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(F) CONCLUSIONS AND SUMMARY --CHAPTER IV

The z-transforms have been successfully used to find the analytic
solutions of the one-dimensional partial difference equation of diffusion
for several different methods of approximating the continuous boundary
equations. These solutions have been compared with the analytic
solutions of the approximate partial differential equations for the
same problems. The methods for approximating the boundary equations
are based on a mesh with adjacent points on the boundary (mesh AE),
methods G and A, and on a mesh with the adjacent points located a
distance Ag/Z2 from the boundary (mesh AEg/2), method C. Use is
made of both the usual differencing for the approximations at the
boundaries (methods G and C) and a backward difference for the known
fluid temperature for method A. Consideration has been given to all
selections of differencing parameters from graphical solutions to
implicit calculations. The z-transform scolutions have proved very
useful for studying and understanding quantitatively the errors and
oscillatory behavior of these approximate solutions. Not only can the
effect of the differencing parameters be studied quantitatively, but
the consistent superiority of the accuracy of generalized method C and
graphical method A of the graphical methods has been shown analytic-

ally. However, these complete analytic solutions, as found by the



280

z-transforms, are not the most practical way to find the sufficient
conditions on the differencing parameters to obtain a solution with
satisfactory oscillatory behavior, and are not the best way to study the

bound for lq \ which is Y. Simply calculated matrix norms and

min
the techniques of Chapter III should be used for this purpose.
In addition, the following observations and conclusions are made:
(1) When the particular solution is a true steady-state solution,
the steady-state solution for the approximate solution is equal to that
for the continuous solution for all methods. For problems where a
quasi-steady-state solution occurs, the same comments made about
the eigenvectors and damping factors for the transient solution probably
also apply to the particular solution.
(2) The error in the intercept gj cmj of a slowly decaying term
in the approximate transient solution, on a semi-logarithmic plot
. . . . 2 .
versus time, is approximately proportional to 1/S . The error in the
slope [{1/AT)In q.], of a slowly decaying term in an approximate
J
. 2
transient solution on such a plot is approximately proportional to 1/S
and to AT; the proportionality constant for AT is a function of the
weighting v. The errors, both in the intercept and in the slope, are
of importance in obtaining accurate transient solutions. These two

‘quantitative statements above are of much more practical importance

in selection of the differencing parameters, or in estimating the error,
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than the statements that the truncation error for the difference used
to approximate the differentials is of the order of IISZ and of the
order of AT. Further, the error propagation analysis (2) based on
the truncation error does not usually lead to such useful or precise
~quantitative statements.

(3) The trigonometric characteristic roots for the approximate
solution are not equal to those of the continuous solutions for problems
with a finite non-zero heat-transfer coefficient for any of the methods;
the diffgrence between the squares of these roots goes to zero with
l/SZ., Errors in these roots affect the accuracy of each of the parts
of the approximate solution. For methods G, A, and C, for problems
with only zero and/or infinite H's, these roots are equal.

(4) The important effects on the accuracy of the slope of a
semi-logarithmic graph of a transient term for the slower decaying
positive damping factors in the approximate solution caused by changes
in the damping factors are: first, for methods and problems where the
approximate trigonometric roots are equal to those of the continuous
solution, increasing S does not improve the accuracy of the slope as
much as making appropriate changes in the time increment AT and
weighting vy, providing S is five or larger; the weighting vy which gives

 the most accurate slopes or damping factors is:
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1 6r -1

1 _
Y = 5- > = =
o -12szm 12r (1v-308)

Second, for methods and problems where the approximate trigonometric
roots are not equal to the continuous roots the best selection of vy is
‘not given by Y, but additional research must be carried out to deter -
mine quantitatively how much different v must be from Yo for a given
H and S and a given approximate method. Third, for any methods and
problems selecting v significantly larger than Y, causes the transient
solution to decay too rapidly; selecting vy significantly smaller than
Y, causes the transient solution to decay too slowly. Since Y, is
always between zero and one-half, inclusive, the slopes of the transient
terms for the backward difference implicit calculation witha vy of 1
always are the least accurate.

(5) The error contributed to the intercepts by the elements of
the eigenvector matrix for the approximate method is proportional to
the difference between the trigonometric roots for the approximate
solution and those for the continuous solution. Thus, for methods and
problems where these roots are equal, the error in the intercept is
caused only by the error in the.initial vector components.

(6) Method C, with no points located on the boundary, has the
most accurate trigonometric roots, eigenvectors, and initial vectors
of any of the approximations discussed here. Consequently, in general,

for a given selection of differencing parameters, the approximate
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solution for method C is expected to be the most accurate solution of
any discussed here, and should be used when accuracy is of primary
importance. Three other important observations about .method Care

a) The accuracy of method C is a direct result of using
mesh AE /2 which does not locate points on the boundary but locates the
points a distance AE /2 away from the boundaries. This leads to a
difference formulation that is closer both physically and mathematically
to the continuous problem than for any other method. This is because
only for methods based on mesh AE/2 do the following three properties
occur simultaneously, (i) the boundary equations for this mesh are a
direct discretization of the continuous boundary equations; (ii) no heat
capacity is associated with the point on the boundary which is consistent
with the continuous boundary equation; (iii) no heat capacity of the solid
is neglected. Further, of the possible methods based on mesh AE/2
or mesh A€, method C is the only method that has a symmetric Y/A
matrix which must have orthogonal eigenvectors; consequently, method
C has an orthogonal relationship that is closer mathematically to the
orthogonal relationship of the continuous solution, and method C is
expected to have the most accurate initial vectors for any initial tem-
perature distribution.

b) The bound for lqminl for method C is independent of

the type of linear boundary equations or size of the heat-transfer
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coefficients at both surfaces; thus, only one relationship between the
‘bound and the differencing parameters r and v is necessary. How-
ever, for problem I with a large heat-transfer coefficient or problem
II, method C gives a large weighting to the damping factors which can
~be negative. This large weighting causes the very oscillatory behavior
in Figure IV -1 for a graphical method C for problem II, and it is the
reason method C is not suitable, in general, for graphical methods.
Indeed, to obtain the high potential accuracy of method C, the time
differencing parameters, AT and vy, must be selected so that any
oscillatory transient terms are negligible.

c) Although method C is expected to give the most
accurate approximations in general, for a specific problem with a
specific set of differencing parameters, another method might give
a more accurate solution because of compensating errors in the inter-
cept and in the slope in the transient terms for the other method.
Unless the direction and an estimate of the size of the error in the
intercepts is known (the direction and size of the error in the slope
can be found from a prior conclusion) this compensation cannot be
predicted.

(7) The most accurate approximate solutions for problems in one,

two, or three dimensions in any coordinate system are probably
obtained using regular meshes with the points located a distance of

AE /2 away from the boundary. This conclusion is based on the more
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accurate solutions obtained for method C, and on the fact that to obtain’
the physical and mathematical advantages mentioned in (6a) above,

the adjacent points must be located away from the boundary. For
irregular geometries and/or irregular meshes, locating the points
~away from the surfaces is probably also advantageous.

