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CHAPTER III

GENERAL STABILITY CRITERIA

Finite difference approximations to the diffusion equation can
give anomalous results, as just mentioned. For example, depending
upon the values of r and vy selected in equation 11-42, undamped
oscillations, damped oscillations, or smooth curves with time, can
result for cases when the exact continuous solution is known to be an
infinite sum of decaying exponentials. Although this problem has been
the subject of many studies, almost all of them consider only cases of
~uniform mesh spacing where a partial difference equation exists and
can be studied, and usually their results only apply to problems where
the boundary temperatures are specified functions of time (infinite heat-
transfer coefficient). For the asymmetric network or other non-
uniform mesh spacing the partial difference equation does not exist,
and this is one of the reasons that the matrix formulation and solutions
just shown constitute a more general method of studying these difference
approximations. Although the stability definitions and criteria based
on the matrix solutioﬂs are almost trivial, in order to put them in
proper perspective, a brief consideration of earlier important work is
presented. The definitions used in this study are then presented and the

criteria derived. The practical use of these criteria is discussed,



44

followed by a numerical example using an asymmetric network to check
the criteria and also to show that the asymmetric distribution of tem-

perature points leads to reasonable and fairly accurate results.
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(A) STABILITY --REVIEW AND DEFINITIONS

In describing the numerical approximation of partial differential
equations, the words stability and convergence are often used. Neither
of these terms has a generally accepted precise definition, although
‘certain concepts usually are associated with each. An unstable solution
is usually taken to mean one where the numerical results go to infinity

with time or the number of time increments, i.e.,

lim [t |- o (111-1)
n—oo o

and is attributed by some authors to round-off error, or the computer's
inability to carry an infinite number of decimals. A convergent solution
is usually defined as one where the difference solution goes to the con-
tinuous solution as both the time and space increments are refined to
zero; and thus convergence is often associated with the discretization
error. Most of the recent studies have shown that round-off error is
usually not significant and that the solution would oscillate with increas -
ing amplitude even if an infinite number of decimals were carried along.
If a qj is greater than one in absolute value, the solution becomes
infinite, even when infinite decimals are carried.

One of the most general discussions of stability and convergence
is that of Richtmyer(3). He has precisely defined stability, converg-

ence, and consistency on the basis of making a series of approximate
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calculations. For each calculation in the series, the approximation is
carried from zero to a fixed time. And, for each successive approx-
imate calculation in the series, the time and space increments are
reduced so that a sequence of approximate calculations is defined; the
last limiting approximate calculation uses a zero time increment and
zero space increment. A consistent approximation* is one where, in
the limit of this sequence, the difference between the continuous oper-
ator and the approximate operator operating on the continuous function
goes to zero. A stable approximation requires, for all approximate
calculations in the sequence including the limiting final calculation at
zero time increment, that an upper limit exists which is never exceeded
in the calculations to the constant time. Note that, in the limit when the
time increment is zero, n must be infinite. A convergent approximation
is one which, in the sequence of approximate calculations, equals the
continuous solution exactly in the limit of the sequence. The basic
result is that if the initial-value problem is linear and fulfills certain
other very general conditions, and further, if the approximation is
consistent and stable, it is then convergent, and arbitrarily accurate
approximations can be obtained by using very fine space-time incre-
ments. This consequence applies not only to linear partial differential

equations of an initial-value nature but also to linear integral equations.

* These definitions are stated in a very precise mathematical
form in terms of norms of Banach spaces.



47

The above result can be applied directly to approximations of the
linear diffusion equation based on the regular location of temperature
points. In these cases space and time increments can be reduced
simultaneously and a more accurate approximation is obtained if the
solution remains bounded. For a rectangular network, this could be
done by halving the space increment for each new calculation. However,
for the more general irregular or asymmetric network, the refinement
of the space network has an ambiguous meaning. It is theoretically
possible to have a sequence of geometrically similar nodes; i.e., each
successive node in the sequence has the distance to its neighbors re-
duced in proportion while the angles remain constant; but it is usually
not possible to define a sequence of networks based on refining a general
asymmetric node in that way. Further, in practice, we are not usually
concerned with such a sequence of calculations, each using smaller
increments, but points have been located based on the above rules to
fit the geometry and thermal properties of the solid, taking into account
the purpose of the calculation and the capacity of the computing equip-
ment or the cost of solution. Itis desired then to select a time incre-
ment At and a weighting factor v that give useful resulté. Two defin-
itions that are found to be convenient from this point of view, and which
are based on the form of the solution of the difference éystem (equation
II-43) are given below for a stable solution and a non-oscillatory solution.

The definitions are used throughout the remainder of this study.
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Stable Approximation: A stable approximation is defined as one
where, in the numerical stepping-out of the solution for a fixed network
of points, no calculated temperature goes to infinity with time for all
problems where the forcing functions represent a finite amount of
‘energy into or out from the solid from zero to infinite time. Examples
of such forcing functions included in this category are step functions
and equal sinusoids. This behavior must be independent of the initial
temperature distribution. The above definition is equivalent to the
usual stability definition used for linear feedback control systems
(13, 14).

Non-Oscillatory Approximation: A non-oscillatory approximation
gives a stable solution that contains no oscillations except those caused
by the oscillations of the boundary forcing functions.

