zero (keeping AN? fixed) and obtain a
definite limit for such quantities as the photon propagator. The
existence of this limit limits the form of the asymptotic form for
large momentum squared (k?) of the photon propagator. In fact, if DFC

is the renormalized propagator (now renormalized in the usual fashion)

Gell-Mann and Low showed that in perturbation theory, for k?>»m?

~ 7 2 2t
Dy = xl}& RNy ¥ (e )} ) (2.90)

where f and 1\ are power series in a single argument, which must be
determined from ordinary perturbation theory. To see how similar this
is to our results for the one-meson approximation, substitute w for

k% 2and - L. for (), and the argument of f becomes
! e*
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Lo — T = Tt (2.91)
© 4, & Y b

i.e. Gell-Mann and Low's result is analogous to our result that the
asymptotic form of perturbation theory for the one-meson approximation
depends only on y.

We shall now analyze the equations for the asymptotic form
derived earlier, in the spirit of Gell-Mann and Low. We have measured
the energy w in units of the meson mass, and defined the coupling
constant g, in terms of the low energy behaviour of the asymptotic
form. Thus the meson mass is our only unit of mass, and we cannot ex-
pect to obtain & reasonable limit if we let this mass go to zero, un-
less we introduce a new unit first. To see exactly how this should be

done, consider the equations for the asymptotic form (equation 2.31):

+ L PV j F%Lﬁ!)dw, + w PV jﬁ;(m0<ﬁml
© Wy — D s Co, (W) - o)
oo (2.31)
+ = Ao { - L ‘( E@_‘i"f’«)“dw‘ +— ( F§ (_(9,) Céu\)'
&3 [ : Wy W R RN (CA)‘“"*L*)) }
Fe (w) = BE (w) + R () (w o) (2.32)

If we did not take the meson mass to be 1, but rather let it have a
value m, the only change would be to replace 1 by m as a limit inwthe
integrals., The stumbling block, mathematically, to letting m - o is
the factor :& in the second and fourth integrals, which makes them
)
divergent if we replace 1 by o.
To eliminate the factors L requires our introducing a new
!

coupling constant h, expressed in terms of the properties of Qa in the
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neighborhood of a value(uo of w; in this way we introduce a new
measure of energy. To achieve this and avoid defining separate con-
stants for each value of a requires a little care but can be done as

follows: write

— - e w. (2.92)
Loy — (| + wo) (wy —w) Wy + Wo H
&) = W% Wo T e (2.93)
Wy (W -w) (o + wo) (e Wy (o + Wo)
! = Yo we - L (2.94)
oy + e (01 + o) (o1 + o) Wi+ e !
08} - — o o
= e o e (2.95)
wy (w4 W) (W) + we) (W + ) w, (W) + ta)

Now we introduce the assumption that A has only one negative eigenvalue,

so that {equation 2.4)
/A‘o\p = {0((2 o+ Qe KP . (2.2‘*)

This allows us to lump the effect of the second terms in our expressions

above into a new constant h:

"\ ( W a4, = S
' = (2.96)
R o] B den e B e d,
IS T o CQ‘-Q- CJJQV T { w:(b\h-#wo, :
and obtain
e [= Y
Pe(w) = hae+ wrwe pv [ Fo(w) deo
m ® (e () ,
o (2.97)
+ 2 Aop (W~ we) J __F_@,é‘*)l) dos, .

F ar o Cw, :y ij (L-JT-::(_QM)
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Woe (00, 90) = P (o) + & Fa () (2.98)

give the functional dependence (more precisely, the power series ex-

pansion) of the asymptotic form in terms of w and go+ Now from

equation 2.97 above and the unitarity condition it is evident that in

terms of h instead of go, E; and F; depend only on the ratio «w .
o

Thus let Ra give the power series expansion P& + 1 F& in terms of ca/wio

and h. We now have the functional equation

Rfs( ( _(:i h ((’JO) q.o)) = 60( (C\)) qo) P {2-99)

)

which holds for all wvalues of w, ws and 8o° This equation contains

the information we need about 5;; the reason it contains any is because
Ra would normally depend on three variables-- w, @, and h, and only for
special forms of 6; can Ra depend on only M/qb and h., To obtain the
information we want from this equation we shall use the method of

Bogoliubov and Shirkov(17)

y for the most part. It must also be kept
in mind that Ra is a power series in h, h a power series in g, and

Q@ in a power series in g, with leading terms

j=v}
H

ha +..
o )

First we observe that the power series for h can be expressed

in terms of the power series for Ra and for @&, say by the eguation

Ra( \)h((«doj go)) = ao((““O)CJO) . (2.100)
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Given the power series for Ra in terms of h, this allows us to obtain

h as a power series in @;:
h(w, 9 = H[ Galwge)] (2.101)

Thus we can change variables from h to é; in Ra’ giving a new power

series Ta say:

RM<’SO>\4(5M)\ = Tx (g, dx) (2.102)
and now
T ( %\; 3 a‘x ( wa 90)) = 50( (C-*b) 9o ) i (2.103)

Differentiate this expression with respect tuv w , and alterwards set

LW =W we obtain

0
._L _ro(J\ ( \) 50((‘*3) go\) = aao« (w) 90) (2.104)
N BV J
where
Ty (x,9) = 2T= (%, 9) (2.105)
2 X ’
Let
W () = Tuyi (1, Tu) (2.106)

Treating g, as a constant the partial derivative becomes total and

dd& = de (2.107)
(R ) « '
Let
Qux
f dx = F (&) (2.108)

WP (x) ’
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then
- [5&(“) G.)o)l = L w — Lo o, + F(C-Q-o((wo)gb)B ’(2.109)

Let Ldo be & number, say 1l; then if we write

$(9) = F [ &x (1,9.)] | (2.110)
we have
Ro (0y9) = FT' [ lnw+ ¢(3%)] (2.111)

It is not difficult to see that these operations are legitimate with

povwer series of the type we are considering; we assume no aa is o, and

T“ 1(x,y) has a power series whose first term is of order y? since the
]

coefficient of y vanishes. Detailed calculation then shows that for

small g,

¢ (9.) =~ —_C (2.112)
©9e

50 that we can now define

4 = - _ (2.113%)
T $(s.)

This completes our demonstration that the method of Gell~Mann

and Low can be applied tc the one-meson approximation.
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APPENDIX

We must evaluate the integrals for bn and Cn (equations
2,26 - 2.28). First we make a change of variable to t, = _! in the
t
second integral in both equations 2.26 and 2.27. It is then evident

that en and Cn’ and therefore bn’ vanish for even n. We obtain also

1
€an-y T h._:__':l;___a__,ﬂ g W/{/Y}:in:‘_ é- dt ) (2a.1)
2D (an-)t o |-
]
2 n—i (2A¢2)
Comey = AT A
TTEY (an-1)) o |-+
The first integral is known(lg); when our definition of the

Bernoulli numbers is used (our Bn is the Egzl of reference 19) we obtain

- :2‘1"\ BY\ (2[‘\.3)
(an) i

Can—s

To calculate c2n_1 we observe that

! 22—}

Comey = Cam , = __—4 [ (Znt) tdt (28.4)
72N (an=DF e *

and making a change of variable to u = t2?, we obtain

€any = Canoy = 2 €an- (24.5)
22”)

and therefore

CTon— = [ llh - ‘1] Bh)l , (2Ao6)
(an)!
bano, = L2277 227 Bn | (28.7)

(lhi!
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Bquations 2A.6 and 2A.7 are precisely equations 2.33 and 2.34 of the

text.



-51-

III. ASYMPTOTIC FORM OF THE LOW EQUATION (CONTINUED)

In chapter Il we derived equations for the asymptotic form
of the perturbation expansion of the one-meson approximation. We also
gave the solution of these equations for various theories (symmetric
scalar, etcs.).

For the purpose of understanding the Low equation in the one-
meson approximation, as a mathematical problem, it is interesting to

study it for crossing matrices Aa and Born approximations a, picked

B

at random (i.e. not derived from any physical interaction). We still

require that (equations 2.2 and 2.3 of chapter II)

g_ Azx@ Afgb' = ga& ) (3-1)
Z_ /q()(@ Rp = Ao 5 {3-2)
A

50 that crossing symmetry is still a symmetry proverty of the solution.

To use the methods of chapter 1I we must require that Aa have the

B
form (equation 2.4 of chapter II)

: (3.3)
with (equation 2.5 of chapter II)

E Ak = -2

. (3.4)

™

The crossing matrices of the theories considered in the

previocus chapter all have one other property, namely

% Age = 1 (3.5)
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2+

i.e. that i:t or ) i) is an eigenvector of A with eigenvalue + 1.

In this chapter we present the asymptotic form of the pertur-
bation series for all two-dimensional crossing matrices Aaﬁ and Born
approximations a, which satisfy equations 3.1 - 3.5. These include
the symmetric scalar theory, but as far as the author knows, no other
physical interaction.

The important result is that, except for exceptional cases,
the power series in y giving the asymptotic form for these crossing
matrices is divergent for any non-zero value of y. One of the exceptional
cases is the symmetric scalar theory, for we saw in chapter II that its
povwer series in y converges for small y. Specifically, we find that
the perturbation series in y c¢an be rewritten as a continued fraction,
and that for special choices of the crossing matrix the continued
fraction is finite; but when the continued fraction is infinite the
corresponding power series diverges for any value of y.

It is a remarkable fact that we have had to consider non-
physical crossing matrices in order to discover this property of the
one-meson approximation, namely that its perturbation expansion can
be divergent for any value of g2, We have no explanation for this
phenomenon.

In this chapter we present the continued fraction mentioned
above and investigate some of the properties of the function it
represents; we have not however made a complete study of this problem.

Condition 3.5 means
{/j

if equations 3.4 and 3.6 are satisfied, equations 3.1, 3.2, 3.3, and
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3.5 will also hold. Thus we may choose the &y arbitrarily, the Ké
then being determined. However multiplying all the a, by a scale
factor does not change one's theory but is instead equivalent to a

change in the coupling constant keeping the a, fixed. We find it con-

venient to choose the scale factor in advance by requiring that

2 Kgay = & =4 (3.7)

and hence equation 3.7 becomes

A, 4 Ay = -, (3.10)

The condition that |,| be an eigenvector of A with eigen-
value +1 means that the S matrix elements satisfy crossing symmetry.

Define

So( - Vo 2‘— a% (3011)

then (from condition D for the asymptotic form, in chapter II)

[ 5. ¢- YT = 5 Aupg Zp (), (3.12)

“

The solution of the equations for the asymptotic form was

found by the author by trial and error from a knowledge of the first

few coefficients in the expansion of Qa in powers of y.* The expansion

* See page 37 of chapter II for the definition of y.
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was found to be guite simple if expressed as a continued fraction.

We obtain
tan ;y_zx = .___—Q"_EL« = A9
L € Qg U~ (4 - ak)u*
| = (16 —aZ) 9> (3.13)
| — (2¢—a%)

Unfortunately, this fraction diverges for real y and the same is true

of the power series it represents. However for complex y the fraction

(20)

converges to the expression

. i ﬁt_C/L
A Y = qunh{,_‘_[ sinh dett & 2y dqi
= (Y4=-ax)y? 2 o w o aon th . (3.14)
b —
Define
{ o 78
_gu —9
T /<2 = i e — A w e e = Au (3,15,
) 4 é{m&\u )I w N <t j.’ Gk W “ ?
and let
Z2 = L= 2 duew (3.16)
249 2.9, ]
(since @ = 4)., According to equation 3.14 we would have
d, = ZI(~a°{+£z)~—LI(a,x+éz~) . (3.17)

Since punh aqt  expanded in powers of u has a finite radius
o C)S:),\r\, U

of convergence (unless a, is an even integer), it is a simple calcula~

tion to see that the expansion of 35 in powers of ¥y is totally diver-

gent (unless a, is an even integer).

—

We should like the phase shift O. to be real when z is real.
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This means we should like I{g) to be symmetric about the imaginary
axis of g. Unfortunately this is not the case: to determine the
nature of I(gq) when g is say positive imaginary we rotate the path of
integration in the u plane to the negative imaginary axis. On this

new path e*qu

and cosh u and %? are real but cosh u has zeros which
must be avoided giving I(g) an imeaginary part.

We investigate the function I(q) in the Appendix to this

chapter. In particular, it satisfies (eguation 3A.10 of the Appen-

dix)
N 3T
B = — JT L i | — (&€
() T(-4) + & -+ > /[/VL{ - Rpercs } s (3.18)

and it has branch lines for g < -1 as shown in figure 3, Thus let us

redefine the phase ghift so that if a > -1
[
while if a, < -1

5 - é[}:(yq“.yiz\)wI(~:1»<~izf)“%£‘] (3.20)

Since the change in the definition of d. is just a logarithmic factor
which vanishes more rapidly than j; for any n when z is large and

Z
approximately real, this change will not affect the perturbation ex-

pansion of 3. . Now however since I is real for real g, and therefore

T(g*)= 17(%) | (3.21)

our expressions for Jd« are real,
We must now investigate whether these expressions for

satisfy crossing symmetry. and whether they lead to singularities in



FIGURE 3

The region of analyticity of the function I(g): it has branch lines

on the negative real g axis as shown.
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é; in the upper half < =-plane.

To test crossing symmetry we use equation 3A.9 of the

Appendix:

T(g+2)+ I(g)= < - -i—fm(gpw) (3.22)

for q ¥ -1: ¢ is a constant, and we must Lake Lhe principal branch of
the logarithm. Let us suppose that a, > -1, & < =1 which we can do

since a4 + a, = -2, Then

S, = i[l‘(1+ a, +(z) — I(2+a,~i%3-Ii]
(.+

:i[—IC%ﬁi%)+IIdrda)~§%} ~%/QL1'+Q‘+L%}

L+ Ay, — (&
= 5 +m - b f 1xass iz
o2 R B (3.23)
The transformation > — - w* gives
Z2 = _\ - 2Utue > 2T -2 | (3.24)
13| v
Thus

i

- *
[5}(*¢o*)]* exp{»«2‘[l(aq—£&*w2)-:I(a‘+ (2% +2)+ Eﬁ]}
[

1

exp{~2[~I(a,+£%)-!-I(q(—(z)~1‘+Li] + ,(;YL{ q.+£z—;]}

S R |

:eszza§\+na +£%(a.+az~:)} (3.25)
Ay — (41 ,

(5, (-em)] " = exp f“l[ T(-ag+(2"+2) ~ I (~ay-(z*-2) -‘%"1}

= ex?{ R ') } (3.26)

- Ay +Ll7 —I
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Thus we have for a = 1 or 2 and a' = 2 or 1 respectively
§“,(w) = — S, (w) (lﬁ'dd +Lz) (3.27)
I+ Ay — (2 5
[Sa-a)]® = - sx(w) (zax —i%) (3.28)
—~Ax — 1 + (7 )

and from equations 3.8, %.9, and 3%.10,

]<‘>< = - 2 - —

Ay ~ (=2—Au«) Aoz + 1
Ko = — Ky ,
so that
Z A By (m) = | — Ao §o< + o V- q«+f%> /% ()
P Hp p ( A > P <‘ - { x >

= (‘—-ax —(z > Sw (o)
|+ Ao — (%

_ *
= ]: S« ("C\)*>] s
(3.29)

Hence crossing symmetry (equation 3.12) is satisfied.
Now we must see whether 5& is analytic in « in the upper
half plane. The upper half J plane corresponds to the region
-2 < Imz < 0 or o< Re iz < 2. Since I(q) has singularities only for
g § -1 we need to consider only the case Im iz =~ o. Considering equations
3.19 and 3.20 we see that there is no trouble if a; > 1 (and hence
@, < -3) for then if o < Re iz < 2 we never intersect the branch
lines of I. Also since a; < -1 there is no trouble with S; . If
a; < 1 we may use equation 3.22 to see that even though 5} has singular-

ities in this region, S, has the form

—_— . /
S, = e R A 62245]
ettt e e,

Ay + 2+
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] / -
(where d, is analytic) and 8, has a zero but no poles in the region

0 < Re iz < 2. Since

Se = 1+ 20L&«

we see that é& has no singularities in the upper half w -plane.