(8) Of the graphical methods, A is usually the most accurate.
Using this method if no more than 8 points are required, an approx-
imate solution of sufficient accuracy can be obtained by a graphical
constructioﬁ for times when no more than two of the terms of the
transient solution are significant. If more than 8 points are required,
the solution should be calculated numerically, but, because of the
simplicity of the difference equation, this can be done readily on a
desk calculator; thus, graphical method A is suitable for use in
problems where a moderately accurate solution at intermediate and
long times is desired, and where the solution is desired quickly and
cheaply. Several additional comments should be made about graphical
methods:

a) Graphical method A, along with the other graphical
methods, requires about twice the number of points to give as accurate
an intercept as does method C for problem II because of the direct or

‘ indirect.effect of the large negative root. If this is a characteristic
of graphical methods for other problems, they are not competitive in

the number of calculations required to obtain a given accuracy at a
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constant time, and a generalized method C should be used for accurate
solutions.

b) The reason that graphical method A is the most accur -
ate of the graphical methods is that several errors tend to compensate.
As the trigonometric roots ozj are symmetric about mw /2 for all the
problems considered here, the damping factors always occur in pairs
with equal magnitude but opposite sign. Thus, the slopes for the sum
of the two paired damping factor terms give straight lines on semi-
logarithmic paper only if the points at alternate time intervals are
used. Further, this method appears to have the tendency that the
amplitude for the negative of the pair of damping factors is small and
about the size of the error in the initial vector component-eigenvector
product for the positive damping factor, and the intercept is more
accurate for (n+m) odd in these problems. Additional compensation
is obtained when the intercept error is positive as it is in these prob-
lems using graphical method A, because the slope is too steep for
graphical solutions and the transient terms in the approximate solution
Cross thre corresponding continuous terms on a semi-logarithmic graph.
Also for problem I, the error in the approximate slope for graphical
method A is smaller than usual for vy of zero and r of %, because the
‘difference in trigonometric roots compensates partof the usuai error.

c) The forward average improves the accuracy of graphical

method A by reducing the size of the oscillatory component and by
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reducing the error in the initial vector components. However, this
latter improvement is dependent upon the fact that the error in the
initial vector for graphical method A in all problems studied here is
always positive, and under these circumstances, the forward average
decreases this error.

(9) The technique of averaging the approximate solution at the
beginning and end of a time interval, and applying the average at either
end or some time during the time interval, was shown to be equivalent
under certain conditions to interpolating as defined by Longwell (9)
for graphical solutions, and also equivalent to replacing a step change
in fluid temperafure with a one-half step initially, and the full step
change occurring at the end of the first increment. Averaging reduces
the amplitude of any large negative damping factors, and if the average
is applied at the center of the time increment, the initial vector com-
ponent of the slower-decaying positive damping factors is not changed.
If the average is applied at the beginning or end of the time increment,
the error in their initial vectors can either be reduced or increased,
depending upon the direction of that error before averaging; therefore,
averaging other than the central average probably should not be used
uniess the direction of the error in the initial vector is known. The
main application of averaging appears to be to graphical methods.

(10) The quantitative relationships derived for the errors as a

function of both the problem and the differencing parameters, have
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given a procedure that allows the s.election of the differencing param-
eters to obtain a certain accuracy, and at the same time, tends to
minimize the amount of calculations. Although this procedure requires
estimates of certain quantities in the continuous solution, and is fairly
complicated, the following observations and conclusions can be made
about the selection of differencing parameters.

a) The number of points S or S_, to be used is fixed by

G
the allowable error in the intercept.

b) Graphical solutions, if theyare to be calculated numer-
ically, must not require many more points than the general explicit or
implicit method.

c) The only generalized explicit calculations that need to
be considered are those where Ty > Z(S/SG)3, and in most cases the
oscillatory behavior will limit the size of Tt The explicit calculation
of r of 1/6 is the most accurate calculation possible for a fixed value
of S.

d) The oscillatory behavior need never limit the T for
an implicit calculation, as increasing v can always remove this restric-

tion. However, a limiting combination of r and v exists for a fixed

Im

S that satisfies the restrictions governing both the oscillatory behavior
and the accuracy of the damping factors. For an implicit calculation

to be considered, it must have an r m that is greater than 0.58, or the

I

explicit calculation with r of 1/6 is as accurate and requires the same
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number of multiplications. In general, the r must be greater than

Im

3
3.5 o OF 3..5 (S/SG) .
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(G) SUGGESTIONS FOR FUTURE WORK

In order to extend, generalize, and check the conclusions reached
in this discussion of the approximations to the one-dimensional diffusion
equation, several further numerical and analytic studies are suggested.

First, for problem I, a study of the trigonometric roots for
method C and graphical method A should be made to develop a relation-
ship either in the form of a series or a graphical correlation for the
difference (sz-ujz) as a function of S, H, and j for at least the first
several j's. This type of relationship is necessary to allow use of
equation IV-287 to estimate the error in the damping factors. Also
the characteristic roots for method C and problem I should be further
studied to develop a modified relationship corresponding to equation
IV-308 for Y, which allows one to find the optimum Y for problems
with a finite heat-transfer coefficient. Again, this relationship could
be a graphical correlation of H, r, and Yo Along these lines, the
numerical solution of generalized method A with r of 1/6 could be
stepped out to find if significant improvement is possible when the
ij and Uj are brought closer together.

Second, a problem where the heat-transfer coefficients at both
boundaries are between zero and infinity should be studied both
anélytically and numerically to be sure that the methods which are

accurate for problem I are also more accurate for this more general
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problem. The analytic study could follow the work here and the
numerical study should follow that suggested for problem I.

Third, the approximate solutions for problems where the boundary
forcing functions change with time should be studied. This should
indicate if any advantage in accuracy accrues to any of the methods in
the particular solution. Also, the effect of the particular solution on
the initial vector would be shown. Probably the easiest functions and
problems to study first would be a sinusoid surface temperature for
problem II and a sinusoid flux for problem III. These results might
be generalized to problem I without actually deriving its solution.

These several solutions might be sufficient to indicate that the com-
ments made about the eigenvectors and damping factors for the several
methods also apply to the particular solution as indicated by equation
Iv-213.

Fourth, the solutions for the one-dimensional problem found
here can be extended to two-dimensional problems (two Cartesian .space
coordinates). This can be done because by subtracting the continuous
solutions from 1 for problems I, II, and V, the solutions to the
problem with a zero fluid temperature and initial temperature of 1 are
obtained; for these problems, the product solution theorem as described
in Carslaw and Jeager (1), section 1.15, can be used for the two-
dimensional problem to obtain the complete solution of initial vector,

eigenvector matrix, and eigenvalue exponentials directly. For an
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approximate solution, the eigenvalues and the eigenvectors for the Y/A
matrices for square meshes can be founa by using matrix theorems
proved by Rutherfordv (23). These theorems are analogous to the
product solution theorem fof the continuous solution and, by multiplying
the two solutions together, the complete solution including the initial
vector for the two-dimensional problem results.

Fifth, the approximate solutions for problem V, the semi-infinite
golution, should be studied in more detail with the possibility of under -
standing the errors in the approximate solutions for short times and
infinite solids. This could be approached by seeing if the approximate
solutions can be expressed in terms of a ""binomial error function"
and then comparing this to the normal error function term in the con-
tinuous solution, as mentioned previously.

