CHAPTER 11

MATHEMATICAL FORMULATION OF TRANSIENT TEMPERATURE

DISTRIBUTION IN BOTH CONTINUOUS AND DIFFERENCE FORM

In this chapter the transient tempcrature problem is formulated
as the continuous solution to a partial differential equation. Also, a
generalized version of the MacNeal-Longwell (9) approximate method
is derived, and the equations suitable for stepping out the solution are
shown. Further, the forms of an analytic solution of both the partial
differential equation, and of the system of linear difference equations
that result from the approximation, are shown. The dependence on the
differencing parameters of the quantities in the solution to the differ -
ence approximation is indicated. Throughout this discussion the
emphasis is on showing the likeness and analogies between the continu-
ous and approximate methods. These analogies are in the derivation
of the equations, in the properties of the operators occurring in the
equations, in the form of the solutions for the equations, and in the

properties of the terms in the equations.



10

(A) CONTINUOUS OR EXACT FORMULATION

The diffusion equation is simply derived, starting with Fourier's

law for heat conduction in one direction
q=-k== (11-1)

or, in general, in three dimensions

«E =-kVT (11-2)
Applying the law of conservation of energy to a differential volume
element which contains no sources or sinks, the net energy into the
differential volume equals the accumulation, or, in vector notation,
the time rate of change of temperature is proportional to the negative
of the divergence of the heat flux.
T N

c 2= =.79- II-3
°Co3 v d (11-3)

o/

Combining equations II-2 and II-3 gives the diffusion equation,

a7T - -
cC — =V -kVT I1-4
3 (11-4)

which applies to the interior of the solid and is linear if k, o, and C
do not depend on T. For convenience, dimensionless variables are

usually introduced which for three space dimensions are



T = ;1(‘:—1305-2=K0£% (11-5)
g =x/L (11-6)
M =y/L (11-7)
£ =z/L (11-8)

The diffusion equation in terms of these dimensionless variables

becomes
3T 1 g g
3. T T oK v'-kv'T (11-9)
P 0
where (/L) v' = ¥

For the one- and two-dimensional cases where the thermal conductivity

and volumetric capacity are constant the equations are

2
)

aT _ ._._'&1" (11-10)
QT 3F

2 2
%I -7 1; + L’% (11-11)
T 3k 3T,

To uniquely define the solution temperature T, the initial tem-
perature distribution and the boundary conditions must be specified.
For the two-dimensional case the initial distribution would be of the

form

T = T(E, T, 0) T =0 (I1-12)
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For many practical problems the boundary conditions are often of the

type
BIT, (85 70m) = T (55, 15.m)7 = - k22 (5,1, 7) (11-13)
Il
0<h<o
where §B and TlB are the coordinates of the boundary of the solid, and

where n is normal to the boundafy directed toward the interior. The
heat-transfer coefficient is always positive and may vary from zero
(adiabatic condition) to infinity (a specified boundary temperature).
For the one-dimensional case the initial condition would be a function
only of £ , and the boundary condition would give equations like II-13
for two values of €.

The Laplacian operator* V:kV or V ''kv'itself and the
combination of Laplacian operator together with its boundary conditions
have several important mathematical properties. The Laplacian
operator is a stable operator, or, equivalently, it tends to minimize
the energy at a point. When the Laplacian operator and its boundary
conditions are considered together, this property has the physical
meaning that, for boundary conditions which represent a finite amount

of energy, the temperature remains bounded. Mathematically this is

cxpressed as a negative property meaning that, for homogeneous

* Although in this thesis the operators V°'kV or ¥V '*kV'are

called L.aplacian operators, the Laplacian operator is usually defined
2
as vy “.
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boundary conditions (equation II-13 with Tf of zero), the following

volume integral is negative ( 5).