It is interesting to note that the expression we have chosen
for S; does not agree with our previous expression for the symmetric
scalar theory. This is because the expression we derived in the
previous chapter is just a special case of equation 3.13. Let us see

what the expression of this chapter gives for the symmetric scalar

theory. In the units of this chapter we have

We can evaluate equations 3,19 and 3.20 by relating these expressions
back to the continued fraction of equation 3.13.

We obtain (note the y used here differs from that of chapter

11)
= . . R
S, = (i+2t9) (1-6uy) (w+ce®) (3.30)
(1 -2i9) (1+6ig) (w—ievs)
S, o= (1+209) (w+ ie ) \ (3.31)
(1-2(9) (w —(e3s)
where
9 = el , V (3.32)
|- 4 g9 luw
Tr
It would appear that these expressions have a pole at
w = ée%% » but this is cancelled by a zero in i+ 2y . If g, is

positive we must multiply §; aﬂd.gg by =1 in order that they will

approach 1 as g ->o0,.
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APPENDIX

In this appendix we investigate the properties of the

function

_ _ | _qu d <0 g«
F(q) = Tf'gi e :} de ok 5 = do (3A.1)

Since cosh u = e" when u is large, this integral converges for Re g > ~1.
Thus I(q) is analytic in q for Re q > -1. To obtain the analytic con-
tinuation of I(q) to other values of g, we observe that if -1 « Re g < o
and Im g < o, the path of integration of the second integral may be
rotated through the upper half of the complex u-plane so that it ends

at u = -0, provided we take into account the poles of the integrand

that are passed, If we then meke a change of variable we obtain

()

T e o
BRI
(3A.2)

oo (g (an—1) T
e

n=v (an-1) é__):n— MZL'(J.Y)-')I,I]

+ IE§
2

In the first integral we change the path so that it runs from u = o
to u = 1 and thence in the lower half plane to u = -1 and make the
obvious cancellation. Also, since D C(an—y)%'=abcnnthe infinite
sum becomes a series for the arc tangent, which may be written as 'a

logarithm. Thus we have

t

() =

3

aahew (34.3)
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— (T, ‘
By assumption Im g < oj; hence |e *T/2 [<1 and we define the logarithm
by requiring that

. . — R V
— T < Im,@y\,{iﬂce } < Ir

I |+ ée—iﬁ."h_ I )
so that it will agree with the infinite sum.

Thus if -1 < Re g < 0, and Im g < o0,

()= T(-2) +T0¢ « o 4 §1—cc

“4 2

— 27T,
] (34.4)

b+ (e (372

and this equation allows us to extend I{g) to the whole third gquadrant
since neither I(-q) nor the logarithm have any singularities there.

Since I(q) is real for g > -1 the Schwartz reflection principle
shows that I(q) is also analytic inside the second quadrant. Thus I(q)
is analytic in q everywhere except possibly on the negative real axis
for g -1.

The mapping

J(g) = -+

,&m{1~ée

— 4.3.17/2.
\ -+ (:C —qFTs }

T
o 2
is shown in figure 4. We see that J(gq) is real for real g excépt on
the branch lines [im + 1 s g £ 4n + 3 for integral nl, on which

Im J(g) = %; if approached from the lower half plame. Thus I(q) is
real for negative q except on the branch lines. By the reflection
principle then I(q) is analytic except on the branch lines

bn + 1 ¢ g € 4n + 3 for negative integers n. On the branch lines we
have Im I(q +i ) = ¥ %; . The branch lines of I(q) are shown in

figure 3.

We need one formula involving I. We observe that (if Re q » -1)



FIGURE &

The mapping

T(g) = ¢ 4 1 L { |~ e

2 —lgTs,

— C'gf /s

lt L&

The region outside the branch lines BCDEB in the g plane is mapped
onto the region between the lines BCD and BED in the J plane. The

lines DAB in the g plane are mapped onto the real axis of the J plane.
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g “w od
I@ﬁ2)+114)=1%§{fi;(1+62) 1}75 . Ie T @+edﬂ§%

= ‘ —-F4-w du g+ uw 4

74 ( Y x ~! © =

)

(34.5)

where ¢ is a constant independent of g. By analytic continuation then
T(gta;+T(g) = ¢ = 1 Lba(g+1) (34.6)

for all g except q < -1, and we define the logarithm to be on its
principal branch.

In summary, I(g) is an analytic function of q except for a
series of branch lines on the negative real axis, shown in figure 3.
kxcept on the branch line, I1I(q) is real when q is real. It satisfies

the following identities:

T(g*) = T*(9) (g not on the branch lines) | (34.7)

Tm L (¢4%ce) = =1 (g on a branch line) | (34.8)

T(§+2) + T(3) = ¢ = £ hn(ge)  (g4-1D (34.9)

. - . . (9T

T(g) = TCF)+Te , o A {s —le } (34.10)
“+ 2 |+ Lg%

(g4 -1 and g $ 1 in equation 3A,10). In equation 3A.9
— T < Ten A <=7 .
In equation 3A.10

— 2T = Ty An < 1T
z
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Iv. BSOLUTION OF THE SYMMETRIC SCALAR THECRY

In this chapter we present the power series solution of the
one-meson approximation to the symmetric scalar theory; for comparison,
we shall also discuss the solution of the charged scalar theory of
Lee and Serber(6). A method for obtaining the solution of the symmetric
scalar theory is outlined in the appendix. Unlike the method reported
in chapter II for obtaining the solution for the asymptotic form, the
methods for obtaining the exact solution are either very cumbersome or
very specialized; they show no promise for problems other than the
symmetric scalar theory; thus we do not treat them in great detail.

In the text we shall show that the solution we report satisfies the
conditions (given in chapter I) that define the solution. We give the
solution only for no cutoff i.e.
va(k) -1 | (4.1)
We use the notation of chapter I. We observe that we may

use the relation (equation 1.9 of chapter I)

Se (W) = 1+ 20 Vet 1 Qu (w) (4.2)

to extend the definition of Su{ODJ to the complex « plane excluding
the negative branch cut < -1 (remember that Qa(ab) is defined on the
positive branch cut «©>1 as the limit from the upper half complex
plane; we define Sa(“>) for « > 1 likewise). It is convenient for
the purpose of this chapter to have the properties B to E of Qa given
in chapter I restated as properties of Sa. Since JZE?ZZ is odd

under the transformation w —» —c¢o we see that if

= /qc‘,(‘g = | U—h?ﬂ)
(B
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then crossing symmetry (property D) gives
Su (- ) = GZ Aocpg Sa () | (4, b)

Equation k.3 is satisfied by the crossing matrices of both the
charged and symmetric scalar theory. Thus properties B, C, D and E'

{the unitarity condition used in the one-meson approximation) become

B.) sa(w) is real for -l <w < 1

2
C.) Safw) =-28"8% ¢ very small co
w

D.) S (-w) =2 A _5(o) ( w not on a branch cut) ,
a 8 ap B

E'.) (8 («)] =1 (w>1)
o

(6)

The solution of Lee and Serber for the charged scalar

theory is as follows:

T

S;(“\)) = b — B )

V- e[ e aVets (4.5)
Sales) = 1+ 92[%6*3‘2—“}

i+ QZ[LJ%EKEEJ.} . (4.6

It is easy to verify that these expressions satisfy B, C, D, and E',
and that scattering amplitudes obtained by means of equation 4.2
satisfy condition A and are analytic in the cut <« plane, when ex-
pranded in perturbation theory.

The important properties of the solution given above are as

follows:

1.) They do not depend on Zna when « 1is large; instead for large
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W, Sa(w) approaches a limit

Su(20) = 1+ (9ax)c (47)
I — (g9*ae)t

2.) The perturbation expansion has a finite radius of convergence and
is uniformly convergent for all ¢s when g? is small.
3.) The solution analytically extended beyond the radius of convergence
of the perturbation expansion has no singularities other than poles;
for real g? these poles occur only for -1 < @ < 1 and can therefore
be associated with bound states.

The presence of bound states changes the dispersion equation
(equation 1.15 of chapter I) satisfied by the amplitudes, but this is
of no particular importance since physically bound states are expected
to occur when the coupling constant is large enough.

Now we present the solution of the symmetric scalar theory.

Define o as a power series in g? by the relation

9’*:&{ (I—x*) (1 + &+m"'q)—_%u} (4,8)
m 10 ’
and let
d):: ”f_‘q_nﬁlo( . (*‘4.9)

Define ¥ and x and u by the eqguations

§ = 11— 2 -!
=X < |+ 2 tan O() ) {4.%’0)

X o= |+ LVw) ( & in the cut plane or

e ' 1
on the real axis approached{*'ll)

from above) ,

w :(1>< )x + 1 — % fan'x (h.12)
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Equation 4.11 gives a one to one mapping of the cut «w -plane
onto the interior of the unit circle in the x plane, and the first
quarter of the unit circle in the x plane corresponds to the branch
cut & > 1 approached from above. See figure 5. The function tan” ' x

is defined by writing
tan'x = _L /(’m(w (x ) (4.13)

and requiring
=T < Ton b (1 X)) < 2T
2 V- (% 2 4
for values of x inside the unit circle or on the first guarter of the

unit eircle (this corresponds to the usual definition of tan“’x, for

-1 <x<1), In terms of x

Viewr = 1= x™ (4.15)

[+ x*

The two S matrix elements of the symmetric scalar theory are

S ) a2 (2] g
Sa(e) = (=) (:f:ff ). (4.17)

We now prove that expressions 4,16 and 4.17 satisfy the con-
ditions of chapter I. First consider unitarity. For w >1 i.e. x

on the first guarter of the unit circle, we obtain

w o= ¢ i( " > ¥ — 2 A ] w—r <»?:1J } (4.18)

T
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FIGURE 5

Mapping of the cut « plane into the unit circle of the x plane by

the relation
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(to obtain this specific expression requires some algebra, but the
fact that u is imaginary, which is all we need, follows from the fact

that %—E~%§ is positive imaginary when x is on the first quarter of

: . -1 R .
the unit circle; hence Re tan x = %E and u is imaginary). Since
% = x* when X is on the unit circle, we see that each of the factors
in 8y and 8, is unitary, and thus condition E' is satisfied. Now look

at crossing symmetry. The transformation <o ->-¢> becomes x - -x;

. -1 .
and since tan x is odd we have

Wl-x) = — wi(x) + 2 (h.19)
Thus
2\
S (~w) = —LLCK)+|> —- U+ 5 |- o3/ x
‘ ( — W+ 23 (~¢*‘“‘>{l-—o&xl)
= &;I) l-——-o(z/x7-> 0 w3 4+ N (,L—B}
w -+t T:Txlxi' 3 -3 2 w—-32
= A, S, (w) + Az S, (W)
(4.20)
S.-w) = —LL(X)“")(\“NZ/XL)
— AL+ 3 \._o<276"
= u—1 | — x?/x* 2 2 -3
Lot ) () s e 4]
= Ag, S, (w) + Alan Sy ()
(4,21)

(the matrix A&a for the symmetric scalar theory is given on page 8
of chapter I).

Near zero energy ( (WW=o0 or x =~ o) we have

Wx) = |+ 1(8«%\)X , (h.22)
Ti
Qo= ax (4.,23%)
S, (w) &:L<K-Zz)°<2, (h.21)
W T
Salw) = -2 (%—g)of‘ (4.25)
w) T -
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By equations 4.8 and 4.10 (the numbers a are given in chapter I) we
see that C is satisfied. Since u and x are real for -1 < & < 1, B
is satisfied.

Since J is a power series in g whose first term is éﬁ )

and @ a power series beginning with g?, and since for large w

W =~ g{x,-%@wj (4.26)

7

it is easily verified that Qa has a power series expansion in g whose
individual terms satisfy condition A (see chapter I).

Finally we must show that the individual terms in the expan-
sion are analytic in the cut & plane. To do this it is sufficient to
show that the Qa are themselves analytic in the cut « ©plane for small
(real or complex) values of g, and that their power series expansion
in g is uniformly convergent in finite regions of the cut « plane,
when g is small.

First we observe that for small g, o is small, and x is an

analytic function of «w in the cut <« plane; thus the factor

is analytic. Secondly, u{x) is analytic for « in the cut plane

(which excludes W =1 i.e. x = 1). Thus Sa(CO) can fail to be analytic
only because of poles at u = -1 or u = 3. It is shown in the appendix
that for small (real or complex) values of g i.e. large values of O ,
and values of x inside the unit circle not too near x = + i, the
equations u(x) = -1 and u(x) = 3 each have exactly one root. The

points X = + 1 correspond to W = oo and hence do not concern us. How-

ever we observe that for x = o



W) = 2 + + +an”’ X + | — 4 falee - 3 (L.27)
T ™ ’
L(.C"‘ 0‘) = - 2 — ___Lf'__ +am_'o( + | -+ __Li’_ +CL\"1—,O< = —1| (&028)
™ T -
Thus the roots we seek are x = a and x = - for u = 3 and u = -1

respectively. However, at these points

| — 2*/%x%* = o | (4.29)
Hence the apparent singularities in Sa are cancelled by a vanishing
numerator. By the statement that u(x) = -1 or u(x) = 3 have only
simple roots, the simple root of 1 - a?/x? will completely kill the
root of the denominator (i.e. it is impossible for the ratio < to be
c© ), Thus for small g? (real or complex) in finite regions of the
cut <« plane, Sa and hence Qa are analytic in «w , Furthermore, 0
and a are analytic functions of g when g is small, since the equation
relating g? to a is one to one when g? and o are small. We have al-
ready shown that Sa has no poles for small g, thus it is analytic in
g and hence has a convergent power series expansion in g for small g.
This completes our argument.

Thus we have indeed reported the power series solution of
the symmetric scalar theory in the one-meson approximation.

Now we must consider its properties, considering in particular
the gquestions proposed in chapter I.

First we observe that the S matrix elements Sa are meromorphic
functions of the parameter @, for any value of @ [i.e. they have
poles, but no essential singularities for any value of @]. This is not
true, as a function of g2, The value of g? is plotted versus the value

of @ in figure 6. Evidently @ is a multiple valued function of g?,



FTIGURE 6

Plot of g2 versus @, where g? is the renormalized coupling constant
for the symmetric scalar theory, and @ a convenient parameter (see

text).
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with a branch point at g2 ~ .33 and @ =~ % %;‘ . We shall see below

that there are bound state poles except for

- T < - T
¢ i ¢

but even in this region of no bound state poles, there are two solutions

2

for each value of g? between g2 = -.64 and g2 = .33. It must be noted
here that since g? and not g appears in the Low equation we can
legitimately consider negative values of g?, for which our solution
still satisfies unitarity and crossing symmetry (unitarity is not
satisfied if g? is complex). Because of the branch point at g2 = .33,
perturbation theory diverges for |g?| > .33 (it may diverge for

|g?| < .33 depending on the value of w ).

Secondly, we inquire whether our solution Sa(“J) has any
singularities other than bound state poles (i.e. other than poles for
-1 < @ < 1). The possible causes for poles in Sa(ad) are evidently
1.) ulx) = 3

2.) ux)

-1
3.) x =+ 1/a

We show in the appendix that for real ¥ , the equations
u{x) = % and u(x) = -1 have exactly one root each for values of x
inside or on the unit circle, and that this root cccurs on the real

axis. Since this corresponds to a root for -1 < «w < 1 it simply

means a bound state. Similarly x = :tj can occur only for real x,
and again is Jjust a bound state. We conclude that the sum of the power
series extended beyond its radius of convergence remains a sqlution of
the equations of the one-meson approximation except for the effect of
bound states.