Both these definitions are based on the behavior of the approx-
imate solution and do not insure accuracy. However, the continuous
solution of the diffusion equation with no sources (equation II-4) gives
both a stable solution and a non-oscillatory solution, according to the
above definition, so that in order that an approximation be accurate,
it must be stable, if not both stable and non-oscillatory. Further, the
stability definition is like Richtmyer's definition in that they both are
‘concerned with the boundedness of the calculated temperatures. In
Chapters IV and V the accuracy is studied in much more de.tail, from
a practical standpoint, for cases where the time and space increments

are not zero.
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(B) NECESSARY AND SUFFICIENT CONDITIONS

FOR STABILITY AND NON-OSCILLATORY BEHAVIOR

These definitions together with the solution of the system of
difference and ordinary differential equations I1-39 and II-31 facilitate
the derivation of the necessary and sufficient conditions for stable or
non-oscillatory solutions. First, since the Y/A matrix is a negative
definite matrix, its eigenvalues are all real and negative and the analog
sy stem of differential equations is, therefore, always stable and non-
oscillatory. Also, if modifications are made in the rules used to com-
pute Y/A, it is necessary and sufficient to insure stability of the analog
that the negative definite property be retained.

For the complete difference approximation, the necessary and
sufficient condition for stability is that all the difference eigenvalues

q.'s be less than one in absolute value, or, more precisely,
J
-1<q, <1 j=1,2, ..., 8 (111-2)
J

The reason that a qj of -1 1is not allowed is that, if a qj is -1 and if
the fluid temperature has equal oscillations with a frequency of 1/2AT

or a multiple of 1/2A7, a term of the form n(-l)n occurs in the particular
solution; when a term of this form occurs in the solution the qj of -1

is said to be '"excited.!" Thus the solution would give undamped oscilla-
tions for a forcing function representing a finite amount of energy. A

q. of +1 must be allowed for cases where the boundary is adiabatic
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(Y_ is zero), as a qj of 1 is necessary to represent a constant non-

B
zero steady -state solution. Also, if a qj falls outside these limits,
carrying an infinite number of decimals cannot make the solution stable.
However, since it can be shown that any error introduced into the cal-
culation is propagatcd in such a manner that it satisfies a system of
difference equations similar to equation II-39, any round-off error
introduced into a calcuiation where a c_[j less than -1 exists "increases'
or "aggravates' the instability, or, if the solution were such that the gj
which corresponds to this qj were zero, this round-off error would
"activate'' this eigenvalue (make gj non-zero) and the solution would
become unbounded. Therefore, if the matrix [I-vAT(Y /A.)]_1[I+(1-y)AT(Y/A)]
contains an eigenvalue outside the range shown in equation III-Z, the
solution is unstable, even if in a particular calculation the coefficient
gj that corresponds to this eigenvalue is zero.

However, as mentioned previously, the exponentials of the con-
tinuous transient solution go to zero with no oscillation, and for the
difference solution to have no oscillations, the necessary and sufficient

conditions are more restrictive in that all the eigenvalues must also

be non-negative.
0<q, <1 ' j=1,2, ..., 8 (111 -3)
In order to relate the necessary and sufficient conditions in

equations III-2 and III-3 to the location of the nodes, Y/A matrix,

and the time differencing parameters, equation II-57 is used. First,
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remembering that as the )\j‘s are negative they can be ranked in the

following order:

<. ... .¥< < -
M min Myax <0 (111-4)

where )Lmin is the smallest )\j’ as they are negative, but has the

largest absolute value,

T Myax! =0 (111-5)

The A . determines the minimum q., q , , or the g that would be
min i "min

negative; \ determines GIAK’ and A is equal to or less than

MAX MAX

zero. Combining these considerations with equation I11-57, the inequal-
ities, equations III-2 and III-3, and the fact that A, (1-y), and v are
positive, only the lower bound on g can limit the selection of AT and y.
'Ihe necessary and sufficient conditions are

For Stable Solution:

. H(1-2y)ar< 2 (II1-6)

For Non-Oscillatory Solution:

A [(1-y)ar < 1 (111-7)

min
These then are the rigorous, necessary, and sufficient conditions to
obtain the desired exponential behavior, since when they are fulfilled
all q.'s must fall in the required range.
J
Directly from the criteria, stable solutions are obtained for all

values of AT if
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v = % (111-8)
and further the solution is never oscillatory if
v = 1 (111-9)

This agrees with the stability and oscillatory behavior for the one-
dimensional problem with equally spaced nodes (15).

Although the eigenvalues for a given Y/A matrix can be found
numerically by iteration or Jacobi's method (16), this procedure is
probably as time consuming as carrying out several trial combinations
of At and y. However, two easily determined matrix norms are known
to be greater than or equal to the absolute value of the eigenvalue which
is greatest in absolute value, Mmin‘ (Faddeva (16), pages 55-59).
These norms are found by computing the sum of absolute values of the
elements in each row and column. The norms are then the maximum
of the individual row sums and the maximum of the individual column
sums. Defining the element in the ith row and jth column of the Y/A
matrix by uij’ and of the W matrix by Wij’ the norms are

Row Norm:

: S R S
I =M ) M S T 2y ] i)
A I | ij i Ai j=1 "1j j=1 "1j
j#i j#i
Column Norm:
: S R S v..
il!” - MAX 3 | v, - Max LA y..+ T Efﬂ (I11-11)
A"II i=1 i) J A, i=]l i =1 A
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Row and Column Norm:

_ 5 R s Y.
Iwl, = wllg =M% 2 |w, | =M% % Ty + 3 (1T1-12)
B s © B AR

The first equality in these three equations is the definition of the

norms and represents computing the sum of the absolute values for each
row and column of the Y/A and W matrices, followed by selecﬁng the
maximum of the row sums for the row norm I and maximum column
sum for the column norm II. The second equality shows these sums in
terms of the individual elements of the A, Y, and YB matrices. The
first summation over all the nodes, R, represents the diagonal element
of the Y and W matrices; the second summation over the unknown tem-
perature nodes, S, is the sum of the off-diagonal elements in the row or
column. The second equality is useful in understanding the effect of

the location of the temperature points on the nodes, and also since the
W matrix is not usually calculated explicitly, its norm can be found
directly from the second equality in equation III-12.