Sixth, as the initial vector has not been studied previous to this
work several useful additional studies can be made. Of these, probably
the most important is further investigation, both analytic and numer-
ical, of the conclusion that the most accurate initial vectors are ob-
tained when the Ai in the orthogonality relationship for gj correspond
to an integration of the weighting in the orthogonality relationship for
aj. This could be done by deriving the approximate solutions for meshes
corresponding to mesh AE /2 for cylindrical and spherical coordinates.
Several useful studies involving method C based on mesh AE /2 also

can be made. The z-transform solutions for other problems using this
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method should be found to try to improve the relationship used to
estimate the number of points S for an approximation of a certain
accuracy. In particular, the number 1/12 appears as the coefficient
of 1/82 in the expansions for the errors in method C; and possibly a
- study of the orthogonality relationship and the discretization error
near the surface might give a relationship th.at would allow us to use
this 1/12 as a proportionality constant in the intercept error bound
in equation IV -286.

In this study, the finite sum in the orthogonality relationship
for the approximate solution might be treated as an estimate of the
integral for the continuous solution. Also, in studying the space
discretization at the surface, care should be taken since a discontinuity
occurs at the boundary. These additional studies of the initial vectors
are also warranted, because if 2 simple way could be found of determin-
ing the sign alone of (gj-aj) considerable improvement in accuracy
could be obtained by cancelling errors. For example, if (gj —aj) is
known to be positive, then the time differencing parameters can be
selected so that the damping factors are small, y <y o and the approx~
imate transient term crosses a continuous transient term on a semi-
logarithmic graph. Also, a forward average could then be used,
which would reduce the error in the initial vector. If (gj —aj) is negative,
then the vy and AT are selected so that the damping factors are too

large (y > v 0) or the backward average is used. If the coefficient of
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1/S2 in the expansion for (gj -aj) were also known, spectacular improve -
ment in accuracy could be made by selecting r and the averaging
parameter k so that this term would be zero and (gj—aj) would be
proportional to 1/54. These same studies should also be carried out
for graphical method A. For this graphical method, the effective initial
vector s should be derived and studied. These vectors would then show
not only the size and sign of (gj -aj) for the slower decaying damping
factors, but would also indicate the relative size of the gj for the
oscillatory components. Hopefully, these expansions could show that
(gj -aj) is always positive, so that the forward average could always be
associated with graphical method A, and that the gj for the oscillatory
components are always about the same size as (gJ —aj) so that for either
odd or even values of n, compensation occurs. Further, a simple way
should be developed to find at which values of n odd or even this
compensation occurs; again, hopefully, this would be at (n+m) odd as

for the problems already studied.
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Table IV-1
GENERALIZED METHOD G
Mesh a¢, Equation IV-10,8=¢=y

Boundary Equation 0=<hee< o

to’n+1El+2ry(l+Ho/S)] - 2r7tl’n+l = [l-Zr(l-y)(l+HO/S)]to'n

+ 2r<l-y)tl’n + (ZrHO/S)[yth’n+l + (l-y)tfo’n]

n=0

Interior Points

+ (1+2r7)tm = r{l-y)t

- Tt m+l,n

Tl el 0+l m+l, ntl

+ [l+2r(1-y)] tan®t r(l-Y)tm—l,n

m=1, 2, LR RN S-l

n=0
Matrices
-2(1+HO/S) 2 0 ... 0 0 0 ]
l ’2 1.--0 0 O
(n¢)? % = 0 1 =2 ...0 0 0
0 0 0...0 2 —2(1+HS/S)
2H /S 0|
0 0
Y . .
2 B _ . .
(AE) A - . L)
] 0 235/5
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Table IV-1 (Cont.)

GENERALIZED METHOD G

Initial Condition 0<h= o

tm,O = T(mag, 0 +) m=0,1, ¢eo, S

Fluid Temperature

tf,n = Tf(nAq-) n=0
Stability 0<he ®
r{l-2y)M =2 M = min (“%H or ”%’E“ )
I Allr

p _
‘K” 1 2(2 + Hy/S)

”%” L MAx{s or (3+ ZHMAX/S)}

t =t n=0

Delete row and column containing infinite H in (a€)2%Y/A and
row containing infinite H in (AE)ZYB/A i in (A& )2YB/A put a
one in place of element located at the intersection of column
containing infinite H and row adjacent to deleted row.

Stability: r(l-27) < lé

Initial Condition: Fits boundary condition at n = 0 for

boundaries where H = @
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Table IV-2
GENERALIZED METHOD A

Mesh Af, HEquation IV-10, B=1, ¢ =0

Boundary Eguation 0=<h= o Explicit only
(1-2r)ty | +2rty |+ (ZrHO/S>tfo'n+1
t =
0,n+l 1 + 2rH/s
n=0
Interior Points
tm,n+1 = I'tm-l.n + (l-zr)tm,n + I'tam+l,0
m=1, 2, * s 0y S-l
n=0
Matrices (Note Y/A matrix is a function of r or AT.)
[ 2141 /5) 2
- 0 0... 0 0
1+2rH,/S 1+2rH /S
2 Y 0 0
(a8)* ¢ = A
l -2 l [ O O
2 2(1+Hg/S)
0 0 0 .. - .
Tt l+2r?1S/S l+2r?—IS/S
2H,/s .
l+2rH0 S
, YB 0 0
ae)* = = : :
ZHS/S
0 l+2rHS7S
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Table IV-2 (Cont.)

GENERALIZED METHOD A

Initial Distribution 0=he«< o
tm,O = T(mAE, 0O =) m=0,1, 2, «vs, S
Fluid Temperature 0=h= o
tep = Tf(pA'r) n=0
Stability
I‘EE% all h 0=h=o
Infinite h H= o
o1 T Penu n=0

In (A£)%Y/A in row containing infinite ¥ set diasonal element
equal to 1/r ; other elements in row to zero. In (AE)QYB/A
put 1/r in position of infinite H.

Initial Condition:

t 0=T(mg, 0") mzo, l, 2, . "0y S

m,
T(maé, 0 =) = Initial condition before fluid temperature changes

Note: As t is not required to egual tf 0 initially, the

0,0 )
initial distribution need not necessarily give the surface
temperature at 0 or S initially.
Special Case:
If one H is infinite other H zero and ti‘,n constant, then

define implicit method A as implicit method G delayed one AT:

tm,n A = tm,n—l G
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Table IV-3
GENERALIZED METHOD C
Mesh A£/2, Equation IV-29, 8=¢ = y

Boundary Fguation 0= h= oo

1+3H0/2S 1+3HO/23H

1+1,/25 [l A X t&,n[l'r<l‘7)(1+ﬁo7zs

t_%’ n+1[l+ T

rHO/S
+r(l-nty |+ T+ 25 (l'Y)th,n + tfo,n+1

n=0
Interior Points
'rytm—l,n+1 + (1-2ry)tm’n+l - rytm+1,n+1 = r(l-y)tm_l’n
+ [l-Zr(l-y)tm’n] + r(l-y)tmﬂ.,n
-3 5 3
m 51 50 e 3 >
n=20
Matrices
[ 143, /28
- l+’}{0 zs l 0 s e 0 O
l "2 1 TN O 0
2 L _ : : . . .
(AE) A - L] » . - 3
l+3HS/ZS
O 0 O e l -
1+HS728
HO/S .
l+HO 2S
0 0
Y - L]
()2 2 = : :
HS/S
| 0 T+ /25 |
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Table IV-3 (Cont.)

