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(E) COMPARISON OF METHODS --z-TRANSFORM SOLU TIONS

In order to compare the approximate methods just derived,
and to demonstrate the utility of z-transforms in studying and under -
standing approximate methods, complete analytic solutions have been
found for the approximate methods applied to several commonly
encountered problemé. As has been shown above, these approximate
solutions have the same form as the continuous solution. A comparison
of corresponding terms of the approximate and continuing solutions
will now be made. Also, for one problem approximated by graphical
methods, it is possiblc to allow for the interrelationsl;ip between the
several terms in making a comparison. These results not only show
us which are the more accurate methods, but also how to select the
differencing parameters so that the approximate solution is sufficiently
accurate. The problems considered are summarized in Table IV -9.
The comparison of terms of the solution is in Tables IV-10 through
Iv-29.

The precise mathematical statements of the five problems for
which analytic solutions for the approximate methods have been found
are in Table IV-9. In problem I the solid has a zero initial condition
throughout. The left boundary is in contact with a fluid which has a
heat-transfer coefficient, h, and which undergoes a step increase in

temperature from 0 to 1 at time zero and remains at 1 for all
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succeeding times. The right boundary is adiabatic. Problem II is
-the limiting case of problem I as the heat-transfer coefficient h is
increased to infinity so that the left surface undergoes the unit step
increase in temperature and then remains constant at 1. In problem III
. the initial distribution increases linearly from 0 at the left boundary to
1 at the right. Both boundaries are adiabatic. The solutions for
approximate methods G, A, and C are compared to the corresponding
continuous solution for each of these three problems; the solution for
graphical method F for problem II is also shown. The main conclusions
concerning these methods are based on how accurately they approx-
imate the continuous solution to these problems.

Problem IV has an initial temperature distribution of zero;
 the left surface temperature is maintained at zero and the right surface
at one. Problem V has the same initial and left boundary conditions as
II, but its right boundary is assumed to be located at a € of infinity.
For these two problems only the solutions for method G are derived
and compared to the continuous solution. Method G applied to problem
IV was the first problem solved by z-transforms. It was selected
because the eigenvalues and eigenvectors of the Y/A matrix for this
case are published (29), and the z-transform results were subjected to
an immediate (successful) check. Method G applied to problem V was
used to show that the z-transform procedure is applicable to the case
of a semi-infinite solid where the transform has a branch cut as a

singularity.
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The approximate and continuous solutions have the same form
as shown in general by the vector equations II-17, II-43, and II-52,
and specifically by the components of the solution vector for method G
for problem I, equations IV-145, IV-146, and IV-161. These solutions

are in difference form for problems I through IV:

Continuous:
2
® -4
T(mAE,nb7) = T(mAE,nAT) - Z a bj(mAg)[e J ] (IV -206)
j=1
n=0, 1, s QO

where d;j's are the roots of a characteristic equation, FC(\‘; ) = 0.

Approximate:

s
Y g ¢© q” n=0,1, ..., © (1vV -207)

where
1-2r(1-y)}{(1l-cosa j)
9 = 14+2rvy(l-cosa j)

ji=1 2, ..., 8 (IV -208)

and where gj cmj’ as well as qj, depend upon the roots of the charac-
teristic equation F (ozj)’= 0. For the analog solution the term
n ~25%(1-cosw s

qj is replaced by e yo Table IV-10 summarizes the

D

solution equations, the corresponding quantities, and other notes.
Although in the continuous solution m and n (and n in the

analog) can be treated as continuous variables in the above equations
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for Tn and tm’ 0 when comparing with an approximate method, both
the continuous and approximate solutions are written only for the spatial
points and values of n where the difference method gives results.
Thus, n is only allowed to be non-negative integers, and when comparing
methods G and A based on mesh AE, the above equations are written
for m =0, 1, ..., S; and for methods C and F based on mesh AE /2,
m=1/2, 3/2, ..., S - 1/2. The summation for the difference solutions
is a finite sum over the number of degrees of freedom or number of
points for which the temperature is calculated. The upper limit of the
summation changes with the mesh and specific problem and the use of
S above is to represent a finite sum.

The error in the approximate solution for the mth point at time

n is found by taking the difference between the above two equations,

IV-207 and 1V-208, and is

v = T(mAg,nAr) - t = TP(mAE,nAT) -t

Pm,n

H

2

S - -r ¢j n (IV-209)
+Z .C .9, - a,b, (mAE)e
€j “mj 9 Z i
j=1

j=1
This error is made up of the error in the particular solution,
TP(rnAE,; ,nhAT) -t , and the error in the transient solution which

P m,n

is represented by the difference between the finite and infinite sums.
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Because the fluid temperatures are constant with time and/or
the boundaries are adiabatic for the five problems'considered, the
particular solutions are also constant and are discussed first. Actually
no error occurs for the particular solution in these cases and the study
is limited to the important and complicated transient solution. This
solution is discussed in general followed by a detailed comparison of
the characteristic equations, damping factors, eigenvectors, and initial
vectors. Also in the section E-6 on initial vectors, a study of the inter -
relationships of the oscillatory behavior for graphical methods is shown
and averaged solutions are discussed. A numerical comparison of the
analytic solution of graphical methods A ‘and F applied to problem II
is included under this topic and a special scction on the analytic solution
of problem V is presented.

The detailed summaries of the continuous and approximate
solutions are in Tables IV-10 through IV -29; these are arranged by

*
terms in the solutions and the complete analytic solution is found by

recombining the terms according to equations IV-206 and IV -207.

1. Particular Solutions

The particular or steady-state solutions for both the continuous

and approximate methods derived are in Table IV-11. As the fluid

sk

Zero roots (q,'s = 0) are not included in these summaries unless
they require no change”in form.
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temperatures in each of the five problems are constant with time, the
particular solution, which is of the same form as the fluid temperature
function, is not a function of time and therefore is a true steady state.
The particular solution for every approximate solution found is identi-

cally equal to the continuous particular solution.

T_ -ty =0 (IV-210)

Further, for one~dimensional problems arguments based either on
matrix solution of the system of difference equations or on the z-
transform of the solution and the final value theorem, item 15, Table
IV-7, can be used to show that methods G, A, and C have the same
steady ~statle solution as the continuous solution. Thus, for problems
when a true steady state occurs, i.e., where the fluid temperatures
are constant and/or where the boundaries are adiabatic, the steady
states for both the approximate and continuous solutions are equal.

Of more interest for possible future study would be a comparison
of particular solutions for problems where the fluid temperature is a
function of time. This would give a particular solution which is a
quasi-steady-state solution, and one of the approximate methods might
show an advantage in accuracy for these problems. Two types of fluid
temperature functions which would be most interesting to study are:
one which changes linearly with time, a ramp function, and one which

changes sinusoidally with time. The problem for a sinusoid function
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could be studied using a frequency response technique (13) on the z-
transform without inversion; this frequency response technique is
exactly analogous to that for Laplace transforms and ordinary differ -
ential equations. The final value theorem cannot be used to study these
solutions where the quasi-steady-state solution changes with time, as
it applies only when a final value or true steady state occurs.

Although a complete solution or frequency response study is
necessary to determine the exact influence of the differencing param-
eters on the accuracy of particular solutions that change with time,
some of the comments and conclusions made for the eigenvectors and
eigenvalues of the transient solution are probably true in a general way
for the particular solution. This can be shown by writing the vector

solution for t when the boundary temperature vector is a function of
n

time tB,nas
i - 1 '
n _ - T n-p _ -
= + —— t 1v-211
t =CQ C ¢t Z cCQ C % B opol (v )
p=1
instead of as
t =t +Can'l(t -t ) (1v-212)
n P,n 0 P,0

Thus, the summation in equation IV-211 which involves the eigenvectors
and eigenvalues of the Y/A matrix contains the particular solution and

part of the transient solution.
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Sincé the continuous solution of the partial differential equation can

be written in a form similar to equation IV-211, using Duhamel’s

" Theorem where an integral replaces the sum, the selection of the
differencing parameters so that the eigenvector matrix C and eigenvalue
matrix Q are close to the ;:orr esponding quaﬁtities in the continuous
transient solution also would be expected to result in an accurate
particular solution.

Conclusions and Summary--Particular Solutions. For problems

where the Particular solution is a true steady-state solution, the
approximate particular solutions for all the rhethods are equal to the
continuous particular solutions. A dditional studies are proposed for
problems Where the fluid temperature forcing functions give a
quasi-steady-~state solution, although arguments are presented that
methods which give the most accurate transient solutions also prob-

ably give the most accurate particular solutions for this case.

2. Transient Solution

The transient solutions for the continuous and the approximate
solutions are the infinite and finite summations, respectively, in
equation IV-209. As mentioned before, the transient solution gives

the exponential rate of decay to the final steady state, and because of
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the nature of the problems studied, the major conclusions and com-
parisons are for the transient solution. In this section the transient
solution is discussed in general in order to introduce detailed dis-
cussions and to show the specific goals of those discussions.

Each term in the transient solution is a product of an initial

th
vector component a, or g. times the m component of an eigenvector
j j 4 Prn i
b.(mAE) or ¢ , times an exponential e 7 or exponential form q. .
J - mj

The initial vector component a, or g, is the weighting for the Jt
J J
. . th )
eigenvector -exponential product. The m  component of the eigen-

vector bj(rnAg) or c i gives the relative weighting for the jth exponential

- “rn

J

h t
at the m point. The j exponential function e or the exponential

.th .
form an determines the rate at which the j  term goes to zgro with
- “rn

J

time or n. The continuous quantities aj, bj(mAi }, and e depend

upon the jth root 11;J, of a characteristic equation FCW J_) =0 for the
continuous problem; the approximate quantities gj, ij’ and qj depend
upon the jth root aj of the characteristic equation FD(ozj) = 0 for the
approximate problem. Also, the summations are ordered so that, as
j increases, both \I;j and ozj increase. This means that the lower-
subscripted terms are the slowest decaying terms for the continuous

_¢ 12'1'

solution ; e corresponds to 94 The higher-subscripted

or qMAXu
terms for the continuous solution decay rapidly. The higher-subscripted

terms for the approximate solution are the ones that contain the nega-

tive q,'s, if such are allowed by the selection of the differencing
J .



184 -

paramecters; the minimum qj is dg depending upon the method

°r 9541°
and the problem, and is usually designated q . . Each of the first
. min
S terms of the continuous transient solution is considered to cor-
respond to the term in the approiinﬁate soluécion with the same subscript.
. ¢ Cr

J which are raised to the

~For convenience, the quantities qj and e
n power in the solutions are called damping factors in this study, as
the term eigenvalue applies only to qj, and exponential function

The error in the transient solution for the rnth point at the nth
time increment is the difference between the infinite and finite summa-

tions in equation IV-209, and because no error occurs in the particular

solution for the five problems studied, this is the total error:

-w,zrn
aj bj(rnAg) e (1v-214)

G018

s.
n
v o= ) ge_a”-
m,n ) mj} o)
j=1

By combining corresponding terms with the same subscripts from both
summations and assuming that terms containing products like

(g.-a){c .-b(mAE)] are negligible, this error is approximately:
J J mj J

-4 _Zr n
S e J n
- grade tg {c -bmse)rec {1-|2—— | }a
v Zl[(‘“ ae e fo mplmaa)bge (112 z q,
J:
@ 2
‘ - “rn (1v-215)
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The second summation, which is from (S+1) to infinity, occurs because
the differencg system has a finite number of roots for a finite number
of degrees of freedom, but the continuous solution has an infinite
number of roots for an infinite number of degrees of freedom. This

- summation contains the most rapidly decaying exponentials, and for
any values of S a time sufficiently large exists when this summation is
negligible; however, for short times, some of the terms in this sum-
mation are significant and causesignificant error. The finite summation
in equation IV -215 represents the error caused by the fact that the
initial vector components, eigenvector components, and damping
factors for the approximate solution are not equal to the corresponding
factors in the continuous solution. The accuracy of the transient solu-
tion for each of the methods is studied by comparing fhese correspond-
ing factors; that is, a separate section is devoted to each of the quan-

..\l; .21‘

tities, the damping factorsratio e !

/qj in E-4, the difference in
eigenvector components (ij - bj(mAg) ) in E-5, and the difference in
initial vector components (gj - aj) in E-6. The form of equation IV -215
used here is convenient because expressions for the ratios and/differ—
ences shown can be easily derived from the complete analytic continuous
and approximatc solutions. Since each of these quantities depends upon
the roots q;j and ozj of the characteristic equations, thesé roots are

discussed in the next section. However, before starting these detailed

comparisons, some additional comments on the behavior of the transient



186

solution and on the requirements for accurate solutions are to be made.
As én example of how terms in the transient solutions behave,
refer to Figufe IV-6, where the first two terms (j=1 and j=2) in both
the continuous solution and an approximate solution for a temperature
point at a £ of 0.2 for problem II are plotted versus time on semi-
logarithmic paper‘. The approximate solution terms shown are for
graphical method A with five points (S=5). Two vertical scales are
shown, one on the left, a 1ogarith1ﬁic scale, representing the term in
the transient solution; the other on the right, an arithmetic scale,
representing the natural logarithm of the term. Two horizontal scales
are also shqwn, one for the time T and one for the time increment n.
Each of the four terms decreases linearly from an intercept of
aj bj(-mAg) or gj ij on the logarithmic scale at time zero. The slopes
of these lines, based on the scale for the natural logarithms of the
term and the time (T ) scale, are -v .2 for the coﬁﬁnuous solution and
the natural logarithm of qu/AT for the approximate solution; if the
slopes are based on the n-scale, the slopes are the logarithms of the
damping factors or (-UJ.ZAT) for the continuous solution terms and
(in qj) for the approximate solution terms. The differences in intercepts
of the terms are caused by the errors in the initial vector and eigen-

-vector components which are, from equation IV-215,

¢ .~a.b(mAg)~(g.~a)c +g. 4¢ .- b.(mA Iv-216
) Cpng™ 5 P{mBE) = (g a)e gl{nv (mog)}  (1v-216)
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Since the gj cmj product for an unaveraged method is affected only by
the differencing parameters that are involved in the Y/A matrix, the
error in the intercept for an unaveraged solution depends on the method
used and the number of points for methods G, C, and graphical A.
For averaged methods and generalized method A the intercept is also
a function of the time increment and weighting v; and for the averaged
methods it is increased or decreased, depending upon the time at which
the average is applied. The slope of the line for the approximate solu-
tion depends on the method, number of points S, and the time differ-
encing parameters AT and vy, and it is unaffected by averaging.
Also, this graph indicates that the second term of either solution decays
rapidly, so that for this problem at an n of 7 or dimensionless time
of 0.14, it is less than 4 per cent of its original value and about 5
per cent of the first term. At a dimensionless time of 0.2, it is
insignificant compared to the first term; therefore, at long times only
the first term (j=1) in the summation for the error is significant, and,
if a true steady state exists, a plot of the solution on semi-logarithmic
paper is linear with time for these long times. This fact should be
used to extrapolate a stepped-out solution to very long times, and
dyrax C2R be calculated from the slope of this portion of the graph, if
desired.

