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ABSTRACT 

Ion channels are proteins that traverse the cell membrane and form gated pores that open 

and close in response to various stimuli.  In order to experimentally probe aspects of ion 

channel functionality, we performed subtle structure-function studies using the in vivo 

nonsense-suppression method, which allows for the incorporation of synthetically 

accessible unnatural amino acids and hydroxy acids into an ion channel at a site of 

interest. 

Fluorinated aromatic amino acids are good probes for a cation-π interaction because 

fluorine substituents reduce the binding affinity of the aromatic for a cation in a linear, 

step-wise fashion.  In collaboration with Professor Richard Horn at the Thomas Jefferson 

University, we substituted a series of fluorinated-phenylalanines for important tyrosines 

in the Shaker B K+ channel and experimentally determined that TEA was binding to the 

residues through a cation-π interaction.  We also determined that Ca2+ binds to and blocks 

the NaV1.4 channel through a cation-π interaction with a tyrosine at the top of the pore of 

this channel.  We found that tetrodotoxin, another channel blocker, also binds to this 

same residue through a cation-π interaction.  Finally, we proved that lidocaine and other 

local anesthetics bind to a phenylalanine at the bottom of the pore of this channel through 

a cation-π interaction. 

An important aspect of our work is the development of unnatural amino acids that can be 

used in the study of ion channels through the in vivo nonsense-suppression methodology.  

We determined that D-amino acids could not be incorporated into ion channels using this 

method. We synthesized several novel fluorescent-MTS reagents to be used in FRET 



 
ix 

studies.  We probed the sterics around phenylalanines using the unnatural amino acid 3,5-

dimethylphenylalanine. We also attempted to incorporate 4-amino-phenylalanine, but, 

unfortunately, we never saw the enhanced binding of a cationic ligand that was our 

expected phenotype. 

Finally, we also designed and synthesized two α-hydroxy acids capable of site-specific 

proteolysis upon UV irradiation.  We used a tripeptide model system to isolate and 

characterize the cleavage fragments, proving that these two residues are indeed capable 

of site-specific proteolysis through the predicted mechanism. 
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C h a p t e r  I 

 

SUMMARY 

 

I like nonsense, it wakes up the brain cells. 
~ Dr. Seuss 

 

While Theodore Seuss Geisel, more commonly known as Dr. Seuss, was referring to his 

affection for fantasy, this quote has a slightly different meaning for this thesis:  it 

humorously merges the crucial methodology described herein, nonsense suppression, 

with this thesis’s overarching interest in understanding the intricacies of the brain.  

Applying the in vivo nonsense-suppression methodology to neurobiology “wakes up” 

studies on proteins important to learning, memory, addiction, and disease by moving 

beyond the twenty natural amino acids and into a realm of amino acids that is limited 

only by imagination and, of course, the ribosome.   

 

Introduction 

The human brain is made up of approximately 100 billion neurons, and each neuron 

makes approximately 10,000 synaptic connections to other neurons.  This complex 
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neuronal network uses both electrical and chemical signals to rapidly pass information 

from one neuron to the next.  A signal in one neuron is propagated through that neuron in 

the form of an electrical current, which culminates in the release of small molecules, 

called neurotransmitters, upon reaching the end of the axon.  These neurotransmitters 

diffuse across the synapse until they connect with the postsynaptic neuron (figure 1.1).  

To encode the thoughts, sounds, smells, and more that occur to a human brain, the 

specificity of the wiring of the neurons and the precise patterns of signals are thought to 

be crucial.  To begin to explore this complexity, our studies focus on one type of protein, 

the ion channel, which is found across the surface of the neuron and is immensely 

important to neuronal communication.  Voltage-gated ion channels propagate the 

electrical impulse that flows through a neuron, and ligand-gated ion channels located 

across the synapse translate the chemical message of the neurotransmitters sent by the 

presynaptic neuron into an electrical signal in the postsynaptic neuron.  

Ion channels are dynamic proteins found in the membranes of not only neurons but also 

all other types of cells.  These proteins allow their namesake, ions, to pass into and out of 

cellular compartments, essentially creating an electrical current (figure 1.2).1  They 

function by remaining closed until triggered by an external stimulus, such as the binding 

of a small molecule, a change in membrane voltage, or the tensing of the membrane, 

which alters the protein structure in such a way as to open the channel.  The resulting 

pore in the membrane is not a featureless hole.  Instead, it is rich in structure and can 

select for the passage of certain ions over others down their chemical gradient.  There 

exist K+-selective channels, Na+-selective channels, channels that select for a wider range 

of cations, and Cl--selective channels, all of which will be discussed in this thesis. 
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Figure 1.1.  An illustration of signals traveling through nerve cells in the brain. 
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Figure 1.2.  An illustration of the current produced by an ion channel upon the binding of 

neurotransmitters. 

 

A Brief Introduction to Four Ion Channels 

Shaker B K+ Channel 

The first ion channel studied in this thesis is the voltage-gated K+ channel Shaker B 

(ShB).  This channel appears in chapters 2, 6, 7, and 8.  ShB is a homotetramer that has a 

long intracellular N-terminus, six transmembrane domains with a pore loop between the 

fifth and sixth transmembrane domains, and a short intracellular C-terminus (figure 1.3).  

The fourth transmembrane helix of this channel contains several positively charged 

arginines that allow it to sense changes in the voltage across the membrane of the cell.  

The movement of this helix is thought to pull the channel open when the cell becomes 

depolarized.  By responding to changes in voltage, K+ channels can control the action 

potential, the electrical impulse that travels down an axon.  

Neurotransmitter 

Ion Flow = Current 

Ligand-Gated Ion Channel 
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As revealed upon the publication of the crystal structure of the bacterial K+ channel 

KcsA,2 this channel and others in its family select for K+ because of the ordered 

framework of amino acids located in the pore loop; specifically, the conserved GYG 

residues position their backbone carbonyls into the pore, and when aligned together with 

the other subunits, the carbonyls mimic the hydration shell that typically surrounds a K+ 

ion. Another characteristic feature more specific to ShB is rapid N-type inactivation, 

which is the blocking of the channel by the N-terminus of one of its subunits almost 

immediately upon channel activation (figure 1.3).  The first twenty amino acids of the N-

terminus make up a “ball” that is connected through a “chain” of amino acids to the 

channel.  N-type channel inactivation occurs when one of the four balls of the 

homotetrameric channel swings up and plugs the channel.3-6  Removal of the N-terminus 

region of the protein eliminates this N-type inactivation.   

 

Figure 1.3.  Views of the K+ channel.  A)  Schematic of one subunit of ShB.  The S4 domain is voltage-

sensing component of the channel.  C)  Representation of the K+ channel Kv1.2, which is similar in 

structure to ShB, adapted from Long et al.7  TM = Transmembrane domain, T1 = N-terminal intracellular 

domain, β = β subunit. 

A) B)  Open                               Inactivated 



 
6 

 

NaV1.4 Na+ Channel 

The voltage-gated Na+ channel NaV1.4 is the second channel that is explored in this 

thesis; it is found in chapters 3, 4, and 5 and makes a brief appearance in chapter 7. While 

this specific channel is closely associated with skeletal muscle, Na+ channels are also 

involved in the rise of the action potential in a neuron.  The structure of this channel is 

similar to that of a K+ channel except that this channel is composed of only one subunit 

with 24 transmembrane domains (figure 1.4).  The protein is divided into four domains 

(D1-D4), and each resembles a K+ channel subunit with six transmembrane helices and a 

reentrant pore loop.  A crystal structure of the Na+ channel has not yet been published, 

but Lipkind and Fozzard have made a model of the transmembrane helices nearest the 

pore (S5-P-S6 for all four domains) using the crystal structure of the K+ channel KcsA 

(figure 1.4B, C).8  Highlighted in figure 1.4C are the four residues thought to make the 

most important contributions to the selectivity of this channel for Na+: aspartate, 

glutamate, lysine, and alanine, from D1, D2, D3, and D4, respectively.  
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Figure 1.4. Views of the Na+ channel.  A)  Topology of a voltage-gated Na+ channel. Na+ channels are 

composed of four domains (D1-D4), each with six transmembrane segments.  The + labels the primary 

component of the voltage-sensor, and the P labels the reentrant pore loop.  B)  Space-filling model of the 

NaV1.4 as published by Lipkind and Fozzard.8  C)  A close-up view of the DEKA selectivity filter as 

published by Lipkind and Fozzard.8 

 

Nicotinic Acetylcholine Receptor 

The nicotinic acetylcholine receptor (nAChR) is the prototypical ligand-gated ion channel 

and is explored in chapters 6, 7, and 8.  Unlike the two channels introduced above, it 

A) 

B) C) 
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allows for a range of cations to pass through its pore, it has a large extracellular domain 

that has evolved to bind acetylcholine, and it is made up of a pentagonal array of 

subunits.  In humans there are 17 nAChR subunits, α1-10, β1-4, δ, γ, and ε.  The nAChR 

used in this study is found in muscle fibers and made up of two α1 subunits, a β1 subunit, 

a δ subunit, and a γ subunit.9  The muscle nAChR serves as a model for neuronal 

nAChRs, which is important for gaining insight into synaptic ACh signaling between 

neurons, nicotine addition (nicotine mimics ACh in the extracellular binding site of this 

protein), and mental disorders such as schizophrenia, attention deficit hyperactivity 

disorder, Alzheimer’s disease, Parkinson’s disease, and more. 

Each subunit has a large N-terminal domain and four transmembrane domains.  The α 

subunits are characterized by a loop formed by a disulfide bond between two cysteines in 

the N-terminal domain of the protein, appropriately named the Cys loop.  Each α subunit 

(yellow in figure 1.5) can also provide four of the five aromatic amino acids that make up 

the binding site for acetylcholine (circled in figure 1.5C).  The fifth aromatic amino acid 

in the binding site is provided by the neighboring subunit (blue in figure 1.5), which can 

be either an α or a non-α subunit.  The second transmembrane domain (TM2) of each 

nAChR subunit predominantly lines the pore of the channel.  A ring of leucines, one from 

each TM2, forms part of the hydrophobic band that occludes the pore of the channel 

when closed (highlighted with a red arrow in figure 1.5).  This leucine is called Leu9’.  

The association of acetylcholine in the binding site created by the five aromatic amino 

acids in the extracellular domain results in a conformational change in the protein that 

ultimately widens this band of leucines enough to allow cations to flow through the 

channel.  
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Figure 1.5.  Views of the nAChR.  A)  An illustration of the pentameric channel.  B)  Each subunit has a 

large extracellular domain and four transmembrane domains.  The α subunit is characterized by the Cys 

loop.  C)  Representation of a nAChR from PDB 2BG9.10  The binding box (top circle) and a pore lining 

leucine (Leu9’, bottom arrow) are highlighted. 

 

GABAC Receptor 

Ionotropic GABA receptors are the dominant inhibitory channels in the brain, though the 

specific type of GABA receptor studied in chapter 7, the GABAC receptor, is primarily 

A) 

B) 

C) 
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associated with the retina.  These channels are so named because they bind and open in 

response to the neurotransmitter γ-aminobutyric acid (GABA).  Since GABA receptors 

are in the Cys-loop superfamily with nAChRs,11 they are very similar in structure to the 

channels described immediately above, but they specifically select for Cl- ions instead of 

cations.  Like nAChRs, these channels are made up of a pentagonal array of subunits, and 

the specific channel studied in this thesis is a homopentamer of ρ1 subunits.  Also like 

nAChRs, the large extracellular domain of this channel has a ligand-binding site that 

consists of aromatic amino acids. 

 

The Power of Unnatural Amino Acids 

Ion channels are dynamic proteins.  Therefore, while the structures shown above provide 

an extensive amount of information about the structure of these proteins, they are static 

pictures capturing only a moment in the life of the active protein and can only provide 

predictions on how the protein functions in vivo.  To truly understand how structure 

relates to function in a channel, the channel needs to be studied while opening, closing, 

and going through all of the other states in its natural gating pathway.  

The traditional method for exploring structure-function relationships in ion channels is 

through conventional mutagenesis, where the DNA for the protein of interest is altered so 

that it encodes a sequence that contains amino acid changes at known sites.  For instance, 

if the importance of a phenylalanine was being explored, then the side chain could be 

ablated by mutating the residue to alanine, or the global importance of having a generic 

aromatic amid acid at this site could be explored by mutating the residue to one of the 
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other natural aromatic amino acids, tyrosine or tryptophan (figure 1.6).  Each of these 

mutations alters many of the features of the phenylalanine though, so only global 

information can be gained.  If the limits imposed by the 20 natural amino acids are lifted, 

then chemical-scale explorations into the importance of the aromaticity of the ring could 

begin with the replacement of the aromatic ring with a cyclohexyl ring, creating 

cyclohexylalanine.  As shown in figure 1.6, cyclohexylalanine is similar in size and shape 

to phenylalanine.  Because of the more subtle change with a phenylalanine to 

cyclohexylalanine mutation, any difference in the function of an ion channel could be 

interpreted as due to the direct loss of the aromatic nature of that specific residue. To 

gradually reduce the aromatic character of the phenylalanine instead of simply removing 

it, fluorine atoms could be substituted for the hydrogen atoms on the aromatic ring.  Since 

fluorine atoms are electronegative, they will pull a small amount of electron density away 

from the ring.  The electrostatic potential surfaces of benzene and the various fluorinated 

benzenes in figure 1.6 show that as the number of fluorine substituents on the ring is 

increased, the negative potential (red) on the surface of the ring is reduced.  These 

examples are just the beginning of the chemical-scale structure-function questions that 

can be addressed using unnatural amino acids.    
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Figure 1.6.  Unnatural mutagenesis allows for more subtle alteration in the structure of an amino acid such 

as phenylalanine than conventional mutagenesis. 

 

The In Vivo Nonsense-Suppression Method 

The in vivo nonsense-suppression method was developed as an extension of conventional 

mutagenesis for the purpose that was described above:  probing specific structure-

function relationships in ion channels.12  It offers a highly sensitive assay that allows for 

site-specific control over the structure of ion channels while they function in a membrane.  

The technology is similar to conventional mutagenesis, but instead of mutating the amino 

acid of interest to one of the twenty coded amino acids, almost any unnatural amino acid 
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UAG 

or α-hydroxy acid can be selected.  This versatility is due to the hijacking of the 

translational system.  In the nonsense-suppression method the codon for the amino acid 

of interest has been converted to a blank codon, either a stop codon (typically UAG) or a 

four-base codon (typically GGGU), which is not recognized by a natural tRNA (figure 

1.7).  A combination of chemical synthesis and molecular biology allow the blank codon 

to instead be recognized by an orthogonal suppressor tRNA acylated with the desired 

unnatural amino acid.13,14  The development of this method followed the work of Schultz 

and co-workers, who first reported a general procedure for the incorporation of unnatural 

amino acids in vitro using the E. coli translational system.15,16  Nonsense suppression was 

adapted for use in vivo with the heterologous expression system Xenopus laevis oocytes 

by former members of the Dougherty laboratory in order to functionally study ion 

channels.12,17  The specific advantages of the Xenopus oocyte include the ease of 

injection; the few endogenous channels; and the stores of enzymes, organelles, and 

proteins that efficiently produce foreign protein.18,19   

 

Figure 1.7.  The hijacking of the translation machinery that occurs in nonsense suppression. 

mRNA with UAG or 
four-base codon at 
site of interest 
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The specifics of the in vivo nonsense-suppression method as used in this thesis are 

outlined below (figure 1.8).  First, either the nonsense codon TAG or the four-base codon 

GGGT are inserted at the site of interest in the DNA that encodes the ion channel being 

studied.  The DNA is then converted to mRNA using in vitro methodology, giving 

mRNA with a UAG or a GGGU codon at the site of interest (, figure 1.8).  Second, the 

desired unnatural amino acid is protected on its amine, activated as an ester, and then 

coupled to a dinucleotide that mimicks the 3’ end of tRNA, dCA (the 2’ hydroxyl of 

cytosine is removed since it is not necessary for translation and since its deletion 

increases the specificity of aminoacylation).  The acylated dinucleotide is then ligated to 

a suppressor tRNA (either THG73 with its CUA anticodon or YFaFs with its ACCC 

anticodon) using T4 RNA ligase (, figure 1.8).  Third, the mRNA and the tRNA are 

coinjected into a Xenopus oocyte (, figure 1.8) where protein synthesis, processing, 

assembly, and transportation to the surface are carried out by the Xenopus translation 

system (, figure 1.8).20  Finally, the functional consequences of the mutagenesis can be 

studied using established two-electrode voltage clamp techniques (, figure 1.8).  It 

should be noted that the amount of protein synthesized by the Xenopus oocyte is limited 

by the amount of tRNA added to the system since the tRNA cannot be reaminoacylated 

by the cell.  This drawback restricts the widespread use of this technique, since not all 

protein function assays are as sensitive as electrophysiology. 
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Figure 1.8.  An outline of the experimental steps for in vivo nonsense suppression. 

 

Exploiting the Scope of Nonsense Suppression 

The work in this thesis takes advantage of many different unnatural amino acids to 

explore many different proteins.  In the first half of this thesis, the fluorinated 

phenylalanine derivatives and cyclohexylalanine introduced above in figure 1.6 were 

used to explore four different hypothesized cation-π interactions between the voltage-

gated channels ShB and NaV1.4 and several cationic small molecules known to 

selectively block these channels.  Only when a small aromatic is perched at the top of the 

pore in ShB can TEA can block this channel.21-23  Early work suggested that a cation-π 

interaction was important,22 but more recently published crystal structures rejected this 
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proposal.  The experimental work discussed in chapter 2 proves that a cation-π 

interaction is important for the association of this blocker to the channel.24  Chapters 3 

through 5 represent the first examples of in vivo nonsense suppression on NaV1.4.  The 

first studies in this channel targeted an important tyrosine in NaV1.4 that is located in the 

pore just above the aspartate in the DEKA selectivity filter.  This tyrosine, Tyr401, was 

found to bind two of its known channel blockers, Ca2+ and tetrodotoxin, through a cation-

π interaction, as discussed in chapter 3 and 4.25,26  Several aromatic residues at the bottom 

of the pore of NaV1.4 have been linked to anesthetic block of this channel.27,28  The work 

in chapter 5 shows that only one, Phe1579, binds lidocaine and other cationic anesthetics 

through a cation-π interaction.29 

The second half of this thesis serves to enhance and explore the variety of unnatural 

amino acids that can be incorporated by nonsense suppression.  This technique has been 

used to incorporate over 100 amino acids and α-hydroxy acids (figure 1.9), and this 

number will expand as novel unnatural amino acids are designed to probe new and 

specific structure-function relationships in ion channels.30  This thesis describes several 

such novel unnatural amino acids and α-hydroxy acids, their syntheses, and their 

incorporation (or attempts at incorporation) in the four ion channels introduced above.  

D-amino acids were targeted for their ability to achieve backbone peptide bond angles 

that are rare for natural L-amino acids.  Unfortunately, as seen in chapter 6, D-amino 

acids were not compatible with nonsense suppression.  In chapter 7 a variety of aromatic 

unnatural amino acids were studied, each for its unique properties.  First, a set of 

fluorophore tags was synthesized for the purpose of making fluorescent amino acids in 

situ.  Next, 3,5-dimethylphenylalanine was designed to probe the sterics around the meta 
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position of important phenylalanines.  Finally, 4-amino-phenylalanine was incorporated 

into several known cation-π interaction sites in the anticipation that it would enhance the 

binding of the small molecule to the channel.  Unfortunately, the expected functional 

enhancement was not seen in ShB, GABAC, or nAChR.  In chapter 8, the last chapter of 

this thesis, the synthesis is described of two novel unnatural α-hydroxy acids that were 

designed to site-specifically cleave the backbone of a protein upon irradiation with UV 

light.31  Much of the chapter is devoted to the work that went into the design and 

optimization of the model system that was used to prove that both α-hydroxy acids were 

capable of proteolysis.  Though successful in the model system, their success in vivo has 

yet to be seen. 

 

Figure 1.9.  Examples of unnatural amino acids and α-hydroxy acids that have been incorporated into 

proteins using in vivo nonsense suppression. 
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Conclusion 

The work included in this thesis focuses on understanding chemical-scale features of 

important proteins relevant to the nervous system through the use of the in vivo nonsense-

suppression technique.  Proving that TEA binds to the aromatic at the top of the pore of 

ShB through a cation-π interaction dispels the controversy created upon the introduction 

of the K+ channel crystal structure.  Understanding how tetrodotoxin and lidocaine bind 

to NaV1.4 not only provides structural information as to how these blockers function but 

also aids in the mapping of the still mysterious Na+ channel pore. 

This thesis also serves to expand the limits of the nonsense-suppression methodology by 

testing its boundaries and adding more unnatural amino acids to its library.  The 

development of novel unnatural amino acids is important to expand the scope structure-

function relationships investigated.  The design and synthesis of 3,5-

dimethylphenylalanine added another dimension to the study of the sterics around 

phenylalanines.  Because of it, interesting functional maps can be created that would have 

otherwise been missed.  The two novel α-hydroxy acids capable of cleaving the peptide 

backbone upon photolysis provide another means for exploring the importance of 

covalent connections in these and other dynamic proteins.  Together, the many different 

avenues of exploration taken in this thesis all were directed toward enhancing the 

understanding of the brain, the proteins that encourage neuronal communication, and an 

important technique used to study those types of proteins. 
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C h a p t e r  I I 

 

A CATION-π INTERACTION BETWEEN EXTRACELLULAR TEA AND AN 

AROMATIC RESIDUE IN POTASSIUM CHANNELS 

 

Open-channel blockers such as tetraethylammonium (TEA) have a long history as probes 

of the permeation pathway of ion channels.  High-affinity blockade by extracellular TEA 

requires the presence of an aromatic amino acid at a position that sits at the external 

entrance of the permeation pathway (residue 449 in the eukaryotic voltage-gated K+ 

channel Shaker B (ShB)).  The importance of a cation-π interaction between TEA and 

such an aromatic residue to TEA block was investigated using the in vivo nonsense-

suppression method to incorporate a series of increasingly fluorinated-phenylalanine side 

chains at position 449.  Fluorination, which is known to decrease the cation-π binding 

ability of an aromatic ring, progressively increased the inhibitory constant Ki for TEA 

block of ShB.  A larger increase in Ki was observed when the benzene ring of Phe449 

was substituted by nonaromatic cyclohexane.  These results support a strong cation-π 

component to the TEA block.  The data provide an empirical basis for choosing between 

ShB models that are based on two classes of reported crystal structures for the bacterial 

channel KcsA, showing residue Tyr82 in orientations either compatible or incompatible 

with a cation-π mechanism.  We propose that the aromatic residue at this position in ShB 

is favorably oriented for a cation-π interaction with the permeation pathway.  This choice 
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is supported by high-level ab initio calculations of the predicted effects of phenylalanine 

modifications on TEA binding energy. 

 

Introduction 

It is exactly a decade since the ion channel field was electrified by the first atomic-

resolution images of a K+-selective ion channel, the KcsA channel from the bacterium 

Streptomyces lividans.1  Since then, a number of important K+ channel structures have 

appeared, all but one imaging a channel of bacterial origin. The KcsA structure (and 

subsequent structures of other K+ channels) was consistent with and rationalized a wide 

range of biochemical and biophysical studies of K+ channels, clearly establishing its 

relevance to mammalian K+ channels—including the location of a residue associated with 

blockade of K+ channels by the external application of the cation TEA.  For many years 

open-channel blockers such as TEA have been exploited to gain insights into the 

processes of gating and permeation.2-13  Tyr82 of KcsA is positioned at the mouth of the 

channel in a location that appears well suited to binding extracellular TEA.  This KcsA 

residue aligns with Thr449 in the eukaryotic ShB, and early work established its critical 

role for external TEA blockade.  In particular, high-affinity blockade by TEA requires an 

aromatic amino acid (tyrosine or phenylalanine) at this site;4,6,14 the ShB mutants 

Thr449Tyr and Thr449Phe have high TEA affinity, as do other K+ channels that naturally 

have a tyrosine or phenylalanine at the aligned site.4,15,16   Aromaticity is critical, as 

nonaromatic amino acids either more hydrophobic, such as leucine, isoleucine, and 

valine, or more hydrophilic, such as serine, threonine, glutamate or lysine, lead to low-
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affinity block by extracellular TEA.6,17  The unique requirement of an aromatic amino 

acid at position 449 led Heginbotham and MacKinnon to propose that a cation-π 

interaction was critical to the high-affinity binding of TEA.6  An optimal cation-π 

interaction is supported only if the cation, in this case TEA, interacts with the face, not 

the edge, of the aromatic ring, an arrangement that will be referred to as en face.   

Reported crystal structures of KcsA actually show two orientations for residue Tyr82.  In 

support of the cation-π hypothesis, a recent crystal structure of a noninactivating mutant 

of KcsA shows an en face orientation of Tyr82 (orange side chain, figure 2.1B),18 

suggesting that this orientation might be obtained in eukaryotic K+ channels. However, 

other reported KcsA structures pose a possible problem.  Specifically, the side chain of 

Tyr82 in many published structures of KcsA (e.g., 1BL8,1 1K4C,19 1R3J,20 2A9H,21 and 

1ZWI18 in the Protein Data Bank, www.rcsb.org/pdb/) is aligned such that a TEA 

positioned to block the channel would not interact with the face of the aromatic ring (blue 

side chains in figure 2.1).  Furthermore, several molecular dynamics studies of KcsA 

complexed with TEA support this nonoptimal geometry at Tyr82, such that the edges of 

the tyrosine rings point toward the blocker.22-25  Indeed, a subsequent crystal structure of 

KcsA complexed with the TEA analogue tetraethylarsonium (TEAs) also has this edge-

on conformation.26   It was thus concluded that a cation-π interaction was not involved in 

binding TEA to KcsA, but rather the crucial tyrosine influenced the local hydration 

structure of the binding site.  
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Figure 2.1. Two orientations of Tyr82 residues of KcsA. The atomic coordinates (2BOC and 2ATK) were 

obtained from the Protein Data Bank. 2BOC (blue) is wild-type KcsA cocrystallized with TEAs.26  2ATK 

(orange) is one of two crystal forms of the E71A mutant.18  The first is a side view of two opposing 

subunits of 2BOC with TEAs, and the second is the top view of 2BOC aligned with 2ATK, showing the 

approximate en face orientation of Tyr82 in 2ATK. 

 

There is, therefore, support both for and against a cation-π interaction at the aromatic 

residue at the entrance to K+ channels.  Simulation studies of the edge-on KcsA channel 

argue against a cation-π interaction, but the binding studies of TEA to eukaryotic K+ 

channels, and the recent en face KcsA structure, allow for such an interaction.  Here a 

cation-π mechanism in ShB will be directly assessed using a definitive probe developed 

for functional ion channels and receptors.  Modifying the side chain of an aromatic amino 

acid with fluorine substantially diminishes the cation-π binding ability of the aromatic 

ring, and multiple substitutions produce additive effects.27-30  Such substitutions in ShB 

are achieved using the nonsense-suppression methodology for unnatural amino acid 
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incorporation.31  This methodology has numerous advantages, making it ideal for probing 

potential cation-π interactions.  In comparison to conventional mutagenesis, the steric 

perturbation introduced by fluorine substitution is universally considered to be minimal.  

Also, fluorine substitution does not substantially alter the hydrophobicity of the ring.  For 

example, benzene and hexafluorobenzene have nearly identical logP (water/octanol 

partition) values.32  Therefore, induced affinity shifts in cation binding cannot be 

attributed solely to effects of hydrophobicity.  This fluorination strategy has been 

successfully used to probe cation binding sites in the nicotinic acetylcholine receptor 

(nAChR),33 the 5-HT3 receptor,34,35 the GABAC receptor,36 the GABAA receptor,37 the 

NMDA receptor,38 and more. 

In this study a choice between the edge-on and en face orientations is provided by 

applying the side chain fluorination approach to position 449 of ShB.  A compelling 

correlation is found between degree of fluorination of the phenylalanine suppressed at 

Thr449 and loss of TEA affinity. The correlation is supported by ab initio quantum 

mechanical calculations of the two disparate models of the TEA binding site.  Therefore, 

there is, indeed, a significant cation-π interaction involved in the binding of TEA to ShB, 

suggesting that an aromatic residue at this position adopts an en face orientation.  
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Results 

Synthesis of Fluorinated Phenylalanine-tRNA 

To fully explore the importance of the potential cation-π interaction between TEA and 

the aromatic residues at position 449 in ShB using in vivo nonsense-suppression 

technology, tRNAs aminoacylated with threonine, which is identical to the wild-type 

residue; with successively fluorinated phenylalanines, which increasingly reduce the 

negative electrostatic potential on the face of the aromatic ring; and with 

cyclohexylalanine, which completely abolishes the aromatic nature while mimicking the 

sterics of phenylalanine, were necessary.  The synthesis of phenylalanine-tRNA is shown 

in scheme 2.1.31,39,40  The amine was first protected with the nitroveratryloxycarbonyl 

(NVOC) photolabile protecting group.41  Next, the acid was activated as a cyanomethyl 

ester.  This compound was then coupled to the tetrabutylammonium salt of dCA.  At this 

point, the amino acid can be attached to either the 2’ or the 3’ hydroxyl of dCA since it is 

thought to rapidly sample both sites.  Finally, the aminoacylated dCA was ligated to 

THG-73 using T4 RNA ligase. 
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Scheme 2.1. Synthesis of phenylalanine-tRNA. 

 

The synthesis of 3,5-F2-phenylalanine-dCA was attempted, but while the protection of 

the amine and the activation of the acid were successful, the coupling of the compound to 

dCA was never productive (scheme 2.2).  Therefore, 3,5-F2-phenylalanine-dCA was 

obtained from Dr. Niki Zacharias, a former graduate student in the Dougherty laboratory.  

4-F-Phenylalanine-dCA, 3,4,5-F3-phenylalanine-dCA, cyclohexylalanine-dCA, and 

threonine-dCA were also acquired thanks to the synthetic efforts of Dr. Tingwei Mu, Dr. 

Wenge Zhong, and other former members of the Dougherty laboratory.  

 

Scheme 2.2.  Attempt to synthesize 3,5-F2-phenylalanine-tRNA. 
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Evaluating the Role of the Cation-π Interaction 

To test for the role of a cation-π interaction between extracellular TEA and an aromatic 

residue at position 449 of ShB, the phenylalanine analogs described above, were 

incorporated at this site.  Figure 2.2 shows examples of inactivation-removed ShB 

currents obtained with this method.  In all cases the cRNA encoding for ShB was 

identical, containing a UAG codon at position 449. This cRNA was coinjected into 

oocytes with one of six different constructs of suppressor tRNAs, each containing the 

anticodon CUA and all but one synthetically acylated with an amino acid.  Figure 2.2A-D 

show families of K+ currents in which the tRNAs were acylated with phenylalanine and 

three of its fluorinated derivatives.  Inserts show color-coded electrostatic potential 

surfaces, determined by ab initio calculations, of benzene and these fluorinated 

derivatives.  On this color scale, red indicates negative electrostatic and blue positive 

electrostatic potential.  As shown, successive substitution of fluorine atoms for hydrogen 

atoms on a benzene ring produces a successive decrease in the negative electrostatic 

potential on the face of the aromatic ring, leading to a monotonic decrease in intrinsic 

cation binding ability.27,28  Figure 2.2E shows currents from the mutant cyclohexylalanine 

(Cha) in which the benzene ring of phenylalanine was replaced by cyclohexane.  In 

general the currents in all of the mutants examined had similar kinetics and voltage 

dependence.  Figure 2.2F shows the absence of current from an oocyte coinjected with 

ShB Thr449UAG and a suppressor tRNA that had not been charged with an amino acid 

(dCA-tRNA).  This control ensures that the suppressor tRNA is not reaminoacylated by 

the cell with a natural amino acid, which could then get incorporated into the channel 

protein.  To control for read through, namely the possibility that another tRNA species 
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can incorrectly recognize the UAG codon and attach its amino acid at position 449, 

cRNA for ShB Thr449UAG alone was injected. This control was performed routinely for 

every experiment and also produced no detectable K+ currents, ruling out read through. 

 

Figure 2.2.  Functional expression of unnatural amino acids in ShB at position 449.  A-E) Representative 

families of K+ currents elicited by test depolarizations for 10 mV increments between −60 mV and +50 

mV, from a holding potential of −80 mV.  Leak and capacitance currents were subtracted online with a  

–P/8 protocol.   The label beneath each panel indicates the introduced amino acid.  In each case, the inset 

shows the 6-31G** electrostatic potential surface of benzene derivatives, with red and blue corresponding 

to −20 and +20 kcal/mol, respectively.27,28  The numbered positions of the fluorine atoms are shown with 

respect to the δ-carbon of phenylalanine.  F) Lack of K+ currents originating from cellular tRNA acylation 

when ShB Thr449UAG mRNA was coinjected with an uncharged tRNA. 
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The block of extracellular TEA in channels containing six different residues at position 

449 were measured.  These residues included phenylalanine, threonine (wild type), the 

three fluorinated derivatives of phenylalanine, and cyclohexylalanine. In all cases the 

block was rapid, as typically observed for extracellular TEA.42  That is, the blocker 

reduced the macroscopic current amplitude with no effect on gating kinetics (e.g., figure 

2.3A, B).  Figure 2.3C plots the fraction of unblocked channels at +50 mV versus the 

extracellular TEA concentration, and table 2.1 lists the concentrations producing half 

block (Ki) based on fits of dose-response curves in figure 2.3C.  The pivotal role of the 

residue at position 449 is evident in this figure and in table 2.1.  The absolute magnitudes 

and relative Ki values for phenylalanine and the native threonine residue at this position 

in ShB agree with a previous study.6  The affinities differ by nearly two orders of 

magnitude between these two natural amino acid residues, supporting the hypothesis that 

an aromatic residue plays a critical role in TEA binding.  

Table 2.1  Inhibitory constants for TEA block.* 

T449X, where X= Ki (mM) ΔΔG (kcal/mol) 
Phe (n = 10) 0.39 ± 0.04  0 
Thr (n = 7) 33.5 ± 8.9 2.58 

4-F-Phe (n = 5) 3.3 ± 0.6  1.23 
3,5-F2-Phe (n = 7) 47.6 ± 5.9  2.78 

3,4,5-F3-Phe (n = 7) 175.2 ± 36.2  3.54 
Cha (n = 3) 249.2 ± 20.1  3.75 

 

                                                
* Ki values given as mean ± sem.  Free energy (ΔΔG) is calculated as i,X

i,Phe
ln( )KG RT KΔΔ = , where 

RT is 0.58 kcal/mol at room temperature. 
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The potency of TEAs as a blocker for ShB was measured for a comparison to the study of 

TEAs cocrystallized with KcsA.26  A crude sample of TEAs was obtained from Dr. 

Adrian Gross,26 and its concentration was determined by NMR, using glycine as a 

standard.  TEAs was found to make up 70% of the crude mixture.  Taking this offset into 

account, TEAs was found to be a weaker blocker than TEA by a factor of 25 in ShB 

Thr449Phe.  

One of the distinctions between aromatic and nonaromatic residues at position 449 is the 

voltage dependence of TEA block. TEA apparently senses 19% of the transmembrane 

electric field for Thr449 and only 4% for Tyr449.6  This difference suggests that TEA 

blocks at a more superficial site when an aromatic residue at 449 creates a high-affinity 

binding site. Because fluorination of phenylalanine reduces TEA affinity, it might also 

allow TEA to bind at a deeper location in the electric field. However, the voltage 

dependence of block was found to be shallow (2%-8%) for all fluorinated derivatives of 

Phe449 (figure 2.4), supporting the idea that the blocking site for TEA is the same for all 

of these derivatives. Note that the measured voltage dependence from the plots in figure 

2.4 could be due to the distribution of K+ ions within the selectivity filter rather than to 

the position of TEA within the electric field.43 
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Figure 2.3.  Evidence for a cation-π interaction in TEA block.  A-B) Reversible TEA inhibition for 

phenylalanine and cyclohexylalanine currents at +50 mV.  C) TEA inhibition plots for ShB channels 

containing the indicated residue at position 449.  Curves are standard binding isotherms fitted to the data. 

Increased fluorination monotonically increases the dissociation constant Ki (table 2.1).  Cyclohexylalanine, 

which is devoid of aromatic character, renders the channel nearly insensitive to TEA. 
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Figure 2.4.  Voltage dependence of block is similar for all fluorinated derivatives.  A-D) Natural logarithm 

of the relative fraction of unblocked channels (Fun) versus blocked channels is plotted against membrane 

potential. [TEA] = 1 mM, 1 mM, 10 mM, and 10 mM for Phe (n = 10), 4-F-Phe (n = 4), 3,5-F2-Phe (n = 7), 

and 3,4,5-F3-Phe (n = 8), respectively. 

 

If an electrostatic component of TEA binding were due to a cation-π interaction involving 

the aromatic side chain at residue 449, then one would expect increasing substitution of 

fluorine atoms to decrease the binding affinity monotonically.27,28 This trend is exactly 

what was observed (figure 2.3C and table 2.1).  In other systems such a trend has been 

interpreted as compelling evidence for a sizable cation-π interaction involving the site 

undergoing substitution.33-36 The first such conclusion, the cation-π interaction between 

acetylcholine and the tryptophan residue at position 149 in the α1 subunit of the muscle 

nAChR,33 was subsequently confirmed by X-ray crystallography.44  
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The largest effect on TEA affinity, 640-fold, occurs with the nonaromatic residue 

cyclohexylalanine.  As discussed below, this observation provides further support for a 

cation-π interaction in TEA binding and contributes valuable information on proposed 

alternative models underlying TEA affinity.  

 

Discussion 

Our data argue that high-affinity TEA blockade results in part from a significant cation-π 

interaction between TEA and an aromatic amino acid at position 449 in ShB.  As in other 

studies of this type, it is not a single mutation that leads to this conclusion, but rather a 

consistent trend across a systematic series of subtle mutations. Figure 2.5A plots the 

change in free energy of TEA binding (open squares) for the phenylalanine derivatives 

against the effect on the energy of Na+ ion binding to comparable derivatives of benzene.  

Na+ binding energy in the gas phase was determined by ab initio calculations. The 

monotonic, nearly linear relationship for ShB establishes a cation-π contribution to TEA 

block. Moreover, previous studies show that fluorination has little effect on 

“nonelectrostatic” energetic components of cation binding to a benzene ring (e.g., donor-

acceptor, charge-transfer, and induced dipoles in the aromatic30).  

To estimate the energetic contribution of the cation-π interaction, a comparison of 

phenylalanine and 3,4,5-F3-phenylalanine is useful. Examination of the electrostatic 

potential surfaces of figure 2.2 shows that three fluorine atoms effectively erase the 

electrostatic attractiveness of the aromatic ring to the cation, and earlier studies showed 

that trifluorobenzene is a good model for an aromatic that has little or no electrostatic 
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binding ability.27,28,45  From this perspective, the ∆∆G values of table 2.1 suggest that the 

cation-π interaction is the dominant factor in distinguishing strong from weak TEA 

binders, in that the energetic consequence of the phenylalanine to 3,4,5-F3-phenylalanine 

mutation (3.5 kcal/mol) is comparable with that of the phenylalanine to threonine 

mutation (2.6 kcal/mol).  

The biggest decrease in TEA affinity is seen for the phenylalanine to cyclohexylalanine 

mutation (3.8 kcal/mol).  This decrease is consistent with both theoretical and 

experimental studies showing that cyclohexane binds cations more poorly than any of the 

aromatics considered here.27,28,46  Note that the side chains of phenylalanine and 

cyclohexylalanine, modeled here as benzene and cyclohexane, respectively, are similar in 

size, shape, and hydrophobicity (figure 2.2).  The most noticeable difference, in the 

context of noncovalent binding interactions, is that the negative electrostatic potential that 

leads to cation binding in benzene disappears in cyclohexane. The phenylalanine to 

cyclohexylalanine mutation thus further confirms that the π character and its associated 

negative electrostatic potential dominate strong TEA binding when phenylalanine is 

present at position 449.  Note also that cyclohexane is considerably more polarizable than 

benzene,47 ruling out any special role for an induced dipole in the binding of TEA by 

phenylalanine and its derivatives.   
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Figure 2.5. Thermodynamic and ab initio calculations support an en face model of TEA binding to ShB.  

A) Relative binding energy of TEA to phenylalanine derivatives plotted against that calculated for Na+ 

binding to benzene derivatives.  Data obtained experimentally for ShB, black squares, display a linear 

change (black line, slope = 0.19 ± 0.01, R2 = 0.88) in binding energy as π electrons are withdrawn by 

fluorine substitutions.  Ab initio calculations for the binding energetics of a reduced system comprised of 

four aromatics and a single TEA molecule are shown on the same plot for comparison.  B) The reduced 

system (minus hydrogen atoms) based on the coordinates of KcsA and TEAs.26  These coordinates predict 

enhanced binding (red diamonds in A)) as π electrons are removed from the aromatic face, a trend 

inconsistent with experimental data.  Conversely, a 60° rotation displayed in C) qualitatively reproduces 

(blue triangles in A)) the trend of TEA binding energetics obtained experimentally from ShB. 
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Previous computational studies of the KcsA channel are based on structures with Tyr82 

in the edge-on orientation and have led others to conclude that the cation-π interaction 

does not contribute substantially to external TEA blockade. These studies instead 

emphasize local hydration structure as a crucial component of the energetics of TEA 

binding,22-25 although electrostatic stabilization by the backbone carbonyls of Tyr78 and 

Gly79 (in KcsA) may also play a role.24 The distribution of K+ ions within the selectivity 

filter also appears to affect TEA binding energy,22-24 another possible source of 

electrostatic energy.  Energetic contributions of local hydration include both electrostatic 

and hydrophobic forces.  However, an essential role of attractive hydrophobic forces 

between TEA and its binding site is contradicted by earlier data from ShB, where 

relatively hydrophobic residues at site 449 are not in general better at binding TEA.6  

Comparison of the essentially isosteric residues valine and threonine, for example, shows 

that polar threonine is associated with a higher TEA affinity.6  Also, leucine, isoleucine, 

and valine are all substantially more hydrophobic than phenylalanine,48 yet produce weak 

TEA binding sites. The phenylalanine/cyclohexylalanine pair described here presents 

another isosteric comparison, and again hydrophobics do not explain the results.  Also, 

the size, but not hydrophobicity, of the alkylammonium blocker appears to be a critical 

factor in binding affinity.6,49  Furthermore, examination of the temperature dependence of 

TEA block shows that enthalpy rather than entropy largely accounts for the free energy of 

binding,6 again arguing against a fundamental role of hydrophobic forces in TEA 

binding. 
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Computational Examination of the TEA-Channel Interaction 

To investigate the evidence for a cation-π mechanism further, the TEA-side chain 

interaction was modeled computationally.  One constraint was the necessity to use KcsA 

structures for the computational modeling, because KcsA is the only crystallized K+ 

channel with an aromatic residue (Tyr82) at this position.  The structure 2BOC, a 

cocrystal of KcsA and TEAs (blue side chain in figure 2.1),26 was the initial starting 

point.  KcsA is highly homologous to voltage-gated K+ channels in this region of the 

protein.  In the vicinity of the selectivity filter, KcsA has the sequence TTVGYGDLY, 

whereas in KV1.2 it is TTVGYGDMV.  In addition, the crystallographic distances across 

the tetramer between the α-carbons of these residues agree within 1 Å when comparing 

KcsA structures to the mammalian KV1.2 (2A79).  With respect to a cation-π mechanism, 

the majority of published structures of KcsA display an unfavorable orientation of the 

Tyr82 aromatic rings.  Moreover, the closest carbon-carbon distance between the blocker 

and the aromatic side chains (4.1 Å) is larger than typically observed for simple cation-π 

interactions (e.g., 2.4 Å between Na+ and the center of a benzene ring29,30).  To examine 

the energetic consequences of withdrawing π electrons by fluorinating the aromatic ring 

of this residue, a reduced molecular model of TEA and its four coordinating 

phenylalanine residues was constructed, based on the 2BOC structure.26  In this reduced 

system (117 atoms; figure 2.5B) high-level ab initio quantum mechanical calculations of 

the binding energy of TEA were performed.  Instead of decreasing the binding, as was 

observed experimentally (black squares in figure 2.5A), successively fluorinating these 

phenylalanine residues in silico had a nonmonotonic effect on TEA binding energy (red 
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diamonds in figure 2.5A), the main effect being a substantial increase of TEA affinity in 

the difluorinated and trifluorinated derivatives.  