We saw that the roots of u(x) = 3% and u(x) = -1 do not cause
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poles in SOL when g? is small; this result evidently holds so long as
tan 'x has the same definition as tan-la when x = «, and providing
la| < 1. This means that the roots of u(x) = 3 or -1 cause bound
states unless - %} < g < %} . There is also a bound state for

X = % if lal > 1, except as noted below.

A peculiarity of the solution is that it has another branch

for complex @, for which g? and § and a? (but not a) are real, and
hence unitarity, etc. are satisfied since the solution actually in-

volves only & and a?. This other branch is for values of @ having

the form

¢ = -7 Loy (4.30)

2

On this branch

e (e _ < (4,31)
= tan (‘) tanmh ¢
Since + 2 tantx = 2 (¢
bl i

is imaginary, both g? and & are real. It would appear that since
o = i
" tanh

pole in Sa(u)), at

is larger than one in absolute value we now have a complex

X = i = ««é‘+ax1h\p _ {4.32)

X

However this pole is cancelled by a zero in the denominator of Sa.%
The factor u - 1 appears in the denominator of both the Sa. It vanishes

when

5 - 4% (~%X*) fan' % = o (4.33)
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that is,
(= ( b+ 2 fan w) = L— xZ <_% fan™'x) | (L, 34)
& T ~. T
1 .
Let aa = - § ; this becomes
2 - S -l
| — 2 vy == \— X 2
_ﬁi (va ta /5> = = Fan X) ) (h.35)
which holds for X = + B if = == < tan 'B < —— i.e. =2 < @ < - =,
- L b4 L L
By extension it also holds for @ of the form § = - %? +1i¢/; but x = +
means x = + % and hence for - 2&I< B < - %} or f = - E? + iy, the

points x = + % are not singular points of Sa'

This completes our discussion of the symmetric scalar theory.
It has the property in common with the charged scalar theory of having
no singularities other than bound states, but contrary to the charged
scalar theory it is not a single-valued function of the coupling con-
stant g% It is easy to see that its asymptotic form is the expression

obtained in chapter II.
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APPENDIX
I
In this appendix we prove four related statements. Let
wixy = ¥( 223V = 4 tanlx + | (4a.1)

- x* T .
Then we show
As. For real ¥ and for x inside the unit circle, the equation
u(x) = 3 has exactly one root x, which lies on the real axis.
B. For large, complex ¥ and for x inside the unit circle and not too
close to x = + i, Lhe equatlon u(x) = 3 has exactly one root.
G, and D. The same results hold for the equation u(x) = -1.

First we observe that
W(i=x) = —w(x) + 2 (La,2)

from which it follows that u(x) = =1 if and only if u(-x) = 3. Hence
statements C and D follow from A and B.
To show that u(x) = 3 has a root x on the real axis, we ob-

serve that u(x) = 3 may be written (defining o (x) at the same time)

5 = o(x) = I1=-x° { 2+ 4 tan™ x’{ (4A.3)
2L X e '

Since o (x) = O for x = + 1, and since o (x) =» + > as x goes to O
from positive or negative values, respectively, it must take on a}l
values in between. Thus o (x) = & has a root for -1 < x < 1if x is
real.

Now to show that o (x) = ¥ has only one root we use the

theorem that the number of roots minus the number of poles of a function
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in a region of the complex plane is given by the change of the argument
of the function on one counterclockwise circuit around the boundary

of the region. Thus we sgtudy th o (%) - & for x on the unit

circle. Let us map the unit circle onto the upper half-plane by the

mapping
2 = (] 1-(x
{ - gx?'} R (LA, k)
x:ﬁé;iﬁ-i%} (LA.5)
| — U2 .

In terms of z, O becomes

7o) s A ]

(LA.6)

7

= =z {3L~&%7}}
[+ 2™ ki
where o & Im 1ln 2z <77 . One revolution counterclockwise around the
unit circle in the x-plane becomes one pass from z = - o to z = + o0
on the real axis and back on a large simicircle in the upper half plane.
Consider now Er(z) - 8], where J 1is real. On the real axis
of the z-planc, Im o (z) vanishes only for z = + 1 where Re < (z)

vanishes also. On a large semicircle in the upper half z plane

g(z) -8 =-2L+2 Lz — ¥ ) (4A,7)

o

and Im [6‘(2) - Xi) does not vanish on this semicircle. Thus the
only points on this path (real axis and semicircle) for which Im Er(z) - 5]
vanishes are z = + 1, at which Re [o(z) = ¥ = - ¥ . On this path,

therefore, (o (z) - %) does not take on both positive and negative real
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values, and its change of argument on this path is zero. However,
since [> (z) - 8] has only one pole (at z = i) inside this path it
must have only one root inside the path. Since the location of the
semicircle is arbitrary so long as \z| is large on it, we have proved
statement A.

Now suppose § is large and complex. The points x = i and
x = -i become z = oo and z = o respectively; thus we should follow
the argument of @r(z) - X] on a path which excludes z = o. However
provided the large semicircle is not too large and provided in going
around z = o the path does not approach z = i, o {z) will be bounded
on the path and if |¥| is large enough the change in argument of

%T(Z) - %) will be zero. Thus statement B holds.
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APFENDIX

II

In this appendix we outline a procedure for obtaining the

solution of the symmetric scalar theory. It is not precisely the

method used by the author; for his method moved mountains to reach

molehills and is not worth repeating,

We begin by observing that the asymptotic form reported in

chapter II for the symmetric scalar theory when expressed in terms of

S is
o

il

:(t\if:\)(l~3iﬁ)) (4A,8)

|+ 30LY

<:fj) ’ (44.9)

let z = %, then

Wl
P
)

<, = (_zii:;ﬂ ) (Z'{if) ) (44,10)
S, = E:fi) (4A.11)
Z -t

Let us forget the definition of y given in chapter II, and consider

equations 54A.10 and L4A,11 without specifying what z is. We observe

that by the results of the text if z is real for « » 1 and satisfies

z2(-w) = — 2 (w) - 2¢C (4A.12)

then the SOL satisfy crossing symmetry and unitarity. (Let u = iz and

refer to equations 4.20 and 4.21). However equations 44,10 and 44.11

are too restrictive; they relate two variables 8§, and S, to one variable
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z, and we cannot satisfy the other requirements on Sa for low energies
with such a representation. If we could generalize these expressions
to involve an independent parameter and preserve crossing symmetry
and unitarity, we would be in a position to make progress. This is
easy to do; let t be a function of &) even under crossing:

t(- ) = t(w) (4a.13)

and let t{w) be real for > 1. Then the expressions

s [z (L2 iE) (5.1

S, = (_%_?«C) (i—rit (44.15)

-0

|
|

satisfy unitarity and crossing symmetry. This representation is evi-~
dently possible; the advantage of it is that we have related §; and S,
to two functions z and t whose imaginary parts we know for both positive
and negative real axis.

Specifically, we now examine the functions

W21 2 ) amed 7 t ()

[28)

wt

Call these functions , and t instead of our previous definition. We
can find expressions for z and t in terms of §, and Q, ; these turn out

to be

2 () = 3{ I+ L%j:ﬁl LQI(N)-F C\):_(W)] }

(44.16)
Qa (@) — @4 ()
tlo) = Qv 20, + 2035 4 a6+ 9. (44.17)

2.

3 4+ B _\/%j:_f: [G+28,]) -2 (%;z— ) QLL2@1+@J



From the unitarity and crossing conditions we see that

Z(-w) = Z(w) + at yeli (LA,18)

El(-w) = —t(w) | (44.19)

for s in the cut plane, besides which 2 and t are real for -1 < wi< 1
and for 1 < approached from above, Since Q; and Q, are supposed
to be analytic in W , the functions z{( ) and t(«w) will be analytic
also except for poles where their denominators vanish. We can there~
fore write dispersion relations for z and t; these will involve some
parameters for their poles but otherwise can be evaluated since we

know the imaginary parts of z and t on the entire real axis {(z has

one for ¢ < -1 and t has none). Now for small g? we assume Q, and

4§, are approximated by their Born approximation gzaa except for 04y, w2
92.

i.e. except for (\ as large or larger than e’éi . This allows us

to obtain the number and approximate location of poles of z(wW) and

t(w ). We neglect possible poles for w~ e¥ (in practice they do not

contribute to the power series, but may cause terms which do not have

power series expansions). One then finds that z has a simple pole at
& = o, while t has two poles symmetrically located about w = o

{(by crossing symmetry). When the fact that Qa(o) = gzaa exactly is

included, and the dispersion relations calculated, one has

z(w) = ¥ ~ 2 Vot L[ ows JoET ] (4A.20)

2
111

t(w) = 1131¢o
w*— 8%

- ) (ha,21)
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where B and & are constants depending on g: B is small and ¥ large
when g is small. The constants B and J can be determined by two
requlrements

o o2
1.) Qa(O) =g'a, .
2.) That Saﬁﬁﬁ) have no singularities for small <« and g? except at

W= 0, In terms of the present definition of z, and for small

- oy +~3- -—j;
S (w) = {iiif@_}{i_;“ :+;} ) (4A,22)
e +
S, Ceo) - {%~ = H * zs% (LA.23)
=+ L P ‘

Evidently z(w) + % and z - 2 each vanish for some small value of

no matter how large 8 is. Thus we must choose t so that t = «

1 . P . .
when z = - 5 or % ; this condition results in a relation between B

and ¥ . The result is the solution given in the text.
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V. REVIEW OF METHODS FOR IMPROVING PERTHRRATTON THEQRY

In this chapter we discuss the concept of "improving pertur-

!
bation theory", and review the determinantal methodig) and the Cini-
Fubini methodilO) for accomplishing this, for a particle scattering in

a potential. We use the scattering length for the square well potential
to illustrate,

We shall first define the determinantal function and then
using it as an example consider the meaning of "improving perturbation
theory".

The Schrodinger equation for the radial wave function u(r)

of a particle scattering in an s state in a potential AV{(r) is

{~3‘_L + )\\/(v)} W) = E wor)

dkl (5.1)

We have set the appropriate constants equal to one and removed a factor
of r from u(r) to simplify the equation. The factor N allows us to
vary the strength of the potential without changing its shape. £ is
the energy of the particle.

The 8 matrix element for a particle of energy E scattering
in the potential is obtained by solving equation 5.1 for a function

u{r) satisfying the boundary conditions

1. ufe) = o

2. ulr) = e KT | goiKT 4o large r

¥
42
®

2

where k = VE and S is the S matrix element. The phase shift d is

given by 8 = 9215.

One may also solve equation 5.1 for a function v(r) satisfying
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the boundary conditions

1. vio) = 0 .

dv

2e dr | r=o0

= 1

The function vir), unlike ui{r), is an analytic function of X for all
real and complex values of N [this follows from the theory of differen-
tial equations; see reference (21)]. For large r the function v(r) has
the form

kv *
~ a2tk 2k

(5.2)

The function D is the determinantal function, and is an analytic functionm
of N . Because the functions u(r) and v(r) can differ only by a con-
stant factor we obtain

S= /D (5.5
and hence the power series for S will diverge for values of A greater
than any value XO for which

D(A) = o. (5.4)
How write the power series expansion of D and S:

@

DAY= 2 DX (5.5)
S(MN = Z s N (5.6)

Since the series for D converges for large AN while that for S does

not we must have for sufficiently large n

\%‘ > | Lo (5.7)
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(actually this need not hold for all sufficiently large n; a more
precise statement is that given any ng there exists an n » n, for
which inequality 5.7 holds). Equation 5.7 is the basis of the deter-
minantal method for improving perturbation theory, which we must now
explain.,.

For very small A the scattering of the particle is given

by the second term in the expansion of S (the first term is one):

S(AY =1+ AS, (5.8)
For very accurate calculations one would include the second term XLSl,
but this term will not change the gqualitative features of the scattering.
For very large A we cannot use the power series for S since
it diverges; the series for D converges but many terms in the series
must be calculated before a reasonable estimate of the sum can be ob~
tained; in practice this is out of the question if say 1000 terms of
the series must be calculated.
We are interested in the intermediate region, where N is
neither very large nor very small, and the second and third terms in
the series for § and D are about the same size as the first term; we want
to find a function which can be estimated roughly by the first few
terms in its power series, preferably only three or four. Now if the
inequality 5.7 extends to small values of n, i.¢. n = 4 or 5, the
determinantal function D will evidently be better for this purpose than
the function S, which is the function usually expanded in perturbation
theory. This is to say that the approximation

»* * 2 *
S= Do 4 ADy 4+ N Di (5.9)

Do -+ AXDi 4+ > Do -

is probably more accurate for intermediate values of XN than the



~90-

approximation
S =~ 14+ AS, + NS, . (5.10)
Whether ineguality 5.7 holds for small n must of course be determined
separately for each scattering problem that one considers; we shall
illustrate with the scattering length for the square well potential.
For very small k the S5 matrix element has the form
S = 1 —a2tka (5.11)
where a is the scattering length, and we neglect terms of order k?,
Let the potential V{(r) be
Viry = ) (o2v<1) V() = 0o (isv) (5.12)

It is easy to obtain

a= 1 - tanhVx (5.13)
(VPN
. . . (22)
which has the power series expansion
a = _>_\_ - 2 N + 17 >\3 - 62 )\Li e (5.11+)
3 15 315 2835

The D function has the form
D= E + (kRF (5.15)
where the functions E and F are analytic in X\ ; the scattering length
a is
a= B
= : (5.16)
For the square-well potential (equation 5.12) E and F are

E = wsh 3 (5.17)

F owrh N — 2nh IX
Vin

Expanded in power series

. (5.18)

(5.19)
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Lt
Fo= A« X+ X 4 A e
3 30 F40 45360 N ' (5.20)

Omitting the fourth term in the series for I causes an error of 10%
when | Af~ 4 , and at this value the fourth term in the series for F
is negligible. However the fourth term in the series for a is 10%
of the first for IAl= 2.5, Thus we see that in this example the use
of the first three terms in the series for the determinantal functions
E and F is useful up to IAI> 4, as compared with the limit 1AI=2.5 if
we use the first three terms in the series for a. CUbserve that for
(A= 4, the second term in the series for E is twice the first term;
thus using three terms of the series is essential to obtain gualitative
as well as quantitative understanding of the scattering length.

Now we look at the other method for obtaining a good pertur-

bation approximation. This is an approximation to the tangent of the

(10)
(9)

tional principle of Lippman and Schwinger . Bpecifically Lippman

phase shift obtained by Cini and Fubini as the result of a varia-
and Schwinger (among other things) wrote down an integral for the
tangent of the phase shift which is stationary with respect to the
solution of the Schrodinger eguation. Cini and Pubini used perturba-
tion theory, with variable coefficients replacing powers of N , as

the trial function inside the integral, and found the values of the
coefficients which make the integral stationary. One then gets a
sequence of approximations to tan 8, depending on the number of terms
from perturbation theory used in the trial function. It is easy to

show that this sequence of approximations is the successive approximants

to a continued fraction of {he form

ta_r\‘g’: a.l/\ o
L= aa N+ da N\* 2 . (5.21)

| %o+ as A
|+ Ay T+
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The numbers aq, 8 , etc., are calculated by expanding the continued
fraction in powers of N and requiring this series to be the expansion

of tan 0 in powers of A ; thus if the expansion of tan & is

tand = bA + b N + by N+ - (5.22)
we obtain

a= by, (5.23)

TGt = ke (5.24)

aia, - dza, = by (5.25)
etc.