However, for short times more terms in the continuous transient

solution are significant, and if accuracy is required for these times
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the corresponding terms in the approximate solution must be good
estimates of the terms in the continuous solution. That is, for example,
if J terms are significant at time of interest T 0’ the first J terms of
the approximate solution must be good approximations to the correspond-
ing terms in the continuous soliation. (In some cases very accurate
approximaté solutions are obtained at several low values of n because
the approximate solution crosses the continuous solution near these
values of n; however, this type of crossing is not predictable.) Further,
Figure IV-6 shows that neither the intercept nor the slope for the second
term (j=2) of the approximation is as close to those of the continuous
second term as for the first term (j=1).

These facts, although shown only for one approximation, are
typical of ail approximate transient solutions and can be used to sketch
a procedure to select the differencing parameters intelligently. If
the maximum error that can be tolerated in the approximate calculation
isV, at time T or increment n_, and for all later times, then we

0 0

must have:

2 T
3 | AN
V= \Vm,nl = ‘ 'Zl l:(gj-aj)cmj+ gj {ij-bj(mAg)}+ gj ij {l_ :—W? }an]
J= . j
(1V -217)

where only the first J terms are significant in the continuous solution.

Although in principle each of the J terms in the expression for the
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error v could be estimated and used to select the approximating
parameters, this is not practical if J is more than one. Instead, an
upper bound for the sum in equation IV-217, or equivalently Vm,n’ is
found by determining an upper bound for the absolute value of each term
in the sum. The largest an in the summation occurs for a jof 1, and
from the above comparison of terms subscripted 1 and 2 the largest
coefficient of an occurs for the largest j or J. Therefore, each term
in the summation must be less than a product of these quantities and

the summation of J terms is less than J times the product. The

inequality in equation IV -217 can then be conservatively written as

2
J

.
-1 0
e n
= - —- | ————————— :"
2 J\(gJ aJ)ch + gJ{ch bJ(mag)}+ g5 ch{l o }\ql =] Vm,nl
J

(1v -218)

/At

If the contribution to the error from the difference in intercepts is taken

equal to that from the slope at time T ., we have from equations IV-216

0

and IV -218,
= = lggaje st gy {e, b (mae)} = g g3y Py(mee)|

ZJq1
(Iv-219)

and
_UJ& TO
Vv e _

o = leyeyyg {1 T\ T 1/aT } | (1v -220)

23q, 0 EN)
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By selecting the error in the intercept equal to that in the slope, if the
‘terms havevopposite signs, the actual error at time To is much less
than the bound V, but if they are of the same sign, the error is within
the requiremeﬁts. Now since the intercept error is a function primarily
of S fdr all methods, the first restriction, equation IV-219, can be
used to fix the number of points; then after the points are selected, the
time differenciﬁg parameters AT and v are fixed so that the second
restriction is satisfied. Although the above equations should apply for
any values of J, they are particularly useful when J is 1 or probably
not more than 5.

However, the time differencing parameters must also be selected
so that the oscillatory effects caused by any negative approximate
damping factors do not ruin the accuracy of the solution. This requires

that the largest oscillatory term be insignificant compared to the

smallest significant term in the continuous transient solution, or

equivalently:
"o "o
mwin  |g.c_.q, |> MAX |g.c .q, | (1v-221)
1<j=<7J J mJ ] J<j< S J mj ,

The quantity on the left of the inequality sign is the term in the approx-
imate solution that has the minimum absolute value of the first J terms
in the sum; the quantity on the right of the inequality is the term that
has the maximum ébsolute value of the remaining terms subscripted

(J+1) to S. A more useful criterion is to make the contribution from
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the maximum oscillatory term much smaller than the error bound.

o

V >> gS cm (1v -222)

Y
S

where Y is an upper bound for \q |. This oscillatory contribution
m

in
- should probably be no larger than 1/10 of V and possibly should be
smaller than 1/100 of V. Two ways of minimizing the oscillatory effects
are by making Yn small by the selection of the time differencing
parameters and/or by making the amplitude of the oscillations small,

either by using a method which has a small &g Cm or by using a tech-

S
nique such as averaging to reduce this amplitude. The selection of AT
and vy to obtain a given Y was discussed thoroughly in Chapter III, |
using matrix techniques, although a brief section is included here as
part of the discussion of damping factors as found by z-transforms.
However, on’e of the conclusions in that section is that the matrix
technique is not only easier to use, but also gives an Y thatis closer
to i therefore, the methods of Chapter III are better for studying
stability. The amplitude of A in is also considered, and the averaged
methods are studied not only from the standpoint of oscillatory be-
havior, but also for their effect ;)n the accuracy of the intercept for
the larger positive démping factors. Because the parameters used
for graphical solutions are so close to the limiting conditions for

stability, the restriction in equation IV -222 does not apply directly to

graphical solutions; however, a similar restriction concerning
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oscillatory b’ehavior is required, and this is discussed in the section
on damping factors. Not all the methods are suitable for graphical
solutions because they do not meet the requir ement, buf gfaphical
method A is shown to be capable of giving accurate solutions. If the.
‘assumption is made that a graphical method does meet the oscillatory
requirement, then as both vy and r are fixed, S must be increased
until both the accuracy requirements, equationsIV-219 and IV-220 are
satisfied. (For fixed r increasing S reduces A'r)

In selecting the time differencing parameters consideration
must also be given to minimizing the number of calculations to the
maximum time Ty If a true steady state exists this time 'rl need
never be much greater than the time when only one term is significant
in the transient solution which is, for problem II, about 0.2. To find
the solution for longer times a semi-logarithmic extrapolation shéuld
be used. For other problems, this time can be estimated from 9, and
50 from a trial calculation with a coarse differencing grid, or from
the calculation itself. The number of non-zero multiplications is pro-

portional to the number of points and the time 7., and inversely propor-

1
tional to the time increment for an explicit calculation or an implicit
calculation where the tridiagonal solution described in Chapter III is

‘used.. The number of multiplications is equivalently inversely pro-

3
portional to r, the cube of the number of points, S, and Ty
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N = —— = — (IV -223)

where N = number of non-zero multiplications and P = proportionality
constant which depends upon r and v and how the vector-matrix
‘product {I + (1-v)AT(Y/A)] t is found.

If this vector-matrix product is found in the most efficient way
by making use of the fact that the off-diagonal elements in a row are
equal, P is 1 for a graphical solution, 2 for all other explicit calcula-
tions (y = 0), and 7 for any implicit calculation (y#0). If the calculation
of the vector -matrix product is carried out by a vector ~matrix sub-
routine each value of P is increased by 1 giving 2 for graphical, 3 for
any other explicit, and 8 for implicit calculations. In practice, differ-
encing parameters which give the minimum number of multiplications,
and which meet the restriction for accuracy, are never found but some

" rules are presented that allow this minimum to be approached. Assum-
ing the most efficient calculation, these eguations do indicate that,

for an implicit method to give the smallest N, it must allow an S/AT

or S3/r which is less than 1/7 times that for a graphical solution or
less than 2/7 times that for an explicit method. This means that no
other explicit calculation except the graphical solution need be con-
sidered if the graphical solution meets the restrictions with the same

number of grid points as does any other explicit calculation.
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In the detailed discussion and comparison of the trigonometric
-roots, the damping factors, eigenvectors, and initial vectors of
approximate methods, the following points are emphasiied as leading
to a thorough understanding of the approximate solutions and to the
- selection of differencing parameters that give the required accuracy
with a small amount of calculation.

(1) A comparison of the methods is made to determine which
are the most accurate for any selection of approximating parameters
and which are the most appropriate for graphical solutions. Included
in this is the effect of oscillatory roots and a study of averaging.

(2) The second major consideration is to present ways of
simply estimating the quantities in the inequalities for obtaining
accuracy, equations IV-219, IV-220 and IV-222, and showing a
methodical procedure for selecting the differencing parameters that
give this accuré.cy with small although probably not minimum effort.
This requires presenting an expression for the difference in the inter-

1/AT

2
cepts, _[gJ c 3" a_b_(mAE)], and the slopes (-v -1ln q ) of

J J J J
th . . . . .
the J~ terms, as functions of the differencing parameters which will
apply in all cases. It also requii'es obtaining estimates of the damping
factors or, equivalently, their trigonometric roots for either an

approximate or continuous solution to determine the number of sig-

nificant terms J at the earliest time of interest ‘TO.
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3. Characteristic Equations and Roots

The characteristic equations are summarized for problem I in
Table IV-12, and for problems II, III, and IV in Table IV-13. (Problem
V does not have a characteristic equation as such.) For both continu-
ous and approximate methods, the characteristic equations for problems
II and III can be found from the characteristic equation for problem I
by taking the limits as H approaches oo or §., respectively. That this
is true for the difference method is seen by noting that the eigenvalues
of the matrix are continuous functions of its elements. Thus the solu-
tions of problems II and III are developed and discussed here as speciai
cases of I. Problem IV, with both H's infinite, is a different problem
and is discussed separately.

The characteristic equations in Tables IV-12 and IV-13 can be
thought of as equation II-47 with a trigonometric substitution, equation
IV -208, for q. For the difference methods G and C and graphical method
A the Y/A matrix is not a function of vy or AT; thus these characteristic
equations apply for all values of v and AT including AT = 0 for the
analog solution, and are independent of the initial condition or how the
fluid temperature changes with time. However, when the Y/A matrix
is a function of AT or r for a fixed S its characteristic,equaiv:ion is a
function of r; this is true for generalized method A. The approximate
characteristic equations apply also to any problem where the Y/A matrix

is the same as for problem I; this includes problems where, in addition
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to the heat flux from the heat-transfer coefficient, a heat flux specified
as a function of time but independent of the temperature is present
at the boundary.

The difference between the characteristic equations for the
approximate methods shown in Table IV -12 for problem I and the
characteristic equation for the continuous solution is that the factor
(S¥) in the continuous case is replaced with factors such as (S sina),

(S tanw), or [2S tan(e/2)], which differ from (Sa) only slightly for
small angles. As the characteristic equations themselves are trans-
cendental and the roots can be obtained in analytic form only for the
special cases when H is either zero or infinity, the best way of gaining
a quantitative understanding of the effect of the replacement is by
defining for each characteristic equation shown in Table IV-12 a
function H(¥) or H(e). A plot of H({) or H(a) versus the angle param-
eter is constructed for an assumed S. From these curves the required
roots can be found for any H and a comparison of the behavior of the
equations is possible. Although the results from this study apply only
to a given value of S, the conclusions are generalized qualitatively to
other values of S by a series expansion of the replacement function.
First the graphs for H({) and H(o) are constructed. This is followed
by the series expansion to explain and generalize the results.

The graphs for the characteristic equations of the continuous

solution and methods G, C, and graphical A are in Figures IV -7
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through IV-12, for an S of 5 and angles of 0 to 2m radians. Since
generalized method A would require a graph for several r's it is not
shown, but it is discussed briefly later. Before discussing each graph
in detail several points in common can be shown. For an H of zero

(problem III) each of the characteristic equations becomes

sin Saj = sin sq;j =0 (1v -224)
which is satisfied by
(G-Um : N
L=, = =1, ..., © IV -225
b= 5 j ( )

For an infinite H (problem II) by taking limits the equations become
cos Sg‘;J. = cos Sozj =0 (IV -266)
which is satisfied by
\l.rj=O!j=(2j—1)TT/ZS i=1, ..., © (1v-227)

Thus each function is zero at an even multiple of /25, including zero,
and infinite at an odd multiple of 1/2S.

The continuous function in Figure IV -7 shows that H({) rises
with increasing slope from O ata ¢ of 0 to oo ata § of m/10. Between
¥'s of m/10 and n/5 the function H(wb) is negative and is not shown. At
a ¢ of /5, this function H(}) becomes zero and again rises to infinity
ata ¢ of 3n/10. This behavior is repeated so that an infinite sequence

of such curves is obtained, each curve falling within an interval of m/S,

or S roots falling in each interval of 7 radians. Thus an infinite number
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of positive \pj's satisfy the characteristic equation for the continuous
solution. The shape of each curve in the sequence is different. If {,
satisfies this continuous characteristic equation,-x];j does also; however,
the form of solution is written so that only the positive \l;j's are used.
The most significant roots are for the low {'s and therefore \bl is taken
as the root for the curve between 0 and /10, 11;2 as the root between
n/5 and 31/10, etc.

Figures IV-8 and IV-9 for the H(o) for methods G and C show a
sequence of curves directly analogous to that for the continuous H({)
for o's between 0 and m. That is, each curve rises from an H of zero
at an even multiple of /10 to infinity at an odd multiple of /10 with a
shape like that for the continuous equation. However, these graphs
are symmetric about 7 radians, i.e., between m and 21 the curves are
mirror images of those between 0 and m. This is shown on the graphs
by a scale going from m to 2m as one moves from right to left on the
top of the graph. Thus,an infinite number of roots also satisfy the
difference equation; however, because of the symmetry of location of
these roots and the requirement from matrix theory for independent
eigenvectors only those o's in an interval of T radians are used. This
interval is conveniently selected as zero to m. Thus, these graphs
locate the required five roots for method C and five of the six roots
for method G. If H is infinite, then method G has only five degrees

of freedom and all five roots are shown.
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The sixth root for method G when H is not infinite is found by

allowing it to be complex and of the form

@, = +/-1j () (IV -228)

Substituting this into the characteristic equation for method G from
Table IV-12 and using complex variable theory, the equation is modified

to
5[sinhj(016)] [tanh 5j(a6)] =H (IV -229)

A plot of this as a function of @ is in Figure IV-10. The function
{5[5111115(016)] [tanh 5 j(ozf))]} rises from 0 at an [j(ozé)] of zero to
infinity at an [g (Q/6)] of infinity. Thus, for both H's of zero the sixth

rootis m and contains no complex part. Even though ¢, is complex

6
for all other H's between zero and infinity, its corresponding eigen-
vector, damping factor, and initial vector component are real, as
indeed they are known to be from matrix arguments. Since this is the
(S+1) root, it is the one that affects stability and oscillatory behavior,
and it is the reason why method G has a more severe stability restric-
tion. Thus, for a good approximation, the effect on the solution of this
root should be minimized.

The graph for graphical method A is in Figure IV-11. Here the
Curveé for the first three roots up to /2 show behavior like those for

methods G and C and the continuous method, and the zero points and

asymptotes are as before. However, the curves between m/2 and m
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are mirror images of those from 0 to /2. That is, as @ goes from
m/2 to 31/5, the function H(w) drops from infinity to zero and, although
not shown, is negative from 37w/5 to 7/ 10; the other methods and the
continuous solution rise from an H of zero to infinity as the angle goes
from 3m/5 to 7m/10. Thus, for graphical method A the { and o do
not égree at all accurately for the higher subscripted roots. However,
the accuracy obtained w‘ith graphical method A is actually caused by
this symmetry or reversal at m/2, as explained later. This reversal
is caused by the sign change in (tana) at m/2 which does not occur at
m/2 for the corresponding factors (sing), [2 tan(a/2)], or ¢ . Itis
seen that all six roots for graphical method A can be found from this
graph and are real. The graph shown is for S odd; if S is even, an

¢ of m/2 is a root for all values of H and the symmetry about m/2 is

" maintained.