Our ab initio calculations can be rationalized as follows.  The cationic blocker is directed 

more towards the edge than the face of the aromatic ring (figure 2.5B).  The electrostatic 

potential along the edge of a simple aromatic ring is positive (e.g., insert in figure 2.2A), 

and would therefore electrostatically repel TEA. Fluorination, however, introduces 

negative electrostatic potential to the edge of the ring via the fluorines (figure 2.2), and 

this would tend to attract TEA, especially in the 3 or 5 position of the aromatic ring 

(figures 2.1, 2.5B). In fact, the 3,5-F2- and 3,4,5-F3-derivatives of phenylalanine show the 

most dramatic increases in TEA affinity in the ab initio calculations.  

Because these self-consistent theoretical results disagree with our experimental data, the 

possibility that the aromatic rings were rotated to face the central axis of the pore was 

considered (figure 2.5C), as proposed before the crystal structures of KcsA were 

available.6,50  In this en face orientation TEA would be attracted to the negative 

electrostatic potential on the face of the aromatic rings.  Fluorination would then decrease 

the negative electrostatic potential presented to TEA and destabilize its binding, a 

prediction consistent with our experimental data.  To quantify this idea, the energetic 

consequences of fluorinating the aromatic rings of Phe82 on TEA binding in this 

conformation were calculated.  The only modification of the structure of figure 2.5B was 

a 60° rotation of the aromatic rings, maintaining all other coordinates of the four Phe 

residues.  With this single change, the results of the ab initio calculations now resemble 

our experimental results, showing a monotonic destabilization of TEA binding as the 

aromatic rings are increasingly fluorinated (blue triangles in figure 2.5A).  Moreover, the 
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rotation itself enhanced TEA affinity by 3 kcal/mol. Although the optimal dihedral angle 

was not examined in detail, rotations of 40° or 80° were less effective at replicating our 

experimental data.  Given the crudeness of this model, and the fact that it is based on a 

crystal structure of KcsA rather than a eukaryotic voltage-gated K+ channel, the 

agreement is quite acceptable.  Even the larger perturbation associated with the 

nonaromatic cyclohexylalanine residue is reproduced by the calculations. 

Although the 144° χ2 dihedral angle in our en face model is unusual for both tyrosine and 

phenylalanine residues in known protein structures,51 an en face orientation of Tyr82 was 

reported for one of the crystal structures of the functional Glu71Ala mutant of KcsA.18  

Figure 2.1B shows this structure (2ATK, orange Tyr82 side chains) aligned with that of 

KcsA cocrystallized with TEAs (blue Tyr82 side chains). The similarity to our en face 

model (figure 2.5C) is apparent.  There are other subtle structural changes in this region 

of the 2ATK structure that enable en face geometry. Of note, the selectivity filter has 

conformational variants in wild-type KcsA, depending on the concentration of permeant 

ions,19 supporting the possibility that the functional conformation of ShB is compatible 

with an en face orientation of Phe449 residues. It also raises the possibility that the open 

states of K+ channels in general have conformational flexibility including the orientation 

of an aromatic residue at this position.   

The slope of the experimental fluorination plot as shown in figure 2.5A is considered a 

crude indication of the energetic magnitude of the cation-π interaction.  The slope of this 

plot (0.19) is comparable to those seen in studies of agonists such as GABA and 5-HT3 

binding to neuroreceptors.34,36  However, the receptor studies measure the binding of an 
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3R-NH+  ion to a single aromatic residue.  Here, four aromatic residues are simultaneously 

being modified.  Thus, the slope in the present case suggests that any single TEA-

aromatic interaction is not very strong, which is consistent with the low affinity of TEA 

and the fact that TEA is a very diffuse cation, and so it is expected to experience a 

weaker cation-π interaction than more focused cations such as 3R-NH+ .  The energetic 

magnitude of the cation-π interaction taken from the slope may also reflect the fact that 

TEA cannot make van der Waals contact with all four rings at once, in either of the en 

face conformations that were considered (figures 2.1B, 2.5C), which should weaken the 

cation-π interaction. Nevertheless, the magnitude of the cation-π interaction does not fall 

off steeply with distance,29 and therefore four nonoptimal interactions can combine to 

create a moderate effect. It is worth noting that a closer approach of the aromatic side 

chains to the blocker may be impossible if the open channel structure is maintained, 

because this residue is only two amino acids downstream from the TVGYGD signature 

sequence of the selectivity filter. Functional data argue against a large-scale collapse of 

the aromatics onto the blocker, because TEA has no effect on open dwell times of single 

channels.42 

Not considering all possible energetic factors in the described calculations was 

intentional.  Our calculations primarily evaluate one component of the binding 

interaction—the electrostatic attraction between a cation and the side–chain.  The fact 

that binding energies correlate so nicely with this term establishes an important role for 

electrostatic attractions in the binding.  Additional effects such as hydrophobics are 

neither ruled out nor ruled in; the data simply show that electrostatics must be important.  

The functional data on eukaryotic K+ channels shows that while there may well be a 
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hydrophobic contribution to binding, it is not the factor that discriminates among 

residues. Another factor that might contribute to TEA binding in these experiments is the 

possibility that the electronegative fluorine atoms could influence the local structure of 

water molecules in the vicinity of the blocker.  However, it is not clear how this effect 

would produce the systematic destabilization of TEA binding that was observed (figures 

2.3C, 2.5A). To explore this possibility the Gibbs free energy of TEA binding in our 

reduced edge-on model was estimated, accounting both for the gas-phase ab initio 

energies, as well as the energies of hydration, using a self-consistent reaction field 

method with the Poisson-Boltzmann solver in the program Jaguar 

(http://www.schrodinger.com/).  As in the gas-phase calculations of figure 2.5A, 

difluorinating the phenylalanine residue in this conformation enhanced TEA binding (by 

2.3 kcal/mol), again inconsistent with our experimental results. 

How are our conclusions resolved with earlier works disputing a role for a cation-π 

mechanism?  As noted, previous simulations were based on analysis of two edge-on 

crystallographic structures (1BL8 and 2BOC) of the bacterial channel KcsA, rather than 

on a eukaryotic, voltage-gated K+ channel or on the en face structure of a KcsA mutant 

(2ATK).  Note that even though KcsA contains an aromatic residue at the aligned 

position (Tyr82), it does not bind TEA strongly.  Its Ki for TEA block is 3.2 mM,52 

almost tenfold higher than for ShB Thr449Phe.  Also, KcsA Tyr82Thr shows a TEA 

blocking constant of 143 mM, significantly higher than obtained in ShB with its wild-

type Thr449.  Finally, the TEA analogue TEAs used for the 2BOC crystal structure 

shown in figure 2.1 has a 25-fold larger inhibitory constant than TEA in ShB Thr449Phe, 

allowing for the possibility that the structure may not be representative of TEA in its 
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binding site.  Thus, inherent but unknown aspects of the KcsA channel, perhaps including 

a nonoptimal arrangement of Tyr82 residues, underlie a relatively weak TEA binding 

site.  

 

Conclusion 

In conclusion, this chapter shows that a cation-π interaction makes a substantial 

contribution to high-affinity blockade by extracellular TEA in voltage-gated K+ channels.  

Evidently, the orientation of an aromatic residue at this position is favorable for a cation-

π mechanism. This hypothesis is supported by our experimental and theoretical results, 

and it provides a simple explanation of the longstanding observation that aromatics at 

position 449 are necessary and sufficient for high-affinity, external TEA blockade in 

voltage-gated K+ channels.  The (presumably subtle) conditions that govern 

crystallization of KcsA in one state or the other are not yet understood, but the functional 

form relevant to ShB in this region is apparently the en face orientation. 

 

Methods 

The work in this chapter was a collaborative effort that included important contributions 

from Dr. Chris Ahern and Dr. Richard Horn of the Jefferson Medical College in 

Philadelphia, PA.  Detailed methods for the experiments discussed in this chapter that 

were not performed by the author can be found in Ahern et al.53 
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Synthesis 

All reactions were performed at ambient temperature and pressure unless otherwise 

noted.  All reactions involving potentially air-sensitive compounds were conducted under 

an inert atmosphere using Schlenk techniques.  Solvents were purified by passage 

through alumina.54  Unless otherwise noted, all chemicals and reagents were used as 

received without further purification.  Flash chromatography was performed using EMD 

(Gibbstown, NJ) silica gel 60 (particle size 0.040-0.063 mm).  Thin-layer 

chromatography (TLC) was performed using EMD (Gibbstown, NJ) silica gel 60 F254 

precoated plates (0.25 mm) and visualized by UV and potassium permanganate.  Nuclear 

magnetic resonance spectroscopy (NMR) was preformed on a Varian (Palo Alto, CA) 

Mercury 300 instrument, and NMR resonances are reported relative to Me4Si (δ 0.0), 

CD3OD (δ 3.31), or D2O (δ 4.79).  Data for 1H NMR spectra are reported as follows: 

chemical shift (δ ppm), integration, multiplicity, and coupling constant (Hz).  Mass 

spectroscopy (MS) spectra were obtained from the Caltech Mass Spectrometry Lab.  

Electrospray ionization mass spectrometry (ESI-MS) was preformed on an LCQ Classic 

ion trap (ThermoFinnigan, Waltham, MA) in direct infusion mode.  HPLC was 

preformed using Waters (Milford, MA) equipment and software (510 HPLC pumps and 

996 Photodiode Array Detector) and reverse-phase Nova-Pak® 18C columns (3.9 × 150 

mm analytical column, 7.8 × 300 mm preparatory column). 
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2.1  

NVOC-L-phenylalanine 2.1:  L-Phenylalanine (0.297 g, 1.8 mmol, 1 eq) was added to a 

round-bottom flask and dissolved in 10% (w/v) sodium carbonate in water (7 mL).  To 

this solution was added dioxane (7 mL).  The mixture was stirred in an ice bath and 

nitroveratryloxycarbonyl chloride (0.50 g, 1.9 mmol, 1.1 eq) was added slowly.  The 

mixture was allowed to warm to room temperature while stirring for 4 hours.  The 

mixture was then poured into distilled water and washed with ether (3x).  Under vigorous 

stirring, the aqueous solution was adjusted to pH 2 by slowly adding 5 M HCl.  The 

yellow precipitate that formed was filtered to afford NVOC-L-phenylalanine 2.1 as a 

yellow solid.  1H NMR (300 MHz, CD3OD, 298 K) δ 7.63 (1H, s), 7.15 (5H, s), 6.98 (1H, 

s), 5.31 (2H, d, J = 10.5 Hz), 4.31 (1H, m), 3.79 (3H, s), 3.76 (3H, s), 3.11 (1H, m), 2.83 

(1H, m). 
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O
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2.2  

NVOC-L-phenylalanine cyanomethyl ester 2.2:  NVOC-L-phenylalanine 2.1 (0.254 g, 

0.63 mmol) was added to a round-bottom flask under Ar (g) and dissolved in DMF (2 

mL).  Chloroacetonitrile (2 mL) and then triethylamine (0.25 mL) were added to the 



 
47 

 

solution.  The mixture was stirred at room temperature for 75 minutes and then the 

solvent was removed under vacuum.  The crude product was purified by flash column 

chromatography (CH2Cl2, then 5% EtOAc in CH2Cl2 once the yellow product started 

eluting) to afford NVOC-L-phenylalanine cyanomethyl ester 2.2 as pale yellow crystals.  

1H NMR (300 MHz, CDCl3, 298 K) δ 7.72 (1H, s), 7.33 (3H, m), 7.16 (2H, d, J = 6.3 

Hz), 6.93 (1H, s), 5.53 (2H, q, J = 15 Hz), 5.26 (1H, d, J = 8.4 Hz), 4.77 (2H, m), 3.96 

(3H, s), 3.95 (3H, s), 3.18 (2H, t, J = 5.1 Hz). 
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NVOC-L-phenylalanine-dCA 2.3:  NVOC-L-phenylalanine cyanomethyl ester 2.2 (0.011 

g, 0.025 mmol, 3.4 eq) was added to a round-bottom flask under Ar (g) and dissolved in 

DMF (0.5 mL).  This solution was transferred to another round-bottom flask under Ar 

(g), which contained dCA (0.020 g, 0.017 mmol, 1 eq) as a tetrabutylammonium salt (2.4 

eq).  The reaction was stirred at room temperature for 18 hours while being monitored by 

reverse-phase analytical HPLC with a linear solvent gradient from 5% acetonitrile in 25 

mM NH4OAc buffer pH 4.5 to 100% acetonitrile.  The crude product was purified using 

reverse-phase semipreparative HPLC with the same linear solvent gradient.  The fractions 
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containing the NVOC-L-phenylalanine-dCA 2.3 were combined, and the solvent was 

removed by lyophilization.  The solid was redissolved in 10 mM acetic acid and 

reconcentrated via lyophilization (3x) to afford NVOC-L-phenylalanine-dCA 2.3 as a 

white powder (0.0016 g, 0.0015 mmol, 19% yield).   ESI-MS m/z calc’d for 

C38H44N10O20P2 [M-H]:  1021.2; found:  1021.4. 

O

O NO2
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O
OH

O
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F
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NVOC-L-3,5-F2-phenylalanine 2.4:  The procedure described above for 2.1 was repeated 

using L-3,5-F2-phenylalanine (0.72 g, 3.6 mmol, 1 eq) to afford NVOC-L-3,5-F2-

phenylalanine 2.4 (1.3 g, 2.9 mmol, 80% yield).  Rf = 0.62 (100% EtOAc); 1H NMR (300 

MHz, CD3OD, 298 K) δ 7.64 (1H, s), 7.02 (1H, s), 6.78 (2H, dd, J = 8.6, 2.1 Hz), 6.69 

(1H, tt, J = 9.3, 2.4 Hz), 5.33 (2H, q, J = 15 Hz), 4.33 (1H, m), 3.81 (3H, s), 3.80 (3H, s), 

3.16 (1H, m), 2.86 (1H, m). 
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NVOC-L-3,5-F2-phenylalanine cyanomethyl ester 2.5:  The procedure described above 

for 2.2 was repeated using NVOC-L-3,5-F2-phenylalanine 2.4 (0.264 g, 0.60 mmol).  The 

crude product was purified by trituration with CH2Cl2 to afford NVOC-L-3,5-F2-

phenylalanine cyanomethyl ester 2.5.  Rf = 0.54 (17% EtOAc in CH2Cl2); 1H NMR (300 

MHz, d6DMSO, 298 K) δ 8.2 (1H, d), 7.7 (1H, s), 7.1 (1H, s), 7.0 (3H, m), 5.3 (2H, d), 

5.0 (2H, s), 4.5 (1H, m), 3.8 (3H, s), 3.8 (3H, s), 3.0 (2H, m). 

 

Molecular Biology  

The aminoacylated dinucleotides for the amino acids used in this chapter were ligated to 

a modified tRNA from Tetrahymena thermophila, THG73, using T4 RNA ligase (New 

England Biolabs, Ipswich, MA).31,39  

 

Determining the Concentration of TEAs 

Glycine (0.0035 g,  0.047 mmol, 1 eq) was placed in an NMR tube and dissolved in D2O 

(0.5 mL).  1H NMR (300 MHz, D2O, 298 K) δ 3.53 (2H, s).  To this solution was added a 

crude mixture containing an unknown amount of tetraethylarsonium (0.0041 g, ~0.018 



 
50 

 

mmol, ~0.38 g).  1H NMR (300 MHz, D2O, 298 K) δ 3.53 (2H, s), 2.36 (2.1H, q, J = 7.8 

Hz), 1.29 (2.8H, b).  Analysis of the NMR resonance integrations, tetraethylarsonium was 

found to constitute 70% of the mass of the crude tetraethylarsonium mixture (0.0041 g, 

0.013 mmol, 0.29 eq). 
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C h a p t e r  I I I 

 

CALCIUM BLOCK OF SINGLE SODIUM CHANNELS:  ROLE OF A PORE-LINING 

AROMATIC RESIDUE 

 

Extracellular Ca2+ ions cause a rapid block of voltage-gated Na+ channels, manifest as an 

apparent reduction of the amplitude of single-channel currents.  Here the influence on 

both single-channel conductance and Ca2+ block of Tyr401 in the Na+ channel isoform 

NaV1.4 from rat was examined.  One possible explanation for the link between Ca2+ 

block and this tyrosine is that the cationic blocker and the aromatic residue interface 

through a cation-π interaction.  To test this hypothesis the attraction between small metal 

cations (Na+ and Ca2+) and this residue was explored using a series of fluorinated 

derivatives of phenylalanine incorporated at this position.  As described in chapter 2, 

increasing fluorination decreases the strength of the possible cation-π interaction, which 

would be evidenced by reduced single-channel conductance or pore block.  The results 

show a monotonic decrease in Ca2+ block as the aromatic ring is increasingly fluorinated, 

a result in accord with a cation-π interaction between Ca2+ and the aromatic ring.  This 

decrease occurred without a change of single-channel conductance, consistent with a 

greater electrostatic effect of the π system on divalent than on monovalent cations.  High-

level quantum mechanical calculations show that Ca2+ ions likely do not bind directly to 

the aromatic ring because of the substantial energetic penalty of dehydrating a Ca2+ ion.  

However, the complex of a Ca2+ ion with its inner hydration shell, Ca2+(H2O)6, interacts 
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electrostatically with the aromatic ring in a way that affects the local concentration of 

Ca2+ ions in the extracellular vestibule. 

 

Introduction 

Voltage-gated Na+ channels are transmembrane proteins involved critically in a variety of 

physiological functions, including muscle contraction, generation of action potentials in 

neurons, and secretion of neurotransmitters and hormones.  These channels control the 

diffusion of Na+ ions across the cell membrane in response to changes of transmembrane 

potential.   When open, ion channels allow high-ionic fluxes while discriminating among 

ions based on charge and size.   Understanding the basis of Na+ permeation requires the 

identification of amino acids that form the selectivity filter, a narrow region of the pore 

where ions are partially dehydrated.  As in structurally similar K+ and Ca2+ channels, Na+ 

channels have a pore or “P” region, a reentrant loop between the fifth and sixth 

transmembrane spanning segments in each of four homologous domains (figure 3.1).  

This P region houses the selectivity filter.  In Na+ channels there are four key residues 

responsible for determining the selectivity of Na+ over other cations (boxed in figure 3.1).  

These resides, one from each domain (D), are aspartate in D1, glutamate in D2, lysine in 

D3, and alanine in D4.  This sequence is referred to as DEKA 1.  Mutation of any of these 

residues alters the channel’s selectivity.  
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Figure 3.1.  Topology of a voltage-gated Na+ channel. Na+ channels are composed of four domains (D1-

D4), each with six transmembrane segments (S1-S6).  S4 is the primary component of the voltage sensor 

(+), and the loop between S5-S6 is the pore (P) region.  The amino acid sequence of the highlighted portion 

of the pore is shown below each domain.  The DEKA ring is outlined in blocks, the outer negative ring 

underlined.  Tyr401 (bold) in D1 is one residue above the DEKA ring. 

 

The side chain of lysine (D3) is perhaps the most important player of DEKA.  Changing 

from DEKA to DEAA eliminates selectivity among monovalent cations (Li+, Na+, K+, 

Rb+, Cs+) and enhances permeability to divalent cations (Mg2+, Ca2+, Ba2+) 1-5.  Enhanced 

Ca2+ permeation is obtained for all charge-altering substitutions of lysine (D3), but not by 

substitution with a charge-preserving arginine 2. By contrast, wild-type Na+ channels are 

typically blocked by extracellular Ca2+ ions.  The apparent blocking affinity is strongly 

correlated with the overall negative charge of residues at the DEKA positions, 

establishing an important role of electrostatics 3.  The close relationship between 
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selectivity and block in these studies suggests that external Ca2+ block occurs at or near 

the DEKA ring 5. 

Single-channel measurements have shown that block by extracellular Ca2+ is voltage-

dependent and fast, manifest as an apparent reduction of single-channel current 

amplitude.  Estimates of the inhibition constant range between 10 and 35 mM, with the 

blocking site apparently located 20% to 30% of the way into the transmembrane electric 

field 3,6-11.  A separate effect of changing external Ca2+ concentration ([Ca2+]) is a shift in 

the activation gating range for Na+ channels.  This phenomenon has been ascribed to Ca2+ 

ions screening and/or binding to negative surface charges that influence the voltage-

sensing mechanism 12.   

Charge-altering mutations involving either DEKA or a more extracellular ring of 

negatively charged residues (underlined residues EEDD in figure 3.1) strongly reduce 

block by the guanidinium toxins tetrodotoxin (TTX) and saxitoxin (STX).  Mutations of 

residues adjacent to these two charged rings typically have smaller effects, if any, on 

toxin block.  These experiments suggest that the charged rings create part of the 

extracellular mouth or pore wall of the Na+ channel 13.  In addition, neutralizing any 

negative residue causes a decrease in single-channel conductance, consistent with the 

idea that the negative charges act to concentrate cations in the extracellular vestibule of 

the pore 13.  Nevertheless, the influence of charged vestibule residues on Na+ permeation 

cannot be explained entirely by the charges of these residues 2,14,15.  

Charged residues are not the only determinants of permeation and pore block. An 

aromatic residue in D1, either tyrosine or phenylalanine, is found exclusively in Na+ 
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channels that have nanomolar affinity for TTX block 16-20.  This residue, Tyr401 in 

NaV1.4, is located between the charged rings in the primary sequence (figure 3.1). 

Mutating this residue to cysteine, its homolog in the TTX-resistant cardiac channel 

NaV1.5, results in a decrease in TTX sensitivity as well as in single-channel conductance 

16,17.  The lowered conductance is similar in magnitude to that found in human NaV1.5 

16,17.  Interestingly, the converse mutation in human NaV1.5 (Cys374Tyr) produces no 

change in single-channel conductance 17.  This residue also affects Ca2+ block.  Single-

channel recording shows that NaV1.4 is more sensitive to Ca2+ block than NaV1.5 21,22; 

however see Ravindran, Schild, and Moczydlowski and Sheets and Hanck for an 

alternative interpretation 8,9.  This observation leads naturally to the question of how a 

hydrophobic aromatic residue could enhance the pore block of a small metal cation. One 

possibility is an electrostatic attraction between the π electrons of the aromatic ring and 

the cationic blocker.  

The intention of the work presented in this chapter is not to explore the isoform 

differences that might affect permeation or Ca2+ block.  Rather the focus is on residue 

401 of rat NaV1.4 and asking (i) whether a cation-π interaction is a contributing factor, 

based on experimental data, and (ii) whether such an interaction between a metal cation 

and an aromatic ring can be rationalized theoretically in an aqueous environment.  

 

Results 

Outside-out patches from oocytes were used to measure single-channel Na+ currents.   

Figure 3.2A shows representative single-channel currents of the mutant Tyr401Phe in 
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response to a depolarization to −50 mV (arrow), using an extracellular solution 

containing 2 mM Ca2+.  This mutant was created by standard mutagenesis and serves as 

our control for unnatural amino acid substitutions.  The data in figure 3.2A were 

converted into an amplitude histogram that was fit by a sum of two Gaussian functions 

(figure 3.2B).  Notice the slight excess of points between the two prominent peaks, 

largely a consequence of a single opening at a subconductance level.  The mean current 

level was estimated as the difference between the means of each Gaussian function, −1.9 

pA at this membrane potential.  The prolonged open durations in our experiments are a 

consequence of internal modification by fenvalerate, which does not affect the single-

channel conductance 23.  In agreement with this, figure 3.2C shows indistinguishable 

amplitudes of single-channel currents of wild-type NaV1.4 recorded without (open 

squares) and with (triangles) 20 µM fenvalerate added to the pipette, in this case in the 

absence of added Ca2+.  
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Figure 3.2.  Representative single-channel recording, histogram analysis, and current-voltage relationship. 

A) Single-channel currents of Tyr401Phe, with 2 mM Ca2+ in response to a 30 ms depolarization (arrow) to 

−50 mV. Prolonged open durations are due to the effects of 10 µM intracellular fenvalerate.  B)  Data from 

figure 3.2A converted to an amplitude histogram and fit by a sum of two Gaussian functions.  The single-

channel current amplitude is −1.9 pA at this membrane potential.  C) Single-channel amplitude versus 

voltage of wild-type rat NaV1.4 recorded without (open squares) and with (triangles) 10 µM internal 

fenvalerate; 0 mM Ca2+.  Data from 2-5 patches at each membrane potential. Fenvalerate shifts the 

activation range in the hyperpolarizing direction but does not change the single-channel current amplitude. 

The regression line was from the fit to the data for fenvalerate. 
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Figure 3.3 shows representative single-channel openings at −60 mV, in either 0.1 (below) 

or 10 mM external Ca2+ (above).  Raising the external [Ca2+] reduces the amplitude of 

single-channel currents with phenylalanine incorporated at position 401 (figure 3.3A) due 

to Ca2+ block 3,6-8,11,21,22.  Figure 3.3B shows that Ca2+ also blocks when the trifluorinated 

mutant 3,4,5-F3-phenylalanine is incorporated at this site, although less effectively 

(arrow/dashed line shows current amplitude for the Tyr401Phe mutant in panel 3.3A).  

Trifluorination approximately abolishes the negative electrostatic potential of an aromatic 

ring 24,25 without significantly affecting hydrophobicity, polarizability, or shape, 

suggesting that the change in electrostatics is responsible for the relief of Ca2+ block in 

this experiment.  Insets show color-coded electrostatic potential surfaces of benzene and 

the trifluorinated derivative.  On this color scale red, blue, and green indicate negative, 

positive, and zero electrostatic potential, respectively.  By contrast to the effect on Ca2+ 

block, the single-channel conductance in 0.1 mM extracellular Ca2+ was not significantly 

different among the fluorinated variants of phenylalanine at position 401, ranging 

between 23.2 ± 2.2 pS for 4-F1-phenylalanine and 25.9 ± 1.6 pS for 3,5-F2-phenylalanine 

(legend for figure 3.4). This result is consistent with a greater effect of the negative 

electrostatic potential on the local concentration of Ca2+ ions than on that of Na+ ions at 

the entrance of the selectivity filter.  
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Figure 3.3.  Fluorination of phenylalanine at position 401 reduces sensitivity of the channel to Ca2+ block. 

Single-channel currents in response to a depolarization to −60 mV in either 10 or 0.1 external Ca2+. 

Openings are downward.  A) Single-channel recordings of the mutant Tyr401Phe.  Raising the external 

[Ca2+] from 0.1 to 10 mM Ca2+ reduces the amplitude of the single-channel current.  B) Currents of the 

mutant 3,4,5-F3-phenylalanine. The two channel constructs have similar current amplitudes in 0.1 mM 

Ca2+. However, fluorination of phenylalanine at position 401 relieves Ca2+ block. Arrow shows the current 

amplitude of Tyr401Phe in 10 mM Ca2+ (mean of 4 patches).  Insets show color-coded electrostatic 

surfaces of benzene and 3,4,5-F3-benzene (blue is +20 kcal/mol, red is −20 kcal/mol). 

 

Single-channel current-voltage relationships for phenylalanine at position 401 and three 

fluorinated mutants are shown in figure 3.4 at three different Ca2+ concentrations, 0.1 

mM (open circles), 2 mM (filled squares) and 10 mM (open triangles). Because the 

patches tended to be unstable in the absence of added Ca2+ and because the amplitudes of 

single-channel currents were indistinguishable between 0 and 0.1 mM Ca2+, 0.1 mM Ca2+ 

was used as the unblocked control.  The single-channel current-voltage relationships in 
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0.1 mM extracellular Ca2+ were fit by straight lines, and the fractional block at higher 

[Ca2+] is represented as 

2

2 2

([ ], ) ( )
([ ] 0.1mM, ) ( ) [ ]
I Ca V K V

I Ca V K V Ca

+

+ +
=

= +
. 

The voltage-dependent inhibition constant K(V), based on a simple Woodhull-type 

model,26 is defined as 

( ) (0)exp( ),j
zFVK V K
RT

δ
=  

where V is the membrane potential, (0)jK  is the inhibition constant at 0 mV for a mutant 

containing j fluorine atoms (j = 0, 1, 2, 3) on the phenylalanine incorporated at position 

401, δ  is the effective fraction through the electric field for a blocker with valence z, and 

RT/F = 25 mV at room temperature.  For the least squares fit, the value of δ  was 

constrained to be identical for all mutants in this study. The monotonic effect of 

fluorination on Ca2+ block is evident from the block observed at 2 mM Ca2+ and from the 

estimated values of (0)jK  (legend of figure 3.4 and figure 3.5). The curvature of the 

current-voltage relationship, most obvious at 10 mM Ca2+, is indicative of the voltage 

dependence of the block.  The estimated value of δ  was 0.18 ± 0.03, comparable to 

previous estimates for Ca2+ block of single Na+ channels.8,9,11 The curvature of the 

current-voltage relationship is noticeably muted in the trifluorinated mutant (figure 3.4D).  

Although only speculation can be drawn on this observation, it suggests either that the 

blocking site is more superficial in this mutant or that trifluorination reduces the local 
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concentration of cations (see discussion) whose distribution might be affected by 

membrane potential.  

 

Figure 3.4.  Single-channel current-voltage relationships of the phenylalanine mutants at position 401. Ca2+ 

concentrations are 0.1 mM (open circles), 2 mM (filled squares), and 10 mM Ca2+ (open triangles).  Each 

symbol represents data from 2-8 patches.  Data for 0.1 mM Ca2+ were fit by straight lines (slopes: 25.3 ± 

0.8, 23.2 ± 2.2, 25.9 ± 1.6, 23.4 ± 1.6 pS, for Tyr401Phe, 4-F-Phe, 3,5-F2-Phe, and 3,4,5-F3-Phe, 

respectively) while fractional block at higher [Ca2+] was fit by a Woodhull model (see results). The 

curvature of the current-voltage relationship illustrates the voltage-dependent block. The effective fraction 

through the electric field (δ ) for Ca2+ block, constrained to be the same for each Phe variant, was 0.18 ± 

0.03.  Note the decrease in Ca2+ block with increased fluorination.  The estimates of inhibition constants 

were K0(0) = 20.9 ± 2.8 mM, K1(0) = 25.0 ± 3.2 mM, K2(0) = 36.7 ± 5.1 mM, and K3(0) = 58.9 ± 9.2 mM. 
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Figure 3.5. Exponential effect of fluorination on the inhibition constant for Ca2+ block. The data points are 

the estimates (± standard error) of the inhibition constants at 0 mV, i.e., Kj(0), from figure 3.4 (j is the 

number of fluorines). The best-fit theoretical curve is (0) 19.2exp(0.344 )jK j=  mM. 

 

Discussion 

The side chains of amino acids that line the extracellular aqueous vestibule of a Na+ 

channel pore could affect permeation in a variety of ways, primarily by consequences on 

the local concentration or hydration of permeant ions and blockers. Amino acid side 

chains may, for example, interact directly (i.e., within the range of van der Waals forces) 

with ions in the vestibule. For permeant ions, such contacts would generally have to be 

brief to be consistent with the high transport rate through open channels. Vestibule-lining 

side chains could also contribute to the electrostatic potential experienced by ions.  

Finally, the protein lining of the vestibule effectively decreases the local dielectric 

constant compared to water by presenting a dielectric boundary.27,28  Deeper residues that 
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line the selectivity filter presumably have the most intimate contact with permeant ions, 

and also perhaps with small pore blockers.  Large effects on permeation or block in Na+ 

channels are caused by mutations of either the DEKA selectivity ring or of the outer 

EEDD ring of negative charges.1-5,13,14,18,29-32  The main exception to these generalities 

involves the aromatic residue Tyr401 in rat NaV1.4 and aligned residues in other 

isoforms. A neutral, nonaromatic substitution of this residue decreases TTX affinity by as 

much as three orders of magnitude.16,17,19  A substantial component of cationic TTX’s 

binding energy is due to an electrostatic interaction with the π system of Tyr401,33 

discussed in detail in chapter 4, suggesting that the aromatic ring is oriented to face the 

permeation pathway. This raises the possibility that other extracellular cations, especially 

Na+ and Ca2+, are also attracted to the negative electrostatic potential on the aromatic face 

of this residue. 

The electrostatic potential projecting out from the center of a benzene ring in aqueous 

solution, and the effects on it of fluorination, are shown in figure 3.6A.  These estimates 

agree with experimental and theoretical analyses showing that trifluorination effectively 

neutralizes the quadrupole moment.24,25  In fact the quadrupole moment is slightly 

reversed in sign by trifluorination (figure 3.6A), in agreement with experimental 

observations.34  The results of the present study show that systematic fluorination of the 

aromatic ring progressively reduces Ca2+ block without affecting the single-channel 

conductance for Na+ ions.  Here it is explored whether these results are consistent with an 

electrostatic mechanism.  



 
68 

 

 

Figure 3.6.  Electrostatic potentials and Ca2+ binding energies.  A) Electrostatic potential for benzene and 

its fluorinated derivatives. Electrostatic potential was determined along the C6 axis projecting from the 

center of the benzene ring using a polarizable continuum model of water.  B) Interaction energy of a Ca2+ 

ion with benzene and fluorinated derivatives along the C6 axis. Gas-phase energies are plotted as solid 

lines, and aqueous energies as dashed lines. Values were calculated in 0.5 Å increments from 2 to 4 Å and 

in 1 Å increments for greater distances. The vertical dotted line is set at the minimum-energy distance 

between the Ca2+ ion and benzene. This line shows that progressive fluorination monotonically destabilizes 

the attraction of Ca2+ for the aromatic ring.  C) Optimized geometry of the complex between Ca2+(H2O)6 

and a benzene ring.  D) Interaction energy between Ca2+(H2O)6 and benzene, calculated in gas or in water 

at the optimized geometry. The energies increase linearly with the number of added fluorines. 
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A negative electrostatic potential on the aromatic face of residue at position 401 could 

enhance Ca2+ block in two ways.  First, a Ca2+ ion might bind directly (essentially at van 

der Waals contact) to the face of the aromatic ring where it would prevent the flux of Na+ 

ions.  Second, the negative potential might increase the probability that a Ca2+ ion would 

be found in the vicinity of the blocking site without direct contact between the metal ion 

and the aromatic ring.  The second scenario is favored because direct binding of Ca2+ to a 

simple aromatic ring would require partial dehydration of the Ca2+ ion, an energetically 

costly task for the diffuse quadrupole moment of an aromatic ring.35  To show this 

explicitly, the binding energy of a Ca2+ ion to benzene was determined using high-level 

(HF/6-31++G**) ab initio calculations.  The optimized position for Ca2+ in the gas phase 

was on the C6 symmetry axis of the benzene ring 2.54 Å from its center (figure 3.6B).  

Although the interaction energy is highly favorable at this position in the gas phase, −64 

kcal/mol, the Gibbs free energy for Ca2+ binding in an aqueous environment is highly 

unfavorable, +31 kcal/mol, a consequence of the substantial mismatch between the 

hydration energies of a Ca2+ ion ( Ca(hyd)GΔ  = −390 kcal/mol) and benzene ( Benz(hyd)GΔ  = 

−1.5 kcal/mol).  This result is presented graphically in figure 3.6B by plotting the 

calculated free energy of the interaction of a Ca2+ ion with benzene as a function of 

distance from the center of the benzene ring.  The solid and dotted lines represent the 

interaction energy in the gas phase and in aqueous solution, respectively.  Benzene 

(black) attracts a Ca2+ ion in the gas phase and repels it in water; this conclusion holds at 

any distance greater than 2 Å from the center of the aromatic ring. 

Figure 3.6B also shows the effect of fluorination on these interaction energies.  The 

vertical dotted line highlights these energies at the optimized position of Ca2+ in the gas 
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phase. Both in gas and in aqueous solution, fluorination diminishes the energy of 

interaction between Ca2+ and benzene at distances closer than 4.5 Å.  Note that at larger 

distances water molecules would be able to penetrate the space between the cation and 

the aromatic ring.  Therefore, although a benzene ring has a net repulsive effect on a Ca2+ 

ion in water, the repulsion is exacerbated by fluorinating the ring.  From the point of view 

of a cation, it could be that the negative electrostatic potential ameliorates the 

hydrophobic (unattractive) properties of the aromatic side chain.  These calculations 

strongly suggest that in aqueous solution Ca2+ ions do not make direct contact with the 

aromatic ring of Tyr401 (or phenylalanine at this site), but that fluorination nevertheless 

has an electrostatic effect on Ca2+ ions in the vicinity of the ring.  To rationalize the 

unfavorable interaction energies in water, an alternative viewpoint was explored, namely 

that an appropriate treatment of the interaction between an aromatic ring and Ca2+ must 

include explicit water, namely the inner hydration shell of the cation. 

The substantial desolvation penalty for a Ca2+ ion, approximately 30 kcal/mol to remove 

one water molecule from the inner hydration shell, indicates that when interacting with an 

aromatic ring, Ca2+ will maintain this hydration shell of 6 waters.36,37  Nevertheless, the 

charge of the cation will orient and polarize the hydration waters so that the hydrated 

complex, Ca2+(H2O)6, can interact favorably with the face of an aromatic ring.38,39  In 

essence, Ca2+(H2O)6 is a larger, more polarizable cation than an isolated Ca2+ ion. The 

increased size and delocalized charge are expected to decrease the interaction energy with 

a benzene ring.39-41  Figure 3.6C shows the octahedral arrangement of waters in 

Ca2+(H2O)6  and the optimized geometry of this metal-water complex with benzene.  The 

Ca2+ ion lies 5.70 Å from the centroid of benzene at an angle of 8.9° from the normal of 
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the aromatic ring plane.  The interaction energies of Ca2+(H2O)6 with benzene in this 

optimized geometry are −10.6 and +3.7 kcal/mol in gas and water, respectively, 

significantly smaller in magnitude than the energies observed for an isolated Ca2+ ion, in 

part because of the greater distance between Ca2+(H2O)6 and the benzene ring.  The effect 

of fluorinating the benzene ring on the binding energy of Ca2+(H2O)6 was calculated at 

the fixed, optimized geometry shown in figure 3.6C.  These interaction energies are 

plotted in figure 3.6D as a function of the number of fluorine atoms appended to the 

benzene ring.  As in the case of a nonhydrated Ca2+ ion (vertical dotted line in figure 

3.6B), the interaction energy increases monotonically as the benzene ring is progressively 

fluorinated (figure 3.6D).  The relationship is steeper when calculated in the gas phase. 

The energetic effect of altering the benzene ring, a linear increase in interaction energy 

with fluorination (figure 3.6D), leads to a prediction of the consequences of fluorination 

on Ca2+ block.  Figure 3.7 shows a molecular model of the outer vestibule of the pore of 

the Na+ channel,42 with Ca2+(H2O)6 aligned in its optimized geometry with the aromatic 

ring of Tyr401. The side chains of the DEKA ring are shown below Tyr401. The 

transparent, solvent-accessible surface of the hydrated Ca2+ ion is also shown.  Previous 

modeling and experimental evidence suggest that the aromatic ring of Tyr401 faces the 

central axis of the pore,33,42 and that a stable blocking site for Ca2+ is likely to be at the 

DEKA ring where it can interact with the two acidic side chains.3  The structural model 

in figure 3.7, with Ca2+(H2O)6 at a more superficial location near Tyr401, is also likely to 

be nonconductive for Na+ ions because of both the substantial volume occupied by the 

hydrated metal ion and its charge.  Therefore, this conformation is also a blocked state, 

albeit weaker presumably than the site at the DEKA ring.  We propose that the aromatic 
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ring does not interact with this hydrated ion when it is in its deeper blocking site at the 

DEKA ring.  Rather, the aromatic side chain affects the local concentration of Ca2+ 

( 2+
local[Ca ] ) in the immediate vicinity of this deeper site.  Within the limits of reliability 

of the structural model in figure 3.7, a hydrated Ca2+ ion must pass near the aromatic face 

of Tyr401 on its way to its deeper site at the DEKA ring.  The probability of finding 

Ca2+(H2O)6 at the location shown in the figure can be expressed as 

1

1 exp( )
j

j
p G

RT

=
Δ

+
, 

where j is the number of fluorine atoms, Phe jj k
k

G G GΔ = Δ + Δ∑  is the free energy of 

Ca2+(H2O)6 at that location, R is the universal gas constant, and T is the absolute 

temperature. Phe j
GΔ  is the contribution to the free energy of the aromatic ring, and 

k
k
GΔ∑  represents all other contributions due to the environment in the vicinity of the 

aromatic side chain.  If it is assumed that in this aqueous environment jp  is very low, 

due both to the low dielectric walls of the vestibule and to the positive energy contributed 

by the aromatic ring (figure 3.6D), then  
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jGΔΔ  increases linearly with fluorination (figure 3.6D), this exponential relationship 

conforms exactly to our experimental results (figure 3.5).  

It remains to be considered why the electrostatic effect of fluorinating the aromatic has 

little consequence on single-channel conductance.  The primary reason, we propose, is 

that changes in electrostatic potential will have a larger effect on divalent Ca2+ ions than 

on the monovalent Na+ ions that carry the inward current.  Using the above quantum-

mechanical approach for calculating the interaction energy of a Na+ ion with benzene in 

water, it was found, for example, that trifluorinating benzene has a sixfold greater effect 

on 2+
local[Ca ]  than on +

local[Na ]  at a distance of 4 Å from the center of the ring.  Therefore 

the threefold increase in Kj(0) for Ca2+ block between phenylalanine and 3,4,5-F3-

phenylalanine (figure 3.5) would correspond roughly to a 50% decrease in +
local[Na ] . 

This reduction would have only a moderate effect on single-channel current amplitude, 

because [Na+] has a nonlinear, saturating relationship with single-channel 

conductance.11,14,43 
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Figure 3.7.  Model of the extracellular vestibule of the channel showing Ca2+(H2O)6 in optimal apposition 

to Tyr401 (figure 3.6C). The molecular model42 depicts part of the pore helix and pore loop from each 

domain of the Na+ channel. The side chains of Tyr401 and the DEKA ring are rendered. Ca2+(H2O)6 is 

shown enveloped by a transparent solvent-accessible surface. 
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The above analysis sidestepped the explicit role of the conserved negatively charged ring 

(EEDD, figure 3.1) that will tend to concentrate cations within the extracellular vestibule. 