GENERALIZED METHOD C

Initial Condition

y ey S"

]

N
[{SF W)
o

tm,O = T{maé, 0) m

Fluid Temperature

tf,n Tf(nA'r)

Stability
r(l-2y) =

ro -
o
IA
=
A
8

Infinite h
Boundary Equation:
t%’n+l(1+3r7) - ryt%,n+1 = t%,n[}-Br(l-yﬂ + r(l-r)t%,n

+ 2r[(1-y)tfo'n + th’n+1]
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Table IV-4

GENERALIZED MYETHOD F

Mesh A¢/2, Equation IV-29, B = %, $ =0, Explicit y =0

Boundary Equation 0=h=oc0
1+HO/S rHO/ZS
S PT\TFEES) | T T T TR ES) Frgn T b
R H./25
1 +4+r 9
1+ /28
n=90
(If H = 0, same equation as explicit method C)
Interior Points
tm,n+l =rt i in?t (l»Zr)tm,n + rtm+1’n
| -3 5 3
m 50 51 e S >
n=0
Matrices (Note: Equivalent Y/A is a function of r)
1+3H,/28 tj 1+Hy/25 . ]
T(1+(14r)Hy/28) (1+(1+r)Hg 28y © 7C
1 -2 1... 0 0
(a8)? E = : | : : : :
141, /25 | 5 1+34./25
0 0 0 ... (1+(1+$)H‘725 T1+(1+ ?H /25
L T/t s T/t s_
Hy/25 ]
0
1+(1+r)H0/2s
Y 0 0
B
2 2 _
(WO = = ) .
HS/ZS
0
L 1+(1+r)HS/25




Initial Condition

too = T(mag, 0)

»

Fluid Temperature

tf’n = Tf(nA'r)

Stability

r=

N

Infinite h H=o

(l-2r)t4}’n + rt%’n + r(tf
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Table IV-4 (Cont.)

GENERALIZED METHOD F

0,n + tfo,n+l)

t% =

l+r
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Tabtle IV-5

GRAPHICAL METHODS

General Definition

Generalized methods with

y =0
-1
r=3

Graphical Method G

Only defined for:
H's infinite or zero
(Unstable other H's and simple construction not available)

If both H's are zero:

Qmin = -1
Averaged graphical method G, Qs = -1 does not appear
CGraphical Method A
Defined all H
If both H's are zero, g = -l

min

Averaged craphical method A, Ui -1 does not appear

Graphical Method C

Not recommended for H/S =2 (stable all H)

Graphical Method F
Usually used only for both H's = co, or one O, the other @

Conétruction may be difficult or impossible other H's
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Table IV-%
AVERAGED METYODS

General Definition

= -12; (b +t ) Applies at time (n+k)AT n=0

tn+k Ave n+l

Forward Average, k=0:

t =%(tn+t ) at time nAT n=0

n+l
(Chanzes initial condition)

n Ave

Central Averace, k=1/2:
- L . 1
tn+& =5 (tn + tn+1> at time (n+ Z)AT' n=0

Backward Average, k=1:

either
_1 ,
tn+-1 ) (tn + tn+1) at time {n+l)AT n =0
or
1 .

In definitions tn’s on right side are found by steppinz ocut the
solution for a method using unaveraged temperature vector to advance to

(n+l); i.e. is not used to advance. However, if calculation

t

n+k Ave

matrices are constant (not a function of n or t_) using averaze t
n ; n+k Ave

and an average boundary temperature vector to step to the next time

inerement gives a solution identical to an averaged solution (see

equation IV-L44).

Definition Averaged Methods

Averagzed Method G -- Backward Average

Forward Average

Averaged Method A

Averaged Method C Backward Average

Averaged Method F Forward Average
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Table IV-7

7~-TRANSFORM OPERATION PAIRS

Difference Function

z-1ransform

fn f(z)
1. fn+l zf(z) - zfo
2 2 |
2. fn+2 z? f{z) - 2 fo - Zfl
3= 3 2
3. fnJr3 z? f{(z) - z fo = z°f) - 2f,
a = a
L, fn+a a =0 z° f(z) -z fo - vee = Zfa—l
-b -
5. fob b =0 z - f{z)
where f =20
n
6. af = f =T (z - 1) (z) - zf
d —
7. nf -2 35 £(z)
5. Lg Jua,,
n n zZ
1 a fgzz
9. n+a n - Zﬂ/ﬁza+l dz
n 7z
10. a” £ f{a)
3 2— T(z)
11. f flz
R p z -1
n o —
12. £5 Yep £(z) u(z)
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Table IV-7 (Cont.)

z~-TRANSFCORM OFERATION PAIRS

Difference Function

£
n

z=Transform

f(z)

' 0
13. z; P
. !
=1 Y
where pj,n = residues of

zn-lf(z)

For simple poles:

1im (z-qj)f(z)zn'l

_N(z) (No Branch Cuts)

D(z)2""t

P . =
J.n
20 4
_ lim -—ﬂi&l—
T z2q . p(z)
j| dz
" - _ lim =
14, Initial Value Theorem fo = oo f(z)
. _ lim =
15. Final Value Theorem f o= gl (z-1) f(z)

Table Modified After Aseltine (25), p.

@

(Assumes True Steady State Exists)

260
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z=TRANSFORM FUNCTION PAIRS

Difference Function z-Transform
fn f(z)
1. A = constant Pa— A
2. n z
(z «1)2
3 n? z(z +-lz
' (z - 1)3
i I_!3 ZLZz + 47 + l>
(z - 1)*
n A
5. q z - q
6 nqn ._gi._._
(z - q)2
zs:‘mw0
7. sintuon
22 - 2zcos wy +1
2(z - cosruo)
8. cos w yn
22 - 2zcos wy +1
zsinh wo
9, sinh w gl
_ z? - 2zcoshwy +1
z(z - cosh wo)
10, cosh w4
2

z* - 27cosh Wy +1
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Table IV-5 {Cont.)

z-TRANSFORM FUNCTTION PATRS

Difference Function

z~Transform

fn T(z)
ze” “sinw
11. e sin w .n 0
0 22 - 22" % cos wg + g
-
- on z(z - e~ cos wo)
12. e cos won T T
22 - 2ze cosw, + e 2
1 L
13. E e’
14 1 cosh(z™9*3)
* (Zn)!
0 n#p -
15. Sn = 7P
P 1 n=p

Table Modified After Aseltine (25), p. 259.
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Table IV-9

PROBLEMS TO BE APPROXIMATEL

Partial Differential Equation
or _ __9%r

Problem I - Finite h and Zsro h

Initial T(¢,0) =0

Left Poundary - ‘{[l - T(O,T)] = %‘%(O,T)
- . AT -

ight Boundary -a-z-(_l,’r‘) = 0

Problem II - Infinite h and Zero h

Initial ™€,0) = 0
Left Boundary T(0,T7) =1
Right Boundary gz LT) .,

Problem III - 3oth h's Zero

Tnitial T¢,0) =
Left Boundary %}(o,fr) =0
- o7 -
Right Boundary aE(I'T) =0
Problem IV - Both h's Infinite
Tnitial TE€,0) =0
Left Boundary 0, T) =20
Rizht Boundary ™(1,7) =
Problem V - Semi-Infinite Solid
Initial T(¢,0) =0
Left Boundary ™0, T) =1

Right Boundary -%—Tg(oo,’r ) =0

=€ =1
T 290

T =0

= ¢ <1
T =9
T=20

o
IA
IA
8

V o
o

5
1}
(o]
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Table IV-10
CONTINUQUS, ANALOG, AND DIFFERENCE SOLUTIONS IN DIFFERENCE FORM
One=Dimensional Diffusion Equation in Cartesian Co-ordinates