From these graphs and comments it is seen that, in general,
for real {'s and o's, H(V) anti H(wo) are made up of S sections of curves
between 0 and 7. Further, as S becomes large the asymptote for q;l
and ey approaches zero; therefore, \'ul and o, become small. Also
the asymptote for \;;S and ozS approaches 7T and this root also
approaches 1.

In later comparisons for the damping factors and for components
of the initial vector, a difference parameter related to «, as the con-

tinuous parameter { is related to v (equation IV-153)is more
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convenient to use than «. It is defined by:

W= oS (1v -230)

The graphs just discussed for the characteristic function of o could
easily be modified to be of p by multiplying the o scale by S, which
is 5 for the graphs shown. Thus, H would rise from zero for a p that
is a multiple of m (including 0) to approach infinity as u approaches a
multiple of m/2. The graphs for the difference methods would then be
symmetric about Sn. The advantage of defining and using w is that
as the roots vj are not a function of S and as the uj correspond to
“the vj, the order of magnitude of the LLJ, is not a function of S. Note,
however, that the exact value of each p,j is a function of S unless the
problem and approximate method is one of the special cases where the
S roots for the approximate solution are equal to the first S roots for
the continuous solution.

In order to quantitatively show the deviation in these roots,
residual graphs of (¢ -&) for S of 5 are shown in Figures IV-12 and
IV-13 for the several roots.. Note that the scale for (V-«) is different
on the different graphs. For methods G, graphical A, and C, the
quantity (\111—011) is zero for zero H and its absolute value increases to
a maximum at an H of about 2 to 3; then it approaches zero asymptot-
ically as H goes to infinity. Graphical method A shows the largest
deviations in absolute value and these are positive. Method C's devi-

ations are also positive, but they are only about % those of graphical



202

method A. The first root for method G shows negative deviations which
are about twice as much in absolute value as those for C. The graphs
for ('J,'Z—ofz), ('i!3—al3), N (\115—015) show the same behavior; however,
the order of magnitude of the deviations increases byb a factor of 40 for
root 2 and again by a factor of 8 for root 3, with even larger deviations
for roots 4 and 5.

These results can be explained by the following manipulations.
First let D be the factor in a characteristic equation for an approximate
method that replaces S¢ in the characteristic equation for the con-
tinuous solution. Then, combining the continuous characteristic
equation and the approximate characteristic equation written in terms

of D and » and u instead of § and &, and using straightforward

algebraic manipulations, there is obtained:

2 2
( 2 2 ““J- '”j _
v~ (o) = (0,50, ) = u(D .-, [ J IV-231
j phJ)( j “'J) ( i ) 'LJ( j “J) uj(uj-vj tanvj ctnuj) ( )

j=1, 2, ..., S

or, expanding the second bracketed term using trigonometric series,
2 2
which shows that (p.j -‘)j )/u,j is a fa ctor of (uj-uj tanvj ctnuj) we

obtain:

(vj-rhj)(vjﬂbj) =

2 2
v v v . .
j j 2 2 j 4 2 2 . 4
wAD . -u. [1--—— - —— v, )~ === (20, -BU. u. 20, .
J( J "LJ) 3 45 (“J j ) 943( j j LJ‘J J ]

(1v -232)
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The expanded term depends only slightly on S because the order of

magnitude of uj does not change with S, and uj, which is only a function

of H, could be substituted for p,j with little error.

Therefore, this

term is like a proportionality constant and consequently the difference

between the roots, either (v,
J

L2
J

) or (vj-uj) is approximately pro-

portional to the quantity (D _-p‘j). These expansions for these quantities
J

for the methods are below:

Method

G D, -
J J

A D -u,
J ]

Graphical A

3 5
T8 VIR M,
':Ssj_n—sl--u_:_—L&-i-_.J__.
J 6S 1208
AN
MJ
M,
) Ssin——s‘-]-— .
M j

1-2.1'( l-cos -—é‘l-)

" > . >
= —-J-z—(6r~1)+ —3—4(1-301' {1-41’})-
6S 1208
r=1/2
3 5
S S
=S5 tan — ~-p, = +
5 i 3% 1554

(IV -233)

(IV -234)

(IV -235)



3 4
(S8 M. M,
c D.-u, =25 tan =& - p, = —— + - - (IV-236)
i3] 25 j 4
125 120S
B.| < Sm
\Jl

The coefficient of the first term, |.Lj » in these expansions explains

the relative size and direction of the deviations of the first several
roots (low values of p,j or cvj). That is, the roots for method G show

a negative deviation in absolute value about twice that for method C

and its coefficient is —1/6S2 which is negative and twice the coefficient
for method C which is 1/1252. Likewise, graphical method A, which
showed positive deviations four times those of method C, has a positive
coefficient which is four times that of method C. Further, these series
allow the important conclusion that the difference between the roots

v. and p,j or between DJ,Z and u,’ decreases with the square of the
number of points.

The probable reason that method C gives the most accurate
trigonometric roots is related to the fact that it uses mesh AE /2 with
the points located awéy from the surface. As pointed out in section
B -4 of this chapter, this means that the approximate boundary equations
represent a direct discretization of the continuous boundary equation
as shown by equation IV-32; no heat capacity is associated with the
surface as in the continuous boundary equation; no heat capacity of the

solid is neglected, and the Y/A matrix is symmetric. Thus, method C
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has the most accurate trigonometric roots probably because it is based
on mesh AE /2 'which leads to an approximate formulation that is close
mathematically and physically to the continuous problem.

Although a series expansion of (vjz-ujz) can be found by multi-
plication of the series for (Dj—uj) with the series in equation IV -232,
the resulting series does not give a useful representation of that dif-
fere‘nc-e. This is true because the series in equation IV-232 is only
very slowly convergent for most values of “‘j and v, as it involves
the series for the cotangent and tangent of these quantities. Moreover,
the series does not relate the difference in roots directly to the
dimensionless heat-transfer coefficient H.

Since the quantities (Djz—ujz) and (vj-uj) appear in the compar -
isons of the damping factors and initial vectors, and since, for the
abm/"e reasons, a useful analytic expression for these quantities
probably cannot be developed, a numerical determination of the first
several of the roots for both method C and graphical method A would
be useful. The result would be a graph showing the deviation for the
smallest two or three roots as a function of H for each of several S's.

A possible reason why the o's and {'s are not equal when H is
between zero and infinity is that the continuous boundary condition is
actually in a difference-derivative form, and only the continuous
derivative part is approximated. For the limiting case of H's of infinity

or zero the boundary condition is not of this mixed form and the
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trigonometric parameters, o, and q;j or v, and w,, arec identical for
the number of difference roots.

Because the initial vector component, the eigenvector, and the
damping factor are all functions of the trigonometric roots, a method

~where the first roots were equal might be desirable
W, = D (1v-237)

or

b, T« (1v -238)

A comparison of the results from such a method with one of the above
methods would also give an indication as to the importance of this
deviation in roots. Two methods for which the roots are equal are
possible. The first would be to use the value of H that would give the
equality of the first roots rather than the H given for the problem.

This procedure could be applied to any of the above methods, but it
probably would change the components of the initial vector so much that
the accuracy would be decreased. The second method utilizes the fact
that the Y/A matrix for generalized method A is a function of r;
consequently its replacement factor can be set equal to xul:

siny 1

l—Zr(l-coswl)

= (1v-239)

1

Solving this equation for r gives:
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. 2 4
_\l!l-sm\hl - L h- + _—-\H + o (IV-240)
e y(T-cosy,) ~ 6 18 5040

A numerical study would be necessary to construct a graph for the r
that solves the equation versus H. From the series expansion in
equation IV-240, one sees that by making r = 1/6 the angles can be
made almost equal for any value of H. Since using the value of r of 1/6
for an explicit method also gives very accurate damping factors, this
method could give accurate approximations and would be simple to use.
Additional numerical work must be done in order to determine any
advantage for these methods that make the roots more accurate.

Table IV-13 shows that problems II and III are the two special
cases of problem I where the continuous { and the difference o's,
as shown above, agree identically for the required number of «o's, as
shown previously. Note that for graphical method F applied to problem

I1 the characteristic equation is
[tan(S-%)ozj] [tanozj] =2 j=1, ..., S (1v-241)

which would give ozj not equal to q;j for the infinite H problem; but
these ozj are less than the corresponding ‘JJj's. A numerical com-
parison of these roots is in Table IV-22. Despite the fact that they are
not equal to the continuous roots, graphical method F does give the
best results of the graphical methods for problem II. Itis because

of this fact that any firm conclusions about improvement in accuracy
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by making o, equal to *1!1 as described above cannot be made.

1
Graphical method F is compared in more detail later.

The characteristic equations for method G and the continuous

solution for problem IV are identical:

sin swj =0 (IV -242)
q:j:jﬂ/s i=1,2,..., o© (1V-243)
ozj=ﬂ;j j=1,2,..., 8-1 (IV -244)

For problem V the characteristic equations are the same as for prob-
lem II, if S is allowed to become infinite. Thus, any value of o or
satisfies the equation and ¢ and ¢ become continuous variables,
and the summation is replaced with an integration.

- Before leaving the discussion of the roots, the size of the
smaller damping factors can be estimated because of the periodic

location of the roots. The estimating relationship is:

M, = p,tm=E v, +m IV -245
j*rl i ] ( )

The first root W, or v is necessary to start the calculation and if

1
either is not known, b, can be determined by finding q % from a
trial calculation using a coarse grid, or it can be taken as an angle
between 0 and 1 /2 radians for problems with boundary equations like

those for problems I and II, or as m for problems with boundary

equations like those for problems IIIl and IV. The relative size of
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several of the terms for the smaller damping factor can be estimated

- 8T

ase ° and the number of terms J that are significant at time 7

0

can be estimated When the (J+1) term is a smaller fraction of the error
bouhd, V. The general application of equation IV-245 should be further
‘studied for problems where both H's are between 0 and infinity; however,
surprisingly, that equation appeafs to apply even to the characteristivc
roots for the continuous problem with a finite H in cylindrical coordin-

ates.

Conclusions and Summary--Trigonometlric Roots. The S or

(S+1) trigonometric roots for the approximate methods G, A, and C,
as applied to problems II and IIT and for method G applied to problem
IV are equal to the corresponding roots of the continuous solution. For
- mcthods G, A, and C applied to problem I and for graphical mcthod F
applied to problem II these roots are not equal.

The important points for problem I where H is not zero or
infinite are:

(1) The difference between the squares of the roots (Djz-p,jz)
goes to zero with 1/S .

(2) The roots for method ‘C are more accurate than method G
which in turn is more Aaccurate than graphical method A.

(3) The probable reason that method C has the most accurate

roots is that it is based on mesh AE /2 with no points on the boundary.

This then leads to an approximate formulation that is closer in both
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mathematical and physical senses to the continuous problem (see section
B -4, this chapter).

(4) The deviations for the first ozj's or p.j's that cietermine the
larger positive damping factors are relatively small. Deviations for
the o's beyond m/2 are large, but these roots correspond to damping
factor s that can be negative; consequently, the differencing parameters
are usually selected so that these damping factors are close to zero
and therefore their effect is insignificant.

(5) The roots for graphical method A do not even approximately
follow those for the continuous solution for o's greater than m/2, but
are symmetric about /2.

(6) Method G for problem I, when H is neither zero nor infinity,

has a complex trigonometric root, « , which has no counterpart in

S+1
the continuous solution.
A method that allows the estimation of the number of significant

terms in the transient solution is also shown. This method is based on

the approximate periodic distribution of the roots.

4. Damping Factors

The damping factors q, are the quantities in the approximate
J
th .
transient solution that are raised to the n power, and determine how
the transient solution changes with time. In the solution to the partial

th
differential equation the factors to the n power are actually repre-

-, T

J

sentations of the exponential e which is represented in difference
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v, AT 4. r
form by either (e 1 ) or (e J ) . The discussion on the effect

of damping factors is in two sections. First, the stability and oscillatory
criteria as derived by the z-transforms are shown and related to criteria
developed from matrix theory arguments in Chapter III. A subsection

on graphical solutions discusses quantitatively the effect of oscillations
on accuracy. The second part presents a series expansion which

v, /AT

allows an estimation of e J /q;} as a function of the differencing

parameters if estimates of v, or Mj are available. This ratio appears
in the inequality for accuracy. equation IV -220.
The approximate damping factors are, for all methods applied

to all problems,
T
2 J
1-2r(1-v)(1-cose)) 1-28"A7(1-y)(1-cos 5 )
LN (IV-246)
2 "
1+25 At v(1l-cos -S—)

qj = 1+2r(l—cosozj)
The expression in terms of ozj and r is used for the stability and
oscillatory study; the expression with p;j, AT, and S is used in the

analysis of accuracy. The eigenvalues of the Y/A matrix are given by

< 2
-7\j = Z.Sa(l-coscyj) = 28 (l—cos—si) (Iv-247)

AT
In the analog solution, which is the special case fora AT 0f0, e J

replaces q,n. The damping factors depend upon all the differencing
J
parameters, the method used, number of points, time increment, and

weighting yv. However, because their form is the same for all the
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methods and problems, the conclusions made can be generalized to
other problems and methods by using the different characteristic roots
p.j for the new case. Consequently, many of the conclusions made
here are quite general.

Stability and Non-Oscillatory Behavior. The classical methods

for studying stability of approximations to the diffusion equation derive
equation IV -246 by a separation of variables technique for specific
boundary equations. Then if the o, that corresponds to 9 nin is known,
the necessary and sufficient conditions for stable or non-oscillatory
behavior are obtained. For the cases usually considered, the ozj's are

all real, and
(1 —cosa/j)SZ j=1, ..., 8 (1v -248)
Using this inequality, the same sufficient conditions are derived that
are obtained from the matrix criteria discussed in Chapter III, when
the minimum Y /A matrix norm is 452. This condition is that for

1~ 4r(1-y)

= .Y < IV -24
1+ 2ry qm' ( ?)

in

where

Y>>0 (Iv -250)

r and vy must satisfy the following equivalent inequalities:

e[l -y (Y+1)] s

Y+41 (1v-251)

or
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4r - (147)

These sufficient criteria apply to all approximations where either the
damping factor is given by equation IV-246 and the ozj's are all real,

or a norm of the Y/A matrix is equal to or less than 452. Consequently,
they apply to all approximations to all problems discussed here except
the approximations for either method G, when applied to problem I

where for either case a complex o can occur, or for generalized

S5+1
method A when r is less than%. From the location of the aj‘s for

the cases when all of them are real, it is seen that as S is increased

the o-root that determines qmin approaches m, and the inequality
approaches equality. Therefore, Q_. is close to its bound of -Y for
large S. This is the basis for a prior statement in Chapter III that
Mmin! for a Y/A matrix with equal column and row sums approaches
the minimum matrix norm.