Functional studies suggest that the negative electrostatic potential in the vestibule is in 

excess of −100 mV.14,44  As was seen here, however, a more challenging task for the 

channel is to overcome the energetic burden for metal cations to leave the relative 

comfort of the extracellular solution and enter a cavity lined by low-dielectric protein. 

These calculations show that even in the presence of an electrostatic potential of −140 

mV at a distance of 5.7 Å from a benzene ring (figure 3.6A), the aqueous environment 

remains unfavorable for Ca2+ (+15.3 kcal/mol) and only slightly favorable for Na+ (−0.24 

kcal/mol).  Nevertheless, neutralizing any of the EEDD charges has substantial effects on 

both cation block and single-channel conductance,13,14,18,29,31 confirming a strong role for 

electrostatics. 

The cation-π interaction has been examined extensively in the past two decades and is 

now known to play a significant energetic role in the interaction between organic cations 

and proteins, as well as between basic and aromatic side chains in proteins.41,45,46  A 

previous study, however, found no evidence for a postulated cation-π interaction between 

the divalent cation Mg2+ and the aromatic side chain of a tryptophan residue in the 

NMDA receptor.47  As was discussed here, this result may not be surprising when the 

cation is very small and highly charged.  One feature of a strong cation-π interaction is 

the match of hydration energies between a large cation with its delocalized charge and an 

aromatic ring.  In the absence of other energetic constraints the hydration mismatch 

between a Ca2+ ion and an aromatic ring precludes direct binding, in spite of a powerful 

electrostatic attraction.  Nevertheless, a systematic reduction of blocking affinity for Ca2+ 
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was seen as the phenylalanine incorporated at position 401 is progressively fluorinated, a 

distinguishing characteristic of a cation-π mechanism.  Although induction (polarization) 

energy makes an attractive energetic contribution for both monovalent and divalent 

cations with benzene,48,49 the predominant consequences of fluorination arise from 

changes of the electrostatic interaction between the metal cation and the quadrupole 

moment of the aromatic ring.24,50  In comparison to the threefold destabilization of Ca2+ 

block, incorporating 3,4,5-F3-phenylalanine at position 401 destabilizes the organic pore-

blocker TTX by 50-fold,33 suggesting a more intimate interaction between an aromatic 

residue at this site and the larger toxin in its binding site (chapter 4). 

Although this study reveals a modest role for a cation-π mechanism in the interaction 

between a Ca2+ ion and an aromatic residue at position 401, it does not address isoform 

differences between TTX-sensitive channels that have an aromatic residue at this position 

and TTX-resistant channels that have either a cysteine or a serine at position 401. 

Differences in Ca2+ block between these two classes of Na+ channels is a disputed 

experimental observation8,9,21,22 suggesting that other factors might contribute to 

functional differences between these types of channels. It is also worth bearing in mind 

that fluorination of phenylalanine at this site is a relatively minor perturbation of structure 

compared with mutating this residue into a cysteine.  Notably, only two amino acids 

distinguish the outer vestibule residues of NaV1.4, the TTX-sensitive channel studied 

here, and the TTX-resistant cardiac channel NaV1.5.  The latter isoform has a cysteine at 

the aligned position of Tyr401, and an arginine instead of an asparagine immediately 

adjacent to the outer ring of negative charge in D1.  The asparagine-to-arginine 

substitution of this residue by itself causes a tenfold decrease in Ca2+ block in a TTX-
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sensitive neuronal Na+ channel,3 suggesting another electrostatic determinant of the local 

concentration of Ca2+ ions in the outer vestibule.  The relative roles of these two residues 

will undoubtedly lead to insights into mechanisms of permeation and block in Na+ 

channels. 

 

Conclusion 

In summary, the study presented here demonstrates that an electrostatic cation-π 

interaction occurs between an aromatic side chain and Ca2+ ions within the outer mouth 

of a voltage-gated Na+ channel.  Using in vivo nonsense-suppression techniques to 

incorporate fluorinated-phenylalanine derivatives into NaV1.4 at Tyr401, the attraction of 

the cation and the electronegative face of the aromatic residue was experimentally tested 

by recording on the single mutant channels.  The cation-π interaction was found to be 

specific to the divalent cation Ca2+ and not the monovalent Na+ since no change was 

observed in the single-channel conductance in the same mutant channels.  High-level 

quantum mechanical calculations show that the interaction between Ca2+ and the 

aromatic ring is likely to occur with the hydrated cation. 

 

Methods 

The work in this chapter was a collaborative effort that included important contributions 

from Dr. Vincent Santarelli, Dr. Chris Ahern, and Dr. Richard Horn of the Jefferson 
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Medical College in Philadelphia, PA.  Detailed methods for the experiments discussed in 

this chapter that were not performed by the author can be found in Santarelli et al.51 

 

Unnatural Amino Acids and Molecular Biology 

Phenylalanine-dCA, 3,5-F2-phenylalanine-dCA, 3,4,5-F3-phenylalanine-dCA were 

obtained as described in chapter 2.  3-F-Phenylalanine was a gift from Dr. Niki 

Zacharias, a former graduate student in the Dougherty laboratory.  These aminoacylated 

dinucleotides were ligated to a modified tRNA from Tetrahymena thermophila, THG73, 

using T4 RNA ligase (New England Biolabs, Ipswich, MA).52,53 
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C h a p t e r  I V 

 

A CATION-π INTERACTION DISCRIMINATES AMONG SODIUM CHANNELS 

THAT ARE EITHER SENSITIVE OR RESISTANT TO TETRODOTOXIN BLOCK 

 

Voltage-gated Na+ channels control the upstroke of the action potential in excitable cells 

of nerve and muscle tissue, making them ideal targets for exogenous toxins that aim to 

squelch electrical excitability.  One such toxin, tetrodotoxin (TTX), blocks Na+ channels 

with nanomolar affinity only when an aromatic phenylalanine or tyrosine residue is 

present at a specific location in the external vestibule of the ion-conducting pore.  

Interestingly, this specific location is the same aromatic residue studied in chapter 3, 

NaV1.4 Tyr401.  In order to test the possibility that the guanidinium group of TTX is 

attracted to Tyr401 through a cation-π interaction, this aromatic residue was replaced 

with a series of fluorinated derivatives of phenylalanine using the in vivo nonsense-

suppression method.  Consistent with a cation-π interaction, increased fluorination of a 

phenylalanine incorporated at 401 caused a monotonic increase in the inhibitory constant 

for block.  Trifluorination of the aromatic ring disrupted TTX affinity by 50-fold, similar 

to that of outright replacement of phenylalanine at position 401 by the nonaromatic but 

comparably hydrophobic residue leucine.  Furthermore, an energetically equivalent 

cation-π interaction is shown to underlie both use-dependent and tonic block by TTX. 

Our results are supported by high-level ab initio quantum mechanical calculations 

applied to a model of TTX binding to benzene. These results are the first of their kind to 
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show the incorporation of unnatural amino acids into a voltage-gated Na+ channel and 

demonstrate that a cation-π interaction is responsible for the obligate nature of aromatics 

at this position in TTX-sensitive Na+ channels.  

 

Introduction 

Na+ channels control electrical excitability in muscle and nervous tissues by driving 

membrane depolarization during an action potential. These large (260 kDa) proteins have 

four homologous transmembrane domains that are arranged in a clockwise orientation 

around a central pore.1  Numerous Na+ channel isoforms exist and share the common 

traits of being exceptionally sensitive to voltage and highly selective for their conducting 

ion.2 They can, however, differ in expression patterns, inactivation time course, 

sensitivity to toxins, and effects of auxiliary subunits.  In terms of extracellular block by 

the toxin TTX, Na+ channels have been deemed binary in their sensitivity; they are either 

“TTX sensitive,” blocked by low nanomolar concentrations, or “TTX resistant” with 

blocking constants in the micromolar range.3  Members of the former class include 

isoforms expressed in brain (NaV1.1, NaV1.2 and NaV1.3), skeletal muscle (NaV1.4), and 

peripheral nervous system (NaV 1.6 and NaV 1.7); the latter class includes isoforms of 

cardiac muscle (NaV1.5) and sensory neurons (NaV1.8 and NaV1.9).  A number of point 

mutations in the external vestibule of the channel can substantially disrupt TTX binding,4-

8 yet many of these residues are conserved between sensitive and resistant isoforms and 

therefore cannot explain isoform-specific TTX sensitivity.  It has been established that a 

single aromatic residue conserved in the first homologous domain (DI) of TTX-sensitive 
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isoforms underlies isoform-specific block.9-11  Mutagenic replacement of this aromatic 

residue, Tyr401 in the rat skeletal muscle Na+ channel NaV1.4, with the homologous 

residue from NaV1.5, a cysteine, renders this isoform insensitive to TTX.10,11 More 

importantly, a high-affinity TTX site with nanomolar block can be generated in NaV1.5 

upon a single aromatic substitution at this site,9,11 confirming the importance for TTX 

block of phenylalanine or tyrosine at this position. This observation led to the proposal 

that a cation-π interaction would figure prominently in the binding of TTX to toxin-

sensitive channels.9,12  Here experimental evidence proves that a cation-π interaction 

involving Tyr401 in NaV1.4 contributes to high-affinity block by TTX.  

TTX block is enhanced by high-frequency stimulation of Na+ channels. This use 

dependence of block was first reported in TTX-resistant cardiac Na+ channels,13 but is 

also seen in highly toxin-sensitive preparations, such as the crayfish axon,14 and wild-

type and mutated Na+ channels heterologously expressed in oocytes.8,15,16  It has been 

proposed that the lower affinity for cationic TTX in the resting or “tonic” state might be 

due to electrostatic interference from a Na+ or Ca2+ ion trapped in the pore of the closed 

channel.14  Upon repeated depolarization, channel opening allows for the escape of the 

trapped ion, increasing the stability of the toxin-bound state. Experiments show that 

extracellular Ca2+ and Mg2+ ions compete with and inhibit TTX binding, further 

supporting the “trapped ion” mechanism.15,17  The relative effects of mutating pore 

residues on high- and low-affinity blocked states have not been examined in detail. 

Many pore blockers mimic a channel’s permeant ion and occlude conduction by taking 

its place in the permeation pathway.  In the present example, the charged guanidinium 

moiety of TTX may replace Na+ at the external mouth of the channel. Therefore an 
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understanding of block by TTX and other guanidinium toxins holds the promise of 

providing insight into the molecular architecture of the permeation pathway.  The Na+ 

channel selectivity filter has been hypothesized to be formed by the side chains of 

aspartate, glutamate, lysine, and alanine, one from each of the four homologous domains, 

DI-DIV respectively.18,19  The “DEKA” locus is assisted by an outer ring of negative 

charges that electrostatically “focus” Na+ ions toward the mouth of the selectivity 

filter.20,21  Mutation of residues in either the inner or outer ring decreases both TTX 

affinity and single-channel conductance,5 suggesting the TTX binding site overlaps with 

the extracellular entrance of the permeation pathway.  The aromatic residue of interest for 

the current work, Tyr401 in NaV1.4, is located between the two aforementioned charged 

rings, and its replacement with cysteine reduces single-channel conductance,11 further 

suggesting a role for this site in Na+ permeation. The homologous residue in the TTX-

resistant cardiac isoform NaV1.5, a cysteine, underlies sensitivity to extracellular pore 

block by heavy metals.10,22  

An aromatic side chain may interact with a large organic cation like TTX through a 

combination of forces, including an induced dipole in the toxin and the aromatic, donor-

acceptor, charge-transfer, and dispersion forces, as well as hydrophobic effects.23  

Electrostatic energy may also be provided by the attraction between the negative 

electrostatic potential on the face of the aromatic ring and the guanidinium moiety of 

TTX, an attraction termed the cation-π interaction.23,24  Traditional site-directed 

mutagenesis is not helpful in discriminating among the many energetic components of 

binding energy, because outright amino acid substitution tends to change hydrophobicity, 

structure, polarizability and electrostatics concurrently.  These shortcomings are readily 
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averted by employing in vivo nonsense suppression to incorporate unnatural amino acids 

with subtle structural changes.25  This method has been used previously to test for cation-

π interactions by incorporating a series of progressively fluorinated aromatic derivatives 

into the ligand-binding pockets of a variety of ion channels.26-29  We have also used this 

approach to explore extracellular block of potassium channels by cationic 

tetraethylammonium.30  The principle underlying this strategy is rather simple.  Each 

fluorine atom substitution progressively reduces the negative electrostatic potential on the 

face of the aromatic, thereby reducing the electrostatic component of binding affinity.  

For studies of this kind, unnatural amino acids are clearly superior to their traditional 

counterparts.  Serial fluorination does not substantially change the size, shape, 

polarizability, or hydrophobicity of the aromatic side chain,23,31 so any loss in binding 

energy is due to cation-π electrostatics. 

In the present study, the in vivo nonsense-suppression method was used to introduce a 

series of progressively fluorinated phenylalanine residues at position 401 in NaV1.4, and 

the resulting channels were assayed for their sensitivity to TTX.  Block was studied under 

both tonic and stimulated conditions, and both blocked states were found to rely heavily 

on a cation-π interaction at position 401. Specifically, stepwise fluorination 

monotonically increased the equilibrium binding constant, as observed in other known 

organic cation-π systems. Furthermore, complete neutralization of the negative 

electrostatic potential of the aromatic face by trifluorination of the aromatic side chain 

resulted in a TTX block that was similar to replacement of the residue at position 401 by 

leucine, suggesting that hydrophobicity alone cannot explain high-affinity block. 

Analysis of the blocking kinetics reveals that withdrawal of π electrons from the aromatic 
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face of phenylalanine at position 401 is manifested primarily as a decrease in the 

association rate constant for TTX block.  These results demonstrate that phenylalanine at 

position 401 interacts with TTX through a substantial cation-π interaction, which, along 

with other energetic contributions, supports high-affinity block in TTX-sensitive 

isoforms.  

 

Results 

TTX affinity is nearly 3 orders of magnitude higher in TTX-sensitive Na+ channels than 

in TTX-resistant isoforms, a difference that has been attributed to the lack of an aromatic 

residue in the external vestibule of the later class of channels. Specifically, high-affinity 

block requires the presence a tyrosine or phenylalanine at position 401 in the pore loop of 

domain DI of the rat NaV1.4 channel from skeletal muscle.9-11  Here the goal was to 

measure the energetic contribution of a cation-π interaction between TTX and the 

aromatic face of residue 401.  A substantial cation-π interaction would provide insight 

into both the orientation of this residue in the extracellular mouth of the channel and of 

TTX in its blocking site. To this end electron-withdrawing fluorine atoms were 

substituted for hydrogen atoms on the aromatic ring of residue 401, creating a series of 

fluorinated analogues of phenylalanine, as described in chapter 2.  The same fluorinated-

phenylalanine-dCA derivatives used in the study of tetraethylammonium (TEA) binding 

to the voltage-gated Shaker B K+ channel (ShB) were used in this study (see chapter 2 of 

this thesis). 
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The functional equivalence of phenylalanine and tyrosine at position 401 with respect to 

TTX block (table 4.1) allows us to employ analogs of phenylalanine in our analysis. This 

work represents the first attempt to directly test the contribution of the π electrons of the 

aromatic ring at position 401 in TTX binding.  

Table 4.1.  Affinity and kinetics of TTX block in tonic and stimulated states.* 

NaV1.4 
(Suppressed 

at 401) 

L
iK  

Tonic (nM) 

H
iK  

Stim (nM) 

L
offk  Tonic 

(s-1) 

H
offk  

Stim (s-1) 
onk  

(s-1*µM-1) 

WT 
(Tyr401) 

19 ± 6 (5) 6 ± 1 (5) 0.13 ± 
0.04 (5) 

0.037 ± 
0.002 (4) 

6.84 ± 
0.79 (9) 

Tyr401Phe 25 ± 2 (4) 5 ± 0.9 
(4) 

0.161 ± 
0.017 (4) 

0.033 ± 
0.001 (4) 

6.58 ± 
0.17 (4) 

Phe 25 ± 3 (6) 7 ± 0.9 
(6) 

0.1545 ± 
0.0128 (6) 

0.040 ± 
0.004 (5) 

6.13 ± 
1.04 (6) 

3-F-Phe 49 ± 7 (6) 10 ± 1 (6) 0.208 ± 
0.032 (5) 

0.040 ± 
0.002 (5) 

4.08 ± 
0.46 (5) 

3,5-F2-Phe 316 ± 32 
(6) 

93 ± 9 (6) 0.642 ± 
0.064 (6) 

0.181 ± 
0.019 (6) 

2.04 ± 
0.27 (6) 

3,4,5-F3-Phe 974 ± 61 
(6) 

350 ± 28 
(6) 

0.352 ± 
0.022 (6) 

0.134 ± 
0.032 (6) 

0.361 ± 
0.058 (6) 

Tyr401Leu 2070 ± 223 
(6) 

1006 ± 
104 (6) 

0.363 ± 
0.082 (4) 

0.171 ± 
0.031 (4) 

0.209 ± 
0.052 (4) 

Tyr401Cys 108,000 ± 
14,000 (4) 

108,000 ± 
14,000 (4) 

- - - 

 

An energy-minimized structure (A) and the electrostatic potential (B) of TTX are shown 

in figure 4.1.  Although a monovalent cation at neutral pH, TTX also has a large dipole 

moment of approximately 10 D, with an excess of positive charge (blue) near the 

guanidinium group, which would be expected to affect the orientation of TTX due to 

electrostatic interactions with its binding site.  

                                                
* Rate constants ( H

offk , L
offk , and onk ) and equilibrium inhibitory constants ( L

iK  and H
iK ) were 

determined as described in Santarelli et al.32  The number of cells is enclosed in parentheses. The mutants 

indicated in red were generated by nonsense suppression. 
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Figure 4.1.  Structure of TTX.  A) Energy-minimized structure and B) surface rendering of TTX with 

electrostatic potential ranging from +100 kcal/mol (blue) to +40 kcal/mol (red). Note that the delocalized 

charge of TTX presents a substantial dipole moment, with positive charge concentrated near the 

guanidinium moiety. 

 

Figure 4.2 shows representative examples of inward Na+ currents elicited by 

depolarizations to −10 mV from a holding potential of −100 mV.  The Tyr401Phe mutant 

(figure 4.2A) was constructed by standard site-directed mutagenesis, while the remaining 

panels show currents for mutations introduced by nonsense suppression in which the 

cRNA encoding for NaV1.4 was identical, containing a UAG codon at position 401. 

Figures 4.2B-E show the similarity of Na+ currents coexpressing this cRNA construct 

with suppressor tRNAs ligated to the indicated derivatives of phenylalanine.  In addition, 

the peak current-voltage relationships from the fluorinated unnatural amino acids resulted 

in less than 5 mV shifts in activation compared with wild-type channels.  Injection of 

NaV1.4 Tyr401UAG cRNA without a complementary suppressor tRNA failed to produce 
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Na+ currents, allowing for the ruling out of enzymatic manipulation within the oocyte 

expression system resulting in the incorporation of unexpected and unwanted natural 

amino acids (figure 4.2F). As a further control, no Na+ current was seen when a tRNA 

lacking an appended amino acid (dCA-tRNA) was coinjected with the NaV1.4 

Tyr401UAG cRNA.  

 

Figure 4.2.  Representative current traces from either Tyr401Phe or channels constructed from coinjection 

of Tyr401TAG mRNA with a complementary tRNA appended with the indicated amino acid.  Families of 

Na+ currents are shown from depolarization from −30 to +20 mV in 5 mV increments and were elicited 

from a holding potential of −100 mV.  The voltage dependence and kinetics of currents of A) the 

Tyr401Phe point mutation are indistinguishable from B-E) those of both natural and unnatural 

substitutions.  Note the absence of currents upon injection of NaV1.4 Tyr401UAG mRNA alone.  Scale bars 

in each case are 5 ms and 1 µA. 
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Figure 4.3 demonstrates the effect of serial fluorination of the phenylalanine incorporated 

at position 401 on TTX affinity.  The red traces from the same cells were recorded in the 

presence of the indicated concentrations of TTX. The six panels show currents for a 

variety of mutations at NaV1.4 Tyr401.  Consistent with a cation-π interaction, increasing 

fluorination of the phenylalanine incorporated at position 401 correlates with a decreased 

affinity for TTX block, as shown by the TTX concentration ([TTX]) required to reduce 

the current moderately in each mutant. Note the similar current kinetics for all mutants.  

Insets in figure 4.3 show the indicated aromatic rings of the unnatural amino acids as 

electrostatic potentials. Note that serial fluorination reduces the negative electrostatic 

potential (red) on the aromatic face with a minimal change in the overall structure.  

 

Figure 4.3.  Fluorination of the phenylalanine at position 401 reduces TTX block. Normalized currents 

recorded during a 10 ms depolarization to −10 mV from a holding potential of −100 mV. Control (bath) 

traces in black, and TTX at the labeled concentration in red.  As phenylalanine is fluorinated sequentially, a 

higher [TTX] is required for channel block. The inserts represent electrostatic potentials of benzene with 

red negative (−20 kcal/mol), blue positive (+20 kcal/mol), and green neutral. Before normalization the peak 

inward currents were (in µA): Tyr401Phe, −1.92; Phe, −3.75; 3-F-Phe, −3.72; 3,5-F2-Phe, −2.43; 3,4,5-F3-

Phe, −5.29. 
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Extracellular block of Na+ channels by TTX is use dependent, with repeated stimulation 

enhancing TTX affinity. This increase has been suggested to be due to electrostatic 

repulsion between TTX and a trapped Na+ or Ca2+ ion within the pore, which is relieved 

upon channel opening during which the trapped ion is released.8,14,15  Figure 4.4A shows 

an example of a dose-response experiment that reveals both tonic (low-affinity) and 

stimulated (high-affinity) inhibition for 3,4,5-F3-phenylalanine. For each TTX 

concentration, the experiment consists of recording the current resulting from 100 

depolarizations, each a 10 ms depolarization to −10 mV given at 2 Hz after a 3 minute 

application of TTX. The first pulse in the train is used for determining the tonic 

inhibition, whereas the current elicited by the 100th pulse provides the stimulated block.  

TTX is perfused at the next higher concentration for 3 minutes to allow for the 

stimulated, TTX-bound state to reequilibrate into the low-affinity tonic state.15  After 

application of the highest [TTX], a concentration close to the inhibition constant iK  of 

block is applied, in this case 0.3 µM.  Under continuous 2 Hz stimulation to hold blocked 

channels in the stimulated state, TTX is removed from the bath altogether.  The time-

dependent increase of current during washout is fit with a single-exponential relaxation, 

which provides an estimate of the first-order dissociation rate constant H
offk  for the high-

affinity stimulated state.  Figure 4.4B and C show inhibition plots for the indicated amino 

acids in the tonic and stimulated states, respectively. Each data set is fit by a single 

binding isotherm with a Hill coefficient of 1.  The trend for each condition is that serial 

reduction in electrostatic potential from the face of the aromatic ring at residue 401 leads 

to a monotonic increase in the inhibition constant iK  (table 4.1), with the trifluorinated 



 
94 

derivative increasing iK  by 50-fold.  Although the stimulated state consistently shows a 

higher affinity for TTX, both states are similarly affected by fluorination.  

 

Figure 4.4.  Effect of fluorination on the dose-response relationship for TTX block.  A) Cumulative dose-

response experiment and washout of TTX.  Peak currents simulated at 2 Hz in the presence of bath alone or 

bath + TTX. Three minutes were given between concentration exchange and stimulation, allowing the 

channels to recover to the tonic state (represented as hash marks).  Rate and equilibrium constants of block 

(table 4.1) were determined as described in Santarelli, et al.32  In most cases a full dose-response 

relationship was obtained for each oocyte. The washout rates were fit well by a single exponential 

relaxation.  B) TTX inhibition of Nav1.4 in the tonic state.  C) TTX inhibition of Nav1.4 in the stimulated 

high-affinity state. 
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Estimates of rate constants for TTX block derived from these experimental data are 

shown in table 4.1.  The association rate constant ( onk ) undergoes a 17-fold decrease as 

residue 401 is converted from phenylalanine to 3,4,5-F3-phenylalanine, whereas the 

dissociation rate constant ( offk ) increases threefold. The general direction of the change 

in each rate constant is consistent with the progressive loss in TTX affinity with 

successive fluorination.  Figure 4.5 shows the effect of fluorination on TTX binding 

energies derived from experimental iK  values, plotted against the relative TTX binding 

energies obtained from an ab initio model of TTX binding to an increasingly fluorinated 

benzene ring (table 4.2).  Consistent with a cation-π interaction, each added fluorine 

results in a stepwise increase in the relative free energy of the TTX-bound state, for both 

the experimental results and the theoretical model. The identical effect of fluorination on 

both tonic and stimulated states strongly suggests that both states involve the same 

physical interaction between TTX and the channel. The higher affinity of the stimulated 

state therefore represents a separate contribution to the binding energy, independent of 

the cation-π interaction we have been testing.  A parsimonious interpretation of the data 

is that the nanomolar affinity of TTX for NaV1.4 depends in part on a substantial cation-π 

interaction with an aromatic side chain at position 401. 
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Table 4.2.  Theoretical binding energies of TTX with fluorinated derivatives of benzene.*   
 

  Hydration Energies    
 ΔE (gas) TTX Fn-Benzene Complex ΔGsolv ΔGbinding ΔΔG 

Benzene  −7.91 −89.88 −1.59 −77.87 13.6 5.69 0 
3-F-Benzene −5.14 −89.88 −2.09 −79.95 12.02 6.88 1.19 
3,5-F2-Benzene −2.14 −89.88 −2.22 −81.51 10.59 8.45 2.76 
3,4,5-F3-Benzene 0.14 −89.88 −2.79 −82.96 9.71 9.85 4.16 

 

Discussion 

Guanidinium toxins like TTX are potent blockers of voltage-gated Na+ channels and have 

been invaluable both in the cloning of Na+ channels33,34 and in the exploration of 

mechanisms of cation permeation. Early studies proposed a model whereby the 

guanidinium moiety of TTX acts as a mimic of a Na+ ion and blocks at the outer entrance 

to the selectivity filter.35,36  In the absence of an atomic structure of a Na+ channel, the 

TTX binding site with its numerous contact points has been helpful in modeling both the 

external vestibule and the selectivity filter of voltage-gated Na+ channels. Many such 

pore models are based on existing K+ channel structures, which are refined further by 

                                                
* Calculations described in Santarelli et al.32 The geometry and orientation of TTX binding was set by a 

gas-phase optimization, followed by aligning TTX with the structure in Figure 4.6 to know which positions 

to fluorinate. All values are in kcal/mol.  ΔE is the binding energy of TTX to the benzene derivatives (Fn-

Benzene, where n = number of fluorines) calculated in the gas phase. The energy caused by fluorination at 

3-F-Benzene was calculated from the average energies of both meta-positions on the ring.  The hydration 

energies for TTX, benzene derivatives, and the TTX-benzene complex were calculated using a Poisson-

Boltzmann equation solver.  ΔGsolv is the change in solvation free energy caused by TTX binding to the 

benzene derivative. ΔGbinding =ΔE +ΔGsolv is the Gibbs free energy of TTX binding, and ΔΔG is the effect 

of fluorination on TTX binding. 
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consideration of the Na+ channel point mutations that affect permeation and pore 

block.1,37-40  Among the extracellular residues that affect toxin block, NaV1.4 Tyr401, and 

the homologous residue in other Na+ channels, plays a unique role in discriminating 

between TTX-sensitive and TTX-resistant channels.7,9-11  Only TTX-sensitive channels 

have an aromatic residue (phenylalanine or tyrosine) at this position.  While other 

residues in the extracellular vestibule of the pore, especially charged residues, may affect 

TTX block dramatically when mutated, they tend to be highly conserved among all Na+ 

channel isoforms. Although the importance of a phenylalanine or tyrosine residue at this 

discriminatory site is agreed universally, its energetic contributions to TTX binding are 

not well understood. Here it was asked whether a cation-π interaction involving residue 

401 contributes to TTX binding energy.  Because an optimal cation-π interaction requires 

a close approach of the cation to the face, not the edge, of the aromatic ring, evidence for 

such an interaction adds another layer of structural information, in that the aromatic must 

orient towards the permeation pathway where it may interact electrostatically with 

cationic pore blockers and permeant cations alike.  

The well-established strategy that was employed to test for a cation-π interaction 

involved the successive fluorination of the aromatic ring26-30,41 and depends on the 

assumption that the predominant effect of fluorine substitution is to decrease the negative 

electrostatic potential on the face of the aromatic residue.  The involvement of a cation-π  

interaction is in complete accord with our results.  As expected, each added fluorine atom 

impacts iK  with a roughly equal increase in the free energy of binding (figure 4.5).  The 

magnitude of the effect, 2.2 kcal/mol for trifluorinating the aromatic ring, is roughly half 

that observed in previous studies of organic ligands binding to ion channels.26,27,30  This 
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decrease may be a consequence of the delocalized charge of the relatively large TTX 

molecule—the diffuse positive charge would tend to have a reduced electrostatic 

attraction to the aromatic ring.  Although essential to high-affinity block, the cation-π 

component of binding cannot account for all of the binding energy, a fact evident from an 

examination of the consequence of trifluorinating the phenylalanine incorporated at 

position 401.  Earlier studies showed that trifluorobenzene is a good model for an 

aromatic that has little or no electrostatic binding ability,42,43 but the data presented here 

show that trifluorination of the phenylalanine at position 401 still results in a channel 

with low micromolar affinity for TTX.  This observation is unsurprising given the 

multitude of possible interactions between TTX and its binding pocket. 

In order to explore a hydrophobic contribution to TTX binding, the Tyr401Leu mutation 

was made.  Leucine is slightly more hydrophobic than phenylalanine.44  The Tyr401Leu 

mutant has a comparable affinity for TTX as that of the trifluorinated derivative of 

phenylalanine, 2.1 versus 0.97 µM, respectively, in the tonic state (table 4.1). This result 

suggests that hydrophobic contributions alone cannot generate a high-affinity binding site 

for TTX, and therefore the 50-fold increase of iK  caused by trifluorinating the 

phenylalanine incorporated at position 401 is due primarily to a loss of electrostatic 

attractiveness of the aromatic ring, namely a cation-π interaction. Note also that the 

effects of these two mutations are in stark contrast to the dramatic loss of TTX affinity 

seen by replacement with more polar amino acids such as cysteine with a iK  of 108 µM 

(table 4.1) or glutamate with a iK  of 170 µM.7  This result may seem surprising at first 

glance, especially given that the monopole negative charge of glutamate might be 

expected to attract a cation at least as well as the quadrupole potential on the aromatic 
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face of phenylalanine. For example, a highly conserved ring of four basic residues, two 

glutamates and two aspartates, produces an electrostatic potential in excess of −100 mV 

in the extracellular mouth of Na+ channels.45  This ring of negative charge is believed to 

attract both permeant cations and positively charged blockers like TTX.  An additional 

glutamate at position 401 would also be expected to attract TTX.  Why, then, does the 

Tyr401Glu mutation reduce the affinity of TTX binding? 

For binding to be optimal, there has to be a balance between the electrostatic attraction 

between the toxin and the side chain and the energies of hydration of both TTX and its 

binding site.46,47  Certainly, the dehydration cost is much less for an aromatic side chain 

than for the anionic glutamate.  As such, the innately weaker TTX•••aromatic interaction 

could, after considering solvation, contribute more to binding than the instrinsically 

stronger TTX•••carboxlate interaction. Although this thermodynamic principle may 

account in part for TTX’s preference for tyrosine or phenylalanine over glutamate, it is 

not clear whether this argument can explain the low affinity for the Tyr401Cys mutant or 

whether, for example, some mutations of this residue produce local conformational 

changes that disrupt TTX binding.  Evidence for this possibility is that the Tyr401Cys 

mutant loses its use dependence (table 4.1). The possibility of conformational disruption 

of the binding site does not, however, invalidate the use of fluorinated phenylalanine side 

chains because of the subtle nature of the mutations, by comparison with Tyr401Cys for 

example, and the simple monotonic relationship between TTX binding energy and the 

number of fluorine atoms substituted onto the aromatic ring (figure 4.5).  
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Figure 4.5.  Effect of fluorination on free energy of TTX binding. TTX binding energy relative to 

unfluorinated phenylalanine at position 401 is plotted against the calculated TTX binding energy between 

TTX and a benzene ring (table 4.2). Fluorinating the aromatic ring monotonically increases the relative free 

energy of the bound state. The change in binding energy is nearly identical for both the low- and high-

affinity states. 

 

The effect of fluorination of the phenylalanine at position 401 was identical for the tonic 

and stimulated states in both the trend and magnitude of binding free energy (figure 4.5). 

Although few molecular details are available on the use-dependent mechanism of TTX 

block, this result suggests that the critical TTX:aromatic complex has the same structure 

in both states. The different affinities of the tonic and stimulated states are therefore due 

to other energetic factors, such as the electrostatic repulsion between the toxin and 

cations trapped within the permeation pathway.14,15 
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Kinetic analysis reveals that withdrawing electrostatic potential from the aromatic face of 

the aromatic at position 401 primarily affects the association rate constant onk  of TTX 

block (table 4.1). A similar conclusion was reached previously by conventional 

mutagenic analysis of this and most other residues in the external vestibule. That is, 

reduction of TTX affinity often (but not always) involves a reduction of onk  rather than 

an increase of offk .7,8  Larger effects on onk  than offk  were also reported for block of ShB 

by the peptide charybdotoxin in response to charge-altering mutations.48  The principal 

similarity in these studies is that the mutations were designed to alter the electrostatics of 

block using either standard mutagenesis or, in this study, changes of electrostatic 

potentials on the surface of an aromatic ring.  Moreover, the empirical association rate 

constants in all of these studies are well below the Smoluchowski limit expected for 

diffusional collision between a small blocker and an ion channel,49 indicating that the 

observed blocking rate is not diffusion limited. The challenge in interpreting these results 

is that alteration of the electrostatic attraction between a ligand and its binding site might 

be expected to affect both association and dissociation rate constants.  

The role of a cation-π interaction in the blocking equilibrium is clear (figure 4.5), 

whether a TTX-aromatic complex is involved in the blocked state or in a transient 

intermediate.  The blocked state itself likely includes hydrogen bonds and other short-

range interactions.  Also, a recent study of toxin block of a K+ channel raises the 

possibility that the conformation of the binding site and the toxin might both change with 

the toxin binds.50  
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In figure 4.6 a snapshot of one possible configuration of the encounter complex was 

visualized.  The coordinates of the pore mouth for NaV1.4 from the model of  Lipkind 

and Fozzard were used.39  In an alternative model the aromatic ring of Tyr401 was not 

oriented to face the permeation pathway51 and was therefore inconsistent with the data in 

this chapter.  To model the configuration in figure 4.6, first the structure of TTX and its 

minimum-energy conformation in complex with benzene were optimized using high-

level ab initio calculations. The benzene of this complex was then aligned with the 

aromatic ring of Tyr401.  Because of sixfold symmetry of the ring, there are six possible 

orientations of the TTX-benzene complex with Tyr401. The minimum energy orientation 

was estimated using molecular mechanics.  This structure is shown from above (figure 

4.6A) and from the side (figure 4.6B).  Notice that the guanidinium group, besides being 

in close apposition to the aromatic face of Tyr401, is pointed downward towards the 

deeper residues of the selectivity filter.  Further study will reveal whether this complex 

prevents Na+ ion flux, either sterically or electrostatically, or whether the blocked state 

involves a subsequent movement of the toxin into a deeper position where it would plug 

the pore.  Our model of block nevertheless supports the idea that a fundamental role of 

the TTX-aromatic interaction is to orient the toxin optimally to block the channel. 
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Figure 4.6.  Model of TTX docking in the pore mouth of Nav1.4. A) Top view of TTX interacting with the 

pore loops of domains DI – DIV in the Lipkind-Fozzard model.39  This structure represents one possible 

configuration of the encounter complex. Note the guanidinium group of TTX in apposition with the face of 

the aromatic ring of Tyr401.  B) Side view of TTX in the pore. 

 

Conclusion 

The conclusions of the present study are threefold.  First, it was demonstrated that the 

high-affinity TTX block supported by a phenylalanine or a tyrosine at position 401 is 

energetically based on a cation-π interaction between the TTX and the aromatic face of 

the side chain. These results therefore serve to answer a long-standing puzzle regarding 

the conserved nature of a pore domain aromatic in high-affinity Na+ channel isoforms.  

Secondly, it was shown that the side chain at Tyr401 presents its aromatic face toward the 

permeation pathway where it can interact favorably with TTX and other cations. These 

results place geometric constraints on this side chain both in current structural models 

and in future atomic level structures of the sodium channel pore.  Lastly, though 
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presented in this thesis after chapter 3, in which Ca2+ was found to bind to NaV1.4 

through a cation-π interaction using similar techniques,52 these results actually represent 

the first published application of the in vivo nonsense-suppression method for the 

incorporation of unnatural amino acids into a voltage-gated Na+ channel.  This work 

therefore serves as proof of principle to pave the way for future experiments utilizing this 

powerful technique to explore a variety of structural and mechanistic issues concerning 

sodium channels, including the energetics that underlie cationic blockade by 

antiarrhythmia, antiepilepsy, and analgesic drugs. 

 

Methods 

The work in this chapter was a collaborative effort that included important contributions 

from Dr. Vincent Santarelli, Dr. Chris Ahern, and Dr. Richard Horn of the Jefferson 

Medical College in Philadelphia, PA.  Detailed methods for the experiments discussed in 

this chapter that were not performed by the author can be found in Santarelli et al.32 

 

Unnatural Amino Acids and Molecular Biology 

Phenylalanine-dCA, 3,5-F2-phenylalanine-dCA, and 3,4,5-F3-phenylalanine-dCA were 

obtained as described in chapter 2.  3-F-Phenylalanine was a gift from Dr. Niki 

Zacharias, a former graduate student in the Dougherty laboratory.  These aminoacylated 

dinucleotides were ligated to a modified tRNA from Tetrahymena thermophila, THG73, 

using T4 RNA ligase (New England Biolabs, Ipswich, MA).25,53 



 
105 

Acknowledgements 

We thank Mary Y. Ryan for help with oocytes and molecular biology. Supported by 

grants from the NIH (GM079427and NS34407). 

 



 
106 

References 

(1) Dudley, S. C., Jr.; Chang, N.; Hall, J.; Lipkind, G.; Fozzard, H. A.; French, R. J. 

J. Gen. Physiol. 2000, 116, 679-90. 

(2) Yu, F. H.; Catterall, W. A. Genome Biol. 2003, 4, 207. 

(3) Goldin, A. L.; Barchi, R. L.; Caldwell, J. H.; Hofmann, F.; Howe, J. R.; Hunter, J. 

C.; Kallen, R. G.; Mandel, G.; Meisler, M. H.; Netter, Y. B.; Noda, M.; Tamkun, M. M.; 

Waxman, S. G.; Wood, J. N.; Catterall, W. A. Neuron 2000, 28, 365-8. 

(4) Noda, M.; Suzuki, H.; Numa, S.; Stuhmer, W. FEBS Lett. 1989, 259, 213-6. 

(5) Terlau, H.; Heinemann, S. H.; Stuhmer, W.; Pusch, M.; Conti, F.; Imoto, K.; 

Numa, S. FEBS Lett. 1991, 293, 93-6. 

(6) Kontis, K. J.; Goldin, A. L. Mol. Pharmacol. 1993, 43, 635-44. 

(7) Penzotti, J. L.; Fozzard, H. A.; Lipkind, G. M.; Dudley, S. C., Jr. Biophys. J. 

1998, 75, 2647-57. 

(8) Boccaccio, A.; Moran, O.; Imoto, K.; Conti, F. Biophys. J. 1999, 77, 229-40. 

(9) Satin, J.; Kyle, J. W.; Chen, M.; Bell, P.; Cribbs, L. L.; Fozzard, H. A.; Rogart, R. 

B. Science 1992, 256, 1202-5. 

(10) Backx, P. H.; Yue, D. T.; Lawrence, J. H.; Marban, E.; Tomaselli, G. F. Science 

1992, 257, 248-51. 

(11) Chen, L. Q.; Chahine, M.; Kallen, R. G.; Barchi, R. L.; Horn, R. FEBS Lett. 1992, 

309, 253-7. 

(12) Dougherty, D. A. Science 1996, 271, 163-8. 

(13) Baer, M.; Best, P. M.; Reuter, H. Nature 1976, 263, 344-5. 

(14) Salgado, V. L.; Yeh, J. Z.; Narahashi, T. Ann. N. Y. Acad. Sci. 1986, 479, 84-95. 



 
107 

(15) Conti, F.; Gheri, A.; Pusch, M.; Moran, O. Biophys. J. 1996, 71, 1295-312. 

(16) Satin, J.; Limberis, J. T.; Kyle, J. W.; Rogart, R. B.; Fozzard, H. A. Biophys. J. 

1994, 67, 1007-14. 

(17) Weigele, J. B.; Barchi, R. L. FEBS Lett. 1978, 95, 49-53. 

(18) Heinemann, S. H.; Terlau, H.; Stuhmer, W.; Imoto, K.; Numa, S. Nature 1992, 

356, 441-3. 

(19) Schlief, T.; Schonherr, R.; Imoto, K.; Heinemann, S. H. Eur. Biophys. J. 1996, 25, 

75-91. 

(20) Chiamvimonvat, N.; Perez-Garcia, M. T.; Tomaselli, G. F.; Marban, E. J. Physiol. 

1996, 491 ( Pt. 1), 51-9. 

(21) MacKinnon, R.; Latorre, R.; Miller, C. Biochemistry 1989, 28, 8092-9. 

(22) Favre, I.; Moczydlowski, E.; Schild, L. Biophys. J. 1996, 71, 3110-25. 

(23) Ma, J. C.; Dougherty, D. A. Chem. Rev. 1997, 97, 1303-1324. 

(24) Gallivan, J. P.; Dougherty, D. A. Proc. Natl. Acad. Sci. USA 1999, 96, 9459-64. 

(25) Nowak, M. W.; Gallivan, J. P.; Silverman, S. K.; Labarca, C. G.; Dougherty, D. 

A.; Lester, H. A. Methods Enzymol. 1998, 293, 504-29. 

(26) Beene, D. L.; Brandt, G. S.; Zhong, W.; Zacharias, N. M.; Lester, H. A.; 

Dougherty, D. A. Biochemistry 2002, 41, 10262-9. 

(27) Lummis, S. C.; D, L. B.; Harrison, N. J.; Lester, H. A.; Dougherty, D. A. Chem. 

Biol. 2005, 12, 993-7. 

(28) McMenimen, K. A.; Petersson, E. J.; Lester, H. A.; Dougherty, D. A. ACS Chem. 

Biol. 2006, 1, 227-34. 



 
108 

(29) Zhong, W.; Gallivan, J. P.; Zhang, Y.; Li, L.; Lester, H. A.; Dougherty, D. A. 

Proc. Natl. Acad. Sci. USA 1998, 95, 12088-93. 

(30) Ahern, C. A.; Eastwood, A. L.; Lester, H. A.; Dougherty, D. A.; Horn, R. J. Gen. 

Physiol. 2006, 128, 649-57. 

(31) Leo, A.; Hansch, C.; Elkins, D. Chem. Rev. 1971, 71, 525-616. 

(32) Santarelli, V. P.; Eastwood, A. L.; Dougherty, D. A.; Horn, R.; Ahern, C. A. J. 