JT] Tv-kvTav<o (11-14)
v

~where T is any smooth function that satisfies a homogeneous boundary

diti . -1 .
condition (equatlon II-13 with Tf (§B B

aT
koo (Bg:Tg) -hT (E5.T5) =0 (11-15)

This means essentially that the characteristic roots of the operator

are negative; and the transient part of the solution is a sum of negative
exponentials. This result can be generalized, using theorems found

in Carslaw and Jaeger (1), by superposition to nonhomogeneous boundary
conditions where Tf is a non~zero function of the boundary coordinates,
but constant with time, and by Duhamel's Theorem (1) to cases where
Tf is a function both of boundary coordinates and time. The fluid
temperature function can be considered to be analogous to a forcing
function for a stable linear ordinary differcntial equation. The second
important property is that the Laplacian operator is symmetric or
self-adjoint. Physically this means that the thermal conductance in one
direction is the same as in the reverse direction. For the operator and

the nonhomogeneous boundary condition, equation II-13, this property

is stated mathematically in terms of a volume integral.
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a % ook n ok %
Il o vxvT av= [T v-kvT av (11-16)
v \Z

b ek
where T and T are functions that fit the homogeneous boundary
condition, equation II-15. These are properties that the approximate

formulation retains.
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(B) CONTINUOUS SOLUTION

The solution for the linear one-dimensional problem (equation
I1-10) with linear boundary conditions (equation I1-13) is written sym-
bolically as:

2
—U. »r

Qo
5 ajbj ()e (11-17)

I S - T f] - 2

T20

(Here and in the following discussion £ need not be a Cartesian coor-
dinate.) In this equation TP(E,T) is a true steady-state solution that
is not a function of time if the fluid temperature is constant; or it is a
quasi-steady-state solution if the fluid temperature changes with

time and, in this case, is related to Duhamel's Theorem. The terms
after the summation sign are the transient solution and this part of
the solution is related to the problem of zero fluid temperature and an
arbitrary initial temperature distribution. In the transient solution the
Dj‘s are an infinite number of real roots to the characteristic equation
which depends upon the boundary equations. Since the v, 's are real,
-ujz is negative, and the exponentials go to zero with increasing time.
The bj(g) is the eigenfunction that corresponds to vj H thesg functions

are orthogonal over the range of § with respect to a weighting function
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1

Oj o(€) by(E) b (2) dE =6, (II-18)

j’p = 1,2,..».:(})

The a.'s are the Fourier coefficients determined with the orthogonality
relationship so that the expression fits the initial temperature distri-

bution.

1
a;= [ o(3) b(e) [T(g,0) - (e, 0)] ag (11-19)
0

Although the solution above is shown specifically for the heat-transfer
coefficient boundary condition, equation II-13, the above form is also
true for other problems, for which the solution may be found by the
separation of variables technique, or for which the lL.aplace transform
of the solution has only poles for singularities. Consequently the above
form holds for many of the commonly encountered problems. The
main problem it does not appear to apply to is where £ extends to
infinity (semi-infinite solid); however, by replacing the summation
with an integration, together with other appropriate manipulations, a
form very similar to equation II-17 is found which does apply.

For a two-dimensional problem of equation II-11 the above
arguments can be used to show that the solution is in the form:

2
-V, T

= = - X L 1] ' -
T(g,M,7) = T (5,7, 7) JEl j§1 345 bij (E,Me (I1-20)
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Either to compare the continuous solution with an approximate
solution, or to calculate a continuous solution for a case where it is
known, a vector-matrix form for the solution is sometimes preferred.
Assuming that the temperature at S points within the solid is desired,
an S-dimensional '"continuous temperature vector' can be defined with
., .th . .
its i element found by evaluating equation II-17 or II-20 at the co-

. th P .
ordinate of the i ~ point. Also, because the infinite sum is over
damped exponentials, to obtain a certain degree of accuracy for any
time greater than zero. only a finite number of the largest exponential
terms need be considered. If this number is J the continuous solution
vector for a one-dimensional problem can be written as

2
-v T

T(T) = TP(T) -Be a (11-21)
where TP(T) is an S-dimensional vector of particular solutions; B is an
th

S by J matrix whose j column is b (£} evaluated for the appropriate

-vz'r : th U7
E's; e is a diagonal matrix with the j diagonal element e ] ;
and a is a J-dimensional vector of Fourier coefficients aj. The con-
tinuous solution equation II-20 for the two-dimensional problem also

can be put into exactly the same vector-matrix form as above, equation

Im-21.
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(C) APPROXIMATE FORMULA TION

