CHAPTER 1

INTRODUCTION

One of the problems often encountered by the chemical engineer
is to find the transient temperature distribution in a solid where the
initial temperature distribution is known and the boundary conditions
are specified. This involves finding either the exact solution to the
governing partial differential equation, commonly called the diffusion
equation, or obtaining a reasonably accurate estimate of its solution for
the specific conditions of the problem. To obtain the transient temper -
ature distribution numerically, using either a known exact solution or
an approximate method, usually requires a great many tedious, time-
consuming calculations. Since most problems of engineering importance
are too complicated for analytic solution, an approximation is nec-
essary. KEven when the exact solution is available (1), or can be found,
it often requires more calculations to find the numerical solution than
does an approximate calculation. Therefore, as an engineer is inter-
ested in finding a numerical solution that is sufficiently accurate for
his purposes with a minimum of effort, an approximate method can be

a practical and economical tool for him to use.



This study is on approximate methods of finding numerical
solutions to the diffusion equation that can be applied to a wide range of
probleﬁs, that are of reasonable accuracy, and that are relatively
easy to use. Although many of the methods discussed here require a
high-speed computer, for problems in one space dimension a graphical
method is shown analytically to give reasonably accurate results. If
a desk calculator is available, further significant improvements can
be made without the cost in time and money of programming and running
a digital computer. The methods that require a high-speed computer
are for a very general problem and, in contrast to most methods, are
based on a relatively coarse difference grid. In all cases, particular
emphasis is placed on problems where the boundary conditions involve
a finite heat-transfer coefficient.

For chemical engineers the diffusion equation is probably the
most important partial differential equation. In addition to governing
the transient temperature distributions in solids, it, or a closely related
equation, governs certain situations in diffusional mass transport, fluid
mechanics, and energy transfers in fluid systems. Although this study
is concerned only with the linear diffusion equation without sources or
sinks (equation II-4), generalizations to many of the related equations
are possible.

To use an approximate numerical method, the deri‘vatives are

replaced with differences for a finite number of points within and on



the solid boundary. This approximation, together with similarly
approximated boundary conditions, gives either a linear system of
ordinary differential equations or a system of algebraic equations to be
solved to determine ’the transient temperature distribution. The system
of ordir;ary differential equations can be solved almost instantaneously
with an electric analog computer; the algebraic equations can be solved
rapidly for successive time increments on a digital computer. Com-
plicated initial temperature distributions and/or complicated boundary
conditions for which it is impossible to find the exact solution are usually
easily handled by the approximate method.

The advent of the high-speed digital computer, because of its
capability of carrying out an enormous amount of calculations in an
extremely short time, has made practical many of the classical methods
of approximation and has greatly stimulated studies of difference
methods for obtaining approximate numerical solutions to the diffusion
equation. Starting in 1950, several important articles about the approx-~
imate methods for solving the diffusion equation have been published.
O'Brien et al. (2) showed, both by theoretical arguments using a method
of von Neumann, and by a numerical check, that the unstable behavior
of certain approximations to the diffusion equation is a property of the
difference scheme used and is not caused, but can be aggravated, by
round-off error. In 1956 Lax and Richtmyer (3) showed that, for a wide

range of linear initial-value problems including the diffusion equation,



in principle the approximate solutions can be made as accurate as
desired, by using smaller and smaller difference increments, if the
approximate solution remains stable and if the approximation is '"con-
sistent."

Since 1955, results from matrix algebra have been used to
attack the stability problems by Todd (4) and Franklin (5), and accuracy
problems by Varga (6,7). In addition, numerous other articles have
appeared and many reviews of approximate methods for the diffusion
equations are found in recent texts. Most of these articles and dis-
cussions are concerned with problems where the geometry is such that
it may be represented by temperature points located in a regular,
repeated geometric pattern, and where the boundary conditions are
either a specified surface temperature (infinite heat-transfer coefficient)
or adiabatic (zero heat-transfer coefficient). The important published
results can be discussed more appropriately in sufficient detail later.

The two major goals of this research have been (1) to devise a
reas‘onably accurate approximate method for calculating transient tem-
perature distributions in solids with irregular boundaries without using
an extremely fine space grid; and (2) to develop good methods of
approximating the boundary condition equations for the practical case of
finite heat-transfer coefficient.

