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PROPOSITION 1

Proposition

The stability of numerical methods which are of a stepping or iterative
nature, and which are used to find approximate solutions for a wide variety of
linear problems, is determined by the eigenvalues of a characteristic matrix.
Specifically, if the approximate numerical method is a stepping method which

can be formulated equivalent to

y = Ay + f n=90 (PI-1)
n+l n n

it is stable if an only if all the eigenvalues of the A matrix are less than one
in absolute value. Under these circumstances the solution vector will

converge to a vector that depends on £, . In equation PI-1 y , and fn

n+1> Yn
are S-dimensional vectors, and A is a constant S x S matrix. Since the
absolute value of the eigenvalues of a matrix are bounaed by easily
calculated norms of the matrix, a useful sufficient condition for stability of
many approximate methods, including approximations for partial differential

equations, can be found. In certain cases, some generalizations to non-linear

equations can also be made.

Uses

Approximate methods which can be formulated equivalent to
equation PI-1 include difference approximations of initial-value problems
for both linear partial differential equations and systems of linear
ordinary differential equations with constant coefficients, for example

using Euler's method ( PI. 1); and methods of iteration or successive
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approximation for linear algebraic equations, for example, the Gauss-
Seidel method (PI.2). In many of such numerical methods equation PI-1
is used directly to step out the approximation. In these cases the
matrix A is known explicitly, and its norms can be found using the
definitions in equations III-10 and TII-11. If the minimum of these
norms is less than one, the stepped-out calculation must be stable.
But if it is greater than one,the stepped-out calculation can be stable
or unstable. For some numerical methods, although the stepping
calculation is equivalent to equation PI-1, this equation is not used to
carry out the approximation, and the A matrix is not known explicitly.
In these cases some algebraic manipulation is required to find the
relationship between the eigenvalues of matrix A and the other known
matrices; however, these manipulations are often successful in giving
useful stability criteria for the approximation.

In addition, a stability analysis for approximations to non-linear
equations of the above type can also be made. For systems of non-
linear ordinary differential equations, which could have been obtained
from differencing of some variables in a non-linear partial differential
equation, a difference equation for the propagation of the error based
on the Jacobian matrix of the non-linear functions can be derived. In
this case the constant matrix A in equation PI-1 is then related to the
Jacobian evaluated at the time, and based on this linearization the

stability of a method can be studied, providing elements of the y vector
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do not change too much. In the same way, for a system of non-linear
algebraic equations the A matrix can be taken as the Jacobian of the
system evaluated close to or at the solution value of y. If then the
starting estimated solution is sufficiently close to the exact solution,

a method of successive approximations is stable and converges to the

exact solution.

Advantages

The main advantages of using the eigenvalues of the A matrix
for studying stability are:

(1) Such a study gives rigorous stability criteria which apply to
all numerical approximations of a stepping nature for a wide variety of
linear problems, and which apply regardless of the nature of the prob-
lem being approximated, or the origin of the system of difference
equations. Further, any instability occurring in the calculation is seen
to be caused by the eigenvalues of the stepping procedure, and not by
round-off error. An exception is that, for some specific problems,
where the initial conditions are such that all the eigenvalues with
absolute values larger than one are associated with a zero weighting,
round-off error can cause these weights to change slightly, and these
eigenvalues become active, giving an unstable result.

(2) Stability criteria can be easily found because the absolute

value of the maximum eigenvalue can be bounded by easily calculated
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matrix norms. Moreover, the cause of an instability often becomes
immediately obvious, and possible ways of obtaining stable solutions
can sometimes be seen.

Although proofs of stability have been based on a matrix analysis
of eigenvalues for methods of iteration and of approximations for ordin-
ary differential equations, they have not been used (until recently) to
derive stability criteria for approximate methods for partial differential
equations. It is for this type of approximate solution that the matrix
norms are particularly useful, since they reduce the problem of stability
to a trivial calculation for many cases, instead of a relatively com-
plicated Fourier analysis usually used. Further, the instability obtained
in approximate solutions for partial differential solutions is shown to
be caused in the same way as that which occurs in the solution of sys-
tems of ordinary differential equations or in successive approximate

calculations.