The Cini-Fubini approximations to tan & are obtained by keeping only
an even number of the coefficients a; thus the first two approxima-

tions are

tand = _Jhiiﬁw (5.26)
|+ da A
and
tand = <y A e
\l
S . LA (5.27)
i~ aq >\

To see the implications of these results look at the corresponding

expressions for cot 6

e &

R
A
»

+ Za (5.28)

et &

I

Qa2 + (E}B by

QA = T x adn) -

(5.29)

As an example we examine the square well potential again (equation

5.12). At low energies k cot & is well behaved; we obtain (neglecting

terms of order k)

= ketd

)
i
W
>
}
Yip

A —

; | I 2

— =z — '_“‘ _—————A ey -

2 (szs>x+;§x a3 ) T } (5.30)
[}
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Here the third term 5%5 N contributes 10% of the first for IA|[= 6.

If we neglect the g%g N term it is just as if we were looking at the

first two terms in the power series expansion of k cot & .
We see that in this example the best simple but reasonable

approximation for obtaining the phase shift for intermediate values of

kK
S -1

N (L1&£VA| £ 6) is to approximate k cot & (i.e. ) by keeping

the first two terms in its power series expansion.

If we go to the next variational approximation i.e. neglect

2
\ A
237

in egquation 5.30, we have an approximation good for (X1<20, For com~
parison, the series for S diverges at Nl = 2.5. Evidently in this
simple example (where perturbation approximations are unnecessary in
practice since we know the exact solution) the determinantal or Cini-
Fubini methods give considerably better perturbation approximations
than the series for 5 directly, if we go just one or two terms beyond
the Born approximation.

I am indebted to Jon Shirley who pointed out to me the
excellent behaviour of the series for cot & for the purpose of ob-

taining a perturbation approximation to S for the Schrédinger eguation.
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VI. TEST OF THE DETERMINANTAL AND CINI-FUBINI METHODS USING THE

SYMMETRIC PSEUDOSCALAR THEORY

In this chapter we examine the determinantal method and the
Cini-Fubini variational method for improving perturbation theory, as
applied to the symmetric pseudoscalar theory in the one-meson approxi-
mation.

In the previous chapter we explained what is meant by Yim-
proving perturbation theory" and illustrated by means of the square

well potential how the determinantal method and the Cini-Fubini method

do just that. For field theory, Marshall Baker(g} has shown how to
D

write the S matrix elements Sa as a ratio of two functions 55 by
o

using analogy with the Schrodinger theory (we shall give the formulas
below), but he cannot claim that the functions Da are analytic functions
of the coupling constant g? when g? is large (the exact solution for
the symmetric scalar theory reported in chapter IV requires that Da be
a multiple-valued function of g? in that example). Similarly the Cini-
Fubini method can be applied without change since to calculate one
needs to know only the power series for tan 8, but there is no varia-
tional principle which says that the approximants of the continued
fraction should give a good approximation to tand. Thus from a
strictly objective viewpoint we might just as well be looking at
functions like

9d { 7 (9) |
(gd is the gudermannian function) to see if their power series show
any better convergence properties than ordinary perturbation series.

However, since the determinantal method and the Cini-~-Fubini method



-95-

existed as definite proposals at the time this thesis was prepared,
and since the tests reported in this chapter turn out favorably, I
have not bothered to look for other methods, For simplicity, I have
looked at the power series for the reciprocal of the scattering ampli-
tude instead of the continued fraction which results from the Cini-
Fubini method; since we shall see that the power series for the recipro-
cal is guite useful there seemed no point in looking at the continued
fraction.

The example we use for testing these methods is the symmetric
pseudoscalar theory in the one-meson approximation, using the cutoff

proposed by Salzman and Salzman:
— R/4q
L —_—

viik) = e (6.1)
(we use the notation of chapter I). This example has the double ad-
vantage that we can compare perturbation approximations with the numerical
results of Salzman and Salzman, and that the Salzmans' results describe
the qualitative features of low energy pion-nucleon p-wave scattering
(i.e. small phase shifts in the @ = 1 and @ = 2 states but a resonance
in the a = 3 state), whereas the Born approximation does not.

First we must establish some matters of notation and definition.

Baker defines the determinantal function by the equations

D (w0) = So(w) (ewr1) (6.2)
Duled = 1+ 2 ImDulw) do, (6.3)

o0, (-~ de)

We assume expansions of the form

SN("&\ - :;,. Gzn Sﬁ‘l" C"") (6,14')

n=o )
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D (W) = 2 97 Do (), (6.5)
It is not difficult to see that if the terms san are known for all
values of w , then the functions Dan(OJ) can be calculated by means
of equations 6.2 and 6.3 (of course the calculation of DOm assumes that

one has already computed Da D etc.). For this chapter only,

JO=1 Qa2

we redefine the function Qa:

Se(w) = 1+ 2L BU(R) Qulw) | (6.6)

&

This changes the unitarity condition to
T Qa(w) = Rvi(k) 1@a(e) ™ (w>i) (6.7)
L
With this definition of Qa, but with the requirements A, B, C and D
of chapter I unchanged, the coupling constant g? becomes the rationalized
renormalized coupling constant. Salzman and Salzman's calculations

assume g? = 1. Define also

Lo (@) = Re _! (6.8)
Rex () 2
and let
Lo () = 2 977 Lan (0) | (6.9)

It has been shown previously that the determinantal method

£8)’

shows some agreement with Salzman and Salzman's numerical resultis

s Lo s s . . e
and that the Cini~Fubini method is in rough agreement with exper1ment< 3).
The purpose of this investigation is

1.) To compare these methods quantitatively with Salzman and Salzman.

2.) To discover whether the terms in the series for D and L become
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small after the first few, so that there is a genuine basis for using
these functions in perturbation approximations.

To accomplish this the expansions of Da and La have been
calculated through n = 8., Preliminary computations were performed on
the Burroughs 205 at Cal Tech, and more precise calculations were done
on the IBM 709 at the Western Data Processing Center and on the IBM
704 at the M.I.T. Computation Center. Details on how the calculation
was done are given in the appendix.

The principal results of this calculation are presented in

the three tables and three figures which follow.,
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Tables Il apd III1

In tables II and III we present the power series expansions
through n = 8 of La(bJ) and DQ(OJ), for all three states a and for
w= 0 and W = 7.h3 {w is given in units of the meson mass). For
presenting these power series we adopt a standard format. First we
give the first term of the series (under the heading "B.A." for "Born
Approximation"). Then for each n we give the nth term of the series
divided by the first term. For example, for a = 1 and U = O the

series for Ly (W) is

Z.

L, (o) =‘%w | 25 4 135 9% ~.008I94*"'} (6.10)
Our presentation is eguivalent to rewriting this series as

L‘{O)zfgf{t ~+As4og"‘-‘oszs‘*—-—-} (6.11)
9* -

In tables II and III the functions ReDa(u)) and Imqu(uJ) are
treated as separate functions. Also, as w » 1 each term in the series
for ImDa(oJ) vanishes as Vw'-1 , but evidently in our method of
presenting the series this affects only the term labeled "B.A.", for

when divided by the leading term the series for ImDa(uJ) is finite at

W= 1. Thus from Table II we see that for w=1,

T Din () = V.ovo (n=1)
I Dy (w)
- — . il & (h': 1) ef‘c. (6012)

The numbers given in tables II and II are accurate to + 2 in
the last digit except for n = 6, 7, or 8 where the numbers give an

indication only and are not guaranteed to be accurate.



Power Series Expansion

See page 98 .,
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Table 11

of L {w) and D (w) for w =
& o

-, 2500

1.000
.540
~.032
.016
. 030
. 001
-.018
-.010
. 000

"1.000

1.000
.048
.260
. 062

-. 031

-.037

~-.019
003
021

+. 500

1.0C0
-o bk
-. 032
-.032
. 006
. 025
012
-.008
-, 015

ReD
1.000

1.000
A2k
-.128
-. 024
. 001
. 000
« 007
.010
. 002

ReD
1.000

1.000
.106
.016

-.0h2

-.030
.007
.023
012

-.005

ReD
1.000

1.000
~.212
-.128
-. 052

.015
.019
.008
-, 008

.058
-.247
-.107

. 067

. 086

.022
-.030

ImD

1.000
. 232
. 007

-.009

-.008

-. 015

~-. 006
.010
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Table I1T

Power Series Expansion of La(uJ) and Da(uJ), for w= 7.43%.

See page 98.

a = 1
a =2
a=3

B. A,

O3 N\ Wi -0

B. A

Co~J W\ - O

B.A.

0o~ O\ =\ fu = O

-+ 2500

1.000
-1.064
-.062
-.031
.043
.050

-. 026
-. 040

~-1.000

1.000
-.576
495
196
-039
-.032
~-. 060
-.034
.022

« 5000

1.000
-.088
-. 062
-,018

051

.04l
-.018
-. 047
~-.022

ReD
1.000

1.000
-1.477
.316
-093
043
.029
-+ 020
- 052
~. 033

ReD
1.000

1.000
“0369
-.039
.178
.112
-, 050
«.10%
~. 040
.037

ReD
1.000

1.000
. 738
316

-, 007

-.110

-.081

-.021
.029
.048

ImD

3.771

1.000
-. 413
-.062
033
.019
. 017
. 015
-, 003

ImD

- 91‘?’3

1.000
207
- 415
-.358
032
. 250
.178
-, 021

ImD

-1.885

1.000
. 827
« 450
.102

-,109

-e 159

e 079
.049
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Table IV

In this table we present the expansions of La(u)), Qa(uJ)
and La(~ W+ i€e), for a« = 1 and W= 7.43. For the purpose of this

table only, we define

Lo () = ! (6.13)
Qo () *

In this table the real and imaginary parts of La and Qa are treated as

part of the same function; thus for o = 1 and w = 7.43

Lo (W) = — 2£00 {l + [—1.06% =+ 3774&]31~a06131«'}(6.1&)
g* .

The numbers for Qa(UJ) and La(~ w + i€) have been rounded off to the

nearest integer or (in the higher orders) to four significant figures.
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Table IV

Power Series for La(w)’ Qa‘(w), and La(- w), for w= 7.43 and a = 1.

Here we define

1
La(w) = ‘Q;m

n ReL ImL ReQ ImQ ReL(~-w) ImL(-w)
B.A.  -.2500 -4.000 +.2500
0 1.000 0 1 0 1 0
1 ~-1.064 3,771 1 -4 0 -2
2 -. 062 0 -13 -8 -2 -1
3 -.031 0 ~hl 40 -7 10
4 . 043 0 104 208 36 42
5 . 050 0 893 ~170 225 -103
6 . 008 0 314 ~-3534 ~-180 -1086
7 -.026 0 ~-12930 -Loky -4859 ~-490
8 -. 040 0 -32350 43250 -7733 20220
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Figure 7

To show the agreement between partial sums of the series for
La and the numerical results of Salzman and Salzman, we have computed

the partial sums*

No

Z \—-dh (OQ)_

nEe oo (&)
for 1 € no:S 8 for o =1 and a = 3%, and for 3 £ no-S 8 for a = 2, Ve
define

o (@) = 2 A (6.15)
Qo ()

so that these partial sums are partial sums for the function Re ga(uJ).
We then plot the Salzmans' results for Re ga(&)) as a continuous curve,
and the range of values of the partial sums are shown for discrete
points. For example, at ) = L it was found that

At
167 £ Z Lan () £ .19 (6.16)
=

)
Lzo (‘*-‘\

* To compare with Salzman and Salzman we have put g? = 1.
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Figure 8

To show the agreement between partial sums of the series for
Da and the results of Salzman and Salzman, we have computed the partial

sums

Barie () = & Dan (o), (6.17)

n=o

and computed 8, from the formula

Re g, (w) = { Re EumCM} T Dar () (6.18)

T Eoone (&)

Once again we plot Salzman's resuits for Re ga(td) as a continuous

curve and show the range of values of Re ga(Q)) obtained from equation
6.18, for discrete points. For a = 1 we show the results for 4 < ng < 8;
for a = 2 we take 6 £ n_ < 8 and for o = 3 we take 5 < n < 8. Note

that we are limiting n more than we did for Lcr.'
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Figure 9

In figure 9 we show the agreement of simple determinantal or
Cini-Fubini approximations with Salzman's results. Precisely we com-
pare the sum of the first two terms in the series for La’ and the sum

of the first three terms in the series for Da.
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It should be noted that Salzman's numbers for the a = 2
state were pot in very good agreement with the Low equation, and in
particular at high energy since the limit

Lim Re 9 (@)

W — °9
should be independent of a. In Salzman's results this limit is the
same for the o = 1 and a = 3 states but is gquite different in the
a = 2 state. Thus the power series results for the a = 2 state may be
more accurate Lhan Smlzman's, but since the determinantal numbers
disagree with the numbers calculated from the series for Ih’ we cannot
say which is correct until all the results can be tested by substitu-
tion intu the Low equation, and this I have not done.

The curves I have shown for the Salzmans' results have been
copied from their figure 2 [reference (5)]. I have defined gu(uJ) to
agree with their definition, and their coupling constant f2 is related
to our g? by the equation

£ = F/aT (6.19)

This completes the presentation of the results of the cal-
culations.

There are a number of noteworthy features in the results.
First consider the power series for La' We see that in the o = 1 and
a = 3 states, the third and higher terms are generally a few percent
of the first term, and in the a=2 state the fifth and higher terms are
a few percent. We are unable to say whether these series actually con-
verge or not, but since positive and negative terms are about equally
frequent, we see that the partial sums of the series do not change
very much (figure 7). Since the partial sums in the a = 1 and a = 3

states are dominated by the first two terms, we can get a rough
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estimate for the radius of convergence of the series for

Qe (e = : (6.20)
Lo (e2) — ¢ (k)
6T e

by locking at Salzman's results in figure 7. Whenever

| Re g,(w) -1 L > ,

[~2 9

|R€ 93(_60.)“‘“\>'

)

the series for the corresponding Qa will diverge for g? = 1. The

minimum radius of convergence cncountered for Qa is g? =~ .25 for a = 1

and w = 7.5 (see table IV); here the divergence is due to ?;EZf,)
being four times the leading term of La’ when g2 = 1. On the other
hand, near w= 1 the series for Qa seems to be moderately convergent.
The difference between the behaviour of the series for Qa
and for La is best seen from the fact that for any value of w the
higher order terms for La range from a few percent of the leading
term to zero, while for Qa the higher order terms are sometimes 1000
times the leading term and sometimes .l times the leading term,
depending on the value of w.
There is less distinction between the series for La and the
series for Da; in fact, they are remarkably similar.
We observe that the higher order terms in the expansion of
L ¢ %uz are small for all positive values of «w , yet can become
Looto (&
very large for negative values of w : see table IV.
Now lock at the agreement of the determinantal method and
the method of using the power series for La' with the results of

Salzman. They both work quite well, but to get a small spread in the

results for the determinantal method I had to include a minimum of
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four terms whereas in the a = 1 and a = 3 state I could consider a
minimum of two terms from the series for La‘ and this is an advantage
if the same is true in more complicated problems, where calculating
five terms in the series is not so easy. In figure 9 we compare the
sum of the first two terms of the series for LOL with the sum of the
first three terms of the series for Da (note that if two terms in La
are known the first three terms of Da can be calculated), and we see
that in the a = 1 and a = 3 states, the La approximation is somewhat
better, but both are poor in the a = 2 state. Furthermore, the result
that we get good agreement in the a = 1 and o = 3 states but not the
a = 2 state is easily predicted, by looking at the third term in the
series for La'

I feel that the conclusion to be drawn from this is that the

approximation of Cini and Fubini namely

Lo (@) = 1 Lye () =+ Lo () (6.21)