In Figure IV-14, the sufficient conditions based on the inequality
IV-252 are shown. This is a graph of v and r found from IV-252
using the equality sign for each of several ¥Y's between 0 and 1. Thus,
for example, selecting a combination of r and vy that falls on or above
and to the left of a line for an Y of 0.2 assures one that the minimum
qj is greater than -0.2. For cases where the «,'s are real or where
the minimum norm of the Y/A matrix is 452 or less, this graph can be

used to find Y for a selection of v and r to see if the inequality,

equation IV-222, holds.
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The curves are a family of hyperbolas that have a common
asymptote of the v axis (r=0) with the second asymptote a constant
value of v. For an Y of zero, the sufficient condition for non-
oscillatory solutions, this asymptote is one,(y=1); for an ¥ of one,
the sufficient condition for stability, the asymptote is %,(vy =%). From
this chart, the following conclusions can be made about the effect of
S, AT, and v on Din’ if it is assumed that Y is very close to 9 in’
First, increasing the weighting vy at a constant difference modulus r
reduces Y rapidly for values of Y close to one; as Y approaches
zero, a reduction in v does not reduce Y as much as before. But
reducing r at constant weighting factor lowers Y less when Y is
close to 1 than as it approaches zero. This point becomes important

as increasing r by increasing the time increment decreases TO/AT,

|, Y, must also be decreased to keep

and the allowable bound on \q .
min

A
YTO/ ' constant. Also, if the number of points S is large, either a
very small time increment AT must be used or the weighting factor
v might have to approach or equal one to obtain an approximate solution
that satisfies the inequality IV-222 for satisfactory oscillatory behavior.
Although the curves for the sufficient conditions are not extended for
negative weighting factors, negative weightings can be used as long as
stable solutions are obtained.

However, the sufficient conditions, equation IV-252, and the

graph, Figure IV-14, do not apply when a complex cxj root occurs.
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In this case, unless the actual value of the complex « is determined, a

study of its equation does not give a simple useful criterion. For

example, the q . corresponding to the complex root for method G
min

applied to problem 1 is

1-22(1-v)[ 1+cosh 4 («

d S+1)]

Qnin = %41~ 1427yl l4cosh ﬂ(ds_'_l)] (v -253)

where g(asu) satisfies equation IV -229.

However, a good simple upper bound for [COShj(aS-I-l)j cannot be easily
found from the characteristic equation, and the only criterion found
from equation IV -253 without actually solving the transcendental equa-
tion IV-229 is that the solutions are stable for vy's of % or larger and
are non-oscillatory for a y of 1. These are the same results which
are obtained by assuming the maximum eigenvalue ‘)\min‘ or minimum
norm of the Y/A matrix is infinity. However, the norms of the Y/A
matrix are not infinity and do give good, simple, and sufficient criteria
which are shown in Table IV -1.

Thus, the important conclusion can be made that the time-
consuming z-transform solution does not always provide us with bounds
for ‘qmin\ which are convenient or useful. Although the necessary and

. sufficient conditions for stability can always be found from a z-transform
solution for a specific problem by solving the characteristic equation
either analytically or numerically, this must be done for each value of

S and for each value of H for an approximate method. However, for the
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methods and problems where the roots are real, the z-transform
solution gives a simple sufficient condition that applies for all S, but
this sufficient condition is identical to that found much more easily
using matrix norms. Thus, unless the roots of the characteristic
~equation are to be found for the specific value of S to be used, even for
regular meshes, the sufficient conditions for stable or non-oscillatory
solutions found by the simple additions to calculate the Y/A matrix
norms give a better or equivalent bound for ‘qmin\ much more simply
than the extended z-transform solution. Since the z-transform solution
gives results for the characteristic equation and damping factors that
are identical to those found by von Neumann's method or the separation
of variables technique, the above conclusion shows the superiority of
matrix theory for stability over any other known technique.
If the sufficient conditions for method G applied to problem I, as

shown in Table IV -1, were to be superimposed on Figure IV-14, a
separate condition would be required for each value of H. These curves
would fall above and to the left of the curve shown as the stability restric-
tion is more severe. However, for zero or infinite H they would co-
incide with those drawn. Thus, as graphical method G is unstable for
intermediate values of H, it is defined only for zero or infinite H.

Graphical Solution. A graphical solution is defined as an explicit

calculation (y=0) with an r of §. With this selection of v and r the

damping factors become
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W
qj=cosa,=cos-—s‘]— j=1,2,..., 8 (IV -254)
J

For all the methods as applied to the problems here, the roots cvj are
\

located between 0 and 1, and the largest aj clogest to ™ gives a

damping factor 9nin that has an absolute value of the same order of

magnitude as GAY For approximate methods applied to problems

where the o(j roots are symmetrically located about /2 for each

positive qj a negative qj with the identical absolute value occurs. This

is true because in these cases if o, is a root (r-o,) is also a root and
J J

9 = cosoej = -cos(ﬂ-oaj) (Iv-255)

These damping factors that are equal in absolute value, but opposite in
sign, occur in approximate solutions of methods G, graphical A, and C
applied to problems II, III, and IV, and graphical A applied to problem
I. For methods G and C applied to problem I and graphical method F
applied to problem II, the location is only approximately symmetric
and a negative damping factor slightly smaller in absolute value than a
corresponding positive damping factor. occurs. However, for each of
these cases, each negative damping factor can be paired to the cor-
responding damping factor with the same or larger absolute value.

The requirement for graphical methods which replaces the oscillatory
requirement of equation IV -222 is that the negative damping factor

must be sufficiently smaller in absolute value than its paired positive
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damping factor, or the weighting given the negative damping factor
must be suffi;iently smaller than the weighting for its paired positive
damping factor.

Graphical method F as applied to problem II satisfies the first
requirement as shown by its damping factors, summarized for an S of
5in Table IV-22. This is one of the reasons graphical method F gives
accurate approximations. Also, when the negative damping factor is
sufficiently small, a somewhat larger value for its weighting can be
tolerated.

For the methods where the ozj roots are symmetric, the roots
that have equal magnitude, but opposite signs, each decay at the same
rate; the positive one with no oscillations and the negative one with
oscillations; hence an oscillatory effect is always significant. However,
the rate of decay is shown to be a good estimate of the exponential rate
of decay of the continuous solution, and by using the temperatures only
at alternate intervals, the rate of decay is observed. This can be
proved by computing the sum of the two terms in the transient solution
that correspond to the pair of equal and opposite damping factors. If
[gj cmj(cosaj)n] is the term for the positive factor and

n »
)] is the term for the negative factor

i (cosmfs_l_1 y

[gS+1-j “m S+1-

where Ug 1 is equal to (m-¢.), their sum can be written
~J J
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g.c_ (cosa )™+ g c (-cose)” =
i mj j S+l-j m S+1-j j
(IV -256)
. n “m 541 il n
g. +(-1) ¢ . (————— J ¢ (cose))
S+1-
l— J J ij myj J
0sm<S
n=0
n
i - is call i
The quantity [gj +(-1) g4 _; (cm S+l-jlcmj)] is called the effective

initial vector g_E and the second requirement mentioned above is that
J
n
the coefficient of {~1) be relatively small. Consequently, each of the
positive damping factors can be considered to be associated with two

intercepts, for even values of n, (gj c j), and for

+
i Bs+1-j “m S+1-

odd values of n, (gj c .- ). This is shown in Figure

mj ~ Bs+1l-j “m s+i-j
IV-15, which is a semi-logarithmic plot of the single term
(g1 leqln) and the summation as given from equation IV-256 versus
time, for graphical method A as applied to problem II, using five points
(S=5). The summation of the two terms is represented by the two para-
liel dot-dash lines, one for n odd, the other for n even, respectively,
above and below the dashed line for (gl cml qln). The accuracy of the
graphical solution then is determined primarily by the accuracy of the
effective initial vector components, and this is discussed in the section

on initial vectors. However, by comparing the effective term for n-odd

for grabhical method A for the point at m of 1 with the first term in the
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continuous solution, one can concludc that accurate approximations are
expected from graphical method A.

One further point should be mentioned about unaveraged graphical
methods G and A applied to problem III, where both H's are zero. In

ale

‘this case an og of m occurs, giving a U of -1.  This is the a/j that

is symmetric to the o of zero that gives a g of 1 for the steady-state
solution. . Graphical solutions for problem III do not show the equal
oscillations of this root because, for the specific linear initial distri-
bution of the problem and for S even, the component of the initial vector
for this root is zero. However, the graphical solution for S odd does
show equal oscillations, and graphical solutions for other initial distri-
butions should, in general, give equal oscillations for these methods.

If the graphical solution is averaged, the oscillations of the -1 root

are eliminated as this involves equivalently multiplying the weighting

ofg , of -lby(g . + 1). For the adiabatic problem the -1 damping

min min
factor cannot be excited by the boundary forcing functions, i.e., a
)n

term of the form n(-1) cannot be in its solution. But since the Y/A

matrix and its derived matrices for a problem with a specific flux at

both boundaries are the same as would be used for both H's zero, an

The angle m also satisfies the characteristic equation for
method C applied to problem III, but it would be associated with an eigen-
vector which has zero for all its components; consequently, it can never
occur in a solution for method C applied to problem III.

ate

PR

The calculation matrix, when both H's are zero, must have an
eigenvalue or q, of 1 to give a non-zero steady-state solution.
J
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oscillatory flux with a frequency of 1/2AT would excite the g of -1,
and the solution would have oscillations with a linearly increasing
amplitude going to infinity with time. (The change in the matrix equation
would be that the specified boundary flux would replace a component of
the YB tB vector directly.) Consequently, an unaveraged graphical
method G or A for boundary conditions of specified flux is technically
an unstable approximation, according to the definition; however, the
conditions under which this can occur are rather unusual. Further, if
the solution is averaged, the oscillations with a linearly increasing
amplitude for the unaveraged solution become equal oscillations in

the averaged solution, which is then the same form of solution as the

continuous solution.

Accuracy of Damping Factors. The above discussion is con-

cerned with selecting the differencing parameters so that the inequality
in equation IV -222 is satisfied or, equivalently, so that a negative
950 does not ruin the accuracy of the approximate solution. The
accuracy of an approximate solution is determined in part by how close
an agreement there is between the slope, on a semi-logarithmic plot,
of the terms in the approximate transient solutions containing the
larger damping factors, and the slope of the corresponding term in

the continuous solution. As pointed out previously, these slopes are,

respectively, —ujz, and [(1/AT) In qj]. The differeznce between these
-
; 1/A7

quantities is the natural logarithm of the ratio e ) /qJ or
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2.2
-t 5 1/AT
e 7 /qj which appears in the one of the inequalities IV -220
that must be satisfied to achieve a certain accuracy.
2
»'Qj
e 2 1 .
in ——— = p o ] IV-257
o 1/ AT : Ar Clj ( )
9 J

In taking the logarithm of qj, qj is assumed to be positive; therefore,
the following series, which are derived using the logarithm of qj,
apply only to the positive damping factors. The oscillatory effect of
any negative qj‘s has already been discussed.

A series expansion for the logarithm of the approximate damping
factor can be developed from a series for the damping factor. The
series for q. is found by substituting the series for [cos (p.J,/S)] into
equation IV -246 for qj and carrying out the indicated long division.

This series is shown on Table IV-14, together with the exponential

—D.ZAT

series for the continuous damping factor e )

A comparison of
the damping factors in the form shown on this table is not entirely
satisfactory for two reasons. First, neither infinite series converges
rapidly except for very small time increments. Second, both damping
factors are strong functions of the time increment, and decreasing the
time increment changes both factors rapidly, making them appear to
approach one at zero AT. Consequently, it is difficult to determine

guantitatively the effect on accuracy as the time increment is reduced.

The series for the natural logarithm of qj can then be found by
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substituting the series for qj into the series for the natural logarithm
given in Dwight (27), equation 601.5. The resulting expression is at
the top of Table IV-15.

Before starting the detailed comparison of this series, one
further manipulation should be mentioned, namely that a series for
an can be developed from the series for the logarithm of qj. The
logarithm series is multiplied by n and then substituted into the
exponential series and an expansion for q,n results. This series is

] -U."nhAT
shown in Table IV -14, together with a series for e J . Again,
a comparison of these two series suffers from the same disadvantages
as a comparison of the damping factors; however, they are useful in
showing that the analog solution is the limiting case of an approximate

solution as the time increment goes to zero and n goes to infinity so

that the product nAT is always equal to time -

2 M
-25(l-cos —=) (IV-258)
5

. n
1im q. —_— e

Ar—-0
n—- o nAt—T

n . .
Moreover, taking the limit of the qj as the time increment goes to
zero and the number of points goes to infinity, together with a similar
limiting process on the characteristic equation, shows that the continuous

exponential results.
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lim qj —_— e !
Ar-0 y
n— o0 nAt—T (IV-259)
S - oo

The first several terms in the series expansion for the loga-

=V,
1
rithm of the ratio e 7 /qj [

2
found by subtracting the infinite series for [(1/AT) In qj] from -vj .

» or the difference in the slopes, are

The result is:

2
e 4 1
In ——— = (u,-v Xwtv) +u. [(%-y)m - — ]+
q.jl“"r R R 1252

(IV -260)

6 2 2 -v)A 1
+ . [(% vty )NAT) - (Z-v) ZT + I ]
J 128 3608

The advantage of using this expression for comparing damping factors

is, first, a series for only one of the damping factors is involved.

1/A07

—U.
Second, since e J /q

should be one and its logarithm zero, each
non-zero term in the series is an error term and is a direct result
of ‘che2 space and/or time discretization. Third, the term
)
i, 1m0
(e /qj )

IV -220. The series is shown in Table IV-15 for the common special

can be readily found and used directly in equation

2
cases of v =0, (- 1/125 A7),%3, and 1, for graphical solutions where

vy = 0 and SZAT or r is %, and for the analog case of zero Ar.

2
vs 1/AT

Equation IV -260 for In(e . /qJ ) is valid for all positive
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q. where the serics converges. However, in studying the size of this
logarithm the series must converge rapidly enough so that the three
terms shown give a good estimate of the logarithms. Because of this,
and because of the difficulty in obtaining a general term for this series,
the convergence was not studied directly, but a numerical study was
made to see if and when the three terms give a good estimate of the
logarithm. This study was based on AAK for problem II where by and

2
are equal to /2 or 1.57, and v_ is 2.46740. The range of the

v 1

1
logarithm of the ratio tested was from 0.00000 to 0.1327.

The main conclusion from this study is that the terms shown
give an accurate estimate of the logarithm for as large a time increment
as one would expect to encounter, and it can be used to study quantitatively
the effect of differencing parameters on the accuracy of the slope, or

-
3 1/A
j /qj /AT

to estimate the ratio e for use in equation IV-221. Specific-
ally, a good estimate was found for the logarithm for vy's of zero and
6 4
one as long as the p  term was less than 5 per cent of the p  term and
1 .2 6 )
for v's of 3 or (¥ - 1/125 At) up to where the p term was twice that
4
of the p~ term. This means that accurate estimates of the logarithm
can be made for time increments up to 0. 10 for vy's of zero or one,
and up to time increments of 0.2 for y's of %. This compares to either
series for damping factors which, using the terms shown, do not give

accurate estimates of the damping factor for time increments above

about 0.04 to 0.08.
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2
-V,

' 1
The series for ln(e J /q. [

)is arranged in increasing powers
of p,j . By selecting the weighting factor v and time increment AT
correctly, it is possible to make the coefficients of some of the terms
very small or even zero. However, because the exact values of the |,
‘are different not only for each problem but within the same problem,
it is not practical to try to select AT and vy so that compensation
between terms is obtained, although, in some methods, this type of
compensation does occur. Therefore, the following discussion treats
the three terms separately.

