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CHAPTER IV

SOLUTIONS OF THE ONE-DIMENSIONAL PAR TIAL

DIFFERENCE EQUA TION FOR DIFFUSION IN CARTESIAN

COORDINA TES USING z-TRANSFORMS

(A) INTRODUCTION

In this chapter a z-transform method is presented for finding .
the complete analytic solution of linear partial difference equations of
an initial-value type. This method is then used to find the solution of
the partial difference equation II-42 which approximates the one-
dimensional diffusion equation in Cartesian coordinates for several
methods of approximating typical initial and boundary conditions. A
comparison of the analytic difference and continuous solutions is then
made.

The discussion in Chapter II has shown the solutions to the con-
tinuous partial differential equation and the difference formulation to be
in the same form. A useful criterion has been derived in Chapter III
for selecting the time differencing parameters so that the transient dif-
ference solution must have a behavior like that of the transient continu-
ous solution. However, no mention was made of accuracy, or how well

the difference eigenvectors, eigenvalues, initial vector, and particular
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solutic;n approximate the corresponding continuous eigenfunctions,
eigenvalues, initial vector, and particular solution, or how well the
total expression approximates the continuous expression. One way of
making this comparison is to numerically step out an approximate solu-
tion for a problem where the continuous solution is known, and then
compar e the calculated continuous solution with the stepped-out approx-
imate solution. Although this method of comparison does give results
that show the accuracy for the specific problem with specific mesh size
and other approximations and which reflect the accuracy and inter -
relationships between the various quantities mentioned above, it does
not give any understanding or insight as to why the approximate method
behaved as it did. Further generalizations made from such a compar -
ison might be questionable. As a matter of fact, such a comparison of
two possible graphical methods, for the case of specified boundary con-
ditions, initially stimulated the search for a way to find the complete
analytic difference solution or analytic expressions for all the quantities
shown in equation I1-43.

The specific problem that initiated this study was a comparison
between graphical methods C and G for a specified boundary temperature.
(Details of these methods are discussed later.) The results for a cal-
culation of the temperature of the point nearest the boundary versus
dimensionless time are shown in Figure IV -1 along with the continuous

solution. The results for graphical method C oscillate so badly that
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while the solution is stable it is useless; graphical method G on the
other hand gives results which, although oscillatory, are useful. These
results would ﬁot be anticipated as the norms of the Y/A matrix for

both methods were equal and, further, a preliminary calculation of the
eigenvalues for each method for two by two and three by three matrices
indicated that both methods had identical eigenvalues. The complete
solution not only explains this behavior, but it gives a much better
understanding of the methods, shows ways of improving them, and
allows us to make valid generalizations.

As demonstrated in Chapter II, for a regular mesh the approx-
imate formulation for the one-dimensional diffusion equation in Car -
tesian coordinates can be shown as a partial difference equation,
equation II-42, or by the matrix vector equation II-39, where the Y/A
matrix is in equation II-41. In that matrix, the top and bottom rows
are not shown. In the next section two general derivations for these
equations are given which are approximations to the continuous boundary

condition equation:
_k 2T ,
A T} - TE ) | =5 () (v -1)

From the resulting general equations, several generalized methods are
defined based on the selection of the formulation parameters that cor -
respond to graphical methods A, C, G, and F (20). Although these

define the calculation procedure, modifications are sometimes used
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such as averaging, interpolating, and using slightly different initial
temperatures and/or fluid temperatures, other than those directly
suggested by the continuous problem. Specification of the calculation
procedure and the modifications to the boundary and initial temperature
functions then complete the difference formulation as a partial difference
equation, subject to two boundary conditions and an initial distribution.
Its solution is unique.

Next the z-transforms are defined from Laplace transforms and
their important properties derived. Several related example problems
are solved for approximate method G. These solutions show that the
z-transform procedure is exactly analogous to the Laplace transform
procedure for partial differential equations. The partial difference
equation and its boundary equations are transformed. The resulting
boundary-value ordinary difference equation is solved. The transformed
temperature is then inverted to find the complete analytic expression
for the difference solution which fits the initial and boundary conditions
and includes the particular solution. Further, this solution is in a
form that can be directly compared with the continuous solution.

This method gives the complete solution directly, in contrast to
the classical methods of direct attack on matrix eigenvalue-eigenvector
problems and the separation of variables or substitution technique sug-
gested by von Neumann, as quoted in references (2,21). The analytic

solution for matrix eigenvalues is possible using the work of
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Wolstonholne as quoted in Muir (22) and extended by Rutherford (23, 24).
This is based on simple yet sophisticated use of a determinantal
equation like equation II-46. A difficult analysis is required to deter -
mine the eigenvectors. Further, it is only applicable when the Y/A
matrix is symmetric, so method G could not be studied in this way.
The results have been used by Todd ( 4) for an approximation to the
problem where the boundary temperature is specified. The technique
of von Neumann is directly analogous to the separation of variables
technique for solution of partial differential equations, and this method
is usually used to derive the stability criteria for cases where a
boundary temperature is specified (10,21,17,15, 2,18). The eigen-
vector s and eigenvalues are obtained directly upon fitting the boundary
equations.

Although both the separation of variables technique and the
matrix methods could be used for cases of finite non-zero heat-transfer
coefficient, no references have been found where this has been done.
Also, after the eigenvectors and eigenvalues have been found, to
obtain the complete solution the particular solution must be determined
and the coefficients required to make the solution fit the initial conditions
must be found. This determination of the initial vector requires finding
and using the orthogonal relationships of the eigenvectors, equations
I1-49 and II-51, and the analytic evaluation of several finite sums,

essentially a finite harmonic or Fourier analysis. Only for one
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approximation in the casc of the infinite heat-transfer coefficient is
this complete solution reported (2). These finite Fourier coefficients
or the initial vector have an important effect on the accuracy of an
approximate solution.

The last section of this chapter presents a comparison of the
analytic expression of the solutions for the difference methods men-
tioned for several problems with the continuous solution of these prob-
lems (each of the defined methods is not necess?,rily derived or com-
pared for each problem). These problems for the comparison are
usually faken with a zero initial condition for convenience and they are

summarized in Table IV -9.
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(B) DIFFERENCE FORMULA TION

In the formulation of the diffcrence equations in Chapter II, the
equations for interior points were fully developed from MacNeal's
rules for both regular and irregular distributions of temperature points.
No mention was made specifically (except by implication) of how the
boundary conductances for cases of finite heat-transfer coefficient would
be calculated or what assumptions could be made about the heat capacity
of the boundary points. However, Longwell (20) has used a method for
finite heat-transfer coefficient in association with his numerical solu-
tions using an asymmetrical network. Also, he and his co-workers
have pointed out that several different approximations to the boundary
conditions may be used for graphical solutions for one-dimensional
problems which give different results (20).

Here, the difference equations which approximate boundary con-
ditions are derived in a general fashionfor the.one-dimensional problem
for a node on the surface or AE/2 inside the surface. These are the
equations that would give the top and bottom rows in the Y/A matrix in
equation II-41. For the point locations shown in Figures IV-2 and IV -3,
the derivations are made in such a way that generalizations of the more
accurate graphical methods mentioned in the references are obtained.

This then completes the Y/A matrix for the one-dimensional problem.
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If the initial tempcrature distribution, tm 0’ and the fluid tem-
3

perature, tf, , are found directly from the corresponding continuous
conditions, the method is specified. However, for more accuracy the
initial temperature distribution and/or the fluid temperature function

to be used in the approximate calculation are often modified slightly

from the continuous conditions. Averaging or interpolation of the
approximate results is also used sometimes. Thus, to completely
specify a method, not only the grid and calculation equations must be
specified, but also whether and how the initial température distribution
and fluid temperature functions are to be modified, and if interpolation

or averaging is to be used. In this study, the general equations are
derived for each of the two meshes first. From these derivations certain
logical assumptions follow concerning the initial conditions. Next,
averaged methods are defined which can be applied to the methods.

These averaged methods are shown to give the identical results as

interpolation in some cases, and as certain modifications to the initial

distribution and/or the fluid temperature function.

1. Continuous Problem and Initial Condition

The problem to be approximated in one dimension is

oY,
H

o7 0<E<1 1>0 (1v -2)
3 2

l

o/
e

with the known initial condition
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T = T(E,0) 0<E<1 T=0 (Iv -3)

and the two boundary conditions found by energy balances on the surface

3T

H, [Tfo('l') - T(0,7)] = -—a-é-(o,w) g =0 T=0 (IV-4)
— aT — -~
HL[TfL(T) - T(1,7)] = +§—§(1,'r) £ =1 T=20 (IV-5)
0<H < oo

where H = hL/k = dimensionless heat-transfer coefficient

Tf('r) = known function of time
The above initial condition, as specified, might not be known at the
boundaries and in using an approximate solution with a point on the
boundary, one must use a temperature for the boundary point to start
the calculation. For this reason a brief discussion of the initial distri-
bution follows. First, the exact continuous solution evaluated at time
zero fits the boundary conditions, equations IV-4 and IV-5, evaluated
at time zero. This means that, for the case of an infinite heat-transfer
coefficient or specified boundary temperature initially, the boundary
temperature does not equal the initial distribution found by extending
equation IV -3 to the boundary. Two initial distributions can then be
defined which apply for all €, including the boundaries. The firstis
designated T(E, 0+) which results from the Fourier series for the con-

tinuous solution evaluated at a time of zero. It can be considered to be
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the temperature distribution the instant after the boundary conditions
are imposed. In most cases, this is known even if the exact solution is
not. If h is less than infinity, then no discontinuity occurs at the
boundary; this. can be seen from Laplace transforms. If h is infinity,
then the boundary temperature is equal to the fluid temperature. In
some cases, either because of the method being used, or because

T(E, 0+) is not obvious, a second distribution is designated as T(£,0-)
and is the distribution for the interior extended to the boundary. It
can be considered the temperature distribution the instant before the
boundary conditions are applied. For a finite heat-transfer coefficient
it is the same as T(£,0+); for infinite heat-transfer coefficient initially
the surface temperature would not be the fluid temperature, but would
be the temperature of the material an infinitesimal distance inside the

surface.

2. Meshes

The regular difference meshes that may be used for the one-
dimensional diffusion equation are in Figures IV-2 and IV-3. A point
which has two points as neighbors located +A§ from it is called an
interior point. The other points, which are located on or adjacent to
a boundary with a conductance to a known fluid temperature, or with a
knowﬁ heat flux input, are called adjacent nodes. The main difference

between the four meshes is that, in some cases, an adjacent node is
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located on the boundary while in other cases it is located at a distance
of AE/2 from the boundary. Only the meshes with both boundary points
located on the boundary or at a distance A£/2 inside, as shown in
Figure IV-2, are studied here.

The partial difference equation for diffusion in one dimension

th , . . . .

for the m  interior point as derived from Taylor expansions or Mac-
Neal's rules is

t -t
m,n+l m,n _

AT

1

RIS P S j

(A’)Z [Yttm—l,rﬁl tm,n+l trn+l,n+1 * Y) tm-l,n Ztm,n+tm+l,n]
g

l1<m=<8§-1 (Iv -6)

Rearranging this equation gives equation II-42 and defines all but two
rows of the Y/A matrix. In mesh AE, Figure IV -2, this equation is

written for m = 1,2, ..., S; for mesh AE/2 in Figure IV -2, it is

written for m = 3/2, 5/2, ..., S-3/2. It serves to define all but the
upper and lower rows of the Y/A matrix in equation II-33, where the
two equations for the adjacent points are not given.

