MECHANICAL CHARACTERIZATION OF THIN FILMS WITH APPLICATION TO FERROELECTRICS

Thesis by Rongjing Zhang

In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California

> 2006 (Defended June 1, 2005)

© 2006

Rongjing Zhang

All Rights Reserved

Acknowledgements

I would like to express my sincere acknowledgement of the many individuals who helped me throughout this long journey. The very first person I would like to fully acknowledge is my research advisor and mentor, Professor Gurswami Ravichandran, for his continuous trust, constant support, and strong influence throughout all my research development. It has been a great privilege for me to work with Professor Ravichandran and learn from his experience. I would like to thank my coadvisor Professor Kaushik Bhattacharya for the guidance and influential discussions. His theory work is the motivation for this project and his brilliant ideas provided me with the inspirations for the experimental work. I would also like to acknowledge him and Professors Sosina Hale, David Goodwin, and Alan Molinari for kindly participating in my thesis committee. I would also like to thank Professor Ares Rosakis for discussions about my work and his influential teaching.

The research presented in this dissertation was supported through grant from the Army Research Office through grant no. DAAD19-01-1-0517. The support of the sponsor is gratefully acknowledged.

I would like to acknowledge a number of people who have been very supportive all those years. These are my friends at Caltech who taught me a lot and were by my side when I needed their help. I would like to specifically thank my lab mate and dear friend Dr. Shiming Zhuang, who helped me get started in the lab and passed me his experience in designing, Dr. Doron Shilo for the fruitful discussions and valuable suggestions and Dr. Eric Burcsu for helping me start with ferroelectrics. I would like to thank the numerous Caltech friends Dr. Vijaya B. Chalivendra, Dr. Murat Vural, Dr. Jiangyu Li, Dr. Kaiwen Xia, Dr. Yabei Gu, Dr. Wei Zhang, Min Tao, Fu-Ling Yang, Hsin-Ying Chiu, Yizhen Zhang, Teresa Kidd, Jean-Thibault De Besombes, Christian Frank, and many others, for their friendship and warm hearted help.

I would like to thank secretaries of Professor Ravichandran, first Ms. Denise Thobe and then Ms. Donna Mojahedi and now Ms. Sydney Garstang. They are very professional and very helpful. I would also like to thank the option secretary Ms. Cynthia Garza for her prompt and warm-hearted help. My life at Caltech would be much harder without their help.

Finally, I would like to thank my whole family for the encouragement, especially for my husband, Junhua. His unconditional support gave me inspiration throughout the research development.

Abstract

One important part of the motivation for this research work comes from the microelectromechanical systems (MEMS) technology. Its basic concept of high volume production and low unit cost can only be achieved when the devices made by microelectronics technique are reliable. The success in this area largely depends on the understanding of materials. However, the mechanical characterization is lagged behind the theoretical work and designing software development. The standard characterization method is still not established. For MEMS actuators, especially for active materials, the desired characterization system for obtaining mechanical properties requires load control feature and the capability of doing dynamic tests. However, there is no such method among the currently available tools for mechanical characterization.

The other part of the motivation comes from the comprehensive research work of Caltech ferroelectric group. This group, which consists of nine faculty members, is aiming to develop new devices, especially new actuators, by the aid of multi-scale theory tools and selected experimental methods. The work presented in this dissertation is an important and key step of this ambitious project: the electromechanical characterization of devices. This will provide validation for the multi-scale materials modeling framework and help to increase the reliability of the actuators and devices.

In this work, two techniques were developed for mechanical characterization, which satisfy the challenging requirements for thin film structures and devices: being able to do dynamic study on fragile ceramic thin film samples with load control feature. The first technique is a new method to characterize mechanical properties of released thin films under concentrated load. This technique can be used to apply load in the μ N–mN range with displacement measured with high accuracy of 0.1 μ m. The successful characterization of Si₃N₄ free-standing membranes demonstrated the capability and reliability of this new technique. The elastic modulus and residual stress of Si₃N₄ free-standing thin film were measured to be around 250 GPa and 450 MPa, respectively. These values were in close agreement with values obtained using a different technique as well as those found in the literature. This technique has the potential application on elastic-plastic characterization and characterization of other functional thin film materials such as shape memory alloys.