The first term in the series is (p.,-vJ.)(ujh;j), which was thor -

J
oughly discussed in the section on the characteristic roots. It is zero
for all approximations to problems II, III, and IV which have
been considered except graphical method F applied to problem II. For
problem I its magnitude depends upon the method used, and it goes to
. 2 : 2 .. :
zero with 1/S . Because of this dependence on 1/S, this term in
. 4

general should be of about the same order of magnitude as the u~ term.

. s 4 .
In practice, it is usually smaller than the p term, except when special

4
conditions are used to make the 4 term zero. Its contribution to the
logarithm is greatest for graphicél method A and smallest for method C.
However, one of the reasons graphical method A does give accurate
results is that the size and the sign of this term cancel out up to one-
X 4 2 . .

third of the p /65~ term for q X depending upon the value of H. For

method F applied to problem II the difference between yu and v for an
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S of 5 is almost negligible, although some compensation occurs there
also.
. . . . 2 2 s

Although in this analysis this (uj -uj ) quantity is treated as a
special term, by carrying out the indicated multiplication of series
in equation IV-232 a series expansion can be developed for this differ-
ence. If this expansion is substituted into equation IV-260, a quantity
would be added to each of the other terms in the series. The first

. . 2 2 . 4, 2
term in the series for (pj =Y ) would be proportional to uj /S~ and
the proportionality constant would be a function of the dimensionless
4
heat-transfer coefficient, H. When added to the p term in equation
2

IV-260, it would change the coefficient of 1/S .

The second term of the expansion of the logarithm of the ratio

-
; 1/4
J/qj /b7

is the dominant term in the series for all problems, and
is the first non-zero term for problems II, III, and IV. This term is

uj4 [(%‘-y)AT - ——LZ ] and for most useful combinations of the differ-

128

encing parameters, it exerts the most influence of all the terms in the

series on the logarithm of the ratio, and consequently, from its value

alone, one can tell much about the size and direction of the error in the

slope of the approximate transient terms on a semi-logarithmic plot.
T 1/ax

For example, this single term agrees with the ratio In(e /aq )

to within one per cent, for a graphical solution applied to problem II,

using an S of 5. And, in general, for most combinations of differencing

parameters that would be used, conclusions about the damping factors
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based only on this term are usually correct, so the effect of the dif-
ferencing parameters on this term are studied in some detail.

In Figure IV -16 the coefficient of p,4 which is [(F-y)AT - 1/1282']
is related to the increment for each of several combinations of v of
0, 3. aﬁd 1, and S of 5, 10, and infinity. The lines can be classified
by either of two groupings; one for constant vy for each S, and one
for constant S for each of the vy's. For a constant weighting factor v
and the different S's the lines are parallel with slope of (¥ - v) with
different intercepts at -1 /ZSZ., For a constant S the intercept at a
time increment of zero, the analog solution, is -1/1282 and the lines
leave that point with slope (3 - v).

Examination of the graph indicates that the time increment and
weighting vy affect this term much more than does the number of
points S, providing S is selected larger than about 5. Changing S from
5 to o changes this coefficient only 0.0033, which is equivalent to
reducing the time increment 0.00167 for a y of one. Further, by
doubling the number of points, the contribution to this term caused by
space discretization is reduced by 2. Only for time increments below
0.01 does the space discretization error term 1/1252 for an S of 5
have the same size as that caused by the time discretization
(AT)(5-v). Also, raising the weighting y from 0 to 1 at constant time
increment, and where r is greater than 1/6, changes the coefficient

from a positive to a negative quantity with larger absolute value,
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resulting in a larger change in the term than increasing S from 5 to
infinity. Consequently, increasing S does not improve the accuracy of
the damping factors as rapidly as changing the time differencing param-
eters, AT and v, does, and the contribution of l/Sz or (Ag)z to this
error term is small.

The most important conclusions about this coefficient are based
upon the fact that the intercept is negative (—1/12.82) but that its slope
is either positive or negative and is given by (%-y). Thus, the backward
difference method with a weighting of one always has a slope of -3 and
this term is then always negative. Therefore, when a weighting of 1
is used, the damping factors for the approximate solution are too large
and the approximate transient solution does not decay as rapidly as
does the continuous transient solution. For the central difference
calculation, when the weighting vy is one-half, the coefficient is equal
to the intercept and is independent of the time increment. Thus, the
approximate damping factors are accurate and the approximate solution
is close to the continuous solution and also to the exact analog solution.
For the explicit forward difference scheme with a v of zero, the
slope of the coefficient is +% and the coefficient is zero when r is
1/6. The coefficient for the graphical solutions is the last point on the
solid line. The logarithm of the ratio is positive here and the terms
in the transient solution for a graphical construction decay more rapidly

than those in the continuous solution. Although the damping factors for
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the graphical solutions are not as accurate as those for the central
difference calculation, y = %, they should be sufficiently accurate for
many calculations. Two other interesting points about the forward
difference calculation are, first, that even when the solution is unstable
~as shown by the dashed lines, the larger damping factors are slightly
more accurate than those for the backward difference calculation and,
second, that increasing the number of points at some larger constant
time increments actually reduces the accuracy of the damping factors.
The negative intercept and a positive slope can compensate to

reduce the error in the damping factor; this requires that the weighting

v 1is selected with the range of 0 to 3.

lsy <3 (Iv-261)
Further if the weighting v 1is selected according to
1 br-1
v = B - —>— =& (1V-262)
125 AT

4
the 4. term is zero. This equation was first derived by putting the
J

third term of the damping factor series in the same form as the third

term of the exponential series (15); it also makes the third term of the

4
. . - A
c;[n series of the same form as the third term of the series for e ° " '.

Richti‘nyer (3) has found the relationship directly from the discretiza-

tion error in deriving the partial difference equation by Taylor series
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expansions. For problems II, III, and IV, where v and 4 are equal,
very accurate solutions can be obtained by selecting v and AT for a
given number of points based on equation IV-262 as this gives a very
accurate largest damping factor YGrAX’ and also significantly improves
the accuracy of the other larger damping factors. However, for
problem I, the weighting factor vy should be selected slightly larger
than Yo given by equation IV-262 for method G and slightly smaller
than that Yo given by equation IV-262 for method C to compensate for
the difference (LLZ--UZ). The amount larger or smaller would depend
upon H, how the quantity (p,jz—ujz) changes with S for a specific method,

4,.2
/S

or upon the proportionality constant of the term u.j in an expansion

for (ujz-vjz). Consequently, the selection of Y, by using equation
IV-262 is not a general relationship that gives the best approximation
for all problems, as it only applies directly for methods applied to
problems where the approximate trigonometric roots are equal to the
fir st several roots of the continuous solution. A numerical study would
probably be required to determine the modified relationship for an
optimum weighting Y, for problem I.

When the weighting is selected by equation IV -262 the oscillatory
components must be considered. In Figure IV-14 the relationship between
v and r is superimposed upon the sufficient conditions for bounding

the oscillatory damping factors. The relationship is a hyperbola with

one asymptote at the y axis (r=0) and the other at vy of %. As it always
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is above or to the left of the sufficient condition for a Uin of -1, the
approximation given by equation IV-262 is always stable. But, as can
be seen from the graph, a large negative T is expected for large r's.
In these cases, unless the 9 in becomes négligible compared to the
larger q's at the time of interest,. the oscillatory effect masks the
accuracy of the largest damping factor. Also, for large r's, it is
possible that At may be so large that the logarithmic series does not
converge rapidly; and even selecting v by equation IV-262 does not
give an accurate Aax Therefore, for problems where a large time
increment is to be used, or where r is large, the weighting Yo cannot
be used.

The expression in equation IV-262 can also be used to estimate
if the approximate solution decays too rapidly, or too slowly. If the
weighting v used for an approximation is greater than that Y, for
the time increment and number of points used,z then the logarithm of

2

-‘D —D

. 1 '
J /qj /AT is less than zero, the ratioe 7 /q‘l/AT

is less than
one, and the approximate solution decays too slowly. Conversely, if
the weighting y used is smaller than Yo’ then the logarithm of the
ratio is greater than zero, and the approximate solution deca;}s more
rapidly than the continuous transient solution. The above comments
are for weightings that are different from Yo by a significant amount

and they then hold even for approximations to problem I. Further,

the above statements hold for all damping factors in the approximate
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solution compared to the continuous solution; only when the weighting
v is very close to Y, are some damping factors greater and some less
than their corresponding continuous damping factors.

The p6 term in the series for the logarithm is only significant
for larger time increments or for the ratios for larger P‘j roots. The
coefficient of p,jé is plotted versus time for the several combinations
of S and vy studied previously in Figure IV-17. These plots are a
series of parabolas, and the size of the coefficient for the range of
differencing parameters shown is always less than about 1/25 of that
for p,4. This coefficient is small for Y, as given by equation IV-262
and for a vy of %. Also, from the previous numerical study of the
series for thc logarithm, it could be concluded that for either of these
v's the “‘8 and higher order terms are very small. Moreover,
although not apparent from the graph when Yo is used, this coefficient
can be made zero when r = SZA"I’ = 0.,223607. The coefficient when the
weighting vy is zero or one is somewhat larger and positive. This
tends to compensate the p,4 term when vy is one, but this term never
is large enough to dominate the negative effect of the p44 term. For
the explicit case (v =0) this term does not compensate the L:L term

but increases the logarithm more when r is greater than 1/6.

Conclusions and Summary--Damping Factors. A series expan~

sion was developed for the difference between the slopes on a semi-

logarithmic graph for corresponding terms in the transient solution for
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the continuous and approximate methods. This is equation IV -260

2
v, 1/AT
q.

th
which relates the 1ln (e ) / ) to the j trigonometric roots and

the differencing parameters. This expansion was shown to be suitable

-v
j 1
for estimating e 7 /q, /o

for use in the inequality concerning damping
factors, equation IV-220, which must be satisfied to have an approximate
solution of a certain accuracy. From this expression the following
observations may be made:

(1) The difference in slopes is approximately proportional to
1/S2 and to AT the proportionality constant for AT is a function of the
weighting v.

(2) For all methods and problems, a term proportional to |.J.j
exerts the primary influence on the difference in slope. Three
important points based on this coefficient are: (a) the coefficient of pj
is primarily a function of the time differencing parameters, and, if S
is greater than about five, further increase in the number of points
does not reduce this cocfficient ncarly as much as do appropriate
changes in the time increment and/or v; therefore, for problems where
the trigonometric roots are equal, damping factor accuracy is not
greatly improved by increasing the number of points. (b) The coef-
ficient of p.j4 can be made zero by selecting the weighting v as Yo
according to equation IV -262. This selection of differencing parameters
gives the most accurate damping factors for methods and problems

where the approximate trigonometric roots are equal to the
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corresponding continuous trigonometric roots. (c) If vy is significantly
smaller than \A for any method applied to any problem, then the
transient solution decays too slowly; the reverse is true when vy is
significantly larger than Yor Since 0 < Y, <%, the least accurate
larger positive damping factors are found with v = 1.

(3) For problems where the roots are not equal, the difference
in slopes is equal to (p,jz-ujz) when vy = Yo Some improvement in the
accuracy of damping factors could be obtained by use of a slightly
different value of v to allow compensation with the |J.j4 term. For
instance, for a given S and At the optimum vy for method C on prob-
lem I is slightly less than Yo

The oscillatory behavior was also studied based on the z-
transform solutions. The conclusions are:

(1) Although the exact value of lqmin\ can be found in theory
from the complete z-transform solution, only a good bound for ‘qmin\
is necessary in practice. Even for regular meshes the easily calculated
matrix norms give a better or equivalent bound for ]qmih{ than can
be easily found from the z-transform solution. Thus, the matrix norms
should always be used in studying stability and oscillatory criteria.
Even when the trigonometric root for the characteristic equation can

‘be found analytically, because it appears in a cosine function within the

equation for !q .|, it is inconvenient to use.
min
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(2) The sufficient coonditions that ‘qmin\ be less than ¥ were
derived as equation IV-252 and shown in Figure IV-14. This figure is
for use with all methods applied to problems where the trigonometric
roots Q/J_ for the approximation are real or where the minimum norm
of the Y/A matrix is less than 452. This graph is suitable for finding
Y for use in equation IV-222 which assures satisfactory oscillatory
behavior of method C for problems where the heat-transfer coefficients

at the left (HO) and the right (HS) boundaries can take on any values:
H, K < oo (1v -263)

It also applies for the following cases: (a) method G where H's are

zero or infinity, or one H is zero and the other H infinity; (b) generalized
method A to all problems when r is greater than or equal to Z; when

r is less than 7 only for cases where the graph can be applied to
method G.

(3) The requirement for a graphical solution to give satisfactory
behavior, even though it contains negative damping factors of the same
order of magnitude as the positive damping factors, is that either the
negative damping factor must be somewhat smaller than a paired cor-
responding positive damping factor or, if the paired damping factors
are equal in magnitude, the weighting for the negative damping factor
must be low. For the latter situation, the effect of the oscillations is
to change the intercept on the semi-logarithmic graph of the transient

term for alternate time interwvals, but the slope is the same, if the

values for only even n or odd n are considered.
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5. Eigenfunctions and Eigenvectors

Associated with each damping factor is an eigenfunction for the
continuous solution or an eigenvector for an approximate solution. The

.th . . .th .
N eigenfunction bj(g) gives the relative weighting of the j continuous

-y 2y
damping factor e J for all points £ within the solid; the jth eigen-
vector Cj shows the relative weighting of an at each point in the differ-
ence network. These eigenvectors Cj are the eigenvectors of the Y/A
matrix. Thus, they are determined by the number and location of the
points and the boundary equations, and apply to all problems where the
same Y/A matrix is used in the calculation. A '‘continuous eigenvector"
is defined as an S-dimensional vector with components found by evalu-
ating the eigenfunction at each point, bj(mA g). The eigenvector maltrices
are then the matrices which have as columns the S-dimensional eigen-
vectors, and are the B matrix for the continuous solution and the C
matrix for the approximate solution. Since the intercept on the semi-
logarithmic graph for the corresponding terms in the transient solutions
for the mth point is the product of the jth initial vector component times
the mlCh component of the jth eigenvector, gj ij for the approximate
solution and aj bj(mA E), a difference between corresponding elements
of the continuous and approximate eigenvector matrices contributes to
the error in this intercept which affects the total error as indicated in
equation IV -229,

For all the approximations considered, and for the continuous

. .th .
solution to problems I through IV, the weightings of the j° damping
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th .
factor in the solution for the m  temperature point are of the same

form and are:

Continuous:  cos(S-m) 'lfj j=1,2,00., 00 (IV-264)

Approximate: cos(S-m) ozj 1,2,..., SorS+l (IV-265)

[N
n

where the values of m depend upon the mesh. Consequently, for the
approximate method applied to a problem that gives the same trigo-
nometric roots ozj as the first S-roots for the continuous solution,
the S-eigenvectors of the approximate method are equal to the first

S-'"continuous eigenvectors.'

b(mAE) -¢c . =0 i=1, ..., S IV -266
J(rn £) © i j ( )

This equation IV -266 is valid for methods G, A, and C, applied to
problems II and III, and to method G applied to problem IV. Further,
it is valid for those methods applied to problems like those above
where the boundary equations are the same, but the forcing functions
and initial distribution are different. Thus, the error in the intercept
for the transient term in these cases is caused only by the error in the
initial vector component.