To derive the boundary equations, an energy balance at an
adjacent point is solved for the temperature at that point. We will do
this for both the A€ and AE/2 type adjacent points, and for the left

adjacent point (§ = 0 or &=l/28); the result can easily be applied to the

opposite end. The derivations made are sufficiently general to obtain
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a generalization of the graphical methods, including Longwell's back-

ward difference type approximation (graphical method A), in addition

to a general implicit formulation.

3. Mesh AE

First consider mesh AE and the point 0. The energy in from a

fluid is
h - = ¢ -
(t,-t) =4, (v -7)
and out is
k(t. -t.)
0 1 . .
LAE = Yout (v -8)

Assuming an area associated with this point as (AE/2) we may write the

accumulation term as

t -t
cC L 1255 [ O;&n+l O’ﬁ\ = volume rate of accumulation (IV-9)
P LAT/K

Now the problem again occurs as to when to take the energy in, qin’

and out, q

out’ Two weighting factors are defined, 8 and @ , such that

8, (1-B), ©, and (1-¢)} lie between zero and one. The weighting B is
given to the energy in from the surrounding fluid at time (n+1), and
(1-B) to that quantity at time n. Analogously, ¢ is the weighting given
to the energy out from the intérior node at time (n+1), and (1-¢) at

time n. The energy balance then becomes (in dimensionless variables)
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cchA Sty a0

2 - hl:(tf,n-l-l- tO,n-i-l)e + (tf,n_ tO,n)(l-B)J

2
cC L AT/k
P (IV -10)

k
LAE [(tO,n+l_ tl,n+1)CD * (tO,n- 1:l,n)(l"r‘p)

(If h is not constant it should be included in the 3 weighting.)
Combining and rearranging so that unknown temperatures at (n+1) are

on the left side of the equation, the calculation equation for the adjacent

point is:

i ,.(HB . _ . {H
o, mial 1 ¥ 2205 + ) |- 219ty 1 =ton L2715 (18) + Lo

t1 [2r(l - 97 (Iv-11)

2rH [ .
75 [tf,n+lB+ (1 - b)tf,n]
where AE = 1/5

A»r/(Ag)z

and r

Using a similar boundary equation for t then specifies the cal-

S,n+l
culation procedure, but does not specify the initial distribution or

how the boundary temperature changes with time. This equation is
convenient for all H less than infinity. By taking limits as H goes to

infinity, which means neglecting the capacity of the surface node, the

boundary condition equation for a specified boundary temperature is:
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Y
o

(tO,n-l-l_ tf,n+1)a = (I’B)(tf,n‘ to. o) n (Iv -12)

3

If B is not one and the above expression is to hold for all n, it is

necessary in order to avoid oscillations that

tf,O =t0,0 (IvV-13)

otherwise a root qj of (8-1)/8 would be added to the transient solution.

For B =1 tke initial conditions t0 0 need not be equal to tf o @8
equation IV-10 gives
= =0 -14
'0,n+1 ~ Ff,n+1 " (Iv-14)

In this case T(mAE, 0 -) is used as the difference initial condition.
Two specific methods of the many defined by equation IV -10,
and which are to be studied, are generalized methods A and G. These
methods are defined only for mesh AE; thus the equations for both
boundary equations are defined by equation IV-11 where a different

HS and ‘cf a and different subscripts define the right hand (£ = 1)
S’

boundary condition.

Method G. First method G is defined and derived. For this
method, B and ¢ in the boundary equations are set equal to vy in the
partial difference equation IV-6. This gives for the left boundary:

H H
: = -z = - ¢ -v)(= +1
to,n_l_l[l + 2ry( 3 +1)] 2ryt) to,n[l 2r(1-v)( 3 _)]

(1v -15)

. 2rH
+ zrtl,n+ S \itf,n+ly * tf,n(lnlY)]
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This is a generalization of the implicit case of Longwell's (9) approx-
imation for finite heat-transfer coefficient and it gives a Y/A matrix

with all the properties described in Chapter II. However, this method
suffers from a serious defect. The sufficient stability criterion from

an examination of the Y/A matrix for all H less than infinity is

r(l - 2ry)M < 2 (Iv -16)
Y
E30
where M = min (Iv-17)
Y
A I
H
n Y MAX
I HI=2(2+ =)
and (Iv -18)
Y HMAX
I | =MAX(5 or 3 =)
I

This means that for an explicit method and a non~zero H a more
severe restriction than r less than one-half must be used. One way
to reduce this limit would be to neglect the capacity of the surface node
LCP«’IA £/2; {this is essentially what is done when H is increased to

infinity) and the temperature at the surface is then for any time incre-

ment an explicit function of tf and tl n at the same value of n.
)n b
H
Tt._ +t
f
t, = - Lo (1v - 19)
FRes + 1
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This equation can then be used to eliminate to from the partial dif-
,

ference equation written for an m of 1. Thus, tO,n need not be com-
puted; the Y /A matrix is reduced by one row and one column and the
largest eigenvalue of Y/A is eliminated. However, as method G is
defined, only for the case of a specified boundary temperature (infinite
h) is the capacity of node 0 neglected. This method normally uses

T(mA £, 04) for its initial condition and T (nAT) for the difference fluid

K

temperature. The details of this method are summarized in Table IV-1.
Method A. To avoid instability with a large, but finite, heat-

transfer coefficient, Longwell (20) has suggested using a backward

difference approximation for the energy into the solid at the surface,

for a graphical method. A generalization of this principle is seen from

the above equation IV-11; for if ¢ is zero an explicit equation for

t results.
0,n+l1

) to,n[l‘zr{g(l'e) * 1}} oty ot %ﬂ[tf ntl BT tf,n(l_B)]

t0, n+l

+ =
[ L+oer S

(1v -20)
Although using an equation of the form of equation IV-20 for each
boundary and using a non-zero Yy in the partial difference equation is

in principle possible, the main advantage of using the backward differ-

ence is to have a stable explicit method where the heat capacity of the
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surface node is not neglected. In this explicit case, the Y/A matrix is
not defined directly, but since [I - Y/A] is defined as the matrix that
operates on t . an equivalent Y/A may be found by difference. The

first few rows are:

5 H
2( = +
(& 4 ,
—_——— - —_— 0
2 Y 1+ 2r H8 1+ 2r HB .
) — = - — —_— -
(AE) A 3 S (Iv-21)
-1 2 -1
From the norms, the sufficient stability criteria are
r[ g—{ (1 -2p) + z_] <1 (1v-22)
and r< % (IvV-23)

If B is equal to or greater than % the second inequality is the more
restrictive, thus avoiding the much more restrictivg stability require-
ment in equation IV-16. Although the Y /A matrix must be found by
difference for the above family of methods where ¢ and vy are zero,
but not equal to B which is not zero, the resulting Y/A matrix retains
all the properties mentioned in Chapter II, except that it is now also a

function of the time increment At or r. This is in contrast to method
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G where the Y/A matrix has all the properties described in Chapter II
and is not a function of the time differencing parameters.
Longwell (19) has shown the advantageousness of a graphical

method A based on equation IV-20 witha B of landan r of . In
this study, a generalized method A is defined on the same equation with

a B of 1 butfor all r that give stable solutions. The boundary equa-
tion is

2r HO
1-2r) + +—_—
t ) tO,n( 2r) + 2r tl, 3 tf0,n+l
0,n+l B

n (1V -24)
1+ 2r EI_(_)
S
Note that if H is not constant its value should be taken at the end of
the time increment. This equation is used to calculate the boundary
temperature for all finite H. If H is zero, it reduces to the same

equation as explicit method G. For infinite H, taking limits gives

directly,

tO,n+l=tf,n+l n=0 (1v -25)

The difference initial distribution for this method is taken as T(mAE,0-)
for all n including the points on the surface. Thus for infinite h the
surface temperature point does not change until an n of one is reached.

Then this method results in delaying the change in t only for the first

O,n

time increment. For problem II where one surface temperature is

constant, the other adiabatic, an implicit method A is defined, which



110

gives the same results as implicit G, but delayed one time increment.
However, for all other problems method A is an explicit method.

Details of this method are summarized in Table IV-2.

4. Mesh AE/2

Next consider mesh AE/2 where there are no points on the
boundary, but a boundary point is located a distance of A§/2 in from
the surface. An energy balance is made on the left adjacent node, %.

The energy rates in and out are:

t, - h(t, - t,)
P S S S (1V -25)
in l N Ax /2 1+ H

h k 25

k(t-t, ,.) k(t, -t ,.)
4 = __(_%___3/3 . 3 32 (1v -27)
out AX LAE

and the rate of accumulation is:
t, -t
,ntl ; .
rate of accumulation = LAEc C [ Ezn %.n ] (1v -28)
PLL oC At/k

Again using B and (1-p) for the energy from the fluid and ¢ and
(1-¢) for the energy to the adjacent interior point the energy balance

gives
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n+l[ §+I;I{//S&S VPN %—, [ {(11+§)/I—;é5 1 'Cp}]

(Iv-29)
r(1'°P)t3/z,n i ms [(I'B)tf,n Bty 41 ]

This equation is suitable for use for all H less than infinity. Taking
limits as H goes to infinity, which does not require neglecting any

heat capacity, gives

e LITT(2BTO ety t.%’n[l-r{z(l-ﬁﬁ 1-o}]
(1v -30)

- 20T(1-
r(1 cp)t3/2’n+ 2rT(1 B)tf’n+ Btf,n+1]

These equations and the derivations are somewhat unique in that no
temperature point is located on the boundary. If it is necessary to
compute a surface temperature, one may do so using thermal resistances,
and no thermal capacity associated with the surface point.

H

t + ==t
* *
{ = 20 & 6Lin (1Iv -31)
n 1y H
25

sk
where t = surface temperature atn (tO is not used, as m is
n s N

restricted to full increments; also, the difference solution

does not give this temperature by letting m = 0 for this mesh)

or, rearranged,
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b
r * (t n t%’ )
H‘"tf,n -t n] = ——"E—g‘—]‘a— (Iv-32)

which is a direct difference approximation of the continuous boundary
condition, equation IV-4. In several other ways, mesh AE /2 leads to
approximations that appear to be closer mathematically to the continuous
problem than does mesh A€ . First of all, as each node has the same
thermal capacity, the Y/A matrix is symmetric for all values of H
when B and ¢ are taken equal to y . In this case, its eigenvectors
are orthogonal with respect to a weighting factor of one as the eigen-
functions of the continuous solution are orthogonal with respect to a
weighting factor of one. Moreover, even for infinite h no heat
capacity is neglected. Further, as no point is selected on the surface,
the initial condition need not be specified on the surface, as is alsa the
case for the continuous problem.