For a lower bound on l)\minl we use the fact that for a sym-
metric matrix such as W P\minl is greater than or equal to the absolute
value of the maximum diagonal element. Since W has the same eigen-
values and the same diagonal elements as Y/A, this is a satisfactory
lower bound for nmin‘ .

Now defining M as the minimum of the three norms defined by

equations ITI-10, ITI-11, and III-12, the largest eigenvalue must fall in
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the range

I
AT
MAX 1 R MAX
S Ty = e = e s |<sM=minof |-l
toAL =l ) i ii ' pp min’ A TT
i)
Wl amar
(111-13)

Therefore, useful and simply found sufficient conditions for stable and

non-oscillatory solutions are:

Stable Solution: M(1-2v)aT < 2 (111-14)

Non-Oscillatory Solution:  M(l-y)AT =1 (I11-15)

Again, in the stability criterion, if the value of M(1-2vy)Ar is allowed
to equal 2, possibly a g of -1 may occur.

As an example of the usefulness and simplicity of these stability
criteria, we will apply the criteria to the problem of one-dimensional
heat flow in a solid of constant thermal properties with a regular mesh
spacing AE starting from both boundaries, Figure IV-2, mesh AE.

The boundary conditions are a specified temperature on one boundary
and a zero gradient at the other. Under these conditions the Y/A

matrix is
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2 -1 0 o0 0 0 O
-1 2 -1 0 0 0 O
0 -1 2 -1 0 0 0
% = ——'L& S (I11-16)
(AE) . . . . .
0 0 0 0 -1 2 -1
0 0 0 o0 .0 -2 2

The three norms in this case are equal and M becomes by inspection
2
M = 4/(AE) (111-17)
Defining the modulus r in the usual manner,

, =0T KOS (I11-18)

()% (a)°

We obtain directly the familiar sufficient conditions

Stable Solution: r(l-2y)< % (I11-19)

Non-Oscillatory Solution: r(l-v) < 2 (111-20)

Normally these results are derived by a complicated procedure involv-
ing separation of variables and Fourier analysis (2, 10, 15, 17) which
actually determines the qj's,. However, as shown in Chapter IV, section
E-4, the matrix procedure above is more satisfactory, even when the
qj's can in principle be found. If, on the sufficient condition for
stability, the value of r(1-2y) is allowed to equal £, a -1 root can

occur. Although this lack of equality would indicate graphical methods
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where v is zero and r is § are unstable, as the above condition is

merely sufficient, most graphical solutions are stable for many prob-
lems; for préblems with two adiabatic boundaries or specified flux
conditions a -1 root does occur in some graphical methods. It is also
known that with a large finite heat-transfer coefficient, some graphical
and other approximate solutions become unstable. This result is easily
predicted from the matrix norms, as a diagonal element increases
linearly with the heat-transfer coefficient, and further, the norm allows
an r to be selected that eliminates the undesired behavior. These
examples show the inherent simplicity and usefulness of the rigorous

criteria in equations III-14 and III-15.
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(C) SELECTION OF AT AND vy BASED ON STABILITY

At this time, it is convenient to discuss the selection of the dif-
ferencing parameters At and y based on the stability criteria and matrix
relationships. Obviously, because of the wide variety of problems
possible, the different purposes for which the results are to be used,
and the capacity of available computing equipment, this discussion
must be general so that when one is confronted with a problem a reason-
able selection can be made.

In applying the sufficient criteria to the general Y/A matrix for
an asymmetric location of nodcs, onc might ask how much smaller a
time increment would be found by using one of these inequalities than
the actual minimum necessary time increment. This would be par-
ticularly important when the calculations are to be carried to a fixed
time where an explicit method or low v method is desirable, possibly.
for ease of calculation in the first case or accuracy in the second.
From the bounds on }\MAX’ equation III-13, and the structure of the
specific Y/A matrix, as defined by MacNeal's rules, the largest range
for A is such that the upper bound is at most twice the lower bound.

MAX

This would occur only when

Y 2 S ,
- - Ty, (111-21)

| ‘ 0p A v

p 371 P°

Thus the time increment found from the sufficient criteria, equation
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I11-14 and equation III-15, would never be less than half that necessary.
.A.lthough in the worst case this could mean doubling the amount of
calculations t§ a constant time Ty the criteria do give the correct
order of magnitude for A'r. If they show the calculation to be infeasible
for the desired v, consideration should be given to a different arrange-
ment of nodes, or to other approximations that may be made, such as
neglecting the heat capacity of nodes in high conductance regions (9).
However, for any node arrangement, AT can be made as large as
desired, and a stable or even a non-oscillatory solution can be ob-
tainéd, by selectingv v large enough.

In some cases, the time increment can be increased over that
shown in the sufficient conditions, equations III-14 and III-15, and
useful solutions are obtained. Short of actually numerically determin-

. | , one way to do this would be to reduce the range for In . \
min min

ing l?\
and, in particular, to lower M. This can be done by performing a
similarity transformation on either the Y/A or W matrices, forming
similar matrices with the same eigenvalues, but lower norms. These

transformations are

Y
=F.— F -2
U, =F 3 F, (111-22)

or

8]

I

5
g
=]

) 5 ) (I11-23)

and since either of the U's would have the same eigenvalues, 'lx ) \
min
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would have to be more than the absolute value of the largest diagonal

. element and smaller than the smallest norm. A particularly simple
and useful form for F is a diagonal matrix with the elements in the
.th . .th e s .

i~ row designated by ¢, and the j  column by cpJ ; its inverse is then

L i

. known explicitly, and the new U is also known explicitly. Its diagonal
elements are the same as those of Y/A; the off -diagonal element of the
.th .th . . . .

i rowand j column is the corresponding element in the old matrix

times cpi/cpj. That is, for a transformation on Y/A the elements of

U1 are given by

u,, = W, (I11-24)
11 11
VI ‘
w,, = =21 (II1-25)
1] (Pj

By properly selecting the cpj's the maximum row (or column) sum can be
reduced, while the other row or column sums are increased. Although
the lowest sum would occur when all row (or column) sums are equal,
this is not practically possible. Also, it is probable that because of
the many different matrices possible no one method of selecting the
¢'s is satisfactory. However, by remembering that ¢, multiplies each
J

. . .th s

off -diagonal element in the j column and 1/, multiplies each off-
J
th '

- diagonal row element of the j  row, it is feasible to increase the
lower row (or column) sums in such a manner that the larger row (or

column) sums are significantly reduced. Often it is useful to assume
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an approximate sum that falls about midway in the range given by
‘equation III-13 and try to make all row (or column) sums lower than
this number.