9

can be very good in field theory but that one must calculate Lag(ua)
and determine whether 1t is small, before using this approximation

seriously.
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APPENDIX TO CHAPTER VI

The purpose of this appendix is to explain the details of
the calculation of the power series expansion of La and Da'

First let us outline the simplest method for performing this
calculation, and then discuss the difficulties with it. The simplest
approach is to use the following equations, each expanded in powers of

gl

Ten Qu (W)= B ur(k) ) Ou () |7 (e>>1) | (6a.1)

&I o

where R= Vw*—

)

e Qa(wd——9(1d+_# PVS _ﬁlggigjzi@.

bowy (w—w) (6A.2)
+ Z /%o< S .Lwrxcﬁg,(aél) Aws, (w>1)
A AN (w,—f——w) g
T Do (@) = — Kurt(le) G (o) Dac () (0> 1) (g 2y
&I O 2 ‘
Du(w) = | + © PV § Lo Do (@00) Aw, > 13 (BAL)

e, (wy - w)

I__N (O\J) = ! , (6A-5)
P ()

These five equations allow one to calculate the perturbation series for
La and DOL to any order one might require. To see how they look we

write these equations as they appear when Qa’ Da and LGL are expanded

in powers of g?. Let

* In this appendix, we define L differently than in the text, but the
change is trivial.
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Qu (w\ = = 977" Qun () (64.6)
n=o
o8
Dfx (LU\ = ré—é Doen C(.») gzh > (6A,7)
=2 AN—2
L) = 29 Len (o) (64.8)
Equations HA.1 to 6A.5 become
(64.9)

I Qoo (W) = o )

@om.(m) Q:/h—l—-”” ("QJ} (6A.10)

(h>a): )
= Kutof 2

T Qun (w)
&I w
RC C{)qo(w\ = Clog )
(6a.11)
(ny o). so
Re Qun(w) = £ PV § ZmQunlw,) d,
' (AJ[(C&)["'CJJ)
<D
v Z Awa £ [ Lm Ban (W) Ao, (64.12)
R ar i CQ‘ Cw‘+w) g
and similarly for Da; equation HA.5 may be written
(62.13)

P (0) L an (w) = — :Z;O Locrn (W) Qot, mm (w) |

Qur equations are now almost exactly as they would be writtem in

FORTRAN, if the program were to be run on a 704, except for the method

of doing the integrals,
In 2 machine calculation we calculate the functions Qa (wa)

and Da (w) at a finite number of points; call these points « _, where

l1s€msg m . To do the integrals we can use Simpson's rule (the princi-
pal value singularity reguires special treatment: see below); the
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simplest way 1s to choose the points W to be equally spaced between
W = 1 and about W = 16 at which point the cutoff has become very
small. If we let

Aw = oy — (6A.14)
be the spacing of the points, we can immediately write down the

approximation for the crossed integral in 6A.12:

o e .
A g T QQh CL‘A') da). o Z ém I Qﬁ'ﬂo (i‘)m)AACQ ) (6A015>
T Wy (wy + W) mEt Wrn (m + )

where

8l = émo = "|3— )
(92 = Sq - = Qmo——c = 4/3 , (6A.16)
3 = COs = .. = Gm,-z = 73

and mo must be odd.

To take care of the principal value integral, we observe that
we need to calculate these integrals only when «w has one of the values
w , for we must know Re @ (€ ) in order to calculate Im Q (a0 ),

m an  m Oy 414 m
which we need to calculate the integrals in the next order. Now we
can subtract from the principal value integral another integral if the

latter is zero. In particular suppose we are computing the principal

value integral for & = ., where m is even. Then

WOpa—y

=&
Tc:l): P v § i:ﬂ% S@_.)dw, = _‘@T 5 T Qo (wi) C(l-(),

fw, (Wi— w) w, (9 — )

g m)’ (6A.17)
"bnu—;
M 5 I Gx (W) _ T GQu (@) e,
™ en_, oy o s = o .
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The first two integrals are done by Simpson's Rule; the last one no
longer has a singular integrand since the denominator vanishes when
the numerator does, so0o we can again use Simpson's Rule. Since we
cannot calculate the integrand at w,= & we approximate it as the

average of the values of the integrand at the two endpoints. Thus

W

W { ITm Go(w) — TLm oxcw)} e,
T S, @y o Wy —w
X oW AW { T Qo (Wrm=i) ! (6A.18)
™ ey~ Wm—t — Om
O+ Weny ™ Om
(the term we subtracted cancels out since @Wea_, — Wua = ~ Latmar~ wm ) )

All this amounts to is revising the coefficients of Simpson's Rule. A
similar result can be obtained if m is odd: the relevant changes in

equations A.l6 are

1.) m even

Oy = &, Om=o , Omw = %
2.) m odd
Erner = % ; Em=0 ; Omar = 573 .

If =1 the integrand becomes singular at w, = 1, the endpoint of the
integration. Because ImQCm vanishes as Jowo=1 at ¢ = 1 the integrand
is integrable, but our methods do not give a good approximation to this
integral. However it is not necessary to do any calculations for w= 1
since we know Im Qun vanishes for ' = 1. There is no difficulty at the
upper endpoint since we can simply take our last value W, large enough

so that the integrand is negligibly small at w,, even if there is a
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principal value singularity there (of course if W = &wm, we put 6.=0,
and we can set €, . = ég as usual, but since the integrand is small
we may neglect the terms which come from @3 = tm v etc. ).

The difficulty with the above scheme is the following. In
table IV we show the power series expansion of La(UJ), QQ(OJ) and
La(~ @) for @ = 1 and ¢« = 7.h%3. According to the above scheme we
compute the expansion of Qa’ and then by means of equation 6A.1% calcu-
late the expansion of La' From Table IV, it is evident that this
requires extracting very small numbers from very large numbers; for
example, for o =1, ¢o = 7.43, and n = 8 the individual terms on the
right hand side of equation 6A.13 are each about 50,000, whereas the
answer is about .05; to get this number to lQ% Accuracy requires
knowing the individual terms on the right hand side to one part in
107 ! This requires doing the integrals to enormous accuracy. Unfor-
tunately the computer program if efficiently written spends all its
time doing sums such as equation 6A.15, and therefore the total time
the program takes varies as the square of the number of values m for
W that we take. Thus we have to see how to calculate the integrals
to high accuracy without using a large number of points.

The example shown in Table IV is extreme; usually the series
for Qa is not so divergent, but there is still a problem of accuracy,
and one part in 108 or 107 is highly desirable. The first thing we
need is a more accurate integration formula. There are two principal
sources of error in our simple Simpson's Rule formula:

1.) Im Qan(a>) behaves as Jo 1 when w = | |,

2.) Im Q

an(ﬁJ) decreases rapidly when « is large .

The behaviour of ImQan for w=1 causes considerable error because
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Simpson's Rule, whose error is normally proportional to (A ) *, has a
considerably larger error when the integrand or its derivatives become
very large within the range of integration. The second difficulty
arises because one would like most of the points u)m to be in the region
where Im Qan(ub) is large; for large  the integrand is quite small,
and yet if we do not use enough points in the large energy region, the
integrand will change by a factor of 5 or 10 between points ., and
Simpson's Rule will be incorrect by 50% or more.

The way to circumvent these difficulties is as follows. The
essence of Simpson's Rule is to fit the integrand by a parabola and in-
tegrate the parabola instead. Since the above difficulties arise from
the nature of the known function k3v? (k), we can look for an integra-

tion formula in which only the function

Trn Qan (vl
B v (k)
is fitted by a parabola; this is a function which has continuous deriva-

tives of all orders for 1€ «w <eo  and for large W does not drop off
sharply. One such formula is what we may call a "modified Simpson's

Rule with a kernel". In its general form, we consider the integral
g
L= i,, Fleygle) de (64.19)

where f(w ) is the kernel, supposed to be a known function, and g(w)
is a function unknown except for its values at three points «,, “a
and w; . We can now write down a formula for I in terms of gl w7,

glawy, ), g{w; ), whose coefficients are integrals over f(« ); we shall
require that this formula be exact if g{w) is a polynomial of second

degree in @ . The regquired formula is

3
T = Z;‘ G G (@) | (64.20)
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where
wa
= ) Pat du (64.21)
We
and
Pi(w) = (w-wa) (w—ws)
(e — ey ) (e —ea) ’
P, = (e = oy w— 3) ,
= () Cedg — ¢ (g ~ &d2) (64.22)
Py () = (- ) (e—wy)

(osg— ) (W3~ s
The Pm(¢) are all second degree polynomials for which we have required
fA.20 to be exact; equating 6A.19 and AA.20 gives 64.21. If f(w) is
identically one we obtain the ordinary form of Simpson's Rule.
The beauty of equation €A.,20 is that we may take the kernel
to be

f () = ié;!li_gfﬂl.~ , (6A.23)

wy (e-w)

that is, to include the principal value singularity. For the integral

)

I=e PV [ T Qon (w0,) e, (6A.24)

: wy (o — )

the range of integration will be divided into many intervals, and the

result will be of the form

T ﬁfrgél " 1%321_£ﬁkjl, , (6A.25)
- R U2 (Rm)

If w = w, where mis even then n"TWill be a simple prin-
cipal value integral. If w = o, where m is odd (but not 1) then

T will be the sum of two terms:
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N
T = Lo { I 'F(w) (- oam~.§(w»- Q-\m-—a) Ao
&= 0 IR (€ = Wy Y (an— wmmz)
Weaga, Eh,26)
* 3’ f(w) (W me ) (® ~ Dmea dos
Oy + & I !

(DB = Wt ) ( W ez )
and since the polynomials in <« both apovroach 1 as @ - @. this limit
exists. Whether m is even or odd the rk for ¢ near m will be ordinary
integrals since even if they appear to have a singularity at w = W
this is cancelled by the vanishing of the polynomial at W = Wm .

Thus in a more accurate calculation one starts by computing
the T these can be done with many points, and one may change the
variable of integration to eliminate the singularity at «w =i {e.g. to

€ = Vel o ). ©One is then free to choose the points w,, to fit one's
best guess for the behaviour of ITim GQan (w)
B 2 Chk)

Besides improving the accuracy of the numerical approximations
to the integrals, it seemed worthwhile to rearrange the calculation so
that dispersion integrals were calculated for the Laniéd) directly
instead of the Re Qan(aa); since Qan(bb) and Lan(UJ) have the same analytic
properties they satisfy the same type of dispersion relation. One might
think that because Lan(LA) is consistently small for positive values of
> its imaginary part for negative values of «w might also be small,
but this is not the case {(see Table IV). The precise calculations used
a more complicated set of formulae which included a dispersion relation
for La(u>) instead of Qaﬁoa), but whether this accomplished much I do
not know. These formulae are (they must be expanded in perturbation
theory before use):

Ten G () = REU2(R) | Qo (w) |* 9 (6A.27)

T W
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o9 (-w-te) = - %- o R () (o) ) (64.28)
Gule) = | Qu(-w-ce))? Ceomi), (64.29)
Ho () = _eme T Qo (— w-Cs) (eo21)

2

Lo(w) = L+ o | RAPCh,) He ) da,
9%+ A aT g é'n-w% [ZS R SN (6A-}1)
- w ? Kovr(k,) dw, Cwzi),
T 3 &TT w? Wy - ~ L&
Qu () = __ ' (eox>1) | (fA.32)
Lo (w)

In the actual calculations these functions were calculated
for forty values of (o , and as a check on the calculation the program
was rerun with the functions caleculated for 29 values of «w. j; for the
first six orders there was good agreement, but in the last three orders
some discrepancies arose due to the numerical approximations to the
integrals losing accuracy. The actual calculations we report in Tables
II and III are probably accurate except for n = 8 but we can claim
accuracy with complete confidence only for n £ 5, where the two cal-
culations agree.

The final calculation took ten minutes on the IBM 70L4; much
more time was required to debug the program.

We complete this appendix with some remarks more relevant
to the calculations of pion-pion scattering {(see chapter VIII), which
presents similar problems. The calculation of the pion~pion scattering

amplitudes is computationally equivalent to the above, except with the
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cutoff taken to be

wa(k) =~

when k is large; this presents a new difficulty in computing the in-
tegrals in equation 6A.12. The amplitudes Qan now behave logarithmically
in <& when «> 1is large, as shown in chapter Il. Therefore they have

an essential singularity at «= <0 and we cannot choose this as one of
the points <,, - We have then a maximum value W, for which we

shall compute Qan(‘d). Consider now the problem of calculating

Re Qan(cdmn); the difficulty is that the integral for Re Qan(‘°M~) requires
that we know Im Qan(ai) for Wy Wy, This problem did not arise
in the cutoff case because we could choose s, large enough so that

the integrals for (3> w,, were negligible. It is possible to do the
same here but a suitable value of «w,, is O = 10100, which is imprac-
tical. Thus we must use an integral formula which extrapolates Im Qan(ul)
beyond w = ¢, « 1 have adopted the procedure of writing the Simpson's
Rule formula for (dy, _,%ws W, s0 that it is exact if Im Qan(cc) is a
second order polynomial in {nw, and then letting the integrals for the
coefficients r run to o0 instead of com. - Looking at the general
formula for the modified Simpson's Rule, equations 6A.20 to HA.22, the
change required to make it exact if gi{«) is a second degree polynomial

in bww is to write

P‘(w§ = (/@vuw~,zvaw1)(zZV\_w¢”w32
(,@w_,w‘ —~/4VL.0~33_\‘(/@1&501 — ’Z‘“w3)

3

etc,
In conclusion I shall list the bugs that appeared in a FORTRAN

program prepared to carry out the above ideas--not the routine mistakes,
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but details that one might not notice.

1.) The function Twa Gan (w) must be computed for co = 1; since
£ vt (k)

it has the Jform g- care must be exercised in ils computation. The

IBM 704 is designed so that normally it does not stop when it divides

by O; instead it sets the result equal to O and continues.

2.) The IBM 704 treats numbers smaller than 1077 as if they were very

large numbers ( ~ 10°7), or by special arrangement they can be replaced

by O. Either way may give difficulty, thus one must be careful when k

is so large that k*v2 (k) becomes a number ~ 10 '® or so (since the

program will involve terms proportional to [K*v?(k)J¥?). (This difficulty

of course occurs only for the Gaussian cutoff, and not in the pion-pion

problem.)

3.) The integration formulae 6A.20 to fA.22 leaves the spacing of the

points @,, ¢, , and <, arbitrary, and this is a useful feature; the

only point one must watch is that sometimes the function ‘Q'“B will
have a singularity just beyond the range of integration, and when this
happens one must be sure the integral €A.21 is computed with enough
points to be accurate,

4,) When the modified Simpson's Rule is used to calculate the integral
from (o, ., to <« , one must choose the points (om, .z + @w,_, s and
Wy, sufficiently far apart so that the function that it fits to

Im Qan(QJ) will not be much larger than Im Qan(LO), due to small
departures of Im Qan(OU) from logarithmic behaviour. This point arose
in particular because I first used an eight-point integration formula
for the last interval instead of the usual three-point Simpson's Rule;

but in any case to get a reasonable fit to Im Qan(‘d) beyond w = wn, ,

the three points must be taken reasonably far apart. In the actual
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calculation of pion-pion scattering the last three points were roughly
@3, = JT o,y Copgoy = VZ Wem,-. 1 and this worked well enough for the

purpose involved,
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VII. A FORMAL STUDY OF THE CHEW-MANDELSTAM EQUATIONS

In this and the next chapters we make a study of the equations
proposed by Chew and Mandelstam for the s and p wave pion-pion scattering
amplitudes. These equations differ from the equations of the one-meson
approximation to the Low equation in that the crossing relation is more
complicated. The techniques we have used to study the Low eguation can
be applied to the Chew-Mandelstam equations, in general with less
success.