The difference equations that are used to approximate the partial
differential equation are usually derived by either of two methods: first,
directly from physical considerations, and second, from a Taylor
series expansion of the temperature function. The series method is
also very useful in the analysis of errors introduced by replacing the
differential equation by a difference approximation, and is used in
Chapter V. Here the approximations are derived directly from an
energy balance for a two-dimensional problem using an asymmetric
distribution of points following MacNeal (8) and Liongwell (9). Although
this system derived for the irregular distribution of temperature points
might not be entirely satisfactory, as discussed in Chapter V, it
results in a useful generél matrix-vector formulation that can be
considered to be independent of some of the rules for finding the actual
matrix elements, and which reduces to the usual approximations for
a regular arrangement of nodes. Further, although only the two-
dimensional case is derived, the concepts of one- and three-
dimensional cases are similar; however, in practice, the three-
dimensional case is sometimes difficult to visualize.

Following MacNeal's (8) rules for two-dimensional flow, points
are selected within the cross-section. Lines are drawn from each
point to sur.rounding points in such a manner that the lines do not

intersect. It must be possible to connect the points with physically
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realizable resistors, which means that the internal angles must not
be obtuse in triangles. If necessary, the points should be rearranged
to meet these restrictions. Next, perpendicular bisectors are con-
structed for each line between the points; if the above rules are fol-
lowed these bisectors will meet at a point, and the network will appear
as in Figure III-1. A temperature node is defined for convenience as
a point mass having a heat capacity and thermal conductances to sur -
rounding nodes based on the physical and geometrical properties of
the surrounding area.

Considering the ith node, the thermal conductance between this

and an adjacent node j is given by:

kr,,

— i = 1] i=1,2,..., R vy
— 7 _ i . 2, , (11-22)
i j ij

The volume or area of unit thickness for the two-dimensional case for

th
the i node is

T, 4., i=1,2,..., R (I1-23)

where r,, is zero if there is no connection between i and j; r., and £ ,,
ij ii ii

have no meaning; and the summation is over all nodes surrounding the

th
i node. Thus, setting the accumulation of energy at the node equal

to the net flux in, we may write an ordinary differential equation for

each node,
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aC R dt, R T,.
P ‘ 1 = 1) - -
7 j§1 "5l ) @@ T j:z]_ 1. (tj t;) (11-24)
i o
1= 1> 2: ) R

Consequently, the partial differential equation has been replaced with
a system of ordinary differential equations which are suitable for
solution on an analog computer. Following Longwell's (9) derivation,

a dimensionless heat capacity A, and a dimensionless conductance are
i

introduced.
o C (Area), cgC R r..f..
A = —2F = LA, (11-25)
i (ch) 1.2 4(cC )0 j=1 12
0
i=1 2 , R
r-n
g = M i,j=1,2, ..., R (11-26)
ij ko 'Eij
Substitution gives
R dT,
oyl -n) =A i=1,2, ..., R (11-27)

J=2
i

Now departing from both MacNeal's (8) and Longwell's (9)
derivations, the system of equations may be summarized in matrix

form:
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A .0 |0 .0
‘1
0 A .0 |o . 0 t
2 2
0 0 0
Ag d tg
dr
: 0
0 0 Asi 's+1
0 0 o0 A t
R R
5
ey e Y1s Y1st1 7 VIR
j#1
)
Y1z o Ve Y28 Yas41 "0t Yas
J#e
:
Y1s Yes ©rr 2y 7sy | Jssutt Ysw
i#S
5
Yist1 Y2s4 ’ss+H j—:1YS+1j"' YsHRr
A+l
R
iR Yor Vs Ysar J':Zl YR j
#R

(11-28)

g+l
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Since some of the nodes represent boundary nodes, their temperatures

are known as a function of time. Assuming that the boundary nodes are

(S+1) to R, we may rewrite the matrix without the equations for nodes

(S+1) to R. Carrying this out, and simplifying the equations by par -

titioning the matrices and temperature vector, gives

0
A1 0
0

A2 0
0 0 A

| )]

which is written equivalently in vector -matrix form as

d
A— t=Yt+Y
dr t t B

a_
dr

t
1

t
2

YR s+1

t
B

* YRR

y

(11-29)

‘541

(11-30)

where the two equations serve to define the several matrices and

vectors. The

A matrix, because each diagonal element is a positive
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non-zero element, is a positive definite matrix. The Y matrix is a
symmetric matrix that represents a network of thermal resistors;
thus, itis a negative definite matrix.