Biol. Chem. 2007, 282, 8044-51. 

(33) Noda, M.; Ikeda, T.; Kayano, T.; Suzuki, H.; Takeshima, H.; Kurasaki, M.; 

Takahashi, H.; Numa, S. Nature 1986, 320, 188-92. 

(34) Noda, M.; Shimizu, S.; Tanabe, T.; Takai, T.; Kayano, T.; Ikeda, T.; Takahashi, 

H.; Nakayama, H.; Kanaoka, Y.; Minamino, N.; et al. Nature 1984, 312, 121-7. 

(35) Hille, B. J. Gen. Physiol. 1971, 58, 599-619. 

(36) Hille, B. Biophys. J. 1975, 15, 615-9. 

(37) Bruhova, I.; Zhorov, B. S. Biophys. J. 2005, 89, 1020-9. 

(38) Lipkind, G. M.; Fozzard, H. A. Biochemistry 2000, 39, 8161-70. 

(39) Lipkind, G. M.; Fozzard, H. A. Mol. Pharmacol. 2005, 68, 1611-22. 

(40) Penzotti, J. L.; Lipkind, G.; Fozzard, H. A.; Dudley, S. C., Jr. Biophys. J. 2001, 

80, 698-706. 

(41) Morikubo, N.; Fukuda, Y.; Ohtake, K.; Shinya, N.; Kiga, D.; Sakamoto, K.; 

Asanuma, M.; Hirota, H.; Yokoyama, S.; Hoshino, T. J. Am. Chem. Soc. 2006, 128, 

13184-94. 

(42) Mecozzi, S.; West, A. P., Jr.; Dougherty, D. A. J. Am. Chem. Soc. 1996, 118, 

2307-2308. 



 
109 

(43) Williams, J. H. Accounts Chem. Res. 1993, 26, 593-598. 

(44) Radzicka, A.; Pedersen, L.; Wolfenden, R. Biochemistry 1988, 27, 4538-41. 

(45) Hui, K.; McIntyre, D.; French, R. J. J. Gen. Physiol. 2003, 122, 63-79. 

(46) Eisenman, G. Biophys. J. 1962, 2, 259-323. 

(47) Eisenman, G.; Horn, R. J. Membr. Biol. 1983, 76, 197-225. 

(48) Escobar, L.; Root, M. J.; MacKinnon, R. Biochemistry 1993, 32, 6982-7. 

(49) Camacho, C. J.; Weng, Z.; Vajda, S.; DeLisi, C. Biophys. J. 1999, 76, 1166-78. 

(50) Lange, A.; Giller, K.; Hornig, S.; Martin-Eauclaire, M. F.; Pongs, O.; Becker, S.; 

Baldus, M. Nature 2006, 440, 959-62. 

(51) Tikhonov, D. B.; Zhorov, B. S. Biophys. J. 2005, 88, 184-97. 

(52) Santarelli, V. P.; Eastwood, A. L.; Dougherty, D. A.; Ahern, C. A.; Horn, R. 

Biophys. J. 2007, 93, 2341-9. 

(53) Nowak, M. W.; Kearney, P. C.; Sampson, J. R.; Saks, M. E.; Labarca, C. G.; 

Silverman, S. K.; Zhong, W.; Thorson, J.; Abelson, J. N.; Davidson, N.; et al. Science 

1995, 268, 439-42. 

 



 
110 

 

C h a p t e r  V 

 

ELECTROSTATIC CONTRIBUTIONS OF AROMATIC RESIDUES IN THE LOCAL 

ANESTHETIC RECEPTOR OF VOLTAGE-GATED SODIUM CHANNELS 

 

Antiarrhythmics, anticonvulsants, and local anesthetics target voltage-gated Na+ 

channels, decreasing excitability of nerve and muscle cells.  Channel inhibition by 

members of this family of cationic, hydrophobic drugs relies on the presence of highly 

conserved aromatic residues in the sixth pore-lining segment (S6) of the fourth 

homologous domain (D4) of the channel.  It was proposed that these aromatic residues 

functioned in channel inhibition though a cation-π interaction with lidocaine.  To test this 

hypothesis, the in vivo nonsense-suppression method was employed to incorporate a 

series of unnatural phenylalanine derivatives designed to systematically reduce the 

negative electrostatic potential on the face of the aromatic ring and thus decrease the 

favorable interaction between the aromatic and the cation.  In contrast to standard point 

mutations at the same sites, these subtly modified amino acids preserve the wild-type 

voltage dependence of channel activation and inactivation.  Although these phenylalanine 

derivatives have no effect on low-affinity tonic inhibition by lidocaine or its permanently 

charged derivative QX-314 at any of the substituted sites, high-affinity use-dependent 

inhibition displays substantial cation-π energetics for one residue only, Phe1579 in rat 

NaV1.4.  Suppression at Phe1579 with cyclohexylalanine, for example, strongly reduces 

use-dependent inhibition and speeds recovery of lidocaine-engaged channels. Channel 
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block by the neutral local anesthetic benzocaine is unaffected by the distribution of π 

electrons at Phe1579, indicating that our aromatic manipulations expose electrostatic 

contributions to channel inhibition.  These results fine tune our understanding of local 

anesthetic inhibition of voltage-gated Na+ channels and will help the design of safer and 

more salutary therapeutic agents.   

 

Introduction 

Voltage-gated Na+ channels underlie the upstroke and propagation of the action potential 

in excitable cells of nerve and muscle, making them ideal targets in pharmacological 

interventions for cardiac arrhythmias, epilepsy, and pain.  Antiarrythmics, 

anticonvulsants, and local anesthetics comprise a family of Na+ channel inhibitors that 

share chemical and structural similarity.  All Na+ channel isoforms, including the cardiac 

channel NaV1.5, are inhibited by these compounds,1-3 with differences in sensitivity 

largely attributed to divergent biophysical aspects of gating kinetics.3  At physiological 

pH these inhibitors are typically lipid-soluble cations that are highly efficacious in the 

treatment of hyperexcitability disorders due to their preference for inactivated channels, a 

conformational state that is prevalent during high-frequency firing of action potentials.  

This state-dependent inhibition is rationalized by models that propose that inactivation 

exposes a high-affinity binding site.   

A general deficiency of this class of compounds is their lack of specificity.  For example, 

the antiepileptic drug carbamezepine may adversely effect cardiac rhythms,4,5 but it has 

also been used for pain management.6  Multiple sites of action, whether expressly 
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intended or not, are common to many of these inhibitors and arise from the highly 

conserved nature of both the compounds and their binding site within the channel where 

the three aromatic residues of relevance for the present study are 100% conserved across 

eukaryotic voltage-gated Na+ channel isoforms.   

An abundance of experimental data implicates pore-lining residues of the S6 segment of 

D4 of the Na+ channel α subunit in the binding of local anesthetics.  Alanine scanning 

mutagenesis exposed the crucial role of two D4/S6 aromatics, Phe1579 and Tyr1586 (rat 

NaV1.4 numbering), in the block by the anticonvulsant etidocaine and the quaternary 

amine QX-314.2  Further study revealed a near universal importance of these two 

aromatic residues in the inhibition of Na+ channels by the class 1A and 1B antiarrhythmic 

drugs and anticonvulsants.7 

These two residues are ideally placed to interact with drugs that inhibit channel function.  

Na+ channel pore domain models based on the crystal structures of K+ channels predict 

that both residues face the inner vestibule of the permeation pathway where they could 

interact readily with cationic blockers and are in close proximity to the selectivity filter 

where they might influence Na+ permeation.8,9  The mechanistic details of local 

anesthetic action, while poorly resolved, may involve electrostatic repulsion of Na+ ions 

at the selectivity filter,10 pore occlusion,11 stabilization of nonconducting states of the 

channel, a combination of all three mechanisms, or other possibilities such as gating 

charge immobilization.12  The additional relevance of these aromatic residues to channel 

function is readily seen in experiments where outright side chain replacement, for 

example with either alanine or cysteine, not only disrupts inhibition by local anesthetics, 
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but also perturbs the biophysics of channel gating,2,13-15 possibly obscuring the 

interpretation of their involvement in channel inhibition.   

How do neutral aromatic residues contribute to channel inhibition by organic cations? 

One proposed but untested possibility is that local anesthetics have an electrostatic 

attraction to the negative electrostatic potential on the face of pore-lining aromatic side 

chains,1 a cation-π interaction.  This hypothesis can be tested directly using the in vivo 

nonsense-suppression method, which allows for the site-directed incorporation of subtly 

modified variants of the aromatic amino acid phenylalanine.16  If a cation-π mechanism 

contributes to the attraction between a cationic blocker and the aromatic side chain, 

reduction of π electron density on the face of the aromatic, for example by fluorinating 

the aromatic ring, will reduce the binding affinity.17  A benefit of this approach is that 

fluorination does not substantially alter the polarizability, size, shape, or hydrophobicity 

of the side chain.17,18  Therefore, this benign manipulation of side chain structure obviates 

the inconvenient functional consequences of standard mutagenesis.  This strategy has 

been applied successfully in Na+ channels to test for cation-π interactions between an 

extracellular aromatic residue and either tetrodotoxin19 or calcium ions.20 

In this study progressively fluorinated phenylalanine derivatives and cyclohexylalanine 

were incorporated at three positions of the D4/S6 segment of the rat NaV1.4 voltage-gated 

Na+ channel, and in each case channels showed robust expression with normal voltage 

dependence and kinetics of both activation and fast inactivation.  Only one site, Phe1579, 

exhibited a strong cation-π interaction with lidocaine.  Furthermore, it was found that 

channel inhibition by the neutral local anesthetic benzocaine was oblivious to 

manipulations that affected the electrostatic potential on the aromatic face of Phe1579.  
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These experiments establish a substantial electrostatic component in the binding energy 

between cationic local anesthetics and a single pore-lining aromatic. This careful 

dissection of the energetic factors underlying the binding of these inhibitory compounds 

to Na+ channels holds promise for the synthesis of more specific therapeutic agents for 

treatment of disorders of hyperexcitability. 

 

Results 

While a cation-π interaction has been proposed to occur between local anesthetics and 

D4/S6 aromatics,1 this hypothesis remains entirely unsubstantiated and was therefore 

targeted directly in this study.  Lidocaine, like most local anesthetics, can exist in two 

forms, neutral or cationic.  At physiological pH roughly three-quarters of lidocaine 

molecules are protonated, and this charged form is a stronger pore blocker than the 

neutral molecule.21-23  Figure 5.1A shows the protonated form of lidocaine and a color-

coded map of the electrostatic potential on the surface of the molecule.  The positive 

charge has an asymmetric distribution focused most strongly (blue) near the protonated 

nitrogen, positioned to the right in each panel of figure 5.1A.  
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Figure 5.1.   Lidocaine and the Na+ channel pore. A) Structure and the electrostatic surface of protonated 

lidocaine.  Left panel shows the structure of lidocaine optimized at the HF/6-31++G** level, with carbon, 

hydrogen, nitrogen and oxygen shown as grey, white, blue and red, respectively.  Right panel shows the 

results of an ab initio determination of the electrostatic surface of protonated lidocaine in water.  The red to 

blue spectrum shown on the scale bar corresponds to a range of 0 to +150 kcal/mol.  B) Side view of a 

putative local anesthetic receptor in a voltage-gated Na+ channel.  The image is adapted from the Na+ 

channel pore model of Lipkind and Fozzard,8 as described in the text. 

 

Figure 5.1B shows a side view of a portion of the putative local anesthetic binding site in 

a model of the voltage-gated skeletal muscle Na+ channel rat NaV1.4 adopted from 

Lipkind and Fozzard.8  The pore helices and extracellular pore loops of domains D2-D4 

and the opposing transmembrane S6 segments of domains D2 (silver) and D4 (orange) 
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are shown in an open-channel conformation.  Note the proximity of the residues Phe1579 

and Tyr1586 to each other and to the selectivity filter above them.  Figure 5.1B is 

intended to represent a side view of the aqueous vestibule in which lidocaine binds, and 

to illustrate that lidocaine is large enough (approximately 11 x 6 Å) to interact 

simultaneously with Phe1579 and Tyr1586 in this structural model.  By contrast Tyr1574 

is on the “backside” of the S6 segment facing away from the permeation pathway. 

Although standard point mutants of Phe1579 typically alter the channel’s biophysical 

properties,2,13,15 the unnatural mutants generated by in vivo nonsense suppression resulted 

in channels that were indistinguishable from wild-type NaV1.4 with respect to kinetics of 

activation and inactivation.  Figure 5.2A shows families of normalized Na+ currents from 

oocytes expressing wild-type NaV1.4 or channels with the indicated amino acid at 

position 1579.  Inward currents shown in figure 5.2A were elicited in increments of 5 mV 

depolarizations from −30 to +10 mV from a holding potential of −100 mV.  Figure 5.2A, 

lower right panel, shows that oocytes coinjected with Phe1579TAG cRNA and a tRNA 

lacking an appended amino acid (dCA-tRNA) did not generate measurable Na+ currents, 

ruling out counterfeit channel expression due to enzymatic manipulation of the coinjected 

tRNA within the oocyte.  Insets in figure 5.2A show the consequences of trifluorination 

on the electrostatic potential of benzene, where red and blue represent negative and 

positive, respectively, and green is neutral.  Peak conductance-voltage relationships for 

activation are shown in figure 5.2B for wild-type NaV1.4 or channels with the indicated 

amino acids at the 1579 position.  There was no change in either voltage dependence or 

slope of activation for any of the mutants (table 5.1).  Moreover, replacement of Phe1579 

with either serially fluorinated derivatives of phenylalanine or nonaromatic 
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cyclohexylalanine resulted in insignificant effects on steady-state inactivation (figure 

5.2C).  We also incorporated the same series of side chains at Tyr1586, a site roughly two 

turns downstream along the S6 α helix.  Like the 1579 site, the incorporation of unnatural 

amino acids was well tolerated, producing channels with healthy expression and normal 

gating (table 5.1).  

A phenomenological hallmark of local anesthetic action on Na+ channels is a 

hyperpolarizing shift of the steady-state inactivation relationship.21,22,24  To test a possible 

role for cation-π energetics at Phe1579, oocytes expressing the indicated channel type 

were incubated for 5 minutes in 200 µM lidocaine at −100 mV and then steady-state 

inactivation was measured (figure 5.2D).  Consistent with previous studies, incubation 

with lidocaine caused a roughly −8 mV shift for Phe1579 channels,24,25 but this effect 

was serially diminished with each added fluorine to a minimum of −2.5 mV for either 

3,4,5-F3-phenylalanine or cyclohexylalanine incorporated at position 1579 (inset).  These 

results suggest that the reduction of negative electrostatic potential on the aromatic face 

of the residue at position 1579 weakens the binding of lidocaine to inactivated channels.   
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Figure 5.2.  Unperturbed gating properties of NaV1.4 channels containing unnatural amino acids at 1579.  

A) Families of Na+ currents for the indicated channel types elicited by 5 mV steps from −30 to +25 mV 

from a holding potential of −100 mV, scale bar is 5 ms.  Insets show the electrostatic potentials of benzene 

and trifluorobenzene with red negative (−20 kcal/mol) and blue positive (+20 kcal/mol).  No currents were 

seen when cRNA from Phe1579TAG was coinjected with dCA-tRNA.  B) Peak conductance-voltage 

relationships for indicated side chains at the 1579 site.  C) Steady-state inactivation curves generated from 

the inset protocol. Holding potential −100 mV, 500 ms prepulse, 2 ms reset at −100 mV, −10 mV test 

potential. D) Same protocol as C, after a 5 minute incubation with 200 µM lidocaine.  Inset summarizes the 

shift in steady-state voltage dependence caused by lidocaine for the indicated channel types, asterisk 

indicates P < 0.05.  
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Table 5.1.  Boltzmann fits of normalized activation (figure 5.2B) and steady-state inactivation (figure 5.2C) 

for wild-type and mutant channels.* 

 G-V Steady-state Inactivation 
 V0.5 K V0.5 K 

NaV1.4 −23.5 ± 0.8 (8) 3.1 ± 0.2 −46.4 ± 1.1 (9) 4.3 ± 0.4 
Phe1579Phe −21.8 ± 0.9 (9) 3.4 ± 0.6 −46.4 ± 0.7 (9) 5.3 ± 0.3 

Phe1579F-Phe −21.0 ± 0.9 (9) 3.8 ± 0.5 −46.6 ± 0.9 (9) 5.1 ± 0.4 
Phe1579F2-Phe −19.8 ± 1.0 (7) 3.5 ± 0.4 −44.0 ± 0.8 (7) 5.6 ± 0.4 
Phe1579F3-Phe −23.0 ± 0.8 (10) 3.1 ± 0.2 −43.0 ± 0.6 (9) 5.3 ± 0.2 

Phe1579Cha −23.2 ± 0.6 (9) 3.2 ± 0.2 −42.8 ± 1.0 (4) 5.5 ± 0.3 
Tyr1586Phe −22.8 ± 0.5 (11) 3.6 ± 0.2 −46.9 ± 1.9 (5) 4.4 ± 0.7 

Tyr1586F-Phe −21.0 ± 0.7 (9) 4.1 ± 0.2 −46.9 ± 0.7 (6) 4.6 ± 0.9 
Phe1579F2-Phe −25.6 ± 0.7 (5) 3.2 ± 0.2 −49.8 ± 0.7 (4) 4.1 ± 0.2 
Tyr1586F3-Phe −24.5 ± 0.7 (5) 4.0 ± 0.6 −47.9 ± 2.0 (4) 4.6 ± 0.6 

Phe1579Cha −26.9 ± 0.6 (5) 4.9 ± 0.2 −49.1 ± 1.7 (5) 5.4 ± 0.4 
 

Tonic Inhibition 

Local anesthetics can interact with Na+ channels under either stimulated or resting 

conditions, the latter with lower affinity.  Systematic replacement of the equivalents of 

NaV1.4 Phe1579 and Tyr1586 in neuronal isoforms with nonaromatic residues reduces 

                                                
* Number of cells indicated in parentheses.  The normalized currents were fit by 

€ 

I(V )
Imax

= 1
(1+ e

(V −V0.5 )
k )

, where V is membrane potential, V0.5  
is the midpoint, and k is a slope 

factor.  Perfusion of oocytes expressing wild-type NaV1.4 with 200 µM lidocaine resulted in a 8 mV 

hyperpolarizing shift in the V
0.5 

of steady-state inactivation from −46.0 ± 0.6 to −53.5 ± 1.6 mV (P = 0.006, 

t-test). This lidocaine-induced shift was eliminated in the trifluorinated mutant 3,4,5-F3-phenylalanine at 

position 1579, −43.0 ± 0.6 versus −45.0 ± 1.4 mV (P = 0.24), for control and lidocaine saline, respectively.  

No such relief was seen when 3,4,5-F3-phenylalanine was incorporated at position 1586 as 200 µM 

lidocaine exposure resulted in a 7 mV hyperpolarizing shift, V0.5 
= −46.0 ± 1.2 versus −53.4 ± 1.5 mV (P = 

0.02), for control and 200 µM lidocaine saline, respectively. 
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resting affinity for the local anesthetics etidocaine2 and tetracaine.1  Therefore, the 

possibility of a contribution of cation-π energetics to this tonic inhibition was 

investigated, which was defined operationally as the fractional reduction of peak current 

in response to a low rate of depolarization (15 ms pulses to −20 mV at 0.05 Hz).  Figure 

5.3A shows representative Na+ currents before and after 5 minutes continuous perfusion 

of 200 µM lidocaine.  Wild-type NaV1.4 channels and those containing cyclohexylalanine 

at position 1579 showed indistinguishable tonic inhibition.  The results for all the side 

chains introduced at the 1579 position are shown in figure 5.3B and demonstrate that a 

cation-π interaction with this residue is not a factor in the tonic inhibition by lidocaine.  

The role of Tyr1586 was also investigated in tonic inhibition by lidocaine.  Consistent 

with a previous study,1 removal of the hydroxyl group by mutation to phenylalanine 

alleviated the tonic inhibition from 30 ± 6% to 19 ± 3%. Figure 5.3C shows that further 

manipulation of this side chain to withdraw electon density from the ring had no 

additional effect on the tonic inhibition.  These data show that while the hydroxyl group 

of Tyr1586 plays a role in inhibition, lidocaine does not interact directly with its aromatic 

face under resting conditions. 
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Figure 5.3.  Electrostatic contributions are not involved in tonic inhibition for Phe1579 and Tyr1586.  A) 

Normalized control and tonically inhibited currents (indicated by arrow) elicited by test pulses to −10 mV, 

holding potential −100 mV, scale bar is 5 ms.  Tonic inhibition reached equilibrium after 5 minute of 

continuous perfusion of 200 µM lidocaine as measured by 15 ms pulses every 20 sec.  B) Electrostatic 

potential of Phe1579 does not contribute to lidocaine binding (number of cells in parenthesis).  C) Mutation 

of Tyr1586 to phenylalanine relieves tonic block but any additional manipulation of the aromaticity has no 

consequence, asterisk indicates P < 0.05 versus wild-type NaV1.4. 

 

Use Dependence  

Use-dependent inhibition of Na+ channels is manifest as progressively reduced current 

with increased stimulation frequency.  Although experiments using site-directed 

mutagenesis show that use-dependent block by local anesthetics involves side chain 

contributions from residues in each of the four Na+ channel domains,2,26-28 the presence of 

an aromatic phenylalanine, tyrosine or tryptophan at the position aligned with 1579 is 
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required for use-dependent inhibition,1  suggesting that a cation-π interaction may play a 

substantial role at the binding site.  Figure 5.4A shows representative Na+ currents in 

response to 20 Hz depolarizations to −10 mV from a holding potential of −100 mV in the 

presence of 200 µM lidocaine.  In each example, the 1st and 50th pulses are labeled.  Note 

that the first pulse represents a channel inhibited in its resting state.  In the absence of 

lidocaine, Na+ currents are stable in response to 20 Hz stimulation with no run down in 

amplitude.  Quite dramatically, trifluorination of Phe1579 nearly abolishes the use-

dependent inhibition by lidocaine (figures 5.4A and 5.4B).  Similar results were obtained 

at a tenfold lower lidocaine concentration where tonic inhibition was negligible (figure 

5.5), eliminating a substantial role of rapid open-channel block.  
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Figure 5.4.  Use-dependent inhibition relies on a cation-π interaction between lidocaine and Phe1579, not 

Tyr1586. A) Normalized representative current traces in the presence of 200 µM lidocaine from repeated 

depolarizations to −10 mV from −100 mV for NaV1.4 or channels with 3,4,5-F3-phenylalanine at the 1579 

site.  The first ten and 50th trace of 50 total pulses are indicated.  B) Frequency profile for use-dependent 

inhibition for cyclohexylalanine and fluorinated phenylalanine derivatives.  C) Linear relationship between 

experimental data and theoretical predictions for a cation-π interaction.  Dissociation constants estimated at 

20 Hz were used to calculate the energetic effect of manipulating aromatic electrostatic potential at 
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Phe1579.  Binding energy is defined as ,mut ,wt0.58ln( )i iK K  kcal/mol, where ,mut ,wti iK K  is the 

fractional increase in the inhibitory constant caused by an unnatural mutant compared to 

benzene/phenylalanine. Theoretical data on the abscissa are based on the calculated interaction between a 

single Na+ ion and the indicated benzene derivative.29  D) Absence of a cation-π contribution at Tyr1586 to 

lidocaine inhibition.  Normalized representative traces shown as in figure 5.4A.  Complete loss of the 

negative electrostatic potential of the aromatic ring has no effect on use-dependent inhibition.  E) 

Frequency profile of use-dependent inhibition for the 1586 position, as in B. Arrow represents Tyr1586Phe. 

Inset shows the relief of inhibition for the Tyr1586Phe mutation at 20 Hz.  Neither serial fluorination nor 

replacement by cyclohexylalanine disrupts lidocaine block further.  F) Energy plot as in panel C details the 

complete lack of a cation-π phenotype at 1586. 

 

Evidence for a cation-π interaction between Phe1579 and lidocaine in the inactivated 

state is presented in figure 5.4B where monotonic relief of inhibition can be seen for each 

added fluorine, with cyclohexylalanine substitution producing almost complete relief.   

This effect is most apparent at high frequencies where inactivated states would be 

expected to dominate.  Although use-dependent inhibition by lidocaine is an obvious 

phenotype, it is an inherently complicated process and as such, the progressive current 

reduction seen in figures 5.4A and 5.4B is likely a combination of interaction of lidocaine 

with both inactivated and open states.  While acknowledging this caveat, an operationally 

defined inhibitory constant Ki was calculated from the fraction of current remaining at the 

completion of 50 pulses delivered at 20 Hz in the presence of 200 µM lidocaine.  This 

apparent inhibitory constant was used to calculate the loss in binding energy resulting 

from the serial fluorination of phenylalanine or outright replacement by 

cyclohexylalanine.  The result of this analysis is shown in figure 5.4C.  The abscissa is 
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derived from ab initio estimates of the energetic effect of fluorination on the cation-π 

interaction between benzene and a Na+ ion.17  As predicted for a cation-π interaction, a 

stepwise reduction in electrostatic potential on the face of the aromatic results in a 

monotonic reduction in lidocaine inhibition.30  Given the ambiguities presented by both 

the charge asymmetry of lidocaine and the interpretations of use dependence protocols, 

the linear relationship between our experimental results and the theoretical predictions for 

a canonical cation-π system is striking, confirming such an interaction between Phe1579 

and lidocaine.  

The results are remarkably different when the same series of phenylalanine derivatives 

are substituted into the nearby aromatic Tyr1586 (figure 5.4D).  The complete data set in 

figure 5.4E lacks both the trend and the magnitude of effect that was observed at 

Phe1579.  The inset of figure 5.4E shows the disruptive consequence of exchanging of 

phenylalanine for tyrosine, an effect greater than any further manipulation of the 

phenylalanine side chain.   Figures 5.4E and 5.4F show that, contrary to the situation for 

Phe1579 only 11 Å away, perturbation of the electron density on the face of an aromatic 

residue at Tyr1586 has little consequence on use-dependent lidocaine inhibition, ruling 

out a cation-π interaction at this site.   
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Figure 5.5. Cation-π influence on use-dependent inhibition at a low concentration (20 µM) of lidocaine. 

Lidocaine was applied 5 minutes before high-frequency stimulation. Tonic inhibition was negligible at this 

low concentration. A,B) Representative currents at −10 mV for 100 10 ms depolarizations from a holding 

potential of −100 mV, every 10th 
trace shown for clarity.  Stimulation rate was either A) 20 Hz or B) 50 Hz.  

Currents were stable at 50 Hz in the absence of lidocaine.  Left panels are for wild type, right panels are for 

3,4,5-F3-phenylalanine incorporated at position 1579.  C) Fraction of control (P100/P1) after 100 

depolarizations for 5 wild-type and 3 mutant oocytes.  Two asterisks indicate P<0.005. 
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Next it was asked whether lidocaine might interact with a third D4/S6 aromatic residue, 

Tyr1574 (figure 5.1B) positioned roughly 10 Å upstream from Phe1579 but predicted to 

lie on the opposite face of the S6 helix.  Alanine substitution at this site results in a 

modest loss of both resting and use-dependent inhibition by etidocaine in NaV1.2,2 

suggesting that it may play a subtle role in stabilizing the inhibitor in its binding pocket.  

The unnatural amino acid 3,4,5-F3-phenylalanine was the only residue incorporated at 

this site because trifluorination effectively ablates the negative electrostatic potential of 

the face of an aromatic ring.19,30  As for the other two sites we examined, unnatural amino 

acid incorporation was well tolerated and produced channels with robust expression and 

voltage-dependent gating similar to that of wild-type NaV1.4 channels.  Trifluorination at 

this site had no effect on tonic (36 ± 6% versus 39 ± 8%) or use-dependent inhibition (84 

± 4% versus 74 ± 3% at 20 Hz stimulation; P=0.08) for NaV1.4 and for channels with 

3,4,5-F3-phenylalanine at site 1574, respectively. Therefore, only one of the three D4/S6 

aromatic residues, Phe1579, shows a robust cation-π interaction with lidocaine. 

 

Recovery 

Another experimental manifestation of lidocaine action is the emergence of a slow 

component in the recovery from fast inactivation.25  In fact, use-dependent inhibition is 

largely a consequence of slowed recovery from inactivation.  In the absence of lidocaine, 

all Phe1579 mutants recover rapidly from a 15 ms pulse to −10 mV (figure 5.6A), but 

clear differences arise in the presence of 200 µM lidocaine (figure 5.6B).  For each 

variant of Phe1579, the recovery time course can be fit by a double exponential 
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relaxation.  A plausible explanation for this biophysical behavior is that the fast and slow 

components represent unblocked and lidocaine-engaged channels, respectively.  Figures 

5.6C and D show that while the fast and slow time constants from the biexponential fits 

are the same across all channel types, the fractional weight of the fast, unblocked 

component is serially increased with fluorination and replacement by cyclohexylalanine. 

Therefore, fluorination appears to reduce the fraction of channels that trap lidocaine when 

they inactivate, whereas the recovery rate of the drug-modified channels is insensitive to 

the unnatural mutations. These results, like those describing use-dependent inhibition, 

demonstrate a cation-π interaction between lidocaine and Phe1579.  By contrast, neither 

fluorination of the phenylalanine derivatives incorporated at position 1586 nor 

replacement with cyclohexylalanine had a measurable effect on the recovery time course, 

consistent with the use-dependent inhibition experiments summarized in figure 5.4F.  
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Figure 5.6.  Recovery from lidocaine inhibition affected by a cation-π interaction with Phe1579. A) 

Recovery from inactivation in absence of lidocaine has an indistinguishable double-exponential time course 

among phenylalanine derivatives. B-D) Fluorination or cyclohexylalanine substitution increases the 

fractional amplitude of the fast component of recovery in 200 µM lidocaine without affecting the recovery 

time constants. 

 

Role of Charge 

To further test the role of electrostatics in the interaction between a local anesthetic and 

Phe1579, two nontitratable, structurally similar derivatives of lidocaine were studied, one 

neutral (benzocaine) and the other permanently charged (QX-314).  Both compounds are 
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postulated to have overlapping binding sites with other local anesthetics and, more 

importantly, to rely on the presence of an aromatic side chain at Phe1579.23,31  

Benzocaine does not cause use-dependent inhibition in Na+ channels.21,22,31  Replacement 

of the residue at position 1579 by either 3,4,5-F3-phenylalanine or cyclohexylalanine, 

both of which effectively abolish the negative electrostatic potential on the aromatic face 

of phenylalanine, had no effect on tonic inhibition by 1 mM benzocaine (fraction of 

inhibition was 0.49 ± 0.02, 0.46 ± 0.04, 0.44 ± 0.02, respectively, for wild type and the 

two unnatural mutants).  If benzocaine’s binding site overlaps that of lidocaine, the data 

suggest that the fundamental effect of these manipulations of the aromatic ring of 

Phe1579 involves electrostatics, leaving benzocaine inhibition unaffected. 

The lack of an effect of 3,4,5-F3-phenylalanine at position 1579 on tonic inhibition by 

lidocaine (figure 5.3) raises the possibility that lidocaine is deprotonated (uncharged) in 

its tonically inhibited state.  This possibility can be tested directly with permanently 

charged QX-314 that causes both tonic block and use-dependent inhibition.2,24,32  If the 

tonically blocked state involves an intimate interaction between QX-314 and Phe1579, 

then it should be substantially affected by trifluorination of the aromatic side chain.  QX-

314 was injected directly into voltage-clamped oocytes to yield an approximate 

cytoplasmic concentration of 0.5 mM.  This concentration produces dramatic resting-state 

and use-dependent (1 Hz) inhibition in wild-type channels, and only the use-dependent 

component is ameliorated when 3,4,5-F3-phenylalanine is incorporated at position 1579 

(figure 5.7A), similar to our results with lidocaine. The time course of use dependence 

and extent of block for the two oocytes shown in figure 5.7A are plotted in figure 5.7C.  

The summarized data in figures 5.7E and F show that trifluorinating Phe1579 has a 
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similar effect on binding energy for lidocaine and QX-314, suggesting comparable modes 

of inhibition.  The faster rate of use-dependent inhibition in the unnatural mutant suggests 

an increased dissociation rate for QX-314 in the drug-bound inactivated state.  The results 

further show that the tonically blocked state does not involve a close interaction between 

the blocker and Phe1579, yet a substantial cation-π interaction underlies use-dependent 

inhibition by QX-314.  

By contrast with Phe1579, trifluorophenylalanine incorporated at position 1586 causes a 

mild (<0.5 kcal/mol) stabilization of QX-314 block in both the tonic and stimulated states 

(figures 5.7D-F). The effect on stimulated-state inhibition is energetically 

indistinguishable for lidocaine and QX-314 (figure 5.7F). 
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Figure 5.7.  Use-dependent and tonic block by QX-314.  A) Control is a representative trace at −10 mV (0.1 

Hz) after which 25 nL of 20 mM QX-314 was injected to give an estimated final concentration of 0.5 mM 

QX-314, assuming a 1 µL volume for the oocyte.  The oocyte was held at −100 mV for 5 min without 

depolarization to allow for diffusion, followed by 100 1 Hz, 15 ms depolarizations, the first of which 

represents the tonic block. Right panel is from an oocyte expressing trifluorinated Phe1579.  B) 

Comparable experiments for residue Phe1586. C,D) Normalized peak currents from records in panels A & 

B.  Arrow indicates time of QX-314 injection.  Time break is 5 minutes.  E,F) Effect of trifluorination on 

both lidocaine and QX-314 binding energy (number of cells in parentheses). Lidocaine data from figures 

5.3 and 5.4. 
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Discussion 

Three D4/S6 aromatic residues were mutated to determine if any contributed to local 

anesthetic block through the electrostatic allure of their aromatic π electrons.  In contrast 

with previous studies using traditional site-directed mutagenesis, incorporation of 

unnatural amino acids at each site resulted in channels with normal gating, substantially 

simplifying the interpretation of their role in pore block.  A cation-π interaction with 

lidocaine during use-dependent inhibition was observed for only one site, Phe1579, while 

ablation of the negative electrostatic potential on the face of either Tyr1574 or Tyr1586 

had relatively little consequence.   The roles of these tyrosine residues in block cited by 

previous reports may therefore be due to the fact that replacement with a nonaromatic 

amino acid is a more drastic alteration of side chain chemistry, and often changes the 

channel’s biophysical properties.2,13-15  Fluorination of phenylalanine, by contrast, has no 

effect on channel gating at any of the three D4/S6 positions.  Although these results 

suggest that cationic blockers have an electrostatic attraction for the electron density on 

the face of residue 1579, it may be surprising that replacement of this aromatic residue 

with negatively charged glutamate or aspartate obliterates use-dependent inhibition by 

lidocaine.10  A possible explanation for these apparently contradictory observations is that 

in an aqueous milieu an organic cation typically has a higher affinity for an aromatic ring 

than an acidic residue,33 due to the substantial energetic penalty for dehydrating the acidic 

residue. 

This study provides several structural insights into the local anesthetic binding site in the 

high-affinity state created by high-frequency stimulation. The cation-π interaction at 

Phe1579 suggests that lidocaine’s positive charge, concentrated in the vicinity of its 
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titratable amine group, is situated near the aromatic face of Phe1579 in the inactivated 

state.  By contrast, Tyr1574 and Tyr1586 have neither cation-π interactions nor π-π 

stacking34 interactions with lidocaine, as either would be disrupted by fluorination of the 

aromatic ring.  Furthermore, cyclohexylalanine lacks the quadrupole moment of an 

aromatic, and therefore its substitution should reduce any attraction with lidocaine’s 

aromatic moiety through π-π stacking, ruling out this type of attraction between the 

blocker and the tyrosine residues. 

Electrostatic manipulations of Phe1579 affect use-dependent, but not tonic, inhibition.  

This exception contrasts with the interaction between the cationic Na+ channel blocker 

tetrodotoxin and an extracellular pore aromatic, Tyr401, in NaV1.4.19  In the case of 

tetrodotoxin, both the tonic and use-dependent block are weakened identically with serial 

fluorination, implying that a similar physical interaction is present in both states.  The 

results in the present study suggest that tonic and use-dependent block either represent 

differences in the lidocaine binding site or arise from differences in the charged state of 

lidocaine (protonated versus deprotonated).  The latter possibility is ruled out by our 

experiments with the permanently charged QX-314 (figure 5.7).  Both tonic and use-

dependent block are observable with QX-314, but trifluorination of Phe1579 only 

alleviates use-dependent block. The composite results show not only that tonic and 

stimulated states represent distinct conformations, but also that in the tonic state lidocaine 

is not close to any of the three aromatic residues examined.  While lack of a cation-π 

interaction does not rule out other energetic attractions (e.g., hydrophobic, charge 

transfer, or induced dipoles in the aromatic), an intimate contact between an aromatic 

side chain and a charged blocker would be expected to be affected by the dramatic 
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manipulations of electrostatic potential introduced (changes of >600 mV within 2 Å of 

the aromatic ring.19   

What, then, accounts for the differences between tonic and use-dependent inhibition? 

Because the two inhibited states have the same voltage dependence, equivalent to a 

blocker residing 70% of the way into the electric field from the cytoplasmic side,35 it was 

assumed that lidocaine occupies a comparably deep site within the pore in both states.  A 

cation-π interaction only appears between Phe1579 and a charged blocker during 

repeated depolarizations, indicating that stimulation moves this side chain closer to the 

blocker.  The electrostatic invisibility of Phe1579 in the tonic state suggests that its side 

chain does not point into the aqueous cavity of the pore, and that it is unveiled, for 

example, by a rotation of the D4/S6 helix during a conformational transition that 

accompanies inactivation.26,36-38  Note that this mechanism contrasts with a previous 

proposal in which the pore lining remains stationary while the blocker moves.35  Future 

experiments should resolve the gating motions that underlie the exposure of a high-

affinity receptor.  

 

Conclusion 

In this chapter three aromatic residues found in the pore domain of NaV1.4 were probed 

to determine if they were involved in a cation-π interaction with anesthetics such as 

lidocaine.  Fluorinated-phenylalanine derivatives and the nonaromatic cyclohexylalanine 

were incorporated into NaV1.4 at the three sites of interest using the in vivo nonsense-

suppression methodology.  Only one residue, Phe1579 in S6 of D4, was found to make a 
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cation-π interaction with lidocaine and the permanently cationic QX-314, but only during 

high-affinity use-dependent channel block by the anesthetic.  Low-affinity channel block 

and block by the neutral anesthetic benzocaine were not affected by any of the mutations. 

These results suggest that when the channel goes from the tonic blocked state to the use-

dependent blocked state, the channel moves in a manner that brings Phe1579 closer to the 

blocker.  When the blocker is cationic, the appearance of the electronegative face of the 

aromatic ring allows it to bind tightly to the channel, but the same is not necessary when 

the blocker is neutral. 

 

Methods 

The work in this chapter was a collaborative effort that included important contributions 

from Dr. Chris Ahern and Dr. Richard Horn of the Jefferson Medical College in 

Philadelphia, PA.  Detailed methods for the experiments discussed in this chapter that 

were not performed by the author can be found in Ahern et al.39 

 

Unnatural Amino Acids and Molecular Biology 

Phenylalanine-dCA, 4-F-phenylalanine, 3,5-F2-phenylalanine-dCA, 3,4,5-F3-

phenylalanine-dCA, and cyclohexylalanine were obtained as described in chapter 2.  

These aminoacylated dinucleotides were ligated to a modified tRNA from Tetrahymena 

thermophila, THG73, using T4 RNA ligase (New England Biolabs, Ipswich, MA).16,40 
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C h a p t e r  V I 

 

ATTEMPTS TO INCORPORATE D-AMINO ACIDS INTO ION CHANNELS USING 

NONSENSE SUPPRESSION 

 

All ribosomally encoded chiral amino acids are L-amino acids.  D-Amino acids have to 

be incorporated into proteins in nature through nonribosomal peptide synthesis or from 

the conversion of an L-amino acid by various posttranslational mechanisms.  Glycine, the 

only achiral encoded amino acid, can mimic the backbone propensities of a D-amino acid 

because of its flexibility, and therefore act as an encoded D-amino acid surrogate.  One 

example where a glycine has the backbone structure favorable for a D-amino acid is the 

first glycine in the well-known G-Y-G selectivity filter of K+ channels.  We hypothesized 

that this glycine could be substituted with D-alanine and still result in functional 

channels, and we intended to test this hypothesis using in vivo nonsense suppression.  The 

challenge with using this method is that it relies on the natural translational machinery for 

successful incorporation.  All of the previously published attempts to incorporate D-

amino acids using nonsense suppression failed, but, to our knowledge, the combination of 

the tRNA THG73 and the Xenopus laevis protein translational machinery had never been 

tested.  A positive result in one of the negative controls prevented the initial in vivo 

nonsennse-suppression experiments in the Shaker B K+ channel (ShB) from providing 

any data, but a shift to the nAChR gave promising D-alanine suppression results for both 

in vitro and in vivo nonsense suppression with predictable results from the controls.  
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Unfortunately, the successful suppression experiments in the nAChR were ultimately 

attributed to the contamination of the D-Ala-tRNA with a small amount of L-Ala-tRNA.  

The slight racemization of the D-alanine was determined to have occurred during the 

coupling of the amino acid to dCA, the analog of the aminoacylated end of the tRNA.  

Preliminary tests attributed the cause of the racemization to the counter ion used to make 

the dCA soluble in the reaction, but no definitive patterns or solutions were identified.  

Since the purity of the D-Ala-tRNA was questionable, since neither the THG73 tRNA 

nor the Xenopus laevis translational machinery showed exceptional potential for D-amino 

acid incorporation into proteins, and since the goal hypothesis was proven true by 

MacKinnon and Muir through the incorporation of D-alanine into KcsA using expressed 

protein ligation semisynthesis,1 these studies were not continued into more depth. 

 

Introduction 

Nature plays favorites when it comes to the building blocks of proteins.  Nineteen of the 

twenty coded amino acids have the same general backbone structure:  centering around 

the α-carbon, with the amine group on the left and the carboxylic acid on the right, the 

bulky sidechain always presents itself forward and the subtle hydrogen hides in the back.  

The achiral glycine is the only exception.  Amino acids with the described structure are 

denoted L-amino acids after their similarity to L-glyceraldehyde, which was given the 

“L” notation due to its levorotatory optical activity (figure 6.1A).  The “L” notation for 

amino acids is a misnomer since all L-amino acids do not rotate light counterclockwise as 

L-glyceraldehyde does.  But, the terminology does allow for consistency.  If the “R” or 
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“S” configuration rules were used instead, cysteine, with the SH of its sidechain 

outweighing the carboxylic acid of its backbone, would represent the lone “R” amino 

acid.  

 

Figure 6.1.  The structure of D-amino acids.  A)  The physical differences of L-amino acids and D-amino 

acids and their relationship with L (−) glyceraldehyde and D (+) glyceraldehyde.  B) The proposed 

mechanism for amino acid isomerases.  C)  The structure of demorphin as compared with the less potent 

morphine.  All “D” structures are shown in red. 