Continuous

( )= ). 5 ( >[ 'szr]n
T(mAé, nAT ) = T, (mAé, naAT) - a, b.(mAé)|e
P 3;1 373

Where Wj defined by FC(Wj) =0 Characteristic Equation

Approximate
S

- n
tm,n = 1p m,n ,j;l &35 Cmy 93

1-2r(1=-y){(1=-cos o‘i)]n

for difference solution qj = [1+2r(l-73(1-cos dj)

for analog solution (only for methods G and C) replace

n -25%(1-cos > )nT
qj with e J

where s defined by FD( dj) =0 Characteristic Egquation

Notes
All Eguations and Methods n=2~0, 1, soey, @
Continuous Solution either m=20,1, 2, ««., S Mesh a¢
or m =% . % s vees s-% Mesh A¢/2
Approximate Method G or A m=20,1, 2, «0., 3
Approximate Method C or F m= % , % 3 seey S—%

For approximate methods summation on j is to number of variable

- temperature points
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Table IV-10 (Cont.)
CONTINUOUS, ANALOG, AND DIFFERENCE SOLUTIONS IN DIFFERENCE FORM

Correspondinr Quantities

Continuous Approximate
Particular Solution - Steady State or Quasi-Steady State

TP(mAE, nAT ) tp mn

Fourier Coefficient - Component of Initial Vector Weighting

h

v .th .. . ,
Given to J Eigenvector-Eigenvalue Product

a. = a . g, =g.{ex,

j = aglvy) 25 = 85ty
Component in Row for mth Temperature Point and jth Column of
Eigenvector Matrix

bj(mAe) = bj(mAf, wj) Cpy = © N

Damping Factors

Difference:
2

e-wj T 1-2r(1=y)(l-cos ocj)

1+2ry(l-cos =)
or J

-v 2T Analog:

e Y -2r{l-cos &)
o J

Characteristic Equation
Fo(¥,) = 0 P o) = 0

Eigenvalue Parameter or Trigonometric Root

. .
¥ = —d o =---'—'-.l
j 8 j s
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Table IV-1l
PARTICULAR OR STEADY-STATE SOLUTICNS
Problem T

i
[

TP(mAE) =tp m,n

Approximate Methods G, A, and C

Problem IT

Tp(mai) =t

1
mn

Approximate Methods G, A, and C, and Graphical Method F

Problem III
- =1
Tp(mAé, nAT) = t, mn = 3
Approximate Methods G, A, and C
Problem IV
’ - =N
Tp(mai, nAT ) = tp — mA{ =g
Approximate lethod G
Problem Vv
Tp(mad, naT) =t mon =L

Approximate Method G

and T steady state for m < v ; steady state for m = @

(tP m,n

is zero as found by'adding integral, Table IV-29, to particular solution.)

P m,n
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; Table IV~13
CHARACTERISTIC BEQUATIONS - PROBLEMS II, III, AND IV

Problem II h, = and hy, = 0 . (Limiting Case Problem I, H— 9

0 S
Continuous cos Swj =0 wj e ﬁg%ngﬂ J=1, ¢eu, @
Approximate

Methods G, A, and C

cosSo(j=0 a—w

3 55 =1, «esy S

t
H

o, = ¢, for j's 1= j=3S8
Graphical Method F J J
[tan(S-%)cxj] tan.dj =2 i=1, +.., 8
Problem IIT Both h's Zero (Limiting Case Problem II, 4—0)
Cont inuous sin Sy, = 0 v = Ligilﬂ F=1, eeey @
Approximate
Methods G, A, and C
. j-1)m .
sin S, = 0 oK, = = 1, veey S, S+1L
j jT= s J

Method C j # S+l

o(j = xpj for j less than S or S+1

(Note that for j=1, ql=l, which, although an eigenvalue of the matrices,
gives the steady state solution and is not included in transient part

of solution.)

The X which equals n corresponds to Ain for methods G and A
Problem IV Both h's Infinite
Continuous sin S¢j =0 ¢j = ig J=1, 2, «ve., ®
Approximate
Method G sin So<j=0 csz*ig =1, 2, «vs, S=1
Problem V No Characteristic Equation

(In limit of characteristic equation of problem Il the fact that as
S—ym 4§ —A0 shows that ¢ and o become continuous because any values

of ¥ and o satisfy the equation.)
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Table IV-14
DAMPING FACTORS

DAMPING FACTORS - EIGENVALUES

Continuous J=1,2, «¢eu, @
-v.2NT U.“(A’T’)z V.6(A’7')3
e J =1 - v 237 + -l -
J 2 6
Approximate All Methods =1, 2, +.., S or S+1
1-25%AT (1-y)(1l-cos —'Lii) pt(aT)?
q. = 2 =l-p..2A’I' +—‘1—5~————27+
J 2 ’—lu.-j- J e 6S~3A¢T-
1+2S*AT (y)(1~cos 3 )
[ 3
w2 (aT)
- ' [6)’2 + ____Y + l a e
s3atT  60s*(aT)?
DAMPING FACTORS TO nth POWER AS A FUNCTION OF TIME
Continuous
-ijn,yr , Cvtmar)E v (naT)?
e =1-an(A’7')+' > - g
Approximate A1l Methods
Difference (Note T = nAT ):
“ 2
T (nAT) -
qM =1 - ) + by L (220
J J ] 2 Gszq—- n
) T 3
gl ) [1,, Lo 3Qe2y) , 1 2Q-3y+%3) | (1-2y)]
6 282 -n 60S*r 2 n? 25%Tn
Analoz: AT—>0 nAT—>T n—»o
-25%(1-cos —f:‘l)nA’r gt (naT)?
e S =1« p?naT) + b1 + L
J 2 653T
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Table IV-15

DIFFERENCE IN LOGARITHYMS OF DAMPING FACTORS

1 2 4 1 1
=== 1lnq. = =p.° +pt——a (Z«y)AT
AT J J J [:1282 2
1
(Z -y )aT
-p. (%-y‘*yz)(A’r)z - & + -k
J - 4s® 3608*
-V.z
J 1 1
1n £ =pf v op = (3 .y AT
qjl AT 3 3 h| 1252 2
1 (% -7 AT 1
+p..6 (3‘ -y +yE)aT)? - +
J 652 360s*

Special Cases for y
Explicit, r = 0

1_43:.]

in =F“2_ V.Z_P.l+______
q'l;A’T B j J 1102 2

J
2
+ #.6 1 - AT + (A’r) « s =
J | 360s* 12s? 3
Implicit, y = '12" -—1
12S53AT

J | (a1 )2 1 .
e 2 2 6 T . .
in = p.% - v, o, -
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Table IV-15 (Cont.)
DIFFERENCE IN LOGARTTHMS (O DAMPING FACTORS

Special Cases for y

Implieit, , =1

2

-y
. h]
e 2 2 4 1 AT
1n = 5,2 . % ., = 2
g AT THTT TR [1282 2]
i
sop o[-l AT [
J 13608* 1282 3

Special Cases fory and AT or r

Grapnical Zxplicit, y =0, r =% ;