Method C. First, method C is defined which is analogous to
method G in that § and ¢ are taken equal to y in the partial differ-
ence equation. The boundary equations for finite and infinite H are,

respectively,

(L3H/ 25 (L#3H/25
puiielichodut Stensas I IR = 1- -
ty +1[1Jr Y\iH/2s )] Y32, nHl t%,nl: r(-v) (735725 )]

(1v-33)

rH/S
tr(l-v)y, H SHTes [(l'\’)tf,n * tf,n‘l-l]
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) - =1t 1= -
t%__’ n_'_1(1+3r ) ryt-%,rﬁl 37l L 3r(l-vy)]
(1v-34)

- + - +
re(ly)ty [(1 Ve e ]

The Y /A matrix for this method has all the properties described in

Chapter II and from its norms method C is stable for
r(l -2v)< % (Iv-35)

Graphical method C reduces to Schmidt's graphical method, as given in
reference (19), except that his calculation for an n of zero does not
follow equation IV-32 but does follow a construction for finite h that

gives a t, that corresponds to the continuous surface temperature

0
initially (note equation IV-31 does change the surface temperature for
an n of zero). Also, although the graphical method is technically
stable for all H, it is not used for cases where H/S is greater than 2,
because of large oscillations. Details of method C are summarized in
Table IV -3.

Method F. In order to avoid these oscillations for infinite h
Schmidt proposed an alternate construction, called method F in the
Longwell manuscript (20), for infinite h only. If in equation IV-31 we
let B = %, w=0, r= —%, and v = 0, for the case of a constant fluid tem-
perature the equation reduces to Schmidt's construction. Thus a
generalized explicit method F may be defined by making B = % and ¢

and y zero. Details of this generalized method are in Table IV -4;

however, here only the graphical method for infinite h is studied.
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5. Other Methods

Although these are the basic four methods studied here, two
other methods probably should be investigated. These are an explicit
method for mesh AE witha B of % and an explicit method for mesh

A£/2 witha p of 1. Also combination methods for the meshes shown

in Figure IV -3 could be studied.

6. Graphical Solution

The system of difference equations given by the partial difference
equation IV-6 and the boundary equations for one of the methods, G, A,
C, or F, can usually be solved by a graphical construction when the

differencing parameters are selected by

r =8%r 3 (Iv -36)

v =0 (Iv -37)

The simple graphical constructions for both the interior points and the
boundary equations are described in the study by Longwell (20). How-
ever, simple graphical constructions that solve the boundary equations
for methods G and F for H's that are neither zero nor infinite are not
available. (Also method G is unstable for these H's and the combin-
ation of differencing parameters given in equations IV-36 and IV -37.)
However, the selection of the r and vy according to equations IV-36
and IV -37 is important, even if the solution is calculated numerically

rather than graphically. This is true because under these conditions
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the number of non-zero multiplicat_ions required per stepis S com-
pared to 25 for any other explicit calculation (y = 0} or 7S for an
implicit calculation (y #0). This comparison of calculation counts
assumes that advantage is taken of the fact that the off-diagonal ele-
ments in each row of the [I-(1-y)AT(Y/A)] matrix are equal, and
that use is made of the elimination method of solving the equations for
an implicit calculation, as described in Chapter III. If a general
vector ~-matrix multiplication is used to calculate [IE-(IH‘() AT(%)] tn ;
S multiplications must be added to each number giving 2S for graphical,
3S for explicit, and 8S for implicit calculations. Because of the ease
of stepping out the solution either graphically or numerically a special
designation is used for the solution when vy is zero and r is 4. Since
either the graphical or numerical stepping out of the solution in the
absence of errors gives the same approximation, in this study selection
of the parameters according to equations IV-36 and IV-37 for any
method is called a graphical solution or graphical method. If the
number of points to be used is greater than about eight, the graphical
construction to step out the solution becomes inaccurate and the approx-
imate solution must be stepped out numerically.

The general definition of graphical methods together with specific
notes on the graphical solutions associated with each method is in Table
IV-5. For more details concerning construction and a comparison of

numerical results for specific problems the Longwell (20) reference
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should be consulted.

7. Averaged Methods

Although the equations presented for each method, together with
a straightforward use of the initial temperature distribution and the
forcing functions, serve to completely define an approximate method,
several modifications can be applied to these methods without changing
the equations or matrix elements. In this section, the technique of
averaging the approximate solution as mentioned in Chapter III is more
fully defined and discussed. The important relationship between an
averaged method and an unaveraged method is developed. Also brief
sections are included on interpolation as suggested by Longwell (20)
and on the modification of the fluid temperature function for step changes
in fluid temperature. In these sections these techniques are defined
and they are shown to be equivalent to an averaging procedure. Then,
based on these equivalences, a specific averaged method is associated
with the equations for methods G, A, C, and F.

In an averaged method the approximate solution of one of the
defined methods is stepped out according to equation II-39 in the usual
manner. The temperature vector tn found for the beginning of the
(n+1) time increment and t el for the end of that time increment are
averaged and assumed to apply at the beginning, at the end, or at some
time within the (n+1) time increment. The defining equation for the

averaged temperature vector ‘cn assumed to apply at time (ntk)AT

+k Ave



is:

=% (t_+t ) (Iv -38)

tn+k Ave +1

where t and t are the unaveraged temperature vectors found by
n n

+1
successive uses of equation II-39. The parameter k is analogous to

the weighting factor vy and tells at what fraction of the time increment

the average applies;itis taken between zero and one inclusive:

0<ks<1l (IV -39)

In this study k is usually 0 or 1, although a brief study of a
k of 3 is also made. For a k of zero, the average is called a forward
average because it is analogous to the forward difference calculation
when the weighting factor vy is zero as both involve tn+l in the cal-

culation at time n.

Forward Average, k = O

n Ave = % (tn * 1:n‘i-l) nz0 (IV _40)
Likewise the central and backward averages are defined by
Central Average, k = #
tn+% ==‘p;-(tr1 + th) nxz0 (Iv -41)
Backward Average, k = 1:
t 1 Ave = 3 (tn + th) n=0 (IV -42)

The backward average can be written for time n for convenience in

comparing with the forward average as:
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Backward Average, k = 1;

favli o

(t

v
-

+
n-1 1;n) n

(IV -43)

t
"n Ave

Of these averages only the forward average can be used to calculate
a temperature vector at a time of zero, and hence only the forward
average {(or only when k is zero) can change the initial temperature
distribution.

Although the averaging technique is defined as averaging the
approximate solution vectors for successive times n and (n+1) as
calculated directly from the stepping out of equation II-39, identical
results can be obtained by using an averaged temperature vector

and an averaged boundary temperature vector t in

1:n+k Ave B Ave !

equation IT-39 to step out the solution. This can be proved by writing

equation II-39 for tn+1 in terms of tn and tn+2 in terms of tn+1 and

substituting these quantities in equation IV-38 which defines an aver-

aged method. This gives, using the definition of t otk Ave

tn+k+1 Ave

vt Y Y
AT 2 B} 1 + AT — + +(1-y)t
S ([HU V873 [ ave ™ & YBasz e it & N

(IV -44)

Thus, to calculate an average solution an average need only be com-
puted once, and then used successively in equation IV -44, or the
regular solution stepped out and averages calculated only for the points

at the times where necessary.
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The solution for an averaged method can be found by substituting
in the defining equation IV'-38 the solution as found from equation II-43
for the unaveraged method for times n and (n+1). For a problem which

has a true steady-state solution we obtain

= 'L
tn+k Ave tP -C QDLz (Q+I)g] (IV -45)

where tP' C, Q, and g are the identical quantities that are in the solu-
tion for the unaveraged method. By comparing equation IV-45 and
equation II-43, the effect of averaging is to replace the initial vector g
for the unaveraged method with the vector [%{Qﬂ)g]. If an eigenvalue
qj occurs that is close to (but greater than) -1 the component of
[%(Q-i—l)g] in the averaged method is significantly smaller in absolute
value than that in g (see equation III-32). Consequently, the major
advantage of averaging, regardless of the time at which the averaged
solution is applied, is that the amplitude of the oscillations is sig-
nificantly reduced. Therefore averaging is particularely useful for
graphical methods the solution for which contains a negative U in close
to -1. Indeed, for some graphical methods applied to certain problems
aq .. of -1 exists, and averaging is necessary to obtain a stable solu-
tion.

Although the form of the solution in equation IV-45 is useful to
show the effect of averaging on the amplitude of the oscillations, to

compare an averaged solution with the continuous solution a more con-

venient form is
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_ ntk [, -k

bk ave =P C QT [ERT(H0E] (IV -46)

nt+k

which is used to examine positive damping factors only. The Q

—UZ(n+k)Afr

matrix corresponds directly to the e matrix in the continuous.
solution, and the effect of using the averaged temperature vector

otk Ave 2T time (ntk)AT is to change the initial vector to [%Q-k(l*'Q)g].
The jth component of this vector is (qj+ l)gj/&qjk, which corresponds to
aj for the continuous solution and to gj for the unaveraged approximate
solution. For values of k of zero, or one, averaging changes com-
ponents of the initial vector corresponding to qj's of about 0.9 or
larger from 2 to 5 per cent of the components in gj; however, for the
qj's of about 0.6 to 0.7 the gj's are significantly changed. When

k = £ the components of the initial vector for the qj larger than 0.9

are not significantly changed from those in the unaveraged vector g.

Interpolation. The interpolation technique was suggested by

Longwell (20) for use with graphical methods to eliminate a certain
type of oscillatory behavior. Some graphical methods including
graphical method A, when applied to problems with a linear initial
distribution and with either constant fluid temperature or adiabatic
conditions, give a change in the temperature point only at alternate
values of n. This gives a temperature-time graph that is a sequence
of ramps and plateaus as in Figure IV-(h). This condition is expressed,

for example, by the equation for the temperature at a point as
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t =t F ot = -
m,n-1 m,n# m,n+l tm,r:rl—?. (IV -47)

For cases when this occurred it was suggested that the temperature at
the end of a time increment during which no change occurred (at times
n and (n+2) above) be replaced with a temperature linearly inter -
polated between those at the beginning of the previous time increment
and the end of the next time increment. This gives for the above case

at time n:

m,n I m,n-1 m,n+1l

This then gives a sequence of ramps eliminating the plateaus.

Since t and t are equal the interpolated temperature
m,n-1 m,n

is identical to a forward averaged temperature

= r + =t k=20 IV -4
m,n I %“tm,n 1:rn,n+l] m,n Ave ( %)

Moreover, because t and t are equal and because interpolation
m

y

m,n-1

does not change t , the forward average can be applied at the

m,n~1

beginning of a plateau,

1}

tm,n-l I - tm,n—l = %[tm,n—l * 1:m,n] = tm,n—l Ave 0 (IV—SO)

Consequently, if throughout the calculation each component of the
temperature vector changes only at alternate time intervals, then using
a forward average gives results equivalent to linear interpolation for

those components which do not change.
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Two points should be mentioned concerning the above discussion.

First, although each component of the calculated temperature vector tn
changes only at alternate time increments, the vector tn itself usually
changes at each time increment. For example, in graphical method A
applied to problem II, the odd-subscripted (m odd) components of tn
change only when n goes from odd to even and the even-subscripted

(m even) components change only when n goes from even to odd; thus
the vector t changes for each value of n, although some of its com-
ponents remain constant for alternate values of n. The major con-
clusion is that the forward average is identical with interpolation for

this case,

t =3t +t

n 1 o Tt 78 k=0 (IV -51)

n Ave

Secondly, a backward average applied to an approximate solution with
a ramp-plateau temperature-time plot gives an approximation identical
to using a linear interpolation for the temperature at the beginning of
the plateau.