Argument

The solution of the difference equation PI-1 is:

1 > n-p_ -1
yo*+C }1 Q" Pc £ (P1-2)
p=l

n —
=CQC
Y. Q

where ) is a diagonal matrix of eigenvalues qj or Jordan boxes contain-

ing eigenvalues and C is the matrix of eigenvectors and principal vectors.



515

If the elements in Y are not to go to infinity as n goes to infinity,

when n is bounded, then all the eigenvalues qj must be less than one in
absolute value. Further, if the minimum norm is less than one in these
circumstances, then the eigenvalues are all less than one in absolute

value, and the procedure is stable.
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PROPOSITION 11

Propoii_:cég_r_l

The z-transform operational calculus (PII. 1) can be used to
find complete analytic solutions of systems of linear difference equa-
tions which are represented by a partial difference equation together
with boundary equations and for which an initial condition is known.
This solution with z-transforms follows that of Laplace transforms for

partial differential equations (PII.2).

Uses

Partial difference equations are usually obtained by a direct
differencing of a partial differential equation. From this partial differ-
ence equation a system of difference equations can be generated which,
together with approximations for boundary conditions, can be used to
step out a numerical approximate solution to the partial differential
equation. The complete analytic solution of such a partial difference
equation can be compared to a corresponding solution of the partial dif-
ferential equation, leading to a detailed understanding of the accuracy
of difference approximations to partial differential equations.

The solution of a partial difference equation is in terms of the
eigenvector and eigenvalues of the characteristic matrix of the system

of difference equations. These eigenvalues and eigenvectors are obtained
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from a z-transform solution of the partial difference equation which,
together with boundary equations, generates the matrix. Consequently

this z-transform procedure can also be used to solve some matrix

eigenvector -eigenvalue problems.

Advantages

The two main advantages of z~-transform solutions of partial
difference equations over other methods of solution, such as separation
of variables or direct matrix methods, are:

(1) The complete analytic solution which fits the initial condition
and which contains the particular solution is obtained by the procedure.
Thus, no additional work is necessary to find or use orthogonality
relationships to fit the initial condition, or to obtain a simple expression
of a finite summation for the particular solution.

(2) The z-transform technique provides a methodical procedure
for solving partial difference equations which requires a minimum of

ingenious and adroit manipulations. The main obstacle to carrying the

solution to completion is in finding a solution for the transformed partial
difference equation, which is an ordinary difference equation for prob-
lems in two variables. The reason for this difficulty, which does not
occur for Laplace transforms of partial differential equations, is that
solutions of ordinary difference equations are not as well known as those

of differential equations.
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Argument

No special analytic justification appears to be necessary for
applying z-transforms to partial difference equations. The only differ-
ence between their application here, compared to their customary
application, is that the transformed equation is an ordinary difference
equation or a partial difference equation of one less variable than the
original equation, rather than an algebraic equation. However, this
does not lead to any mathematical inconsistencies in the mathematical
theory of the transform or in the inversion of the transform.

This technique has been used in this thesis (Chap’cer IV, section
D) to solve the partial difference equation of diffusion in one space
dimension in Cartesian coordinates. These solutions are the same as
those obtained by other methods, and also give the same numerical
results as are obtained by stepping out the difference solutions. Thus,
there appears to be little doubt about the applicability of this method to
the partial difference equation of diffusion or to partial difference
equations which result from a direct differencing of partial differential
equations which can be solved with Laplace transforms. However, as
with any transform technique, partial difference solutions obtained

with z-transforms should be checked to be surc of their validity.
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PROPOSITION III

Proposition

The sediment by extraction test for residual fuel oils, ASTM
D473-59 (PIII. 1) when applied to petroleum tars resulting from the
thermal cracking of straight-run residuums and catalytic cycle oils
is a measure of the compatibility of the fuel oil with benzene rather
than a measure of solid material that would separate in the absence of
benzene. The fact that most such thermally cracked tars are incom-
patible with benzene accounts for the relatively poor repeatability and

reproducibility of up to about 40 per cent error reported for this test.