Pressure bulge test technique, which is another type of load control method suitable for dynamic test, was also developed. The apparatus was designed to be compact to fit into the x-ray diffractometer for in-situ XRD study and had additional compatibility for polarized light microscopy study. Characterization of free standing thin film of single layer amorphous silicon nitride (Si₃N₄) and multi-layered PBT/Si₃N₄, and thick film of single crystal barium titanate (BaTiO₃) showed the capability and reliability of this technique. Excellent agreement of the Si₃N₄ Young's modulus between these two developed methods gave the confidence for using these techniques to understand new materials.

In situ x-ray diffraction study was carried out on the single crystal thick films which were loaded with distributed mechanical loading by pressure bulge setup. Direct evidence of 90° domain switching was obtained from the *in situ* XRD results with the intensity changing in both (002) and (200) orientations. Obvious changes in domain patterns were observed by using the polarized light microscope. The Young's modulus of this barium titanate single crystal thick film with thickness of 100 μ m was characterized before the XRD exam. Using this information, in-plane stress can be analyzed, and the relation between the driving force (the stress) and the microstructural change (volume fraction change in a-domain or c-domain) can be determined.

Table of Contents

Acknowledgements	iii
Abstract	v
Table of Contents	viii
List of Figures	xii
List of Tables	xvi
Chapter 1 Introduction	1
1.1 Background	1
1.2 MEMS actuators	2
1.3 Ferroelectric crystals	5
1.4 Actuator by large electrostriction ferroelectric materials	7
1.5 Mechanical characterization methods of freestanding thin films	9
1.6 Experimental techniques	11
1.7 Outline	12
1.8 References	13
Chapter 2 Mechanical Characterization of Released Thin Films by	
Contact Loading	15
2.1 Introduction	15
2.2 Experiment	17
2.2.1 Experimental setup	17
2.2.2 Material	
2.2.3 Results—mechanical response of Si ₃ N ₄ film	25
2.3 Modeling	30

2.4 Finite element modeling	
2.5 Discussion	40
2.6 Conclusions	42
2.7 References	42
Chapter 3 Pressure Bulge Test for Thin Film Characterization	44
3.1 Introduction	44
3.2 Experimental	46
3.2.1 Pressure bulge test	47
3.2.2 Real time in-situ full field displacement measurement	50
3.3 Materials	52
3.3.1 Properties of Si_3N_4 measured by other methods	52
3.3.2 Si ₃ N ₄ TEM windows	54
3.4 Procedure	55
3.5 Model	57
3.5.1 Characterization of mechanical properties	57
3.5.2 Full field displacement analysis	59
3.6 Analysis of Si_3N_4 free standing thin films	61
3.6.1 Pressure-displacement curve	61
3.6.2 Repeatability of the experiment	
3.6.3 Determination of Young's modulus and residual stress	63
3.7 Characterization of PBT thin film	65
3.7.1 Material	65
3.7.2 Analysis	66

3.8 Discussion and conclusion	68
3.8.1 Error analysis	68
3.8.2 Limitations of bulge test	69
3.9 Conclusions	69
3.10 References	70
3.11 Appendix: techniques for mechanical characterization of	
functional thin films	70
Chapter 4 Mechanical Characterization of Single Crystal BaTiO ₃ Film	
and In-situ XRD Observation of Microstructure Change Due	
to Mechanical Loading	76
4.1 Introduction	76
4.2 Materials	78
4.2.1 Single crystal BT thick film by ion implantation-induced	
transfer method	78
4.2.2 Sample holder	79
4.3 Experimental	80
4.3.1 Pressure bulge setup	80
4.3.2 The interferometry setup	82
4.3.3 Principle of XRD	84
4.3.4 Polarized light microscopy	86
4.4 Results	88
4.4.1 Mechanical characterization of single crystal thick film	88
4.4.2 Direct observation of stress induced 90° domain switching	

under XRD	
4.5 Discussion and conclusion	
4.6 References	
Chapter 5 Conclusions	
5.1 Suggestions for future work	
5.1.1 Electro-mechanical characterization	
5.1.2 Alterative materials	
5.1.3 Adding additional features to the apparatus	
5.2 References	