Modifications to Step Changes in Boundary Conditions. As noted

in the Longwell paper (20), for problems with a constant initial temper -
a',ture subjected to a constant different surface temperature, it has been
_sugge.sted by many authors (6, 17) that a temperature half way between
the initial temperature and the surface temperature can be used for

the calculation from an n of zero to one. Then for all succeeding

steps the actual surface temperature is used. For example, consider
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a solid initially at zero temperature throughout, and at time zero.
One surface temperature is held constant at unit temperature, the other
boundary is insulated (problem II). The surface temperature for the

continuous problem is:

T(0, nAT) =1 n=0 (Iv-52)
But instead of using in the difference calculation
tO,n =1 n=0 (IV-53)
a ramp-step function defined by
3 n=20 (Iv -54)
1:O,n -
1 nz21l

can be used to step out the solution. In the Loongwell (20) work it was
mentioned that this procedure for graphical method G gives the samec
results as interpolation for interpolated graphical method A for this
problem. Hence we can conclude that for this case it is equivalent to
an averaging technique.

This principle involved in modifying a constant boundary temper -
ature can be generalized and applied to any problem where the fluid
temperatures or the vector tB are constant with time and where a
boundary temperature vector tB g . can be found that gives the initial

temperature distribution as a steady-state solution. The last condition
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can be expressed in difference form as either

Yt =-Y

0 B tB 0. (Iv -55)

or

Y
¥ Y B
[I-y At ﬂto = [1+(1-y)m K]to tAT ==t (IV-56)

Since YB is a rectangular matrix the existence and uniqueness of tB 0

is not guaranteed and depends upon the vector t For a one-

0
dimensional problem in Cartesian coordinates in a solid with uniform
thermal properties tB 0 exists only if the vector t, represents a linear
distribution. Now the ramp-step procedure is to replace the vector

[(l-y)tB N tig n+lj that multiplies the matrix AT YB /A in equation

I1-39 with a ramp-step type function

=t +t

B 0. B) n=0 (first step)

- + =
(1-v)tg tytg o (Iv-57)

tB = constant nx=l1 (second and all
other steps)

The equation for the first step becomes

-1 Y t +t
Y Y B B O~ B
=| I-AT— - IV o+ar =] 222 = B
Y rs =] ar | ([1+(1 VT ey + b1 = | ——5— || av-58)
And using equation IV -55 to eliminate tB 0 the equation is
-1 Y
_ Y . Y B B
) rg = [I'AYK] [I-l-(-g—-y)A'r x|t tAT % 3 (1v-59)
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This t) RS is used to continue the stepping calculation. The averaged

temperature vector t is found substituting tl from equation

0+k Ave

II-39 and tO into the definition giving:

Y

+ to} (IV -60)

-1 X}_
Yotk Ave 2{[ 1-vaT 2

\:I-l- -y)A"r-—Jt + AT — e B

Combining the coefficients for t_ and multiplying through by % gives

0

(Iv-61)

Y B
rI+(g-y Kj\j AT -—g tB

_ Y-
Yotk Ave ~ [I'YM K]

which is the same expression as in equation IV-59 for tl rg b COD-

’

sequently,

'1,Rs T Y04k Ave (1v-62)

Now, since using t to step out the rest of the solution gives an

0+k Ave
averaged solution according to equation IV -44, the same must be true
when tl,RS is used. Further, if the averaged solution is assumed to
apply at the end of the interval (k=1) then the backward average is
identical to using the ramp-step modification for problems where the
boundary temperature vector is constant and where the initial temper-

ature distribution is a steady-state condition.

Conclusions and Averages to be Associated with Methods

G, A, C, and F. The above discussion has shown that averaging the

stepped-out solution for successive time increments greatly reduces

the amplitude of the oscillations, but depending upon the time at which
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the average is assumed to apply, the amplitude of the qj's larger than
0.9 is not changed more than 5 per cent. Also, interpolation for
approximate solutions with a ramp-plateau temperature-time plot and
the replacement of a constant boundary vector with a ramp-step vector
’for problems with an initial condition, which fits a steady-state condition,
are shown to be averaged methods. Since averaging can be applied to
any problem or method it is a generalization of these two modifications.
Although the time at which an averaged solution applies is
arbitrary, in order to be consistent with previous use of interpolation
and the ramp-step modification, the backward average is used for
methods G and C ; the forward average is used for methods A and F.
Consequently, interpolation of graphical methods A and F is identical
to averaging methods A and F for appropriate problems; and averaged
methods G and C are identical to the ramp-step modification for
appropriate problems. This also means that for problem II averaged
methods A and G give identical results as do interpolated A and method

G with a ramp-step modification as mentioned in reference (20).
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(C) z-TRANSFORMS

The z-transform method of analysis of difference equations
dates back to Heaviside and Laplace. Recently, it has been used in
analyzing linear sampled-data control systems in electrical engineering
and most of the properfies derived here are shown in the texts of
Aseltine (25), Jury (12), and Ragazzini and Franklin (13) on transform
methods and sampled-data systems. In the following discussion the
z-transforms are developed from the Laplace transforms and important
properties are developed. This is not meant to be a rigorous mathe-
matical discussion, but is meant to develop an understanding of the
transforms. For purposes of reference, tables of z-transforms after
Aseltine are reproduced (Tables IV-7 and 1V -8).

A difference equation mathematically defines a function at only a
point, and the function is not defined again until a certain increment of
time or space has been traversed. (This obviously does not prevent
us from interpolating between points.) For example, at a point m a
temperature would only be defined at times nAT , where n is aninteger.
This gives a sequence of impulses with zero width as shown in Figure
v -4,

The Laplace transform is defined by the equation (26)

s{sr)}t = [P 7T d(nyar (1V-63)
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Considering that each impulse has an area associated with it equal to its
magnitude, the Laplace transform integral of an impulse is, under
these assumptions,

nhr+ n

nAT-

Therefore the Laplace transform of the sequence of impulses or of a

difference signal is:

lo's) o A
_ -5 _ -sSnAT
I {fn} = J" ™1 dr = Z £ e (IV -65)
o n=0

Now, making the substitution

z=e%07 (IV -66)

the expression becomes

z " f(nA )
0 n=0

(IV-67)

™~18
1]
:j!-h
N
3

g {f(nm)} =

e

il

n

i
h
o
-+
-
N
1
-~
(s}
N
N
+
-+
H
N
+

The z-transform is defined as the Laplace transform of a sampled

signal, having an area equal to its magnitude, with the substitution =z
sAT . . T e PR .

for e as given by equation IV-66. This definition is then

(o]

Z {5}t ) 5" v

n=0
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The z-transform may be defined directly by the above relationship
independently of the Laplace transform. As with the Laplace transform
the difference signal is assumed to be zero for all n less than zero.
The relationship between the Laplace transform and the z-transform is
useful and the relationship in equation IV-66 is actually a mapping from
the complex s-plane to the complex z-plane. For example, the imagin-
ary axis of the s-plane is repeatedly mapped onto the unit circle in the
z-plane; thus poles located in the area left of this axis in the s-plane
for a stable solution are mapped inside the unit circle of the z-plane,
which is the requirement of stability for the difference system. Also
the z-transform of a signal sampled from a continuous signal may be
found by a complex integration of the Laplace transform of the continu-
ous signal times the transform of sequences of pulses (12, 13).

To show how the z-transform may be manipulated, a few of
the important transform pairs will be briefly developed. For a unit
step function that is zero for n less than zero, but one for all n equal

to or greater than zero we would have

0 n<2o0
ro= | IV-69
n l} nz=0 ( )
e o)
f=°Z{f} = z z"n=1+z-l+z-z'+..,.-I-z.—n
n=

- 2 (IV -70)
z-1
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The last equality comes from Dwight (27), equation 9. 04,

One of the most important Laplace transform relationships is

that for a simple pole

.s:{e“} =Sl_K (1v-71)

which includes the trigonometric interpretations if A is considered to

be complex. The corresponding z-transform is

l+qz_l+q z t+...+q 2z

n

(o] _
Z{qn} - z Cln Z-n
n=0 (IV-?Z)

z -9

Again, if q is considered a complex number the above transform has
corresponding interpretations in cosine and sine functions. Simple
transforms are inverted using equation IV-72 and partial fractions.
The third important relationship is the shifting property, which can

be found starting from:

(o 0] (00)
-n § -(n+1)
= = f -
Z{fn-i'l} Z fn+1 z z /. n+l 2 (IV 73)
n=0 n=0

Now change variable of summation by

p =n+l IV -74)

Then,

Z{an} =z Ozo f 2P (1V -75)
p=
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And adding and subtracting (z fo) on the right side of the equation:

(0 0]

2{fn+1} = -z fO +z z fP z P (Iv -76)
p=0 :

which gives the shifting property:

z At f =ef -z2q (1v -77)

"~ This relationship shows that the multiplying by z is analogous to
multiplying by the advancing difference operator* E, as multiplying by
s is analogous to multiplying by the operator d/dr.

To invert transforms not in the table an inversion theorem is
used. This theorem is based on a Cauchey formula (12) for contour

integration in the complex plane which is:

0 p>-1
1
Jf' zF dz = 1 p=-1 (IV -78)
2a/-1 r
0 p< -1

where T is a closed curve enclosing the origin. To use this integral

-1
first we multiply the definition of the z-transform by 2" obtaining

n-1 - n-l1 n-2 0 -1 -2
= e + f + +... -
Z f(z) foz + flz + + fn—lz nz fn+1z (IV 79)

Now integrating both sides of equation IV-79 along a closed contour

in the z-plane we obtain

% . _
E defined by: E f.n = fn-i-l
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—L 7 2 (z)as (Iv -80)
n 2 ./-1 T

The closed curve, I', must enclose all singularities of 20 f(z).

The usual circumstance is that all the singularities are poles
and the. integration path is taken as a circle enclosing them; this contour
for a stable solution is the unit circle and is shown in Figure IV -5(a).

In this case, the integral in equation IV -80 is evaluated directly from

the residue theorem and the inversion is

o 1 (o o]
f = y residues of poles of 2" f(z) = E e. (IV-81)
— NER!
j=0

o1 -
where p. = residues of z" f(z) and the summation is over all
-1 -
the poles of 2" f(z).

The residue for simple poles (28) is

-1 = .
p. = lim (z-q_)zn f(z) (1v-82)
J.n zq J
J
or
N(z)
= i — -83
pj,n lim aD(z)/dz (1v -83)
z—q,
]
where
n-1 -, . _ N{(z)
z f(z) = D(z)
n-1

numerator of z f(z); may contain elements

Z
—
N
Sy’
Hi

of denominator as long as it is analytic as

z—q,
J
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D(z) = denominator of zn-l f(z) not contained in

N(z); goes to zero as z~q,

For a pole with multiplicity of u the residue (28) is:

w-1
o = lim 1 3 {zn‘l(z_qj)"" i(2)} (1V -84)

-1
g [ (w-1)! 2

Another form of equation IV-84 is found by using the formula for higher-

order derivatives of a product.