-1/.2

3
* 1 [ 2 *« &
1n -2 = p? v, ® ot o,
qjl;AT J J J g5 J 455“

Analog, AT—> 0

2
-V

e - 2
ln +>\"‘"‘l/ -)\
e

#

T
-v% 4+ 25%(1 - cos -—S—‘l)

p2ove _pdod el L
J J J 1282 J 136052

"
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Table IV-1£

EIGENVECTOR MATRICHES

Element in Row Correspoading to mth r"oint,’t jth Column

Continuous Eizenvector Applies Either Mesh A€ or AE/Z

For Mesh A€
AFor Mesh agf2
Approximate Eicenvector
Methods G and A, Mesh A¢

Method C, Mesh A¢/2

Problem I Finite h and zero h ; 03 #’wj
Continuous™ *

3

bj(mAE) = cos(S-m)\,(fj

Approximate Methods G, A, and C

¢ . = cos(S-n) «, Methods G and A
mj J
Method C
Problem IT Infinite h and zero h
Continuous i
b, (mAE) = sin my, v, = (2i-L)n
J J J 25
Methods G and A
¢ ., = sin my, ' X =y
mj J J J
Method C
= 5j O(-z:
cmj sin m¢3 | ¢3
Graphical Method F
¢ . = cos{S-m) «, o, A Y

nj J 3 J

m

m

i

"

- o

AV [l

1,

2, LI 3
ey S

eey OO

cee, @

. ey S

S+l
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Table IV-14 (Cont.)

ZIGENVECTOR MATRICES

Problem III*** Both h's zero

‘Contimous* ¥

b-(ml:\g) = £0s mq,, \P L= _..j.__( .-l)_ﬂ

J J J S
Methods G and A

ij = COs m\pj o‘j = ‘,’j
Method C

c ., = co . . =

mj S My 3 \Pj

Problem IV Both h's infinite

Continuous ¥ *
bj(mbi) cos m¢3 Wj S
Method G
= = ‘lﬁ
cmj cos m\pj °<;j S

%

1,

m refers to equation for mth point, which is (m+l) row in

S+1

[ 92}

.

conventional matrix notation for methods G and A based on mesh A&

or (m + %) row in conventional matrix notation for methods C and F.

Continuous "eigenvector" is actually an eisenfunction if m is

allowed to vary continuously from 0 to S.

¥ Xk

Vector corresponding to \I'l = 0 is considered as steady state

solution, althouzh its corresponding eizenvector is eizenvector of

Y/A matrix.

S5-1
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Tahle IV-17

COMPORANTS OF INITIAL VECTOR - PRObLEM I

One h Finite; Other h Zero; Tluid Temperature Zero; Initial Condition Zero

T(maé, 0 =) = T(ma, 0 +) =0 0= maé <1
Continuous j=1, 2, +ve4, 00
- 2H _
J (vj)[(H+1)(s'1n v + (vy)(cos yJ.)]
Method G 3=1, 2, vre, SH
L= 24
| 4 23y (s in Aed
(28)(tan M | (H+cos J(sinp ) + (S)(sin J(cos p.)
25 S 3 S J
Generalized Method A, FExplicit J=1, 2, veu, SH
%j =
24
il NS 2rily . Fj
2S tan ‘{[1-21'(1—005 )] +COSs }(smn# O+(8+5=) (sin—=+) (cos ~.)
2S S S j 5 5 3
Graphical Method A, r = 1/2 3 =1, 2, eee, S+
24

o =
o

J Ko Fog B
[ZS tan '5%] [(Hﬂ)(cos "‘S“l)(sin #j) + (5+ LS{')(s:'m ~§l)(cos Pj)}

Method C jJ=1,2, ..., S
21

g. = T
“J Has Mo
. i . H i
{ZS sin ZS“:(Hﬂ)(sm ;Lj) + (25+ -—ZS)(tan 28)(cos #j)]

Averared Methods

q. +1
G and C multiply by —-‘J—z-c-l-—— Backward
J
q. +1
A multioly by T Forward
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Table IV-18
CCMPONENTS OF INITIAL VEGTOR - PROBLEM IT

h = oo
Initial Condition T(maAg, 0 =) = 0 0SS ma¢g =1
’ 0 O< mAE =1
T(mA%, O +) = 1 0 = mAg
Continuous vy = nggllﬁ j=1,2, vv., ©
. =2
b Y5
Approximate j=1, 2, ve., S
Expansion for (gj - aj)
V. Va
g’j Smal]?‘l,OS--gl<ﬁ
1 v . V.3
Method G —— -——-21--—-3—;"‘
V. P
s} 63 3508
S tan 59
Generalized Method A, Explicit or Implicit
1 v,(12r-1)
N R
S(t j’i) 652
" 25 qj v.s
- 5%5[1+120r{1-6r(1- y) }] ..
" Graphical Method A
5v.
1 -—»3 2N (119) ...
" S(tan —‘1)(cos ) 65% 360
Method G 1 v 7”;1
V3 2 4
S sin —i 125 28808
2s
Graphical Method F
In
Pl 1. {zsfe -3},
tanE%[?(S+§)(sin 55 3+(S--3-)(s:ln-i--------‘-“*1
where #j are the roots of the characteristic

equation, Table IV-173.
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Table IV-1%
COMPOXNENTS COF INITIAL VECTOR - PROJLEY IIT
Both h's Zern

Initial Condition T(mA¢, O +) = T(mAZ, O -) = mAé

Continuous

2[1 - (»1)3]
a, = where v, = jn P =1, 2, ese, QO
j 2 i J J )

J

Approximate

('
i

l, 2’ ey S"l OI' s

Expansion for (gj - aj)

7. ‘ Small ~§3

Methods G and A Equivalent

[1 - (fl)q] [1 ) (_l)j][~L_ N _iii_ .
'sa(l_cos _gi) 6s2  1208*
Method C
[1 - (-l)Jl -[l _ (-1)'3}!: 1 .\ ?”jz L
125% 96052

2 Tdyiesn 21
252%(tan 25)(51n ZS)
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Table IV.20
COMPONENTS OF INITTAL VECTOR - PROBLEM IV

Both h's Infinite

Initial Condition T(maé, 0 ) = 0 0= maé =1
0 mAé = 0
T(mag, 0 +) =| O 0 mAé <1
1 maé =1
Continuous
-2(-1)J -
a, = z2(=1)" where v, = jn
J v . J
J
Approximate : i=1, 2, «ve., S=1
Expansion for (gj - aj}
gj Small Vj
Method G
. Vo
-(~-1)Y sin —4 v 2
( ) s81in 3 (-1)3[—‘1 . v ..
V. 2 LS
25(sin )2 68% 3608
25
Averaged Method G | (gj Ave " aj)
. Va
-(-1)7 (sin =) (q, + 1) o v 3
S 1 (-1)3{-—g(1—6r) + -1~:{1-360r2(1-y9}
. ___Iii\a 65 3605
45(sin e qj |
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Table TIV-21
.EFFECTIVE INITTAL VECTOR COMPONENTS

Granhical Solutions - Problem II

Continuous

T3 eevy QO

"Approximate Graphical

The following expressions result from pairs of qjls of' equal magnitude
but opposite in sign, combined in a single q, with the corresponding

initial vector components combined into effective weizhtings.