List of Figures

1.1	Dynamic characteristics of common microactuator systems	3
1.2	Upon the cubic to tetragonal phase transition, the unit cell can take	
	any of six equivalent combinations of strain and polarization. The	
	arrow indicates the direction of polarization	5
1.3	Domain pattern in lead titanate single crystal visualized using	
	polarized light microscopy	6
1.4	Schematic diagram of the subgranular structure of domains or	
	regions of constant polarization separated by 90° or 180°	
	boundaries	6
1.5	Principle of the experiments for <i>in situ</i> observations of the domain	
	patterns under constant compressive stress and variable electric	
	field	7
1.6	Strain vs. electric field for 2.14 MPa compressive stress	8
1.7	Basic principle of a micro-pump using domain switching in a	
	ferroelectric thin film	9
2.1	Schematic illustration of the experimental setup	19
2.2	Illustration of the displacement measurement system	20
2.3	SEM image of the ruby ball tip	22
2.4	Calibration of the loading system.	23
2.5	The tip displacement, u , as a function of the position of the upper	
	magnet, z	24
2.6	Pictures of Si ₃ N ₄ TEM window	25

	xiii
2.7	Array of TEM windows and labels of each sample
2.8	The mechanical response of a 75 nm thick free-standing amorphous
	silicon nitride (Si ₃ N ₄) film during loading and unloading27
2.9	Series of optical images of Si ₃ N ₄ membrane during loading 28
2.10	A wafer consisting of 6x6 devices (see figure 2.7) was tested at
	various locations. The mechanical responses of five membranes
	located at different regions of the same wafer are highly repeatable 28
2.11	Illustration of 4 sides clamped plates
2.12	The center part (about 100 microns in diameter) of the thin film
	FEM element mesh used in the simulation
2.13	FEM mesh for the numerical simulation
2.14	Load-deflection $(F-d)$ curve obtained from the finite element
	simulation and is used to obtain the shape factors in equation. (2.4).
	The solid curve is the fit and the solid dots are the finite element
	analysis data
2.15	FEM result of displacement profile (side view)
2.16	FEM result of distribution of maximum principle stress.
	Indentation displacement is 30 microns
2.17	Least square fitting of force-displacement $(F-d)$ curve of the
	experimental data for extracting material properties using
	equations. (2.8) and (2.9)
3.1	Pressure-handling module (without the meter)
3.2	Assembly sketch and PMMA sample holder

3.3	Fixation of a thin film on its PMMA holder	. 50
3.4	Schematic of the interferometric displacement measurement system	. 51
3.5	Typical interference patterns during the bulging of a thin film	. 52
3.6	The silicon-nitride thin films used are located inside a square	
	silicon window (total dimension diagonally in figure is 3 mm) by	
	www.2spi.com	. 54
3.7	Image used to draw the diagonal profile.	. 59
3.8	Comparison between the experimental diagonal profile and the	
	profile predicted from the analytical solution	. 60
3.9	Pressure-displacement curve of a silicon-nitride thin film	. 61
3.10	Repeatability of the test on a single silicon-nitride thin film	. 62
3.11	Fitting of a curve (E = 262 GPa, σ_0 = 248 MPa, R ² =0.99945)	. 63
3.12	Bulge test result of the PBT thin film	. 67
4.1	Pressure chamber with thick film barium titanate sample	. 80
4.2	Schematic of the pressure bulge setup	. 81
4.3	Schematic of the interferometry setup	. 83
4.4	Typical interference patterns during the bulging of a thin film	. 83
4.5	Principle of x-ray diffractometry	. 84
4.6	Photo of the x-ray diffractometry setup combined with the bulging	
	setup	. 85
4.7	Polarized light microscopy setup	. 86
4.8	Domain pattern in single crystal barium titanate photographed	
	using a polarizing microscope	. 87

xiv

4.9	BT film under polarized light microscopy before loading(5X)	89
4.10	BT film (same as the one in Fig. 4.9) under pressure (123 kPa)	
	loading (5X)	90
4.11	2 nd order diffraction peaks following unloading after pressurizing	
	the film to 123 kPa	90
4.12	Pressure loading history	93
4.13	In-situ XRD results: the evolution of 2 nd order diffraction peaks of	
	c- (002) and a - (200) orientations during the sequence of loading	
	shown in figure 4.12	94
4.14	Pressure induced domain switching: Percentage change in a-	
	domain due to applied stress	95
4.15	Domain patterns observed using polarized light microscopy	
	(PLM), (a) 0 atm (b) after 1.23 atm (c) after 2.72 atm	97

List of Tables

2.1	Critical values of λ	. 41
3.1	Measured residual stress and Young's modulus for silicon nitride	
	thin films	53
3.2	Parameters C_1 and $C_2(v)$ for thin square films	58
3.3	Young's modulus measured on film 1	64
3.4	Residual stress measured on film 1	64
3.5	Young's modulus measured on film 2	64
3.6	Residual stress measured on film 2	64
3.7	Residual stress and Young's modulus measured on the PBT thin	
	film (for E, v=0.25 was assumed)	67
3.8	Evaluation of the bulge test random error	68