; n-p, d k=P -
e e e {(z-a)" ¥(z) |
o, =lim Z (IV -85) -
PR amq (n-p)! (u-p)! (p-1):
i p= |

For the case of a pole with multiplicity of 2 an equation of the form of

equation IV -83 is uscful (28):

B 3 ]
dN(z) N(z) -d—E(?Z-)—
o, = 2lim|—%% _ dz__ (1V -86)
s 2 q a% D(z) 3 dZD(z)
dz2 dzz

In some cases, the use of the above equations to invert f(z),
summing only the residues of the singularities of f(z),' gives a solution
that agrees with the stepped-out calculations only for n's greater than

some low number, n,, where n_ is usually zero. Thatis, the resulting

1 1

solution fails to fit the assumed initial condition and the stepped-out
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calculations up through increément n,- The reason for this is that the

inversion integration must be done on zn—1 f(z), not f(z), and that
zn-1 f(z) may have a singularity at zero, or may have a higher-order
singularity at zero than does f(z) But, since in this study of the partial
difference equation of diffusion, we are not usually interested in the
solution for n = 0 or 1, but only for the intermediate and large values of
n, the residue of this singularity can be neglected. However, so that
this apparent inconsistency does not cast doubt on the z-transform
technique, the following two paragraphs show first, when this singularity
occurs, and second, how to find the additional terms which when added
to the residues of f(z) give the solution that is correct for all values of
n.

Assuming that f_(z) can be written as a ratio of polynomials in =z,
as is the usual case, then the behavior of f(z) as z goes to zero deter-
mines the existence and order of this singularity of e f(z). If f(z)
goes to zero as z goes to zero, Zn_l £(z) must be analytic for all
n=0,1, ..., o ata z of zero. However, if f(z) goes to neither
zero nor infinity as z goes to zero, zn“1 f_(z) contains a simple pole
at zero when n is zero. Here the sum of the residues of f(z) gives a
solution valid for n > 0. If f(z) itself contains a pole at z = 0 of multi-

plicity n zn-l f(z) has a pole at z = 0 with multiplicity (nl + 1) for an

1’
n of zero, and the sum of the residues of f(z) gives a solution valid for

n>n..
1
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In order to find the inversion relationship of a multiple pole at
zero, the definition of the z-transform and the Kronecker delta function

can be combined to give

Z s }:z'p n=0,1, ..., (1V -87)
n,p
where 8 =0 n#p
n,p
1 n=p
P = non-negative constant integer

Note that a constant term in the transform would give an impulse at an

n of zero, § because of the singularity introduced by zn-l. If the

n,0’
transform can be written in terms of partial fractions the inversion is
simply accomplished using this relationship and equations IV-87 and
IV-72. For the complicated transforms that result from the diffusion
problem this cannot be done conveniently. In these cases equation IV-~-82
may be used to find the residue of the zero pole. Since we are applying
this to zn-l f(z) the multiplicity of the zero pole is (n1 + 1) where n,

is the mulfiplicity of zero pole for f(z); (n1 must be zero or positive;

if it is negative there is no singularity at zero). As an example, using
equation IV -84 to invert the transform z“1 with a simple pole (u = 2),

we obtain

-1 -1
lim 1 3 { n-1 —-1} lim ‘n _ lim n(z)n = n(O)n
0 1! 23 z

z = -’0874&_2.—’0
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Although the term n(O)n_l is indeterminate for an n of zcro, itis
actually a short way of representing the limit of n(z)n-1 as =z goes to
zero. Taking that limit using 1'Hospital's rule for n of zero and usual
definitions for other values of n this result is equivalent to equation

IV -87

-1
5= n(0)" n=0,1, ..., © (IV-89)

As analogous arguments are valid for a higher-order pole at zero, it is
concluded that this approach is valid and equivalent to using partial
fractions to invert the transform for determining this residue.

A second type of singularity that can occur is a branch cut.
The inversion of a transform of this type is like the procedure used
when a branch cut occurs with Laplace transforms. The inversion
integration is carried out on a closed curve that excludes the branch
point and other singularities, but part of the path is a circle that would
in a limit enclose the origin. ABCDA in Figure IV-5(b) is such a path
for a branch cut from -1 to +1. The details of such an integration are
shown in section D -4 of this chapter by an example.

A simple numerical method for the transform inversion is to
generate the definition series equation IV-68. The coefficient of each

-0 -1

z , 2z ,..,,z_nisthenfo,f,.,..,f, This may be simply done by

1 n
1

.arranging the transform as a ratio of polynomials in z  and carrying
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out the long division. This procedure is often usecful in checking the
algebra used to derive the transform. Also by a simple examination of

the definition the initial value theorem is derived,

lim f = lim £(=z) (1v -90)

0 ° Z— 00
This theorem is used in checking derived transforms.

This brief discussion on the z-transform is not a presentation

of rigorous proofs but is intended to show the development of z-trans-
forms from the Laplace transforms, the important transform pairs, and
the inversion. For a more rigorous treatment, any of the three texts
mentioned should be consulted, particularly for such questions as
uniqueness and restrictions on the types of functions. Texts (28) on

complex variables are also useful.
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(D) z-TRANSFORMS AND PARTIAL DIFFERENCE

EQUATIONS --EXAMPLE PROBLEMS

The z-transform procedure for solving a partial difference
equation is identical to that required for the Laplace transform pro-
cedure of solving a partial differential equation. The procedure is:

(1) Transform the partial difference equation with respect to
the independent variable for which the initial values are known. This
gives a difference equation with one less independent variable.

(2) Transform any boundary condition equations together with
their initial conditions.

(3) Solve the transformed difference equation with the boundary
conditions to obtain an explicit form for the transformed dependent
variable.

(4) Invert the transform by using the tables or the inversion
theorem to find the analytic solution of the partial difference equation.
As z-transforms are not well known, the tables available are not as
complete as those for the Laplace transform and usually the inversion
theorem is required, particularly for the transforms obtained from the
partial difference equation for diffusion.

Since the z-transform method of solving partial difference equa-~
tions has not been found published, several related difference problems
are now solved in detail to demonstrate the technique and the manipula -

tions required. The problems selected are not the simplest possible,
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but they show many of the difficulties encountered, how to overcome
them, and where simplifications are possible. Most steps are carried
out in some detail with discussion of special problems in addition to
simplifications. In the earlier part of the problem the equations are

kept in the most general form for as long as possible.

1. Problem I--Finite H, Method G

The difference problem to be solved involves a one-dimensional
solid. Method G, Table IV-1, will be used to approximate a continuous
problem with an arbitrary initial condition. The left boundary (x=0)
is in contact with a fluid with a finite heat-transfer coefficient and
whose temperature is specified as a function of time. The right boundary
(x=L) is adiabatic. Method G uses mesh Af in Figure IV -2 with points
located at both boundaries and uniformly spaced and it is defined in
detail in Table IV-1. The arbitrary initial condition for the difference

method is represented by t , where m goes from 0 to S cor-

m, 0

responding to £ from 0 to 1, and the fluid temperature is represented

b

vty - Since to obtain a solution using z-transforms it is necessary
n
2

to specify the initial distribution and how the fluid temperature changes

with time, these conditions are taken as:
t =0 0<m=<S8 (1v-91)

t =1 nz0 (IvV -92)
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This is problem I as described in Table IV-9. However, these specific
conditions are not introduced into the equations until necessary. After
solving the specific problem above, the following related problems are
shown based on method G. First, the solution is modified to an averaged
method G. Second, the case for specified boundary condition or infinite
heat-transfer coefficient is shown. Then the solution for an explicit
method for a semi-infinite solid is shown.

The one-dimensional partial difference equation for diffusion in

, general form, equation T1-42, is:

= r(l-y)t +[1-2r(1-y)]t

Yt 11,041 m-1,n

! + (1+2ry)t - ryt

-1,nt+ m, ntl

+ r(l-Y)tm+l,n

(IvV-93)

The boundary equations for the finite h at point zero and zero h at

point S for method G are, respectively:

) =T H
\:1+Z.r'\{(1+ )]tO i1 Ytl,n-i-l = [I-Zr(l-’Y)(H'S)]tO’

+ Zr(l-y)t + 21'—- [(l—y)t ]

an+1

(1vV -94)

m,n
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+ - = - - y -
(1 Z.ry)ts 2ryt [1-2r(1 y)]ts N + 2r(l-vy)t

yntl S-1,ntl s S-1

(IV-95)

where H = hlL/k.

A significant simplification in the adiabatic boundary equation IV-95

can be made by writing the partial difference equation IV-93 for point S,
which requires the introduction of an imaginary point at (S+1). Sub-
tracting the boundary equation IV-95 from the partial difference equation

the result is simply:

rY(tS~1,n+1 - tS+l,n+l) = r(I'Y)('ts-l,n * tS-i-l,n)
(IV -96)

Since the imaginary point (S+1) must have the same initial condition as

point (S-1) we have simply

= =0, l, R =
tS+1,n tS—l,n n © (Iv -97)

With this modification, the partial difference equation IV-93 is written

for point S. The method for simplifying the adiabatic boundary condition

could be used to modify the other heat-transfer coefficient condition,

but as long as the coefficient is not zero no simplification is obtained.
Now that the partial difference equation and the boundary con-

ditions have been simplified, they can be transformed using the relation-

ships in the table. The transformed equations are, with no
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simplification, in terms of the arbitrary initial condition and fluid

temperature for equations IV-93, IV-94, and IV-97, respectively:

- t - + £ - T+ (1+. i - =
el T b0 T tmn tmi1, 00 T (Herv)alt tm, 07
(IV -98)
)t + 1 +{1-27(1-y) 1t
r(l-y)it o+t I+ll-2r( Vit
m=1,2, «.., §-1, S
H.r - =
l+2ry (14 = - - - =
Z\: ry (1 s)][to t0,0] Z“’Z[tl t1,0]
Ho- ) -
[1-2r(1—«()(1+——ﬂt + 2r(1-y)t (I1V -99)
5’0 1
H - -
+ 2r g[(l—y)tf + v z(t f-tf’ 0)]
tarl =tg 1 (IV-100)

A more convenient form for equations IV-98 and IV-99 is found by
rearranging and combining terms so that the unknown transformed
variables are on the left side and the known quantities and functions

specified by the initial and boundary conditions are on the right.

i -[z-l+2r(zy+l—y) ]tm + tog1 C
r(zy+1-v)

(1v-101)

Z .
+ -(1+2 t
r(zy +1-v ) \:rY(tm-l,O 1:m+1,0) ( ry) m,O]

m=1, 2, ..., 5-1, 8
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|:z+1+2r(1+ -S}-I)(yz+1-w{)]1?0 - Zr(y Z+1—’Y)'E1 =

2rH

g (v z-}-l—'y)tf (Iv-102)
8 H Hyz
+ 2| {1+2ry (1+ = - - 2r ==
ZL{ ry(1t3 )}to,o TYt 0" 4T T tf,()]
£ = (1Iv -103)

S+1 S-1

These three equations are, respectively, a second-order ordinary dif-
ference equation, IV-101, and its two boundary condition equations,
IV-102 and IV-103. The first equation is the transformed one-dimensional
diffusion difference equation for any initial distribution.

