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ABSTRACT

The accuracy of approximate calculations of transient temper-
ature distributions in solids is studied, emphasizing easily applied
‘methods for both irregular and regular solids with a heat-transfer
coefficient boundary condition. General stability criteria are shown
which are easily found and used, and which apply for regular or
asymmetric networks.

Analytic solutions of the one-dimensional partial difference
equation are found by z-transforms. A method with points located
half an increment inside the surface gives the most accurate solutions.
A graphical method is shown analytically to give approximations of
engineering accuracy. A procedure is also presented for finding the
differencing parameters which give a solution of a specified accuracy
with the minimum calculations.

Transient temperature distributions of satisfactory accuracy
can be calculated for irregular solids using a relatively coarse net-
work, by locating points that describe the boundary a short distance
within, rather than on, the boundary, and by making the interior net-

work as regular as possible.
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xix
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S x S diagonal matrix uscd to reduce bound on I)\ min

total number of off-diagonal elements above diagonal
S
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number of off-diagonal elements above diagonal in

i h row of Y/A matrix
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\ volume or dimensionless volume
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v T -t = element in error vector v
m,n m,n m,n n
Vn T -t = error vector, difference between continuous
n n

solution vector and approximate solution vector

Y
w D—-—D =85 xS symmetric matrix with same norms,

A

diagonal elements, and eigenvalues as Y/A; off-diagonal
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y-direction in Cartesian coordinates
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. . .th .
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complex transform variable for difference equations
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graphical solution
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S
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Wik
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referring to interpolation
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. .t
mation; i component of vector
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refers to j column in matrix; j element in vector;
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J diagonal position in diagonal matrix; index of sum-
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refers to averaged solution, t , time at which
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particular solution
index of summation, summation variable
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i
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th .th
elementini  row j column of Y/A matrix
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Sozj =g ./AE = trigonometric parameter root in char -
acteristic equation for approximate solution in continuous
form
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matrix Y

- .& th
diagonal matrix with e ) as the j  diagonal element
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1 2
take on all values of mesh and fluid temperature flux

weighting given to boundary node heat loss to interior
node, Chapter IV
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XXv

angle parameter for solution of steady-state problem,
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ratio circumference to diameter of circle = 3.1416 ...
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length of perpendicular bisectors between nodes i and j
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I
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partial differential operator
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absolute value of

norm of
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