Like the Low eguation, the Chew-Mandelstam eguations involve

a Born approximation a, and a crossing matrix Aa Here we assign the

gt
numbers o as follows:
o = 1 : I=20 s state

o = 2 : I=2 s state

o= 3 : I=1 p state.

The statistics of pions forbids the existence of even I p-states or

odd 1 s-states, and in the Chew-Mandelstam approximation scattering in
higher partial waves and inelastic scattering are neglected. We shall
have occasion to discuss the theory of the interaction of neutral pions
in the absence of charged pions, in which case there is only one s
state and no p-wave states,.

For pion-pion scattering the crossing matrix satisfies -

% Aoz As = 23, (7.2)
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and we shall see that the s-wave part of the crossing matrix has the

form

Aug = — Sog — AxRe (=ioca;g=1 oc a) (7.3)

With respect to its role in the Chew-Mandelstam equations the crossing

matrix A . is the analogy of ( - Aaﬁ) in the Low eguation.

8
In our investigation of the eguations of Chew and Mandelstam
we shall present a calculation of the perturbation expansion of the
solution to sixth order in the coupling constant, and a preliminary
analysis of the results. Unlike the case of the Low equation, where
we essentially reproduced Salzman's results, the power series we shall
obtain disagrees qualitatively with the numerical results of Chew and
Mandelstam. Before presenting the calculations we shall present two
theorems which are a serious barrier to any attempt to analyze the
results of the caleulations; in faet with just the analysis carried
out so far on the power series it is impossible to say whether its
predictions for the phase shifts are significant or not. The most im-
portant prediction is that if there is a low energy p-wave resonance,

it is extremely narrow. See chapter VIII,

The theorems we shall prove are:

1.) The equations of Chew and Mandelstam have no solution for positive

values of the coupling constant.

2.) The perturbation expansion of the solution of the Chew-Mandelstam
equations for the interaction of neutral pions diverges for any non-zero
value of the coupling constant, at least for large values of the energy.

These theorems will be explained and proved later in this
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chapter. I wisk to point out here that these theorems do not reflect
any difference hetween the Chew-Mandelstam equations and the Low

equation, for the same theorems hold for the Low eguation if the crossing

matrix and Born approximation are the same. For this theorem it is

actually the s-wave part of the Born approximation and crossing matrix
that is relevant. The reason for theorem 1 will be seen to be that the
a all are negative and the Ka all positive, while theorem 2 requires
that @K be less than or equal to -3 (for the neutral pion theory there
is only one state).

We begin by presenting the equations of Chew and Mandelstam.
For their derivation and justification see reference (7). Let v be
the square of the vector momentum of one of the pions in the center of
mass system of the two pions, measured in units of the pion mass. Let
Sa(l') be the 5 matrix element for the elastic scattering of two pions

in the state a, and let Qa(ll) be given by the equation

See (W) = U+ 20 [ v Qu (V) , 0swv<oo (7.4)
V4| ’

In the approximation of Chew and Mandelstam, Qa(1/) has the following

properties:

A.) Qa(b’) is the boundary value of an analytic function of » in the
complex 1V plane; this analytic function has branch lines for o » = oo
and -so<Vv< —1 , and Qa(i’) is the limit of this analytic function

as 1V approaches the positive real axis from above. Ixactly as for the
Low eguation, we shall define Qa()/) for complex 1/ to be this analytic
function and retain the original definition (equation 7.4) when 1/ is

real and positive.
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B.) Q«(v) is real for -1< < o ,
C.) T QRe(w) = \/:V:~ ! Qq(v)\l for V> o
Yt /

V-1 00

These four properties are except for trivial changes proper-
ties of the solution of the one-meson approximation to the Low equation.
besides the above there are two more properties which are more elaborate
than their analogy in the static model, the reason being that only s
waves (or p waves) were coupled in the static model, whereas in the
pion-pion problem it is only an approximation to neglect the higher
partial waves. First we have crossing symmetry. In the pion-pion
problem crossing symmetry is simple for the amplitudes when considered
as a function of energy and momentum transfer; to obtain an approximate
crossing relation involving the s- and p-wave partial wave amplitudes,
Chew and Mandelstam approximated the two-variable amplitude by the sum
of its s~ and p-wave parts; after applying crossing symmetry they
projected out the s- and p~wave parts. They do this actually only for
the imaginary part of the scattering amplitude, whose partial wave ex-
pansion should be more convergent than that of the real part. See

reference (7). The result of this approximation is the equations

L) X=1 or 2, vyo

v 2
Tre Go(-v-ivie) = — o { 2 Aua T Qg (1)
Y+ g s=e

(7.5)
+ 31 = ) Ay Trn Q5 () }cﬁy, )

2) X223 Vv>o -

¥ 2
Im o \(*V-—j +('€.) = = | ( | — 2. &_""’ ){ Z _AO‘. T Q) ()/,)
V3 T ;l; [ (y*‘ ) e & s

Fa(i=2Y) A e Qs () | o (7.6)

5 ”
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This is not the only form which we can consider for crossing symmetry,
for if the d waves can be neglected we would expect p waves to make
much less of a contribution to these crossing relations than the s
waves, and at least for rough or gualitative purposes one should be
able to neglect the p waves also. Indeed it is found thal in compuling
the perturbation expansion of Qa the effect of the p-wave term in
equations 7.5 and 7.6 is usually 3 - 6 percent. Thus we may consider
an alternate form of the crossing condition in which we set Aaaz O for
all a.

The second property is essentially the definition of the
coupling constant A ; this becomes a property of the Qa because we
must be able to obtain subtraction constants for all three states
using only one constant (actually, only two of the three; see below).
This is again simple for the amplitudes as a function of energy and
momentum transfer, but for the partial wave amplitudes Qa we get a

complicated equation (d waves etc. neglected) (a = 1 or 2):

od
2 — t s
Qul-3) = Nawe w [ {-s bngio gy - oy
a (7.7)
(2 AaTraG)~ 5 v 25) Ao Im @GO} L
For the usual symmetric theory of pions

@ = 5 A - 2 o 6
‘ - 2 ) o‘@ 3’ 2 ! -3 ‘ {708)

2 -5 3

For the neutral theory of pions

a= -3 A= 2 (7.9)
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We obtain the eguivalent of a subtraction constant for the p-wave

amplitude Q5 (V) from the requirement that it vanish at v=o .

Conditions A, B, and D mean that we may obtain a dispersion
relation for Qa(b‘) exactly as we did for the solution of the Low

equation. For the s states we write Cauchy's theorem for Q«(¥)
2 1/3

and obtain

-1

G (V) = Qo{(“z) + (V*VS)f Trn Qoc (M +¢€) <y,

~S0 (¥ +2/3)(+~V)

(7.10)
O
 (vras) | I Qu(v)
w o (y+=/s)(v—V)
( ¥ not on a branch cut). For the p~wave amplitude we wrile Cauchy's

theorem for @3(v) , and since the residue at ¥=o is zero we obtain

2
[o24]
Qs = f Im(@?j: (ioceddy, « #2 szm,( ffg;/')dv‘ , Cfoll)

again for v not on a branch cut.

The equations for the s-wave amplitudes can be put in a
relatively simple form which emphasizes the close parallel between
these equations and the Low equation. The algebra is worked out in
the appendix. The result of combining equations 7.5, 7.7 and 7.10

and putting ACI.S = 0 is ( 'me X= | eovr 2 } R

0
Qs (V) = A, +  (VY+2/3) S I Qu (M) <l

™ & (Y)Y (v-)
3 i T (7.12)
2, Qe g I {(a2n) | amau i) An ] L v

T2 Ohetfs) (a0 )
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( 7 not on a branch cut), where the path from /=1 to 4= v+

must not cross the negative real axis. Except for the trivial change

2
3

difference between this and the Low equation is that the crossed term

in the point the subtraction is made (from O to - = ), the only
here involves taking an average over the type of crossed term present
in the Low equation.*

The equations for the p-wave state, or for the s-wave states
when the p-wave contribution is included, are somewhat more complicated,

We note that when p-wave effects are included equation 7.12
is modified by a term whose dependence on o is proportional to Aag'

Now consider the first of the two theorems to be proved in
this chapter, namely that the Chew-Mandelstam egquations have no solu-
tion when A is positive., This theorem is known to Chew and Mandelstam
but their proof is unsatisfactory: they show that the determinantal

function Da(1l) defined by

Gu (V) = N« (V) (7.13)
Do (V) !

I D (v) = - 1{7 No (1) (v>o) | (7.14)

Dx(¥) = 1+ (V2 [ I Du ) dvi (vpod

h T ! v+ 2/3) (i~ ) f ;o (715

Do (V) = Lim Do (v+ie) (r>0) (7.16)

&0

has a zero for negative real 3/ but this means a pole for Qa(V) only

if Na(i’) does not have a compensating zero. For example, the one

* It is understood that the corresponding crossing matrix in the Low
equation will be nﬁaﬁ'
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dimensional Low equation (see chapter II) can be treated in the same
way, and there Chew and Mandelstam's arguments would predict a pole
in Qlw ) for negative real w , while in fact Q(® ) has a pole only
for imaginary .

The theorem we prove still helds if inelastic scattering is
included in the unitarity condition; but since the proof depends on the
approximation of neglecting the higher partial waves, the exact theory
of pion-pion scattering may still be consistent.

The inconsistency in Chew and Mandelstam's equations is due
to their high energy behaviour (see our proof) whereas their validity
as an approximation to the exact pion-pion scattering problem is at
best only for low energies, and one is thus tempted to try to solve
the equations approximately for low energies, hoping that the incon-
sistency will appear only at large energies. Chew and Mandelstam try
to achieve this by solving equations for Na(ll) and DQ(I’), which are
consistent equations; they do not report how well their results agree
with the original equations(?’aq). In chapter VIII we try to achieve
an approximation by means of perturbation theory, with indifferent
sucCCcess.

Now we prove that Mandelstam's eguations have no solution
when )\ is positive.

Assume that we have a solution of Mandelstam's equations for

a positive value of A . Define

Q) = L a(v) + 2 Q.(v) (7.17)
3 3 i

and let Q@) = PO + tF(Y) |

R (V) = R (¥) + (Fu(v) (v=>ed (7.18)
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¢(1V) satisfies a dispersion equation of the form of equation 7.10.
However, from the value of the crossing matrix given in equation 7.8
we see that Im (V) for v <-i depends via the crossing relation only
on F, and ¥, , not on F5, for positive energies, and the same holds for
the subtraction constant. In fact Im Q(%/) at negative energies and

2

1
3 F, o+ 3‘5}

i.e. on F only; since no p waves are involved the integral over F(v/ )

the subtraction constant depend on F; and F, in the form

for negative 2/ can be transformed into the form of equation 7.12,

and we obtain

POA = ~28 + (v=wvj P V. | F(Ga) <y

m 4 ¥ — Ve )/‘—-V)
Vi - ¢ ¢ (7.19)
-2 | { ) [ _Flm) dyl} v,
Yo T4 () (Ve V) ’
where V= — 2 .

From the unitarity condition (condition C) we see that F, (V)
and F, () are positive when 1 is positive. 8Since o= — % and
is greater than 1, the last term of eguation 7.19 is negative when ¥ is

positive. Thus for vy o

3
a0

P(») < -3X + (¥=wlev | F(v) dw (7.20)
w ° -w)(v-v)

From unitarity we may obtain bounds for P and ¥. Suppose

V>4 ; Lthen
2 .
F;<(V)> _\f__.‘z___ Fot (V) , €. |
(7.21)
F(v) = 4 F(v)~+ 2 Fa(y) < VT
= 3
Also (for v>1 )
B v) > af(»d '<1ﬂd. bence

vz
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2 2 2
(Lh+gR) < B+ 2IRRI+ 2R
but since PR R < + (P4 D)
P (v) < %Plﬂ a2 PF « VZ F(v) < a2 . (7.22)
3

The inconsistency we wish to find can be understood from an
examination of equation 7.20. For large ¥ one would expect the in-
tegral to be determined malnly from values of v less than v , say val-
ues of V| less than ifg . Then we can set 7%, — ¥ ~ -V and replace
the upper limit by iﬁ% . Then both terms in eguation 7.20C are negative;
furthermore either ;E;; Fr)=o or the second term in equation 7.20
becomes arbitrarily large as we let 1/ increase; the second possibility
cannot be allowed because P(V) is bounded, and the first possibility
cannol be allowed because our argument says VP{(v )| is greater than o©
and therefore by equation 7.22 F( ¥ ) cannot approach zero.

To translate this argument into a rigorous proof of incen-
sistency we must deal with the principal value singularity. To do this
we consider an integral over P(Vv ), and evidently this integral should
depend as far as possible on values of P(? ) for very large values of

7/ 5, Lhal is il should be very slowly convergent. A sultable cholge

is to define

[o%4)
Ty = [ P dv >
X (V+2/3) b3 ’ (7.23)

which converges only because of the slowly increasing function £ »
in the denominator. By equation 7.22, J(x) is absolutely convergent,

and
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e
| T(x)| < VT f \ Ay = Nz (7.24)
x V/@VL,QV < /@VLLK— ’

The integral of will be used repeatedly in the arguments

i
i3y

below. In the following we shall always assume x very large, so that

we can make free use of inequalities of the form

| S L ( %g ) > 7im Y. )

V+ 2/3 2y 7

and ,@nzV > N /64«)/

where N is any number we wish to use less than 1000 (i.e. any number
not arbitrarily large), and so forth.

Using equation 7.20 we obtain
=9
Tlx) « — 2N v 4
X PN+ 2/3)

+"l_}° ) {F.V,Zoﬂ’il_jﬂi}é@/.

"X By o (yi+2/3)(¥ —V)

(7.25)

It is shown in the appendix that the order of integration in
the second term can be interchanged. Only very weak assumptions are
made; for details see the appendix. This gives (using an upper bound

for the first integral)

T(x) < — 3 A _ 1
+ /é)/axta)é .
ot as (7.26)
- ( F(v) [Pv] o L o(’v} dv,
T v, +2/3) % Ly (V=)
Now consider the principal value integral
T=rPv § 1 0y (7.27)

If vy 1is less than x this has a lower bound
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If v, » X it is shown in the appendix that I remains positive.

Thus (since F(V, ) is positive),

o
TUx) < b %— 3N — 2 [ FOa)  dy, z (7.29)
4 en*x T (v - 2/3) ’
or
‘ x
Tyl > 1 {3,\ + o2 [ F(u) cw.} (7.30)
4t Lan*x m 'f (¥i+2s) ’ Ve
By equation 7.24, } T(x)) bPx 1is bounded independently of the value

of x, 590 that
AL
i)
v (Vi+2/3)

A,

must converge. Thus if x is large enough, we have

Asox [ EO)  dy (7.31)
™ ox (V) + 2/3)

Now by equation 7.24 , F(v,) > . P*(»)
2

Thus
[=4]
[ TN > b { 1A+ 1 fﬂlﬁl Av, } (7.32)
4 L x T 0h ) . |
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Now from equation 7,32

L Teyl > A, (7.33)

2 ,//vLa')C

which means that | P(W)| must be greater than N for some values of
. 2

7 (since j At dv <« A _' ), Let S_be the set of points » = x
% 2V b3V 4 Lt x X

for which | P(v) | > A . Evidently to saticfy equation 7.33% we must

have

f POV 1+ dv > A i (7.34)

P

Sx (V+2{3) L35 4 ePx ‘

Now we can obtain the inconsistency. With the use of equations 7.24

and 7.34 we obtain

s M,,,,L.___{l/\—o-;f [(PCV.)]/[,VLSV’][ 1 POV) 1 G(V.}
Lt x '4,41427‘- m S, (v, +2/s ) L3V
> — {.ZA + LA Ldx 5 | P(vi) ) v, } (7.35)
P ™o Sx (i +Y3) LV
1
> _,,L\ { _2\- -+ A %% }
I z B3I .