 

Amino acids with the opposite orientation, D-amino acids (figure 6.1A), are never used in 

ribosomal protein synthesis.  Instead, these amino acids are only found in nature through 

conversion of an L-amino acid with an amino acid isomerase (figure 6.1B),2,3 through 

A) 

B) 

C) 
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nonribosomal peptide synthesis, and through posttranslational modifications.4  Common 

places where nature uses D-amino acids include bacterial cell walls, spider venom, and 

neurologically active peptides.  The neurologically active peptides are an interesting 

example on which to pause since the overarching theme of this thesis is the chemical-

scale exploration of neurobiological targets.  One such example, demorphin, is a hepta-

peptide excreted from the skin of the South African tree frog Phyllomedusa sauvagei 

(figure 6.1C).  Demorphin targets the same G-protein coupled receptor in the brain as 

morphine, the µ-opioid receptor, but demorphin is a vastly more potent analgesic than 

morphine and shows reduced tolerance and use dependence than morphine does.5  

Interestingly, the second residue of demorphin is D-alanine (red, figure 6.1C), which is 

likely converted from the L-amino acid posttranslationally.  The presence of this D-

alanine is critical to the activity of the peptide:  when the second amino acid is L-alanine, 

the typical analgesic properties of the peptide are not seen in mice.  This example shows 

the power of disrupting nature’s bias.  The conversion from L-alanine to D-alanine, the 

simple shift of a single methyl group from one orientation to another, enables this peptide 

to bind to a neuroreceptor and results in potent pain-relieving downstream events. 

 

The Use of Glycine as a D-Amino Acid Surrogate 

The achiral glycine is the natural amino acid that is best suited to be genetically encoded 

at sites where the backbone structural constraints of a D-amino acid would be 

appropriate.  Glycine’s α-carbon has two hydrogen atoms instead of a hydrogen atom and 

an alkyl side chain.  This feature allows it to encompass many possible combinations of φ 
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and ψ angles, including angles that are heavily favored for D-amino acids (figure 6.2).  

These glycines are often found in loops and turns.  McDonnell and Imperiali studied the 

role of D-amino acids in the hinge region of the synthetic ββα peptide BBAT1, a peptide 

that forms a trimer when a glycine is located at the hinge between the α-helix and the β-

hairpin.6  The authors made unnatural amino acid substitutions to this important hinge 

site using solid phase peptide synthesis.  Both β-alanine and L-alanine disrupted trimer 

formation, but substitution to D-alanine retained the trimeric oligomerization.  

Substituting the glycine for other D-amino acids, such as D-serine and D-asparagine, also 

retained the trimeric oligomerization, while the large, hydrophobic amino acids D-leucine 

and D-phenylalanine resulted in tetrameric protein association.  Certain other D-amino 

acids, such as charged residues, still disrupted oligomerization.  The authors predict that 

glycine allows for dihedral angles favorable for oligomerization of the peptide monomer, 

while D-amino acids, such as D-alanine, actually lock the protein in the geometry 

necessary for oligomerization.  A similar study by Anil et al. focused on several glycine 

residues with positive φ angles in two different globular proteins:  Gly24 and Gly34 of 

NTL9, both located in loops, and Gly331 of UBA domain, located at the turn at the end 

of an α-helix.7  This study found that replacing these specific glycines with D-alanine 

using solid-phase peptide synthesis increased the stability of the protein.  They reasoned 

that D-alanine stabilized the folded state by decreasing the entropy of the unfolded state.  

Thus, in each of these sites in these proteins, glycine was essentially acting as a surrogate 

D-amino acid, conforming to dihedral angles not possible for L-amino acids.   
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Figure 6.2.  Ramachandran plots for L-amino acids, glycine, and D-amino acids.  Favorable angle 

combinations are shown in blue, and allowed angle combinations are shown in green.  The rotatable bonds 

that equate to φ and ψ are shown below the plots.  Adapted from Valiyaveetil et al.1   

 

More relevant to this thesis, the high-resolution crystal structure of the bacterical K+ 

channel KcsA showed that the first of the famous glycines in the G-Y-G motif is in a left-

handed helical conformation,8 which is favorable for D-amino acids but not L-amino 

acids.  The G-Y-G motif is an important feature of the selectivity filter, which consists of 

the highly conserved T-X-X-T/S-X-G-Y-G sequence.8  Incorporating L-amino acids at 

this site fails to give functional channels.9  We hypothesized that substituting D-alanine at 

this site would give functional channels because the dihedral angles are correct and 

because the side chain would produce the smallest steric perturbation of the familiar 

chiral amino acids.  The method we pursued to test this hypothesis was in vivo nonsense 

suppression.   
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The Exclusion of D-Amino Acids from Ribosomal Translation 

Nature’s bias shows up in quality control mechanisms used by the protein translational 

machinery (figure 6.3).  These checkpoints are invoked to maximize proper and efficient 

protein synthesis,10 and each checkpoint will be described in more detail below.  The use 

of nonsense suppression bypasses the first of these checkpoints, the aminoacylation of the 

tRNA by the synthetase, but every other checkpoint must still be passed.  

 

Figure 6.3.  The quality control mechanisms that occur during translation.  Images adapted from 

http://www.rpi.edu/dept/bcbp/molbiochem/MBWeb/mb2/part1/translate.htm. 

 

To ensure translational fidelity, each tRNA must be properly aminoacylated with its 

specific amino acid.  Therefore, editing mechanisms have evolved to hydrolyze off 

incorrect amino acids.  It was determined from in vitro studies that D-amino acids can be 

misacylated onto tRNAs by certain synthetases.11  These tRNAs can be recycled by an 

enzyme called the D-amino acid deacylase, which recognizes D-amino acids that have 
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been improperly added to tRNA and removes them from the tRNA. This enzyme was 

discovered by Calendar and Berg when they determined that extracts from E. coli, yeast, 

rabbit reticulocyte lysate, and rat liver could rapidly and selectively hydrolyze the ester 

linkage of E. coli D-Tyr-tRNA.12  The deacylase gene has been found in many organisms 

through both experiment and sequence alignment,13-15 making this enzyme’s prevalence 

important to the study of D-amino acid incorporation using nonsense suppression. In this 

chapter the potential D-amino acid deacylase is never addressed in our experiments, but 

one could imagine that if the Xenopus laevis produced D-amino acid deacylase, then as 

soon as the D-aminoacyl-tRNA was injected into the oocyte, the D-amino acid would be 

stripped from the tRNA by the enzyme. Our experiments are reliant on the lack of the 

deacylase in Xenopus or on overwhelming of the deacylase in the cytosol with the 

amount of injected tRNA.  

The answer to incorporating D-amino acids into proteins is not as simple as removing the 

D-amino acid deacylase.  Work done by Cornish and co-workers testing the functionality 

of D-amino acids appended to a designed E. coli tRNA in an in vitro system that lacked 

D-amino acid deacylase did not detect any incorporation of D-amino acids into their 

model tripeptides.16  Thus, at least in E. coli, removal of the D-amino acid deacylase does 

not allow for ribosomal D-amino acid incorporation. 

Next, the aminoacylated tRNA (aa-tRNA) must bind to an elongation factor, EF1A in 

bacteria and eEF1A in eukaryotes, in a ternary complex with GTP for proper delivery of 

the tRNA to the ribosome. Together each cognate aa-tRNA has approximately the same 

affinity for EF1A,17 but Uhlenbeck and co-workers found that the relative affinities for 

certain tRNAs and certain amino acids for EF1A vary over a large range.18-21  Thus, a 
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model of thermodynamic compensation was proposed.18  This model states that an amino 

acid with a strong affinity must pair with a tRNA with a weak affinity, and vice versa, so 

that each combined aa-tRNA has the same relative affinity for EF1A.  If two strong 

partners are paired, the aa-tRNA binds too tightly to the EF1A, and if two weak partners 

are paired, then the aa-tRNA does not bind tightly enough to the EF1A.  Protein synthesis 

is limited in both of the nonideal cases.  

The affinity of D-amino acids for eEF1A is not known, but the difference in 

conformation likely puts them into the weak-binding amino acids category.  Therefore, 

according to the model, a tight tRNA-EF1A binding interaction would be crucial for the 

delivery of the D-aa-tRNA to the ribosome.  In practice the model of thermodynamic 

compensation does not limit the effectiveness of the nonsennse-suppression method.  A 

large variety of both natural and unnatural amino acids can be incorporated into proteins 

using a single tRNA.22  The work discussed in this chapter relies on this trend to continue 

and include D-alanine. 

Finally, the aminoacylated tRNA must be able to enter the ribosome at the acceptor site, 

the A site, undergo the peptidyl transferase reaction by accepting the growing peptidyl 

chain, and then move to the donor site, the P site, to continue the synthesis of the protein.  

The ribosome is compatible with a variety of different amino acids and hydroxy acids as 

seen through the many residues incorporated with nonsense suppression.  But, D-amino 

acids have exhibited low compatibility to date.23-25  D-Amino acids have been shown to 

bind in both the A and P sites of the ribosome.26,27  Using the model of puromycin, an 

analog of the aminoacyl end of tRNA that enters the A site of the ribosome, participates 

in the peptidyltransferase reaction, and therefore halts further protein synthesis, Starck et 
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al. showed that D-puromycin can also inhibit protein translation through its participation 

in the peptidyltransferase reaction, though it is 150 times less potent than its natural L-

analog.28  This result, along with the fact that D-amino acid dipeptides have been made in 

vitro,29,30 argues that D-amino acids should be able to function in at least the first step of 

ribosomal synthesis. 

Unfortunately, to date D-amino acids have not been shown to be competent for ribosomal 

incorporation into larger peptides or proteins with wild-type ribosomes.  Work by Hecht 

and coworkers showed that certain mutant E. coli ribosomes incorporate D-amino acids 

into full proteins.24,31  The critical mutations occurred in the 23S rRNA in the 

peptidyltransferase center (PTC) and in helix 89.  These mutations were thought to alter 

the ribosome conformation around the PTC in a manner conducive for D-amino acids to 

be accepted into protein synthesis.  Since mutations in the PTC cause the ribosomes to 

form peptide bonds at a reduced rate and since these mutated ribosomes are only viable in 

in vitro protein synthesizing systems,32-34 this approach is not compatible with in vivo 

nonsense suppression.   

Qualitatively viewing each checkpoint in protein synthesis individually, the bias against 

D-amino acids looks small and indirect.  Quantitatively, the L-enantiomer is favored over 

the D-enantiomer by a factor of 25 for aminoacylation,35,36 25 for ternary complex 

formation, 10 for EF1A-promoted binding to the A site of the ribosome, and 5 for 

peptidyl transfer.29  Therefore, when viewed together, translation favors L-amino acids by 

a factor of 3x104, which means if the L-enantiomer is present, the D-amino acid is 

virtually excluded from ribosomal protein synthesis.   
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Testing D-Amino Acids in the Xenopus laevis System 

Our first goal was to ascertain whether D-amino acids could be incorporated into proteins 

in Xenopus laevis oocytes using in vivo nonsense suppression.  Many early in vitro 

nonsennse-suppression studies attempted to incorporate D-amino acids into proteins.25,37-

39  Since the nonsennse-suppression method involves tRNA chemically aminoacylated to 

the unnatural amino acid, aminoacylation by the synthetase is not a competing factor.  

Also, by coupling pure D-amino acid to tRNA, the favoritism for the L-enantiomer is 

removed.  These studies were repeatedly unsuccessful, but E. coli and rabbit reticulocyte 

lysate translational machineries were the only systems studied.  To our knowledge, the 

ability of the Xenopus laevis translational system to incorporate D-amino acids through 

the in vivo nonsennse-suppression method had never been probed.  Herein the results of 

our study are discussed.  Preliminary data looked promising until it was discovered that 

the amino acid chirality was compromised in one of the last steps of the synthesis of the 

aminoacylated tRNA.   

During the course of this thesis, the glycine-to-D-alanine substitution in the G-Y-G of the 

selectivity filter of KcsA was shown to give function channels by MacKinnon and Muir 

using expressed protein ligation semisynthesis.1  They proved the hypothesis intended to 

be tested in this work by determining that a D-amino acid is functionally accepted at this 

site in a K+ channel. 

The combination of the literature precedent for the failure of the incorporation of D-

amino acids into large proteins by nonsense suppression, the racemization that was seen 

in coupling reactions, and the success of the expressed protein ligation semisynthesis 
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method deterred the continuation of this project much beyond the preliminary 

examination of the coupling reaction for the cause of the small amount of observed 

racemization. 

 

Results and Discussion 

Synthesis of L- and D-Alanine-tRNA 

The D-amino acid of interest was D-alanine since its minimal size makes it most 

appropriate for study in the G-Y-G of the K+ channel.  It is the least sterically hindered of 

all the chiral amino acids, which should minimize any steric clash that might result from 

the inverted stereochemistry during translation and protein folding.  The synthesis of L- 

and D-alanine is shown in scheme 6.1.40-42  The amine was first protected with the 

nitroveratryloxycarbonyl (NVOC) photolabile protecting group.43  Next, the acid was 

activated as a cyanomethyl ester.  This compound was then coupled to the 

tetrabutylammonium salt of dCA.  At this point, the amino acid can be attached to either 

the 2’ or the 3’ hydroxyl of dCA since it is thought to rapidly sample both sites.  Finally, 

the aminoacylated dCA was ligated to THG-73 using T4 RNA ligase. 
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Scheme 6.1.  General method for the synthesis of aa-tRNAs. 

 

The First Test System for D-Amino Acid Incorporation:  The Shaker B K+ Channel 

The first target protein to test for D-amino acid incorporation was ShB.  This protein was 

chosen not for the study of its G-Y-G motif but because a relatively straightforward test 

for incorporation was envisioned.  As introduced in chapter 1, ShB is a voltage-gated K+ 

channel that is made up of four identical subunits.  The first twenty amino acids of each 

subunit make up a channel-blocking “ball” that is connected through a “chain” of the next 

twenty amino acids (residues 23 through 40) to the channel.  N-type channel inactivation 

occurs when one of the four balls of the homotetrameric channel swings up and plugs the 

channel.44-47  

Previously published unnatural amino acid studies using in vivo nonsense suppression 

have targeted two sites in the chain of this receptor, Leu47 and Pro64, both denoted with 
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the * in figure 6.4.48 These sites were selected for study in this work for several reasons.  

First, since these two sites are part of the chain, a region thought to be loosely organized 

due to its ability to rapidly move to block the channel, it was predicted that incorporation 

of a D-amino acid here would not cause any negative folding effects to the main 

transmembrane region the channel.  Second, since these sites occur at the beginning of 

the protein sequence, if the D-amino acid is not incorporated, synthesis of the channel 

subunit will be ceased before the bulk of the channel has been made, eliminating the 

possibility of a functional truncated channel.  Finally, the DNA with the necessary TAG 

codon at these two sites was already available.  If any currents from ShB were seen, then 

it would be likely that D-amino acids were accepted by the Xenopus oocyte protein 

translational machinery.  

S1 S2 S3 S4 S5 P  S6 S1 S2 S3 S4 S5      S6

+ 
+ 
 
+

+ 
+ 
 
+

open inactivated

 

Figure 6.4.  Schematic of a ShB subunit with the ball and chain highlighted in green.  The * marks the 

approximate site of unnatural amino acid incorporation. 

 

Experiments were done on Xenopus oocytes in a two-electrode voltage-clamp 

configuration using a voltage-jump protocol that began at −80 mV and increased in 25 
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mV increments to +70 mV (figure 6.5, “Representative Voltage Jumps”).  General 

published procedures for whole cell recording on the ShB were followed.48  Upon 

membrane depolarization, a wild-type ShB opens, allowing potassium ions to pass out of 

the cell until the N-terminal inactivating “ball” blocks the channel from conducting.  This 

response is seen as a steep rise in current followed by a slightly less steep decrease in 

current to a steady state during the entire period of depolarization (figure 6.5, wild type).  

Larger channel currents are seen with larger depolarizations.  Thus, typically at +70 mV, 

the Imax, or maximal current, is obtained.  The typical experiments included recording 

from oocytes injected 24 hours previously with (a) ShB wild-type mRNA; (b) ShB 

lacking the N-terminal “ball” (ShB Inactivation Removed or ShIR); ShB Leu47TAG 

mRNA (c) with L-Ala-tRNA, (d) with D-Ala-tRNA, (e) with unaminoacylated-tRNA 

(tRNA that had been ligated to unaminoacylated-dCA), and (f) by itself; and ShB 

Pro64TAG mRNA (g) with L-Ala-tRNA, (h) with D-Ala-tRNA, (i) with 

unaminoacylated tRNA, and (j) by itself.  The wild-type mRNA (a) and ShIR mRNA (b) 

were used as positive controls to determine how well the oocytes were expressing the 

injected mRNA.  Large currents seen here correlated with successful nonsennse-

suppression experiments.  The L-Ala-tRNA experiments (c, g) are positive controls for 

the success of the nonsennse-suppression experiment.  The unaminoacylated-tRNA 

experiments (e, i) were negative controls for reaminoacylation of the tRNA.  The injected 

unaminoacylated-tRNA mimics the state of the aa-tRNA once it has been used in protein 

synthesis or once the amino acid is removed (through a chemical event or from a cellular 

editing mechanism).  Any current seen in these negative controls is from the tRNA being 

recognized by cellular synthetases, reaminoacylated with a natural amino acid, and then 
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being used in protein synthesis.  Since it is necessary for the experiment that 

reaminoacylation be kept to a minimum so that the protein being expressed has the 

desired amino acid, the current seen in this negative control must be negligible compared 

to the amount of current seen in the nonsennse-suppression experiment.  The mRNA only 

experiments (f, j) were negative controls for the amount of read through seen with the 

TAG codon at the specific site in the ShB.  If current is seen here, then the translational 

machinery has essentially read through the designed stop codon as it is synthesizing the 

protein and produced a functional protein without the desired amino acid incorporated 

into it.  

 

Figure 6.5.  Representative traces for the suppression at both Leu47TAG and Pro64TAG.  The specific 

suppression experiments were recorded from Pro64TAG mRNA. 

 

Unfortunately, the incorporation of D-alanine could not be confirmed since there was 

substantial current seen in the unaminoacylated-tRNA negative control (figure 6.5).  The 

current was not due to read through since injecting only the TAG-containing mRNA 
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leads to negligible current.  This susceptibility to reaminoacylation by THG73 has been 

shown to be problematic in other studies.49  Since current was seen here, it is presumed 

that these two sites can contain a variety of natural amino acids, the leucine or proline 

originally encoded, the alanine used in this study, and glutamine, the likely residue added 

through reaminoacylation,50 and still gate in response to voltage changes and still N-type 

inactivate.  Incidentally, this promiscuity is one of the reasons these sites were chosen as 

good sites for incorporation of D-amino acids.  An explanation for why the 

reaminoacylation current was larger than the current seen in the D-alanine studies is 

because the reaminoacylation of injected unaminoacylated-tRNA is more facile than the 

eventual reaminoacylation of aa-tRNA.49,51   

Sequencing the DNA showed that the genetic sequence was as expected at the N-

terminus, and remaking the mRNA and tRNA did not improve the results.  Controlling 

the amount of tRNA, mRNA, or incubation time was not attempted, though studies have 

shown that these factors can reduce THG73 reaminoacylation.52  Studies have also shown 

that using a four-base codon suppression approach can limit reaminoacylation,49,53 but the 

incorporation of D-alanine was never tested with the available ShB masked gene 

containing the Pro64GGGU mutation and the tRNA YFaFS.49  Instead, this region of this 

protein was abandoned as a test system for D-amino acid incorporation. 

 

D-Amino Acid Incorporation In Vitro Using Rabbit Reticulocyte Lysate 

Rabbit reticulocyte lysate is an in vitro translation system used to quickly test whether an 

unnatural amino acid is translationally competent.  Since the incorporation of D-alanine 
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into ShB could not be confirmed, rabbit reticulocyte lysate was used as a rapid test of D-

alanine suppression in vitro.  Rabbit reticulocyte lysate has been unsuccessful at 

incorporating D-amino acids in previously published studies,54 but no studies have ever 

attempted the in vitro synthesis with the suppressor tRNA THG73.  Protein synthesis was 

visualized using Western blotting techniques, using previously published methods.55  The 

muscle nicotinic acetylcholine receptor (nAChR) was chosen as the protein construct in 

this in vitro study because of its extensive use in the Dougherty laboratory in rabbit 

reticulocyte lysate experiments.  This receptor will be discussed in more detail below.  

Specifically, nAChR α1Leu250UAG mRNA containing a hemagglutinin (HA) epitope 

between residues 347 and 348 was used.  Western blotting was preformed using a mouse 

antibody against the HA sequence and a chemiluminescent goat-anti-mouse antibody and 

showed full length protein in the in vitro experiment containing mRNA and L-alanine 

charged tRNA and, most importantly, in the in vitro experiment containing mRNA and 

D-alanine charged tRNA (figure 6.6).   

 

Figure 6.6.  Western blot showing D-alanine suppression. 

The amount of protein in the D-Ala experiment was estimated to be 10% of that in the L-

alanine experiment.  Though the amount of protein suppression was greatly reduced 
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between L- and D-alanine, this result was exciting as it was the first evidence of D-amino 

acid incorporation into a protein. 

 

The Second Test System for D-Amino Acid Incorporation:  The Muscle nAChR 

Because of the positive results in the rabbit reticulocyte lysate in vitro system with the 

muscle nAChR, this same receptor was chosen as the second test system for D-amino 

acid incorporation.  Sites in the α subunit were targeted with the goal of finding one 

where both D-alanine and L-alanine would not only express but also show distinctive 

differences in channel function.  An assortment of sites was selected based on easily 

available DNA:  α1Ala122, α1Ile123, α1Pro236, and α1Leu250 (the same site used in 

the in vitro experiments above).  These sites are highlighted in figure 6.7.  The first two 

are found in a β-sheet in the extracellular domain, and the latter two are found in α-

helices in the transmembrane domain.  These sites are not ideal for D-amino acids due to 

their rigid structures, but it was hoped that they would show obvious changes in channel 

function if D-amino acids were incorporated.  
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Figure 6.7. A representation of the muscle nAChR with the sites studied in this chapter highlighted and 

shown as space-filling (light blue = carbon, red = oxygen, blue = nitrogen), adapted from the cryoelectron 

microscopy homology model of the nAChR 2BG9.56 

 

Whole-cell recordings were made on the OpusXpress workstation.  This instrument 

allows multiple oocytes to be studied in parallel through automatic impalement, fluidics, 

voltage clamp, and data acquisition.  The data collected were the nAChR’s responses to 

agonist concentrations from 1 to 1000 µM ACh.  The binding of agonist to the nAChR 

causes a conformational change that opens a central pore in the transmembrane domains 

of the channel, which allows an influx of cations into the cell.  This gating response is 

seen as a downward current.  An increase in agonist concentration correlates with an 
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increase in current response.  The range of agonist concentrations specified above was 

chosen because the lowest ACh concentrations stimulated no response, and the highest 

ACh concentrations stimulated maximal response from the receptor.  

Suppression of both L-alanine and D-alanine at α1Ala122TAG gave whole-cell currents 

(figure 6.8), and no current was seen in the negative controls (same as above, mRNA 

injected with unaminoacylated-tRNA or by itself).  The L-alanine experiment was 

essentially a wild-type recovery experiment, since the naturally encoded amino acid is 

alanine.  Here, current began with the addition of 5 µM ACh, and the maximum current 

(approximately 10 to 15 µA) was seen around 500 µM ACh.  In the case of D-Ala 

suppression, expression seemed to confirm the results seen in the in vitro Western blot 

experiments.  Current began with the addition of 25 µM ACh, and the maximum current 

(approximately 1 to 5 µA) was seen around 500 µM ACh.  There was a small upward 

current seen at low agonist concentrations in the D-alanine suppression experiments 

(figure 6.8, D-alanine suppression with 5 µM ACh) that was an artifact attributed to the 

change in fluidics from bath solution to agonist solution that is only seen in recordings on 

oocytes with low nAChR expression. 
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Figure 6.8.  Representative current traces for suppression at nAChR α1Ala122.  A)  L-Alanine suppression.  

B)  D-Alanine suppression. 

 

The current responses of both L-alanine and D-alanine at α1Ala122UAG were then 

normalized and plotted against the concentration of agonist used on a log scale, 

producing the dose-response curve seen in figure 6.9.   

 

Figure 6.9.  Dose-response curve from L-alanine and D-alanine suppression at α1Ala122TAG. 

A) B) 
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These data were further analyzed by obtaining an EC50 value and a Hill coefficient (h) 

from fitting the current response (I) versus agonist concentration (A) to the Hill equation.   

 

€ 

I =
ImaxA

h

EC50
h + Ah   

The EC50 value is the agonist concentration that stimulates half-maximal current 

response, and it reflects the receptor’s sensitivity for a given agonist.  This value is not a 

true binding constant; rather it is a composite value incorporating the equilibrium for both 

agonist binding and channel gating.57  The Hill coefficient is a measure of the 

cooperativity a receptor displays in binding multiple ligands.  Data analysis was 

completed for the suppression of L- and D-alanine at α1Ala122TAG and also for the 

various other α1 nAChR sites probed during this study (table 6.1).  The only other 

successful suppression experiment was L-alanine at α1Ile123.  Current was seen upon 

suppression of D-alanine at α1Ile123, but no interpretable trend was established between 

the amount of current and the concentration of agonist.  No current was seen for either L- 

or D-alanine at α1Pro236 or α1Leu250.  

The EC50 value obtained from the wild-type recovery experiment with L-alanine 

suppression was 51.1 ± 3.5 µM with a Hill coefficient of 1.65 ± 0.16 (n = 9) (table 6.1).  

This EC50 value is within error of 49 µM, the EC50 previously published by Dougherty 

and coworkers for wild-type muscle nAChR.40  Surprisingly, the EC50 value and Hill 

coefficient obtained from the D-alanine suppression experiment were within error of L-

alanine:  56.3 ± 4.5 µM and 1.63 ± 0.19 (n = 5).  According to our hypothesis, the 

incorporation of D-alanine into a β-sheet at α1Ala122 in the muscle nAChR should 
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impact channel function, but our data show that D-alanine is essentially the same as L-

alanine.  The similarity between the EC50 and Hill data obtained for the incorporation of 

L- and D-alanine led us to speculate that our pure D-alanine tRNA was not actually 

pure—that sometime during the synthesis of the aminoacylated-dCA, the enantiopurity of 

D-alanine had been compromised.  These studies were halted, and the focus of the work 

became the analysis of the enantiopurity of the D-alanine analog.   

 

Table 6.1.  Data obtained for incorporation of L- and D-alanine at various sites in the α1 subunit of the 

muscle nAChR.* 

Site Amino Acid EC50 (µM) Hill 
α1Ala122TAG L-Ala 51.1 ± 3.5 1.65 ± 0.16 

  D-Ala 56.3 ± 4.5 1.63 ± 0.19 
α1Ile123TAG L-Ala 24.6 ± 2.7 1.64 ± 0.24 

  D-Ala ND ND 
α1Pro236TAG L-Ala NR NR 

  D-Ala NR NR 
α1Leu250TAG L-Ala NR NR 

  D-Ala NR NR 
 

Analysis of Unnatural Amino Acid Chirality 

One method of quantitatively measuring the stereochemical purity of a compound is 

chiral column chromatography using high-performance liquid chromatography (HPLC).58  

Chiral HPLC columns contain single enantiomers immobilized on their stationary phase.  

Resolution of enantiomeric organic compounds is due to the formation of transient 

                                                
* ND = No interpretable data.  NR = No response. 
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diastereomers on the surface of the column; the enantiomer that forms the most stable 

diastereomer will be retained longer than the opposite enantiomer.   

The goal was to analyze N-nitroveratryloxycarbonyl (NVOC) alanine cyanomethyl ester 

6.2a and 6.2b both prior to the dCA coupling reaction and after the unreacted portion was 

recovered from the dCA coupling reaction, since these two points would reflect the 

stereochemical purity of the general NVOC-protection and cyanomethyl ester activation 

reactions and of the coupling reaction.  A racemic mixture of 6.2a and 6.2b was found to 

separate using a Chiralcel OD-H column with 12% ethanol in hexanes.  The OD-H 

column is cellulose tris(3,5-dimethylphenyl) carbamate on a 5 µm silica-gel substrate. 

Both 6.2a and 6.2b were individually run on the chiral HPLC and were found to be pure 

enantiomers (figure 6.10).  Thus, neither the NVOC protection nor the cyanomethyl ester 

activation compromised the α-stereocenter.  To determine whether the coupling of these 

derivatives to dCA destroyed the enantiomeric purity, the unreacted amino acid starting 

material from each coupling was recovered and run on the chiral HPLC.  The D-alanine 

reaction was allowed to run for 2 hours, whereas the L-alanine reaction was allowed to 

run for 20 hours.  In both the D-alanine and the L-alanine reactions, roughly 5 to 10% of 

the recovered starting material was the opposite enantiomer, which proved that the 

conditions used in the dCA coupling reaction led to compromised enantiopurity, but not 

total racemization.   
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Figure 6.10.  Representative chrial HPLC traces showing the difference between the enantiopurity of the 

NVOC-alanine cyanomethyl ester before (6.2b red, 6.2a blue, both pure) and after (6.2b orange, 6.2a 

green, both contain small amounts of the opposite enantiomer) entering the coupling reaction.  The racemic 

mixture of 6.2a and 6.2b is shown in purple.  The identity of the third peak in the orange trace (25.810 

minutes) was never determined, but it is likely NVOC-D-alanine. 

 

Our typical dCA coupling uses 3.0 equivalents of the NVOC-protected cyanomethyl 

ester, 2.4 equivalents of the tetrabutylammonium counter ion, and 1.0 equivalent of dCA 

in DMF at room temperature.  Prior to this work, these conditions had never been tested 

for racemization in our laboratory.  To determine what was compromising the 

stereochemical purity of the amino acid, each component of the coupling reaction was 

analyzed.  Taking the variables in the coupling reaction as time, solvent, dCA, and 

identity of counter ion salt, we isolated each one to determine if any could be linked to 

the racemization of 6.2a and 6.2b.  The reactions that were set up are listed in table 6.2.  
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Table 6.2.  The various reaction conditions tested for racemization.* 

NVOC-Ala-CME (eq) Time (h) Solvent dCA (eq) Salt (eq) Racemization 
1 0 0 0 0 0 0.0% 
3 1 DMF 1 TBA 2.4 3.8% 
3 24 DMF 1 TBA 2.4 6.3% 
3 48 DMF 1 TBA 2.4 4.9% 
1 48 DMF 0 0 0 0.0% 
1 48 H2O 0 0 0 0.0% 
7 48 DMF 1 0 0 0.0% 

1.25 48 DMF 0 TBA-OAc 1 6.0% 
1.25 720 DMF 0 TBA-OAc 1 3.9% 
1.25 48 DMF 0 TBA-Cl 1 0.0% 
1.25 48 DMF 0 TBA-I 1 0.1% 
1.25 48 DMF 0 Na-OAc 1 0.1% 
1.25 48 DMF 0 TEA-OAc 1 6.2% 

 

The first variable, time, was tested by altering the length of the coupling reaction from 1 

hour to 24 hours to 48 hours.  No significant trend was seen between the amount of 

racemization and the length of time the reaction was allowed to run.  Next, the variable of 

solvent was added.  Either 6.2a or 6.2b was dissolved in either DMF or H2O, stirred for 

48 hours, and then purified on the preparatory HPLC.  In both cases, no racemization was 

observed.  These two experiments also eliminated the method of purification, preparatory 

HPLC, as being the cause of the racemization.  Next, dCA was added to the mixture to 

determine its effects on racemization.  When NVOC-D-alanine-cyanomethyl ester 6.2b 

and unsalted dCA were stirred in DMF for 48 hours, no racemization was observed.  

Unfortunately, no aminoacylated-dCA coupling product was formed either.  Since dCA is 

not very soluble in DMF without a counter ion, it may be that the dCA never went into 

solution and thus never encountered NVOC-D-alanine-cyanomethyl ester 6.2b. 

                                                
* Reactions are grouped based on similarity with the major differences highlighted in red. 
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Finally, the role that the counter ion plays in the coupling reaction was addressed.  In 

each of these tests, either 6.2a or 6.2b and the noted salt were dissolved in DMF and 

stirred for at least 48 hours.  Approximately the same amount of racemization was seen 

from a solution of either 6.2a or 6.2b and tetrabutylammonium acetate in DMF that was 

stirred at room temperature for both 48 hours and one month.  The racemization was 

eliminated if the acetate was exchanged with either chloride or iodide or if the 

tetrabutylammonium was exchanged with sodium.  Equivalent racemization was 

observed when tetraethylammonium acetate was tested.   

The data are not clearly suggestive of one mechanism for racemization, but the presence 

of the counter ion salt is sufficient.  The data trend towards racemization when either the 

negatively charged phosphates on dCA or the negatively charge acetate are countered by 

either tetrabutylammonium or tetraethylammonium.  Unfortunately, the 

tetrabutylammonium counter ion is necessary for the dCA to be soluble in DMF at room 

temperature.59   Having greater than two equivalents of this counter ion also enhances the 

coupling reaction.59 

This chapter is not the first account of racemization occurring during the coupling 

reaction.  In 1991 Robertson, Schultz, et al. reported on the degree of racemization 

caused by similar conditions.59  They determined that 5.0 equivalents of the NVOC-

protected cyanomethyl ester and 2.2 equivalents of the tetrabutylammonium counter ion 

for 1.0 equivalent of dCA when reacted for 2.5 hours at room temperature led to no 

racemization.  An aside in the work suggests that no racemization means less than 5% 

was seen.  They further state that lowering the equivalents of the NVOC-protected 

cyanomethyl ester from 5.0 to 1.5 leads to 2% to 5% racemization.  They hypothesize 



 
169 

 
 

that this value is due to the longer reaction time necessary to get an efficient yield with 

these conditions, but our data suggest that time is not a crucial component to the amount 

of racemization seen in the coupling reaction.  Our preliminary studies did not address 

the equivalents of NVOC-protected cyanomethyl ester.  The only case where we 

increased the equivalents of NVOC-protected cyanomethyl ester was when we did not 

include a counter ion in the reaction mixture.  It may be that the increase in equivalents of 

NVOC-D-alanine-cyanomethyl ester 6.2b to dCA favored a decrease in racemization—

an interpretation that follows the data presented by Robertson, Schultz, et al.59  Further 

work would be needed to expound this hypothesis. 

 

Conclusion 

This study explored the Xenopus laevis ooctye’s translational machinery using the tRNA  

THG73 that was chemically aminoacylated with D-alanine.  A positive result in one of 

the negative controls prevented the initial in vivo nonsennse-suppression experiments in 

ShB from providing any data, but preliminary results from suppression in the α1 subunit 

of the nAChR looked promising through both in vitro and in vivo nonsense suppression.  

Initially, the difference in the amount of protein seen in the Western blot from in vitro 

suppression of D-alanine and the low current size from channel activity from the in vivo 

suppression of D-alanine were attributed to lower suppression efficiency of the D-amino 

acid.  Later, the lower efficiency was attributed to a small amount of L-alanine 

contamination in the D-alanine tRNA, as it was discovered that the amino acid chirality 

was compromised in one of the last steps of the synthesis of the aminoacylated tRNA.  
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Any positive D-alanine suppression results from the Western blots and the in vivo 

nonsennse-suppression method are attributed to the L-amino acid contamination that 

resulted from the coupling of the NVOC-protected D-alanine cyanomethyl ester to dCA. 

Therefore, the D-alanine-tRNA present was either effectively removed or outcompeted 

by the L-alanine-tRNA.  Through the lack of any other suppression results, this study 

supports previous studies that found that D-amino acids were difficult to incorporate into 

proteins using nonsense suppression.  The most important result found from this study 

was that the conditions normally used in our lab for the coupling of unnatural amino 

acids to dCA compromise the enantiopurity of the amino acid.  

Ideally, we will eventually be able to modify the methods of nonsense suppression to be 

able to incorporate D-amino acids at will.  This ability will allow us to test the 

importance of conformation and φ and ψ angles in structure-function relationships in ion 

channels.  The first goal will be to determine coupling conditions that retain the 

enantiopurity of the NVOC-protected cyanomethyl ester.  In this study we did not address 

the equivalents of the various coupling reaction components thoroughly.  If the 

observations of Robertson, Schultz, et al. hold true,59 increasing the amount of NVOC-

protected cyanomethyl ester to that of dCA may eliminate the racemization.  Otherwise, 

modifying the methods of Starck et al. in their use of L-amino acid oxidase to remove 

impurities28 may also be a viable solution that avoids altering conditions in the already 

optimized coupling reaction. 
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Methods 

Synthesis 

All reactions were performed at ambient temperature and pressure unless otherwise 

noted.  All reactions involving potentially air-sensitive compounds were conducted under 

an inert atmosphere using Schlenk techniques.  Solvents were purified by passage 

through alumina.60  Unless otherwise noted, all chemicals and reagents were used as 

received without further purification.  Flash chromatography was performed using EMD 

(Gibbstown, NJ) silica gel 60 (particle size 0.040-0.063 mm).  Thin-layer 

chromatography (TLC) was performed using EMD (Gibbstown, NJ) silica gel 60 F254 

precoated plates (0.25 mm) and visualized by UV and potassium permanganate.  Nuclear 

magnetic resonance spectroscopy (NMR) was preformed on either a Varian (Palo Alto, 

CA) Mercury 300 instrument, and NMR resonances are reported relative to Me4Si (δ 0.0) 

or CD3OD (δ 3.31).  Data for 1H NMR spectra are reported as follows: chemical shift (δ 

ppm), integration, multiplicity, and coupling constant (Hz).  Mass spectroscopy (MS) 

spectra were obtained from the Caltech Mass Spectrometry Lab.  Electrospray ionization 

mass spectrometry (ESI-MS) was preformed on an LCQ Classic ion trap 

(ThermoFinnigan, Waltham, MA) in direct infusion mode.  HPLC was preformed using 

Waters (Milford, MA) equipment and software (510 HPLC pumps and 996 Photodiode 

Array Detector) and reverse-phase Nova-Pak 18C columns (3.9 × 150 mm analytical 

column, 7.8 × 300 mm preparatory column). 
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NVOC-D-alanine 6.1b:  D-Alanine (0.32 g, 3.6 mmol, 1 eq) was added to a round-

bottom flask and dissolved in 10% (w/v) sodium carbonate in water (14 mL).  To this 

solution was added dioxane (14 mL) at 0 °C, followed by the slow addition of 

nitroveratryloxycarbonyl chloride (1.0 g, 3.8 mmol, 1.1 eq).  The mixture was allowed to 

warm to room temperature while stirring for 4 hours.  The mixture was then poured into 

distilled water (200 mL) and washed with ether (3×).  Under vigorous stirring, the 

aqueous solution was adjusted to pH 2 by slowly adding 5 M HCl.  Once an orange-

yellow precipitate began to form, the solution was refrigerated overnight to encourage the 

formation of more solid.  The subsequent day the precipitate was filtered to afford 

NVOC-D-alanine 6.1b as a yellow solid (0.99 g, 3.0 mmol, 83% yield).  Rf = 0.24 (1% 

AcOH in EtOAc); 1H NMR (300 MHz, CD3OD, 298 K) δ 7.72 (1H, s), 7.17 (1H, s), 5.52 

(1H, d, J = 15.3 Hz), 5.36 (1H, d, J = 15.3 Hz), 4.19 (1H, q, J = 7.2 Hz), 3.96 (3H, s), 

3.86 (3H, s), 1.40 (3H, d, J = 7.2 Hz). 

 

NVOC-D-alanine cyanomethyl ester 6.2b:  NVOC-D-alanine 6.1b (0.21 g, 0.63 mmol) 

was added to a round-bottom flask under Ar (g) and dissolved in DMF (2 mL).  

Chloroacetonitrile (2 mL) and then triethylamine (0.25 mL) were added to the solution.  
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The mixture was stirred at room temperature for 75 minutes and then the solvent was 

removed under vacuum.  The residue was purified by flash column chromatography 

(CH2Cl2, then 5% EtOAc in CH2Cl2 once the yellow product started eluting) to afford 

NVOC-D-alanine cyanomethyl ester 6.2b as pale yellow crystals (0.17 g, 0.46 mmol, 

73% yield).  Rf = 0.44 (17% EtOAc in CH2Cl2); 1H NMR (300 MHz, CDCl3, 298 K) δ 

7.68 (1H, s), 6.98 (1H, s), 5.56 (1H, d, J = 15.6 Hz), 5.43 (1H, d, J = 14.7 Hz), 4.78 (2H, 

q, J = 15.6 Hz), 4.45 (1H, m), 3.99 (3H, s), 3.93 (3H, s), 1.48 (3H, d, J = 7.2 Hz). 
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NVOC-D-alanine-dCA 6.3b:  NVOC-D-alanine cyanomethyl ester 6.2b (0.020 g, 0.054 

mmol, 3 eq) was added to a round-bottom flask under Ar (g) and dissolved in DMF (1 

mL).  This solution was transferred to another round-bottom flask under Ar (g), which 

contained dCA (0.020 g, 0.017 mmol, 1 eq) as a tetrabutylammonium salt (2.4 eq).  The 

reaction was stirred at room temperature for 18 hours while being monitored by reverse-

phase analytical HPLC with a linear solvent gradient from 5% acetonitrile in 25 mM 

NH4OAc buffer pH 4.5 to 100% acetonitrile.  The crude product was purified using 

reverse-phase semipreparative HPLC with the same linear solvent gradient.  The fractions 

containing the NVOC-D-alanine-dCA 6.3b were combined, and the solvent was removed 
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by lyophilization.  The solid was redissolved in 10 mM acetic acid and reconcentrated via 

lyophilization (3×) to afford NVOC-D-alanine-dCA 6.3b as a white powder (0.0053 g, 

0.0056 mmol, 33% yield).   FAB-MS m/z calc’d for C32H41N10O20P2 [M−H]:  947.2; 

found:  947.1. 

 

Nonsense Suppression In Vivo 

The site-directed mutagenesis of TAG mutants, gene construction, synthesis of 

suppressor tRNA, and ligation of aminoacyl-tRNA to tRNA have been described 

previously.40,48,61,62  Plasmid DNAs were linearized with Not1, and mRNA was 

transcribed using the T7 mMESSAGE mMACHINE kit (Ambion, Austin, TX). 

Oocytes from Xenopus laevis were isolated and maintained at 18 °C in ND96 solution 

(96 mM sodium chloride, 2 mM potassium chloride, 1.8 mM calcium chloride, 1 mM 

magnesium chloride, 5 mM HEPES, 2.5 mM sodium pyruvate, 0.5 mM theophyline, 10 

µg/mL gentamycin at pH 7.5) according to published procedures.63  Each oocyte was 

microinjected with 50 nL of a 1:1 mixture of mRNA (0.04 ng/nL for ShB and 0.5 ng/nL 

of a 20:1:1:1 α:β:γ:δ for nAChR) and tRNA (1 µg/µL) or unaminoacylated dCA-tRNA (1 

µg/µL).  NVOC-protected aminoacylated tRNA was deprotected prior to injection by 

irradiating the sample for 5 minutes with a 1000 W Hg/Xe arc lamp (Oriel, Irvine, CA) 

operating at 400 W equipped with WG-335 and UG-11 filters (Schott, Duryea, PA).42 
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Electrophysiology 

Electrophysiological recordings were carried out 24 to 48 hours after injection.  Whole-

cell currents from oocytes were measured using a Geneclamp 500 amplifier (ShB) or an 

OpusXpress (nAChR) and pCLAMP software (Axon Instruments, Foster City, CA) in the 

two-electrode voltage-clamp configuration.  Microelectrodes were filled with 3 M 

potassium chloride and had resistances ranging from 0.5 to 1.5 MΩ.  Oocytes were 

continuously perfused with a nominally calcium-free bath solution consisting of 96 mM 

sodium chloride, 2 mM potassium chloride, 1 mM magnesium chloride, and 5 mM 

HEPES at pH 7.5.  In the ShB experiments, the currents from ShB expressing oocytes 

were measured during depolarizing jumps from the holding potential to +70 mV in 25 

mV increments.  In the nAChR experiments, microscopic ACh-induced currents were 

recorded in response to bath application of ACh at a holding potential of −80 mV. 