For methods G, A, and C used to approximate the continuous
solution of problem I where H is ncither infinite nor zero and for method
F applied to problem II the a/j‘s are not equal to the corresponding
y.'s. The difference eigenvectors thus are not identical to the continu-
ous eigenvectors. The difference between corresponding elements of

the continuous and approximate eigenvector matrices can be found
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using the trigonometric identity for the difference between cosines.
This gives, after a series expansion for a sine of a small angle, and
replacing (uj-!-vj) with Zuj:

¢ .-b {mA ~
iy b3(maE)

e )t D .
(v )(1- §)[1. Lo ]sin(l-g)pj (1V-267)

(This equation does not apply to the complex o 41 for method G and

S
problem I.)

This is the contribution to the error in the intercept of the jth transient
solution term in the equation for the mth point, caused by the approx-
imate eigenvector. It appears in the inequality equation IV-219 that
is used to determine the number of points required. Since (uj—vj) goes
to zero with l/S‘ » the error in the eigenvector matrix elements also
goes to zero with l/Sz, but the proportionality constant would be
smaller for points close to the adiabatic boundary (m~S) and larger
at the heat-transfer surface. Also, the error in the eigenvectors for
the smaller damping factors would be larger than those for the larger
damping factors. The error in the elements of the eigenvector for the
largest damping factor always has the same sign as does (p,j—uj);
consequently, for method G these elements are smaller than the con-
tinuous quantities, and for method C and graphical A they are larger
than for the continuous solution.

As the eigenvectors shown in equations IV-264 and IV-265 have
not been normalized to unit length, they do not satisfy the orthogonality

relationships, equations II-18 and II-49. However, if the eigenvectors,
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as shown in the above equations, are multiplied by a proportionality
constant which has a j subscript, they would satisfy the orthogonality
relationship. The eigenvectors as shown in equations IV-264 and
IV -265 are in a convenient form for comparison of accuracy. However,
‘a simpler form for the eigenvectors for several of the methods and
problems can be found by substituting the trigonometric roots into
these equations and then cancelling a factor that is in the initial vector.
The simplest form for the eigenvectors is Table IV-16 , and the
initial vectors shown in the following tables, and to be discussed in the
next section, are consistent with these eigenvectors. That is, in
reconstructing the complete solutions the eigenvectors shown in Table
IV -16 should be used with the initial vectors tabulated, not the eigen-
vectors given in equations IV-264 and IV -265.

These expressions are all sines and cosines of real angles

except for o for method G applied to problem I. Consequently,

S+1
the absolute value of the elements of the eigenvector matrix vary from
zero to one, and they are usually about the same size. Therefore,

the size of the 85 S8 product that is the amplitude for the damping
factor that can be negative, g’ is determined largely by the size

of its initial vector component, and the eigenvector elements usually
are not the reason for a large amplitude. However, part of the differ-

ence in the behavior of the graphical solutions for methods C and G

in Figure IV -1 is explained by the eigenvector components. In this
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case, with §=5, qmin is -0.9511 for both methods, and the expression
for the eigenv.ector corresponding to Uin for both methods is
[sin m(2S-1)rm/2S]. However, for method C m is % and for method G
itis 1, and this component for method C is about 25/7 times the
component for G, partially accounting for the larger amplitude of
oscillations.

The eigenvector for method G that corresponds to % in and the

complex root ®ei1 is

cos(S-m)ay | = (-1)° ™ cosh(S-m) j(asﬂ) (1V-268)

Since the hyperbolic cosine is large for large [j(oz )] this can have

S+1
large components; however, the amplitude of any oscillation is
affected by the size of its initial vector component which is small for

this case.

Conclusions and Summary--Eigenvectors. The eigenvectors as

shown by equations IV-264 and IV-265 or in Table IV-16 only contribute
to the error in the intercept of the semi-logarithmic graphs of a
transient term when the approximate trigonometric roots are not equal
to the corresponding continuous roots. This error thus does not occur
for methods G, A, and C applied to problems with one‘heat—transfer
coefficient zero and one infinity, problem II, and with both heat-transfer
coefficients zero, problem II, and for method G applied to problem IV.

The eigenvector matrix is in error for all methods applied to problem I
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and for graphical method F applied to problem II. The error in each
element is proportional to (uj—uj) and consequently goes to zero with
1/s°.

The elements in the eigenvector matrix are of the same order
of magnitude, and thus the eigenvectors are not usually responsible

for a large amplitude, g5 C1ns’ for the minimum and possibly negative

)
damping factor. An exception is that for the point located at 3 for method

th
C applied to problem I, the large size of its component of the S

eigenvector partially explains the oscillatory behavior of this method.

6. Initial Vectors

The transient solution of either the partial differential equation,
or the partial difference equation, is a vector which is the sum of

weighted eigenvector ~-damping factor products. That is,
n n n
= - + + ...+ Iv-2
N I LICCHIREAH 85°s% | 1V -269)

n
where the bracketed quantity represents the vector C Q g for the
transient solution; the c, are the eigenvectors; q,n are the corresponding
J J
h
damping factors to the nt power; and the gj are the components of the
initial vector. Each gj is the weighting given to the eigenvector-
n o ses
damping factor product, c,q, . The product of the initial vector com-
N
th . . .
ponent and the m  component of its eigenvector gjcmj determines the
. . . . .th R .
intercept on the semi-logarithmic graph of the j  term in the transient

solution for the rnﬂ'1 point. For the large damping factors, this quantity



243

should be close to the continuous intercept ajbj(mAg), but for the
higher -subscripted damping factors which can be negative, one desires
this quantity to be small.

In addition to being a function of the initial temperature distri-
bution, the initial vector is a function of the Y/A matrix as shown by
the orthogonality relationship, equation II-49. Thus, for methods G,
graphical A, and C, applied to a specific problem, the initial vectors
are a function only of the number of points; for generalized method A
or an averaged method they are a function also of the time differencing
parameters. Because the initial vectors are specific functions for a
given initial condition and do not follow a given form as do both the
damping factors, conclusions which are as precisely stated and generally
applicable cannot be made. Probably because of this and also because
of the difficulty of obtaining a function for the initial vector from the
orthogonality relationship, the initial vectors apparently have not been
studied previously. However, the initial vectors can and often do have
a decisive effect on the accuracy of an approximate solution both from
the standpoint of accuracy of lower-subscripted components, and the
absolute value of the higher-subscripted components.

For these reasons, the specific initial vectors for each approx-
imate method with its variations to each problem are not discussed
individually. (These initial vectors and related quantities are sum-

marized in Tables IV-17 through IV-28.) Instead, first, the accuracy



244

of the components for the slowest-decaying terms and the size of the
components fqr the possibly negative damping factors are discussed.
Second, the effect of the amplitude of the oscillatory components for
graphical methods is discussed using the effective initial vector com-
ponents based on equation IV-26 . This is really a consideration of
the sum of two paired terms in the approximate solution. Third, the
effect of averaging on accuracy is discussed for both general approx-
imations and graphical solutions.

Unmodified Initial Vector Components. The unmodified initial

vector components are summarized in Tables IV-17, IV-18, IV-19,

and IV -20, for the several methods and problems. These unmodified
initial vector components are the components for the unaveraged
methods as shown in equation IV-269 and apply directly to all S damping

n
factors. That is, is the weighting factor for c , the slowest
gl g g

1%
decaying ter and or is the weighting for c T or

ying term, and gq €s+1 g g s%s

n . . . . .

(CS-i-l g4y ) which is the term that can be negative and give oscilla-
tions. Thus, although the components are shown for graphical method
A, these components do not include the effects of oscillations; they
are included in the effective initial vector components discussed in
the next subsection, and the accuracy of any graphical solution cannot

be inferred directly from the table or the following discussion.

A study of these unmodified components for problems I, II,
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and III shows that the gj components for method C are closest to the
corresponding aj of the continuous solution; method G has the next most
accurate components, and the difference between gj and aj is greatest
for graphical method A. This means that if a combination of time
increment and weighting factor is used so that all qj's are positive,
method C would be expected to give a more accurate approximate solu-
tion than method G. Since for graphical method A the time differenc-
ing parameters AT and v are fixed, this cannot be done, and it is not
included in the comparison. Further,from a comparison of the accur-
acy of the gj one also cannot be sure which of the graphical solutions
gives the best approximation, because of the effect of oscillations.

The above conclusion about the difference between gj and aj
is based upon the series expansions which are developed directly from
series expansions for the trigonometric functions in g, for the com-
ponents for problems II and III, and from comparison of each function
in the expression for the components, and a brief numerical study for
gy for problem I. The initial vector for problem II is a special limit-
ing case of problem I as H goes to infinity; however, problem III is
not the limiting case of problem I with an H of zero, as its initial
distribution is not constant. A minor exception to the above conclusion
is that method G can be more accurate than method C for problem I for
values of H so that H/2S is about the size of 25, and for values of H near

where (gj —‘aj) goes to zero for method G. For problems II and III
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the first term in the expansion for (gj—aj) is proportional to 1/S2 and
the proportionality constant for method C is always % that for method
G. If method. C always gives an intercept that has this relationship,
then to obtain a given accuracy (gj—aj)' in intercepts, 41 per cent fewer
points would be required than for method G.

The probable reason why method C gives more accurate initial
vectors is that the Y/A matrix for method C is the only matrix approx-
imation to the Laplacian which is symmetric, and consequently, its
eigenvectors are orthogonal with respect to the same form of weighting
factor as is the continuous solution. The integration of the orthogonal
functions to find the Fourier coefficients aj for Cartesian coordinates

uses a dimensionless area weighting o(g) of 1 for the volume weighting:
o(E)dE = dE =4V (1v-270)

where dV is a dimensionless differential volume.

The integration is:

1
a;= [b(8) [T(5,0) - Tp(£.0)7 ag (1v -271)
0

The summation of the eigenvectors to find the initial vector coefficients

. is
gJ

= - A ‘ 272
g mj fm,0 " P m,0 A (Tv-272)
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For method C the A are AE for each value of m; this represents an
m
integration of the area from -AE/2 to +AE/2.

AE /2
A= | oleag=at t=ms<s -

m

o)

(IV-273)

-AE/2

However, for method G the weightings Am for the summation are AE
only for the interior points and are AE/2 for the points adjacent to the
fluid temperature.

ﬁf— m=0,8 (IV -274)

A = AE 1,2,00., S-1 (IV -275)

2
I

Thus, the weightings for method G are not directly analogous to the
weightings in the continuous integration.

For a network of nodes to have an area equal to the integral
of the volume weighting, the points must be located away from the
surface. For example, for radial coordinates we would have:

p +AE/2
m
A = I 2mpdp = anmAp (Iv -276)
p_-bE/2

where mAp =pm-and 1/Ap =8S.

In order to use this expression to calculate all the Am's, m must be

/2, 3/2, ..., 5-1/2 or the points must be located a distance Ap/2
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away from the surface (not at m=0 or m=S). The location of the points
for more complicated geometries is not as clear; however, it might be
possible using numerical techniques of orthogonalizing (31) to find such
a system for a given geometry. However, based on the above discus-
sion, locating the points away from the boundary appears to be advan-
tageous. A different argument was used in Chapter III to justify
locating the points away from boundaries about which the témperature
distribution is symmetric, or an adiabatic boundary.

The importance of the accuracy of the initial vector components
can be shown by a study of the application of generalized method A to
problem II. This method is studied in detail only for problem II, as
it appears to be suitable mainly for graphical methods. As the Y/A
matrix is a function of the time increment for this method, the initial
vector is also a function of the time increment as is shown by the
series expansion for the initial vector in Table IV-18. The first term
in an expansion for (gj -aj) is proportional to (12r-1) and by making
r=1/12 this term is made zero. A numerical calculation, based on this
method for 5 points, gives a first initial vector component that agrees
with the continuous component to within 0.01 per cent for generalized
method A compared to an error for method G of about 1 per cent. The
approximate temperatures found using generalized method A show an
error that is from 1/50 to 1/100 of that of the approximate temperature

found using method G for the same number of points and same time
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increment, which shows that the accuracy of the initial vectors does
greatly influence the accuracy of the solution.

However, in order to obtain an accurate solution even when the
initial vectors are accurate, the oscillatory effects must be small.
Consequently, if the time differencing parameters are selected so that
q_ . 1is negative, the weighting associated with this damping factor

min

should be small, and the closer 9in in absolute value,

1s to g <
the smaller this weighting or amplitude should be. Since the eigenvector
matrix elements all have about the same absolute value, which is less
than or equal to one, except for method G applied to problem I, the

sizc of the initial vector &g determines the size of the amplitude.

°F Bgy)
A study of the initial vector components together with a knowledge of

the trigonometric roots that correspond to Urin indicates that the com-
ponent of the initial vector is excessively large only for method C

applied to problem I where the heat-transfer coefficient is large,

H >25, and to problem II where H is infinity. For the other methods

and problems, this component is sufficiently small and does not give
amplitude to the oscillation. This means that, if the accuracy in

method C is to be obtained, the differencing parameters must be selected

n

is either positive or so that (qmin) is negligible at the

so that
qmln

time of interest.
Several comments should be made about the possibly oscillatory

components of the other methods. First, for stable method G applied
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to problem I, the product (gs+1 c )>which is the amplitude associ-

m,S+2

ated with the damping factor 9 in and the complex Og.q’ is of the

2
order of 1/S 7, and should not cause any trouble as the amplitude for
YIAX is about 1 . Even though the amplitude of U in is small for
graphical solutions using methods G and A, for problem III din is -1,

and unless averaging is used the solutions are technically unstable.

Graphical Solutions-~--Effective Initial Vectors. The effective

initial vectors for graphical solutions are defined by equation IV-256
and are found by taking the sum of the terms in the approximate
solution containing damping factors of equal magnitude but opposite

sign. Their components are

c .
m S+1-j ];j<S;‘1

n
= l - -
&I E [gj (-1 eg1; —< (v -277)

.th . s .
The product of the j effective initial vector component with a com-

th
ponent of the j eigenvector gives the intercept of the semi-logarithmic

)]

1 . . +
plot of a transient term for either n even [gj gS+1-j (cm S+1-3/Cms+1

or n odd [gj (c }J. This is shown in Figure

" 8541-5 °m s+1-5/Sm 541

IV-15 for graphical method A and problem I. Consequently, for a
graphical solution where equal and opposite damping factors occur, in
determining the accuracy the important difference is (gj E” aj) and not
.« - a-_ *
(g; - 2)

Although the effective initial vector components exist and

determine the accuracy for graphical methods G, A, and C applied to
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problems IT and TIT and for graphical method A applied to problem I,
the effective initial vectors have been derived analytically only for
problem II, and a brief numerical study has been made of the effective
initial vector component for AKX for graphical method A applied to
problem I. The series expansions for these components are in Table
IV-21 for problem II and from a study of them the following conclusions
are made:

(1) Of the graphical methods shown, graphical methods A and G
are the most accurate, and the highest accuracy occurs when the quan-
tity (m+n) is odd. Even under these circumstances, the first error
2

term of an expansion of ( - aj) for an (n+m) odd which is +u.J./3S

gj o)
is twice the error term for the expansion of (gj - aj) for generalized
method G with no oscillations or 4 times the first term of the difference
for generalized method C with no oscillations.

