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CHAPTER V

ACCURACY OF TRANSIENT SOLUTIONS USING AN

ASYMMETRIC NETWORK OF NODES

(A) INTRODUC TION

As mentioned in the introductory Chapter I, and as pointed out
by MacNeal (8), locating the temperature points on the corners of
rectangles or other regular polygons such as equilateral triangles,
either of which defines a regular grid, is not a satisfactory arrange-
ment for a solid with a curved or irregular boundary. For this type
of solid a regular arrangement of nodes usually requires an extremely
find grid with a very large number of points to follow the curved
boundary closely. A moderate-size regular mesh that does not
follow the boundary has been suggested by others (32, 10), by
assuming that the nodes closest to the boundary surface actually fall
on the boundary. For problems where the temperature on the boundary
surface is specified (infinite heat-transfer coefficient) a somewhat
better approximation is to interpolate linearly for this temperature
(32). However, when the boundary equations have a finite non-zero
heat-transfer coefficient, many techniques are available (6, 10, 17,
32), although none of them appears to be completely satisfactory (8),

or to be widely used.



MacNeal suggested that by not restricting the location of the
points to the corners of regular polygons, but by locating the points
within and on the solid boundary conforming to a much less restrictive
set of rules, an irregular boundary could be followed exactly, with
a fairly coarse network. The equations for each node can then be
found by an energy balance, and in general the equation for each node
is different. These points are discussed in more detail in Chapter II,
section C. A boundary condition involving a heat-transfer coefficient
is easily included in the energy balance for a surface node by adding

a term representing the energy in from the fluid of the form

(’cf -t. )h A, = Heat into surface node from fluid (v-1)
i,n )

o
1 .
at time n '

where i is allowed to take on values of the nodes on the boundary

. .th
surface; tf is the average fluid temperature opposite the i surface
i

node ; and A_ is the surface area through which the energy flows.

f,

i
For the two-dimensional problem this area is the length of surface

(assuming unit thickness) terminated by the perpendicular bisectors
.th . ; ;
of the i node (see Figure V-1). The dimensionless conductance

th . .
between the ith surface node and the i fluid node is

= (v-2)
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The volume for heat capacity associated with the surface node for the
two-dimensional case is bounded by the perpendicular bisectors of

the ith node and the boundary of the solid. Therefore, an approximate
solution for an irregular solid, using a well designed fairly coarse
network of points, based on MacNeal's rules for locating the points
and calculating the conductances and capacitances of the nodes, would
be expected to be more accurate than a regular mesh using the same
number of points but not following the boundary exactly.

However, further study of the equations for the space truncation
error associated with asymmetric nodes, as given in MacNeal, indicates
that an approximate solution to the diffusion equation based upon an
asymmetric network of nodes does not necessarily follow Richtmyer's
(3) definition of consistency (see Chapter III, section A). This is true
because Richtmyer has shown that, for an approximation to be con-
sistent, the truncation error must go to zero as the network is refined;
however, as shown by MacNeal's equations (but not pointed out or dis-
cussed), the series expansion for the contribution to this truncation
error of a general asymmetric node shows that terms occur in this
difference that do not go to zero as the neighboring nodes are moved
closer. This also can be shown to be caused by the asymmetry in
the node location. Since, according to the Richtmyer theory, the
approximation must be both consistent and stable to be convergent

to the continuous solution as the mesh is refined, the accuracy of an
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approximate solution found using asymmetric nodes is in doubt.
Consequently, the question is for what types of problems is it
appropriate to use an asymmetric network, or to include asymmetric
nodes in regular networks, and how should these nodes be located.

It should be pointed out that one of the distinguishing features
of an asymmetric network of points is that the equation for each of
the nodes is in general different from those of the other nodes because
the thermal capacities of each of the points are different and because
the thermal conductances between points within and on the boundary
of the solid (excluding conductances to fluid temperature points) are
not the same. Further, these capacities and conductances cannot be
predicted by a recurrence relationship. However, for almost every
network used in practice nodes with different heat capacities and/or
different conductances occur, and these nodes can be considered in
this sense asymmetric or irregular. Several examples are: (1) For
the simple one-dimensional diffusion problem in Cartesian coordin-
ates in a solid with uniform thermal properties, only for methods
based on mesh AE /2 are all the conductances (excluding those to fluid
temperatures) and capacities equal; for method G bésed on mesh AE
the two surface nodes at the boundaries have heat capacities that are
different from the interior nodes, and further the heat capacities of
these nodes cannot be found from a simple recurrence relationship.

Hence, in the sense of heat capacities, method G is based on a regular
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network with two irregular nodes at the surface. (2) For a one-
dimensional problem in radial coordinates, for either spherical or
cylindrical coordinates, approximated with a network of points spaced
Ap apart, the capacities and conductances are different for each node
and, therefore, each node has a different equation, which is also the
case of a general asymmetric network. However, for the regular
radial network the capacities and conductances (and thus each equation)
can be found from a recurrence relationship. (3) For an approximation
based on a regular rectangular mesh spacing in a two-dimensional
uniform solid with a curved boundary at a known temperature, the
technique of linear interpolation mentioned previously can be shown

to be equivalent to assuming that the points which have conductances

to the surface nodes are asymmetric nodes and follow MacNeal's
rules. These nodes then contribute to the truncation error quantities
of the order of A and AT ; while the other nodes contribute a trunca-
tion of the order of (Ag)& and (AT])Z.

Thus, these examples show that the use of networks which
contain irregular nodes, or for which the equations for each node are
different, are common. KEach of the irregular nodes in the above
three examples can be shown to be consistent, however.

In order to étudy the accuracy of a general asymmetric net-
work or the effect on accuracy of several irregular nodes in a regular

network the classical method is used to study the truncation error and
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propagation throughout the calculation. This is based on a method
devised by Von Neumann and reported in most works on numerical
solution of partial differgntial equations (2, 3, 4, 10, 17, 18, 21).
The following study first defines the truncation error and then shows
how this error affects the difference between the continuous and
approximate solution. A detailed discussion of the space and time
discretization errors is made. This includes a practical discussion
of the meaning of consistency and indicates a possible method of
making asymmetric nodes consistent. From these discussions some
general rules can be formulated about when asymmetric nodes can be
used and how they should be located. Some conclusions can also be
made about the selection of the time differencing parameters. This
investigation uses both analytic and numerical results. Since these
are closely related, they are usually discussed together. The
emphasis is primarily on the two-dimensional (space) problem, but
many of the relationships also apply to one-dimensional problems, and
some one-dimensional references are made. Unfortunately, the
analytic and numerical studies of the truncation error and its propa-
gation do not usually give as precise information about accuracy as
does the comparison of the analytic expressions for the continuous.
and.approximate solutions. However, it is hoped that eventually the
results from the two types of error analysis may be related so that

by examining the truncation error precise statements can be made
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about the errors in eigenvectors, damping factors and initial vector.
Consequently, a precise analysis, such as was made for a regular
network for the one-dimensional problem, can be made from a
knowledge of only the truncation errors.

In the following discussion the various shapes are associated
with both networks and nodes, for example, a triangular network or
hexagonal nodes. The shape associated with a network is the polygon
formed by the branch lengths iij when the points are interconnected.
The shape associated with a node is the polygon formed by the per-
pendicular bisectors rij of the branch lengths and is the shape of the

area used to calculate the heat capacity.
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(B) DEFINITION OF DISCRETIZATION ERROR

A useful definition of the discretization or truncation error
that is equivalent to the usual definition of this error can be developed
by considering equation II-39 which defines the stepping out of the
calculation. This vector equation, rearranged, is:

Y

Y B
) - +1- R +(1- -
t ot s w vt oty T Dy #ev)ty  1=0

(V-3)

If the continuous temperature vector T is substituted for the
n

approximate solution vector tn, the right side of the equation is no

longer equal to zero:

Y

Y ~ B
+(1- Te—[wvT
( 'Y)Tn N Ly

1
—_ - - +(1-~ =
AT(TnH Tn) A [ Tn+1 B,nt+l ( Y)TB,n] dn

(V-4)

This equation V-4 defines the discretization error vector dn; the

elements of this vector d, constitute the discretization error associ-
i,n

th
ated with the i node. These components are

T
1
= 22— - +1-y )T, -T
di,n AT A y:'Lj[Y(Tj,nﬂ Ti,n+l)( v ) jsn i.,n)]

1

1

T~m

(v-5)
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As this definition of the discretization error vector is based on either
the vector equation, or, equivalently, the component equation, it
defines the discretization error for both the interior nodes and nodes
which have conductances containing a heat-transfer coefficient to
fluid temperature points outside the boundaries.