Another more complicated transformation is the one used in the

’ Jacobi method for eigenvalues of a real symmetric matrix. This
method finds the eigenvalues by successive transformations that
eliminate the off-diagonal elements. By applying this type of trans-
formation to the largest off -diagonal elements in the W matrix, the
range within which the maximum eigenvalue falls (equation III-13) is
reduced by increasing the maximum diagonal element and/or reducing
the norms. This transformation changes the elements in the two rows
and two columns for each element eliminated and equations for the new
matrix are given in the references (18). If only a few very large off-
diagonal elements were in the matrix this method might prove very
useful in reducing the range for ‘)\minl .

Since either of the above transformations attacks the rows (or
columns) whose sums are much larger than the other sums, neither
could be applied to a matrix such as in equation III-16 for a one-
dimensional regular mesh spacing, Further, since we can show (Chap-
ter IV, section E-3) that the maximum eigenvalue of the type of matrix
in equation III-16 goes to the norms as the dimension of the.matrix is
increased to infinity, it is concluded that the minimum norm obtained for
a Y/A.i matrix, whose row and column sums are nearly equal, is very

probably not much larger than its maximum eigenvalue.
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Since the effect of a 9 in that is negative but small in absolute
value is negligible as n becomes large, under some circumstances an
oscillatory solution might be tolerated. This would allow a larger AT
to be used. Consequently we could specify that 4 in be less than Y

in absolute value so that at the lowest time of interest 7, or after TO/AT

0
n
time increments, the oscillatory component would be less than Y or
TO/AT ‘
Y and would no longer be significant. The disregarding of the

approximate solution for the first few n's must usually be done in any
case because the approximate solution has replaced the infinite sum

of exponentials of the continuous solution with a finite sum of exponential

forms. The sufficient condition to obtain Uin

less in ab_solute value

than Y is

(AMIL-y(Y+1)] =<(1+Y) (I11-26)

T/AT

In general, the value of Y which makes Y insignificant at the
time of interest is satisfactory for use in equation III-26 to selecty
and AT. For many purposes Y can be as highas 0.6. However,
since increasing the time increment reduces all the qj's', care should
be taken that DIAX is significan’;ly larger than ¥ or the solution will
probably show excessive oscillations. Although for most reasonable
selections of the time differencing parameters this will not occur, it
is porssible with a vy of 3 and @ very large time increment AT to have
a stable solution with all the qj's including D IAX negative. In cases

where it is necessary q x can be estimated in one of the fdllowing
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three ways. First a lower bound for dyax 21 be derived from the
fact that

A > (111-27)

MAX 00

where ¥00 is the largest diagonal element of Y/A (smallest in absolute

 value and negative). This gives for dAX:

+ -
. . Lt oll-vIar
MAX 1 -y vAT

(111-28)

This lower bound is usually not close to Ay Ax and consequently it
might not be useful. The second way of estimating LAY for a given
time increment is to find the smallest v, root for a problem like the

“v 2p J

T

one to be approximated; e is then an estimate of VAKX Third,
a calculation using a small number of points and time increment
(A ’r)l can be stepped out until the logarithm of the approximate tem-
Perature at a point is linear with time. From this the UAK for the

(AT)z/(AT)l

specific calculation can be obtained. Then (q s the

MA)Z
required approximation to the YfAX for time increment (AT)&

It should be noted that limiting 9nin makes no allowances for the
weighting or coefficients that multiply qminn in the solution. These
coefficients are the associated eigenvector and the coefficient in the
initial vector corresponding to the i’ Indeed, the initial motivation

for the study in Chapter IV was to find why, under the same conditions,

one of two graphical methods with the same difference eigenvalues had
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an oscillatory component so large as to make the solution useless,
but the second method gave useful approximate solutions.

To eliminate a large oscillatory component, without having to
use either a very small time increment or a large weighting factor for
all the calculations to very long times, the following scheme can be
used. First, the time increment (A 'r)l and weighting factor v are

selected so that q , is notnegative and the contribution after n, time
min
ni

increments from Din is small. The estimate of (A 7)1 and Y, can

be based on the upper bound M. Then at step n, the temperature dis-

1
tribution should be smooth and a larger (A 'T)Z and smaller or zero Y,
can be used for the rest of tﬁe calculation with a reasonable assurance
that any oscillatory component is probably insignificant; obviously the
selection of (A 'r)a and vy 5 is still limited as no q can be smaller than
-1. To see that this procedure reduces the weighting on the oscillatory
component, consider the calculated approximate temperature distribu-
tion at increment n, as the initial condition for the second choice of

(A T)Z and Y, The solution for this difference calculation becomes

n
= - <n< = I11-2
tn tPn CQl g 0 n<n, T n(A'r)l (111-29)
n—nl 1’11
t =t ~CQ, Q g nzmn, (111-30)

T = nl(A '1')1 + (n-nl)(A T)Z

where Ql is the diagonal matrix of qjl’ the difference eigenvalues

based on (A '1')1 and v, and Q, is the matrix of 95 based on (A 'r)‘2 and
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, which is negative for the second

Y, Now the weighting of 9nin 2

n

i ’ s s , i1lati
isgsa .. which is small, so the oscillations

.(A 'r)2 and v,
should be negiigible for the remaining calculations. In the above equa-
tions, III-29 and III-30, no change in the particular solution was shown
when the v and AT were changed; thus, the conclusion applies rigor-
ously only for problems where tP a is not a function of n butis a
true steady-state solution. Although problems where the particular
solution does change with time and is a quasi-steady-state solution
have not been studied, itis very probable that the above scheme would
eliminate spurious oscillations for all but a few types of forcing func-
tions.