(2) Graphical method C never gives accurate results for prob-

. ) . n+m-%
lem II as its first error term in (gj E aj) which is [(-1) '

a./2m]
J

can be considered a zero order term because it does not go to zero as

S goes to infinity. This first error term of the effective initial vector

also completely explains the behavior shown in Figure IV-1 for an m

of %, as (gl £ - al) would bc expected to be either -a or +aj making

g1k oscillate between zero and more than twice its correct value.

The numerical study for method A and problem I shows that

the component for the slowest decaying damping factor 2, is always
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greater than the corresponding a , and that the compensation obtained

1

when the terrg [(—1)n 8541 (cm S+l/cm1)j is negative accounts for the more
accurate effective initial vector. This occurs for problem I when
(ntm) is odd and this is the time at which the graphical result should
be applied.
Thus, in order for graphical methods with equal and opposite

damping factors to be accurate, the size of the oscillatory part of the

/cmj)] » should be of the same

effective initial vector, [gS-!-l—j (cm S+1-]

order of magnitude as (gj - aj) and further, one should know at which
odd or even n to use the graphical solution calculated at a point. For
graphical method A and the problems here, the correct order of mag-
nitude does occur on the oscillatory part of the initial vector and the
more accurate solutions occur for (n+m) odd; however, both the ampli-
tude of the oscillations and the error in (g:l - aj) for this method should
be further studied. Possibly, means should be devised by which the
sign of (gj - aj) could bc predicted, and when the oscillatory part
compensates.

It should be added that a procedure similar to the effective
initial vector method could be used to analyze graphical methods where
the damping factors are not equal and opposite as, for example,
graphical method F applied to problem II. In this case, the two damping
factors that are closest in absolute value but that have opposite signs

could be paired and assuming that j and (St+1-j) are paired and that
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Ay j is negative, the sum of the corresponding two terms in the
transient solution is:

n

n
+
& mj Y T 8415 “m s+1-5 Ys+1-j

n
- q . c .
S+1- S+1-
R e e L (1v-279)

j ]

S

lgj=s=

122

The effective initial vector would be like that before but with the ratio
[(qs+1_j/qj)n] instead of (-1)n for the oscillatory term. In this case,
the effective initial vector is not constant at alternate time intervals
but oscillates about gj with decreasing amplitude. Because of this
decreasing amplitude, even a numerical comparison of these effective
initial vectors is not useful.

Because graphical method F' is the most accurate of the graphical
methods for this problem, its solution is compared numerically to the
continuous solution for 5 points in Table IV -22; graphical method A is
compared similarly in Table IV-23. The success of graphical method F
is due to a complicated system of cancelling errors; however, two
characteristics which are apparent for method F and problem I are:

(1) The fact that iqmin" is significantly less than 9 ax allows
a larger initial vector component for Uin’ and this oscillatory com-

ponent is rapidly damped.
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(2) Both the intercepts for jof 1 and 2 are more accurate

~than are the corresponding intercepts for method A.

Averaged Methods. The advantage of averaged methods is that

they greaﬂy reduce the amplitude of the oscillations of any negative
damping factors, as discussed in Chapter III and Chapter IV, section
B-7. It was mentioned that an averaged solution has as its initial
vector components [(qj+ 1)/2qjk] times the unaveraged solution initial

vector.

&iAve - T & (Iv -279)
The quantitative effect of this on the accuracy of the initial vector
components is studied by expanding [(qj+1)/2qjk] into a series.
Multiplication of this series times an expansion for the unaveraged initial
vector components gives a series for the averaged initial vector
components, and subtraction of aj gives the required expression.

In Table IV-24, the series for [(qj-l- 1)/qukj is shown together with the
series for the special cases of ki k=0 the forward average, k=% the
central avérage, and k=1 the backward average. Carrying out of the
multiplication of the series for [(qj+ 1)/2qjk] times the series for the
‘unaveraged initial vector gives the series for the averaged initial
vector. This series shows that the major effect of averaging is that the

> 2 .
term [aj(k-l/Z)r ujZ/S ]is added to the first term for the expansion for
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the error in the unaveraged initial vector component (gjja.j) to obtain

8 Ave” aj). For

the error in the averaged initial vector component (
the three averages above this term is: forward, (-a.r u,Z/ZSZ); central,
NN
0; backward, (ajr p,jZ/ZSZ). Consequently, if an averaged method is
desirable for reducing oscillations, and an unaveraged method is known
to have very accurate initial vector components, the central average
might be the best. On the other hand, if the error in the unaveraged
initial vector components is positive, (gj-aj) > 0, then the forward
average should be used; if the reverse is true the backward average is
best.

In Tables IV-25, IV-26, and IV -20, the expressions for the initial
vector components for the averaged solutions and for the series expan~-
sions for (gj Ave” aj) are shown. It should be remembered that the
forward average is used with methods A and F and the backward average
with methods G and C. In these tables, the coefficients in the series
expansions that involve r and v are the terms added because of
averaging. In some cases, the first error term in the expansion for
(gj Ave. aj) shows that averaging can compensate; for example, this
is true for backward averaged method G applied to problem II. In this
problem, this error term is zero if r is 1/6; however, it cannot be
generalized to other methods as seen from the other expansions. In

particular, when averaging method C for problem II, the error would

actually be increased by using the backward average, but, for method
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C and problem III, the backward average compensates and the first
error term is zero for an r of 1/12. For method C, because of its
accurate initial vectors, the central average is probably best. Indeed,
from the series for [(qj+1)/2qjk] and the above discussion on forward
and backward averages, the important conclusion is made that the
central average does not introduce significant error in the initial vector
component and, in general, when averaging is necessary to reduce

oscillations, the average of the solutions at times t and t usually
n n

+1
should be applied at time (n+1/2)AT.

The series in Table IV -24 cannot be used directly on the effective
initial vector components to generate the expansion for the effective
initial vector components for an averaged graphical method. These
expansions can be found by considering the series for the effective
initial vector components as the sum of two series; one called the
oscillatory series contains all the terms with (-1)n as a factor; the
second, called the non-oscillatory series, contains the remaining terms.
The non-oscillatory series for the expansion of the averaged effective
initial vector is then the product of the series for [(qj+l)/2qjk] and
the non-oscillatory series for the unaveraged solution which is the
same as the series for the averaged solution. The comments just made

for this series then apply directly to this part of the effective initial

vector for the averaged graphical solution. The oscillatory series for
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the average effective initial vector components is found by multiplying
the oscillatory series for the unaveraged solution by the series for
[(l-qj)/quk]. The series for [(l-qj)/quk] for graphical solutions
are shown in Table IV -27 in terms of k and for k's of 0, %, and 1.

Each of these series has the same first term, uj2/452. Thus, the
major effect of multiplying the oscillatory series by the series for
[(l-qj)/quk] is that the largest oscillatory term is multiplied by
p,j2/452'.

The effective initial vector components for averaged graphical

solutions G, A, and C applied to problem Il are shown in Table IV -28,

a.).

together with the series expansions for the error ) -
g © *pan ’ (g_] E Ave ]

(Note that the forward average is associated with method A and backward
averages with methods G and C.) These results show that for averaged
methods G and A the oscillatory term now appears only in the second-
and higher-order terms and is of the order of 1/S4 rather than l/S2

as in the effective components for the unaveraged graphical solution.
However, the first error term for the effective initial components for
averaged graphical method A is twice that for generalized method G's
components, as pointed out previously. The semi-logarithmic plot of
the first transient term with time for averaged graphical method A for
odd n is coincident with the dot-dash line with the small circles in
Figure IV-15; the line for even n has an intercept that is less than

0.2 pecr cent above that shown for odd n, and is not shown in Figure



258

IV-15, as it lies within the line thickness for even n. For method C,
an oscillatory part still appears in the first error term, but this term
is now proportional to 1/S2 compared to being independent of S for the
unaveraged method. Averaged method C actually gives a ramp-plateau
temperature-time plot as does unaveraged G shown in Figure IV-1 and
a second averaging would be required to reduce its oscillations to the
1/S4 term as for graphical method A.

Thus, for some graphical methods, averaging essentially reduces
the oscillatory effect by an order of l/SZ; however, for a graphical
method which has a tendency to weight the oscillatory component
heavily, such as happens for method C, the oscillatory effect is still
significant, Further, when using either the forward or backward
average, the accuracy of the initial vector is still dependent upon
unpredictable error in (gj-aj), but, for the problems considered here,
graphical method A gives compensation when the forward average is
used. This graphical method should be further investigated to see if
the average always compensates; a possible reason for this compen-
sation could be that a backward difference was used in deriving the
surface equations.

Conclusions and Summarys=-Initial Vectors. Two reasons have

been shown why the initial vector components are important to the
accuracy of approximate solutions. First, the difference between the
initial vector components, (gj -aj), for the larger damping factor terms

can make a large difference in the error in the approximation, and
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second, if the initial vector component for the minimum damping
factor, 9Dnin’ is large in absolute value, it can ruin the accuracy of

an approximation when |qmin( is equal to or just smaller than Aax’
Since the initial vector components depend upon the specific initial
temperature distribution, and do not have the same form for each
method and problem, the general conclusions which can be made about
the methods are not as quantitatively precise as are the generalizations
about the damping factors.

Method C was shown to have the most accurate unmodified initial
vector components of any of the methods for the problems discussed.
The probable reason for method C having the most accurate initial
vector is that its orthogonality relationship has the same form of
volume weighting factor as does the continuous solution. Consequently,
method C not only has the most accurate initial vectors for the prob-
lems with the specific initial conditions studied here, but probably has

the most accuratc initial vector for othecr initial conditions. However,

the initial vector component gg for the minimum damping factor i

is very large for problem I with a large heat-transfer coefficient, and
for problem II this method is not suitable for use unless the time
differencing parameters AT and vy are selected so that Unin has a

small absolute value or is positive; therefore, it is not suitable for use

as a graphical method for this type of problem.



260

The fact that method C has the most accurate initial vectors,
and that its orthogonality relationship has the same form of volume
weighting as the continuous solution, was shown to be dﬁe to the location
of the adjacent points at a distance AE /2 from the surface. It was also
shown that to obtain the directly analogous form for the volume
weighting for a regular mesh spacing for radial coordinates the
adjacent nodes must be located at distances Ap /2 from the center and
from the cylindrical surface. This leads to the important conclusion
that for problems where a regular mesh in a coordinate system
appropriate to the geometry is used, more accurate initial vectors
are obtained if the adjacent points are located a half increment away
from the boundaries. This conclusion applies to two- and three-
dimensional problems also. Even for irregular networks, location
of the adjacent points away from the surface might be advantageous.

Graphical method A was shown to give an accurate approximate
solution to the problems considered here because the oscillatory part
of its effective initial vector component was about the same size as
the error in the corresponding initial vector component, and part of
the error is cancelled for alternate values of n when (n+m) is odd.
The oscillatory part of the effective initial vector for this graphical
method and problem is small and thus, for these problems, accurate
solutions are obtained. Thus, graphical method A does have a tendency

toward having only a small oscillatory part of the effective initial
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vector. However, in order to generalize these results for graphical
methods, its effective initial vector components gj £ should be further
studied by deriving solutions for other problems by studying the
orthogonality relationships, and by trying to relate the space dis-
cretization error. These studies should give information about the
size and direction of the error in the initial vector components

(gj-aj) for the slower decaying positive damping factors, about the size
of the oscillatory part of the effective initial vector components,

[(-—l)n g5+1—j (Crn S+l-j/cmj) 1. and about at which values of n, odd or
even, the most accurate effective initial vector components occur.
However, for graphical method A applied to problem II, the error in
the effective initial vector components for {n+m) odd, when the oscilla-
tory part compensates, is still four times the error in the initial vector
components of generalized method C.

Averaging a solution, and applying the average at the center of
the time interval, reduces the oscillatibns and changes the initial
vector components only insignificantly. Applying the average at the
beginning or end of the tifne interval (forward or backward averages)
can change the unaveraged initial vector. However, for graphical
method A, the initial vector appears always to have positive error in
~ its unaveraged initial vector components, (gj —aj) > 0, and the forward
average compensates this error and improves the accuracy of graphical

method A. The above mentioned study for the initial vector of graphical
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method A should also show if the error (gj -aj) is always positive and,
consequently, if the forward average always should be associated with
graphical method A.

Although from the expressions for components of the eigen-
~vectors and the initial vector it is not possible to derive a general
expression for the error in the intercept on a semi-logarithmic plot,
one concludes that this error is proportional to 1/82, Consequently,
in trying to select the differencing parameters or to bound the error,
the following rough estimate of this error is suggested:

M.

j .
.c .=2a.b, A < g - =1,2, ..., S IV -280
Sy = %y by (R <8 j ( )

where & is a scaling factor which depends upon the range of temper-
atures present initially in the solid and the surrounding fluid. It can

usually be taken as:

t \ (Iv-281)

where ml and m, are taken on all values for the mesh used and fO" and
fS of the fluid temperatures. Th:"LS expression is conservative giving
an intercept error 12 .times that observed for method C for problems
II and III and 6 times that fo:f method G. Because of this conservative
esfirﬁate, it can also be used for graphical methods and averaged

methods. Further studies would be required to find a less conservative

relationship. .
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7. Problem V--Complete Problem

Problem V is the limiting case of problem II for the solid that
extends to infinity in the £ direction. The continuous solution and the
solution for method G are shown in Table IV-29 for comparison. Both
' trigonometric expressions for the solution are based on replacing the
infinite or finite sum in the transient solution with an integral. Since
S is now infinite, AE is used in the solution. Based upon the previous
discussion of cach of thc tcrms in the integral for the approximate
solution, the conclusion is that the errors are the same as for the finite
solid. Further, because of the similarity of form, the approximate
solutions for each of the other methods can be found by taking limits,
and then the conclusion is that all comments made concerning problem
II apply to problem V also.

A further study and comparison of solutions to this problem
might lead to better understanding of the accuracy of the approxima -
tions for finite solids at short times. This probably could be done
because the continuous solution for a finite solid can also be expressed
as an infinite sum of error function terms, and only one or two of
these terms are significant at very low times. The continuous solution
for the infinite solid as shown in the table is actually the first term of
this summation. Further, since the binomial distribution is a finite
difference approximation to the normal distribution, a '"binomial error

function' might be related both to the trigonometric integrals for the
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approximate solution and to the normal error function. A comparison
between the approximate solution in terms of a ''binomial error func-
tion' and the continuous solution in terms of its error functions could
lead to useful conclusions about the accuracy of approximate solutions

at very short times. This has not been attempted.