The reason for using this definition for the discretization error
rather than the usual definition is that the effect of this discretization
error vector upon the error in the approximate solution is easily
derived. Further, for the interior points with no conductances to a
fluid temperature the discretization error component di,n is equivalent
to the usual definition. This can be easily seen by writing the diffusion

th th . . .
equation for the i node at the n~ and (n+1l) time increments in the

following form,

aTi n 1
3 - 1 1 = -
dT K (C o). v ki v Ti,n 0 (v-6)
0" p i
9T .
i,n+l 1 , \
- =0 V-7
3T KO(CPG )i Vikv Ti’ n+1 ( )

and then subtracting an appropriate linear combination of these equa-
tions from equation V-5. The discretization error for the points with
conductances across an interface to a fluid cannot be found by sub-
tracting the diffusion equation, as those equations are actually approx-

imations to both the diffusion equation and the boundary equations.
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Since other works have not usually defined, discussed, or used the
discretization error for nodes with conductances involving a heat-
transfer coefficient, the above definition is not in conflict. In section
D of this chapter the discretization error for both the interior points

and points adjacent to fluid temperatures is discussed in more detail.
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(C) PROPAGATION OF DISCRETIZA TION ERROR

A difference equation for the error in the approximate solution
can be derived from the above definition of the discretization error.
The solution of this equation indicates how the discretization error
affects the error in the approximate solution. The knowledge of how
the discretization error affects the accuracy of the approximate solu-
tion should then allow a better practical under standing of section D,
on how the selection of the differencing parameters affects the size
of the discretization error.

In order to make the following derivation as general as pos-
sible equation V-3 is rewritten to include the effect of round-off error.
This can be done by noting that if the approximate solution vectors
tn+1 and tn, as found by stepping out the solution, are substituted in
equation V -3 the sum of vector-matrix products is not the zero vector,
but is a vector e made up of small components ei, causcd by using
only a finite number of decimals in the stepping calculation. This
equation is, in practice, then

1 Y YB
— - - = - J —— +{1-v )t = -8
AT(tn+1 1:n) A [Ytn+1+(l Y)tn‘ A [YtB,n+l ( Y) B,n] en (v )

Now subtracting equation V-8 from equation V-4 and substituting v
for the difference between solution vectors (Tn-tn), the difference

equation for the error in the approximate solution is
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Y Y YR
[I-yAT K]vn+l: [I+(1-y)ar K]Vn tAT o= L(VB’n+l)"( +(1-Y)(VB)n]

+ AT (dn + en) (v-9)

or solving for v +1:
n

-1 Y
_ Y Y B
v T [I—'Y AT A] [(I+ {I'V}AT A)Vn-‘_AT _A-(Y VB,n+l+{1-Y}VB,n )

+ AT(dn+ enﬂ (V-10)

where v =T -t

B,n B.,n B,n

The quantity AT(YB/A)(\{ VB ntl + {I_Y}VB,r)l is usually zero, as the
approximate boundary temperature vector is almost always taken
equal to the continuous temperature vector, TB . However, if an
,
element of ty is not equal to the corresponding element in T
»n > 11
the effect, as seen from equation V-10; is the same as changing

the corresponding element in the discretization error vector.

Assuming that no error is made in the boundary vector we have

Y ]-1 1 4 + d 1 1
v = [loyar 21 [ {lv}an 2)v +an(@ +e)1  (V-11)

The similarity between this difference equation and the difference
equation IT-39 that defines the calculation procedure should be noted.
The major difference is that the forcing function vector

AT (YB JA)] [y tg +{1-y )tB , n'_l which has non-zero elements only

, ntl
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for nodes with conductances to the fluid temperature is now replaced
with the vecfcor A'r(dn + en) which, in general, has all non-zero
elements. Thus, equation V-11 can be considered to be a difference
approximation to the partial differential equation of diffusion with a

source term:

OV _ ______i___ . |
pl Kocp" V'kv'V +D(E,N,T) (V-12)

where D(E ,T,7) = known distributed source term expressed in degrees
per dimensionless time corresponding to elements
in{(d + e
(a_+c)
V(E,T,T) =continuous temperature function corresponding to
elements in v .
n
This shows that the effect of the discretization and round-off error
is that it acts equivalently to an energy source (or sink) distributed
throughout the solid.
The solution of the difference equation V-11 for the error,

as found by classical means, is:

n -1
n_ -1 T n-p,. -1 Y )
= - = + V-13
v =CQC vt Z CQ™PCT Iy AT 2) (4 te AT ( )
p=1
where vy F TO - tO

and where the C and Q matrices are the eigenvector and eigenvalue

matrices as defined in equations I1-43, 11-46, and II-47.
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The solution for the error v can also be expressed in tcrms of the
-1

calculation matrix [I-yAT(Y/A)] [I+(l-y)AT(Y/A)] by using the

eigenvector-eigenvalue matrix identity:

p-n n-p

P [I4H{1-y)At 3 ] (V-14)

cQ*Pct- [I-vAT % ]

The solution equation V-13 has been checked in equation V-11 using
the identity in equation V-14, and it is analogous to the solution for a
system of ordinary differential equations with constant coefficients
as given in Bellman (33), p. 169.

From the above equation, one sees that round-off error is not
the cause of instability, bﬁt can only aggravate the basic instability
caused by the eigenvalues q_j of the calculation matrix. At this point,
for simplicity, the round-off error is assumed to be much smaller
than the discretization error and it is neglected in the remainder of

the discussion:

le, | <<1lq \ i=1, ..., 8 (V-15)

i,n

For a thorough quantitative discussion of the effect of round-off error
the references can be consulted (3, 10, 17). The main conclusion
is, as given in Richtmyer (3), p. 25, that if the rounding is unbiased
and.if the quantities are kept in scale, round-off errors accumulate

roughly in proportion to the square root of the number of increments n.
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In most approximate solutions the stepping-out calculation is
started with the continupus temperature vector and v_ is zero. In this
case the error in the approximate solution can be written as a weighted
cumulative sum:

-1

n-p -1 Y
C - -
1 Q C [I-yAT =] dp_lAT

<
jn}
i
Ci~Is

-1
n-l -1 Y n-2 -1 Y
CQ C [I-yArT A 1 dypt +CQ C (I—'\/ATK)dlAT'l‘ .

n

n-p -1 Y -1 n-p=l -1 Y -1
+CQ C [I—yA'rK] dp_lm +CQ C (I—yATK) dpAT-l-. ..
-1 v~} v, !
+C QC (I-yAr ‘A) dn_ZAT +(I-yAT K) dn_lAT (V-16)

where dp is the discretization error in stepping from increment p to

ptl.

As only stable solutions are considered here, equation V-16 shows
that at time n only the discretization errors that occur for several
time increments immediately previous to the nth increment are
significant.

The above solution equation is a rigorous solution based on no
estimates or series expansions. Unfortunately, unless the discret-
ization error dn is known as a function of time, the summation cannot
be expressed in a simpler form; even if it were known as a function
of time, in all probability it would be too complicated a function to

obtain a simple expression for the summation. Thus the solution is
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of limited usefulness. However, an averaged discretization error
vector d can be defined such that the error vector v_ is given by the
1n ’ n

following equation.

n -1 n -1
n-p -1 Y _ 1 n-p_ -1l Y -
= - — = C - —
v_ E cQ” P 1y ar ) d, b [Z Q" e ](I YATZ) Ard
p=1 p=1
(v-17)

where c—ln is a vector constant with time that gives the same error

jelk
N - -1

at time n, and where the summation[ Z CQn P C —_I] now is a matrix.
p=l -

This vector contains time-averaged components di . By using the
3
matrix identity in equation V-14, the matrix equations in Fadeeva (16},

p. 62, for matrix series, together with other matrix manipulations,

the product of the summation matrix and the other matrix is exactly:

n
Z o -1 Y -1 -1 -1
D cao”Pc ][I-MTK:\ ATz-[I-CQnC ]Y A
p=l

(V-18)
The solution becomes
- -] -
v =-[I—CQHCI]Y Ad
n n
-n n
r Y Y -1 -
= - - - -— - -1
(1 -y b7 3) (+ {1y} a7 ) v " ad (V-19)

If the boundary forcing functions are such that a true steady state

exists, the steady-state error is given by

-1 .
= - -20
Vgg Y A dSS (v )
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where dSS is given by

Y TSS +YB TB =A dss (v-21)

In this case the steady-state discretization error vector dSS is
only a function of the number and location of the points, i.e., the Y
and YB matrices, and obviously it cannot be a function of the time
differencing parameters AT and v.