Although the above equation was derived specifically for points
located on the boundary, whose temperature is known as a function of
time, generalizations to other types of linear boundary conditions can
be made. This can be done, for example, in the case of the solid sur-
rounded by a fluid with a heat-transfer coefficient h, or for a specified
flux per unit area, merely by modifying the energy balances appropri-
ately for the effect on nodes on or close to the boundary. If the boundary
condition equations involve a heat~-transfer coefficient, the Y and YR
matrices contain the heat-transfer coefficient. This condition is thor-
oughly discussed later. If the flux is specified, then there is no boundary
conductance, the Y matrix is the same as for zero h or an adiabatic
condition, and YB tB is replaced directly with the known flux in to each
node per unit time. Also, for the equation in the above form, it is
easy to see that the boundary temperature vector (or flux vector) is the
nonhomogeneous part of the equation and the boundary temperature
vector tB can be considered a forcing function or input disturbance.

Now solving equation II1-30 for %T— t to put it in a form similar to

the partial differential equation, there is obtained after defining two

new matrices:



d Y B
PR = e— 4 — -
o t X t N tB (I1-31)
h - -
where Y oaloana YB=aly (11-32)

At this point the Laplacian operator (llKOCpG) VkV'!' and
its boundary conditions which apply to all points within and on the
boundary of the solid have been replaced with matrix operators Y/A
and Y/AB, which apply at a finite number of points within and on the

solid boundary. For the ith point, we have

1 1 R
— V'kV'T. " — ¥ At -t II-33
KocyCp i Ai j=1 le(J 1) ( )
i=1], ..., 8

The matrix Y/A does retain both the stable or negative property and
the symmetric property of the Laplacian operator. First the Y/A
matrix as defined by the above rules can be shown to be a negative
definite or negative semi-definite matrix and so has all negative
eigenvalues, and a finite sum analogous to the volume integral is
always negative. The transient solution to the system of ordinary dif-
ferential equations is then a sum of damped exponentials giving a stable
solution. As the Y/A matrix is not a symmetric matrix (except for

the important case when all the Ai‘s are equal), it might appear that
the symmetric property is lost; however, the following discussion

shows that the matrix operator is symmetric in the same sense as the
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Laplacian is symmetric. In the volume integral that defines this
property, the value of V'.kV'T is weighted by the differential
volume for which it applies; consequently, an equivalent weighting is
introduced when the Laplacian and the differential volume element, dV,
are expressed in cylindrical or other orthogonal curvilinear coordinates.
Thus, in the finite sum over the volume that is the discrete analog of

. , R th .
the volume integral, the Ai s are used as the weighting for the i~ point.

This sum is then

PR B N IR CA Y IR AR (o Re: SV
izl 11 [Ai R AN i ]"i:li =175 T4 )

s

% ek * ol . .
wheret andt correspondtoT and T and the summation is on all

the points within and on the boundary and thus includcs the boundary
conditions. Because the Y matrix is a symmetric matrix, this finite

sum has the symmetric relationship:

S xS k% k% S %% S % %
Tt Ty, (t -t )= t T vy.(t -t ) (11-35)
i=11 j=1 1 ) 1 i=l 1 §=1 743 i

which is analogous to equation II-16. However, the use of Ai as a
weighting factor here suggests that the best location for the points might
be such that the weighting Ai is related to the weighting introduced by
dV for the continuous case. The symmaetric property of Y/A also can
be shown in an indirect way by finding a symmetric matrix W that has
the same negative eigenvalues of Y/A. This matrix, as found by

expanding on arguments in Perlis (11), Theorem 9-13, is:
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W=DYD (11-36)

where D is a diagonal matrix with 1//A. in the ith diagonal position
. i

and the elements of W are:

R

1 Y
= | = - — = 3 1 pui
W p‘ii N j2=1 Yij same diagonal element as A
i J7
12]
A
) BRZY VA,
R R
A /A
1) J
_ Y
p‘ij = element of a

The algebraic approximation in equations II-31 and II-33 to the
Laplacian could be used in other partial differential equations where
the Laplacian occurs. For example, an approximate solution to
Laplace's equation could be obtained by letting %F (t) = 0 in equation
I1-30 and solving the resulting system of al_gebraic equations.