 

Nonsense Suppression In Vitro 

Translation was carried out using rabbit reticulocyte lysate translation system (Promega, 

Madison, WI) according to manufacturer’s protocol.  Lysate mix (8.75 µL), amino acid 

mix (0.35 µL), RNAse inhibitor (0.25 µL), H2O (1.75 µL), mRNA (0.5 µL, 1 µg/µL for 

suppression experiments and 0.3 µg/µL for wild-type experiments), and either tRNA (1 

µL, 1 µg/µL) or water (1 µL, for mRNA-only negative control) were combined and 

incubated at 30 °C for 106 minutes.  The in vitro translation mix was then kept at −80 °C 

until further use. 
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To prepare for gel loading, the in vitro translation mix (2.5 µL) was added to 4% sodium 

dodecyl sulfate (SDS) (2.5 µL) and then that mixture was added to 10% SDS (2 µL), H2O 

(7 µL), and 2× SDS loading buffer (100 mM tris chloride at pH 6.8, 4% SDS, 0.2% 

bromophenol blue, 20% glycerol) (14 µL).  Samples were loaded in 5 µL aliquots into 

prepoured 12% tris chloride gels (Bio-Rad, Hercules, CA) for SDS-polyacrylamide gel 

electrophoresis (PAGE).  Western blotting was preformed using nitrocellulose transfer, a 

mouse anti-HA primary antibody, and a goat anti-mouse secondary antibody conjugated 

to horseradish-peroxidase.  Protein was detected by chemiluminescence. 

 

Analysis of Enantiopurity of NVOC-Alanine Cyanomethyl Ester 

A mixture of NVOC-alanine cyanomethyl ester 6.2a and 6.2b (1 mg/mL in ethanol) was 

found to separate via chiral HPLC using a Chiralcel OD-H column with an elution of 

12% ethanol in hexanes.  The OD-H column is cellulose tris(3,5-dimethylphenyl) 

carbamate on a 5 µm silica-gel substrate.  The peak for 6.2b appeared approximately 2 

minutes prior to the appearance of 6.2a, approximately 22 minutes and 24 minutes, 

respectively, for a 60 minute run.  Each chiral HPLC run included a 20 minute prewash 

and 20 minute postwash of 100% isopropanol. 

Generally, each reaction for testing by chiral HPLC was set up as follows:  NVOC-

alanine cyanomethyl ester 6.2a or 6.2b (0.19g, 0.050 mmol, equivalents as listed in table 

6.2) was added to a round-bottom flask under Ar (g) and dissolved in N,N-dimethyl 

formamide or water (0.4 mL).  To this solution was added either dCA (equivalents as 

listed in table 6.2) or counter ion salt (identity and equivalents as listed in table 6.2) or 
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both.  The reaction was then allowed to stir at room temperature for the amount of time 

listed in table 6.2.  The components of the mixture were then separated using reverse-

phase semipreparative HPLC with a linear solvent gradient from 5% acetonitrile in 25 

mM ammonium acetate (pH 4.5) to 100% acetonitrile.  The desired fractions containing 

the unreacted NVOC-alanine cyanomethyl ester 6.2a or 6.2b were combined, and the 

solvent was removed by lyophilization.  The resulting white solid was dissolved in 

ethanol (1 mg/mL) and analyzed for enantiopurity by the chiral HPLC method described 

above. 

 



 
178 

 
 

References 

 (1) Valiyaveetil, F. I.; Sekedat, M.; Mackinnon, R.; Muir, T. W. Proc. Natl. Acad. 

Sci. USA 2004, 101, 17045-9. 

 (2) Yoshimura, T.; Esaki, N. J. Biosci. Bioeng. 2003, 96, 103-109. 

 (3) Heck, S. D.; Faraci, W. S.; Kelbaugh, P. R.; Saccomano, N. A.; Thadeio, P. F.; 

Volkmann, R. A. Proc. Natl. Acad. Sci. USA 1996, 93, 4036-9. 

 (4) Kreil, G. Annu. Rev. Biochem. 1997, 66, 337-345. 

 (5) Broccardo, M.; Erspamer, V.; Falconieri Erspamer, G.; Improta, G.; Linari, G.; 

Melchiorri, P.; Montecucchi, P. C. Br. J. Pharmacol. 1981, 73, 625-31. 

 (6) McDonnell, K. A.; Imperiali, B. J. Am. Chem. Soc. 2002, 124, 428-33. 

 (7) Anil, B.; Song, B.; Tang, Y.; Raleigh, D. P. J. Am. Chem. Soc. 2004, 126, 13194-

5. 

 (8) Doyle, D. A.; Morais Cabral, J.; Pfuetzner, R. A.; Kuo, A.; Gulbis, J. M.; Cohen, 

S. L.; Chait, B. T.; MacKinnon, R. Science 1998, 280, 69-77. 

 (9) Heginbotham, L.; Lu, Z.; Abramson, T.; MacKinnon, R. Biophys. J. 1994, 66, 

1061-7. 

 (10) Ibba, M.; Soll, D. Science 1999, 286, 1893-1897. 

 (11) Soutourina, J.; Plateau, P.; Delort, F.; Peirotes, A.; Blanquet, S. J. Biol. Chem. 

1999, 274, 19109-14. 

 (12) Calendar, R.; Berg, P. J. Mol. Biol. 1967, 26, 39-54. 

 (13) Ferri-Fioni, M. L.; Schmitt, E.; Soutourina, J.; Plateau, P.; Mechulam, Y.; 

Blanquet, S. J. Biol. Chem. 2001, 276, 47285-47290. 



 
179 

 
 

 (14) Yang, H. B.; Zheng, G.; Peng, X. Z.; Qiang, B. Q.; Yuan, J. G. FEBS Lett. 2003, 

552, 95-98. 

 (15) Zheng, G.; Liu, W.; Gong, Y.; Yang, H.; Yin, B.; Zhu, J.; Xie, Y.; Peng, X.; 

Qiang, B.; Yuan, J. Biochem. J. 2008. 

 (16) Tan, Z.; Forster, A. C.; Blacklow, S. C.; Cornish, V. W. J. Am. Chem. Soc. 2004, 

126, 12752-3. 

 (17) Louie, A.; Ribeiro, N. S.; Reid, B. R.; Jurnak, F. J. Biol. Chem. 1984, 259, 5010-

6. 

 (18) LaRiviere, F. J.; Wolfson, A. D.; Uhlenbeck, O. C. Science 2001, 294, 165-168. 

 (19) Asahara, H.; Uhlenbeck, O. C. Proc. Natl. Acad. Sci. USA 2002, 99, 3499-3504. 

 (20) Dale, T.; Sanderson, L. E.; Uhlenbeck, O. C. Biochemistry 2004, 43, 6159-66. 

 (21) Sanderson, L. E.; Uhlenbeck, O. C. Biochemistry 2007, 46, 6194-200. 

 (22) England, P. M. Biochemistry 2004, 43, 11623-9. 

 (23) Ellman, J.; Mendel, D.; Anthony-Cahill, S.; Noren, C. J.; Schultz, P. G. Methods 

Enzymol. 1991, 202, 301-36. 

 (24) Dedkova, L. M.; Fahmi, N. E.; Golovine, S. Y.; Hecht, S. M. J. Am. Chem. Soc. 

2003, 125, 6616-6617. 

 (25) Bain, J. D.; Wacker, D. A.; Kuo, E. E.; Chamberlin, A. R. Tetrahedron 1991, 47, 

2389-2400. 

 (26) Quiggle, K.; Kumar, G.; Ott, T. W.; Ryu, E. K.; Chladek, S. Biochemistry 1981, 

20, 3480-5. 

 (27) Bhuta, A.; Quiggle, K.; Ott, T.; Ringer, D.; Chladek, S. Biochemistry 1981, 20, 8-

15. 



 
180 

 
 

 (28) Starck, S. R.; Qi, X.; Olsen, B. N.; Roberts, R. W. J. Am. Chem. Soc. 2003, 125, 

8090-8091. 

 (29) Yamane, T.; Miller, D. L.; Hopfield, J. J. Biochemistry 1981, 20, 7059-7064. 

 (30) Heckler, T. G.; Roesser, J. R.; Xu, C.; Chang, P. I.; Hecht, S. M. Biochemistry 

1988, 27, 7254-62. 

 (31) Dedkova, L. M.; Fahmi, N. E.; Golovine, S. Y.; Hecht, S. M. Biochemistry 2006, 

45, 15541-51. 

 (32) Thompson, J.; Kim, D. F.; O'Connor, M.; Lieberman, K. R.; Bayfield, M. A.; 

Gregory, S. T.; Green, R.; Noller, H. F.; Dahlberg, A. E. Proc. Natl. Acad. Sci. USA 

2001, 98, 9002-7. 

 (33) O'Connor, M.; Lee, W. M.; Mankad, A.; Squires, C. L.; Dahlberg, A. E. Nucleic 

Acids Res. 2001, 29, 710-5. 

 (34) Polacek, N.; Gaynor, M.; Yassin, A.; Mankin, A. S. Nature 2001, 411, 498-501. 

 (35) Calendar, R.; Berg, P. Biochemistry 1966, 5, 1681-90. 

 (36) Calendar, R.; Berg, P. Biochemistry 1966, 5, 1690-5. 

 (37) Noren, C. J.; Anthonycahill, S. J.; Griffith, M. C.; Schultz, P. G. Science 1989, 

244, 182-188. 

 (38) Ellman, J. A.; Mendel, D.; Schultz, P. G. Science 1992, 255, 197-200. 

 (39) Mendel, D.; Ellman, J.; Schultz, P. G. J. Am. Chem. Soc. 1993, 115, 4359-4360. 

 (40) Nowak, M. W.; Kearney, P. C.; Sampson, J. R.; Saks, M. E.; Labarca, C. G.; 

Silverman, S. K.; Zhong, W.; Thorson, J.; Abelson, J. N.; Davidson, N.; Schultz, P. G.; 

Dougherty, D. A.; Lester, H. A. Science 1995, 268, 439-442. 



 
181 

 
 

 (41) Nowak, M. W.; Gallivan, J. P.; Silverman, S. K.; Labarca, C. G.; Dougherty, D. 

A.; Lester, H. A. In Ion Channels, Pt. B 1998; Vol. 293, p 504-529. 

 (42) Li, L. T.; Zhong, W. G.; Zacharias, N.; Gibbs, C.; Lester, H. A.; Dougherty, D. A. 

Chemistry & Biology 2001, 8, 47-58. 

 (43) Vossmeyer, T.; Jia, S.; Delonno, E.; Diehl, M. R.; Kim, S. H.; Peng, X.; 

Alivisatos, A. P.; Heath, J. R. J. Appl. Phys. 1998, 84, 3664-3670. 

 (44) Hoshi, T.; Zagotta, W. N.; Aldrich, R. W. Science 1990, 250, 533-538. 

 (45) Zagotta, W. N.; Hoshi, T.; Aldrich, R. W. Science 1990, 250, 568-571. 

 (46) Demo, S. D.; Yellen, G. Neuron 1991, 7, 743-753. 

 (47) Mackinnon, R.; Aldrich, R. W.; Lee, A. W. Science 1993, 262, 757-759. 

 (48) England, P. M.; Lester, H. A.; Davidson, N.; Dougherty, D. A. Proc. Natl. Acad. 

Sci. USA 1997, 94, 11025-11030. 

 (49) Rodriguez, E. A.; Lester, H. A.; Dougherty, D. A. Proc. Natl. Acad. Sci. USA 

2006, 103, 8650-5. 

 (50) Rodriguez, E. A.; Lester, H. A.; Dougherty, D. A. RNA 2007, 13, 1703-14. 

 (51) Saks, M. E.; Sampson, J. R.; Nowak, M. W.; Kearney, P. C.; Du, F.; Abelson, J. 

N.; Lester, H. A.; Dougherty, D. A. J. Biol. Chem. 1996, 271, 23169-75. 

 (52) Kearney, P. C.; Zhang, H.; Zhong, W.; Dougherty, D. A.; Lester, H. A. Neuron 

1996, 17, 1221-9. 

 (53) Cashin, A. L.; Torrice, M. M.; McMenimen, K. A.; Lester, H. A.; Dougherty, D. 

A. Biochemistry 2007, 46, 630-9. 

 (54) Bain, J. D.; Diala, E. S.; Glabe, C. G.; Wacker, D. A.; Lyttle, M. H.; Dix, T. A.; 

Chamberlin, A. R. Biochemistry 1991, 30, 5411-21. 



 
182 

 
 

 (55) England, P. M.; Lester, H. A.; Dougherty, D. A. Biochemistry 1999, 38, 14409-

14415. 

 (56) Unwin, N. J. Mol. Biol. 2005, 346, 967-89. 

 (57) Kenakin, T. Trends Pharmacol. Sci. 1999, 20, 400-405. 

 (58) Earll, M. Online Guide to Chiral HPLC, 1999. 

 (59) Robertson, S. A.; Ellman, J. A.; Schultz, P. G. J. Am. Chem. Soc. 1991, 113, 

2722-2729. 

 (60) Pangborn, A. B.; Giardell, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. 

Organometallics 1996, 15, 1518-1520. 

 (61) Nowak, M. W.; Gallivan, J. P.; Silverman, S. K.; Labarca, C. G.; Dougherty, D. 

A.; Lester, H. A. Methods Enzymol. 1998, 293, 504-529. 

 (62) Kearney, P. C.; Nowak, M. W.; Zhong, W.; Silverman, S. K.; Lester, H. A.; 

Dougherty, D. A. Molecular Pharmacology 1996, 50, 1401-1412. 

 (63) Quick, M.; Lester, H. A. In Ion Channels of Excitable Cells; Narahashi, T., Ed.; 

San Diego, CA: Academic Press, 1994, p 261-279. 

 

 



 
183 

C h a p t e r  V I I 

 

EXPANDING THE REPERTOIRE OF AROMATIC UNNATURAL AMINO ACIDS 

USEFUL FOR STRUCTURE-FUNCTION STUDIES OF ION CHANNELS 

 

In this chapter three separate studies, all tied together due to their focus on unnatural 

aromatic amino acids, are discussed.  The first section describes the synthesis of four 

novel fluorescent methanethiosulfonate compounds for use in fluorescence resonance 

energy transfer (FRET) studies on ion channels.  Each of these compounds can create a 

fluorescent amino acid in situ by covalent attachment to a cysteine residue.  The second 

section focuses on the unnatural amino acid 3,5-dimethylphenylalanine in the voltage-

gated Shaker B K+ channel (ShB).  This residue was designed to explore whether the 

cationic tetraethylamine (TEA) interacted with the 3-position of the aromatic ring at 

position 449 instead of the face of the aromatic as expected for a cation-π interaction.  

Unfortunately, this residue did not provide any clarity on the importance of the 

substituent at this position, but in studying the effects of methyl-substituents, 4-methyl-

phenylalanine was found to further support a cation-π interaction at this site. The third 

section describes attempts to enhance the cation-π interaction through the use of 4-amino-

phenylalanine.  ShB was the initial target, but the GABAC receptor and the nicotinic 

acetylcholine receptor (nAChR) were also studied.  No cation-π enhancement was seen 

for 4-amino-phenylalanine at any channel.  Several attempts were made to investigate 

whether 4-amino-phenylalanine was being modified, which proved that the 
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nitroveratryloxycarbonyl (NVOC) deprotection step was not altering the aniline but did 

not conclusively determine if any modifications were occurring to the aniline while the 

amino acid was in the Xenopus laevis oocyte. 

 

Development of Novel Fluorescent Conjugates for Use in Fluorescence Resonance 

Energy Transfer (FRET) Studies of Ion Channels 

Fluorescent amino acids can be extremely useful probes of structural changes during the 

gating of ion channels.  Their fluorescence can relay information about their 

environment.  For example, the hydrophobicity of the environment surrounding 

rhodamine determines the intensity of its fluorescence emission.  Because of this intrinsic 

feature, incorporating a fluorophore into an ion channel and monitoring its fluorescence 

during gating allows for real time analysis of the changes in the environment that 

encompass the fluorophore.  

Work is currently ongoing in the Dougherty and Lester laboratories to incorporate 

fluorescent amino acids into proteins in vivo, but our laboratories and others have already 

sidestepped the ribosome by creating fluorescent amino acids in situ through site-specific 

labeling of cysteine residues with thiol-reactive fluorescent probes such as 

sulforhodamine methanethiosulfonate (MTSR), tetramethylrhodamine (TMRM), and 

Alexa Fluor 546 maleimide (AF546) (figure 7.1).1-7 These fluorescent cysteines have 

allowed for changes in the local environment around the voltage sensor of a K+ 

channel,1,2 the extracellular region of the GABAC ρ1 receptor,4 the pore-lining helix of 

the muscle nAChR,5 the ligand-binding domain of the GABAA receptor,6 and the pore-
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lining helix of the glycine α1 receptor7 during gating to be explored.  These studies were 

able to identify regions of the channels that underwent molecular rearrangements during 

gating, and they were also able to identify differences between the effects of various 

agonists and antagonists on the structural dynamics of the channels.  Although these 

results are informative, this method is limited since it cannot be used to quantitate how 

far the fluorophore moves during the gating process.  

 

Figure 7.1.  Structures of three thiol-reactive fluorescent probes.   

 

The distance a specific site moves during channel gating can be determined from two 

fluorescent moieties through a process called FRET, which occurs when two 
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chromophore-containing compounds with overlapping spectral properties come into close 

proximity.  Because of the properties of the FRET system, the distance between the two 

compounds can be calculated based on fluorescence measurements.  FRET begins with 

the absorption of light by one fluorophore, called the donor.  If there is a second 

chromophore nearby, typically within 1 to 10 nm, whose absorption properties overlap 

with the emission properties of the donor, a radiationless transfer of energy from the 

excited donor molecule to the acceptor chromophore will occur.  Interestingly, the energy 

passes from the donor to the acceptor through long-range dipole-dipole interactions.  If 

the acceptor is a fluorescent compound, then FRET is seen as the quenching of the donor 

fluorescence and the appearance of the acceptor fluorescence.  The extent of the energy 

transfer between the donor and the acceptor is relayed in the intensity of the acceptor 

fluorescence and is dependent on the distance between the two compounds.  Thus, the 

occurrence of FRET and even changes in FRET intensity can be quantified into distances 

between the two chromophores. 

The Lester laboratory has appended yellow fluorescent protein (YFP) and cyan 

fluorescent protein (CFP) to nAChR subunits to determine through FRET if two subunits 

colocalize in a receptor in vivo,8,9 but these large proteins would not be able to answer 

questions about how far a specific site moves during channel gating.  The small 

fluorophores that were used to study the local environment, as described above, are more 

appropriate.  The Lester laboratory has used the thiol-reactive fluorophores MTSR and 

TMRM (figure 7.1).5,7  In order to take advantage of these two compounds in FRET 

studies, chromophores with spectra overlapping the absorption or emission spectra of 

these compounds are needed.  Fortunately, there were already well-established FRET 
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partners for both MTSR and TMRM: 7-nitro-2,1,3-benzoxadiazol-4-yl (NBD)10 and 

fluorescein, respectively (figure 7.2).  

 

Figure 7.2.  A depiction of FRET between the fluorophores discussed in the text. 

 

Three FRET pairs were designed to allow for versatility in experimentation.  If one FRET 

pair did not work well, potentially because one partner was incapable of reacting with the 

desired thiol or because the sterics of their local environment did not allow the pair to 

orient correctly for FRET, then another pair could be tried. 

To illustrate the spectral overlap between the donor and the acceptor, the absorption and 

emission spectra of a rhodamine similar to MTSR (red) and the absorption and emission 
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spectra of a NBD derivative (blue) are shown in figure 7.3A.  The region on the plot that 

is important for FRET is the overlap of the emission of NBD (solid blue line) and the 

absorption of the rhodamine (dashed red line).  The fluorescein derivative Oregon Green 

488 (green) is shown along with its FRET partner TMR (black) in figure 7.3B.  Oregon 

Green 488 was chosen over fluorescein because it is more photostable and less pH 

sensitive at physiological pH (pKa approximately 4.7) than its parent compound 

(fluorescein has a pKa of approximately 6.4).11  Again, the important region is the 

overlap between the emission of the Oregon Green 488 and the absorption of the TMR.  

The third donor-acceptor spectra pair shown in figure 7.3C is for a coumarin (purple) and 

Oregon Green 488 (green).   These two compounds have less spectral overlap than the 

others, but there is still enough overlap for FRET to occur. 
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Figure 7.3.  Absorption (dashed lines) and emission (solid lines) spectra for the various FRET pairs.  

Figures made at www.invitrogen.com using compounds similar to those in the text.  A)  NBD 

aminohexanoic acid in methanol (blue) and sulforhodamine 101 in ethanol (red).  B)  Oregon Green 488 

goat anti-mouse IgG antibody I pH 8.0 buffer (green) and TMR goat anti-mouse IgG antibody in pH 8.0 

buffer (black).  C)  7-Hydroxy-4-methylcoumarin in pH 9.0 buffer (purple) and Oregon Green 488 goat 

anti-mouse IgG antibody I pH 8.0 buffer (green). 

 

A) 

B) 

C) 

NBD Sulforhodamine 

OG488 

OG488 

TMR 

7-Hydroxy-4-methylcoumarin 
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Synthesis of Fluorescent Methanethiosulfonate Compounds 

Before the in vivo FRET studies could begin, the methanethiosulfonate-derivatized FRET 

partners had to be synthesized. 7-Dimethylaminocoumarin-4-acetic acid (DMAC), 6-(N-

(NBD)amino)hexanoate (extended NBD), and Oregon Green 488 were commercially 

available as succinimidyl esters, allowing for the conversion to the methanethiosulfonate 

using the method by Gruber et al. (scheme 7.1).12  To our knowledge, this work 

represents the first such synthesis of these compounds.  Since the extended NBD could 

potentially occupy a wide breadth of space, its accuracy at quantifying distance was 

questioned.  Thus, an NBD with a shorter tether (compact NBD) was synthesized.  The 

same conditions used for the conversion of the succinimidyl ester promoted nucleophilic 

aromatic substitution on NBD-chloride. 
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Scheme 7.1.  The syntheses of four novel fluorescent methanethiosulfonates:  DMAC 7.1, extended NBD 

7.2, compact NBD 7.3, and Oregon Green 488 7.4. 

 

Thiol-Labeling of nAChRs 

These fluorescent methanethiosulfonates were to be used by Dr. Mohammed Dibas in the 

Lester laboratory for FRET studies on the muscle nAChR.  The specific receptor was 

only going to have two cysteine residues, one on the extracellular domain and one at 

β1Ala272, the 19’ residue used previously by Dahan et al.5  The labeling procedure was 

going to be similar to that described by Dahan et al. except instead of washing first with 
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10 mM sodium (2-sulfonatoethyl)methanethiosulfonate to block all endogenous surface 

thiol groups,5 one of the FRET partners would instead be washed over the oocyte.  This 

wash would likely add the fluorescent moiety to many proteins, but since the 

fluorescence from FRET would be the only fluorescence analyzed, the nonspecific 

binding of the fluorophore to other proteins would be eliminated from the study.  The 

second wash would then be 10 mM sodium (2-sulfonatoethyl)methanethiosulfonate to 

block any remaining surface thiols.   The final wash would be a mixture of the other 

FRET partner with 100 µM acetylcholine (ACh).  The application of ACh would open 

the channel and expose the 19’ cysteine to the fluorescent tag.  Once the protein was 

labeled with both fluorophores, the changes in fluorescence from FRET at various points 

during channel activation would be observed, and the resulting data could then be 

quantified into changes in distances between the two fluorophores.  Unfortunately, the in 

vivo studies were never performed.  Since FRET studies could provide valuable 

information about the specific movements that occur during the gating of the muscle 

nAChR and other ion channels, hopefully this project will gain momentum and be 

continued by future graduate students in either the Dougherty or the Lester laboratories. 

 

Probing the Sterics Around Phenylalanine Residues Using the Unnatural Amino 

Acid 3,5-Dimethylphenylalanine 

TEA is a well-known blocker of K+ channels that was introduced in this thesis in chapter 

2.  In that chapter the cationic TEA was experimentally shown to bind to and block ShB 

through a cation-π interaction when an aromatic residue was present at position 449 at the 
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top of the channel pore, through the incorporation of fluorinated-phenylalanine 

derivatives using in vivo nonsense-suppression techniques.13.  Though there was 

precedent for this type of interaction based on previous experimental work,14 this result 

was controversial since a cation-π binding motif was not present in the crystal structure 

of the related K+ channel KcsA when complexed with the TEA analogue TEAs 

(2BOC).15  Instead of TEAs interacting with the electronegative face of Tyr82, the 

residue in KcsA homologous to ShB Thr449, the static picture showed TEAs in van der 

Waals contact with the side of the aromatic ring—“edge on” not “en face” (figure 7.4).  

Specifically, the 3-position of the ring was closest to the blocker, which argued that 

hydrophobics, shape, and size of the ring were what was important to TEA block of K+ 

channels. 

 

Figure 7.4.  A portion of the 2BOC crystal structure focusing on KcsA Tyr82 and TEAs.  The yellow lines 

highlight the points of closest proximity between the two, which clearly involves the 3-position of the ring.  

Adapted from Lenaeus et al.15 
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This controversy was addressed in chapter 2 through the computational modeling of the 

energetic differences between TEA and the various incorporated fluorinated 

phenylalanine derivatives that were used in the study.  The calculations made from the 

reduced system that included only TEAs and the four phenylalanine derivatives, with 

their coordinates taken from 2BOC,15 clearly demonstrated that if the edge-on interaction 

represented what occurred between TEA and the channel in vivo, the addition of fluorine 

atoms at the 3- and 5-positions of the phenylalanine should enhance TEA block (figure 

2.5).  The added negative electrostatic potential at these sites would attract the cationic 

blocker instead of repelling it as predicted by the cation-π interaction. Experimental work 

showed that the incorporation of 3,5-F2-phenylalanine at ShB position 449 decreased the 

blocking efficiency of TEA, better coinciding with an en face, cation-π interaction than 

the edge-on hydrophobic interaction.  Together the computational data and the 

experimental data suggest that the still image seen in the 2BOC crystal structure is not 

relevant for TEA binding to and blocking ShB. 

The addition of the fluorine atoms at the 3- and 5-positions of the aromatic ring were 

designed to test the significance of the cation-π interaction, not the importance of the 

substituents at these positions. Designing a phenylalanine derivative with larger 

substituents at the 3- and 5-positions was anticipated to further investigate the relevance 

of the crystal structure 2BOC for its depiction of TEA block of ShB.  3,5-

Dimethylphenylalanine was chosen since the methyl groups were anticipated to be 

sterically disruptive to the binding of the TEA blocker, due to the increase in size from 

that of a hydrogen atom or fluorine atom, in an edge-on, but not an en face, orientation 

(figure 7.5).  
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Figure 7.5.  The structures and representative electrostatic potential surfaces of phenylalanine, the 

fluorinated phenylalanine derivatives used in the cation-π study in chapter 2, and 3,5-

dimethylphenylalanine.  The electrostatic potential surfaces were calculated using HF 6-31G*, where red 

and blue correspond to −20 and 20 kcal/mol, respectively. 

 

Synthesis of 3,5-Dimethylphenylalanine 

The synthesis of 3,5-dimethylphenylalanine began with the bromination of mesitylene 

using N-bromosuccinimide.16  This compound was then condensed with N-

(diphenylmethylene)glycine tert-butyl ester to yield the protected, racemic 3,5-

dimethylphenylalanine 7.6.  The protecting groups were removed, and then the amine 

was reprotected with the NVOC photolabile protecting group.17  Next, the acid was 
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activated as a cyanomethyl ester and coupled to the tetrabutylammonium salt of dCA to 

afford 7.10.  At this point the amino acid can be attached to either the 2’ or the 3’ 

hydroxyl of dCA since it is thought to rapidly sample both sites.  Finally, the 

aminoacylated dCA was ligated to THG-73 using T4 RNA ligase. 

 

Scheme 7.2.  Synthesis of 3,5-dimethylphenylalanine-tRNA. 

 

Evaluating the Effects of 3,5-Dimethylphenylalanine on TEA Block 

3,5-Dimethylphenylalanine was incorporated into ShB using the same Thr449UAG 

cRNA as in chapter 2.13  As stated above studying the ability of TEA to block this mutant 

channel was expected to give more evidence as to how TEA interacts with the channel in 
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vivo.  Therefore, the IC50 for TEA and the dimethyl-containing channel was expected to 

be similar to that for ShB Thr449Phe if the TEA interacted with the aromatic in an en 

face, cation-π favorable manner.  Conversely, TEA was expected to be much less 

effective at blocking the mutant channel, and thus have a higher IC50, if the edge-on 

interaction with the ring was as important as predicted by the crystal structure.15  

Surprisingly, the IC50 for TEA block of the dimethyl-containing mutant channel did not 

follow either expected trend.  As can be seen in figure 7.6, the IC50 for ShB with 3,5-

dimethylphenylalanine incorporated at position 449 is just slightly less than the IC50 

when 3,5-F2-phenylalanine is incorporated.  Thus, the addition of the methyl substituents 

at the 3- and 5-positions of the aromatic ring is less disruptive than when the fluorine 

atoms are there, although the methyl groups were predicted to be more disruptive in the 

edge-on orientation because of their larger size or not disruptive at all in the en face 

orientation.  Since the addition of the methyl substituents does have an adverse effect on 

the binding of the TEA that was not predicted by a pure cation-π interaction between the 

blocker and the aromatic side chain, an intermediary interaction with the substituents at 

these positions on the aromatic ring, either with TEA or with the channel, could be 

important for block. 
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Figure 7.6. Dose-response curves for channels with three different amino acids incorporated at position 449 

in ShB by nonsense suppression.   

 

To test whether all of the position on the aromatic ring were as sensitive to the addition of 

a methyl group as the 3- and 5-positions were, 4-methyl-phenylalanine-tRNA (made from 

a dCA analog that was previously synthesized by a past member of the Dougherty 

laboratory) was incorporated into position 449 of ShB.  The IC50 for the 4-methyl-

phenylalanine-containing channel was 0.26 ± 0.1 mM TEA, similar to that expected if the 

cation-π interaction controlled the binding of TEA to the channel (figure 7.7).  The 

methyl group is slightly electron donating, therefore it is expected to have a slightly 

enhanced cation-π interaction with TEA, as is seen.  The incorporation of 4-methyl-

phenylalanine was exciting in that it further substantiated that the cation-π, en face 

orientation dominanted in vivo for ShB.  But, this result also confirmed that the location 

of the methyl substituents at the 3- and 5-positions were specific for the slight disruption 

of receptor function in the earlier work.  
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Figure 7.7. Data collected for 4-methyl-phenylalanine in ShB.  A)  IC50 curve for 4-methyl-phenylalanine at 

ShB position 449.  B)  Cation-π plot for ShB Thr449 mutations.  The line represents the best fit for all of 

the points, y = −0.16x + 4.5 and R2 = 0.96.  
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To ensure that the addition of the two methyl groups at the 3- and 5-positions was not 

disruptive for all cation-π interactions in the same degree as was seen in ShB, 3,5-

dimethylphenylalanine was incorporated into the voltage-gated Na+ channel NaV1.4 in 

place of Phe1579.  Note that this channel and residue are involved in a cation-π 

interaction with lidocaine, as discussed in chapter 5.18  As seen in figure 7.8, the 

additional methyl groups do not negatively impact the cation-π interaction between the 

aromatic residue and lidocaine.  Thus, the shift in IC50 for TEA and ShB with 3,5-

dimethylphenylalanine incorporated at position 449 is specific for this blocker and this 

mutant channel.  Somehow the addition of the methyl groups decreases the affinity of 

TEA for the channel, thus lowering its ability to block, but not in a manner that firmly 

discredits either model. 

 

Figure 7.8.  Frequency profile for use-dependent block for three different amino acids incorporated at 

position 1579 of NaV1.4. 
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Even though 3,5-dimethylphenylalanine did not provide conclusive results in this study, 

it has been useful in studies interested in understanding the sterics around phenylalanine 

residues in two other ion channels.  Walrati (Kay) Limapichat, a current graduate student 

in the Dougherty laboratory, has used this residue to understand the steric environment 

around the conserved FPF sequence in the α1 subunit of the muscle nAChR.  She found 

that its incorporation at Phe166 lowered the EC50 of ACh tenfold from that of the wild-

type channel.  Comparison with the EC50 values for mutant channels with 4-methyl-

phenylalanine, 4-F-phenylalanine, and 3,5-F2-phenylalanine incorporated at this site 

suggested that the decrease in EC50 correlated with the size and location of the 

substituents on the aromatic ring.  Kiowa Bower, another graduate student in the 

Dougherty laboratory, has used 3,5-dimethylphenylalanine to probe the importance of 

sterics around the aromatic residues located in the ligand-binding region of the dopamine 

D2 G-protein coupled receptor (GPCR).  Again, at certain sites he found trends that ran 

linearly with the size and location of the substituents on the aromatic ring.  These two 

examples are only a small sampling of the possible sites for incorporation of 3,5-

dimethylphenylalanine.  In the future, this unnatural amino acid should continue to 

provide valuable information about the sterics around important phenylalanines in ion 

channels. 
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Attempts to Enhance the Binding Affinity of Cationic Ligands for their Receptors 

Using the Unnatural Amino Acid 4-Amino-Phenylalanine 

As seen throughout the literature,19 this thesis (chapters 2, 3, 4, 5),13,18,20,21 and earlier this 

chapter, the cation-π interaction is a motif commonly employed by proteins to bind 

cationic ligands.  Currently, the method used to confirm the presence of a cation-π 

interaction between a ligand and a receptor is through the incorporation of fluorinated 

phenylalanine or tryptophan residues in place of the aromatic residue proposed to donate 

the “π” portion of the interaction.  The addition of the electronegative fluorine atoms 

withdraws electron density from the face of the aromatic, reducing the ability of the 

residue to bind cations.  Other electron withdrawing substituents, such as a bromine atom 

or a cyano group, have also been shown to decrease the binding ability of the mutant 

receptor for a cationic ligand.22  To date the unnatural amino acid 4-O-methyl-

phenylalanine is the only published example of a slightly strengthened cation-π 

interaction in a receptor.23  When Lummis et al. incorporated 4-O-methyl-phenylalanine 

at position 198 of the GABAC receptor, the EC50 was lower than that of the 

phenylalanine-containing receptor.23  Earlier in this chapter another example of a slight 

enhancement of the cation-π interaction was seen in the ShB channel with 4-methyl-

phenylalanine incorporated at position 449. 

Both the O-methyl and the methyl strengthen the ability of the aromatic to bind a cation 

through the donation of electron density to the aromatic ring.  An even stronger electron 

donating group is the amino group.  For example, 5-amino-trypotphan has a cation-π 

binding ability of 36.4 kcal/mol, up from the 32.6 kcal/mol of tryptophan.22  These 
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energy values represent the binding of a Na+ to the noted aromatic as calculated from 

their optimized geometry using HF 6-31G**.24  Unfortunately, when Zhong et al. 

incorporated 5-amino-tryptophan into the muscle nAChR at its cation-π interaction site, 

α1Trp149, the predicted decrease in EC50 was not seen.22  Instead the EC50 increased 

over fivefold, from 50 to 280 µM ACh.  The authors note that the increase could be from 

adverse interactions of the 5-amine with the receptor or because the amine may be 

protonated when in the receptor.  As for the former explanation, 5-methyl-tryptophan has 

a wild-type EC50,22 which argues against a purely steric clash with the receptor when a 

bulky group is added at this position.  The 5-methyl group cannot account for the 

possibility that the 5-amino group could electrostatically clash with the receptor due to 

the added amine dipole, as seen in a study by Cashin, Torrice, et al. of the same receptor 

with the α1Asp89Asn mutant.25  Incorporation of 5-amino-tryptophan could also have a 

destabilizing effect on the receptor, as seen when it was incorporated into barstar, an 

inhibitor of ribonuclease barnase from Bacillus amyloliquefaciens.26  Potentially the 

difference in hydrophobicity of the amine-containing residue from the natural tryptophan 

could disrupt the formation of the aromatic binding box in the nAChR, resulting in a 

more poorly functioning receptor.  As for the latter explanation, no conclusions were ever 

published that addressed whether the amine was protonated.  

4-Amino-phenylalanine also has a cation-π binding ability greater than its natural analog 

phenylalanine.  The addition of the amino group raises the binding energy from 27.1 

kcal/mol (phenylalanine) to 31.8 kcal/mol (4-amino-phenylalanine).  This residue has 

been incorporated into the muscle nAChR in place of several tyrosines in the binding box 

to study how the shift from a hydroxyl group to an amino group alters the function of the 
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channel,27 and it has been incorporated into myoglobin by a completely autonomous 

bacterium,28 but it has not yet been incorporated at any cation-π binding sites.  The 

cation-π binding site in ShB provided a perfect location for the incorporation of 4-amino-

phenylalanine.  The initial goal of this study was twofold.  First, if incorporation of 4-

amino-phenylalanine at postion 449 of ShB enhanced the ability of TEA to block the 

channel, this result would add another point to the trend line shown in chapter 2 (figure 

2.5A) and earlier in this chapter (figure 7.7), which would further support the hypothesis 

that a cation-π interaction occurs between TEA and the aromatic residue at position 449 

and that the en face geometry is representative of the channel in vivo.  Second, this work 

would stand as the first example of the strong enhancement of the cation-π interaction in 

an ion channel in vivo.  Unfortunately, the results were not as predicted, and the project 

was expanded to other receptors in an attempt to understand the properties of 4-amino-

phenylalanine in vivo. 

 

Synthesis of 4-Amino-Phenylalanine-tRNA 

Initially, 4-amino-phenyalalnine-tRNA was synthesized with two NVOC protecting 

groups (scheme 7.3).  The synthesis did not differ much from the one described above for 

3,5-dimethylphenylalanine.  
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Scheme 7.3.  Synthesis of di-NVOC-4-amino-phenylalanine-tRNA. 

 

The NVOC group is generally removed by irradiating a sample of NVOC-protected 

amino acyl tRNA with approximately 320 nm light from a 1000 W Hg/Xe arc lamp for 

five minutes just prior to injecting the solution into Xenopus laevis oocytes, which are 

used as the protein expression system.  Typically, an NVOC group is only present on the 

α-amine.  To ensure that both NVOC groups on 4-amino-phenylalanine-tRNA were 

removed during photolysis, a sample of di-NVOC-4-amino-phenylalanine-dCA was 

irradiated and then analyzed by reverse-phase analytical high-pressure liquid 

chromatography (HPLC).  The dCA derivative was used since its size and polarity were 

well suited for the reverse-phase column, and it would give distinct UV absorption 

signals for both the protected (absorbances at 260 and 350 nm) and deprotected 

compounds (absorbance only at 260 nm).  After five minutes of irradiation, a small 

amount of starting material was still seen, but after ten minutes of irradiation, no starting 

material remained.  Thus, for all of the experiments described below in which this doubly 
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NVOC protected 4-amino-phenylalanine was incorporated into a channel, the tRNA was 

irradiated for ten minutes prior to its injection into Xenopus oocytes. 

 

No Cation-π Enhancement in ShB 

Unfortunately, incorporation of 4-amino-phenylalanine at position 449 in ShB did not 

enhance the cation-π interaction.  Instead of lowering the IC50 as compared to that of a 

receptor with phenylalanine incorporated at the same site, the IC50 was raised over 

fivefold from 0.39 mM TEA (phenylalanine) to 2.1 ± 0.3 mM TEA (4-amino-

phenylalanine) (figure 7.9).  This fivefold difference is familiar from the functional 

change seen in the muscle nAChR in going from tryptophan to 5-amino-tryptophan. 

 

Figure 7.9.  Dose-response curves for phenylalanine (red) and 4-amino-phenylalanine (blue) incorporated 

at ShB Thr449. 
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This result was very surprising since published crystal structures of related K+ 

channels15,29-33 predict that this site is located at the top of the channel pore with its side 

chain pointing out into solution.  Thus, no steric or dipole clash should occur between 

this residue and the rest of the channel. To try to understand more about why 4-amino-

phenylalanine did not enhance the cation-π in ShB, another system was sought in order to 

repeat the experiment. 

 

No Cation-π Enhancement in the GABAC Receptor 

In 2005 the first cation-π interaction between a ligand and a tyrosine was reported.  

ρ1Tyr198 in the GABAC receptor was found to bind GABA through a cation-π 

interaction.  Thus, this receptor offered another opportunity to probe whether 4-amino-

phenylalanine could enhance the cation-π interaction.  4-Amino-phenylalanine was 

incorporated into GABAC ρ1Tyr198, and an EC50 of 145 ± 24 µM GABA was obtained 

from the average of seven oocytes with a Hill coefficient of 1.2 ± 0.2 (calculated as 

described in chapter 6) (figure 7.9).  Expression of the mutant receptor on the surface of 

the Xenopus oocyte was low, with the maximum amount of current reaching 100 nA, but 

the low expression was typical of a surpressed GABAC receptor.  Because it is a 

homopentamer, the unnatural amino acid is present in each subunit in the receptor.  This 

requirement tends to lower the number of functional receptors that get expressed on the 

surface of a Xenopus oocyte. 
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Figure 7.10.  Dose-response curve for 4-amino-phenylalanine incorporated at ρ1Tyr198. 

 

Surprisingly, this EC50 value was higher than Lummis et al. found for mutant receptors 

with phenylalanine, tyrosine, and even 4-F-phenylalanine incorporated at this site (table 

7.1).23  They do note the one example that falls off the trend:  the EC50 for a receptor with 

tyrosine is roughly fourfold lower than what would be predicted from the phenylalanine 

residues and their cation-π binding energies.  Thus, the hydroxyl group at the 4 position 

of the ring enhances the ability of GABA to activate the receptor.  Potentially, the 

features that favor a hydroxyl group at the 4-position of the aromatic are not compatible 

with an amino group there.  Lummis et al. propose that the hydroxyl group donates a 

hydrogen bond to another component of the system,23 which would effectively enhance 

its cation-π binding energy.34  But, the amino group of 4-amino-phenylalanine should be 

roughly equally as effective of a hydrogen bond donor as tyrosine.  Lummis et al. also 

propose that GABA could make a favorable electrostatic interaction with the hydroxyl 

group on tyrosine, but they state that this possibility is less likely since the same 
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functional enhancement is not observed with 4-methoxy-phenylalanine, which also has 

an oxygen-containing substituent at the 4-position.23  Neither proposal adequately 

explains why 4-amino-phenylalanine does not enhance the cation-π interaction as 

predicted in the GABAC receptor.  