A study of equation V-19 and its special steady-state case,
equation V-20, leads to several important practical conclusions about
the effect of the discretization error on the accuracy of the solution or
smallness of the elements in v » even without a specific knowledge of
the averaged discretization error vector an. However, in order to
relate the information in the next section about the actual discretization
error dn to the following discussion, several general properties of
the averaged vector an should be mentioned. The averaged discret-
ization error vector should for most problems be approximately equal
to the discretization error for the several increments just previous to
n and the nth increment. This can be seen from writing out the sum-
mations in equation V-17, which defines the average én and by
remembering the damping or decaying nature of the Qn matrix for
stable solutions. Moreover, the elements of the actual discretization

error vector d involve the second- and higher-order derivatives
n .

of the continuous temperature solution with space variables, and since
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this temperature function is a smooth function for most problems,
for a short period of time spanning only a few time increments, the
discretization error vectors should not change much. Consequently,
the averaged discretization error vector &n can be considered to be
about the same as the discretization error vectors that occur just
previous to and during the niCh increment, and comments made about
this discretization error vector dn in the next section should apply
equally to the averaged vector an. The averaged vector an is a
function of time or of n. Further, in general, the elements of an or
dn are not the same size; however, in the following study the assump-
tion is made that the elements in an are the same size. Conclusions
derived on the basis of this assumption can be easily modified.

The matrix [I-CQnC—l:l which multiplies the vector (Y &lA chn)
to give v in equation V-19 can be taken as the identity matrix in
this analysis. This is permitted because (1) it becomes essentially
the identity matrix for sufficiently large n, because of the decaying
nature of (CQnC_l); and (2) only a very rough estimate of the relative
elements in v is to be made. Thus, for values of n, where
[ I-C QnC—lj is only very approximately the identity matrix, it can
still be assumed to be the identity matrix, as we are usually interested
in estimating the position of the decimal point and possibly the first

digit for the elements in v For all but very short times it should be

possible to obtain this rough estimate by assuming that
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v ~-Y "Ad (v-22)

Note that vnis still a function of time as an changes with time. To
quantitatively analyze the accuracy for very short times when
[I—CQnC_l] differs considerably from the identity matrix, the effect
of this matrix operator would have to be found by numerical calculation.
Some insight into the relative size of the elements of [I—CQnC_l] can
be gained by noting that it appears in the approximate transient temper-

ature solution for a solid with a zero initial condition.

t = [I-Can'l]t (v-23)

P,n

Thus the conclusions about the manner in which the number and
location of points affects the vector (Y_lA c-ln) can be applied to the
error vector v for most problems and for all but small values of n.
The first and most obvious of these conclusions is that the
vector A E-ln is formed by the diagonal thermal capacity matrix A and

dn as components of Ai d, o that is, the time-averaged discretization
.th . . .
error for the i  node is weighted by the thermal capacity of that node.
Thus, for a fixed network of nodes, the discretization error of the
relatively large nodes is magnified and that for the relatively small
nodes has a smaller effect.
However, the above conclusion should not be interpreted to

mean that merely by reducing the area of a few or all of the nodes can

the approximate solution be made arbitrarily accurate; i.e., the
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elements of the error vector v do not necessarily go to zero as the
area goes to zero. This is because, to reduce the area of the.nodes,
the number of nodes S, which is the dimension of the square Y-1 and
A matrices, must be increased proportionately; consequently, the
elements in the vector ( Y A an ) are now summations over more
elements and the elements in this Y_1 matrix remain about the same
size. This argument can be put on a more firm basis by considering
the norm of the Y_lA matrix for one- and two-dimensional problems
based on regular rectangular meshes. For these networks the heat

capacities of the nodes are equal and assuming all elements of the

- -1 -
time-averaged dn vector are the same, an element of (Y A dn) is

S
(¥ 'a a), =(a,d ) Z (V-24)

h - -
it element of the vector (Y lA. dn)

. -1 -
where (Y "A d ),
n'i

i

. .th .th -1
v . the element ini~ row, j «column, of ¥ matrix.
i
For both the one-and two-dimensional networks above the elements

-1
v ., in the inverse conductance matrix Y are shown to be negative

1]

using results in the references (6,29), i.e., Y ~ is a non-positive

matrix. Consequently, uij <= 0 forall i and j, and

S S
}: by =t Z N (V-25)
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and the row norm defined in equation III-10, which is the maximum of
. the absolute values of the row sums, is a direct measure of the sum-
.. . -1
mation in equation V-24, and the product of the norm of Y ~ and A, is
i

a measure of the coefficient of d

n,1i

(x7ad) sa y L (v-26)

For the one-dimensional problem with both boundaries specified
(problem IV, Table IV-9), approximated with method G, the inverse of
the conductance matrix Y is known (29) and the norm-heat capacity

product can be shown to be:

(Ag)l\Y'l\l = S-odd (Vv-27)

A e %

Ai l‘Y-l“ ‘é‘ r1- (Ag)zj S-even (v-28)

where S is the number of points for which the temperature is to be

1

approximated as a function of time and where A§ = STl

. (Note that
this S is not the same as would usually be used for method G in Chapter
IV, but is S'~1 where S' is equivalent to S, as used in Chapter IV.)

In Figure V-2 the product HY—IHAi and the number of variable
temperature points are related to the area Ai based on equations V -27
and V-48 3 The extrapolation of AiHY—IH to an infinite number of
points or zero nodal area Ai for a uniform unit square solid gives a

finite, non-zero result of 1/8. The two-dimensional problem with a

known boundary temperature has been studied numerically by calculating
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the inverse conductance matrix Y“l as the mesh is refined. In this
calculation the network is made up of regular rectangles with constant
spacing AT and AE with points located on the boundary surface. The
area of each variable node is then

1
1 2

where AE =l/(Sl+l)
and AT = l/(52+l) and S1 and SZ are the number of variable points in
the £ and T directions, respectively, and the conductance between

nodes connected in the T direction is

g
us

= -30
Vi (V-30)

g
=

and in the £ direction is

g
=

Y55 = (v-31)

=g
U

The first mesh used contained nine variable points (S=9) with AE

and AT equal to one-fourth (S1 and SZ equal to 3). The network was
refined by first adding a row of points and then a column of points 50

that the second calculation was based on an S of 12 with an SZ of 4 and

an S. of 3, and the third on an S of 16 with both Sl and S

1 equal to 4.

2

The last network studied contained 64 points, 8 in each row and 8 in
-1

each column of the network. The numerical results for Ail{Y | are

related to the area Ai and to the number of variable points S in Figure

V-3. These results are somewhat like those for the one~dimensional



problem in that for selection of S resulting in a perfect square (AE
and AN equal) two different lines can be drawn for S odd and S even.
These lines are approximately linear and can be extrapolated to a
constant value, at zero Ai or infinite S, of about 0.074. The
products Ai“ Y_1H for meshes with unequal AE and AT lie within
the two lines.

From these two studies of the approximations to one- and two-
dimensional problems for regular networks, we conclude that the
components of the averaged discretization error must be arbitrarily
small for the components of the error vector A to be made arbitrarily
small for a stable solution. This is true because, as the regular
network is refined, the coefficients, as measured by Ai” Y_llg , of
the time-~averaged discretization error vector an do not go to zero as
the nodal area Ai is reduced to zero. The above conclusion can also
be seen to be equivalent to Richtmyer's consistency requirement, as,
in order to obtain an arbitrarily accurate approximate solution, the
solution must be both stable, |gq! < 1, and the norm 'i\‘anH of the dis~
cretization error vector must go to zero as the mesh is refined to
make the norm anH of the error vector go to zero.

The above conclusion has been shown here only for regular
networks, where the inverse conductance matrix Y_l has been shown
to be a non-positive matrix, for certain methods of refining the network,

and for a problem with a specified boundary temperature. However,
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since that conclusion is equivalent to the stability -consistency results
of Richtmyer, a like conclusion can probably also be made for the
asymmetric network. This conclusion is that the norm of the inverse
conductance-capacitance matrix, ||Y -lAH, does not go to zero as all
nodal areas go to zero. There is no reason to assume that for the
irregular location any difference in behavior should occur; indeed the
inverse conductance matrices Y_l for four asymmetric networks
shown in Tables V-1, V-2, V-3, and V-4 show that this matrix is a
non-positive matrix, as the inverse conductance matrices must be
for all problems with regular rectangular networks. Although no proof
has been attempted that the inverse conductance matrix Yn1 for an
asymmetric network is a non-positive matrix, the Y matrix has
properties like those used in the proof for the matrices for rectangular
networks (6).