A second way of reducing oscillations is by averaging the cal-
culation for two successive times n and (n+l) and then applying the
result at n, (ntl), or an inter mediate value of n. By exarnining the

form of the solution equation it is seen that this has the effect of

th
multiplying each weighting gj of the j  eigenvector-eigenvalue product

by (qj-i- 1)/2:

q.t+1
g, = -—3—2-—) g. (11-31)
/ averaged ) unaveraged
If A in is close to -1, and YA is close to +1, averaging significantly

reduces the weighting Din of the negative eigenvalue-eigenvector
a . . . s £ . lue-
product without changing the weighting gMax © the Arax Sigenvalue

eigenvector product. However, the weighting for the moderate sized
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q's is radically changed. The effect of averaging is discussed more
precisely for one-dimensional problems in Chapter IV, sections B-7,

D-2 and E-6. Itis shown to be mostly useful in graphical methods

in which the g
min

has the same absolute value as IV G

The criteria shown in equations III-14 and III-15 should be com-
pared and related to another criterion often suggested (9) for the explicit
method. This other criterion is that none of the coefficients of
[T+ AT(Y/A)] be negative to avoid wild oscillations. For cases of uni-
form mesh spacing simple arguments show that this is a sufficient

requirement (3). For the asymmetric network and the explicit method

this amounts to the condition that

1

AT < | (I11-32)

u‘F’FJ
Referring to equations III-13 and III-15, this is seen to be equivalent

to assuming that the absolute value of the minimum eigenvalue,

In .
min

\, is less than, or equal to, Zh.hpp\ and equivalent to substituting
le,ppl into the stability ctieria. Although this condition is sufficient
for stability, if the time increment is selected by the equality, the solu-
tion probably contains an oscillatory component, and also it does not
eliminate the possibility of a -1 root. In graphical methods for one
dimension the time increment used conforms to the equality in equation

III-32 and, as mentioned previously, oscillations that make the solution

useless are sometimes obtained. The criteria derived in this section
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have the advantage of being almost as simple and yet rigorous and,
with proper modifications, they allow the selection of v and AT to
obtain the type of solution required with almost the largest time incre-
ment possible.

In conclusion, to obtain a satisfactory approximate solution,
the time increment and weighting y must be selected to give a stable
solution. The precise selection of the time increment and vy must
then be based on the specific purpose of the approximation. In general,
the combination of time increment and vy should be selected which
gives an accurate representation of how the continuous exponential
varies with time, and simultaneously minimizes the calculations nec-
essary, and keeps any oscillations from destroying the usefulness and
accuracy of these results. Although it is probably not possible to
derive a general set of rules that would apply to all asymmetric dis-
tributions, this question is considered in detail in Chapter IV for one-
dimensional regular networks in Cartesian coordinates and some
generalizations are possible.

For some problems the selection of the time increment may be
fixed or limited by considerations other than stability or oscillatory
effects. For example, if the boundary temperature contains oscillatory
components, the time increment must be smaller than one-half the
smallest period of oscillation of the oscillatory components. This can

be demonstrated rigorously from Shannon's sampling theorem (12) or
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can be seen by considering that, if the value of the oscillating function
is not sampled at least this often, a wholly inadequate description of the

oscillations results.



68
(D) NUMERICAL EXAMPLE

In order to numerically check the necessary and sufficient
criteria for stable and non-oscillatory solutions, a transient heat
transfer problem was solved using an asymmetric distribution of tem-

" perature points for several combinations of time increments and
weighting factors. In addition, the norms of Y/A and W were studied
to show the usefulness of the sufficient conditions and the closeness of
the bounds for \ Xmin‘ . The presentation of an example problem also
affords an opportunity to mention some of the practical points concern-
ing the calculation of the Y/A matrix, and procedures for solving the
equations for the implicit methods. The problem selected is one where
the solution for the partial differential equation is known, so that it
also can be used to study the accuracy.

The problem is to find the transient temperature distribution in
a solid with a unit square cross-section of uniform thermal properties,
and a uniform initial temperature distribution of unity, which has its
surfaces maintained at zero for all times greater than zero. Taking
the center of the solid as the origin, the solution of the two-dimensional
partial differential equation can be found as the product of solutions of

one-dimensional problems:
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T(g, M. 1) = Q& )AM, ) -k <E<% (111-33)
-x<T <3
T=20
where
' 2 2
4 oo (1) i)
e, T) = = j-EO T © cos(2j+1)mE (II11-34)

This problem is important because its solution has the same eigenvalues
and eigenfunctions as the transient solution for problems where the
temperatures of the surfaces of thc unit square are specified as any
function of space and/or time. In these other cases, only the particular
solution TP(g,T], T), which is zero above, and the Fourier coefficients
aij , which are 16(—1)i+j/ﬂ2(2j+1)(2.i+1) above, would be changed.

For the approximate solution, points need be located only on the
minimum area necessary, considering the symmetry of the problem.
This area is the 1/8 of the cross-section as shown by the triangle in
Figure III-1. Nine points where the temperature is an unknown function
of time are located within the solid, and five points where the temper-
ature is known as a function of time are located along the surface.