The first problem has been studied by MacNeal (8), who suggested

using an asymmetric location of the temperature points so that they



could be located on the irregular boundary. He also presented a set of
‘rules for approximating the Laplacian operator. Longwell (9) has
adapted this sche/me to an explicit method for stepping dut the transient
temperature distribution. The asymmetric location of temperature points
- as applied to the transient problem raises two difficulties. First, since
the points are not located regularly, the usual methods of finding stabil -
ity criteria do not work. Second, errors are introduced by asymmetric
location of the points. For example, 20,000 to 100,000 points have been
used (6) for the steady-state solution in two dimensions. This shows

the practical importance of obtaining a good approximation for the
Laplacian which does not require an extremely fine space grid for
irregular solids. Using a grid with this number of points is impractical
or uneconomic for the transient problem. Moreover, for problems in
three space dimensions or for a simulation problem where the transient
temperature calculation is only a small part of the total problem, a

good approximation using a coarse grid would be very desirable.

The most realistic boundary conditions for solids are those which
have a finite heat-transfer coefficient. In spite of this, essentially no
theoretical studies have been made of good methods to approximate this
"third" (10) boundary condition. There are few practical discussions
" of this type of boundary condition.

The next chapter contains mostly introductory matérial upon

which the following chapters are based. The problem of transient



temperature distribution is formulated as the solution to the partial
differential equation of diffusion with its initial and boundary conditions.
The MacNeal-Longwell (9) method is used to formulate the approximate
equations. The analytic solutions are shown in symbolic form for both
formulations. The emphasis is on pointing out the many similarities
between the continuous and the approximate formulations. These simi-
larities are in the derivations of both the continuous and approximate
equations, in the form of their solutions, and in properties of the con-
tinuous and difference operators.

Chapter III presents the stability criteria for an approximate
solution based on a network of points located either regularly or irreg-
ularly. An example problem for transient heat transfer in two space
dimensions is also shown to check these results. This problem shows
that an asymmetric point distribution does give a reasonably accurate
solution. In Chapter IV the accuracy of approximations based on uni-
form mesh spacing for a problem in one space dimension in Cartecsian
coordinates is discussed in detail. To do this a z-transform method
is developed for the solution of the partial difference equation of dif-
fusion. Several methods for the approximation for boundary conditions
with finite heat-transfer coefficients are presented. The accuracy of
' these methods is compared analytically for both generalized methods
and graphical methods. Chapter V gives a detailed discussion of errors

introduced by the asymmetric distribution of points for problems in two



space dimensions, and gives a general set of rules for location of the
points.

Before starting the actual study several general comments should
be made about the nomenclature. Although every effort has been made
| to try not to use the same symbol in two ways; to have a representation
for matrices, vectors, and scalars; and yet to use standard chemical
engineering nomenclature; many conflicts can and do occur. Capital
Roman letters are generally used to represent matrices, small Roman
letters to represent vectors, and Greek letters for scalars. Some-
times in the sequence of matrices, vectors, and scalars, when this
has not been possible, an element of a matrix or a vector may be
designated with a small Roman letter with a double or single subscript,
respectively.

The main exception to the sequence of capital and small Roman
letters, and Greek letters, is that standard chemical engineering
nomenclature has been maintained, which gives rise to some inconsis-
tencies. Also, in matrices, i refers to the row and j to the column.
The subscripts i and m are used to designate temperature points,
the distinction being that m refers to a uniform network so that its
numerical value has a physical meaning. The letter T is used for
the exact continuous solution of the partial differential equation and t
for an approximate solution. The two letters represent veétors evalu-

ated at a time if they are shown, T(r) and t with elements Ti('r) and



ti,n' In using these symbols, the first subscript indicates an increment
of space and the second time an increment of time; if only one is used,
the quantity represents a vector at the time corresponding to the sub-
script. In cases where ambiguity may result, the quantity is defined

in the text before or just after its first use.

Several comments may also add to the clarity of the text. The
formulation and solution of the partial differential equation are referred
to as the continuous formulation and solution. The difference or analog
solutions to the continuous problem are referred to as approximate
solutions. Since numerical results may be obtained from either the
continuous or approximate formulation, the terms '"numerical method'"
and ""numerical solution'' have been avoided. 'Similar'' is used in its
precise mathematical meanings, that is, similar matrices have the

same eigenvalues, and similar nodes are those that have the same

angles and proportionate lengths.