 

Table 7.1.  The data collected for the GABAC ρ1Tyr198 cation-π site.*  

Tyr198X, where X = Cation-π Binding 
Energy (kcal/mol) 

EC50 (µM) [Hill Coeff.] 

4-Amino-phenylalanine 31.8 145 ± 24 [1.2 ± 0.2] 
4-Methoxy-phenylalanine* 28.6 6.6 [1.6] 

Phenylalanine* 27.1 9.5 [1.6] 
Tyrosine* 26.9 2.1 [1.6] 

4-F-Phenylalanine* 22.0 34 [1.9] 
3,5-F2-Phenylalanine* 17.1 1700 [1.4] 

3,4,5-F3-Phenylalanine* 12.9 8400 [1.5] 
 

Another explanation for the functional disruption of the receptor caused by 4-amino-

phenylalanine is that the aniline is getting modified either during the NVOC deprotection 

step or after injection by the Xenopus oocyte.  The additional steric bulk could create a 

poorly functioning receptor.  A third system was sought to further explore the effects of 

4-amino-phenylalanine. 

 

No Cation-π Enhancement in the Muscle nAChR 

Despite the differences in size and shape between tryptophan and phenylalanine, the 

muscle nAChR was chosen as another target for 4-amino-phenylalanine due to the 
                                                
* Reported by Lummis et al.23 
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prevalence of this receptor in the Dougherty laboratory.  The expectation was not that 4-

amino-phenylalanine incorporated in place of α1Trp149 would produce a wild-type 

receptor, but instead it was simply that 4-amino-phenylalanine would create a better 

nAChR than the mutant receptor that contained phenylalanine at this site.  It has 

previously been published that the muscle nAChR with α1Trp149Phe has an EC50 100 

times higher than wild type.22  Because 4-amino-phenylalanine should be able to more 

strongly bind ACh, it was predicted that this residue would be able to partially rescue 

receptor function. 

Unfortunately, the desired result was not seen.  When 4-amino-phenylalanine was 

incorporated into α1Trp149 in a channel that also consisted of the subunits β1, δ, and γ, 

the EC50 was too high to accurately measure, reminiscent of a receptor that contains 

α1Trp149Phe.22  In order to quantitiate the effect of incorporating 4-amino-

phenylalanine, its EC50 was lowered by making a mutation in the pore lining helix of the 

β1 subunit. When β1Leu262, the famous 9’ residue that is part of a hydrophobic band of 

residues that forms the narrowest point in the pore of the channel, is mutated to the more 

polar residue serine, the channel is more easily opened.  With a receptor that includes 

β1Leu9’Ser, the EC50 for 4-amino-phenylalanine incorporated at position 149 in the α1 

subunit was found to be 160 ± 12 µM for ACh with a Hill coefficient was 1.8 ± 0.2.  

Surprisingly, this value was identical to that found for phenylalanine; its EC50 was 154 ± 

24 µM, and its Hill coefficient was 1.7 ± 0.3 (figure 7.11).  Therefore, 4-amino-

phenylalanine does not rescue any of the receptor function lost upon phenylalanine 

incorporation.  For reference, the wild-type EC50 for this nAChR is around 0.8 µM.35 
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Figure 7.11.  Dose-response curves for 4-amino-phenylalanine and phenylalanine incorporated at 

α1Trp149 in the muscle nAChR containing the β1Leu9’Ser, δ, and γ subunits. 

 

Two explanations were proposed to account for the similarity in EC50 values between 

phenylalanine and 4-amino-phenylalanine in the nAChR.  First, the amine could be 

modified after being deprotected in such a way as to reduce its cation-π binding ability or 

add inappropriate steric bulk.  Second, the change in size and shape of the side chain in 

the receptor’s binding site from the wild-type indole to a six-member ring could be the 

dominant factor in the reduction of receptor function.  In this case the cation-π binding 

ability of the aromatic six-member ring was inconsequential due to its lack of necessary 

volume.  In either case, the question as to whether 4-amino-phenylalanine could enhance 

the cation-π interaction was still unanswered. 
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The NVOC-Deprotection Conditions Do Not Modify the Aniline 

If 4-amino-phenylalanine-tRNA were being altered, the modification could either occur 

during NVOC deprotection or by a cellular pathway once in the Xenopus oocyte.  

Because 4-amino-phenylalanine was successfully incorporated into a protein in a 

bacterial system without being further modified, as proved by protein sequencing,28 the 

cellular environment seemed the less likely of the two possibilities.  Therefore, the 

deprotection step was investigated first.  Three different strategies were undertaken to 

determine whether the aniline was stable to photolysis.  The first involved trapping the 

photolysis byproducts, the second involved identifying the mass of the major photolysis 

product, and the third avoided photolysis altogether. 

Irradiation of di-NVOC-4-amino-phenylalanine-tRNA produces not only deprotected 

tRNA, but also an aldehyde (figure 7.12).  This aldehyde could react with the aniline to 

form an imine, creating a large and sterically bulky amino acid that could affect the 

receptor in unpredictable ways. 

 

Figure 7.12.  Deprotection of di-NVOC-4-amino-phenylalanine-tRNA produces an aldehyde that could 

react with the aniline. 
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To prevent the possibility of imine formation, di-NVOC-4-amino-phenylalanine tRNA 

was photolyzed in the presence of an excess of hydroxylamine prior to injection of the 

mixture into a Xenopus oocyte.  The hydroxylamine should react with the aldehyde to 

produce a stable oxime.  The resulting mutant nAChR channels made with this directed 

to the cation-π binding site had the same high EC50 values as reported above for the 

muscle nAChR with 4-amino-phenylalanine without the β1Leu9’Ser mutation.  As a 

control, NVOC-tryptophan-tRNA was photolyzed in the presence of hydroxylamine and 

then injected into an oocyte with the intention of incorporating the residue at the same 

site as above.  The wild-type recovery experiment was not affected by the 

hydroxylamine.  The control proves that the photolysis with hydroxylamine did not 

negatively affect the experiment.  These results suggest that imine formation was not a 

contributing factor to the functional response of the channel to 4-amino-phenylalanine 

incorporation. 

In parallel, matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry (MS) 

was used to analyze the photolysis products after irradiation of di-NVOC-4-amino-

phenylalanine-dCA.  The mass of the major photolysis product, given as its mass-to-

charge ratio (m/z), was 799.3, which is the expected ratio of the aniline-dCA associated 

with a hydrogen atom ([M+H] m/z = 799.2).  Although MS cannot confirm the structure 

of a product or relay quantitative information about how prevalent a compound is in 

solution, the fact that the m/z ratio with the largest abundance agreed with that predicted 

for the expected product is very encouraging. 

The third strategy took a different pathway:  it sidestepped the deprotection step 

altogether through the synthesis of 4-amino-phenylalanine-tRNA without any NVOC 
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protecting groups.  The synthesis of deprotected 4-amino-phenylalanine-tRNA began by 

protecting the aniline amine of Nα-tBoc-4-amino-phenylalanine with another tBoc 

group36 and activating the acid as a cyanomethyl ester.  The acid-labile protecting groups 

were removed following the coupling of the amino acid to dCA according to the protocol 

that was developed by a former postdoctoral researcher in the Dougherty laboratory, Dr. 

Pamela England, for the deprotection of tert-butyl silyl protected α-hydroxy acid-dCA 

compounds.37  Ligation to THG73 produced deprotected 4-amino-phenylalanine-tRNA. 

 

Scheme 7.4.  Synthesis of deprotected 4-amino-phenylalanine-tRNA 

 

Synthesized amino acyl tRNAs are generally proctected on their α-amine to decrease the 

negative inductive effect of the free amino on the stability of the complex.  To minimize 

the degradation of the deprotected tRNA, it was divided up into small aliquots prior to 
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storage at −80 °C.  Each aliquot was thawed immediately proceeding injection into 

Xenopus oocytes, and no added disadvantage from the lack of storage with the NVOC 

group was ever observed.  As above with the hydroxylamine studies, the EC50 values for 

the GABAC receptor with this 4-amino-phenylalanine incorporated into its cation-π 

binding site gave the same values as reported for the di-NVOC version, 153 ± 32 µM 

GABA with a Hill coefficient of 1.1 ± 0.2. 

Together these three separate experiments confirmed that the deprotection of di-NVOC-

4-amino-phenylalanine-tRNA by irradiation was not disruptive to the aniline structure.  

Thus, what was considered the most likely explanation for the unpredicted results was 

eliminated.  The possibility still remained though that the aniline was getting modified 

once inside the cell.  

 

Attempts to Form 4-Amino-Phenylalanine In Situ 

To eliminate the possibility that a cellular component in the Xenopus oocyte was 

modifyng the aniline, two unnatural amino acids were designed to either reveal or 

chemically convert to 4-amino-phenylalanine in situ upon the addition of an outside 

stimulus.  The stimulus would be applied immediately prior to recording whole-cell 

currents from the mutant channels, minimizing the amount of time the aniline would be 

exposed to the cellular environment.  The first unnatural amino acid was a caged aniline 

that was responsive to UV light, and the second was 4-nitro-phenylalanine, which upon 

exposure to a reducing agent, should become the 4-amino compound. 
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The synthesis of the caged 4-amino-phenylalanine-tRNA began by protecting the aniline 

amine of Nα-tBoc-4-amino-phenylalanine with NVOC (scheme 7.5).  Next, the tBoc 

group was removed, and then the α-amine was reprotected with the orthogonal 4-

pentenoate (4PO) group.  The rest of the synthesis progressed as described above. 

 

Scheme 7.5.  Synthesis of Nα-4PO-4-amino(NVOC)-phenylalanine-tRNA. 

 

The 4PO protecting group was removed prior to injecting the tRNA into a Xenopus 

oocyte by exposing the protected tRNA to a saturated, aqueous iodine solution.  Since the 

NVOC group is resistant to these conditions, it allowed for the aniline to remain 
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protected during protein translation.  Immediately prior to recording the oocytes were 

exposed to UV light from a 288 W Hg lamp (see chapter 8), which was anticipated to 

decage the aniline.  There was precedent for this type of decaging experiment from 

unnatural amino acids such as tyrosine-O-nitrobenzyl, cysteine-S-nitrobenzyl, and 

nitrophenylglycine.38-41 Since earlier results proved that the aldehyde photolysis by-

product that is produced from the NVOC deprotection does not appear to affect the 

aniline, no precautionary measures were taken here. 

Unfortunately, no whole-cell currents were ever seen from this caged aniline.  To explore 

whether this amino acid was compatible with ribosomal translation, attempts were made 

to incorporate the residue into a protein in vitro using rabbit reticulocyte lysate and 

α1Leu250UAG mRNA with an hemagglutinin (HA) epitope tag between residues 347 

and 348.  No protein was ever seen by Western blot, despite the success of the positive 

controls.  One possible explanation for the lack of protein expression could be the 

inadequate deprotection of the 4PO group from the α-amine.  If the 4PO group were not 

effectively removed, then the unnatural amino acid-tRNA would not be able to 

participate in translation.  This explanation did not seem likely though as the same 

deprotection methods were used to prepare 4PO-tyrosine-O-nitrobenzyl for in vivo 

nonsense suppression in chapter 8, and whole-cell currents were produced there.  It 

should be noted though that no side-by-side controls were run in this study.  Another 

explanation for the lack of protein could be that the size of the unnatural amino acid was 

too large for the ribosome.  A study by Sisido and co-workers on the incorporation of 

large, aromatic unnatural amino acids was successful incorporating amino acids similar in 

size to the caged aniline using an in vitro E. coli translation system.36  These results gave 
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precedent to our design and suggested that the caged aniline should be ribosomally 

competent.  Since the Sisido study used E. coli ribosomes, it could still be that the 

Xenopus laevis ribosome is more discriminatory with amino acid size and was selecting 

against the caged aniline.   

The second attempt to form 4-amino-phenylalanine in situ was through the reduction of 

4-nitro-phenylalanine by dithionite.  The reaction was modeled after the quenching of the 

fluorescent NBD by dithionite (see figure 7.2 for the structure of NBD).42  Angeletti and 

Nichols showed that when dithionite was applied to NBD-labeled lipid vesicles, the 

reduction of the nitro group to the amine eliminated the fluorescence of the compound.42 

To ensure that dithionie could reduce the nitro group of 4-nitro-phenylalanine to an 

amino group, the UV spectra of tBoc-4-nitro-phenylalanine and Nα-tBoc-4-amino-

phenylalanine were analyzed via reverse-phase analytical HPLC before and after at least 

20 minute exposure to 100 mM sodium dithionite in 100 mM phosphate buffer pH 7.4.  

Prior to dithionite treatment the nitro and amino compounds had very different UV 

spectra, but after treatment, the UV spectra of the nitro compound had changed to 

resemble the amine compound (figure 7.13).  The resulting UV spectra were taken as 

evidence that dithionite could reduce 4-nitro-phenylalanine to 4-amino-phenylalanine in 

situ.  Therefore, 4-nitro-phenylalanine-tRNA was synthesized following steps similar to 

those described above (scheme 7.6).   
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Figure 7.13.  UV spectra of 4-nitro-phenylalanine and 4-amino-phenylalanine before and after exposure to 

100 mM dithionite in 100 mM phosphate buffer pH 7.4 for the time indicated in the parentheses. 

 

Scheme 7.6.  Synthesis of NVOC-4-nitro-phenylalanine-tRNA. 
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4-Nitro-phenylalanine was incorporated into ShB at position 449 and produced an IC50 

for TEA of 0.95 ± 0.1 mM TEA (figure 7.14A).  Because dithionite would also reduce 

important elements of the electrophysiology rig, like the AgCl pellet in the bath solution, 

the Xenopus oocytes used in this study were placed in a solution of either 100 mM 

dithionite in 100 mM phosphate buffer pH 7.4 or 24 mM dithionite in 50 mM phosphate 

buffer pH 7.4 for varying amounts of time prior to recording.  This second solution of 

dithionite was much lower in concentration than that used in the model studies, but it was 

chosen because its osmolarity was equivalent to that of the typical bath solution used for 

oocytes (ND96, 209.4 mM ions).  Whole-cell recordings were attempted after exposure 

to dithionite, but no reliable data were obtained, presumably due to a decrease in health 

from the time in the dithionite solution.  The addition of calcium to the dithionite solution 

(to aid the health of the oocytes) was not possible because calcium phosphate just 

precipitated out of the solution.  

 

Incorporation of 4-Acetamido-Phenylalanine 

One possible way in which the cell could be modifying 4-amino-phenylalanine could be 

the addition of an acetyl group, producing 4-acetamido-phenylalanine.  To explore this 

possibility, 4-acetamido-phenylalanine was synthesized (scheme 7.7) and incorporated 

into ShB at position 449. 
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Scheme 7.7.  Synthesis of NVOC-4-acetamido-phenylalanine-tRNA. 

 

Surprisingly, the IC50 for the mutant channel with 4-acetamido-phenylalanine at the 

cation-π site was 2.1 ± 0.4 mM TEA—identical to the value obtained for 4-amino-

phenylalanine (2.1 ± 0.3 mM TEA) (Fgure 7.14A). The cation-π binding energy for 

acetamino-benzene was calculated to be 21.4 kcal/mol with optimized geometry using 

HF 6-31G*.  When this EC50 value was plotted against the cation-π binding (chapter 2),13 

it reasonably fit the cation-π trend-line (figure 7.14B).  This result provided the first 

glimpse of understanding into the questions that had arisen around 4-amino-

phenylalanine. 



 
222 

 

  

Figure 7.14.  Data collected for 4-acetamido-phenylalanine in ShB.  A)  Dose-response curves for 4-

acedamido-phenylalanine and 4-nitro-phenylalanine incorporated at ShB position 449 (phenylalanine and 

4-amino-phenylalanine repeated from above).  B)  Cation-π plot for ShB Thr449 mutations.  The line 

represents the best fit for all of the points, y = −0.16x + 4.5 and R2 = 0.96.  
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Unfortunately, the result could not be repeated in either the nAChR or the GABAC 

receptor.  Only three oocytes were found to express 4-acetamido-phenylalanine at the 

cation-π site of the muscle nAChR (with the β1Leu9’Ser muation), but their EC50 values 

varied from 2.5 µM to 8.3 µM to 31.1 µM ACh, and their EC50 curves even gave the 

slight impression that they were biphasic.  None resembled the 160 µM ACh EC50 of 4-

amino-phenylalanine.  No whole-cell currents were ever seen for 4-acetamido-

phenylalanine incorporated at GABAC ρ1Tyr198, while reliable expression had been 

observed for 4-amino-phenylalanine.  Therefore, the data obtained from these two 

receptors did not support that 4-amino-phenylalanine was being acylated by the Xenopus 

oocyte prior to channel recording. 

 

Future Directions 

Future work towards the understanding of 4-amino-phenylalanine should consider 

incorporating the residue at the cation-π sites that have been recently published in the 

NaV1.4 channel (see chapters 3, 4, and 5)18,20,21 and the GABAA receptor.43  These two 

receptors use tyrosines and phenylalanines in cation-π interactions and would hopefully 

supply an explanation as to why 4-amino-phenylalanine did not enhance the cation-π 

interaction in ShB, GABAC, or nAChR. 

Another possible direction for this project would be to conclusively determine whether 4-

amino-phenylalanine was in fact being incorporated into the desired receptor using an 

aniline-specific tag.  The exposed cation-π site of ShB is anticipated to be an ideal 
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location for such an experiment.  Francis and co-workers developed an aniline-specific 

tag that takes advantage of the oxidative coupling of anilines,44 but since this specific 

tagging of anilines requires an oxidant such as sodium meta-periodate, conditions would 

need to be optimized for use of this tag with the Xenopus oocyte. 

 

Methods 

Synthesis 

All reactions were performed at ambient temperature and pressure unless otherwise 

noted.  All reactions involving potentially air-sensitive compounds were conducted under 

an inert atmosphere using Schlenk techniques.  Solvents were purified by passage 

through alumina.45  Unless otherwise noted, all chemicals and reagents were used as 

received without further purification.  Flash chromatography was performed using EMD 

(Gibbstown, NJ) silica gel 60 (particle size 0.040-0.063 mm).  Thin-layer 

chromatography (TLC) was performed using EMD (Gibbstown, NJ) silica gel 60 F254 

precoated plates (0.25 mm) and visualized by UV, ceric ammonium molybdate, 

ninhydrin, and potassium permanganate.  Nuclear magnetic resonance spectroscopy 

(NMR) was preformed on a Varian (Palo Alto, CA) Mercury 300 instrument, and NMR 

resonances are reported relative to Me4Si (δ 0.0), CD3OD (δ 3.31), CD3CN (δ 1.94), D2O 

(δ 4.79), or d6-DMSO (δ 2.50).  Data for 1H NMR spectra are reported as follows: 

chemical shift (δ ppm), integration, multiplicity, and coupling constant (Hz).  MS spectra 

were obtained from the Caltech Mass Spectrometry Lab. Electrospray ionization (ESI)-

MS was preformed on an LCQ Classic ion trap (ThermoFinnigan, Waltham, MA) in 



 
225 

direct infusion mode.  MALDI-MS was performed on a Voyager-DE PRO 

BioSpectrometry Workstation (PerSeptive Biosystems, Foster City, CA).  HPLC was 

preformed using Waters (Milford, MA) equipment and software (510 HPLC pumps and 

996 Photodiode Array Detector) and reverse-phase Nova-Pak 18C columns (3.9 × 150 

mm analytical column, 7.8 × 300 mm preparatory column).  

O
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7.1  

DMAC-MTSEA 7.1: 7-Dimethylaminocoumarin-4-acetic acid succinimidyl ester (0.0019 

g, 0.0057 mmol, 1 eq) was placed in a round-bottom flask under Ar (g) in the dark and 

dissolved in DMF (1 mL).  To this solution was added 2-aminoethyl 

methanethiosulfonate hydrobromide (0.075 g, 0.45 mmol, 79 eq) and 

diisopropylethylamine (0.060 mL, 0.33 mmol, 58 eq).  After stirring for 5 minutes, the 

reaction was halted by freezing in N2 (liq), and the solvent was removed under vacuum.  

The crude product was purified using reverse-phase semipreparative HPLC with a linear 

solvent gradient from 5% acetonitrile in H2O with 1% AcOH to 100% acetonitrile.  The 

fractions containing the DMAC-MTSEA 7.1 were combined, and the solvent was 

removed by lyophilization.  1H NMR (300 MHz, CDCl3, 298 K) δ 7.45 (1H, d, J = 8.7 

Hz), 6.62 (1H, dd, J = 9.0, 2.7 Hz), 6.52 (1H, m), 6.06 (1H, s), 3.65 (2H, s), 3.60 (2H, q, 

J = 6.3 Hz), 3.32 (3H, s), 3.27 (2H, t, J = 6.0 Hz), 3.06 (6H, s), 2.85 (4H, s); ESI-MS m/z 

calc’d for C16H20N2O5S2 [M+Na]:  407.1, found:  406.9. 
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7.2  

Extended NBD-MTSEA 7.2:  The procedure described above for 7.1 was repeated using 

succinimidyl-6-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)hexanoate (0.022 g, 0.0057 

mmol, 1 eq) as the starting material to afford extended NBD-MTSEA 7.2.  1H NMR (300 

MHz, CDCl3, 298 K) δ 8.51 (1H, d, J = 8.4 Hz), 6.19 (1H, d, J = 8.7 Hz), 4.17 (1H, q, J = 

6.9 Hz), 3.65 (2H, m), 3.54 (2H, q, J = 6.0 Hz), 3.39 (3H, s), 3.35 (2H, m), 2.28 (2H, m), 

1.80 (6H, m); ESI-MS m/z calc’d for C15H21N5O6S2 [M−H]:  430.1, found:  430.0. 
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7.3  

Compact NBD-MTSEA 7.3:  The procedure described above for 7.1 was repeated using 

4-chloro-7-nitrobenzofurazan (0.011 g, 0.0057 mmol, 1 eq) as the starting material to 

afford compact NBD-MTSEA 7.3.  1H NMR (300 MHz, CDCl3, 298 K) δ 8.53 (1H, d, J 

= 8.4 Hz), 6.36 (1H, d, J = 8.7 Hz), 3.97 (2H, q, J = 6.3 Hz), 3.51 (2H, t, J = 6.6 Hz), 

3.43 (3H, s); ESI-MS m/z calc’d for C9H10N4O5S2 [M−H]:  317.0, found:  316.8. 
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7.4  

Oregon Green-MTSEA 7.4:  The procedure described above for 7.1 was repeated using 

Oregon Green 488 carboxylic acid 5-isomer succinimidyl ester (0.0030 g, 0.0057 mmol, 

1 eq) as the starting material to afford Oregon Green-MTSEA 7.4. 1H NMR (300 MHz, 

CDCl3, 298 K) δ 8.43 (1H, s), 8.01 (1H, m), 7.31 (1H, d, J = 8.1 Hz), 6.69 (2H, d, J = 7.2 

Hz), 6.60 (2H, d, J = 11.1 Hz), 3.74 (2H, t, J = 6.9 Hz), 3.43 (2H, t, J = 7.2 Hz), 3.40 

(3H, s); ESI-MS m/z calc’d for C24H17F2NO8S2 [M−H]:  548.0, found:  548.0.  

7.5

Br

 

Bromomesitylene 7.5:  Mesitylene (7.30 mL, 52.4 mmol, 1.1 eq), N-bromosuccinimide 

(8.90 g, 50.0 mmol, 1 eq), and benzoyl peroxide (0.050 g, 0.20 mmol, 0.004 eq) were 

placed in a round-bottom flask under Ar (g) and dissolved in carbon tetrachloride (20 

mL).  The reaction was allowed to reflux for 1 hour.  The solution was then filtered (5×) 

to remove the solid precipitate and concentrated to afford bromomesitylene 7.5 (4.0902 g,  

20.5 mmol, 739% yield).  Rf = 0.56 (11% EtOAC in hexanes); 1H NMR (300 MHz, 

CDCl3, 298 K) δ 7.02 (2H, s), 6.95 (1H, s), 4.45 (2H, s), 2.32 (6H, s). 
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N-(Diphenylmethylene)dimethylphenylalanine tert-butyl ester 7.6:  Bromomesitylene 7.5 

(0.597 g, 3.00 mmol, 1 eq), N-(diphenylmethylene)glycine tert-butyl ester (0.975 g, 3.30 

mmol, 1.1 eq), and KI (0.054 g, 0.33 mmol, 0.11 eq) were placed in a round-bottom flask 

under Ar (g) and dissolved in dioxane (27 mL).  The solution was cooled to 10 °C and 

then charged with the dropwise addition of benzyltrimethylammonium hydroxide (40% 

solution in H2O, 0.4 mL).  The reaction changed color from yellow to white as it was 

stirred for 3 hours.  It was then quenched with H2O, extracted with toluene (6×), washed 

with H2O, and dried over CaCl2 (s).  The now yellow solution was concentrated under 

vacuum, and the crude product was purified by flash column chromatography (5% 

EtOAc in hexanes) to yield N-(diphenylmethylene)dimethylphenylalanine tert-butyl ester 

7.6 (0.880 g,  2.13 mmol, 70% yield).  Rf = 0.48 (11% EtOAC in hexanes); 1H NMR (300 

MHz, CDCl3, 298 K) δ 7.82 (1H, d, J = 6.9 Hz), 7.61 (2H, m), 7.50 (2H, m), 7.31 (4H, 

m), 6.79 (1H, s), 6.67 (2H, s), 4.11 (1H, m), 3.17 (2H, m), 2.19 (6H, s), 1.48 (9H, s); ESI-

MS m/z calc’d for C28H31NO2 [M+H]:  414.2, found 414.0. 
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Dimethylphenylalanine 7.7:  N-(Diphenylmethylene)glycine tert-butyl ester 7.6 (0.440 g,  

1.06 mmol) was added to a round-bottom flask and dissolved in 6 N HCl (20 mL).  The 

reaction was refluxed for 6 hours.  The solution was then washed with ether, and the 

aqueous layer was concentrated by lyophilization to yield dimethylphenylalanine 7.7 

(0.052 g, 0.27 mmol, 25% yield).  1H NMR (300 MHz, D2O, 298 K) δ 7.04 (1H, s), 6.92 

(1H, s), 4.17 (1H, dd, J = 7.5, 5.7 Hz), 3.01 (2H, m), 2.11 (6H, s). 
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7.8  

NVOC-dimethylphenylalanine 7.8:  Dimethylphenylalanine 7.7 (0.0515 g, 0.270 mmol, 1 

eq) was added to a round-bottom flask and dissolved in 10% (w/v) sodium carbonate in 

H2O (1.03 mL, 0.972 mmol, 3.6 eq).  To this solution was added dioxane (1 mL).  The 

mixture was stirred in an ice bath and nitroveratryloxycarbonyl chloride (0.078 g, 0.283 

mmol, 1.1 eq) was added slowly.  The mixture was allowed to warm to room temperature 

while stirring for 4 hours.  The mixture was then poured into distilled H2O (200 mL) and 

washed with ether (3×).  Under vigorous stirring, the aqueous solution was adjusted to 
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pH 2 by slowly adding 5 M HCl and then the solution was extracted with ether, dried 

over MgSO4 (s), and concentrated to afford NVOC-dimethylphenylalanine 7.8 as a 

yellow oil (0.0728 g, 0.170 mmol, 63% yield).  1H NMR (300 MHz, CD3OD, 298 K) δ 

7.73 (1H, s), 7.17 (1H, s), 7.08 (1H, s), 6.85 (2H, s), 5.42 (2H, m), 4.39 (1H, m), 3.89 

(3H, s), 3.84 (3H, s), 3.14 (1H, m), 2.84 (1H, m), 2.24 (6H, s); ESI-MS m/z calc’d for 

C21H24N2O8 [M+Na]:  455.2, found 455.0.   
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7.9  

NVOC-dimethylphenylalanine cyanomethyl ester 7.9:  NVOC-dimethylphenylalanine 7.8 

(0.72 g, 0.17 mmol) was added to a round-bottom flask under Ar (g) and dissolved in 

DMF (0.5 mL).  Chloroacetonitrile (0.5 mL) and then triethylamine (0.07 mL) were 

added to the solution.  The mixture was stirred at room temperature for 90 minutes and 

then the solvent was removed under vacuum.  The residue was purified by flash column 

chromatography (5% EtOAc in hexanes) to afford NVOC-dimethylphenylalanine 

cyanomethyl ester 7.9 as white crystals (0.0166 g, 0.0352 mmol, 21% yield). 1H NMR 

(300 MHz, d6-DMSO, 298 K) δ 7.69 (1H, s), 7.11 (1H, s), 6.84 (3H, s), 5.33 (2H, m), 

5.00 (2H, s), 4.33 (1H, m), 3.86 (3H, s), 3.85 (3H, s), 2.92 (2H, m), 2.20 (6H, s). 
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NVOC-dimethylphenylalanine-dCA 7.10:  NVOC-dimethylphenylalanine cyanomethyl 

ester 7.9 (0.011 g, 0.025 mmol, 3 eq) was added to a round-bottom flask under Ar (g) and 

dissolved in DMF (0.5 mL).  This solution was transferred to another round-bottom flask 

under Ar (g), which contained dCA (0.010 g, 0.0085 mmol, 1 eq) as a 

tetrabutylammonium salt (2.4 eq).    The reaction was stirred at room temperature for 18 

hours while being monitored by reverse-phase analytical HPLC with a linear solvent 

gradient from 5% acetonitrile in 25 mM NH4OAc buffer pH 4.5 to 100% acetonitrile.  

The crude product was purified using reverse-phase semipreparative HPLC with the same 

linear solvent gradient.  The fractions containing the NVOC-dimethylphenylalanine-dCA 

7.10 were combined, and the solvent was removed by lyophilization.  The solid was 

redissolved in 10 mM acetic acid and reconcentrated via lyophilization (3×) to afford 

NVOC-dimethylphenylalanine-dCA 7.10 as a white powder (0.0019 g, 0.0020 mmol, 

25% yield).   ESI-MS m/z calc’d for C40H48N10O20P2 [M−H]:  1049.3; found:  1049.4.  
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Di-NVOC-4-amino-phenylalanine 7.11:  L-4-Amino-phenylalanine (0.65 g, 3.6 mmol, 1 

eq) was added to a round-bottom flask and dissolved in 10% (w/v) sodium carbonate in 

H2O (28 mL).  To this solution was added dioxane (28 mL) at 4 °C, followed by the slow 

addition of nitroveratryloxycarbonyl chloride (2.0 g, 7.6 mmol, 2.1 eq).  The mixture was 

allowed to warm to room temperature while stirring for 18 hours.  The mixture was then 

poured into distilled H2O (200 mL) and ether (50 mL), and the solid precipitate was 

filtered to afford di-NVOC-4-amino-phenylalanine 7.11 as a solid (1.80 g, 2.7 mmol, 

76% yield).  Rf = 0.56 (1% AcOH in EtOAc); 1H NMR (300 MHz, d6DMSO, 298 K) δ 

9.9 (1H, b), 7.7 (1H, s), 7.6 (1H, s), 7.3-7.0 (6H, m), 6.8 (1H, d), 5.4 (4H, s), 5.2 (1H, d), 

3.9 (12H, m), 3.1-2.7 (2H, m); ESI-MS m/z calc’d for C29H30N4O14 [M−H]:  657.2; 

found:  656.8. 
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Di-NVOC-4-amino-phenylalanine cyanomethyl ester 7.12: The procedure described 

above for 7.9 was repeated using di-NVOC-4-amino-phenylalanine 7.11 (0.41 g, 0.63 

mmol) as the starting material.  The reaction was stirred at room temperature for 75 

minutes, and then a small amount of H2O was added to the flask.  The resulting 

precipitate was filtered to afford di-NVOC-4-amino-phenylalanine cyanomethyl ester 

7.12 (0.19 g, 0.20 mmol, 44% yield).  Rf = 0.91 (17% EtOAc in CH2Cl2); 1H NMR (300 

MHz, d6DMSO, 298 K) δ 9.9 (1H, b), 8.2 (1H, d), 7.72 (1H, s), 7.69 (1H, s), 7.4-7.1 (6H, 

m), 5.44 (2H, s), 5.3 (2H, d), 5.01 (2H, s), 4.4 (1H, m), 3.90 (3H, s), 3.87 (3H, s), 3.85 

(3H, s), 3.84 (3H, s), 3.1-2.8 (2H, m); ESI-MS m/z calc’d for C31H31N5O14 [M+K]:  

736.3; found:  736.0. 
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Di-NVOC-4-amino-phenylalanine-dCA 7.13:  The procedure described above for 7.10 

was repeated using di-NVOC-4-amino-phenylalanine cyanomethyl ester 7.12 (0.017 g, 

0.025 mmol, 3 eq) as the starting material, except that the reaction was only stirred at 

room temperature for 1 hour, to afford di-NVOC-4-amino-phenylalanine-dCA 7.13 as a 

white powder (0.00052 g, 0.00041 mmol, 5% yield).   ESI-MS m/z calc’d for 

C48H54N12O26P2 [M−H]:  1275.3; found:  1275.4. 
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Di-tBoc-4-amino-phenylalanine 7.14:  Nα-(tert-Butoxycarbonyl)-4-amino-phenylalanine 

(1.0 g, 3.5 mmol, 1 eq) was placed in a round-bottom flask and dissolved in dioxane (15 

mL) and 4% NaHCO3 (aq) (15 mL) at 4 °C.  To this solution was added di-tert-
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butyldicarbonate (1.2 mL, 7.0 mmol, 1.5 eq).  The opaque white reaction was stirred at 4 

°C for 2 hours, and then it was allowed to come to room temperature, at which point the 

reaction turned opaque orange, and stirred for another 20 hours.  At the end of the 

reaction, the orange solution had become clear.  The solvent was removed under vacuum, 

and then the crude product was resuspended in 5% KHSO4 (aq), extracted with EtOAc, 

washed with brine, dried over MgSO4 (s), and concentrated to afford di-tBoc-4-amino-

phenylalanine 7.14 as a pale yellow solid (1.3 g, 3.5 mmol, 97%). Rf = 0.25 (100% 

EtOAc); 1H NMR (300 MHz, CD3OD, 298 K) δ 8.71 (1H, b), 7.19 (2H, d, J = 8.4 Hz), 

7.01 (2H, d, J = 8.7 Hz), 4.19 (1H, m), 2.98 (1H, dd, J = 14.1, 5.1 Hz), 2.74 (1H, dd, J = 

14.0, 9.0 Hz), 1.40 (9H, s), 1.28 (9H, s); ESI-MS m/z calc’d for C19H28N2O6 [M−H]:  

379.2; found:  379.1. 
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Di-tBoc-4-amino-phenylalanine cyanomethyl ester 7.15: The procedure described above 

for 7.9 was repeated using di-tBoc-4-amino-phenylalanine 7.14 (0.25 g, 0.66 mmol) as 

the starting material.  The crude product was purified by flash column chromatography 

(CH2Cl2, then 5% EtOAc in CH2Cl2 once the yellow product started eluting) to afford di-

tBoc-4-amino-phenylalanine cyanomethyl ester 7.15 (0.20 g, 0.47 mmol, 78% yield).  Rf 

= 0.82 (17% EtOAc in CH2Cl2); 1H NMR (300 MHz, CDCl3, 298 K) δ 7.3-6.8 (4H, m), 
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6.47 (1H, b), 4.70 (2H, m), 4.6 (1H, m), 3.05 (2H, d, J = 7.2 Hz), 1.51 (9H, s), 1.42 (9H, 

s); ESI-MS m/z calc’d for C21H29N3O6 [M+Cl]:  454.7; found:  454.1. 
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4-Amino-phenylalanine-dCA 7.16:  The procedure described above for 7.10 was repeated 

using di-tBoc-4-amino-phenylalanine cyanomethyl ester 7.15 (0.011 g, 0.025 mmol, 3 

eq) as the starting material, except that the reaction was allowed to stir for 48 hours 

before purification by HPLC.  The HPLC fractions containing the di-tBoc-4-amino-

phenylalanine-dCA were combined, the solvent was removed by lyophilization, and the 

solid was redissolved in trifluoroacetic acid (0.10 mL) at 4 °C.  After 20 minutes the 

solvent was removed by bubbling Ar through the solution to afford 4-amino-

phenylalanine-dCA 7.16 as a white powder (0.00018 g, 0.00027 mmol, 3% yield).   ESI-

MS m/z calc’d for C28H36N10O14P2 [M+H]:  799.2; found:  800.5. 
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Nα-tBoc-4-amino(NVOC)-phenylalanine 7.17:  The procedure described above for 7.8 

was repeated using Nα-(tert-Butoxycarbonyl)-4-amino-phenylalanine (1.0 g, 3.6 mmol, 1 

eq) to afford Na-tBoc-4-amino(NVOC)-phenylalanine 7.17 (0.48 g, 0.9 mmol, 26% 

yield). 1H NMR (300 MHz, CD3OD, 298 K) δ 7.77 (1H, s), 7.38 (2H, m), 7.25 (1H, s), 

7.16 (2H, d, J = 8.4 Hz), 5.54 (2H, s), 4.30 (1H, m), 3.91 (3H, s), 3.88 (3H, s), 3.11 (1H, 

dd, J = 14.0, 5.1 Hz), 2.86 (1H, dd, J = 13.8, 9 Hz). 1.38 (9H, s). 
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4-Amino(NVOC)-phenylalanine 7.18: Nα-tBoc-4-amino(NVOC)-phenylalanine 7.17 

(0.48 g, 0.9 mmol) was placed in a round-bottom flask under Ar (g) and dissolved in 

trifluoroacetic acid (16 mL) at 0 °C.  After 30 minutes the solvent was removed under 

vacuum to afford 4-amino(NVOC)-phenylalanine 7.18. 1H NMR (300 MHz, CD3OD, 

298 K) δ 7.76 (1H, s), 7.47 (2H, d, J = 8.7 Hz), 7.24 (2H, d, J = 2.7 Hz), 7.21 (1H, s), 
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5.54 (2H, s), 4.21 (1H,dd, J = 7.5, 5.1 Hz), 3.95 (3H, s), 3.91 (3H, s), 3.25 (1H, m), 3.11 

(1H, m). 
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Nα-4PO-4-amino(NVOC)-phenylalanine 7.19:  4-Amino(NVOC)-phenylalanine 7.18 

(0.38 g, 0.90 mmol, 1 eq) and N,N-diisopropylethylamine (0.18 mL, 1.1 mmol, 1.2 eq) 

were placed in a round-bottom flask and dissolved in THF (8.7 mL) and H2O (8.7 mL).  

To this solution was added 4-pentenoic anhydride (0.20 mL, 1.1 mmol, 1.2 eq).  The 

reaction was allowed to stir for 18 hours.  The THF was then removed under vacuum, and 

the aqueous solution was washed with EtOAc (3×).  The pH of the resulting aqueous 

solution was lowered to 2 with 6 N HCl and extracted with EtOAc (3×) to afford Nα-

4PO-4-amino(NVOC)-phenylalanine 7.19 (0.41 g, 0.81 mmol, 90% yield). 1H NMR (300 

MHz, CD3OD, 298 K) δ 7.77 (1H, s), 7.37 (2H, d, J = 8.7 Hz), 7.25 (1H, s), 7.16 (2H, d, 

J = 8.4 Hz), 5.70 (1H, m), 4.97 (2H, d, J = 12.6 Hz), 4.93 (2H, s), 4.63 (1H, dd, J = 9.2, 

5.4 Hz), 3.94 (3H, s), 3.91 (3H, s), 3.16 (1H, dd, J = 14.0, 4.8 Hz), 2.89 (1H, dd, J = 14.1, 

9.3 Hz), 2.24 (4H, m); ESI-MS m/z calc’d for C24H27N3O9 [M+Na]:  524.2; found:  

523.9. 
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Nα-4PO-4-amino(NVOC)-phenylalanine cyanomethyl ester 7.20: The procedure 

described above for 7.9 was repeated using Nα-4PO-4-amino(NVOC)-phenylalanine 7.19 

(0.16 g, 0.32 mmol) as the starting material.  The crude product was purified by flash 

column chromatography (CH2Cl2, then 50% EtOAc in CH2Cl2 once the yellow product 

started eluting) to afford Nα-4PO-4-amino(NVOC)-phenylalanine cyanomethyl ester 7.20 

(0.091 g, 0.17 mmol, 54% yield).  Rf = 0.20 (17% EtOAc in CH2Cl2); 1H NMR (300 

MHz, CD3CN, 298 K) δ 8.01 (1H, s), 7.74 (1H, s), 7.41 (2H, d, J = 8.7 Hz), 7.20 (3H, m), 

6.75 (1H, d, J = 7.8 Hz), 5.78 (1H, m), 5.52 (2H, s), 5.00 (2H, m), 4.79 (2H, s), 4.67 (1H, 

m), 3.96 (3H, s), 3.91 (3H, s), 3.03 (2H, m), 2.25 (2H, m), 1.97 (2H, m); ESI-MS m/z 

calc’d for C26H28N4O9 [M+Na]:  563.2; found:  563.1. 
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Nα-4PO-4-amino(NVOC)-phenylalanine-dCA 7.21: The procedure described above for 

7.10 was repeated using Nα-4PO-4-amino(NVOC)-phenylalanine 7.19 (0.017 g, 0.025 

mmol, 3 eq) as the starting material, except that the reaction was allowed to stir for 6 

hours, to afford Nα-4PO-4-amino(NVOC)-phenylalanine-dCA 7.21 (0.00071 g, 0.00064 

mmol, 8% yield). MALDI-MS m/z calc’d for C43H51N11O21P2 [M+H]:  1120.3; found:  

1120.5 
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4-Nitro-phenylalanine 7.22:  The procedure described above for 7.18 was repeated using 

tBoc-4-nitro-phenylalanine (0.31 g, 1.0 mmol) as the starting material to afford 4-nitro-

phenylalanine 7.22 (0.21 g, 1.0 mmol, 100% yield).  1H NMR (300 MHz, D2O, 298 K) δ 
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8.10 (2H, d, J = 2.1 Hz), 7.41 (2H, d, J = 8.7 Hz), 4.27 (1H, dd, J = 7.7, 6.3 Hz), 3.33 

(1H, dd, J = 14.6, 6.0 Hz), 3.22 (1H, dd, J = 14.6, 7.8 Hz). 
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NVOC-4-nitro-phenylalanine 7.23:  The procedure described above for 7.8 was repeated 

using 4-nitro-phenylalanine 7.22 (0.21 g, 1.0 mmol, 1 eq) as the starting material.  After 

stirring for 4 hours, the mixture was poured into distilled H2O (200 mL) and washed with 

ether (3×).  Under vigorous stirring, the aqueous solution was adjusted to pH 2 by slowly 

adding 6 N HCl.  Once a white precipitate began to form in the yellow solution, the 

mixture was refrigerated overnight to encourage the formation of more solid.  The 

subsequent day the precipitate was filtered to afford NVOC-4-nitro-phenylalanine 7.23 as 

a solid (0.34 g, 0.75 mmol, 75% yield). 1H NMR (300 MHz, d6DMSO, 298 K) δ 8.13 

(2H, d, J = 8.7 Hz), 7.93 (1H, d, J = 8.4 Hz), 7.68 (1H, s), 7.54 (2H, d, J = 8.7 Hz), 7.09 

(1H, s), 5.30 (2H, q, J = 15 Hz), 4.27 (1H, m), 3.86 (6H, s), 3.25 (1H, m), 3.01 (1H, dd, J 

= 14.1, 10.5 Hz). 
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NVOC-4-nitro-phenylalanine cyanomethyl ester 7.24:  The procedure described above 

for 7.9 was repeated using NVOC-4-nitro-phenylalanine 7.23 (0.28 g, 0.63 mmol) as the 

starting material.  The crude product was purified by flash column chromatography 

(CH2Cl2, then 5% EtOAc in CH2Cl2 once the yellow product started eluting) to afford 

NVOC-4-nitro-phenylalanine cyanomethyl ester 7.24. 1H NMR (300 MHz, d6DMSO, 

298 K) δ 8.20 (2H, d, J = 8.1 Hz), 8.12 (2H, d, J = 8.4 Hz), 7.67 (1H, s), 7.54 (2H, d, J = 

8.7 Hz), 7.08 (1H, s), 5.29 (2H, d, J = 6.0 Hz), 5.02 (2H, s), 4.51 (1H, m), 3.85 (3H, s), 

3.84 (3H, s), 3.24 (1H, dd, J = 13.8, 5.4 Hz), 3.07 (1H, dd, J = 13.8, 10.5 Hz). 
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NVOC-4-nitro-phenylalanine-dCA 7.25:  The procedure described above for 7.10 was 

repeated using NVOC-4-nitro-phenylalanine cyanomethyl ester 7.24 (0.020 g, 0.040 
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mmol, 5 eq) as the starting material, except that the reaction was stirred for 24 hours, to 

afford NVOC-4-nitro-phenylalanine 7.25.  MALDI-MS m/z calc’d for C38H43N11O22P2 

[M+H]:  1068.2; found:  1068.3. 
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4-Acetamido-phenylalanine 7.26:  N-FMOC-4-acetamido-phenylalanine (0.25 g, 0.56 

mmol) was placed in a round-bottom flask under Ar (g) and dissolved in 20% piperidine 

in DMF (10 mL).  The reaction was stirred for 30 minutes, and then the solvent was 

removed under vacuum to afford 4-acetamido-phenylalanine 7.26.  1H NMR (300 MHz, 

d6DMSO, 298 K) δ 9.87 (1H, s), 7.45 (2H, d, J = 8.4 Hz), 7.14 (2H, d, J = 8.4 Hz), 4.09 

(1H, t, J = 8.4 Hz), 3.06 (1H, dd, J = 14.6, 3.9 Hz), 2.75 (1H, dd, J = 14.4, 8.1 Hz); ESI-

MS m/z calc’d for C11H14N2O3 [M+H]:  223.1; found:  223.2. 
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NVOC-4-acetamido-phenylalanine 7.27: The procedure described above for 7.8 was 

repeated using 4-acetamido-phenylalanine 7.26 (0.080 g, 0.36 mmol, 1 eq) as the starting 

material to afford NVOC-4-acetamido-phenylalanine 7.27 (0.073 g, 0.16 mmol, 44% 
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yield). 1H NMR (300 MHz, CD3OD, 298 K) δ 7.74 (1H, s), 7.44 (2H, d, J = 8.7 Hz), 7.20 

(2H, d, J = 9.0 Hz), 5.42 (2H, m), 4.6 (2H, m), 4.4 (1H, m), 3.90 (3H, s), 3.86 (3H, s), 

3.2-2.8 (2H, m), 2.01 (3H, s); ESI-MS m/z calc’d for C21H23N3O9 [M+Na]:  484.1; found:  

484.1. 
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NVOC-4-acetamido-phenylalanine cyanomethyl ester 7.28:  The procedure described 

above for 7.9 was repeated using NVOC-4-acetamido-phenylalanine 7.27 (0.073 g, 0.16 

mmol) as the starting material.  The crude product was purified by flash column 

chromatography (CH2Cl2, then 40% EtOAc in CH2Cl2 once the yellow product started 

eluting) to afford NVOC-4-acetamido-phenylalanine cyanomethyl ester 7.28 (0.050 g, 

0.10 mmol, 63% yield).  ESI-MS m/z calc’d for C23H24N4O9 [M+Cl]:  535.6; found:  

535.1. 
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NVOC-4-acetamido-phenylalanine-dCA 7.29:  The procedure described above for 7.10 

was repeated using NVOC-4-acetamido-phenylalanine cyanomethyl ester 7.28 (0.020 g, 

0.040 mmol, 5 eq) as the starting material, except that the reaction was allowed to stir for 

24 hours, to afford NVOC-4-acetamido-phenylalanine-dCA 7.29 (0.00016 g, 0.0015 

mmol, 2% yield). MALDI-MS m/z calc’d for C40H47N11O21P2 [M+H]:  1080.2; found:  

1080.3. 