_ . s ¢ s . e _
T ey + (-1) B541-9 D S+% i Expansion for (5j B aj)
mj
Small v,
.8 J
1= <=2
u 1
—i]e D
5 l<:z
Method G

Yi _ (_ymin i | 4 -

25 J 52 J 3505+

Hethod A

" ™
ctn 55 + (-1)7""(tan —x) P i s 1104105(-1)™0

Method C
mv,
RS T _q =% . 1
L et ) (L) S el o I
S sin :i cos :i ‘ 2m ’ 2has®

25 23
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Table IV.22

COMPARISON OF GRAPHICAL METHOD F

Problem II, S=5, r=1/2, v =0

AT = 0,02
Trigonometric Roots
Contimious, Methods G, A, and C|13° 349 90° 126°  162°
Radians, ¥, 0.3142 0.9426 1.5710 2.1994% 2.8273
Graphical Method F 17.955° 52,52° 83.05° 111.5° 144.4°
' o3 0.3133 0.9183 1.4495 1.946 2.5199
Continuous Solution (First Five Damping Factors, Mesh £¢/2)
Ty 1 [0.1992  0.1927 0.1800 0.1621 0.1397] [0.9518™
Té 1 0.5730 0.4192 0.1800 -0.0285 -0,126L| | 0.&414"
Tg | =|1| - [0.9003 0.300L -0.1800 -0.1286 0.1000| | 0.2512"
Ty 1 1.1345 -0.0664 =0.1800 0.1797 -0.0642| | 0.0891"
Ty 1 | 1.2576 -0.3782 0.1800 0.0826 0.0221| |0.0184"
n
Graphical Method F (Mesh aé/2)
ty 1 0.208% 0.2800 0.33%6 0.1523 0.0243| [ 0.9513"
a
t3 1 0.5951 0.5100 0,121% -0.1476 =0.0592|| 0.6071"
tg | = [1 |~ [0.9236 0.3391 -0.3051 -0.0295 0.0720|| 0.1210"
t% 1 1.1623 -0.0982 -0.1955 0,1892 ~0,0573|| =0.3655"
tg 1 (1.2876 -0.4533 0.2578 -0.1092 0.0220] | -0.8129"
n
Averaged Graphical Method F (2tesh aé/2)
ty 1 [0.2033 0.2250 0.1875 0.0482 0.0023|/ 0.9513"
ta 1 0.5806 0.4098 0.6816 -0.0531 -0.0055|[ 0.6071"
ts | =| 1| - |0.9011 0.2725 -0.1710 -0.0093 =0.0067| 0.1210"
t% 1 1.1339 =0.0789 -0,1096 0.0599 0.0054|| -0.3665"
tg 1 .1.2556 -0.3682 0.1450 ~0,0346 -0,0021]\~0.5129

n
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Table IV-23
COMPARISON OF SOLUTIONS, GRAPHICAL METHOD A

Problem II, S=5, r=1/2,y =0, AT =0.02

Continuous Selution

T1 1 0.393% 0.3433 0.2546 0,1472 0.0437
T2 1 0.7484 0.4036 0 ~0,1730 =0,03732
T3 = [1 | - |1.0300 0.1311 -0.2546 0.0562 0.1145
I 1 1.2109 -0.2495 0 0.104%9 =0.13%6
TS 1 1.2732 -0.4244 0,2546 -0.1319 0.1415
n
Graphical Method A (Mesh A&)
£ 1 0.4103 0.5403 =¥ -0,1402 -0.0103
t2 1 0.7304 0.6352 -~ 0.1649 0.019%6
t3 = |1 |- |1.0741 0.2064 ~— -0.0536 -0.0269
g, 1 1.2627 -0.3025 — ~0.1019 0.0317
t5 1 1.3277 =0.6679 — 0.1734 -0.0333
( * Zero roots not shown)
Effective Solution Graphical Method A (Mesh A¢)
n even n odd
Y 1 0.4000 0,4000}(0.9511 tl 1 0.4206
t, 1 0.8000 0.8000]]0.5878" t, 1 0.7608
ta =11 |-| 1.4472 0.1528 t3 =|1]|-]1.1010
ty 1 1.2944 0,404k t;, 1 1.2310
t 1 1.2944 -0.4945 t 1 1.3610
5 n 5 n
Averared Graphical Method A {Mesh A&)
t1 1 0.4002 0.4286 —=* -0.0289 -0.0002
té 1 0.7614 0.5043 ~ 0.0340  0.0005
tB = l - 10014‘78 001638 - —Oo OllO —00 0006
&, 1 1.201¢ <0.3116 — -0.0210 0.0008
t5 1 1.2953 -0.5303 - 0.0353 -0.0009

n *
(* Zero roots not shown)

Effective Solution Averaced Craphical Method A

n even n odd
iy 1 0.4000  0.4000 {10.95117/ ¢, 1 0.4004
t, 1 0.7619 0.5383||0.5878" t, 1 0.7608
2ol =0 1] - |1.0872 0.1528} t5l=]1 |- 1.0484
ta 1 1.2024 -0.33%6 £ 1 1.2310
t5 1 1.2044 ~0.4945 t5 1 1.2962
n n

(*irst Five Damping Factors, lesh Ag)

0.9518"
0,414
0.2912"
0,089
0.0184"

0.9511:
0.5278
——

-0.5878"
-0.5851

0.6805
0.4703
0.2500
-0.2906
0.84173

0.9511"
0.58787
-0.5872"
-0.9511"

0.4578
0.4703
0.1748
-0.2906
-0.5661

[

[0.9 511;1'}

0.5878

0.9511"
0.5878"
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Table IV-24
SERIES TO MULTIPLY BY "UNAVERAGED" INITIAL VECTOR COMPONENTS
- TO OBTAIN SERIES REPRESENTATION OF INITIAL VECTOR COMPONENTS
FOR AVERAGED MET4ODS
(Cnly for Use on Non-Oscillatory Part of Effective
Initial Vectors Components)

General Average Applied at Time (n+k)AT tobk Ave = 13 (tn + tn+1)
1 2 2, 4

q.+l (k=Z)ru, ru, .

—l--k=1 + 2.3 (lg +y)(:-l'2-k) +.g...

20 S® g4 L 42T
rip,t . \

-0t s 2 G + EE 4 12y - 2Ll .

g¢ r 360r? 2 12'r 12

Forward Average k=0 Time n(AT)

q.+l T, rupt T, ‘

~L~=l-—4—+—J%HMmJ-—4~k%ﬂ&y+l)+q.u
2 252 2ugt 7203

Central Average k=1/2 Time (n+l/2)AT

q.+l b THRSE LT
-7~_-——=1+ '3- ‘2[1+6r(27-1)]
2/q. 85 48s
95
Backward Averase k=1 Time (n+l)AT
q.+L ru 2 ru.t I’;L.é
= e — ~—1~[12r(1-y) - 1] + —l- [1+60r(1-7)(6r{1-7}€lﬂ e
2qj 252 24s* 7208°%
Graphical Methods r=1/2 y =0
q,+l p2 ot ut
Porward: —-‘l—-=l --'1-'+ NI n! .o
: 2 4s®  48s*  1440s®
q.+l pt p.®
Central: --J-——=l+-—-1--+-——l—-
2j§; 328*  96s®
q .+l N A ST
Backward: “'l-—"‘zl +#7 + #-1 + #1
2q., 4bs®  48s*  1ubost

J
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Table IV-25

AVERAGED IHITTAL VECTOR COMPONENTS - PROBLEM IT

Continuous

Agnroximate*

ixpansion (qj Ave - aj)
23 Ave Small v,
Averaged Methods A and G
(Equivalent)
q. +1 vi(6r-1) v 60r{6r(1-9-1}-1]
1 J + J
] 63 3608*
qu S tan 35
Averapged Method C
g, +1 vi(12r+1) v13[7+120r{24r(1-7)—1i]
Py + A LN ]
v, 2 4
2 128 28808
2qj S sin 35