Of more interest is how an asymmetric network is refined.
Although this topic is discussed in more detail in the next section,
one might consider adding more nodes in a certain vicinity of an
asymmetric network leaving the rest of the network unchanged. These
points would be located according to MacNeal's rules. The effect on
the accuracy of the approximate solution for the nodes in the unchanged
network probably would be insignificant unless the discretization error
was also reduced. This is true, even though the area of some of,the

nodes is reduced, because there are now more nodes and each of the
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new nodes probably has a weighting in the inverse conductance matrix
-1

Y  of about the same magnitude as the large nodes had before. Thus
the sum of the weighting of the discretization error for this vicinity
is not reduced. The error in the approximate solution for the new
smaller nodes also probably is not improved unless the components
of d are smaller.

n

X . -1
The elements of the inverse conductance matrix Y = are the
weightings for the discretization error-area products. That is, the
. .th .th -1 ..

element in the i row and j column, vij’ of the Y matrix is the
weighting given to the Ajajn product in the equation for the error for

.th -1 . .
the i node v, . Because of the symmetry of the Y ~ matrix this

i,n

coefficient Uij is also v ji and is the weighting of the product A'idi, n
in the equation for the error of the jth node. Consequently, con-
clusions made about the effect of the A"jajn on the ith node also apply
to the effect of the Aiai’n on the jth node. These effects have been
studied by numerically calculating the inverse conductance matrices,
and correlating the size of the elements with the position of the nodes
in the networks.

The inverse conductance matrix Y—1 is shown on Tables V-1,
V-2, V-3, and V-4, for four asymmetric networks together with the
Y matrix and a sketch of the network of points. Also shown are the

matrices for two regular rectangular networks for 9 points. For the

asymmetric networks the 9 x 9 matrix is for the numerical example
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used in Chapter III and has a specified temperature along the horizontal
boundary. The 8 x 8 matrices are for the same geometry but the
hypotenuse boundary now also has a specified temperature. The shapes
I and II are from solid-propellant curing problem used in the original
Longwell (9) reference. The regular rectangular networks are for a
square and a rectangular problem with specified boundary conditions.

A study of the inverse conductance matrix Y_l, the conductance
matrix Y, and the sketch allows the following conclusions to be made
about the effect on the ith error v. of the components of the dis-

i,n

cretization error heat capacity vector (Aiai n) based on equation V-242,

3

for both regular and asymmetric networks.

(1) The diagonal element V.. of the inverse conductance matrix

th

has a larger absolute value.than the off-diagonal elements in the i

row or i column. Consequently the product (Ai d, n) or the area-

1,

weighted discretization error associated with the ith node is weighted

. .th i
more in the error for the i node, Voo than any other area-weighted
discretization error product. This property has been demonstrated
to hold for rectangular networks, and inverse conductance matrices
obtained for the asymmetric network indicate that it holds there also.

(2) The area products (A, d, ) for those nodes which have
] J.n '
.th . .
conductances to the i node (non-zero elements in Y matrix, vy, # O)
1]

are usually weighted the next in the equation for the error at node i.
The weighting is larger for those with the larger conductances to the

ith node.
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(3) The weighting for nodes that can be considered to have a
high equivalent thermal resistance between them (usually nodes distant
from each other) are small and the discretization error products for
these nodes influence the error at i negligibly.

The conclusions about the relative effect of the area-weighted
discretization error vector have been checked numerically using the
asymmetric network shown in Figure III-1 to solve for the steady-state
condition where the horizontal surface is at unity, the vertical boundary
is adiabatic, and the hypotenuse is at a temperature of % . For the
steady-state problem equation V-22 gives the error exactly and is not
an approximation. This is equivalent to a steady-state problem for
thc unit square with its horizontal boundaries at one and its vertical
boundaries at zero. The continuous solution as derived by suitable
coordinate transformations and combinations from a solution in

Carslaw and Jaeger (1) is:

4 Ozo [ sin(2j+1)m (£+0.5)] [cosh(2j+1)nn ]

T..(E,N) == = (V-32)
SS m L . 2j+1 | .
§=0 (2j+1) [cosh( 5 )yl
The approximate solution was computed from
-1
t..=-Y 'Y_t (V-33)

55 bbb

where the ¥ matrix is modified from that used in the transient problem
in Chapter III, by assuming anti-symmetry of the nodes about the

hypotenuse. This is equivalent to taking nodes on the hypotenuse with
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a temperature of one half or to assuming that the temperature difference
between the temperature of anti-symmetric nodes opposite 1, 3, 5, 7,
and 8, ana % is equal to the temperature difference between the nodes
on the hypotenuse ( $) and nodes 1 3, 5, 7, and 8. Suitable modifica-
tions were made in the YB matrix. Note that the temperature at node 9
is now specified. Three approximate solutions were calculated using
temperatures at node A of 3, 2, and 1. An argument for using each
of these tempera;tures at A is that in the continuous problem the temper -
ature at node A can be considered indeterminate. However, the con-
tinuous solution gives one half at this point; therefore, use of the
temperatures of £ and 1 can be considered to be the equivalent of
changing the area-weighted discretization error at point 1 (see equation
V-10).

A summary of these calculations is in Table V-7. These show
that increasing this boundary temperature from % to 1 changes the
area-weighted discretization error for node 1 from -0.0468 to 0.0740,
while the other discretization errors remain constant. This change in
discretization error changes the error at node 1 from 0.0067 to
~-0.0107, and also changes the error significantly at its neighbor nodes
2 and 3. However, no significant change is observed in nodes located
at a distance, for example, nodes 6, 7, and 8. Thus the conclusions

about the relative influence of the discretization error are confirmed.

The accuracy of the approximate solution for the steady-state solution
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is discussed in more detail later; however, it can be seen that the

asymmetric network does give satisfactory results for this problem.

1. Conclusions

The important conclusions based on equation V-19 for the
propagation of the discretization error which should be remembered
in the following discussion on the discretization error and in locating
points are:

(1) The error of an approximate solution cannot be made small
merely by adding more points and reducing the area unless the dis-
cretization errors are decreased by the addition of the points. An
important corollary to this conclusion is that the size of the discretiza-
tion errors directly affects the error in the approximate solution, and
one wishes to locate the points in such a manner that the discretization
errors are small, particularly in a region of interest for the specific
geometry, for the specific boundary conditions and forcing functions.

(2) For a fixed network of points the discretization err;)r at a
node is weighted by the heat capacity of that node; thus, the discretiza-
tion error for a relatively large node is weighted more than that for a
small node.

(3) The discretization error weighted with the nodal heat
capacity (Ai &i n) associated with the ith node affects the accuracy of

h
the solution at the it node more than it affects the accuracy of the
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adjoining nodes. It affects the error at these adjoining nodes more
than those located some distance away which have a high equivalent
. .th .

thermal resistance to thei node. However, the sum of the discret-
L. th
ization errors for many nodes on the i node, even though each of these

. . . .th .
nodes does have a high equivalent resistance to thei  node, can give a

significant contribution to the error at i.
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(D) DISCRETIZA TION ERROR

In this section series expansions are developed for the dis-
cretization error associated with the selection of the time discretization
parameters of y and AT, and the space discretization error associated
with the number and location of points. On the basis of these expan-
sions several conclusions can be made about the accuracy of asym-
metric networks, ways of improving the accuracy, and about the con-
cept of consistency. Some practical conclusions also can be made

about the selection of the differencing parameters.

1. Division of Discretization Error with Time and Space Differencing

Parameters

In most discussions of the discretization error the total dis-
Cretization error, as defined by equations V-4 or V-5, is divided into
two parts. One part is associated with the time differencing param-
eters y and AT, and the other part with the space differencing param-
eters. This can be seen to be a logical procedure as the approximate
formulation in Chapter II, section C, treated the two discretizations
separately. However, the precise way in which this division is made
~affects both the size of the discretization associated with time and
space and the series expansion for both discretizations. However,

despite the fact that the size of the discretization errors associated



381

with time and space are affected by the precise division, the total
discretization error which is the sum of the time and space errors is
the same as defined by equation V -3.