The resulting system of linear ordinary differential equations
are of an initial-value nature and may be solved analytically or on an
analog computer. Also, any of the commonly used numerical integration
methods could be used, such as one of Runge-Kutta's methods. The
fourth-order Runge-Kutta method (12) in particular would give a very
close approximation to the solution of the linear ordinary differential
equations. However, this exact solution of the system of ordinary
differential equations does not necessarily mean that a better approxima-

tion to the partial differential solution is obtained unless an extremely
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fine space mesh is used, and thus the simple Euler's method or an
implicit variation is usually used with adequate accuracy. This is
true because, in the approximate solution of this partial differential
equation of diffusion, the time-discretization error often compensates
' the space error and more accurate results are obtained. To formulate

this procedure the temperature-time derivative is approximated by

d 1
ar b7 ar ) (IL-37)

However, when this is substituted in equation II-31, a question arises
whether the temperature vectors on the right side of equation II-31
should be evaluated at nAt or (n+1)Ar or at an intermediate time.

Assuming that a linear combination of vectors t and tn is to be

ntl
used, we may introduce weighting factors v and (1-vy). These factors
are usually taken between zero and one, and are the weighting given
to the temperature vector at (n+1)AT and nAt, respectively. Thus,

the temperature vector on the right hand side of equation II-31 is

replaced with
- - + I1-38
t (1-y)t +vt ., ( )

nAT <7, < (n+1)AT

Introducing vy in our derived expressions gives not only the explicit

forward-difference method when vy is zero, but also gives the implicit
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type for y not equal to zero; specifically, it gives central and backward
differences when vy is 4+ or 1. More complicated methods of determin-
ing the vector. t for substitution on the right side of the difference
equations have bien suggested to improve the accuracy (6,7) or the
stabilii;y (5).

Continuing with the derivation, substituting t"'l for the temper -

ature vector on the right side of equation II-31 and solving for tn+l’

we obtain
y L Yg ' Y|
= - — —— + S + - -_— -
£ [1 e A] {ar = vty vl ) [1+(1 V) AT A_itn} (11-39)

This equation is suitable for stepping out the approximate solution,
although when vy is not zero a matrix inversion or equivalent operation
is required. The solution of the equations for the implicit methods
should not be considered a serious disadvantage, because the matrices
usually contain many zeros, and are of a special form for which sim-
plifications are possible (6). When v = 0, the equation reduces to the
explicit forward differencc formulation used by Longwell (9) which

requires no matrix inversion.

. J -
+ + — |t I1-40
1:B n [I AT A _l n ( )

Here it should be strongly emphasized that these equations are those
actually used in stepping out the numerical solution for successive time
increments, starting with the known initial condition (to), and knowing

how the boundary temperature changes with time.
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There are several advantages to formulating the difference
problem in this vector-matrix notation. The first is that this is a very
general form that applies to one-, two~, or three-dimensional prob-
lems for an ir.regular, as well as a regular, distribution of points.
Even though a specific set of rules, MacNeal's (8),was used in the
derivation, using another system of rules would only change the ele-
ments in the Y/A matrix. As a matter of fact, Chapter V is a study
of the accuracy of solutions using this matrix for an asymmetric
distribution of nodes. Further, if a regular distribution of points is
used, this formulation reduces to those represented by a partial dif-
ference equation. The second advantage is that for carrying out the
calculations on a digital computer, matrix inversion, multiplication,
and addition subroutines are generally available; consequently, the
amount of programming necessary is greatly reduced. The third
advantage is that a study of the vector-matrix equation itself gives a
great deal of information concerning the usefulness, stability, and
accuracy of the approximate method.

As mentioned above, for a regular location of the points the
partial difference equation can be solved. This solution is found for
the one-dimensional problem using z-transforms in Chapter IV.
However, the formulation of the one-dimensional problem in matrix
form is an example of the simplicity of this approach. In this case

ﬂ.j becomes Ax for equally spaced points and rij is 1 for all i and j.
i
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If the temperature vector is ordered either in increasing or decreasing

subscripts m, the Y/A matrix is

-1 2 -1 0 0 0 O
0-1 2 -1 ...0 0 O
6 0-1 2 ...0 0 O
X __-t (I1-41)
z 5 Ce . Co
(AE) e
O 0 0 O -1 2 -1
— - - - - - - —_._.l

The entries of the top and bottom rows are not specified since thesc
entries are a direct result of the type of boundary conditions and the
method used for approximation; these corresponding equations are
derived from energy balances in Chapter IV, section B. The system
of difference equations represented by the vector -matrix equation IT-39
with Y/A matrix from equation II-41 can also be represented by the
following partial difference equation, plus the two boundary condition

equations.