* Approximate initial vectors for averaged solutions found by

multiplyinz unaveraced initial vector by

q. +1
*lza-— (Rackward) for methods G and C

.+
or by —1—§~* (Forward) for method A
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Table IV-28

AVERAGED INITIAL VECTOR CCMPONZNTS - PROBLEM IIT

Continuocus
2!1_(-1)3]
a, = v, = it j = 1, 2, eee, OO
j Sz 3 J J
J
Approximate J=1l, 2, ¢ve; S or S+l
Expansion for (gj Ave ~ aj)
z. Small v,
J Ave J

Averaged Method G

[1-(-1)3][@”1) + 'y {l+120r(1-)’)}

v, . 2 &
ijsz(lﬂcos _§l) 6S 1205

Averaged Method A (Explicit)

bw(-l)j](qj+1)

V.
252 (1-cos -gl)
Averaged Method C

[l—(-l)j](qj-l)

[1-(-1)3][12r“1+ i {7+120r[:4r(l-7)+1]}

V. v, 2 e
3vg s 12s 9603
2qj(tan 25)(51n 2S)
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Table TV-27

SERIES TO MULTIPLY BY OSCILLATCRY SERIES IN E7%ECTIVE INITIAL

VECTOR TO OBTAIN OSCILLATORY SERIES IN AVERAGED SOLUTION

(Graphical Solution, y=0, r=1/2 Only)

General Averaze at Time (n+k)aT

1-q. 2
-C]_’ - P.'!

4

2q].k Lg?

Forward Averace

K.
4+ —d(he-1) ...
yagt

k=0 Time nAT

2
l-a; Ky

4
s

2 Lg?

Central Averave

L8s*

k=1/2  Time nAT

2
-a,  #y

7

2/5; T us?

Backward Average

4
yas*

k=1 Time (n+l)AT

1-q . .2
B

m

-1

20, T ug?
J :

16s*

To find sxpansions for effective initial vector components for averaszed

graphical methods: write series for effective initial vector component

into the sum of a seriss of non-oscillatory terms and a series of

oscillatory terms containing (-1)n as a factor; multiply non-oscillatory

series by appropriate series on Table IV-22 for ry=0 and r=1/2; multiply

oscillatory series by appropriafe series on this table and recombine

series to obtain

series for the effective initial vector components

for an averaged initial vector.
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Table IV.28

AVERAGED EFFECTIVE INITIAL VECTOR CMPONEMTS - PROBLEM II

Continuous
_ 2 _ (24=-1)n
a, = v, = J
3 v, J 2

Approximate Effective Initial Vectors

l, 2, ey Qo

1< 5=

N

gj Ave E

Expansion for

€5 Ave £ = 35
v,
0s—d=sd
g =2

Averaged Methods A and G (Equivalent)

vV,

V. v,
v, ctnss (-1)m+n(tan§é)(l-cos-§)

= ctnzd + 28 +
28 25 vy il
cos S cos 3

Averaged Method C

v, n+m ‘} v, mv,
1 1+cos-% (=1) -“(cos—%hl)(ctn—gl)
- -+ 12 5. S,

V. V. V,

-l S} —d
28 cos 3 s:m2S cos28

v, v, 2 [.59#4—5(—1)11%]

1,4

353 3608*

]

12ms?®

.
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Table IV-29
COMPLETE SOLUTION - FROBLEM V
Semi-Infinite Solid

Infinite h at mAé = 0

Initial T(mAg) = O 1< (mag) <
Continuous
i v
. \_=¥*rn
T(ma€, nAT ) =1 - erf —— =1 - % (sin my)e d¥
2/ rn v
0
0 2
mAE 2 [sin(mAE)u]e-V ATn g4,
=1-erf —=—=1-% , »
2‘/nA'T
0
Approximate
Method G: l n
1 [s:‘m mu][l-Zr(l-coSoc )] dot
tan =1t " T )
i tan N
0
i
I3 An
1 ag[sin m(AE)P][l-Zr(l-cosp Ag)] du
m tan L%-)E
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Figure IV-1.

333

Boundary Temﬁerature-—-\x

')

J

O ~

- -——/-\ ._-A~7
-
—

—0— t4/a2,n Method C

_____ T(ég—,n) Continuous

l Initial Temperature-—«xl I

a. Method C, Mesh A€ /2

0.0z 0,04 0,06 0,08 0,10 0.12 0.1% 0.16

nA7T

Boundary Temperature———\n

b, Method G, Mesh A¢ .

%
,LF—-¢L/,/IO—--%f=::=9==ﬂ'ﬁfs:ﬂ
- . .
//’
‘/
J .
,// m=1 —O0—1t 7. p Method G
/ . :
// £ =202 | e———- T(a¢ ,n) Continuous
l l Initial Temperature-——\\ | '
0 0,02 0,04 0.06 0,08 0.10 0,12 0.1% 0.16

naT

Comparison of graphical methods G and C.
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« 0 ax 20 (5-1)ax L
¢ 0 5 g = 1
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¢ 0 3 % % 22 5 e
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L 1 1
m 3 % : ‘% S—g S-g S-§- S+§
b, MESH A ¢ /2
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Figure IV-2. Meshes af and a& /2 .
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Figure IV-3. Other meshes.
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A

(Defined by Difference Fjuation)

or f
n n
——
=

>

tm

AT
n O 1 2 3 4 5 6 7

Figure IV-4., Example of a sampled or difference signal.
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Inaginary
+V -l Complex
zwPlane
| 5 \V4 Vi . A4 x
-l [AJ [A) IA) +l Real

X ILocation of
Pole

T

a. Intsgration Contour for Inverting Transform with
Poles Inside Unit Circle (Stable Solution).

Complex
g«Plane

b, Integration Contour for Inverting Transform with
Pole at +1 and Branch Cut from -1 to +l,

A rereil
m Z=] 2 +\ 221

Figure IV-5. Contour integrations for inverting z-transforms.




Term in Transient Solution
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0.5
£
3
+
ar
-2'0-_ (‘%
s
0.1 S \'\ ‘2
— \ \ 0
— o
N L £
0.05 £
- o~ s
n —— Exact Continuous,aj bj(mAf ) e g
[5)
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0.005 N &
- \ =
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\ 6,0 —]
— \ ;
\ i
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Dimensionless Time, 7T = nAT
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Figure IV-6.

Time Increment, n

Semi~logarithmic graph of term in transient
solution versus time.
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5 sin ¢ tan 5oy = 5 sinh ¢ () tanh ()

H( o)

342

Figure IV-10,

0.2 0.4 0.6 0.8 1.0
N 3 (o<6), Radians

%G =+ Jlg)

Characteristic equation, method G, imaginary
root/sixth root) for $=5,
Note: u = 5a
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Figure IV-12.

Error in first two roots, method G,
graphical method A, and method C, S=5.
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Figure IV-14.

Difference Modulus, r = S$2AT

Sufficient conditions such that Ui = = T for

methods where minimum norm of Y/A matrix is equal
to or less than 482, or all trigonometric roots
aj are real. ' :
_ Href1+ T)
T Thr(1+T)

Selection of r and y above and to the left of a
line for constant T assures Uiy =T -
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Figure IV-l5. Semi-logarithmic graph of term in transient

solution versus time showing effective initial
vector component for graphical method A.
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