Indeed, for the one-dimensional problem with a regular mesh,
‘ Richtmyer shows one series expansion for the total discretization error
that can be derived by not dividing the discretization error. That

expression is

4
° Tmn 1 1 2
= — —_— - - —— 1 PP v
dm,n a§4 [AT(Z v) 12 (ag)"1 + (V-34)

where m is for an interior point.

4 4
Note that if the coefficient of 3 Trn n/B € is set equal to zero equation
IV-262 for Y, results. Equation V-34 can be derived by writing

equation V-5 in terms of m and AE for the one-dimensional problem

and by subtracting the diffusion equation at point m at time n, which

is
2T BZT
S - 5t = 0 (V-35)
o
This gives
-T o T
m,ntl m,n _ m,n
AT 3T
1 .
— -2 + + -2 +
(A@)Z‘ [(Tm-l,n+l Tm,n+l Tm+1,n+l)v (Tm—l,n Tm,n Tm+1,n)
: L
. Tm+l,n)( Y)]
aZT
+ m.n = d (V-36)
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), (T (T

) are written in terms of T using a two-variable
n n

b

). (T

Then the quantities (T

m,n+1 m+l,n+l)’ m-1l,n+1 m+l,n’’

‘and (Tm-l,
Taylor series expansion in A€ and AT which, together with derivative
identities based on the diffusion equation, gives equation V-34.
Although the development of a single series such as equation
V-34 for the two-dimensional problem with a regular mesh would be
desirable, unfortunately this would require a Taylor series expansion
in thrce variables, A1, AE, and AT,. Even for a regular mesh, such
an expansion would be very cumbersome, both to derive and to reduce
to understandable expressions. Thus, the discretization error for the
interior points is compared to the diffusion equation at times n and
(nt+1l) weighted by v and (l1-v), respectively. Subtracting (1-v) times

equation V-6 and vy times equation V-7 from equation V-5, there is

obtained:

d‘ _ [Ti,n-}-l—Ti,n _{ arI‘i,n+l _I_(l_v)aTi,n }‘}
i,n AT Y a7 ' 3T

(v-37)
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Now the discretization error associated with the time parameters

can be defined as:

T. ~-T 9T aT
i,ntl "i,n i,ntl i,n 0
= - —_—l T 4 _ -
cp:'L,n AT {\'/ oT (1 Y) T j (V 38)

and the space discretization error as:

1

1
= N - Y — 1 1 _
‘ ) Vi T T TR 5y, VYT, (V-39)
i= 0" p ‘i

1
i,n A,

1

and

R
- o e ——————— 1 !
Z Yij(Tj,n+1 Tonrl) "R Co). v 5V an
5= 0 p ‘i
(v-40)

Thus the total discretization error is:

di,n+1 - cpi,n- [ Yci,n+l * (I—Y)Gi,n ] (v-41)

This division of the discretization error has the disadvantage that

the total contribution from the space error, [(l-v)o, +vyo 1,

i,n i,n+l

is a function of the time differencing parameters vy and AT, but it
has the advantage that an expansion for o, or G, is only a two-

i,n i,n+l
variable series, and thus is significantly simpler than the three-variable
expansion. This definition of the space discretization error also gives
the usual definition for the steady-state problem.

Equations V-39 and V-40 apply for points or nodes which have

conductances only to other nodes within or on the solid boundary, that
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is, not to a fluid node through a finite non-zero heat-transfer coefficient.
The difference equations for nodes, whether located on the boundary,

as in method G, or away from the boundary, as in method C, that have

a heat-transfer coefficient conductance to a fluid node, are an approx-

imation to both thc diffusion equation and to the boundary equation:

H[Tf(T)—T(EB,ﬂB,T)T]=~ %—:ﬂ?—(gB,nB,T) (V-42)

Therefore, the discretization error of a node adjacent to a fluid node
should be compared to the above equation in addition to the diffusion
equation. However, no published discussion of this type of comparison
hés been found, and even for method C and the one-dimensional problem
no useful expression or expansion has been derived for the discretiza-
tion error. Very probably the difficulty in developing a meaningful
expression for the discretization error at such an adjacent node is that,
when h is finite, the series expansions in effect cross the solid
boundary or a discontinuity.

For the special cases of zero or infinite heat-transfer coefficient,
the adjacent nodes can be treated as interior nodes. For the zero
heat-transfer coefficient condition the temperature distribution can be
considered as continuous and symmetric about the boundary; for the
infinite heat-transfer coefficient condition, where the surface is at a
constant specific temperature, the temperature distribution can be

considered as continuous and anti-symmetric about the boundary. To
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consider the adjacent node as an interior node in these circumstances,
additional points are located across the boundary such that if the
boundary has no flux across it, the temperature at each of the additional
points would be the same as at a corresponding point in the interior of
the solid; for the infinite heat-transfer coefficient, the temperature
difference between the additional point and the constant surface temper -
ature would be equal to the temperature difference between the surface
and the corresponding point within the solid. The adjacent node then
can be treated as an interior node with neighbors corresponding to the
original points within the solid and the necessary initial points as
neighbors.

The above procedure, although valid in principle for curved
boundaries, is useful only for straight-line boundaries. This is true
because only for straight-line boundaries can the location of the addi-
tional temperature points be found easily, by reflecting the network
about the boundary. Further, this technique for adjacent nodes under
these conditions should only be considered as a temporary method of
studying their discretization errors because eventually an expansion
should be developed which would contain the heat-transfer coefficient
as a parameter, and which would give results for zero and infinite
coefficients as special cases. Moreover, it should also be noted that
the series expansions for the errors as developed above would be

identical for infinite and zero h, and that the difference in discretization
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error for the two different conditions would be caused in these expan-
.sions by widely different values of the derivatives under the two con-
ditions.

The adjacent nodes for methods G and C for the one-dimensional
problem can be studied using equations V-39 and V-40 for constant
surface temperature or adiabatic conditions. For both methods, under
these conditions, the discretization error for all nodes including
adjacent nodes is given by equation V-34 and the relationship for vy o’
as found from the damping expansions or the discretization error, is
an optimum value; however, for the problem with a finite heat-transfer
coefficient equation V-34 still applies for the interior points, but
apparently the discretization error for the node adjacent to the fluid is
of a different form so that Y, is no longer an optimum value. How -
ever, from the complete solution we know that the actual error vm’ 0
for all points is of the order of l/S& and of AT; this fact together with
a consideration of equation V-19 allows us to conclude that the dis-
cretization error for the adjacent nodes in methods G and C is of the
order of l/SZ and AT. One of the most interesting and important
future studies suggested by this work is that of finding an expansion
for the discretization crror for nodes adjacent to a fluid with finite

heat-transfer conductances.
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2. Time Discretization Error

A series expansion for the time discretization error can be
derived by developing a series expansion for (T, 17T Y/ AT about
i,n i,n

both n and {n+1). Then, using the weighting factor vy on the expansion

about (n+1) and (1-v) on that about n, there results:

. 2 2
=Ti,n+1_Ti,n T BTi,n+1 +(1- )ari,n‘izé’f_“(l_ )a Ti,n _ aT.'l,n-i-l‘\
®in Av I_Y DT Y AT l 2\_ K 2 Y s !
aT oT
2 53T o T
(A1) r i, n i, n+l
aT 3
4 4
(AT)3 o Tin 9 T a1
+ {(1_y)___’__ _Y___'__i_._]+... (V-43)
24 4 4 .
T 9T

Thus, the contribution from the time discretization is about proportional
to At. The effect of the weighting can be seen by considering that
the second time derivatives evaluated at n and (n+1) are about equal
which would mean that the coefficient of the time increment term is:

2

AT ° i,n
. ~ — (] - 2 4 4+ oo V-4
\pi,n_ 5 2 d 12 ( 4)

where the coefficients of the succeeding derivatives at (n+1) would be
changed slightly. Although this expression indicates that the optimum

v is %, it must be remembered that 9 L is only part of the
2
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contribution to the total discretization error d. . When this is con-
1

;N

sidered for regular networks the best weighting v is usually less than

% and the y of & gives a difference solution very close to that of the
analog solution. The comparison of approximate solutions for the
transient problem in Chapter III indicates that much the same conclusions
about the effect of the time increment and vy on accuracy made for the
one-dimensional regular network problems in Chapter IV also apply to
the two-dimensional problem with an asymmetric network. This would
be expected, as the time discretization error appears in the same form

for both the one- and two-dimensional problems. These results are

discussed in section F' in this chapter.
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(E) SPACE DISCRETIZATION ERROR

Since the total discretization error is important, and since
the contribution from the time discretization error appears to be
satisfa_cto_ry, the success or failure of an asymmetric network depends
on the size of the contribution from the space discretization error,

-lo, (1-y)+o The main problem with using an asymmetric
i,n

i,ntl Y 1.
location of the points is shown to be in the quantities, o‘i‘s, The
following develops a series expansion for the space discretization
error at time n, for points within and on the surface of a uniform solid
but which have no conductances to a fluid. This is then followed by a
summary of expansions for Ui,n for several types of nodes, and a dis-

cussion of consistency and practical implications of the space discret-

ization error is included.