Argument

Many authors, as summarized in Sachanen (PIII. 2, P.III. 3),
have reported incompatibility of some hydrocarbons with residual fuel
oils. For example, the addition of a low-boiling paraffin hydrocarbon,
such as normal pentane, to either a straight-run or cracked residuum
causes organic material to be precipitated or flocculated. Such an
incompatibility also can occur when two fuel oils, one of straight-run
stock, the other of cracked residuum, are mixed. In this case the
deposit is usually shown by rapid fouling of heater surfaces (PIII. 2).

An explanation (PIII.3) of this behavior is that the organic
material precipitated is made up of long-chain molecules with poly -

cyclic nuclei which were originally in colloidal solution or fine



521

suspension in the residual. These materials arc precipitated as they
are lyophobic with respect to paraffins. Some of the precipitated solids
can be colloidally dispersed by the addition of aromatic hydrocarbons
such as benzene. Although any distinction between these materials is
arbitrary, solids precipitated with normal pentane, and which can be
dispersed in benzene, are referred to as asphaltenes; those that cannot
be dispersed in benzene are called carbenes. Cracked residuums con-
tain more carbenes than the straight—run‘ residuums and they are
thought to be formed by dehydrogen polymerizations and condensation
reactions during the cracking operation.

Secondly, with the advent of residuum strippers and catalytic
cracking units in petroleum processing in the early 1950's, the feed to
thermal crackers changed drastically. Instead of having a feed of
straight-run oils boiling above about 650° F, the feed now is made
up of straight-run residuum boiling above 900-1050° F and a heavy
cycle oil from the catalytic cracking unit usually boiling at about 650° F.
This heavy cycle o0il contains mostly relatively high-boiling aromatic
and unsaturated hydrocarbons instead of paraffinic hydrocarbons as
before. The effect of this change in feed is that the thermal crackers
must have more severe cracking conditions to approach gasoline yields
obtained previously and that the residual thermally cracked tar probably
contains more carbenes than before. Further, the carbenes produced

in thermal cracking probably contain less hydrogen than previously,
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and their molecules probably have longer chains with possibly more rings.
However, the cracked oils formed by thermal cracking of these feeds are
high-boiling aromatic hydrocarbons which act as effective peptizers. Thus the
carbenes remain peptized and do not deposit after the cracking has stopped.

However, benzene, with the lowest molecular weight of the aromatic
hydrocarbons, is not as effective a peptizer for these carbenes. When it is
added, it dilutes and replaces the heavy aromatic hydrocarbons that are
adsorbed by the carbenes, and the crbenes precipitate. As this process takes
time the amount of carbenes which are precipitated is a function of both the
time of contact and the relative amount of benzene added.

Finally, in the ASTM test the volume of dilution is reasonably well
controlled, but the time of contact can vary widely. The extraction is carried
out by refluxing benzene into the oil sample contained in a porous thimble.
Thus, the time of contact is a function of the rate of refluxing, the viscosity
of the oil, and the permeability of the porous thimble. This probably accounts

for the rather large range of confidence limits shown in the ASTM procedure.

Suggestions

Since sediment by extraction is a specification of No. 6 residual fuel oil
(ASTM D396-62T), an effort should be made to remove the ambiguity from its
meaning and to make the test more reproducible. It probably should be decided
if the fuel oil compatibility with a light aromatic solvent such as benzene is
related to an important fuel oil quality. Fuel oil compatibility with other fuel
oils can be measured more directly using blends of the test fuel oil with two
standard fuel oils of different blends in the NBTL heater tube test ( PII1.3).

Further, it has been pointed out that fuel oils containing aromatic stocks such as
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catalytic cycle oils are compatible with most any other fuel.