Since this equation has been derived for arbitrarily large x, we have
an inconsistency, regardless of the magnitude of A .

Qur second theorem states that the asymptotic form for large
1 of the perturbation expansion of the solution of the Chew-Mandelstam
equations for the neutral pion interaction diverges for any non-zero
value of A\ .

In the Chew-Mandelstam equations for the neutral pion inter-

action there is one s-wave amplitude and no p-wave amplitudes, so that
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we may start from equation 7.12. Let

QY = P(V) + (F(V) (v > o) , (7.36)

and let 1V approach the real axis from above, in eqguation 7.12.

Using equation 7.9 we obtain

P(v) = - =3\ + (vrais) PV [ _F) <n
T e Oi+Y3)(v-v)
(7.37)
Y oo
S a [ s B dy ]y
N 1 e e (Vo +2/3)(vy+2)

We now obtain equations for the asymptotic forms of the perturbation

0
i
&
0
o
o)

amad W
ang &

to the method used in chapter II for the Low equation, so we shall be

brief. Let

F(v) = FE(y) + F'(v) (7.38)

where F(l/) is the asymptotic form of F(7/ ), i.e. a double power series
in /\ and s 1/ , while F'{7/) is the remainder of F{(3/). We write
equation 7.37, for large v and neglecting terms of order I} , in
such a way that each term either contributes to the definition of =&
new constant A, or is a double power series in A and biy . The

uncrossed integral in equation 7.37 may be written (for large 7V )

o
— L ) dyy - F (vi) dy,
s V) +2/3) s (Vv + 2/3)
[}
+ 2 [ _Flw)
ST T 5 (v +23)
[=e}

+ 1 PV j FE(L4)_f434 + ¥ Pv 5 F(v) =

e D

T S (v, o) 71 YN E YD)
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and the crossed integral may be written

Y+
oo !
-2 f {J‘J _f._(_(ljﬁl_ d,y',‘,_ -+ 4 f F‘—:CVLZ O(Vz_
Yo AL Vao+ 2/3) L (Vo +2/3)
v
- 2 j Ff( VL) dVL
3T Y4 (Vz.'f 9'/.5)
‘ ——
— j El) ‘4Pi -+ M 39 F () Ay, } c(»1 i
T o Ly 4 2/, ar T "/D-CVJ_'*'}“)

Thus we may define

5]

Ao = A+ L f,f{ﬁldvl+;jl
T & (vy+2/3) o

— 2, }o ?ﬁ ’Vl) C(V,
)

BT 9 v (Vr 2)

(VY +23) (7.39)

and obtain for large

F(v,) dv 2 PV j EOn) dy,

P(v) = ~'3A°-*4.Rv§
L o n-v, ‘Y (V- V)
Vot (7.40)
] QL
- 2 J- { . J F:(Vi ‘in + M P (1) oy } Ay,
b % LS VS VA T Ly (Vhe M)

This equation is very similar to equation Z2.31 of chapter II, and we

can use the results of chapter II to obtain from equation 7.%40 an

equation similar to equation 2.30. First we must examine

Vi

L= L] by dy
Ld i

for large values of v . Neglecting terms of order _1 this integral
k%4

is

m £ { m-4
= Z C“‘) . /él/(— v (,7 1)
L=o (m-2)! ) :

Thus in analogy with equation 2.30, we obtain
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% — ——
P(z) =2 =24, + Z e, P Fe)
NnN=o 41_1_:1—4
(7.42)
= nwy m 2N = —
-2 Z_ -1) A, A { Z oo, )\Zon (Jﬁn F—’(%)}
m=—o .n_mc;{%m N=o dt:_n—l )
where
z = 2o
at Ly (7.43)
Con_, = 227 B, (7.44)
can) ! ’
Can-y = L2*7-27] 8n (7.45)
Can)/
(we define B = -1),
The unitarity condition for the asymptotic forms is
F(z) = P2(=2)+ F*(z) . (7.46)

Now let us write P(z) and F(z) explicitly as double power series in

Ao, and z:
Pla) = —de Z 2 i (A5 (7.57)
Flz) = A2 2 2 Fy (XY 25 (7.48)

roo SsTo

Substituting equations 7.47 and 7.48 into equation 7.46 gives

‘Y‘\-s = Z Z %ﬁ‘/?»—'—ﬂ./s~v + Z Z F/*" 7C""2-~/‘4;5"” , (‘7-l+9)

/.L‘:O =< lJ.:C Yo
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and making the same substitution in egquation 7..2 gives

-
/V\,.._S = 35}0 530 -+ :?—-otbh F'wn,s—v-ﬂ—i (54-)’)—'3! 5 (7'50)
= s!

where
w/a
Dy = —€ny + X = Cn-{—2m (n evend (7.51)
m=o B E e ?
GRS
Dy = 2 = -7 - 2m Cn odd) (7.52)
m=o .rrlm“l" :

Since the cn are all positive, and since

2Can-y > 1 €an— | (with equality only for n

it

1), (7.53)

the Dn also are all positive.
Equations 7.49 and 7.50 can be solved by iteration to obtain

p._ and f for any values of r and s; hence p. and f_  are positive.
rs TS TS rs

Therefore

Be > Dp fo,spr,  (Sr oD (7.54)

s!

If r is even, write r = 2Zn; we obtain

De > 2Ca_, — €ap-y = L[27-4D Bn (7.55)
(an)!

For large n [see Dwight, reference (25)]

Bn > (2n)! (7.56)

— an~i
Ti 2 2 ?

and hence for large n

Dy > = (7.57)
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For odd r write r = 2n + 1; we obtain

D, > 2Can— = 2 [2™-2) Bn 5 _! . (7.58)

- T (Q-h.)! Tl b

th

Hence for large r

o > (s+v )/ b 'FB S v (7.59)

<! Ty
However it is easy to evaluate fo n’ which is found to be

i

= (ne) g™ (7.60)

7

Hence

N -
oy > (sredl 9

s/ T

. (7.61)

Now look at the effect of this on the perturbation expansion

of P(z). We have

5 o= = 23 o (Ao) 2 (7.62)
But 7 = %g #n3y ; thus if we writen =1 + s, m = s , then
P o= =A 2 (-Xa) Wi Py (=) (7.63)
where
Phn = Po-m,m (7.64)
—— )

and hence

o> 17 m!

¢ (7.65)
TN o/

This inequality guarantees the divergence of the expansion of 5& in

powers of A, for fixed w» if Ly is pnegalive; there is a possi-
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bility that the series will converge for one positive value of fn» |,

but at least it must diverge for almost all positive values of H v,
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APPENDIX

I

We show that eguations 7.5, 7.7 and 7.10 of chapter VII can

be rewritten

() = Ade + @r23)[ Im Qen) <y

T o (vi+23)Y(rn-Vv)

N o - (7A.1)
-z P""F'”J { (74—2/3)[ T~ Qs (i) ) Ay ,
=1 Vo T o (¥ +2/3)(va+ M)

if the p-wave contribution (the term multiplied by Aas) is neglected.

Let

o 2
Qu(v) = Adu + x32) [ I Qe )dy + 2 Awg Us (v) (78.2)
T8 (e ) (V- V) a=t

when the p-wave contribution is neglected; using equations 7.5, 7.7,

and 7.10 of the text we obtain

b )/'ﬂl
Ug(v) = = (¥x2/3) ' {J_ I Qs (va) vy | Ay
¢ ™ "S‘ Wi+ (v - 273) 24 S @ }
(74.3)
-+ #;{~§£W(l—%j:>~;fz73}3:m@y(%)o(vl ,

Interchanging the order of integration in the first ferm makes it

~ (r2s) | T Q.0%) { f dv } dv,
™ o vivi % v v)(vi=2/s) ’

The inner integral can be obtained by standard methods, the result

being
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0
f | 4,

ity g (o + V) (V- 243)

= /@Vu(t—r Vo )—i__,L_,_ %((»_-Z_ﬁwl_ (78 &)
v(w 1/3) "ol L (V3] 3
Hence
OQ A
Us (v) =-ﬂ'__oj ] /&/L(_H-}Tl{_,) - 5 }Im@/;(v,)o(w  (74.5)

Differentiating under the integral sign

a [V Up(””)]
dv
oro r ~ N p
= i | U S B v, v, (
T i iV,+l+V v, +23 k ™ e &) (74.6)
[«"2}
= = () Im Q(w) b
R o W+ 23 )Y(Vi+ V1)
However
visy) = o (74.7)

as V-> O and hence

Y o
VU{@(v] = - f { (V|+l/3) f T Qu (1) _“CQV,, k JV‘ (74.8)
© o (vy+2/3)(ra+ri+) )
or
Vi o
UF;(V = — I f { (Vl—l/a)j L QA<V1_) JVL_} O(V, (7.&.9)
Vo o W+ r/3) (> + M) 2

which gives eguation 7A.1.
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APPENDIX

11

In this appendix we prove that one may interchange the order

of integration in the double infinite integral

[ {p.v."f Flo) g | dx
*a fnix by (Y-x)

In order to prove this we make the following assumptions:

1.) |F(y)| is bounded for all y i.e. there exists a constant a such
that

|F(y) | £ a ,
2.) The principal value integral is bounded for finite values of x.

That is, for all x satisfying xoéa X ¢ x, it has a bound A (depending

A

on x&):

L Pv. [ _E(y) Ay | 2« A(xa) fo xod X< Xe , (70.10)
fy(y-x)

3.) The principal value integral is defined as

Y, g,
PV f .liiéiL;%ﬁ = i j y~-x F(y) c{g . (74.11)
! (g~ g 4 {y~x)z.,_e" Y

We shall assume xo > 2, and that this principal value integral exists
for all x E'XO except x = y,. We assume further that this limit is
uniform for all closed intervals of the x axis for which x = X and
X £ Yo

It is not difficult to show that the first two assumptions

hold for the integral considered in the text. The third assumption is
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made to simplify the proof; it is probably not necessary and probably

also excludes only highly pathological functions.

Define
(" ¢ Ay ) d
T(x,0) =J§ [pv. | _E ' x 9.
xo00 = J ey e ‘J} (7h.12)
Y, oL
S(x,,9,)= 3 Pv [ _F(9)  Ax 1 dy (78.13)
) § { Xo \j’('j—"x) Z’V‘Lsx } j

Our proof involves proving two lemmas:

Lemma 1: T(Xys ¥4) = S(X;y ¥4/

Lemma 2: Lim S{x;, y,) and Lim S(x;, y,) are each uniform in the other
X4 > <0 Yy ¥ oo

variable.

The completion of the proof is trivial.



~1 47~

Lemma 1. We prove that we may interchange the order of integration

in the finite double integral

o 9,
T(%,4,) = f {Pwkf F(y) <dg} dx ,
! Xo ) y(g_,x)ﬂ/y@x

The proof is non-trivial bhecause the principal value integral is un-
defined for x = y4.

Let

Y,
R(x,9,) = PVv. | _F() dy | (78.14)
VoY (y-x)

and let us obtain an upper bound for R, For x >y, and x 7 2 we obtain

{(using assumption 1)
9,
VR (%, gl <

]
| 'x::J

Ay

(74.15)
. a o | x-Y,] + a bn x

Let A = A(x,;). TFor X < x £y, and x £ x, we use assumption 2: we

have
d+i
R(x,9)= R(x 9+i)~ § _FEQ dy | (74.16)
9. y(y-x)
and
IR(x, 9+1) ] <« IR(x,00)) + | J _Flo) dy|
St Gry-x)
< A+ alfl 1 dy
drt y(y %)
£ A+ X d(gr1) | (74.17)

Ko
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Y+
| { Floids| o alan(d-x)] + adalaerd | (74.18)
91 9(9—-)‘—\)

In summary, for xO:E X £ X, and given values of X 1 X and y, R(x, ¥,/

has a bound of the form

IR(x, 9 )| =B + x|l by —x1) (74.19)
where B is a constant independent of X,
Define
9,
F\)o(x) 91/6) = S__,i’_ﬁ,,_ﬁ f_(f) O‘“_j ('/A.20)
O ) ’
By assumption 3, \Ro(xacoje) ! has a bound A' for xo:é x ¢£x, if &
is small enough; and since
,_X:i*} < ! , (74.21)
Cx-a)* €* 1% )

the argument for R(x,y;) applies equally well for Ro(x,y,,é ) if €
is small enough.

We now show that T(x,,y;J) can be approximated by the double
integral of a regular function, for which the order of integration can
be interchanged. Divide the range of integration xofs X £ %, into two
parts: I is that part if any for which y, - €, £x €y, + €, while
IT is the rest; €, will be chosen later. Now for any &€ , and for any
éz small enough we can choose &, small enough so that

| f R(xu) A= | < <€ (74.22)
T B “
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— ]

L Re (%, 0, ,6,) dx | <« =
S L’

< P (74.23)

since the length of I can be taken as small as we please and since
and Ro are bounded by integrable functions of X. Furthermore by

assumption 3 we may now choose <, small enough so that

[ R(x,4,) dx_— § Ro(x,9,,€&;) dx | < & (7A,20L)
T Ln3x T L3 4

Thus for any « we can choose &, so that

]

e POl Ay ]dx | <c

x4
( Ly} ) xXo { ‘ <9_1)+€; (j“,bl’\;;x

(7A.25)

We have thus approximated T{x,,y,) by the double integral of a non-

R

singular function in which the order of integration can be interchanged.

The same result can be proved for 5{(x,,y,) and thus

S(xyY,) = Txg,v0) (74.26)
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Lemma 2. We prove that the limits Lim SCx,9:) and Lim S(x,, 9)

Ky > ‘d"_lob

are each uniform in the other variable.

We defined S(x;,y;/) to be

I, >y
S(x,,9,) = § E(y) PV f _t dxdy (74.27)
! h) X (‘j—x)ﬂy‘}x
Let
Ky
DCy, 3y, %) = PV _ el (74.28)

X (Y-x) L3> )

To prove the uniformity of the two limits it is sufficient to show

1.) Lim | 2 1Q(y,e0,x )l dg =0
Ky e i Y ’ ‘
O
2.) j = | Ry, X2, %) ) oéj ie small for large y,
)

independently of the value of x .
The proof involves estimates of §. First let us estimate

the principal value part. Let

X = X+ Pa {74.29)

)

where @, is the integral over any part of the interval x, £ x = %
which intersects the interval % £x ﬁ.z y and §, is the remainder.