8. Selection of Differencing Parameters.

As a review and application of the equations derived, a procedure
is developed that allows the selection of differencing parameters, S,
AT, and v, in such a way that the error in the approximate transient

solution is never larger than V at any time larger than r These

o
parameters are also selected by this procedure so that the number of
non-zero multiplications required to carry the calculation to a time T
is close to the actual minimum necessary for a given accuracy. This
procedure is most useful when a very accurate solution is required at
either short or intermediate times, although it can also be used for
long times. In this procedure the assumption is made that graphical
method A is to be used for any graphical solution, and that method C

is to be used for any other calculation. The procedure is based on

equation IV-218 which is, together with equation IV-216,

J n

' 0
V=Tlgyc g7 apbylmbE)tgre o {1' a; } a = v,

(IV-282)
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This equation, combined with some of the following remarks, can be
used to estimate the error bound V for a given selection of differencing
parameters; this is a straightforward calculation and need not be dis-
cussed. As shown in section E-2 of this chapter, if the error bound

V is equally divided between the intercept and the slope of the semi-
logarithmic graph of a transient term with time, the equations which
assure that the first J significant terms are sufficiently accurate are

given in equations IV-219 and IV -220, and are:
Accuracy of Intercept

———— = |g;c_;-a; bJ(mA§)| (IV-283)

0
ZJql

Accuracy of Slope

2 T
-vJ 0

v { e } _
™ = g5 ch 1 Y (IV-284)
Z.Jql 9

The size of the oscillatory component must also be controlled and this
restriction is equation IV-222 for solutions other than graphical

n

V>>goc o Y 0 (TV -285)

n

0
where g CmSY can be taken as no larger than 10 per cent of V and

probably smaller than 1 per cent. The intercept error is given by
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equation IV~-280, which is

x_J N _ .
o; >| 85 €7 " 35 bJ(mAe)| (IV -286)
2
) /A7
The ratio e /qJ can be found from equation IV-260,
v 2
e J 2 2 4 1
In & - _ 1 ) +
n Sy s owgt vy rug [ ve 7 |
qJ 125
(IV -287)
6 2 2 (3 -y)AT 1 "
o G-y -vHen? Bl LT
) 125 3605 -~

2z
This relation requires a knowledge of (p.j -V or a way to estimate

7))

this quantity; this relationship is known for problems with boundary
conditions of the types of problems II, III, and IV, but is not yet known
for problem I and method C and graphical method A. The bound for

la_. \, Y, is found for method C from Figure IV-14 or equation IV-
min

252, which is, when solved for Y:

¥ = 4r(1l-v)-1 2\

Tyt 1 | (Iv-288)

min
In order to use these equations the following quantities, which are

functions of the physical system of the problem, must be estimated:

n

th
l. The slowest-decaying damping factor to the n power, 9

This can be taken equivalently as:



e = e (Tv -289)

2. The number of significant terms in the transient solution, J.
th | .
3. The J trigonometric root, Wy OT V.
4. The size of the initial vector component-eigenvector component

products,

€5 ©ng for the smallest significant term and 85 for the

S
term that can have the negative damping factor.

Since only estimates of these quantities are required, either of
the corresponding continuous or approximate quantities, as indicated
above, is satisfactory. Usually, in the following, the approximate
quantity is used because once the Y/A matrix and AT and vy are fixed,
each of the other gquantities can be found numerically by appropriate
matrix manipulations.

In most cases, the easiest way to estimate the first quantity,

n

4; is to find an estimate for either Wy, or v, asan estimate of
this trigonometric root is necessary for later use. This can be done
in several ways. First, if only a rough estimate is needed, W, can
be estimated on the basis of previous experience. Second, if the exact
continuous solution can be found for a problem with the same boundary
equations but possibly different fluid temperature forcing function

and/or different initial conditions, then v, can be found exactly.

1

Third, a trial approximate calculation can be stepped out for a coarse

difference mesh for the solution to a problem where the fluid
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temperature function gives a steady-state solution. This calculation
.must be carried to the time when a semi-logarithmic graph for an
approximate temperature is a straight line. A graphical construction
for about four or five points should give a straight line after about 10
to 15 time increments; its slope with n is [cos(pal/S)] where n and
S are based on the coarse grid. A backward difference implicit cal-
culation with v of 1 could also be carried out for four or five points
with a very large time increment of possibly 0.1 for two or three
increments. The angle parameter W, can be estimated from the

semi-logarithmic slope and

" q, - L+ 2r(yq, +1-v)
cos AR L (Iv-290)
S 2r(y ql +1 -v)

where e is the slope with n andn, r, S, and vy are the parameters
n
for the coarse grid uscd. After the estimate of Moo the quantity Y

can be found from equation IV -289.
The second quantity, the number of significant terms, J, in the
solution,can then be estimated by first finding the second and higher

order |.'s from equation IV -245, which is

o

J

Then, by calculations of e for the s econd- and higher -order

th
terms, one finds the J term such that the (J+1) term is only a small
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fraction of the desired error bound, probably less than 10 per cent
of the error bound V. Also, the Jth angle parameter |.LJ. is estimated
and is the third quantity above.

The fourth and last quantity to be estimated is the product

for the last significant term and gs . for the damping factor

85 “m3 8
which can be negative. These can be taken as the same quantity inde-

pendent of the j subscript,

g c =38 (IV-292)

For most initial distributions, this gives too large a product for the
possibly negative damping factor term; thus, it is a conservative
assumption. For an averaged method, the g5 s product should be
2
taken as % /S .
"o
hus, f i N TR c and

Thus, from these estimates 9 J uJ g..‘r my’ and g ¢S
are known, and all the quantitics in the restriction equations can now
be found as a function of the differencing parameters. The inequality
for the intercept error, equation IV-283, can be simplified by sub-

stituting for this error from equation IV-286 and solving for S. This

gives

n
. 0
Z.Jql @uJ

5 2 [ (IV -293)

The inequality for the accuracy of the damping factors, equation IV -

284, can also be simplified to
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J
Vv e
_..___;l_(.)__ > 11 - i (Iv-294)
2Jq, 3 4y
2
-v
: J VAT, . . : ,
where the ratio (e /q;r ) is given by equation IV-287. Also the

oscillatory behavior restriction, equation IV -288, can be found for

method C by substitution in that equation for g . from equation

S
IV-292 and for Y from equation IV-288 obtaining:

TO/AT TO/AT

2
%’>> [45 2{”(1'“()'1 J = (¥) (Iv-295)
45 ATy +1

The double inequality sign can be taken to mean that the quantity on

the right is a certain very small fraction of V, probably 0.01 or less,
when finding parameters that satisfy this inequality. The problem then
is to find the selection of differencing parameters S, AT, and y which
satisfies the above three inequalities or the graphical solution param-
eters withv = 0 and r =% which satisfy the two inequalities for accur-
acy, equations IV-293 and IV -294, and that, at the same time, mini-
mize the number of calculations. This can be done by first analyzing
the graphical solution set of parameters, then other explicit methbds,
and finally the general implicit method. This sequence is used because

each analysis of a type of solution can reduce the range of variables

considered for the next type of solution.
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The number of points to be used for any of the three solutions is
found directly. from equation IV-293 using the equality sign. This is
a very conservative estimate based on the intercept accuracy and it
applies to graphical and averaged methods, in addition to other gener-
alized methods. However, as pointed out previously, graphical methods,
even allowing for compensating errors of the oscillatory component,

n

do require more points than solutions where Y is made negligible.
Anticipating that future studies might indicate that a larger proportion-
ality constant would be associated with the error in graphical solution
gj Crnj products than for generalized methods, a larger number of

points, SG, is associated with graphical solutions, compared to S

points for implicit or other explicit solutions:

S -2
sG > (Iv -296)

(The proportionality constant used in equations IV -286 and IV -293

is one.) The above number of points is based upon accuracy of the
intercept and thus is a minimum number of points. In some cases,
more points (larger S) than that given by equation IV-293 might have
to be used to obtain a mesh point at a desired location, where inter-
polation was not deemed satisfactory; or to adequately describe a very
cyclic initial temperature distribution; or a temperature distribution

that is expected to show many cycles with the space variables.
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Because the graphical solution with r., OT SGZA'T G of & and
v = 0 requires the least number of calculations per time increment, or
possibly can be constructed graphically, this solution is considered
first. After an SG has been determined from equation IV-293 or a
ver sion of this equation is modified with a different proportionality
constant, the accuracy of the damping factors fé)r the graphical solution
5 1/AT
should be checked by calculating the ratio e /q_J from equation
IV-287 to see if this ratio satisfies the inequality IV-294. If this
inequality is not satisfied, then the number of points for a graphical
solution must be further increased until the inequality is satisfied.
Although, in theory, the solution for the selection of parameters

of r =% and y =0 can be constructed graphically for any value of S

G’
for SG greater than about eight, one requires too large a sheet of
graph paper to obtain an accurate construction. The graphical equiv-
alent of numerical round-off error then obscures the solution. Con-
sequently, for an SG larger than eight, the calculation must be stepped
numerically using a desk calculator or digital computer which carries
a sufficient number of significant figures. The total number of non-

zero multiplications required is then

3
= 25 -z
N, G T (IV-297)

Since any other explicit calculation requires twice the number of
multiplications per time increment, and any implicit calculation

requires seven times the multiplications, the only other calculations
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that give fewer multiplications are an explicit calculation with

S 3
S (g“ ) (Iv-298)
G
and an implicit calculation with
g 3
r = 3.5 (=) (Iv-299)
Im SG

Because of the third power of the ratio S/SG in these inequalities, the
ratio SISG must be close to one if the graphical solution is to be com-
petitive. The following calculations make this clear. First, as the

n

0
ro. must be less than 3 when Y = is to be small, no explicit calcu-

lation except the graphical solution need be considered if

55 0.79 (IV -300)

SG
However, if, as indicated by comparing the errors for the effective
initial vector components for either averaged or unaveraged graphical
method A with those for method C when applied to problem II, the

graphical solution requires twice the number of points as does a
n

solution where Y 0 is negligible, the r's that should be considered
are:
T > 0.125 (IV-301)
Ex
ro > 0.44 (IV-302)
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And since, in any case, an rEX of 1/6 meets the non-oscillatory
requirement and very probably the damping factor accuracy require-
ment, as these conditions give the most accurate damping factors,
the graphical solutions with r of  and y of zero should not be used.
However, this statement applies for cases where the very accurate
solutions are required and/or when the calculations are to be carried
out on a desk calculator or a digital computer, and it does not mean
that a graphical construction cannot give an approximation of sufficient
accuracy and be available to the engineer much more rapidly (and
possibly more cheaply) than if the problem were done on a computer.
The above discussion shows the importance of finding a more precise
way of estimating the error in the intercept product (gJ Crn_]) than
equation IV -286 for botﬁ graphical method A and method C. Also it

indicates that unless the number of points S_, for the graphical solution

G

is close to S the graphical solution is not competitive.

Next, depending upon the size of S/SG the maximum r or AT
for the fixed S should be found that meets the oscillatory and accuracy
restrictions for the explicit calculation. This T is probably limited
by the oscillatory restriction in most cases, which in this case is,
from equation IV-295:

TO/ATEX 'rO/A'rEX

>> Y = (4S&A'r (IV-303)

el <
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and from a trial and error solution of this to find the maximum satis-
factory A"I’E and Y allowable for a fixed S, the maximum time incre-.

X .
ment is estimated. In this trial and error solution, the double greater -
than sign means that " is equal to a small fraction of Y/@ . The

th . - .
accuracy of the J damping factor for the resulting AT Ex 8 then
X

checked to be sure inequality IV-294 is satisfied, using equation IV -

"1 /A

287 to find e /qJ » If this is not satisfied, accuracy rather than

oscillatory behavior limits T and Ty OF AT Fx must be reduced
until equation IV -294 is satisfied. The total number of multiplications

is

N_. = = (IV-304)

Two other important points about the explicit method are that a non-

oscillatory solution occurs for an r of ¥ and that for an r of 1/6 the

Ex
Y, given by equation IV-262 is 0. This means that the damping factors
obtained for an r of 1/6 are close to being the most accurate damping
factors possible for a given S and, if the accuracy criteria are not
satisfied, S probably must be increased. Also, this means that
implicit calculations should be considered only for r's larger than

0.58 under any circumstances.

‘The implicit calculation should be studied only for r's greater

than those given in equation IV-299 and in
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- > . -
LI 3.5 T (TVv -305)

Since any implicit calculation can be made non-oscillatory by increas-

ing v the oscillatory restriction does not limit the size of r or AT,
Im Im

directly. However, increasing both v and AT reduces the accuracy

Im
of the damping factors and the inequality IV -294 for damping factor

accuracy actually limits the maximum AT or r. to be used. A way

Im
to find the maximum T which satisfies this inequality, IV -294, is
first to find the maximum i which satisfies the oscillatory restriction
and the relationship for Yo equation IV-262. Substituting for v

o

from equation IV -262 into the oscillatory restriction, equation IV -295,

we obtain:

TO/AT

2
% >> [35—241—-‘-1] (IV -306)
35 At +1

Again, a trial and error calculation is required to obtain the largest
ATIm that satisfies this inequality. Once the largest ATI that
m

satisfies the above equation IV-306 is found, the ratio

3, 1/aw th :
/q:I is calculated and the accuracy of the J damping factor
is checked. If the accuracy is not satisfied, a smaller time increment
and corresponding v o should be selected until the accuracy require-
ment is satisfied. On the other hand, if the accuracy requirement is

satisfied, the time increment or r possibly can be increased if the

weighting v is also increased, so that the increased time increment
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does not introduce excessive oscillations. A time increment AT m
which can be p.sed then occurs at a point where both the accuracy and
the oscillatory} restrictions limit any further increase in the time-
increment. This limiting time increment can be found by selecting a
large suitable value of r, finding thc minimum weighting vy that allows
the oscillatory restriction to be satisfied (this requires a trial and
error calculation of equation IV-295) and then checking the accuracy
of damping factors for this combination of S, v, aﬁd r. Repeating this

procedure for several values of r should allow a good estimate of the

maximum *rm ©F A‘TI which satisfies both the oscillatory and accuracy
m m

.

limits. The number of non-zero multiplications for the implicit method

is:
7S3'r 1 ST 1
N, = = : (1v-307)
Im T AT
Im I
The calculation giving the minimum N of NG, NEX’ - or NIrn

is then used for the approximate solution. If the graphical solution

NG is smallest, graphical method A should be used; if NEX or N

Im

is the smallest, method C should be used. In some cases, not all these
N's would be computed because the several calculations can eliminate
further consideration of either the explicit or even the implicit cal-
culation.

For some problems, the maximum time increment which can be
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used is not fixed by either the oscillatory behavior, equation IV-295,

or the accuracy of the damping factors, equation IV-294. If the forcing
functions are oscillatory, the time increment must be smaller than one-
half the smallest period of oscillation to obtain an adequate description
of the forcing function (see Chapter III, scction Cj . In this casc, when
the maximum time increment is reached by the above procedure, the
best selection of parameters has been made. If this time increment

is smaller than any obtained in the calculations above it should be used
with an explicit method directly.

Although the above procedure is probably too time consuming to
be carried out in detail, it should prove to be a useful guide in selecting
these parameters. The exact maximum values of Ty and rIm do not
have to be found as one is not usually interested in 5 or even 10 per
cent larger values of r, but is trying to double or triple this value.
Therefore, only estimates of these quantities are required. Further,
after finding the differencing parameters for many problems and dif-
ferent accuracies, a table of these quantities could be developed, and
further generalizations and rules for selecting these values should

become apparent.