The variable temperature points are located away from the axes of
symmetry, which can be considered as adiabatic boundaries. By locat-
ing the points away from the boundary, the number of nodes required to
be calculated for the small cross-section is not raised, but the equiv-

alent of the total number of nodes in the whole cross-section is
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significantly raised. Moreover, since the whole area of the surface
nodes A, B, C, D, and E is assumed to be at the boundary temper-
ature of zero, the heat capacity of the solid corresponding to the total
heat capacity of these nodes is neglected. The network of points was
‘made irregular so that the effects of asymmetric location on the
accuracy could be studied. However, this could be considered as a
practical arrangement for a problem where only the corner temper -
atures are important.

The Y/A matrix was then calculated using exact geometric
relationships for all the lengths, and thus errors are probably less than
0.01 per cent in the elements of Y/A. In a practical case, sufficient
accuracy probably is obtained by making a large-scale drawing and

measuring the lengths. A simple digital computer program could be

J

in a matrix form, together with the effective thermal conductivities

devised to determine the Y/A matrix from arrays of the rij and li

for each connector, and heat capacity data for each node. A program
to find Y/A from just the location of the temperature points, the
specification of the connected points, and the effective thermal properties,
probably could be devised although it would be very complicated.

The Y/A matrix for the arrangements of nodes in Figure III-1,
as computed using a desk calculator, is in Table III-1. The first row
in this matrix contains the coefficients in the ordinary differential

equation for node 1, the second row for node 2, etc. Since a numerical
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check was to be made of the necessary and sufficient criteria, the
Aeigenvalues of the matrix were determined using a method based on the
general numefical method of iterative multiplications of the Y/A matrix
(16), and these are in Table III-2. From the p\min‘ of 1442, the
limiting time increments for stable and non-oscillatory solutions héve
been calculated for vy's of 0, %, and 1 from equations ITI-14 and III-15,
and are summarized in the table. In order to check these criteri-a, the
approximate solution was stepped out using equation II-39 for these
v's and for time increments on both sides of the critical values. The
results are shown as graphs relating the calculated approximate tem-
perature at node 1 and dimensionless time in Figure III-2 for the
explicit case of y of zero, and in Figure III-3 for the implicit v's of
% and 1. Node 1 was selected as it is the most sensitive to instability
and oscillatory behavior. Also, for comparison, the continuous solu-
tion of the partial differential equation for that point is shown.

For the explicit calculation an unstable solution is expected for
a time increment AT greater than 0.001387, equal undamped oscilla-
tions for a AT of 0.001387, damped oscillations for a AT between
0.001387 and 0.000694, and smooth damped exponentials for a positive
AT less than 0.000694. These expccted types of solutions were ob-
‘tained as shown in Figure III-2. Referring to Figure IIT-2, the mid-
point of equal oscillations shown for the limiting time incrve‘ment for

stability, 0.001387, (b) decreases and approaches zero for large times.
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The oscillatory solution for a At of 0.001, although useless for the
first four increments, does give a fair approximation for long times.
The solution found by using the maximum time increment which gives
no negative coefficients in the calculation matrix, [I+ AT(Y/A)]
| (Longwell's sufficient criteria, equation I11-32), although oscillatory,
gives a better approximation to the continuous solution shown in (f).
Approximate solutions using this criterion for similar problems also
show oscillations, but they are so rapidly damped (19) that they are
not significant. The smallest increment shown, AT = 0.0001 (e), is
seen to give an accurate approximation to the continuous solution.
Not shown are good approximations with time increments of 0.0005 and
0.000694.

The implicit calculations were calculated by finding the inverse
matrix and then stepping out the solution explicitly using equation II-39.
For a y of 3 the solution is always expected to be stable, and should
be non-oscillatory for positive time increments less than 0.001387;
for a vy of 1, neither instability nor oscillatory behavior is expected.
The graphs, together with other numerical results in Figure III-3,
show that the expectations are fulfilled. However, for the large AT
of 0.01 and a2 v of # the solution oscillates (damped) so badly that it
is useless as an approximation. The corresponding calculation for a
v of lata AT of 0.01, although a smooth damped exponential, is not

an accurate approximation as discussed later. Comparison of the
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non-oscillatory solutions for a small time increment of 0. 0005 with
the continuous solution, Figure III-3 (b), (d), and (e), shows that the

approximation with vy of ¥ appears to be more accurate than with a

v of 1 or zero.

Although a detailed discussion of accuracy is deferred until the
last chapter, several brief comments can be made. First, the
approximate solutions that are stable and which have only small
oscillations arie reasonably accurate. More accurate results are
obtained for the smaller nodes, 1, 2, and 3; less accurate results for
the large nodes 6 and 7, as would be expected. For the large time
increments the most accurate results are witha v of 3. As the time
increments are reduced, the errors appear to approach a constant for
each node indicating that the approximate solution approaches the analog
as the time increment goes to zero.

To show that, when AT and vy are selected sothata g of -1
occurs, the calculated temperature can go to infinity even though tﬁe
surface temperatures are bounded, the explicit calculation for the
limiting time increment for stability was repeated but with the surface

temperature of the nodes A, B, C, D, E oscillating between +1 and -1.
te = (-n" (I11-35)

The temperatures of the surface nodes and of node 1 are shown in
Figure III-4. The temperature of node 1 oscillates with a linearly

n
increasing amplitude indicating that a term of the form n(-1) must be
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in its solution. Consequently, the solution is unbounded and the limiting
At and vy combination, although bounded for some boundary conditions,
is unstable according to the definition of stability used here. Also,

this shows that with an oscillatory forcing function the time increment
should not be a multiple of the period of oscillation or the oscillation
might excite an oscillatory difference eigenvalue which does not occur
in the continuous solution.