Application of Initial Conditions. In order to find the solution of

the difference equation IV-101 and its boundary equations IV -102 and

, and t must be

IV-103, the initial conditions tm-l, 0’ tm+1,0 m, 0

expressed as functions of m and in a form that applies for each value
of m for which the difference equation applies. In equation IV-101

if v 1is not zero an expression for t must apply for m of 0 to (S+1)

m, 0
even though the difference equation applies for m from 0 toS. In
most cases, a suitable function of m may be obtained directly from
the initial distribution for the continuous problem. However, in some
cases, particularly when the surface temperature is specified, the

required expression is not obvious. Consider for a moment the case

when the surface temperature to 0 is specified as one, but the initial
2
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temperature distribution t 0 for m =1, ... (S+1) is zero. In this
m,

case a suitable function that fits the initial distribution is:
t =8 m=0,1, ..., 8 (1V -104)

where & b = Kronecker delta function =
m,

(Note second subscript on § does not refer to time in this case as

does the second subscript on t.) In general, a series of terms using

the Kronecker delta function may be used:

t = > £ 00 m=0,1, ..., S (IV -105)

If an analytic expression for the Kronecker delta function is necessary
to allow a solution of the difference equation, either a form with 0 roots
or the Lagrangian interpolation formula may be satisfactory, but both

are complicated. These are, respectively,

& m,p - m(m'l) 0o (m'p+l)(0)m-p m,p=0,1, ..., S (IV“106)
1 p! .
Gm = m(m-1) ... (m-p+l)(m-p-1) ... (m-S) m,p=0,1, ..., S

p(p-1) ... (1) (-1) ... (p-S)
| (1v-107)

In equation IV-106 to keep the term [m(m-1) ... (m-p+1)(0)m—P] finite

for m less than p, it is considered as the limit of
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Tfm(m-1) ... (m-p+1) (e)m—p] as € goes to zero as used in equation
IV-89. For mesh AE /2 the variable m would be replaced by (m - %).
Another method that avoids the series above is to first solve the

explicit case (y = 0). The partial difference equation is then

- z=14+2r | - - -7
tm-l' (——;————)tm+tm+l = = tm,O m=1,2, ..., 5 (Iv-108)

In this case, the expression for the initial distribution does not need to

fit the initial boundary temperature t as the equation applies only to

0,0
m=1, 2, ..., S. The boundary equation allows for the initial boundary
temperature in equation IV-102 for point 1, which can be rewritten

for zero v:

. H,7- - _2rH -
[z—1+&r(l+§)]to—2rt1~ 5 tf+zt0,o (IV-109)

The solution for the explicit case is found; then, by setting n to zero

in this solution an expression results which fits the initial condition

for allm =0, 1, ..., (S+1): This expression is then substituted in

equations IV-101 and IV-102 for the implicit case. Although this ex-

pression is a series, because of the way it was found, it simplifies the

solution of the original system of equations IV-101, IV-102, and IV-103.
For cases where the Y/A matrix and the particular solution are

not functions of the time differencing parameters AT and v, an additional

simplification can often be made. Here, in addition to the particular

solution, neither the eigenvectors of the Y/A matrixnor the initial

vectors are functions of the time differencing parameters. Consequently,
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these quantities can be found by using the z-transform to solve the
problem for a convenient combination of time increment AT and
weighting v ; fhis usually corresponds toan r of 3 and a vy of zero.
This solution also gives the qj‘s that correspond to the specific time
differencing parameters used, and the eigenvalues of the Y/A matrix,

A 3 are then found from equation II-56. Once these values are known,
the Q matrix for any combination of AT and v is known from equation
II-57 and the analog solution is obtained by replacing the Q" matrix
with the e+AT matrix. This latter fact means that in these cases the

Laplace transform could be applied to the analog system of differential

equations.
<:1trn 1
= - + -
dr (Ag)Z l:tm-l Ztrn tm+l] (Iv-110)

together with the analog boundary conditions. After taking the Laplace
transform this gives a boundary value ordinary difference problem as
found in equations IV-101, IV-102, and IV-103. Solving these equations
and inverting the Laplace transform gives the eigenvectors and initial
vector for the approximate method and the eigenvalues ?xj from which
not only the analog solution is found, but also the Q matrix for the
difference solution can be found. These simplifications can be applied
to methods G and C as applied to problems where a true steady-state

solution exists.
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Solution of Transformed Difference Equation. Returning to the

example problem, to solve the ordinary difference equation we take the

initial temperature distribution as zero at all points,

t =0 0< ms< S+1 (Iv-111)

m, 0

Thus the equations IV-101, IV-102, and IV-103 become,

- z=-14+2r(zy +l-y) 7 - - ,
- + =0 -11
tm-1 [ r(z+1l-vy) ] b Emtl (Iv-112)

\:z—l+2r( §+1)(y zt+l-y )]t_o— 2r(yz+l --\()‘-c-1 = Zr-g[(yzﬂ—y)ff - zytf, O]

(IV-113)

tgo1 =tgy (1v-114)

The difference equations IV-101, IV-102, and IV-103 are more easily

solved with the following definition (15, 21):

z=-1+2r(zy+l-y)

cosy = e (o) (Iv-115)
or inversely
_ l—&rr(l-y)(l—cosoz) (IV-116)
1+2ry(1l-cosa)
Substitution gives, simply, for the difference equation IV-112
t - 2cosat  +t =0 m=1, 2, ...,8, S+1 (IV-117)

m+l m m-1
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The transformed boundary equation is simplified by solving equation

IV-116 for (z-1)

Z2r(cosao -1
z-1 = 2r(yz+l-y)(l-cose) :1—;%:(_(1—-?0_)50{) (1v-118)

Substituting this in the coefficient for EO in equation IV-113 gives:

Hn - H -
+ = - = - - -
{cosoz s St t P E . [(yz-&-l Y) te 2¥te o _J (IVv-119)

The solution of the homogeneous equation IV-117 is:

tm=Pcos me + G sin my m=0,1, ..., 5, S+1 (IV-120)

where P and G are constants to be found from the two boundary rela-
tionships or their modified forms, equations IV-114 and IV-119, so
that the solution also satisfies these boundary equations. If a non-
zero initial condition were present, equation IV-117 would not be
homogeneous and a pérticular solution found by the method of undeter-~
mined parameters would be added to the above complementary solution.
To evaluate the constants P and G we first find the expressions
for t and t from equation IV-120 by setting m equal to (S+1)

S+1 S-1
and (S-1), respectively.

€s+1 = P cos(S+1l)e + G sin(S+1)x (Iv-121)

{S | =P cos(S-1)a + G sin(S-1)o (Iv-122)

and substituting them in the boundary equation IV-114 gives:
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t -t =0 =P cos(S+1)o + G sin(S+1)o - P cos(S-1)o

(1v-123)
- G sin{S-1)«

Simplifying with trigonometric identities gives
PtanS o = G (1v-124)

Now G is eliminated from equation IV-120 which, using trigonometric

identities, gives

- P S-
b - COS( m)oz (IV-125)
m cos S o
From equation IV-125 the transforms ‘EO and t-l are:
- P cos S« .
= —_— IV-126
tO cos S ¢ ( )
Po- P cos(S-1)a (IV -127)
1 cos S
and substituting them in equation IV-119 gives:
P H
iy - -1 =
~~3 5 o [(cosoz t3 ) cos So - cos(S )oz]
(Iv-128)
H - - .
e +1- - zyt
S(yzt1-v) yztl-y)t, - zvty

Solving for P/cos Sw and substituting in equation IV -125 together with
trigonometric simplification of the bracketed form on the left gives

the solution for the transformed difference temperature.
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(yz+l—y)€f—zyt

Em ____SI-_I [ — f,0] \:H cos(S -m)u ] (v -129)

3 cos So-sin S sing

At this point, it is usually advantageous to check the solution in the
boundary equations, and also to check the initial conditions using the
initial value theorem, item 14, Table IV-7.

Inversion of Transform. The next and last step is the inversion

of the transform. To do this we specify how the fluid temperature varies
with time. Assuming that itis constant at unity for all n equal to and

greater than zero we have from item 1, Table IV-8:

- 4
) -130
T2 o1 (Iv-130)
n = 0’ ]: s OO
=1
tf,n
Substituting in the transform temperature in equation IV-129,
T = z H cos(S-m)o
t ‘[ (z-1)(vz+1-v) ] H cos 52-S sin Sa sina ] (Iv-131)

The inversion theorem must be used to find tm e The quantity
-1 - . ..
(zn tm) has only poles for singularities. These poles occur at values

of z for which the quantities (z-1) and (H cos So - S siny sinSa) go to
zero. Although it appears that (zy+l-y) gives another pole, we will
show first that Em is actually analytic ata z of (y-1)/v; then we will
discuss the roots of the trigonometric quantity and evaluate the

residues.
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To show that (y-1)/v is not a pole of fm, from trigonometric

identities and the definition of cosa:

sing = f Z—l)(z—1+4r{yz+l-y}) (I1V-132)
2r(zy +1-vy)

Now from the formulas for sine and cosine of multiple angles we know
that cos (S-m)a is a polynomial that contains (cosa) to the (S-m) power;
(cos Sa) contains (cosa ) to the S power; (sin S&) contains (sina) to the S
power or (cosa) times (sina) to the (S-1) power, depending on S odd
or even. Thus, since both (cosa) and (sinw) contain the factor
(yz+1l-vy) in the denominator, the term (H cos Sa - S siny sin Sa) is a
polynomial that contains the factor (yz+1-vy) to the (S+1) power in its
denominator; and cos (S-m)o with (yz+1-vy) to the (S-m) power in its
denominator. Consequently, Em would contain (yz+1-v) to the
[6+1-(S-m)-17] or to the rnt}1 power in its numerator; and as z goes
o (v-1)/v, €m has a limit; therefore, Em is analytic for all m from
0 to (S+1).

Next the residue at a z of one is evaluated using equation
IV-82. Note that in taking limits as z goes to one we must also

evaluate o which, from equation IV-115, goes to 0.

z-1+2r(yz+1 —y)]

= 0 IV-133
2r(yz+1-v) cos(0) ( )

cosy = lim [
lim 2z~ 1

z— 1
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n
. -1 - . -
py ZHm (2-1)2"7 §_ =lim { z Hcos(S-mla }
I,n 2 1 m 2o 1 (\(z+1-y)(H cos S¢-S sinosin Su
— 0 ) ""O
¥ ¢ (1v-134)
=1

This corresponds to the steady-state or particular solution.
The roots of the quantity (H cos Sa - S sing sin So) are the poles

for the transient part of the solution and must satisfy

S siny, tan S¢, = H j=1,2, ..., S5+1 (IV-135)
J J
Using the relationship between z and o, equation IV-116 gives:

L-2r(1-y)(1 -cosozj)

13 =q. = - -1
vm 2= 9 142ry (1-cosa, ) (v -136)
ot-"cej j
z=q;
J
5=1,2, ..., 5+1
We can write the j = 1, 2, ..., (S+1), because method G has a Y/A

matrix of dimension (S+1) by (S+1) and we know from equation IV-135
that (S+1) cigenvalues or qj‘s cxist. Assuming that the q.'s are dis-

.th
tinct and simple, the residue for the j rootis found from equation

Iv-83.

p = lim
z»q. = D(z) (Iv-137)
(0’0 aJ,

where, for this problem,
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2

N(z) = an[cos (5-m)a] _ an[cos (S-m)u]f1+2ry(l-cosq)] (IV-138)

(z-1)(yz+l-v) 2r(cose-1) )

D(z) = H cos So - S sin So sino (Iv-139)

2
-C-l—D( ) = STH sin Sa + S sinxy cos Sa + sin Sa cosa ][ 1+2ry(l-cosa)]
dz Zr sing
(Iv -140)