+ (1+2ry)t

_ - =r(l-v)t
rYtrn—l,n-%-l m,n+l Tt r( Y)

m+l,n+l m-1l,n
(II—42)

+ (l—&r{l-y})tm’n+ 1'(1-\()‘cm_l_1 .

m # subscripts for boundary poiﬁts

n = 0,1, ..., o©
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Usually the computational procedure is constructed from this partial
difference equation. Note that only when the points are located in some
regular manner is it possible to have a partial difference equation, and
that generally, for any asymmetric arrangement, the elements of the
Y /A matrix cannot be expressed by a simple recurrence formula.

This constitutes a general formulation for the numerical solu-
tion of the diffusion equation, which applies both to a regular and an
irregular network of nodes. This was accomplished by treating the
space differencing and the time differencing as separate problems.

In addition to the diffusion equation a difference scheme for steady-

state equations is also implied and analog approximations are also shown.
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(D) SOLUTION OF APPROXIMATE FORMULA TIONS

The main advantage of using difference methods for approximat-
ing the solution of partial differential equations is that the numerical
results can be found without finding an analytic solution for the
approximation. Thus, as previously pointed out, the system of
algebraic equations II-39 or II-40 can be solved for successive time
increments, stepping out an approximate solution, or the solution of
a2 system of ordinary differential equations can be estimated using an
electric analog. However, as the partial differential equation is actually
just the special case of an approximate method that is consistent with
the partial differential equation where the time and space increments
are zero, and n and S are infinite, the approximate methods also
have an analytic solution. In order to study both the stability and
accuracy of an approximate method, a comparison between the form
of the analytic solution for the approximate method and the form of the
analytic solution of the partial differential equation is extremely useful.
In the following discussion, the form of the solution for the system of
difference equations is shown; analogies to the solution of the partial
differential equation are indicated; and important properties and char-
acteristics of the difference system are discussed and summarized for
future reference. These results are not derived here, as they involve

fairly long matrix arguments. Chapter III uses these solutions and
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matrix properties to derive a rigorous but simple stability criterion.
Chapter IV uses some of these results together with z-transforms to
find analytic expressions for solutions using several approximate
methods as applied to specific problems. Again, it should be empha-
sized that, although analytic solutions to the system of difference equa-
tions can be found, in order to study their behavior and the accuracy
of the approximation, the way to find the numerical approximate solution
is by using equation II-39,

The solution for the linear system of ordinary difference equa-
tions II-37 can be found by classical methods to be the sum of a par-

ticular and complementary solution. The solution vector is:

t =t -C Q" g (I1-43)

.th .
where the i component of the vector is:

S n
= - i=1,2, ...,8 11-44
Y0 "', 70 8y Y ' (Ir-44)
The particular solution tP 0 is an S-dimensional vector; it is found by

the method of undetermined parameters or other methods, and it depends

primarily on how the fluid temperatures in t_, or forcing functions,

B
change with space and time. This solution represents the steady-state
solution if it does not change with time, or a quasi-steady-state if it is

. n_ .
a function of time. The complementary solution -C Q g is also an

S-dimensional vector. Itis the solution to the homogeneous system
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of difference equations derived from equation II-39, which is:

Y = Y
‘:I - ymA]th - l_I + (L~y)AT K]tn =0 (I1-45)

Both Cand Q areS by S matrices and g is an S-dimensional
vector. The matrix Q is a diagonal matrix with qj in the j diagonal
position. These S qj‘s are the S real roots of the characteristic

h
equation which is an St order polynomial.

det[(q-l)I S (qy + 1 - y)Ar ] =0 (I1-46)

The S qj's are actually the eigenvalues of the matrix

[T-yAr(Y /A):]—1 [I+(1-y)AT(Y/A)]. Since the matrix Q" is the quantity

in the approximate solution which corresponds to the damped exponential
2

matrix e © | in the continuous solution where the vj’s are real, it

can be seen that each qj must be real, and between 0 and 1, to give

the same type of behavior (or at least between -1 and +1 to be bounded);

and the matrix arguments only show that the qj's are real. Thus, to

obtain a solution that is to be an approximation to the continuous solu-

tion we must select Y/A, Ar, and v so that the qj's meet this restriction;

this is the topic of stability and is thoroughly discussed in Chapter IIl.