1. Expansion for Space Discretization Error, Interior Node.

Consider a general asymmetric node for a two-dimensional
problem within a solid with constant thermal properties having a
thermometric conductivity of KO’ with continuous temperature distri-
bution in the vicinity of the node. Such a node is shown in Figure V -4.

. th .

The neighbors for the i node are assumed to have subscripts numbered
counter-clockwise. Moreover, a dimensionless Cartesian coordinate

system is superimposed on the system. In order to formulate the series
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expansion in the dimensionless coordinates, the dimensionless lengths

A i and p i are defined according to:
13 .
ﬂij
== -4
NI (V-45)
’ and
rij
T L (v-46)

where ) ..

1)

dimensionless distance between nodes i and j

dimensionless length of perpendicular bisector of line

n

connecting nodes i and j
The node is assumed to have a total of N neighbors, although 5 are

shown in the figure. The specification of the ) i and p ;i serves to
i ‘

J

completely define the geometry of the nodes. However, for convenience
in making the expansion the angle B i between the positive £ axis

and the leg A i is introduced. The 2\ i,'s and B ijls are equivalent

to radial coordinates of neighbor nodes. The angle parametcr B i3

is not an independent variable and from the geometry the following
relationship between p ij A ij’ and B i can be derived,

)

. e ’ X o
M, a0y By M ygsinly By s JFA s sin(B, -8

r_sin(ai'jﬂ-@ij)][sin(B..-B. )]

i,j-1

ij
ij "i,j-177

(v-47)
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where j has a geometrical meaning because of the counter-clockwise

numbering. When jis 1, the subscript (j-1) means N and similarly

when j is N, the subscript (j+1) is 1.

With these substitutions equation

V-39 for o, isy
i,n
- _ :
2
4 X P s !; T, 2°T,
p 11
o, = T, -T - +
i,n N z A.. ( jyn i,n) BEZ AT\&
Z p.. A.. j=11 4
1] 1)
=1 _ (V-48)
where N = number of neighboring nodes
i = subscripts of nodes with no conductance to fluid
temperatures
j = refers to subscripts of neighbor nodes with
.th .
non-zero conductance to the i  node, in
these equations
- A.=vy.,.=1_/4,.
pij/. ij i rlJ/ ij
N N 5
A, = z p.. N, = 2 r.. 4, /L
i ij ij ij " ij
j=1 j=1
The first step in developing an expansion for O’i a is to

expand the quantity (Tj-T,) using the Taylor series. This is, symbol-
1

ically,

![ng%J“

o Bl
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where gj and T]j are the coordinates of the jth neighbor based on the
coordinate system with the origin at node i. These coordinates are,

from the geometry,

E. = ), cosB_, (V-50)
J 1] 1]

.= \,.sinB . V-51
1= ay, sind (v-51)

and the expansion becomes, after being weighted by the conductance,

j 0%

00
)= HY LT . 2,
A o [2yy(c088; 5 + sing, )] n (v-52)
p:

The first several terms of this series are in Table V-8.
The summation of these terms over all neighboring points must

now be found.

1

P

zy';(T' “T. ) = ?j ;}g ozo [Kij(cosﬁij aag smB )]

(V-53)

This is best studied by interchanging the summation signs and con-
sidering the finite summations on j for the first several p's. MacNeal

has shown that for p of 1 the summation on j is zero.
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S r aTj n ° i,n
b + - 3
P1; stﬁij S5E sinds s TH ]
j=1
T, | N 3T, N
= 3 + 2 -
= ) e.cosp,. =) 058
J:]_ J=1
= 0 (V-54)

The argument is that the summations which are the coefficient of the
first derivatives in equation V-54 are zero because the p i described
a closed polygon. For a p of 4, noting that the derivatives can be

removed from the summation, and after a simple algebraic manipula-

tion and rearrangement, the summation on j gives:

N
j:l p:Z,
2 2 N4
N - ZaTin aTin ZaTin'
A . (cosB. . ———— + 2 cosB. .sinp,, —e——— +(sinf, ) —2—
%Z g Loty s 5,18, srgr Hoin,) 2 |
J:
o I 2)
. . p,}\_,{(cosB_,) + (sinB,.) ¢
B&T, BZ‘T_ /_—._ ij 1ij ij ij J
_" i,n 1,n}[ j=1 ]
- 2 2
T RE am 4
N ‘
2 2
2 2 Z P:iM45 {(COSBij) ~(sing ) i
2T i

+|: i,n_ aTi,n'Hi =] ]
2 2 4

oF oM
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AZ‘T

aFan l[} p 7\ cosB 51nB ] (v-55)

Now using trigonometric identities the summation for p of 2 can be

written as

N
N 2%, “p, z B
S =1 Loy 1,1 _l j=1 73
/. L agi am j
j=1 p=2
2 y P, X cos&B
3 T, 1 0 1
=52 - SHIE= - 1 (V-56)
513 B
N
Z Z p 51n &B
i=

(e

And in the same way the summations for p's of 3 and greater can be

obtained. The expansion of the space discretization error o, is
i,n

then found by dividing each of the sums of each of these summations on
N

j by the dimensionless heat capacity A.i or T (pijxij/él) and sub-
. Ly p

21
tracting the Laplacian operator evaluated at point i and n,

2 ' 2 2
[(d Ti n/a%—;‘:) + (3 Ti n/B”ﬂ 1. The first terms of the expansion

H

for o, are:

1,
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1] 13 1)
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+ ES'Ti,n j=1
[ 4 MN ]* (V-57)

3 M 62

0.\
j=1

ij ij

In the above equation no attempt has becen made to use trigonometric
identities or other manipulations to simplify the terms corresponding
to p's of 3 and 4. Geometric relationships such as equation V-47 could
be used to eliminate one of the quantities )\, p, or B, from the above
equation but such a substitution is too cumbersome to be useful.
Although the above equation was based upon a coordinate system with
its origin at the center of the node, this coordinate system serves
mainly to describe the geometric parameters A i and B ij’ and the
expansion above is independent of the origin of the coordinate system.
The derivatives and their coefficients in the expansion are a function
of the relative direction of the € or T axis, although the space dis-
crctization error as defined by equation V-39 obviously has no such
dependence.

Despite the complexity of the expansion for the space discret-
ization error equation IV-57 is useful for making several observations
about the nature of the space error and for studying the space discret-
ization error at a node as a function of the location of its neighboring

nodes by actually finding the coefficients of the derivatives.
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A summary of several nodes and the expansions for the cor-
responding space discretization errors is in Table V-9. In this sum-
mary a sketch is used to show the node shape, coordinate system, and
usually only the first non-zero terms are shown in the expansion.

The geometric parameters are shown in the most convenient form for
the particular geometry rather than any one consistent method. The
selection of nodes for the summary has been made to contrast regular
nodes and asymmetric nodes and is not meant to be a complete catalogue
of all nodes. The errors for the nodes are based on equation V-57 and
hence they apply when the following assumptions are valid: (1) the
capacity of the node and the conductances to the neighboring nodes are
based on MacNeal's rules; (2) the location of the nodes follows MacNeal's
rules; (3) the ith node is an internal node, that is all of its neighboring
nodes are within an area which has constant thermal properties of
volumetric heat capacity, Cp, and thermal conductivity, k. This

means that none of the conductances cross an interface into a second

solid or to a fluid with a finite heat-transfer coefficient.

2. General Comments--Space Discretization Error.

A study of the expansion for the space discretization error

_ (equation V-57) shows that each term is the product of the second-

or higher-order derivatives and a coeffiéient which is a ratio of finite
sums. The derivative part of the product depends on the location of

the node within the solid, the time, the solid boundary, and how the
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forcing functions change with both time and space variables. Thus,
these derivatives cannot be controlled, as they are functions of the
individual problem. Since these derivatives are of the second- or
higher -order, the space discretization error is zero for problems or
times where the temperature gradient is independent of position.