The second equality for N(z) comes from the relationship of (z-1) and

o, equation IV-118. The residue becomes then

H(sinozj)[cos (S-m)ozj](an)
pj, n S[l—coson.][(H+cosozj)( sin Sozj)+(S)(sin0tj)(cos Sa;,—)—j

(IV -141)

or, after simplification using a trigonometric identity:

-Hlcos(S -m)a.][q.n}
0. = ] ) (IV-142)

j:n s tan_o_;j__} [(H cosozj)(sin Sozj)+(S)(sinozj)(cos Sozj)ﬂi

Before summing over residues to find the solution, the assumption of
distinct qj‘s must be investigated. Study of the transcendental char -
acteristic equation IV-135 shows that (S+1) q's are real and distinct
if the range of real a's is restricted from 0 to ™ and that one ozj is
complex of the form [m + /-1 j(o:)_1 If the S real uj's satisfy the
equation, both o and (cej + p2m) also satisfy the equation. However,
if two different ¢.'s are used that give the same qj they have identical

. - th . th |
eigenvectors. This is seen as the m element in the j eigenvector
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is given by [cos(S -m)ozj] ; but from trigonometry we have

il

cos (S-m)(aj)' cos (S—m)(—aj) m=0,1,2,...,8 (IvV-143)

"

cos (S -rn)(oej) cos (S —m)(a/j + p2n) (1V-144)

Thus, to have a matrix of eigenvectors which is non-singular, as
required from matrix arguments, the qj‘s must be distinct and the real
Q'j’s are conveniently selected as those in the range 0 to m. Analogous
arguments apply for the complex . Thus we have (S+1) roots ozj's,

S of which are real and fall between 0 and ™ and one of which is

complex of the form [ + /—1/ (¢)] which result in (S+1) real, distinct

1

's.
qJ
Now, summing over all residues, the complete difference solu-
tion is
S+l 0.
¢ =1.H (cos(S-m)e.1[q.
m,n S J ] (IV -145)

=1 [ ran w—g] [ (reosa )(sin Sz )+(S)(sina )(cos Sa) |

where the q.'s are given by equation IV-136 and the ozj's are the roots
J
of equation IV-135. From equations IV-145 and II-53 and II-56, the

analog solution is given by
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2
S41 - =28 (l—cosozj)"r:\

}—: [cos(S-m)afj]l_e (IV -146)

321 [tan zg—}\:(H+cosoz.)(Sin Sa. )+ S sing, cos Soz.q}
J J J J-
‘Reviewing, the difference and analog solutions above are for using
method G to approximate the continuous problem for a slab of width L,
initially at zero temperature throughout with the right boundary insul-
ated and the left boundary brought into contact with a fluid at unit
temperature and heat transfer-coefficient h. In terms of dimension-

less variables

2
aT _ ?.__? 0<Es 1 (IV-147)
aT 2
08
Initial Condition:
T(E,0) =0 0<gx<1 T =0 (IV-148)
Boundary Conditions:
: - 3T
H{T(0,7)-1] = SE(O’T) £ =0 =0 (IV -149)
%%(1,T) = 0 £ = 1 T20 (IV -150)

The exact solution of the continuous problem is:

=V, T
o [cos(1-8)v1le 73

T(E ,T) = 1-2H (v )IH+1)(sin v .+ v, cos v, )
j=0 J J J

(1v-151)

1
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where the v, are defined by the characteristic equation,

vj tan v, = H=—= (TV -152)

The form of both the difference approximation and the continuous
solution are the same; as a matter of fact, the continuous solution
could bé derived from the difference solution by properly taking limits
as S~ oo, AE -0, and AT — ‘0, For a direct comparison, the only
modification necessary is to substitute difference parameters for the

continuous £, T, and v according to:

v = vAg = % (Iv-153)
. AE (IV-154)
S 3
E = mA§ (1v -155)
T = nAT (IV -156)
r = AT (IV -157)
2
(8%)

which then allows us to write all the solutions in difference form.
Difference Solution:

1-2r(l-v){(1-cnosm) n
I J .

r S- I :
s+ Leosl m)det, l+4ry(l~<:oswj) .

(iv -158)

wlm

t =1 -
D

o,
j=1 [tan —g—][Hh:osoz.)(Sin Scej) + S(sinozj)(cos Sozj)]
. J
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Analog Solution:

-2r{l-cosa)_n
1 [cos(S-m)x. ][e J
J

wlm

)

t =1 -
» N o,
j=1 [tan —%—] [H+cosaj)( sin Sozj)+ S(sincvj)(_cos Sozj):\

(Iv-159)
where O!j is defined by
S(sinon.)(tan Sozj) =H (Iv-160)
j=1,2,.4., S+l
Continuous Solution:
2
r -y, r_n
o [cos (S-m)¥ ] K ] ]
- ' J
T(m.n) = 1 - 2H Z (st ) H+cosy )(sin Sy ,) + Sy (cos SV )] (Iv-161)
j=1 J J J J J
where
Sd;j(tan sq;j) =H j=1,2,..., o (IV-162)

Thus, the z-transform leads to results which allow a comparison of the
analytic solution of the difference formulation with the continuous solu-
3 ] ; th

tion. The above equations are scalar representations of the m com-

- .
ponent of the vector solution derived before. The particular solution

* As this method is based on mesh AE, m starts at zero insteﬁd
. . X . t
of 1 as it should in conventional matrix-vector nomenclature. The m
component of the vector is then the temperature at point which in
conventional vector notation is the (m+1) component; the m row of the
eigenvector matrix consists of the coefficients in the matrix row thatare
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vector for all solutions has dimension (S+1) with a one for each elc-
ment. The eigenvector matrix for the difference and analog solution
) th * .th ]
has an element in the m row and j column defined by
[ cos (S—m)dj] and the corresponding element in the continuous solution

.th
is defined by [cos (S—m)\l!j]. The j  element of the initial vector, or

vector of Fourier coefficients, is, for the approximate solutions,

o,
H/S(tan —-23— )[(H-i-cosozj)(sin Sozj)+ S(sinozj)(cos Sozj)], and for the con-

tinuous solution, 2H/(S ¢J.)[(H+cos¢j)(sin swisqu(cossq; J_)j. The.charac-
teristic equations that define the cvj and qu are given by equatiqns IV -160
and IV-162.

Another method of comparison of the solutions that would
apparently avoid the lengthy inversion procedure would be to derive
the z-transforms of the analog and continuous solutions and compare
them to the z-transform of the difference solution. However, to
convert the Laplace transform to a z-transform also requires a complex
integration. Most chemical engineers (including the author) would have

difficulty comparing the meaning of the transforms.

* (continued)
in the equation for the m point, which is the {m+1) row in conventional
matrix notation. A similarcomment applies if method C is being dis-
cussed as m starts at 3 and the m component would be the (m+%)
component in conventional matrix notation.
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2. Problem I, Averaged Method G--Ramp-Step Equivalence.

For problems with certain types of initial temperature distri-
butions, a backward-averaged solution is identical to that obtained by
replacing a constant fluid temperature with a ramp-step fluid temper -
ature function, as shown previously.

The solution for method G applied to problem I using the ramp-
step function will now be found. The ramp-step function for this

problem is given by equation IV-54, and is

t = (IV-163)

To generalize this for implicit methods, we use the fluid temperature
from equation IV-163 above directly and do not use the weights of vy
and (1-v) as shown in equation IV-94. The z-transform for equation

IV-163 is easily derived from the series definition, equation IV-67.

0 -1 -2 -
Z{tfn}z%a tz otz T4 a4
[o0) [0 0]
=%+ 7 PR N Z z " (IV -164)
n_j—'l n=0
- 2 1.2t
Tz -1 * 7 2z-1)

To derive the solution using this '"ramp-step' function instead of a

true step, the transformed partial difference equation IV-112 and the
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adiabatic boundary condition equation IV-114 apply if a zero initial
condition is assumed throughout. The boundary condition represented
by equation IV-113 is modified by the substitution of equation IV -164

for -fzf and ignoring the vy weighting for t_f (v set to zero when it is a

~coefficient of tf’ 0):

- 2r(yz+1 —y)E

[z—l+2r(l+‘IS:I)(Yz+l-y)]E _ er [ &(z+1

2 1) (IV-165)

0

Since the transformed partial difference equation and adiabatic boundary
condition are unchanged, the solution for these two equations is written

directly,

- _ Pcos (S-m)a (IV-166)

m cos Su

Using the previous procedure of substituting EO and 1;1 as found from
equation IV-166 into equation IV-165 and solving for (P/cos Sa), we find

that

- r z+l H cos (S-m)a _
f V-1

(This equation could be found directly by substituting equation IV-146
for t_f into equation IV-129, ignoring v.)

This transform is the average of the transform for the true step function
and that transform divided by z. Further, as ’Em goes to a constant

value as z goes to zero, t__ contains neither a pole nor zero at zero.
m
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According to the previous discussion, a simple pole at zero is intro-
.duced when multiplying by 2" ; and in order that the solution fit the
initial conditions, it must be included. Further, by comparison of
equation IV-167 with the previous trans’form, equation IV-131, the

solution is found to be the average of the result for n and for (n-1)

in addition to the residue of the zero singularity.

[ g [eos om0

t =%{2- H
m,n : S £ aj
J [tan -Z—:] [(H+cosozj)(s1n Sozj)-}- S 31nozj cos S:vj]
(IV-168)
N [H cos(S-m)s][0]" }
® L [H cos Sp-S(sinB){sin SR)1T1-v ]

where the qj's and a/j are as defined previously by equations IV-136 and

IV-160, respectively, and
(IV-169)

The solution equation IV-168 applies for all values of v including a

vy of 1, even though (cosB) becomes infinite for a y of 1. The argu-
ment \;\sed previously to show that the term (yz+1-y) in the transform
in equation IV-131 does not give a pole can be used here to show that

the B term has a finite limit for all values of vy including a value of
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one. The necessity for adding the zero root is obvious, as a com-
parison of this solution, equation IV-168, with the previous one,
equation IV-158, shows that if the first meets the initial conditions

the second cannot unless another term is added. The above result has
been checked numerically to make sure it does fit the initial condition.
Since, as mentioned before, the zero root only gives a contribution
for n of zero, we may neglect it in comparing the results. The effect
of using the '""ramp-step' is then essentially an averaging process;
that is, the same results could be obtained by stepping out the solution
with a true step and averaging the results at n and (n-1) and using
this average at n. This is an alternate proof of the relationship
between averaged methods and the ramp-step replacement for a step
change in fluid temperature. The factor (l+1/qj) actually modifies the
Fourier coefficients in the initial vector and further studies would be

required to determine any improvement in accuracy.