However, for purposes of discussion, it will be assumed here that the

qJ_ are all less than one in absolute value.

h . .
The jt column of matrix C is the eigenvector of the matrix

-1 th |
[I-yA{Y/A)] "[1+(1-y)AT(Y/A)] which corresponds to the _]t eigenvalue
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q.; itis defined by:
J

Y .
[(qj-l)l - (gt 1Y) Z]cj =0 j=1,2, ..., 8 (I1-47)

The eigenvectors Cj are real and the set of S eigenvectors are linearly
independent; the inverse of the eigenvector matrix C can be found
explicitly, by using and expanding on matrix arguments in Perlis (11),
Theorem 9-13, and using the relationship between Y/A anci the sym-

metric W matrix, to be

cl-cna (11-48)

where C' is the transpose of C. From this, the relationship analogous

to the orthogonality relationship for the continuous solution is

S
igl Ai Cij Cip = éjp 0,j=1,2, ..., 8 (11-49)

The vector g is found using the above inverse relationships so that

the solution fits the initial condition:

= - ¥ - ) 0
g C'A (ty -ty ) (1150
Its components are
- % A (1; t ) f =1 g (II 51)
&7 T NSy Ty, T e

The solution for the linear system of ordinary differential equa-
tions can be found either as the limiting case of the above solution as the
time increment AT goes to zero, or directly from equation I1-31 by

classical methods. Itis, in vector form:
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t(r) = tr) - C M g (II-52)

where a component of t(T) is

AT

S
J . .
t = - = e -

In this case the A, are the S negative real eigenvalues of the Y/A or
J

W matrices, and are the S roots of the Sth order determinantal

characteristic polynomial, which can be written in any of the following

way s:
Y 2
det[AI- Z] = det[AI-W] = [det D] (det[AA-Y]) =0 (11-54)

(each of the determinantal equalities are actually identical for all

values of A) where the roots are

xj<o j=1,2, ..., 8 (11-55)

In this case (C e A g) does indeed represent a transient solution as the
)\j's are negative. Comparison of equations II-54 and II-46 gives us an
impor tant relationship between the eigenvalues of the Y/A matrix, )\j,

and of the difference system:

q.-1
A= o——— j=1,2, ..., S (1I1-56)
j (qj+l-v)AT
or, solving for qj:
1L+x.(l-y)AT
q. = J (I1-57)

1 -\ .vAT
J JY
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Also from equation I1-47 and the relation between A and q, equation
II-56, and the fact that the Y/A matrix is not a function of the time
‘increment, it is seen that the eigenvectors ¢, can be taken as the
eigenvectors of the Y/A matrix and are then the same for both the
analog and difference approximations. Thus, if the particular solutions
evaluated at time zero are the same for both the difference and analog
approximations, as they are when the fluid temperatures are constant
with time, the initial vectors are also identical. The particular solu-
tion represents the condition at infinite time for the analog solution,

and it depends on how the boundary temperature changes with time.
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(E) CONCLUSIONS AND SUMMARY

The transient temperature distribution in a solid, with a known
initial temperature distribution and known boundary conditions, has
been shown to be the continuous solution of a partial differential equation,
the diffusion equation. This equation is derived by making an energy
balance on a differential volume element, for a differential element of
time, and it applies to the infinite points within the solid boundaries.

A difference approximation to the partial differential equation
also has been presented. In this approximation a finite number of points
is located within and on the solid boundaries, but not necessarily in a
regular fashion. An energy balance based on a finite volume and a finite
time increment for each point then gives a system of algebraic equa-
tions. By solving the algebraic equations for successive time incre-
ments, a numerical approximation of the transient temperature distri-
bution can be stepped out, starting with the known initial conditions and
using known forcing functions as a function of time. |

Even though the points are not located regularly, the system of
difference equations possesses several important properties that are
analogous to properties of the partial differential equation. The matrix
operator Y/A which replaces the Laplacian operator is negative definite,
corre‘sponding to the negative or stable character of the Laplacian.