If it is decided that the compatibility of the fuel with benzene is important
or that this property correlates with other important qualities of fuel oil, then
a better test should be devised. A possibility is that the oil could be diluted with
benzene in a fixed ratio and allowed to age a certain time before filtering through
a porous thimble. Filtration immediately after dilution would give a good
indication of solid material originally separated in the oil. After aging for
as much as 12 to 24 hours at a fixed temperature the amount of sediment would
be a measure of the incompatibility of the fuel with benzene. Neither of these
amounts of sediment would agree even in order of magnitude with the sediment

as measured by the sediment by extraction test ASTM D473-59.
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PROPOSITION 1V

Proposition

In the teaching of science and engineering, the transient and evolutionary
character of all scientific theories should be emphasized. It should also be
pointed out that not only are the new, more speculative theories open to question,
but often even the basic concepts of accepted theories must be significantly
modified, or rejected, in light of new experimental data, or because of
entirely new theories better able to account for the phenomena. Moreover,
theories rejected earlier are sometimes revived in a modified form. This
transient nature of theories should be contrasted to the fact that accurate
measurements, observations. and descriptions of physical phenomena are

always valid.

Argument

Although most scientists would agree that all theories are always tentative,
in the past scholars have taken the attitude thal some theoretical hypotheses were
unchallengeable. Such attitudes undoubtedly retarded the advance of science
significantly.

One of the most glaring examples of this attitude was that of the ancient
Greeks to the effect that all planetary movement is described by motion
compounded from circular motion. This hypothesis was developed by Ptolemy
in the second century A.D. to describe planetary motion with a fairly
complicated method using epicycles. This technique, with the earth in a fixed
position, gave relationships which agreed to within the accuracy of the
astronomical observations then available, and lasted virtually unchanged for

almost 1400 years until Copernicus simplified the theory by assuming that the
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earth moved around the sun. Finally, Kepler, in the early seventeenth century,
using the accurate data of Tycho Brahe, discovered the elliptical nature of the
orbits.

This discovery, which in all probability helped Newton to formulate his laws
of mechanics, undoubtedly was retarded because the scholars themselves consider-
ed only circular, or compounded circular, motions. The refusal to depart from
one line of thought must have been due in part to limitations which they unconscious-
ly placed on themselves. Such unconscious limitations often can prevent one
from finding an obvious solution. For example, in the problem of trying to
arrange six matches to form four triangles, the false assumption is often made
that this must be done in two dimensions. Whereas, if the problem is expanded
into three dimensions the solution becomes trivial.

Another explanation of the long time which was required for the solution
of the planetary orbits is given in Astronomy , by Fred Hoyle (PIV.1). He
remarks that if the sun-centered solar system with circular planetary orbits,
postulated tentatively in the second century B.C. by Aristarchus, had been
accepted and used, the history of astronomy and of science would have been
changed radically. The reason that this theory was rejected then and for several
hundred years thereafter was that it did not describe planetary motion as
accurately as the developed epicycle theory. This leads Hoyle to state that,
"Here we have a remarkable example to show that it does not always pay to know
too much about the facts of the situation, " * and " The Greeks . . . were

attempting to represent phenomena that were far too complicated for them. " *

*  Fred Hoyle, Astronomy , Doubleday and Co., Inc., Garden City,
New York (1962), p. 91.
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However, it was not too complicated for Kepler who had even more accurate data
to work with. Indeed, Hoyle states that ' . . . Kepler had a far greater respect
for facts than the average scientist has . . . " * Thus, it appears that it was not
wholly the accurate data that retarded the understanding of planetary motion, but
a good portion of the responsibility must go to the unquestioning acceptance of
the hypothesis of circular motion.