3. Problem II, Infinite H, Method G

For the case of infinite heat-transfer coefficient with a zero

initial condition and a boundary at unity,

t = 8 (1IV-170)

The transformed partial difference equation IV-117 is no longer

and t from

tm,O’ m-1,0

homogeneous; substituting for tm+l, 0’
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equation IV-170 into equation IV-101 together with equation IV-115,

and noting that t are zero for the range of m's used,
m

and t
m

+1,0 »0

this equation is:

R AL o7 = LN
- + = -
t o1 2 cosu t ottt | VoI 6m—1,0 (IvV-171)

and the left boundary condition is

t =t (IV-172)

t = (Iv-173)

=t (IV-174)

t = F§ (Iv-175)

substituting into equation IV-171 according to the method of undeter-

mined parameters:

. zy
- + = ( —1— IV-176
B o 1,07 2F 8 g0t ES o7 (i) tmat0 ( )
m=1,2, ey 3
or, as 6m,0 and 6m+1, o 2Te zero for the m's used,
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- zY -
F o= \:zv+1-v] (IV-177)
and
zyd
- : . m,0
t =P cos ma + G sin ma + (Iv-178)
[zy+1-v]

m=0,1, ..., S, S+1

Solving for P and G according to the previous procedure gives the

complete transformed difference temperature as,

AVE)

- oz cos (S-m)u m, 0
bm T Zo1 (zyt1l-y)(cos Su) * (zy+1-vy) (Iv-179)

This is not the transform that would be obtained by taking limits of
equation IV-131 as Hor h goes to infinity; because of the change in
initial conditions, the term involving the Kronecker delta function is
added. However, the ""main' transform could be found by taking limits.
Inversion may be carried out as before. The first term has

simple poles at
z =1 (IvV-180)

‘and at
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1-2r(1-y)(1 -cosozj)

“TY ) 1+2r(l-y)(l—cosozj) (1v-181)
j=0, ., S-1
where ozj are the roots of
cos Sa/j =0 (Iv-182)
or
ozj Zg—j—_—;i‘s)l j=0, ..., 8-1 (1v-183)
Note that because tO,n is fixed there is one less degree of freedom,

thus one less qj and ozj . (The complex a/j fortunately is eliminated.)
Now considering the pole in the first term at (y-1)/v, and using argu-
ments like those for the case of finite h, we conclude that a zero
exists at z = (y-1)/y of the order of (m-1). Consequently, only for an
m of zero is there a simple pole at (y-1)/y, or, equivalently, only for
an m of zero does this pole have 2 non-zero residue. However, its
residue is the negative of the residue of the second term of the trans-
form. Thus, this pole gives no contribution to the solution. Evalu-
ating and summing the residues for the other poles we obtain (after

trigonometric simplification)

S:—l 1-2r(1-y){1l-cosa) n

1 1 . " J
= ]a — — -184
tm,n 1 S z [ o. ] [Sln maj_\[ 1+2r y(l-cosaj) ] (1v-184)

J=O _.J_
tan >
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where

25+1
@ = —(——%-S—f-'— (IV-185)

This result could have been obtained by taking the limit of equations
Iv-158 vand IV-160, the characteristic and the solution equations, as
H goes to infinity even though the transform might not be found cor -
rectly by taking limits. The solution is identical to that reported in
O'Brien et al. (2) for the same problem solved by von Neumann's
Method and a finite Fourier harmonic analysis. The eigenvectors
and eigenvalues reported agree with the results from many workers
(15,10,21,17,29,22,2,3,23,24,4,30) as derived by separation of

variables technique or matrix analysis.

4. Problem V, Semi-Infinite Solid, Method G--Branch Cut

Singularity

The last type of example solution carried out here is that of
applying method G to a semi-infinite solid, whose left boundary tem-
perature is specified as unity and which extends to infinity in the £
direction. The initial condition is taken as zero. Since an implicit
method would require the solution of an infinite number of equations
only the explicit case is considered. The transformed partial difference

equation is then

t - 2 cosat +tt =0 (IV-186)
m-1 m m+1
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where

z-14+2r

cosy = ——— m=1,2, ..., o (Iv-187)
The transformed boundary conditions are:
£, = -2 (1V-188)
0 z-1 i
t =0 (Iv-189)
oo

Assuming that the solution to the partial difference equation is equation
IV-120 P and G may be determined from the above boundary equation

giving

Z .’"e-mal /=1 ]

tn T T3 |_ (IV-190)

From complex variable theory the formula for the inverse cosine may

be written:

2
-1, z-14+2r z-1+2r z 1427
- —_— = e S — Tt — _
@ =cos 2r ) /-1 1n 2r \/( 2r ) !

(Iv-191)
Substituting this into equation IV-190 and simplifying, we have,
. m
[ = Zl [ 2r _ ] (1v-192)
me 2t b 142r4 J(z-1)(z- 144r)

This function has, in addition to the pole at +1, a branch cut from

(1-4r) to +1 on the real axis because of the square root of the two
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factors (28). To invert the transform we integrate Z1 t along a
dumbbell -shaped contour in the z-plane. This contour is shown in
Figure IV-5(b) for r = % ; and the direction is counter -clockwise about
the closed dumbbell indicated by the dashed line. (Actually the inver-
~sion integral is along ABC; but as 277§ is analytic within ABCDA,
the inversion integral may be shown to be equal to that found by going
counter -clockwise around the dumbbell.) The integrals are evaluated
allowing the radius of the circles & and distance from the real axis ¢
to go to zero.

The path around the pole and branch point +1 is given by

T Z=l+6ef“lcpl

where P is allowed to vary from -m to m. Substituting this into the

transform and taking the limit and integrating we obtain

n-1 -

1
-0 T
° 1

The path around the branch point at (1-4r) is

r z=l+5e‘/—l P2 .

Substituting and carrying out the integration gives

T S, ST (Iv-193)

Jo=lm [ =z t_dz=2m/-1 (IV-194)
m

0 <o, <2m (TV-195)

J =1imj z t dz =0 (IV-196)

3 m
8§~ 0 I"3
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The path for the line above the real axis is

r  z=x+/-l¢ (Iv -197)

and below is

Ty z=x-/-1l¢ (Iv-198)

After making the above substitutions and taking the required limits,

the integrals for TZ and T', may be combined. The result is, after

4

simplification and trigonometric substitution:

T, . n

T +3 =lim I z'n-l1-:- dz=2f-1j\ (sinm)[1-2r(l-cose)] do
a4 ge=0 I _+T m tan =
2 4 0 2

(IV -199)

The actual integrations are not shown as they involve a considerable
amount of algebra, and are straightforward after the limits are taken.

The inverse transform is (1/2m /-1) times the sum of the integrals:

1 jﬂ (sin m)[1-2r(1-cose)]” do (Tv-200)

o
0 e
tan >

This result could be obtained from equations IV-184 and IV-185

by letting S go to infinity without AE going to zero. DBriefly let

= + 3
o @ jho
where % =m/2S | (Iv -201)
and Ao =7/S
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Now, noting from the characteristic equation IV-182 that as S goes to
infinity any value of o between 0 and m satisfies the equation, or,
equivalently, @ becomes continuous, and taking limits on the above

equations, we have

lim @y = 0 (Iv -202)
S-0
1

lim = = lim X - (Iv -203)
S T\‘ m

S—- oo S- o

Substituting for the limit of 1/S and changing the sum to an

integral we obtain the above result.

5. Conclusions

Most of the results presented and compared in following sub~-
scctions were derived using the principles, techniques, and manipula-
tions shown in deriving the previous results. The only major differ -
ence for methods using mesh AE /2 is that the m's are
1/2, 3/2, ... S-1/2 for convenience in derivation and in comparisons;
no other complications appear.

The z-transform method for solving partial difference equations
was demonstrated above by finding the analytic solution for the differ -
ence approximation of the one-dimensional diffusion equation for
several types of boundary and initial conditions. These analytic differ-
ence solutions are of the same form as the solution of the differential

equation; thus, comparisons between the continuous solution and difference
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approximations are readily possible. The z-transform method suffers
the same restrictions as the Laplace transform method, and thus the
difference solution;s can be derived only for those cases where the con-
tinuous solution can be found. This is not a disadvantage in comparing
several approximate methods to the exact continuous solution.

The z-transform technique has several advantages over the other
methods for solving partial difference equations. It is a methodical
procedure mostly consisting of algebraic manipulations that allow one
to find the complete solution to the difference problem. The only
"trick" in determining the solution is the substitution of o (equation
IV-115); but all the other methods require this or an equivalent sub-
stitution also. This substitution is suggested by’ a form of the solution
of the ordinary difference equation, if it is not made. The procedure
has the advantage that it gives the particular or quasi-steady-state
solution and the Fourier coefficients in the initial vector, in addition
to the eigenvectors and eigenvalues. As demonstrated in the next sub-
section, the Fourier coefficient in the initial vector is one of the most
important quantities in obtaining accurate approximations. The direct
matrix method requires significant additional work just to determine
the analytic cxpressions for the eigenvectors after the eigenvalues are
found. The separation of variables technique determines the eigenvectors
and eigenvalues in a way very much like that for the z-transform method.

Even after these two quantities are found, the particular or quasi-
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stcady-state vsolution must be found. And possibly the most difficult
step with these more conventional techniques is to determine the co-
efficients that fit the eigenvectors to the initial condition. This requires
determining the orthogonality relationships and the analytic evaluation
of a ser‘ies of finite sums.

No rigorous proof has been presented that the z-transform
solution of a partial difference equation is the same as the eigenvector-~
eigenvalue problem. Indeed, no proof has been presented that z-
transforms are applicable to partial difference equations. However,
the basis for the z-transforms has been presented and no mathematical
" inconsistency seems to have been introduced in applying them to the
partial difference équations.. The difference solutions derived have
been compared with published results derived by other methods and
in each case the tran‘sform results are identically the same for quan-
tities that other researchers have obtained. Usually this is restricted
to 2 comparison of the eigenvalues and somectimes cigenvectors for
the case of infinite heat-transfer coefficient. The only comparison
for a complete solution including the initial vector and particular
solution was mentioned previously. Further, almost all of the results
have been checked numerically. That is, the difference ’soluticm has
“been computed for fixed values of S, r, and v, by stepping out the
solution and from the z-transform solution. In all cases (after algebraic

and numerical errors were removed) the two solutions checked except
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for discrepancies which could be accounted for by round-off error
{usually fpur -digit accuracy). Thus, the z-transform method is con-
cluded to be a valid, useful procedure for studying the one-dimensional
partial difference equation of diffusion.

In addition to the type of problems studied and compared here,
there are many other applications where this method should be useful.
Already it has been successfully applied to Richardson's (2) unstable
explicit three-level approximation to the diffusion equation, where the

temperature-time derivative is replaced with (t Y/ 2AT

m,n+l tm,n—l
instead of the two-level formula used above. The other main applica-
tion to the diffusion equation is to solve its partial difference equation
for the radial direction in either cylindrical or spherical coordinates.
Preliminary attempts to derive this solution for the radial coordinate
in cylindrical coordinates have not been successful, but, in this
author's opinion, this was caused by an inability to find the substitution
equivalent to the relationship between 2z and o that gives simplifica-
tion to the transformed difference equation. This in turn is caused
by not having a sufficient familiarity with Bessel functions and their
identities.

In addition to the study of the approximate methods for the dif-
fusion equation, z-transforms should be of use in studying approximate
methods for other equations which lead to a linear partial difference

equation of an initial-value type with linear boundary conditions for

which the exact solution may be found by the Laplace transform.
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Specifically, two partial differential equations for which approximate
solution methods might be studied are the wave equation and the equation

governing transient bending of beams. The form of these are, respec-

tively,
2 2
3y _ 90 ¥y -
> = > (1V-204)
98 dx
and
4 2
E1 __5___21’ + 2y L =0 (IV -205)
o3k 30

EI

where Y = flexural rigidity.