Thus, the necessary and sufficient criteria for stable and non-
oscillatory behavior have been checked. However, practically, the
eigenvalue | )\minl probably would not be obtained, but the sufficient
conditions given by equations III-14 and III-15 in terms of the matrix
norms would have been used. The calculated matrix norms for the Y/A
matrix are in Table III-2. The row norm || % | is the smallest at

I

1618. 8 and the largest (in absolute value) diagonal element is 1266.7,
which defines the range for P\min\ . If M had been used as 1618. 8
the sufficient time increment computed for a constant vy would be
about 12 per cent lower than the necessary and sufficient increment.
Also, from the diagonal element of Y/A that is largest in absolute
value, maximum of |p, ii.‘ of 1266.7, a time increment based on the
minimum norm of Y/A would not be more than 22 per cent lower than
‘necessary. The symmetrized Y/A matrix, or W matrix, can be

calculated directly or from the elements of Y/A, and is shown in
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Table III-3.’ Its norm is lower than those of Y/A and is 1583.3, which,
~if used in the sufficient condition, would give a AT ten per cent
smaller than necessary. A simple diagonal similarity transformation
on the W matrix as suggested in equation ITI-23 gives a U matrix

- which is shown together with the transformation matrix in Table III-4.
The U matrix has a minimum norm (column) of 1501.8 which is only

l. The trial and error calculation

four per cent greater than the |\
min

of the F matrix and the simultaneous calculation of U required about
an hour's time using a slide rule and adding machine; the transforma-
tion F was selected so that it reduced the off-diagonal elements in the
fourth and fifth rows and second and third columns without increasing
the other column sums.

A numerical study was also made of the norms of Y/A, maxi-
mum diagonal element MAX |p .. |, and |A . | for the two Y/A

i ii min
matrices used by Longwell in his rocket motor study (9). For his
shape 1, fourteen equations were used. The minimum norm of Y/A
itself was only 9 per cent greater than | )\min‘ and about 13 per cent
greater than the maximum | o ii‘ . Sixteen equations were needed for
his shape 2, and the minimum norm was 8 per cent larger than
| Ao | and 35 per cent larger than the maximum | B, l .
min "
From the limited experience of these three problems, the

norm of Y/A appears to be a good estimate of the absolute value of the

eigenvalue which determines the stability and oscillatory behavior of
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the difference solution. Replacing | Kmin‘ with the norm to compute
the limiting time increment gives, on the average, a time increment
only about 10 per cent too small. However, in these prbblems the
minimum norm of Y/A does not approach being 100 per cent greater
than the maximum diagonal element, as is theoretically possible. The
only case when this occurs is when a node with the largest diagonal
element, j%1 yij/Ai’ is connected only to interior temperature nodes
where the temperature is to be calculated or when it is bounded by an
adiabatic boundary. However, it is probablé that in the most frequently
encountered problems, the maximum diagonal element occurs for a
point which has connectors to a known fluid temperature and thus one
of the conductances appears in the YB/A matrix. Consequently, the
row sum is less than twice the diagonal element which is the sum over
all conductances. In these cases, the norm of the Y/A matrix probably
can be used satisfactorily without further calculation; for the problems
~where the norm and diagonal element give too large a range for

| A |, the calculation of the norm for W and/or a diagonal trans-

min
formation may be used.

The number and location of the-points also affects the limiting
time increment. Increasing the number of points reduces the dimension-
less heat capacity A,i's of some or all of the points which in turn raises

the norm, diagonal elements, and ‘)\min‘ requiring a lower time

increment or an implicit method with a relatively high vy. From the
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previous consideration of the Y/A matrix, the elements associated
‘with the node or nodes having the smallest dimensionless heat capac-
ities Ai's are the ones that usually determine the norm of the matrix
and the maximum diagonal element. Consequently, these nodes can
greatly reduce the allowable time increment. Thus, to prevent one
or a few nodes from restricting the time increment too severely, the
points should be located, in so far as practical, so that the elements
in Y/A are of the same order of magnitude.

Locating S points in a regular fashion for a solid of uniform
thermal properties gives a Y/A matrix with smaller norms and smaller
maximum diagonal element than the Y/A matrix for locating the S
points so that s ome nodes have smaller heat capacities. The Y/A
for the asymmetric case also very probably has a large lkminl » and

thus a smaller time increment must be used.
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(E) ALTERNATE CALCULATION FOR IMPLICIT ME THODS

In calculating the approximate solution for the implicit methods,
the inverse matrix [I-y At (Y /A):l_1 was first computed with anelimin-
ation method; then the calculatioﬁ matrices of [I-yAT(Y/A) ]—1[I+(l—y)A'r(Y/A)]
‘and, if necessary, [I-y AT(Y/A)]_I[AT(YB /A)] were found. The approx-
imate solution was then stepped out using equation II-39 explicitly as a
matrix-vector product, using the known temperature vector at the
beginning of the increment and known boundary temperature vector.
Although this method is simple, it suffers from two disadvantages.
First, as the clcments of the inverse matrix [I—‘YAT(Y/A)]-I contain
round-off error, significant additional errors might be introduced into
the approximate solution by the successive multiplications by that
matrix. Of more importance is that under certain circumstances
methods of solution of the system of equations II-39 are available that
require fewer of the time-consuming multiplication operations than
does a vector-matrix product. Thus, for these cases, the system of
equations II-39 can be solved for each time increment for tn+l more

rapidly than the vector-matrix product can be calculated.