Although this matrix is not symmetric, it has a symmetric property
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directly analogous to that of the Laplacian, and is similar to a sym-
‘metric matrix W. For the difference system, the negative and sym-
metric property is defined in terms of summations, which can be con-
sidered to be discretizations of the volume integrals which define the
properties for the partial differential equation.

In addition to these analogies in the derivations and in the equa-
tions themselves, the system of difference equations has an analytic
solution with the same form as the solution of the partial differential
equation. The main advantage of the system of difference equations is
that its solution can be stepped out numerically merely using algebraic
techniques, but the analytic solution is not found in practice. However,
a study of the form of the analytic approximate solution, and a com-
parison of it with the analytic continuous solution, are extremely
important and useful in determining the stability criteria, and in
analyzing the accuracy of an approximate method. As much of this
thesis is concerned with an analysis of these solutions, it is appropriate
to summarize and review here not only the analogies between the several
parts of the solutions, but also to state which parts of both solutions
are affected by changing the problem parameters, boundary conditions,
and initial conditions, and which parts of the approximate solution are
affected by changing the differencing parameters.

Both the continuous and difference solutions are made up of a

transient solution and a particular solution (assuming stability of the
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difference system). The particular solution governs the solution at
long or infinite time and depends upon how the forcing functions change
with time and the space variables. In general, if the forcing function
is a constant, both particular solutions are constant; if the forcing func-
tion varies only with space variables, both particular solutions are
functions of space variables; if the forcing functions are a function of
time, the particular solutions are a function of space and time. In
addition, the particular solution for the difference problem is affected
by the discretization used for the variables upon which its particular
solution depends. That is, for example, when the forcing function
varies only with space variables, the approximate particular solution
is also a function of the number and location of the points which fix the
Y and YB matrices.

The transient solution of the continuous solution is an infinite

2
- 4T
sum of terms of the form aj bj e and of the difference solution is
a finite sum of terms of the form g. c, q,n. In these solutions the
p 2 J 1)
— . T
A

exponential term e and the exponential form an correspond and
determine the rate of change of the jth term of the solution. Both the
Dj and the q‘j are determined by a characteristic equation which depends
upon the geometric and thermal properties of the solid and the boundary
equations which a;’e physical system variables. The eigenfunction bj

. R .th .
and eigenvector Cj determine the weighting of the j exponential (or

exponential form) at each point where the solution applies. These
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guantities are dependent upon the physical system variables. Although
the eigenvectors cj are not orthogonal vectors, according to the strict
mathematical definition, a finite summation relationship exists that

is directly analogous to the orthogonal integration of the eigenfunctions.
| The difference initial vector components gj are found by fitting the

initial condition with this finite summation relationship in the same way
that the Fourier coefficients aJ. are found with the orthogonal integra-
tion. These quantities then depend upon the initial temperature distri-
bution and the nature of the particular solution, in addition to the physical
system variables.

The difference transient solution also depends upon the space
discretization parameters, the number and location of the points, and
the time discretization parameters, the time increment and weighting v.
For the formulation in which the points are located and the equations
calculated by MacNeal's rules, the Y/A and YB/A mairices are then
fixed by the number and location of the points in addition to the properties
of the physical system. Consequently, the eigenvectors cj and eigen-
values ?\j depend upon the number and location of the points, but are
independent of the time differencing parameters and of the forcing func-
tion or initial condition. The exponential forms an depend upon both
the time differencing parameters AT and v, in addition to the space dif-
ferencing, as it affects )\j. For forcing functions that are constant, or

a function only of space, the only differencing parameter that affects
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the gj is the ‘number and location of points. If the particular solution
evaluated at zero is a function of the time differencing, then the gj's
also depend upon the time differencing.

Because of the additional dependence of the approximate solution
on the differencing parameters, nothing can be inferred about the
accuracy of the approximate solution. As mentioned previously, we
are not even assured of the stability of the difference system. A useful
stability criterion is developed in the next chapter, and accuracy is

discussed in the final two chapters.