Although our understanding of both scientific phenomena and scientific
theory have greatly increased since the days of Kepler, we must be watchful lest
any of even our most successtul theories become dogma. However, even today,
one hears of data which have not been reported because lof lack of agreement with
current theory. Indeed, if the data are clearly in error they should be reported
as such; if, however, they are accurate, it is most important that they be
reported so that the theory not be used inappropriately, and so that the need for
a better theory be recognized. Moreover, in many publications empiical
relationships are often presented in an apologetic manner. It is rather the theorist
who should apologize for not having a satisfactory theory to explain the
relationship. In fact, many of our theories have been developed as explanations
for such empirical relationships. Feinberg and Goldbar, writing on the
conservation laws of physics (PIV.2), express the opinion that the proper
relationship between theoretical and empirical results can become obscured
today. They comment, " Consequently, there has been a tendency to forget that
the basis of the conservation laws is, after all, empirical, . . ."

The predicament of the ancient Greeks, of trying to represent facts too
complicated for them, and facts which were so accurate that partially developed

theories were not satisfactory, also is the predicament of modern engineers

* Ibid., p. 119.
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and scientists. Further, Hoyle's hope that ''discordant facts will not appear until
worthwhile theories have had a chance to establish themselves' * is probably
almost never possible, and moreover, it is only these "discordant facts' which
indicate which theories are worthwhile and which allow us to usc the theories
intelligently.

The way to maintain scientific progress is not to suppress these facts, but
for those involved in both the theory and practice of science and engineering to
develop a proper perspective. This means emphasizing that too much significance
can be attached to a successful theory and that ' no theory ever proposed has
been found ultimately to fit all the facts . . .'"* With these ideas in mind no
useful theory should be prematurely rejected nor should any theory, concept, or

hypothesis, even though very successful, be elevated to dogma.

Suggestions

Several suggestions to bring out the tentative nature of theory are:

(1) The basic texts that first introduce students to scientific theory should
give an indication of the evolution of the theories. They should not present the
material in such a fashion that it appears to the student that all the answers have
been found, but they should mention the discordant facts as well as the
successes of the theories.

(2) On advanced levels, not only should the more complicated theories be
presented, but the contradictions between these theories and empirical results
should be emphasized. Further, it should be pointed out that many of these

theories are almost useless in obtaining results for practical problems.

* Ibid., p. 91.
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(3) In history courses, the evolution of scientific theories and of
technology should be made a part of the material covered. Not only should
mention be made of the significant effect of these ideas on social, economic, and
political factors, but also the effect of the evolutionary changes in science
upon science itself should be brought out. In philosophy courses additional
emphasis should be given to exploring proper relationships and perspectives

between theory and empiricism.
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PROPOSITION V

Proposition

In a recent study of the steady state of a jacketed tubular reactor with a
packed- bed, in which an exothermic chemical reaction is occurring under flow
conditions, Barkelew ( PV.1) presents relations which show conditions which
give an ''unstable' reactor design. In an earlier study of both a linearized
transient solution and the steady-state solution of an exothermic chemical
reaction occurring in a jacketed empty tubular reactor, Bilous and Amundson
(PV.2) show that a "parameter sensitivity' can occur.

The proposition is that the "instability' of Barkelew and the "parameter
sensitivity' of Bilous are one and the same. Further, Barkelew's relations are
suitable for empty tubes, and only under certain circumstances are they
actually valid for packed-tibe resactors . A brief analysis is also presented
that should allow Barkelew's results to be generalized for other conditions in

packed tubes and should give additional information about controlling the reaction.

Argument

In both studies, the equations are for a plug-flow reactor:

3T _ ot G AT i
3T = —an(r-Tp-c, 6 2L+ qr (PV-1)
e, 29X - _R_g_9°Xx (PV-2)

t 98 oz

for the first order reaction
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where Cp = heat capacity
¢ = density
A = tube surface area per unit volume
h -

heat-transfer coefficient

"

temperature of fluid in cross-section

mass velocity

S o =
i

= time

N
'

distance along tube

)

heat of reaction

"

rate of reaction
X - fraction of reactant in fluid

The difference between the equations is that the unsubscripted Cp and o
in the above equations are averaged values for both the fluid and the bed for
the packed reactor; for the empty tube they are just the fluid quantities. |

The expression used for the reaction rate in Barkelew's study can be
applied to other than first-order reactions; but his reaction rate uses an
exponential temperature dependency that is the same as the Arrhenius
expression only when there is little difference between the temperature of the
reactants and of the coolant. Bilous uses the conventional Arrhenius temperature
dependency for the rate.