The equation to be solved is

v ¥ ATYB
- —_ =T - —_ —_— +{ - } -
(I-vAT A]tn-!-l T+(1-y)AT A]tn + n (th 41 1-y g n) (111-36)

where the quantity on the right side of the equality represents a known
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vector and tn+1 is to be found. The method for solution of the one-
_dimensional case is based on simplifications in the elimination method
which are possible because only the three major diagonals of
[(I-yAT(Y/A)D and [1+(1-y)AT(Y/A)] contain non-zero elements. For
two- or three-dimensional problems, where the temperature points are
located on the corners of a rectangle or rectangular solids, line iter-
ations and alternating direction methods (6) are useful. However,

they do not give the exact solution of the system of equations III-36,

but actually represent a slightly different method, and further it appears
that they cannot be modified for an asymmetric distribution of points.

A modification of the elimination solution for the one-dimensional case
can be deviscd which can solve the system of equations for the irregular
network more rapidly than the vector-matrix product can be formed,
providing the multiplication by zero is avoided, or providing it is sig-
nificantly faster than multiplication by non-zero elements. This

method for the general asymmetric network is done by using an elimin-
ation technique to convert the system of equations III-36 to an upper
triangular system, which can then be solved explicitly. After determin-
ing the constants on the right side of the equation (note that because of
the many zeros in both matrices on the right side the vector -matrix
'pr;)ducts here are formed much more rapidly than would be the case
with the inver se matrix which probably has no zeros) the conversion

to an upper triangular system requires the following steps:
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(1) Solve the first equation for the first variable, £ el
As [I+y AT(Y/A)] is sparse, it should only require three or four divi-
sions by the diagonal element My

(2) Eliminate t from all the following equations by sub-

1,n+1
stituting the expression found in step (1). Since [I+yAT(Y/A)}] isa
sparse matrix, this should require substitution in only two or three
equations.

(3) Repeat steps 1 and 2 for the next equation and variable,
eliminating the next temperature point from all succeeding equations.

Continue until all the coefficients below the diagonal in [I4+v AT(Y /A)]

are zero. Now the last variable, t

S, ntl’ 18 determined explicitly by

the last equation. Knowing t is calculated explicitly

S,n+1’ tS-l,n-!-l
from the (S-1) equation. Following this procedure back through the
equations each component of t sl is found. This procedure, including
the calculation of the known vector on the right side of the equation,
requires a number of multiplicative operations involving non-zero
elements directly proportional to S; on the other hand, the inverse
matrix-vector product has S2 multiplicative operations. Consequently,
the advantage of using the modified elimination method depends upon
the proportionality constant and the number of points used.

The proportionality constant depends upon exactly where the

non-zero elements are located in the [I-y AT (Y/A)] matrix. For the

one-dimensional case where each node has two neighbors, 8S
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multiplicative operations are needed to solve the system, including
the determinations of the constants on the right side of the equation.
For a two-dimensional problem where each node is surrounded by an
average of four nodes, the solution requires about 16S multiplicative
operations. Thus, if S is greater than 8 or 16 for the one- or two-
dimensional system, the system of equations III-36 can be solved at
each time increment more rapidly than the inverse matrix-vector

product can be constructed.
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(F) CONCLUSIONS

In Chapter III the criteria for stability and non-oscillatory
approximations were derived as simple relationships involving the
time increment AT, the weighting factor vy, and the eigenvalue of
the Y/A matrix with the largest absolute value for a fixed network of
points. The necessary and sufficient criteria for both stable approx-
imations and non-oscillatory approximations were then checked numer -
ically by approximating a problem using an asymmetric network of
points.

Under any practical conditions, it is too time consuming to
determine this eigenvalue. Therefore, sufficient conditions were
derived in terms of easily calculated norms of the Y/A matrices. These
matrix norms were then shown to give the same stable and non-
oscillatory criteria usually found by Fourier analysis for one-dimensional
problems with a regular distribution of temperature points. It was also
shown that these sufficient conditions can never give a time increment
less than § of the time increment actually required. Applications of
these sufficient conditions to the example problem and to two other two-
dimensional problems using an asymmetric distribution of points showed
that these norms usually are only 4 to 15 per cent larger than the
absolute value of the critical eigenvalue ] )\minl » which indicates that

the time increment determined by the sufficient conditions is expected
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to be just slightly smaller than its limiting value to obtain the required
behavior.

In addition to these points, a weighting v of 3 was shown
always to give a stable solution and a weighting vy of 1 always to give
‘a non-oscillatory solution. Also a negative 9 i, €20 be tolerated
providing qminn is negligible at the times of interest. Further, a proof
was given that, after starting a solution using a small time increment
for several time increments, a larger time increment could be used
for the remaining calculations without excessive oscillations. It was
also noted that by averaging the calculated temperatures for successive
time increments, the weighting of the oscillatory components was
reduced.

However, a solution which is stable or non-oscillatory is not
necessarily an accurate approximation. A stable solution is bounded
as is the continuous solution. A non-oscillatory solution only oscillates
as does the continuous solution. But although the general behavior of
the approximation might be like that of the continuous solution, never-
theless the eigenvectors, the large damping factors qj » and the initial
vector components might not be good approximations to the correspond-
ing quantities in the continuous solution as would be necessary for an
accurate solution. The question of accuracy for one- and two-

dimensional problems is the subject of Chapters IV and V.
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Table III-2

EIGENVALUES, NORMS, AND STABILITY CRITERIA

1/8 - Square Cross-Section

a. Negative of

Eigenvalues b. Norms
Y - 9
l\xl’ MAX ' Byl = 1618.8 i=
I 1 =Y
|Xm..1..n| 1442 |I{-H = MAX '#ij| = 1623.18  j=2
1T j i=l
MAXIp ! -
N 14! = 1266.7
1241
401
354
323
175
121
80
19
¢. Stability and Oscillatory Criteria
y = 0 1/2 1
Limiting AT
; 3
Ixminl_(l-ZT)A'r < 2*(0.001387 ® ®
¥ x
Xminl(l-Y)A7'- 1 " |0,0006937 0.001387 o o)
* Stable

¥* Non-Oscillatory
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