For Q, we may use the mean value thecrem on

»

1
LB :

' - L 88 (g-%x) (74.30)
Lo A’y y L)

where | O(X)I< | for % <x < %g (we may assume y is large since for

1, ¥ needs to be of order x, to intersect the range of integration,
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and y, is large for 2). Now if the interval % £x ¢ %} lies completely

within the range of integration, only the second term contributes to

Q; and we obtain

L@ (Y, xay %) | < e < 1= (since y is large)

et (2 et S
e Y

If % < x = %? intersects one of the endpoints, say x, then we have to

include the effect of the first term:

iQ(C"-ﬁ)’X_Q_)’X,},< l/g/"\«“d”%l’l + a4 N BRE?
/&Vsz /@mﬂ‘j

(78.32)
< | L ly-x | -~ _*
L3 Y Miﬂ }
that is, this estimate applies for % Xy £y € 2% and a similar one

involving x, for % X, £y £2x%. Now consider 1 specifically. For

y £ 2x, we obtain for Q

<o
[ Qo (Yy00, x| < § 3 dx = 3 _ )

* ’ ’ ‘ X, o InFx 2 /é/n?%, ! (7A.33)
since in the actual range of integration of §,, v < % x and hence
ly - x 1% % x. For y >2x,

% co
| @2 (Y, 00,%,) | < _f S P j —>_ el (74.34)
3 3
x, Y fnx ?g x APx

using the same reasomning. Now since x, is large we have in the first

integral
¥ = K _ex (74.35)
P B L ¥ Ax P x

Hence for y > 2x, for Q; + & we have

L @ (y,00,%,)) < T 3 2 2 A
Q J / ,414.33 r 2 /&Lzy + e ‘Ij < /@ﬂ}é}j ' (7 56)
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Putting this information together

27Xy
a , A S 3 a« A
g Gl 9y =0 5 5 om, 7Y

'g_\g

2Ky

—f—f 2a o(gj 1~5 i{'”g’“ly"x')'"'"z’@njicq‘j
Ky 0y e 9

(7A.37)
Since [4mu = udna ~w it is evident that all these terms are
small (of order 2;;; ) when x, is large and 1 is proved. Now look
at 2. VWhen y > % 3 X, we see that

| Qa2 (9, %2, Xe) | < 5 2z dx o _4xa : (74.38)
Yo Y dudx 3/&1/\-3751.
For y < % Xp
% xa
o 2 d
| @, (9, %, xa) | < x{ 521% + %L "7?,2,2%61 ) (74.39)
and hence
12 ¥ 3 2
IR (9, %2, xe) | < Ly f‘,énsj ALV VAN (74.40)
Putting this together gives
<y
ja}q)(gx xs)) & <5 ga == Ay
9 1 E Max (9,,4,%) 97 An%xa
5% 2 X, }
’l‘f _2a O(fj -+ j Q___{}/ém,/ﬂ—/xlll*‘z’én:’} o(j’
Y, 9%19 2%, 9 Ly
(74.51)

where the second and third terms appear only if 2x%, > y,. It is now
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easy to see each of these terms has a maximum near x, = considered
2 1

as functions of % , and this maximum decreases as __'_ when y, is
Vi
M‘JI

large: thus 2 is proved.

To complete cur proof we need to show that

Limm Limm S{x,9,) = Lim Lim S(x9,) . (74, 42)
HRed Y Deo o T R A R
Let
S‘C’X() = Lien S(’)C() Ld|) 5 {7A.I+3)
9,300
S, (v) = Liem S(x,, 9] (74, k)
X, D e

Then from lemma 2 we may find an N for any € , such that if %, > N,

¥y > N then
| S(x,9,) — Six)| < % , (7A.45)
Ls(x,9) - Slo)l < &, (74.46)
and hence
[ S, (x) = S309) | <& . (78.47)

By Cauchy's theorem we now obtain

B (74.148)
QE.D.

The reader who finds this appendix long and difficult is

referred to reference {(26).
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APPENDIX
ITI
We show that
I = P. V. f \_ﬁ_ b dV (7A. 49)

x Ly YV
is positive for any large values of x and ¥, with

Vo, {7A.50)

Consider twyu ceases, V| < 2X and VvV, v 2% , In the first case we write

T= I+ T, (74.51)
where
2y -
T,= PV. § Ay (78.52)
< L3V ¥—
faba)
T, = [ Ay (74.53)
2~ OBy V-V
By the mean value theorem
. L4 6O0)  (v-v) (74.54)

VLY L2y v At (%)
where for X =y < 24-x , JOW)| <« | since 1% < X ., BSubsti-

tuting into the integral for I, we get

T <« e (av,-2x) . _.' (74.55)
‘ Y L (%2) h S LV, \

if x (and hence V, ) is large enough. Also

T, > I - S SO U T (78.56)
* 2v-x  LnPyv Vv 2 (2 -x) ¢ Laly, >
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and hence I = I; + I, is positive. If 14 % 2X we divide the integral

into three parts:

I =T + T, + Iz , (74.57)
where
Vir2
T = Ay
-1 )g FEEY, :'——1/’, ’ (7A.58)
3Y,/s
T, = PV 5 _ Ay A.
- i Ly ‘ (74.59)
I, = f Ay (74.60)
3)/1/1 ,jM,BV Y-V
Now
Yi/a2
T, ) < % R Ay i (74.61)
Vi x LBy
However
S S AL {250 (74.62)
Ln3y PAVERY LtV v L &y
(for large ¥ ) hence
T < 7 <« 1 (74.63)

2y NP2
when 1V, 1is large. The treatment of I, and I; corresponds exactly to
the treatment of I, and I, in the case v,<2x hence again

I =1y +1, + Iy is positive.
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POWER SERIES EXPANSION OF THE CHEW-MANDELSTAM EQUATIOHNS

In this chapter we examine the perturbation expansion of the
reciprocal of the scattering amplitude for pion-pion scattering, as
obtained from the equations of Chew and Mandelstam.

We use the notation of chapter VII. We recall that we

defined the states a as follows

Q
i
bl
4

i

0, s state

R
il
N
fq
i
feit
el
0
o+
Q3
+
®

and defined Qa(L’) by the relation

ezédk(v)

= 1+ a3l [ Ru(y) (8.1)

4
T

where o.. is the phase shift for the scattering of two pions in the

state o when each pion has momentum Y/ in the center of mass system.

We define
Lo<<Lﬂ = _
O (8.2)
and write
Lo (v) = 7:\" ;O X Leen () (8.3)
(for @ = 1 or 2)
and
La(y) = “’Alf = X' Lan () . (8.1)

2.
Since the power series for §; (V) starts with a A term instead of a
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term proportional to A , the series for L; (V) begins with a A7%
term.

The functions Lan have been calculated through n = 5, for
the 8 states, and through n = 4 for the p state. The calculations
were performed on the IBM 704 computer at the M,I.T. Computation
Center. The method of caleculation was similar to the method used for
the Low eguation in the one-meson approximation; see the appendix to
chapter VI.

Some results of the ealculation are shown in table V. The
presentation is the same as was used for the results of the calculations
for the Low equation (see chapter VI), except that each term is given

for A = ,1L; thus

L, (o) = ~1.42% (%S){‘ +-3nﬂ<j§).+,on+(fé)i% 8.5

Ly (os) = 13860 C'é%)li I-J$06<3ﬁ% - 120 (7%Qf”'“(f8'6)
The first three terms in the series for L, and 1, , and the

first two terms in the series for ILs should agree with a calculation
of the first three terms in perturbation theory for pion-pion scattering
using Feynman diagrams, since in perturbation theory the approximation
of neglecting higher partial waves and inelastic scattering affects
only fourth order and higher (since these are approximations in the
calculation of the imaginary part of the scattering emplitude). The
numbers we give are in satisfactory agreement with the calculations

(27)

of Baker and Zachariasen using Feynman diagrams.
From table V it appears that none of the series is genuinely

convergent for A = .14, but the series for L, and L, should still give
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POWER SERIES EXPANSION OF La(ll) for A = .1k

B. A,

VT O

B.A.

A o e O

B.A.

W N O
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Table V

V =0
“'lo ”{'28

1.000
.3519
014
OOO?
. 009
LOLlh

YV =,08
1860

1.000
-.506
-.120
-.176
~.310

V‘»:E.l}

1.000
-.2h2
. 048
. 026
. 031
. 050

V7-2015
-35.571

1.000
-+ 316
=-.027
-+ 025
-. 029
- 013

118

1.000
-.849
-.079
-.211
-e377

VY=6.71
-1.428

1.000
- 65k
.102
. 049
.065
.107

V 360 71
"30 571

1.000
-.639
~. 023
-. 041
-. 047

. 000

Y =6.71
66.2

1.000
~1.239

L Oltls
- .2h0
-~ o423
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a rough approximation at least for small V . The higher order terms
in the series for L are uncomfortably large but since the third term
in the series for Lj is moderately small there is a possibility that
the first two terms can be used to give a rough approximation to L.
To test this hypothesis I have chosen to approximate all three states

by the sum of the first two terms in their power series expansions:

we write
Lo = L Lae )+ Lay (¥) (x=1 or 2) | (8,7
Li(v) = L Lis(v) + L La(¥), (8.8)
IS N
and
I
SO oo -

These equations give us values of Re Qa(l/) and Im Qa(”’) for V2 o.
To test these values I have substituted the values for Im Qa(l/) into
the dispersion and crossing eguations (eguations 7.5, 7Teby Te74 7210,
and 7.11 of chapter VII), thus obtaining an alternate calculation of
Re Qa(l’); the test of the approximation is how well the two values
of Re Qa(i)) agree.

The results are shown in table VI. VWe define

2% (V) = Re : (8.10)

I N
and §a{v) = Re QQ(V) as calculated through the dispersion and crossing

equations. For this purpose equations 7.5, 7.6, 7.7, 7.10 and 7.11 of

chapter VII can be combined to give

[~

—

RO = Aa, + (Y203 PV f LT @a(”;)dl/i + % Uocp(“) (8.11)
M ° U+ 2/5d(vi-v) o=
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{(for ¢ = 1 or 2J), and

— *® 3
P3(v) = V PV 5 Tn @z (W) 4\/, + Z U3(@(V) , (8.12)
™ e Vl(V;’V) A=t

where the crossed terms Ua are given as follows:

B

Eis

Uog (v) = mgj{;‘_&&(w;%) - iIm Qa(v) Av (8.13)

¥+ %3

Y,
(8.14)
X {(1%:2+1)Ln(.+;;‘) ~ 1] T @5 () ey
for a = 1 or 2,
Uap (V) = Az ! i
(8.15)
2H+2 - 28
x {(l+-,;;w)i%x(rfq%;> l} L G%(%)ciw
for 8 = 1 or 2, and
L3 (V) = Az i f%L;%
x {<z+ e . alur)(uea)) da (1 K (8.16)

w(/4*# zwb%%) }ZIN7Q3C%>C£%

In table VI, for various Vv and a we show Pail/) and 5;(1/)
and then the various terms which sum to give ;;CL’), namely’the Born
approximation Nd, , the uncrossed integral (principal value integral)
and the three crossed integrals Ua (v).

p

In table VII, for various wvalues of » and o we show the
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Table VI

COMPARISON CF Pa(V) with '§a(v) AND THE VARIOUS PARTS OF 'ﬁaiv )

Principle Crossed Integrals
- value
a=1 v Pa(v) Pa“”) B.A. Integral B=l B=2 B=3%
0 -.5309 -.5281 ~.7000 .2175 -, 0296 ~.0592 .0O432
1.00 ~,573 -.594 -. 700 .203 - 063 - 132 . 008
1.96 -.58% -,652 -.700 .180 -.088 -,188  ,1h4i
4,00 =.554 ~,792 -,700 .101 -.128 -.288 ,223
5.96 -.488 -, 926 ~-. 700 . 008 - 155 -+ 359 .280
Principle Crossed Integrals
- value
a =2 V Pa(V) Pa(\v) B.A. Integral B=1 B=2 B=3
0 - 2664 -,2677 -.2800 . 0694 -.0296 -,0059 -~,0216
1.00 -.319 -, 312 -.280 .093% - 063 -.013 -. 049
1.96 -.361 -+ 340 -.280 119 -. 088 -, 019 -, 072
4,00 -.437 ~o 377 -.280 172 -.128 -.029 ~-.112
5.96 -.488 - 401 -.280 .210 -.155 -. 036 - 140
Principle Crossed Integrals
_ value
a=3 V Pa(V) Pa(V) B.A. Integral PB=1 p=2 B=3

¢ LO1348+ ,01358+% * . 00951 ,01315%
1.00 .0163 . 0172 0133 . 0103

0 .01359* . O0L51*
0
1.96 .08 0497 0 .0L419 . 0170
0
0
0

. 0115 . 0050
.0196 . 010k

3.4596 565 <572 .558 . 024 . 030 .0l9
3.61 =451 - L45 -. 460 . 025 . 030 .020
5.96 -.080 ~,065 -. 089 . 032 -.0L1 . 033

* For V=0 the p wave terms are divided by ¥ to make them non-zero.



~-162-
Table VII

COMPARISON OF Ean) - ?a(v ), CROSSED INTEGRAL PART OF ﬁa(v) AND 'THE

p WAVE CONTRIBUTION TO ga(l/). THE COLUMNS ARE LABELLED AS FOQLLOWS

D for P (v) - P (V)
o a
C for Crossed Integral

P for p wave part of Crossed Inlegral

a = 1 1% D C P
O u003 ~e 014‘6 ;OQ‘B
1.00 -, 021 - 097 . 098
1.96 -. 067 -.132 <14k
l+o OO ~e 238 e 193 . 22,—5
5.96 "01“*38 "023!’{’ 1280
a =2 P D c P
0 -.0C1 - 057 -. 022
1.00 . 007 - 125 -. 049
1.96 . 021 -.178 -.072
4,00 . 060 - 269 -.112
5. 96 c087 "‘0331 "‘nllg“o
a = 3 )% D C P
0 . 0001 * .00k * . 0045
1.00 . 0009 . 0038 . 0050
1.96 . 0029 . 0078 L0104
3. 4596 . 007 LO14L .019
3.61 . 006 015 . 020
5.96 .015 .024 .033

* The p wave results for 1’zo have been divided by 2/ to make them

non~zZero.
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difference 5&(»’) - Pﬂ(lf), the sum of the crossed integrals Aéi Ung (»)
for 5#(1/) and the p wave contribution Uaa to the crossed integral,
These results were obtained for A = .14, ‘I'his value of A
was chosen so that there would be a low energy p-wave resonance as
(28)

proposed by Fraser and Fulce , in our approximation. This resonance

is very narrow as can be seen from the formula

cot FHvy = T(v- ss6) (8.17)

which is valid in the neighborhood of the resonance in the approximation
of keeping only the first two terms in the expansion of L,(l/).

Since it is the crossed terms in the dispersion equation
which make the solution of the Chew-Mandelstam equations mon-trivial,
it seemed most reasonable to compare the difference ﬁa(l/) - Pa(lf)
with the crossed term in the formula for ?;(1/); the results are shown
in table VII.* Considering that the crossed terms are themselves
small the agreement of the o = 2 and a = 3 states seems reasonable,
but the agreement of the a = 1 state is poor, and thus the solution is
unacceptable.

Because of the difficulty that the Chew-Mandelstam equations
have no solution when N is positive, there seems to be no way to make
the power series approximation the basis of a numerical solution (i.e.
the input of an iteration scheme).

What we have reported is not a complete investigation of the
problem; further work includes testing the power series approximation

for negative A , when the equations of Mandelstam and Chew can have a

* T am indebted to Drs. Chew and Mandelstam for this suggestion.
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solution. Also a search must be made for an approximate set of
equations which do not neglect higher partial waves in the crossing
condition, and see whether the difficulties for positive values of
persist when higher partial waves are included. If such an approxima-
tion is found, it is unlikely to change appreciably the perturbation
expansion of La(X ) since we noted that the p-wave contribution to

the crossed term in low orders of perturbation theory was small. Thus
it might be found that our power series approximation to La(l/) satis-
fied such an approximation. In table VII we list the p-wave contribu-
tion to .ﬁa(V), and observe that it is large, and greatly improves the
agreement of §a(1)) to Pa(w)) for small ¥ ; thus it may be that the
effect of higher partial waves are also important when testing the sum
of the power series.

(2h) have obtained numerical solutions of

Chew and Mandelstam
their equations which have no p-wave resonance and thus disagree
gqualitatively with the power series prediction for positive A ; for
negative values of A there is rough agreement between Chew and
Mandelstam's results and the power series, but it must still be deter-

mined whether the power series gives a solution for negative A and

if so whether it is the solution of Chew and Mandelstam.
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