In the Bilous study the equations were solved for the steady-state
temperature and concentration distributions using an analog computer. These
distributions, under some conditions, showed that the maximum temperature
in the reactor would increase very rapidly with small increases in the wall

or jacket temperature or with small reductions in the heat-transfer coefficient.
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On the basis of this behavior, Bilous defines "parametric sensitivity" as the
phenomena occurring when " . . . reactor operation, without being unstable in
the literal sense, will be extremely sensitive to small changes in the operating
characteristics of the system.' He further shows analytically that this
"parametric sensitivity" is related to the transient response of the system to
either a step change or a continuing sinusoidal input to the reactor. This

transient response is based on a linearization of the above equations about the

steady-state solution.

Barkelew numerically integrated the dimensionless equations equivalent
to equations PV-1 and PV-2 with their time derivatives equal to zero for
several hundred combinations of several dimensionless parameters. His steady-
state temperature distributions show a behavior like that of the analog solution,
and Barkelew states that . . . there are indeed regions of extreme
sensitivity to changes in parameters.' His precise definition of "stability"
is based on a graph that relates the maximum temperature to dimensionless
ratios.

Thus, as both studies are based on the same partial differential equations,
the steady-state solutions would be expected to be similar. Further, that
Barkelew's ‘“itability" is essentially the same as Bilous' ""parametric
sensitivity" can be seen by using Barkelew's defining graph to predict the
conditions of parametric sensitivity for the problems solved by the analog. Such
a numerical check does predict the parametric sensitivity of case B in Bilous.

A similar calculation for Bilous' case A does not check because of the difference
in Barkelew's expression for the rate of reaction mentioned above.

In both studies, the partial differential equations solved neglect several
effects, including the radial temperature distribution. The temperature at

each cross-section of the tube is assumed to be constant except for the drop
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across a thin film at the wall. Although this is a good assumption for the empty-
tube reactor with large Reynolds numbers, a significant radial temperature
distribution can occur in a packed-bed reactor. As Barkelew points out, this
error for the packed beds would tend to make an unstable reactor appear to be
stable.

A logical extension of Barkelew's analysis that avoids this ambiguity
would be to estimate a radial temperature distribution at the ¢ ross-section
of maximum temperature. If we assume that at this cross-section the
temperature gradient along the tube is zero, then replacing the term - h A (T—Tj)

with a radial energy flow term (ke/r)( & /3r) r(8T/3r), there is obtained

2 2
ke|d + =y QR = 0 (PV-3)
dr T odr
where ke = average thermal conductivity of fluid and bed
r = radial coordinate

The boundary equations for equation PV-3 are:

at the tube wall ke g—f— - B(T-T) (PV-4)
at the center %—1‘— = 0 (PV-5)
r

If one assumes that the reaction rate is either constant or a linear function of
temperature, equation PV-3 can be solved analytically giving an estimated
radial temperature distribution for that cross-section. In solving this equation
the maximum temperature and concentration at this cross-section can be found
from Barkelew's relationships and used in estimating the reaction rate. From

the solution to equation PV-3 it should be apparent if a significant radial
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temperature distribution does occur and if Barkelew's results wrongly predict a

stable reactor design.

Conclugsions

The fact that "parametric sensitivity' and "unstable' conditions are the same
is important, because then Barkelew's results for a fairly wide range of kinetics
and parameters are related to the transient response for empty tubular reactors.
It should be pointed out that the transient response of a packed-bed reactor is
expected to occur at a different rate than that of an empty reactor, even though
the steady-state conditions of both might be similar. Also, a fairly simple
method of estimating the radial temperature distribution at the cross-section of
maximum temperature for a packed-bed reactor has been proposed to check the

assumption of negligible radial temperature distribution.
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