The coefficients of the derivatives depend upon the geometry
of the node and its neighbors; hence, some control over the size of
the discretization error can be exercised by arranging the nodes so
that these coefficients are small, or at least so that the cocfficients
of derivatives that are likely to be large are small. These coefficients
determine the consistency of the approximation, in the Richtmyer sense.
Richtmyer has stated (page 43) that, '...for problems with constant
coefficients consistency can be determined by simply examining
the truncation error term of the difference formula.'" Further, in the
discussion of the propagation of the discretization error, consistency
is important if more, smaller nodes are to replace large nodes to
improve accuracy. Thus, most of the following discussion is on con-

sistency and how these coefficients affect the space discretization error.

3. Consistency.

The consistency of a general asymmetric node can be studied
by studying the above expansion (equation V-57) and finding how the

space discretization error changes as the node is made smaller. The
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time discretization has alrcady been shown to be consistent as the
contribution of the time discretization érror (cpi’n) to di,n goes to
zero as the time increment AT goes to zero. Before proceeding to
the study of the expansion, it should be noted that, in Richtmyer's
~definition of consistency, actua.lly both the time increments and the
mesh increments for the whole network go to zero together; consequently,
the consistency at a node does not have meaning in the precise Richtmyer
sense. However, in view of Richtmyer's statement quoted above, a
consistent node can be defined as one where the space discretization
error goes to zero as its area or a characteristic linear dimension
goes to zero. A network of such nodes would follow Richtmyer's
definition of consistency, providing that the network could be refined
in such a way that each succeeding mesh contained only consistent
nodes. A further discussion of these concepts is best delayed until
after a discussion of the coefficients in the expansion.

A study of the coefficients in the expansion indicates that the
coefficients for the second derivatives, the hyperbolic term,

2 2 2
3°T. /dE7-3"T,
n 1

1, 1,

2
n/@ T )}, and the mixed partial derivative

(3 ZTi n/a E 37M), depend only on the geometry of the node and its

neighbors, and not upon the distance between nodes, or the area of the

th . . .th
i~ node. In order to show this the longest distance between the i

" node and any of its neighbors is designated A . For a node where the

distances to each of its neighbors remain in proportion, and the angles
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remain constant, reducing this length gives a sequence of geometrically
similar nodes, but with smaller areas. The coefficient of the hyper -

bolic term is

j=1

N pij )\ij

) ()

j=1

and that for the mixed derivative is:

S P Mg
), (S0 (sim 28)
j=

1
v By
) (e
j=1

Since \ ijM and the angles 8 i are constant the ratios p ij/)\ are

also éonstant, and therefore these coefficients are independent of the

A or area of the nodes. Therefore, the space discretization errors
for such nodes, where the coefficients of the hyperbolic term and the
mixed partial derivative are identical and not zero, have a zero-order
error term in their series expansions. Using the same arguments, we
can say that the coefficients of the third derivatives depend upon the
geometry, and, for a sequence of geometrically similar nodes, these
coefficients are proportional to A . In general, the pth order deriv-
atives have coefficients, for geometrically similar nodes, that are

proportional to a linear distance (A ) in the node raised to the (p-2)
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-2 )
power, or A P™¢ 1 the following a term in the expansion proportional

to A p-2 and the p space derivative is called a (p-2) order term, i.e.,
when p is 2, the term is a zero-order term.

A study of the series expansions for the asymmetric nodes in
Table V-9 shows that many of the asymmetric nodes do indeed have
zero-order error terms, and, hence, if they are refined in a sequence
of geometrically similar nodes, they are inconsistent nodes. Further,
a comparison of the expansions for the discretization error of the
trapezoidal nodes, F, G, H, and I among themselves, and with the
expansions for the rectangular nodes C and D, shows that the coefficients
for the zero-order error terms are proportional to the geometrical
parameters that are associated with the irregularity, or difference
from the rectangular node. That is, the coefficient of these terms for
node I, the most regular of the trapezoids, is proportional to the
square of the sine of the angle by which two of the legs differ from
being a rectangle. And, as the lengths and angles are further distorted
in nodes H, G, and F, terms proportional to the differences in lengths
of the legs and to the sines and cosines of the angles are added to the
coefficients of these non-zero terms. Consequently, the conclusion
must be made that irregularity or asymmetry in the geometry of the
nodes produces the zero-order error terms. And further, if such an
asymmetric network, containing asymmetric nodes with zero-order

error terms, is refined to zero so that each succeeding network contains
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only nodes which are geometrically similar to those in the original
asymmetric network, the discretization does not go to zero, and
Richtmyer's consistency condition is not satisfied.

In order to verify that, in the expansion for o in’ no unnoticed
simplification actually makes the zero-order error terms zero, a
- numerical study of the space-discretization error was made for nodes
J and L from Table V-9. In this study, a node of the shape and pro-
portions of node J or L. was assumed at a position of £ =0and T = 1.

in a solid bounded at § = +w/2, T =0, and T = o0, with a steady-state

temperature distribution and the following boundary conditions:

_ Z I -
T(z .0) = 1 J<r<l (v-58)
(1, 35) = 0 0 <7< (v-59)
T(ﬂ,—-g):O 0 <17 < (V-60)

The solution to this problem is given in Churchill (28), page 194, and
is

T=%y (V-61)

where VY is given by:

cosg ™
= 0<v <l
tan ¥ = o 2

The temperature at the node and its neighbors can be computed from
this expression, and the space discretization error can be found
directly from its definition. Also, the second- and third-order deriv-

atives can be found, and the constant and linear terms as functions of
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the length X\ can be calculated for the series expansions. Thus, the
space discretization error can be checked in two ways, directly from

the definition,

12

1
Pl T -
1,88~ A 1Yij( j Tss

(V-62)

[N
H

and approximately from the constant (second derivatives) and linear
(third derivatives) terms.

The results of these calculations for nodes J and L are shown
in Figures V-5 and V-6, respectively. The éxpansion for node J in
Table V-9 shows it to be a consistent node, and the calculation of the
space discretization error from the exact defining relationship shows
this to be true. Further, the discretization‘,”as found from eguation
V-62, follows fairly closely the behavior that would be expected merely
on the basis of the linear term of the expansion. The expansion for
node L indicates that a zero-order term should occur. The calculation,
based on the exact, defining equation for o, shows a o, of about
-0.1257 ata A of zero, or just about the value predicted by the expan-
sion. Further, the discretization error estimated by the expansion
follows closely that found by the defining equation. Great care was
requiréd iﬁ calculating the space discretization error from the defining
‘equation, because, as the node becomes svmaller, (Tj_Ti) becomes
very small, and a great many significant figures must be calculated

in both Tj and Ti to insure that thé quantity (Tj-Ti) contains any
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significant figures. As a result, these calculations were made using
10-place tables for the cosine (34), hyperbolic sine (34), and the arc
tangent (35), and the temperatures were calculated to 10 decimal places.
The scattering of the points for both nodes for the smallest )\ 's is due
to round~-off error, and more accurate calculations of Tj and Ti would
be required to remove this scatter. However, the calculations are
sufficiently accurate to show the validity of the expansions, and that

the zero-order error term is a reality for node L.

The regular trapezoid, node I, shown in Table V-9, is another
asymmetric node which has a zero-order error term. This node is
like the regular rectangular node D, except that the two neighboring
nodes, which are iocated on the g -axis for the rectangle, lie above the
E-axis, so that the legs from node I to these nodes make an angle o
with the £ -axis. The area associated with the node is then trapezoidal

in shape. The expansion for the space discretization error is:

2 3

-,

I,n

I,n . 2
+
I )\1 sina (cosa)

. 2 9 TI,n
op .= ~(sina ) \: 5— =
s g am 3E 37N

(V-63)

+ sina}[}\ (sim)z )\.2 ] TI,n P
\: 3 1 A 3
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As previously noted, the cause of the zero-order term is the asymmetry
introduced by the inclination of two of the legs at an angle of « to the
E-axis. And this node must give a non-zero space discretization error
at zero area, if the refinement is made using a sequence of geometric-

ally similar nodes.

2

2 ° TI n ° TI n
limo = -(siny) [ - - —2 ] (V-64)
I.n 2 2

A—0 of LAl
A A

1 2
— , — , and o are constant
)y A

This non-zero error would be expected to be small if the angle « is
small.

However, a network of regular trapezoidal nodes can be used
as an approximation to a two-dimensional problem in cylindrical
coor&inates, with gradients in the radial and angular directions, if
MacNeal's rules are followed in setting up the network. Such a net-
work is in Figure V-7. The main difference between this approximation
and that usually used for cylindrical coordinates is that the perpendicular
bisectors of the radial conductors are used for the conductances, and
to bound the node, rat.;her than the pA® arc lengths. Because of the
georﬁetry of the network, o is related to the angle increment, and the

length i 2 is equal to the radial increment:
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o = 52-9 (V-65)
M, = bp (V-66)

Making these substitutions in the expansion (equation V-57) gives:

‘ BZT BZT a3T
GI n: %(COSAB—I) [ Z;,n - i,n ] + 7\1 [sin %‘e‘ (cos ég')&:\ "‘—“Z-I-’-E +
) | dDE 3N o€ M
- A8 . 3
sin—_—- E 2 a T
+ [ — Z ][x (sin ‘ﬁg-)&- {2p) ][ é’n ] Foees (V-67)
M 31

Now, if the network and the trapezoidal nodes are considered an
approximation to the Laplacian in cylindrical coordinates, and the
network and nodes are refined such that the angle increment, A8, and

radial increment, Ap, go to zero, the space discretization error goes

to zero:
limo, =0 (V-68)
I.n
AB-0
Ap—0

and the network and the nodes satisfy Richtmyer's condition for
consistency.

Thus, the important point can be made that the manner in which
a network is refined determines whether or not a network of nodes
satisfies Richtmyer's consistency condition. Likewise, the manner in
which an area is made smaller determines whether or not the space

discretization error at a node is reduced as its area is made smaller.
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Practical Aspects of Consistency. The meaning of the con-

sistency condition, for a network containing asymmetric nodes, can
now be interpreted as follows: that the shape of the asymmetric node
in a network, or the geometry of its neighbors, must be changed as
more nodes are added, if the accuracy of the approximation is to be
improved. Thus, in general, the additional nodes should be added so
that the coefficients of the hyperbolic and mixed second-order deriv-

atives go to zero, which requires that

N
; p,.A,. cos28, .~ 0 i=1, ... (V-69)
Lo 13 i3 ij
)7
j#i
N
in 2 =0 i=1, ... -
Z AT T i (V-70)
J=1
i#i

Since, for any practical asymmetric network, one is able to add nodes

so that the network becomes at least an irregular rectangular network,
containing nodes of type C, Table V-9, the asymmetric network can

be considered to be a consistent approximation. In refining the mesh

all the node shapes need not go to rectangles, but to any of the consistent
node shapes shown in fhe table, or any which are possible. In particular,
it would be more logical to consider that the refinements of an asym-
metric t;iangular network could approach the network of equilateral
triangles with hexagonal-shaped nodes, type N, Table V-9, rather

than a rectangular network.
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In most cases of a general asymmetric network, one is not able
to refine the network to zero mesh spacing in a manner that allows all,
or even some, of the nodes to be geometrically similar to the nodes in
the coarse network. Thus, the expansion for O'i’n (equation V-57)
does not, when interpreted correctly, show that the network of asym-
metric nodes is inconsistent. Further, in most practical situations
the network is not going to be refined, and in those situations the expansion
allows an estimate of the space discretization error if sufficient informa-
tion is known, or can be approximated, about the second- and higher-
order derivatives .

Because Richtmyer's consistency, stability, and convergence
definitions are based on successive refinements to zero of both space
and time increments, the main practical consequences apply mainly
to space networks containing a relatively large number of points (S
probably much greater than thirty). When such a fine space mesh is
to be used, both Richtmyer's theory and practical considerations
dictate the use of a rectangular network or a network of equilateral
triangles for the interior points. This is true for the following reasons:
(1) The space discretization error is assured to be small only for small,
consistent nodes, such as nodes D and N. Further, it should be noted
that even radial nodes such as node I become rectangular as o~ 0,
according to the refinement just discussed. (2) 1If a large number of

points is used in a regular network, curved or irregular boundaries



410

can be followed closely, and such boundaries can be followed exactly
by the addition of only a few irregular nodes along the boundary.

(3) Since no partial difference equation or recurrence relationship

is available for asymmetric nodes, their conductances and capacities
must be calculated specifically for each node. Setting up the difference
equations can require an amount of calculation which would be pro-
hibitive if done on a desk calculator, and bothersome to program on a
digital computer.

Possible Ways of Eliminating Zero-order Error Terms. Before

leaving the topic of consistency, it should be mentioned that consistent
approximations can be found for irregular nodes of many shapes by
solving a system of equations which make the coefficients of the first
and second derivatives in the expansion for Gi,n zero (10). This can
be done by replacing the elements in the row for such a node in the
Y/A matrix, (l/Ai)(p ij/)\ ij)’ with a weighting p‘ij' Thus equation

V -54 becomes:

2
‘N1 ° Ti n ° Ti n
s, = Z“"'(T' ~T. ) - SR ’ (V-71)
1,n i ,n i,n a 2
a1 Y4 a7
Now, using the expansions of (T, -T, ), and setting the coefficients

j.n T i,n
2
of 3T. /[/3E 3T, /3T, 3 T. /3EZTM equal to zero, and of
i,n i,n i,n
2 2 .2 S/ .
3 'I'i n/a £ and 9 Ti rl/o T equal to one, the following system of

3

equations is obtained:
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=0 -
| Kij(cosB ij)p. . (V-72)
j:
N
. _ 0 i
Z )\ij(81n[3 Ju i (V-73)
J:
N 2
I_J;- 1 g -
E) G ;) (stng )(cos8 Ju., =0 (V-74)
j=1
& 2 2
+ -
2‘2 ( iJ.) (cosB ij) Y =1 (V-175)
j=1
’lﬁ 2 2
= i =1 -
£) O (sims ) u (V-76)
j=1

The u i that satisfy these equations would then be the off-diagonal
. .th . s . . .th
clements in the i row, j position, in the equation for the i node;
th N
the diagonal element is, for the i row, Z 7 e The existence or
1
1

uniqueness of the i that satisfy the abo‘]ve equations is not guaranteed,
but depends upon the number of neighbors N and their geometrical
relationships. Indeed, Forsythe and Wasow (10) state that there are
geometrical situations for which no solution exists.

A second, and essentially equivalent, system of equations which
has an unknown that can be given a geometrical interpretation can be

derived in the same way. This is done by determining a length ¢ 'ij

to replace the length of the perpendicular bisector p i in both the
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conductances and heat capacity of a node. An analysis like that above

shows that the p 'i' must satisfy the following system of homogeneous

equations:

N
Z cosB.p' . =0 (V-77)

1y 1]
j:

z sing o !, = 0 (V-78)
Z M (sin2g )p ' =0 (V-79)

N

< 2 I =0 -80
z kij(cos Bij) Py (v-80)
j=1

The first two equations are satisfied if the ¢ ‘ij form a closed poly -

gon; the second two equations have the same form as those for the
conditions under which a MacNeal node is consistent (equations V-69

and V-70). In principle, the zero-order error terms can be eliminated
from the discretization error of all nodes in some asymmetric networks.
This could be done by solving a system of equations such as equations
V-T2 to V-76 for P'ij or V-77 to V-80 for o 'ij for each node in the
network. From a solution for a node one row in the Y/A matrix would
be generated. Because of the time-consuming nature of solving such

systems of equations, this is probably not practical. However, such a
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technique could be useful if solutions were required only for a few
irregular nodes which are used to follow an irregular boundary, the
rest of the network containing regular, consistent nodes. Unfortunately,
because the above analysis applies only to interior nodes, the system

of equations does not apply to adjacent nodes with heat-transfer coef-
ficient conductances to a fluid temperature, thus further restricting
their utility.

However, before the solution of either system of equations to
eliminate zero-order error terms became a general technique, the
following studies would have to be carried out: first, the geometrical
conditions for which a solution to the equation exists should be found.
Second, if several solutions to the equations exist, a criterion for
selecting one of them should be found. Third, a determination should
be made of the effect of using the solution of these equations on the
coefficients of the third and fourth derivatives in the expansion, to be
sure that these coefficients are not greatly increased. Fourth, a study
would have to be made of the properties of the Y/A matrix which
contains elements that are a solution of the above system, to see if

modifications in the stability and non-oscillatory criteria are required.