 

Nonsense Suppression In Vivo 

The site-directed mutagenesis of TAG mutants, gene construction, synthesis of 

suppressor tRNA, and ligation of aminoacyl-tRNA to tRNA have been described 

previously.46-49  Plasmid DNAs were linearized with Not1, and mRNA was transcribed 

using the T7 mMESSAGE mMACHINE kit (Ambion, Austin, TX). 

Oocytes from Xenopus laevis were isolated and maintained at 18 °C in ND96 solution 

(96 mM sodium chloride, 2 mM potassium chloride, 1.8 mM calcium chloride, 1 mM 
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magnesium chloride, 5 mM HEPES, 2.5 mM sodium pyruvate, 0.5 mM theophyline, 10 

µg/mL gentamycin at pH 7.5) according to published procedures.50  Each oocyte was 

microinjected with 50 nL of a 1:1 mixture of mRNA (0.04 ng/nL for ShB and GABAC, 

0.5 ng/nL of a 20:1:1:1 α:β:γ:δ for nAChR) and tRNA (1 µg/µL).   

NVOC-protected aminoacylated tRNA was deprotected prior to injection by irradiating 

the sample for either 5 or 10 minutes with a 1000 W Hg/Xe arc lamp (Oriel, Irvine, CA) 

operating at 400 W equipped with WG-335 and UG-11 filters (Schott, Duryea, PA).51  In 

certain cases noted in the text, hydroxylamine hydrochloride (0.029 M solution in H2O, 

0.2× volume of tRNA solution) was added to the tRNA solution prior to photolysis. 

4PO-protected aminoacylated tRNA was deprotected prior to injection by incubating the 

sample for 15 minutes in saturated I2 (aq).  This saturated I2 solution was made by adding 

an excess of I2 to H2O, then sonicating the mixture for 5 minutes, and then heating the 

mixture to 60 °C for 5 minutes. 

 

Electrophysiology 

The work in the 3,5-dimethylphenylalanine section was a collaborative effort that 

included important contributions from Dr. Christopher Ahern.  Representative methods 

for the electrophysiological studies discussed in this section that were not performed by 

the author can be found in Ahern et al.13 and Ahern et al.18 

Electrophysiological recordings on ShB were carried out 24 hours after injection.  

Whole-cell currents from oocytes were measured using an OpusXpress and pCLAMP 
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software (Axon Instruments, Foster City, CA) in the two-electrode voltage-clamp 

configuration.  Microelectrodes were filled with 3 M potassium chloride and had 

resistances ranging from 0.5 to 1.5 MΩ.  Oocytes were continuously perfused with a 

nominally calcium-free bath solution consisting of 96 mM sodium chloride, 2 mM 

potassium chloride, 1 mM magnesium chloride, and 5 mM HEPES at pH 7.5.  The 

current from ShB expressing oocytes was measured during a depolarizing jump from the 

holding potential to +70 mV.  Varying concentrations of TEA were applied, and then the 

depolarizing jump was repeated.  The amount of current blocked by TEA was taken as 

the difference between the first and the second depolarizing jump.  As noted in the text, 

some of the recordings were interrupted to bathe the oocytes in a solution of either 100 

mM sodium dithionite in 100 mM phosphate buffer pH 7.4 or 24 mM sodium dithionite 

in 50 mM phosphate buffer pH 7.4 for varying amounts of time. 

Electrophysiological recordings on GABAC were carried out 48 to 72 hours after 

injection.  Whole-cell currents from oocytes were measured as above.  Microelectrodes 

were also as above.  Oocytes were continuously perfused with a bath solution consisting 

of 96 mM sodium chloride, 2 mM potassium chloride, 1 mM magnesium chloride, 1.8 

mM calcium chloride, and 5 mM HEPES at pH 7.5.  Microscopic GABA-induced 

currents were recorded in response to bath application of GABA at a holding potential of 

−80 mV. 

Electrophysiological recordings on nAChR were carried out 48 hours after injection.  

Whole-cell currents from oocytes were measured as above.  Microelectrodes were also as 

above.  Oocytes were continuously perfused with a nominally calcium-free bath solution 

consisting of 96 mM sodium chloride, 2 mM potassium chloride, 1 mM magnesium 
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chloride, and 5 mM HEPES at pH 7.5.  Microscopic ACh-induced currents were recorded 

in response to bath application of ACh at a holding potential of −80 mV. 

 

Analyzing the Extent of NVOC Deprotection and 4-Nitro-Phenylalanine Conversion 

Di-NVOC-4-amino-phenylalanine-dCA (3 mM solution in DMSO, 3 µL) was placed in 

front of the 1000 W Hg/Xe arc lamp described above and irradiated for varying amounts 

of time.  The sample was then analyzed by reverse-phase analytical HPLC with a linear 

solvent gradient from 5% acetonitrile in 25 mM NH4OAc buffer pH 4.5 to 100% 

acetonitrile.  An unphotolyzed sample was used as the control. 

tBoc-4-nitro-phenylalanine (0.0059 g, 0.021 mmol) was dissolved in DMSO (50 µL) and 

analyzed by reverse-phase analytical HPLC with a linear solvent gradient from 5% 

acetonitrile in 25 mM NH4OAc buffer pH 4.5 to 100% acetonitrile.  To this solution was 

added sodium dithionite (100 mM in 100 mM phosphate buffer pH 7.4, 50 µL), and the 

reaction was allowed to sit for varying amounts of time before it was analyzed again by 

reverse-phase analytical HPLC with the same linear solvent gradient as above.  This 

procedure was repeated for tBoc-4-amino-phenylalanine (0.0049 g, 0.017 mmol). 

 

Nonsense Suppression In Vitro 

Translation was carried out using rabbit reticulocyte lysate translation system (Promega, 

Madison, WI) according to manufacturer’s protocol.  Lysate mix (8.75 µL), amino acid 
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mix (0.35 µL), RNAse inhibitor (0.25 µL), H2O (1.75 µL), mRNA (0.5 µL, 1 µg/µL for 

suppression experiments and 0.3 µg/µL for wild-type experiments), and either tRNA (1 

µL, 1 µg/µL) or H2O (1 µL, for mRNA-only negative control) were combined and 

incubated at 30 °C for 106 minutes.  The in vitro translation mix was then kept at −80 °C 

until further use. 

To prepare for gel loading, the in vitro translation mix (2.5 µL) was added to 4% sodium 

dodecyl sulfate (SDS) (2.5 µL) and then that mixture was added to 10% SDS (2 µL), H2O 

(7 µL), and 2× SDS loading buffer (100 mM tris chloride at pH 6.8, 4% SDS, 0.2% 

bromophenol blue, 20% glycerol) (14 µL).  Samples were loaded in 5 µL aliquots into 

prepoured 12% tris chloride gels (Bio-Rad, Hercules, CA) for SDS-polyacrylamide gel 

electrophoresis (PAGE).  Western blotting was preformed using nitrocellulose transfer, a 

mouse anti-HA primary antibody, and a goat anti-mouse secondary antibody conjugated 

to horseradish-peroxidase.  Protein was detected by chemiluminescence. 
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C h a p t e r  V I I I 

 

A NEW APPROACH TO PHOTOCHEMICAL CLEAVAGE OF PROTEIN AND 

PEPTIDE BACKBONES 

 

Nature has an array of important processes that rely on distinct protein cleavage events 

for their initiation.  Site-specific proteolysis upon the addition of an outside experimental 

stimulus would allow for the scientific exploration of these events and, more generally, of 

protein function and modular design.  o-Nitrophenylglycine (Npg) was the first example 

of an unnatural amino acid that could site-specifically cleave the protein backbone upon 

irradiation with UV light, but this amino acid was inefficient at ribosomal incorporation 

and required prolonged photolysis times for productive proteolysis.  Subsequently, other 

examples of similar compounds followed in the literature, but none of them were 

designed for use with in vivo nonsense-suppression techniques.  Herein are presented two 

α-hydroxy acids that were specifically designed to overcome the limitations of Npg.  

Through the use of model reactions, these two selenium-containing compounds were 

found to be capable of cleaving the peptide through an SN2 attack at the carbinol carbon 

that was integrated into the backbone upon the incorporation of the α-hydroxy acid.  

Unfortunately, the same success was not seen when ribosomally expressed in proteins.  

Though both were compatible with nonsense-suppression techniques, neither has yet 

been observed to cleave a full protein in in vitro or in vivo experiments. 
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Introduction 

Many proteins have a modular design, with different structural domains that work in 

unison to achieve a function or perform separate functions in complex systems.  In 

addition, many proteins are processed by cleavage into smaller fragments, revealing a 

previously protected reactive center or producing smaller signaling molecules. The 

processing of the amyloid-β protein into a neurodegenerative element,1 the partitioning of 

the hepatitis C polyprotein into its viral components,2 and the activation of caspase-3 into 

a cysteine protease that triggers apoptosis,3 are a few examples of the powerful 

consequences of nature’s ability to cleave the protein backbone at specific sites.  

Mimicking this process by inserting a photolabile group into a protein allows for 

synthetic control over proteolysis.  The function of a specific protein can be either turned 

on or turned off simply by exposing the system to UV light.   

In 1997 Dr. Pamela England, a postdoctoral researcher in the Dougherty laboratory, 

spearheaded such a strategy for photochemically initiating backbone cleavage of a 

protein, allowing dissection of a protein into its separate domains or processing a 

preprotein with temporal and spatial control.4  She synthesized and tested the unnatural 

amino acid o-nitrophenylglycine (Npg, figure 8.1), which creates an o-nitrobenzylamide 

on incorporation into a protein.  Photolysis then launches the well known o-nitrobenzyl 

“deprotection” of the amide, cutting the protein backbone.  



 
257 

 

Figure 8.1.  Npg and its mechanism for cleaving the peptide backbone. 

 

Npg was incorporated into both the Shaker B voltage-gated K+ channel (ShB) and the 

muscle nicotinic acetylcholine receptor (nAChR), two channels introduced earlier in this 

thesis, by in vivo nonsense suppression in Xenopus oocytes.4  Photolysis produced site-

specific, nitrobenzyl-induced photochemical proteolysis (SNIPP).  In ShB England 

incorporated Npg into two sites, Leu47 and Pro64, both of which are located in the 

“chain” that connects the channel blocking “ball” to the six transmembrane helices 

(figure 8.2).  These two sites have been previously discussed in chapter 6 of this thesis.  

Irradiation and proteolysis destroys a link in the chain connecting the “ball” and the 

channel.  Without the covalent attachment of the “ball,” the potential for N-terminal 

inactivation is eliminated.  

Npg was also incorporated into two sites in the nAChR:  α1Val132 and β1Leu262 (figure 

8.3).4  α1Val132 is located in the extracellular domain of the channel in the Cys-loop.  

This site was chosen since proteolysis was expected to result in a loss of the integrity of 

this structurally and functionally important loop, thus inhibiting channel function.  

β1Leu262 is the famous 9’ residue in the β1 subunit, and it is found in the 
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transmembrane region of the channel.  This residue is part of a hydrophobic band of 

residues that forms the narrowest point in the pore of the channel.  A conformational 

change in the protein induced by the binding of ACh widens this band of leucines enough 

to allow ions to diffuse through the channel pore.  Disruption of the protein at this site 

was expected to hinder this gating process.  As expected, incorporation of Npg at both 

sites showed a reduction in channel activity after irradiation.   

 

Figure 8.2.  Incorporation of Npg into ShB.  Figure adapted from England et al.4 

 

Figure 8.3.  Incorporation of Npg into the α1 subunit of the nAChR.  Figure adapted from England et al.4 
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Together these data demonstrate that Npg can produce SNIPP regardless of whether it is 

in an intracellular site, an extracellular site, or the transmembrane region.  Although 

successful in demonstrating the essential SNIPP concept, Npg was not an ideal reagent.  

Its incorporation into proteins by nonsense suppression was often inefficient, perhaps 

because of the steric crowding associated with an ortho-substituted phenylglycine 

derivative.  At α1Val132 three separate injections of Npg-tRNA into each oocyte were 

necessary for efficient in vivo nonsense suppression.  In addition, while o-nitrobenzyl 

“caged” side chains of Tyr and Cys have been efficiently photocleaved in Xenopus 

oocytes,5-8 photochemical decaging of proteins containing Npg can require prolonged 

photolysis times.  England found 4 to 7.5 hours of irradiation necessary for the functional 

effects of proteolysis via Npg to be evident.  More recently, however, Endo et al. did 

achieve efficient photolysis of Npg when incorporated into the soluble protein caspase-3.9  

In their in vitro experiment, proteolysis released a functional enzyme after only one 

minute of irradiation. 

Other strategies for photochemical cleavage of protein and peptide backbones have 

recently appeared.  Bosques and Imperiali10 and Kron and co-workers11 have employed 

o-nitro-β-phenylalanine as a linker between two protein or peptide fragments (figure 

8.4A), while Pellois and Muir12 have employed a highly expanded nitrobenzyl linker that 

can both ligate to the C-terminus of a recombinant protein and photorelease upon 

irradiation (figure 8.4B).  Otaka and co-workers introduced a novel system based on a 

nitrobenzyl-caged phenol and the “trimethyl lock” motif, in which intramolecular 

cleavage of the backbone amide occurs through attack by the phenol once it has been 

decaged (figure 8.4C).13  While these newer approaches are attractive, they would not 
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likely be compatible with in vivo protein expression, as β-amino acids and highly 

crowded systems such as the trimethyl lock are not compatible with nonsense-

suppression and other approaches to incorporating unnatural amino acids into proteins 

expressed in cells. 

 

Figure 8.4.  Other strategies for the photochemical cleavage of peptides and proteins.  The bonds that break 

are highlighted in blue.  A)  o-Nitro-β-phenylalanine.10,11  B)  The core of the ligation and photorelease 

molecule.12  C)  The o-nitrobenzyl-caged phenol with its trimethyl lock motif.13  Note here that two bonds 

break, the first is the nitrobenzyl-phenol bond, and the second is in the backbone through the attack of the 

carbonyl by the decaged phenol. 

 

A Novel Direction for SNIPP 

In this chapter the design and synthesis of two new residues that can induce backbone 

cleavage by an unprecedented reaction mechanism are described (figure 8.5).  This novel 

approach to SNIPP has the potential to be superior to Npg while still being compatible 

with in vivo protein expression by nonsense suppression.  First, selenide anions are 

among the strongest of known nucleophiles.  Since selenols have pKa values on the order 

of 5-6,14 the selenide anion should be the dominant moiety at physiological pH.  

Selenium should be well tolerated in nonsense suppression, as both selenocysteine and 
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selenomethionine are known to be incorporated into proteins.  In fact selenocysteine is 

frequently referred to as the 21st amino acid because it has its own tRNA that 

contranslationally inserts it at certain UGA opal stop codons.15  

 

Figure 8.5.  The two novel SNIPP-capable compounds described in this chapter and their predicted 

mechanism of proteolysis. 

 

Second, α-hydroxy acids (instead of α-amino acids) are quite compatible with ribosomal 

protein synthesis,16-20 as well as standard solid-phase protocols for peptide synthesis.21,22  

Incorporation of an α-hydroxy acid produces a backbone ester bond, and selenides can 

“hydrolyze” esters (but not amides) by an SN2-type mechanism—the softness of the 

selenide favors attack of the soft carbinol carbon over the hard carbonyl carbon.23  While 

this is typically efficient only with methyl esters, the anticipation is that the 

intramolecularity of the reaction proposed here will compensate for the fact that the 

reaction is occurring at a tertiary center.  In addition, the inductive effect of the adjacent 

carbonyl could accelerate the SN2 reaction.  
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We also anticipate that the new system could overcome the limitations of Npg.  First, the 

steric congestion associated with Npg, which appears to limit its efficiency in ribosomal 

protein incorporation, has been decreased.  Second, decaging of an unencumbered 

selenide should be more efficient than “deprotection” of a backbone amide, based on both 

steric factors and the much lower pKa of a selenol versus an amide. 

The final design issue is the nature of X in figure 8.5.  Formation of a five-membered 

ring is generally most favorable in such systems, and our initial design employed a 

simple aliphatic chain, X = –CH2CH2CH2–, making the target α-hydroxy acid compound 

8.1.  We subsequently considered a second design, 8.2, in which an aromatic ring was 

incorporated into X.  Both strategies have advantages.  Compound 8.1 contains an 

aliphatic selenide, which is anticipated to be a stronger nucleophile than the aromatic 

selenide of 8.2.24  On the other hand, compound 8.2 more closely resembles the phenyl 

selenide anion typically used in the SN2 cleavage of esters, and fewer rotatable bonds 

have to be restricted to form the SN2 transition state for 8.2.  In addition, the arylalkyl 

selenide of 8.2 is likely more stable to oxidative degradation since its lack of δ-hydrogen 

atoms prevents the possibility of syn elimination of any selenoxide that forms.  However, 

the increased steric size of 8.2 could be a problem for ribosomal incorporation into 

proteins.  

The design and predicted mechanism of these two compounds represents novel 

chemistry, and therefore, before applying it to a biological system, we felt it was essential 

to establish that the chemistry does indeed proceed as predicted, including isolation and 

full characterization of the novel selenacyclopentane fragmentation product.  The 

simplest relevant synthetic targets were depsipeptides containing 8.1 and 8.2.  With these 
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in hand, photolysis conditions were optimized, and the novel selenacyclopentane 

fragmentation products were successfully isolated, proving that indeed, proteolysis was 

possible through the proposed mechanism for each novel compound.  Unfortunately, 

though the chemistry was shown to work, photolysis-induced proteolysis was never seen 

in a full protein in either in vitro or in vivo experiments. 

 

Results and Discussion  

Synthesis of Alkyl Selenide α-Hydroxy Acid 8.1 

A former graduate student in the Dougherty laboratory, Dr. Niki Zacharias, completed 

the first synthesis of alkyl selenide α-hydroxy acid 8.1.  The molecule was made 

racemically via the procedure shown in scheme 8.1.  First, δ-valerlactone was 

hydroxylated following the procedure of Best et al.25  Opening of the lactone26,27 with 

30% hydrogen bromide in acetic acid followed by treatment with ethanol resulted in the 

basic frame of the α-hydroxy acid protected as the ethyl ester.  The bromine was 

exchanged for selenium from reaction with disodium diselenide.28  Reduction of the 

diselenide, addition of o-nitrobenzylbromide,29,30 and treatment with base produced the 

final product, racemic 8.1.  A large amount of work went into the development of the 

synthesis; a full description of which is in Zachrias’s thesis.31 
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Scheme 8.1.  The first synthesis of racemic alkyl selenide α-hydroxy acid 8.1. 

 

The major limitation of this scheme was that it resulted in racemic 8.1.  Since the initial 

goal was to synthesize a depsipeptide containing 8.1 that could be used to test the 

proteolytic capabilities of the α-hydroxy acid, having enantiopure 8.1 would allow for a 

single diastereomeric depsipeptide instead of the mixture of diastereomers that would be 

produced from racemic 8.1.  After the completion of the racemic synthesis, Zacharias 

discovered a publication by Guindon et al. that described the opening of a furan ring with 

dimethylboron bromide.32  This reaction framed the retrosynthetic design of the pathway 

to enantiopure 8.1 (figure 8.6). 
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Figure 8.6.  Retrosynthesis for enantiopure alkyl selenide α-hydroxy acid 8.1. 

 

A small but important feature of this new synthetic plan was the nature of the group that 

masked the acid during the central steps of the synthesis.  tert-Butyl esters are commonly 

used during both solution- and solid-phase peptide synthesis to mask acids.  Thus, this 

moiety was chosen since it would allow the esterified 8.1 to be taken directly into the first 

peptide coupling reaction.  While the tert-butyl esterification of S-(−)-tetrahydro-2-furoic 

acid was successful, the subsequent reaction with dimethylboron bromide32 converted the 

tert-butyl ester 8.3 back to the original acid. 

 

Scheme 8.2.  The acid-labile tert-butyl ester was not compatible with the conditions for furan ring opening. 
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There was literature precedent for successful ring opening of the racemic ethyl ester 

version of 8.3 by dimethylboron bromide.32  Therefore, S-(−)-tetrahydro-2-furoic acid 

was converted to the ethyl ester (scheme 8.3).33  As per the precedent in the literature, 

ring opening with dimethylboron bromide was now successful.32  Conversion to the 

diselenide from the in situ formation of the reactive disodium diselenide31 and ester 

hydrolysis then produced 8.7.34  This acid diselenide was directly reduced with sodium 

borohydride and the product alkylated with o-nitrobenzyl bromide to give the target 

compound 8.1.29 

 

Scheme 8.3.  Successful synthesis of enantiopure alkyl selenide α-hydroxy acid 8.1. 

 

Though this synthesis greatly benefited from Zacharias’s previous synthesis, each step 

shown in scheme 8.3 was evaluated and optimized.  Most notably, it was found that if the 

ethyl ester was acidified prior to being reduced and alkylated by o-nitrobenzylbromide, 

then the combined yield for the two steps could be improved from 45% (scheme 8.1) to 
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82% (scheme 8.3).  The yield probably also benefited from the care that was taken of the 

compounds after the addition of the selenium.  Compounds 8.6, 8.7, and 8.1 readily 

decomposed under mildly oxidative conditions.  The instability of the compounds was 

believed to be due to the presence of the δ-hydrogen atoms that enabled syn elimination 

of any selenides that had been oxidized to the selenoxide. 

 

Design of the Depsipeptide Model System 

A depsipeptide was envisioned as the simplest model system to test the proteolytic 

capability of 8.1 (figure 8.7).  By using a small peptide instead of a larger protein, the 

isolation and charaterization of the major photolysis product could be carried out by 

traditional organic synthetic methods.  The design of the depsipeptide was first discussed 

in Zacharias’s thesis.31  Phenylalanine was chosen to be the N-terminal amino acid in 

order to add hydrophobicity to the depsipeptide.  The novel 8.1 was the central piece so 

that any cleavage that occurs through the proposed mechanism will essentially split the 

backbone in half.  Glutamate was chosen to be the C-terminal amino acid since it could 

add even more hydrophobicity to the depsipeptide if each of its acids are masked as esters 

or it could make a hydrophilic depsipeptide if each of its acids were left as acids.  This 

feature of the design created the ability for the model studies to be carried out in both 

organic and aqueous solvents.   
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Figure 8.7.  Design of the depsipeptide model system. 

 

Synthesis of Depsipeptides Containing Alkyl Selenide α-Hydroxy Acid 8.1 

In a typical peptide coupling reaction, the desired N-terminal amino acid is protected as 

an amide, and the desired C-terminal amino acid is protected as an ester.  This strategy 

insures that the carboxylic acid of the former will react with the free amine of the latter to 

form the desired amide bond.  Since 8.1 was envisioned as the central of three amino 

acids in the depsipeptide, either end could be protected in the initial peptide coupling 

reaction.  Previously, Zacharias had protected the acid of racemic 8.1 as a tert-butyl ester 

using N,N-dimethylformamide di-tert-butyl acetal in refluxing toluene,35 but she found 

the selenium elimination product, 2-hydroxy-pent-4-enoic acid tert-butyl ester, to be a 

major product of the reaction.31   

To reduce the production of the unwanted elimination product, a new protection strategy 

was sought.  After planning various methods for protecting either the acid or the alcohol 

of 8.1, we realized that we could simply take advantage of the difference in reactivity of 

an alcohol and a primary amine for a carboxylic acid, capitalizing on 8.1 being an α-

hydroxy acid, not an α-amino acid.  Since a primary amine reacts much more readily with 
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a carboxylic acid and forms a stable amide bond, the alcohol is already “protected” in the 

reaction. 

With this strategy in hand, the first peptide coupling reaction was set up between 8.1 and 

di-tert-butyl glutamate (scheme 8.4). Several different reaction conditions were tried in 

order to maximize the yield of dipeptide 8.8.36,37  In all cases the yields were low, but the 

combination of benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate 

(PyBop) and N-methylmorpholine was found to be the best available. 

 

Scheme 8.4.  Three sets of reagents were used to make dipeptide 8.8. 

 

Three different model depsipeptides were made by varying the aromatic N-terminal 

amino acid (scheme 8.5).  Depsipeptides 8.9 and 8.11 differed only in the nature of the N-

terminal amide.  Depsipeptide 8.10 varied from the original design by the addition of 

tryptophan to the N-terminus.  Tryptophan was chosen for its hydrophobicity and for its 
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variety.  Because the central and C-terminal residues are the same, these three different 

depsipeptides will produce the same selenacyclopentane product upon photolysis and 

proteolysis.  While it was anticipated that the α-hydroxy acid might be difficult to couple, 

the only change required from a traditional coupling reaction was the lengthening of the 

reaction time—each reaction was allowed to stir at room temperature for one to two days 

before the reaction was quenched. 

 

Scheme 8.5.  The second peptide coupling reaction in the synthesis of three different depsipeptide model 

systems. 
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Initial Photolysis Studies on Depsipeptides 8.9 and 8.10 

Prior to these studies Zacharias had run a single photolysis reaction on 8.1 in a 

dipeptide.31  Because of the low yield she obtained in the formation of racemic 8.1 tert-

butyl ester, she only had enough material to make the dipeptide, N-acetyl-phenylalanine-

8.1-tert-butyl ester.  She irradiated this dipeptide in deuterated acetonitrile that had been 

purged with argon and followed the progress of the reaction by nuclear magnetic 

resonance (NMR) spectrometry.38  The photolysis products were purified by preparatory 

thin-layer chromatography (TLC), and gas chromatography mass spectrometry (GC-MS) 

suggested that the product with an Rf of 0.77 (50% ethyl acetate in hexanes) contained 

the selenide cleavage product.  To get firmer evidence that 8.1 could cleave the peptide 

backbone through the predicted mechanism, the photolysis products of the newly 

synthesized depsipeptides, 8.9, 8.10, and 8.11, were pursued.  

The initial photolysis studies consisted of a 0.1 µM solution of depsipeptide in dry 

acetonitrile, and typically, 50 µL samples were exposed to 320 nm light from a 1000 W 

Hg/Xe arc lamp for five minutes.  Tetrahydrofuran, another common solvent compatible 

with photolysis studies, could not be used since the depsipeptides quickly decomposed 

while in this solvent.  Reactions were followed by electrospray ionization (ESI)-MS.  

NMR spectroscopy, TLC, and high-pressure liquid chromatography (HPLC) were 

difficult to use with such small-scale reactions and were therefore not performed in 

parallel to follow the reactions.  In ESI-MS the analyte (M) being measured exists as an 

ion in solution, typically as [M+H], [M+Na], [M+K], or [M−H].  Therefore, ESI-MS can 

both interpret the small quantities of material and also identify the selenium-containing 

mass-to-charge (m/z) ratios because of the characteristic selenium isotope pattern.  
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Unfortunately, ESI-MS is not quantitative, and the structures of products have to be 

inferred from likely candidate structures. 

Disappointingly, the desired selenacyclopentane was not seen by ESI-MS after photolysis 

of depsipeptide 8.9.  Instead, the major product m/z ratio was 1292.7, which by its ratio 

and isotope pattern agreed with the compound that would be formed upon o-nitrobenzyl 

deprotection and diselenide formation ([M+K] m/z = 1293.5) (figure 8.8A).  Although the 

formation of the diselenide prevents the possibility for cleavage to occur, its appearance 

suggested that the o-nitrobenzyl group was rapidly and efficiently decaging, one of the 

predicted advantages of 8.1 over Npg.  Formation of a diselenide is an oxidative process, 

which suggests that the photolysis reaction is taking place in an oxidative environment.  

Several other m/z ratios present in the ESI-MS also reinforced this assumption.  First, the 

m/z ratio with a selenium-isotope pattern nearest to the predicted mass for the decaged 

selenol ([M+K] m/z = 667.2) was 698.7, a ratio that could be explained by the oxidation 

of the selenol to selenic acid ([M+K] m/z = 699.3).  Second, another set of m/z ratios was 

seen at 568.8, 584.8, and 600.8.  These ratios, which did not contain the selenium isotope 

pattern, were suggestive of a depsipeptide that contained dehydronorvaline ([M+Na] m/z 

= 569.3, [M+K] m/z = 585.4) and the equivalent epoxide ([M+Na] m/z = 585.3, [M+K] 

m/z = 601.4) as its central component.  These unwanted side products could be produced 

from the syn elimination of the selenoxide formed under oxidative conditions (figure 

8.8B).39  All products seen for depsipeptide 8.9 were similarly reproduced with 

depsipeptide 8.10, giving more credit to the assigned identities. 
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Figure 8.8.  ESI-MS suggests oxidative products are formed upon irradiation of the depsipeptides in 

acetonitrile.  A)  Predicted products from the initial photolysis reaction of 8.9.  Similar products were 

predicted for 8.10.  B) Predicted oxidation and syn elimination of the selenoxide-containing depsipeptide 

8.9.  8.10 is expected to produce the same oxidation products. 

 

Oxidation Studies on Depsipeptides 8.9 and 8.10 

To confirm that the oxidative products predicted from the ESI-MS above would in fact be 

formed if depsipeptides 8.9 and 8.10 were exposed to an oxidative environment, these 

depsipeptides were subjected to a solution of the oxidant hydrogen peroxide.  Solutions 

of 0.1 µM 8.9 or 8.10 in acetonitrile were combined with twice the volume of 30% 

hydrogen peroxide.  After an hour of exposure to the oxidative hydrogen peroxide 

solution, ESI-MS of depsipeptide 8.9 showed m/z ratios of 546.9, 568.8, 698.8, 779.8, 

and 817.7, which corresponded to the dehydronorvaline containing depsipeptide ([M+H] 
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m/z = 547.3, [M+Na] m/z = 569.3), the selenic acid ([M+K] m/z = 699.3), and the 

selenoxide ([M+H] m/z = 780.3, [M+K] m/z = 818.4) (figure 8.9).  The presence of the 

same m/z ratios in this experiment as in the photolysis reactions above reaffirms that the 

products in the photolysis reaction were being created by oxidation.  The lack of m/z 

ratios for the diselenide and the presence of the selenoxide were expected since no means 

was provided for o-nitrobenzyl decaging. The same reaction conditions were repeated 

with water replacing the oxidant for a negative control.  The addition of water did not 

have an effect on the depsipeptide as studied by ESI-MS.  Depsipeptide 8.10 showed 

similar predicted products via ESI-MS after one hour of exposure to the hydrogen 

peroxide solution, but each had an increase of +16 over the predicted m/z ratio.  This 

increase was accredited to the concurrent oxidation of the tryptophan to 

oxindolylalanine.40 

 

Figure 8.9.  Predicted oxidative products from the reaction of 8.9 with hydrogen peroxide.  The oxidation 

of depsipeptide 8.10 showed similar predicted products, but with the tryptophan oxidized to 

oxindolylalanine. 
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Photolysis of Depsipeptides 8.9 and 8.10 in a Reducing Environment 

Creating a reducing environment in the photolysis reaction was expected to minimize the 

unwanted oxidative side products.  Dithiothreitol (DTT) is a commonly used reducing 

agent, and a study by Besse et al. found that 44 equivalents of DTT could reduce 50% of 

the diselenide bonds in their model depsipeptide system.41  Following this example, 50 

equivalents of DTT were added to the depsipeptide/acetonitrile mixture prior to 

photolysis.  After photolysis in this reducing environment, the dehydronorvaline-

containing depsipeptide was not seen or was seen in low abundance via ESI-MS.  The 

diselenide was seen in much lower abundance as well.  Therefore, irradiation in a 

reducing environment was successful at decreasing the oxidative side products.  

Unfortunately, the expected m/z ratio for the selenacyclopentane product was still not 

seen in the ESI-MS.  Instead, the new major product in the ESI-MS after irradiating 8.9 

was at an m/z ratio of 650.8, which corresponds to the decaged selenol product ([M+Na] 

m/z = 651.2).  Therefore, in this reducing, organic environment, the favored state of the 

alkyl selenium was the selenol, not the selenide anion expected to attack the carbinol 

carbon of the backbone.  The same was true for the photolysis of 8.10.   

Since the selenide anion was the nucleophile expected to induce cleavage of the 

depsipeptide backbone, conditions were desired that would encourage anion formation 

over selenol formation.  The pKa of decaged 8.1 was not determined in this study, but it 

is expected to be similar to that of selenocysteine, which has a pKa of 5.73,14 since they 

are both aliphatic selenols.  Thus, 8.1 should be anionic at physiological pH.  To test the 

effects of pH on the photolysis reaction, depsipeptides 8.9 and 8.10 were photolyzed in a 

solution of equal volumes of acetonitrile and pH 7 water in the presence of 50 equivalents 
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of DTT, but ESI-MS of the postphotolysis solution suggested only selenol was formed.  

Raising the pH to 8, 9, or 10 was also unsuccessful at eliciting the cleavage reaction.  

Increasing the relative amount of pH 10 water was also unsuccessful at inducing 

proteolysis.  Finally, addition of the organic base triethylamine also did not encourage 

any selenacyclopentane product formation as visualized by ESI-MS. 

Contrary to the results seen if water with high pH was added to the reaction prior to 

photolysis, if water with a pH of 8 or 9 was added after irradiation, a low-abundance m/z 

ratio with the selenium isotope pattern was seen at 443.9 in the ESI-MS, agreeing with 

the expected mass of the selencyclopentane ([M+Na] m/z = 444.1) (figure 8.10).  

Encouragingly, both MS/MS and MS/MS/MS on 443.9 caused the loss of the mass of a 

tert-butyl group (m/z Δ = 56.1), and the 443.9 m/z ratio was seen in the ESI-MS when the 

same conditions were repeated on 8.10.  These results were viewed as the first successful 

peptide cleavage induced by 8.1 in a depsipeptide.  It was surprising that successful 

cleavage required a much higher pH than expected and only when the pH was rasied after 

irradiation.   It was also disappointing that the low abundance of the m/z ratio in the ESI-

MS implied that the cleavage reaction was inefficient under these conditions.  

 

Figure 8.10.  Representation of the first successful peptide cleavage reaction with 8.9.  Only relevant 

products are shown.  Depsipeptide 8.10 showed the same pattern. 
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Photolysis Studies in a Reducing, Aqueous Environment 

The small-scale photolysis reactions thus far suggested that the deprotonation of the 

selenol encouraged proteolysis in the manner predicted by the design, but there were 

many facets to the formation of the selenide anion and subsequent proteolysis reaction.  

Importantly, the addition of base only encouraged cleavage of the peptide backbone once 

the selenol had already been decaged.  To probe whether the partially organic 

environment was hindering the cleavage reaction, a hydrophilic depsipeptide was desired 

so that the photolysis could be run in an entirely aqueous environment.  Thus, a mixture 

of trifluoroacetic acid in methylene chloride was used to remove the acid-sensitive 

protecting groups from the depsipeptides 8.9 and 8.10 (scheme 8.6). 

 

Scheme 8.6.  Removal of the acid-sensitive protecting groups reveals hydrophilic depsipeptides. 
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When 8.12 was photolyzed in the presence of 50 equivalents of DTT in double-distilled 

water, the ESI-MS postphotolysis contained an m/z ratio at 308.0, which corresponded to 

the desired selenacyclopentane ([M−H] m/z = 308.0) (figure 8.11).  The m/z ratio for the 

selenol, 514.9 ([M−H] m/z = 515.1), was also present.  Since the pH of the double-

distilled water is near the pKa of the selenol, it was hoped that raising the pH to a more 

physiologically relevant value would shift the equilibrium towards the selenide anion 

and, therefore, a higher abundance of the selenacyclopentane m/z ratio would be seen via 

ESI-MS.  But, the same products were seen if water pH 7, water pH 7.6, or phosphate 

buffer pH 7 was used.  Thus, there was a higher propensity for cleavage in this aqueous 

environment, but there was still something allowing selenol formation.   

 

Figure 8.11.  An aqueous environment was capable of producing some amount of the desired cleavage 

product.  Only relevant products shown. 

 

Exploring the Effects of DTT on the Cleavage Reaction 

DTT reduces diselenides by first forming a sulfur-selenium bond.  To probe the 

possibility that DTT was enhancing selenol formation through this mechanism of 

reduction, triscarboxyethylphosphine (TCEP) was substituted into the photolysis reaction 



 
279 

as the reducing agent.  TCEP is a highly potent reducer of diselenides.  By reducing 

diselenides through a mechanism involving its phosphine with the aid of water, TCEP 

allows for a nonthiol-based reduction mechanism to be tested in the photolysis and 

cleavage reaction.  TCEP could also be purchased immobilized on agarose, which 

allowed for easy removal after irradiation.  After depsipeptides 8.12 and 8.13 were 

irradiated in an aqueous environment with excess TCEP, ESI-MS still showed that the 

same two major products in this reaction were produced with TCEP as with DTT:  

selenacyclopentane and selenol.  Therefore, specific attributes of DTT were not 

increasing the probability of selenol formation.  

 

Using N-Methyl Maleimide to Test for Selenol Formation 

After irradiation of 8.12 in water with either DTT or TCEP, an m/z ratio of 514.9 in the 

product ESI-MS had always been assigned as the selenol (figure 8.11).  The same 

conclusions were made in the ESI-MS after the photolysis of 8.9, 8.10, and 8.13 as well.  

But, if the decaged selenide anion attacked the ester carbonyl instead of the carbinol 

carbon, a selenoester would be produced (figure 8.12).  The simple rearrangement of 

atoms means the selenoester has the same mass as the selenol, 516.1 g/mol.  The attack of 

the ester carbonyl requires a seven-member ring transition state, a much less likely 

occurrence than the five-member ring formed if the desired carbinol carbon were attacked 

to form the selenacyclopentane, but since both the selenol and the selenoester would give 

identical m/z ratios, neither can be excluded by the original ESI-MS data.  
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The addition of N-methyl maleimide to the reaction mixture after photolysis would 

discriminate between the two products since the maleimide can react with the selenol but 

not the selenoester.  Thus, after depsipeptides 8.9 and 8.10 were photolyzed in 

acetonitrile and after depsipeptide 8.12 was photolyzed in water, all with 50 equivalents 

of DTT, N-methyl maleimide was added to each reaction.  In the ESI-MS of the resulting 

solution of all three depsipeptides, an m/z ratio corresponding to the covalent addition of 

the N-methyl maleimide to the selenol was seen.  This result confirmed that the selenol 

was appropriately assigned in all of the previous ESI-MS data and gave further evidence 

that the selenium was not as efficient as desired at the intramolecular cleavage reaction. 

 

Figure 8.12.  The possible products formed by the decaged selenide that have a mass of 516.1.  To prove 

that the selenol was formed, it was trapped with N-methyl maleimide.  Similar products were seen with 

depsipeptides 8.9 and 8.10.  Only the relevant products in each reaction are shown. 
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Redesign of the Photoreactive α-Hydroxy Acid 

After irradiation of the depsipeptides, the repeated appearances of the m/z ratio that 

corresponded to the selenacyclopentane product in the ESI-MS were highly suggestive 

that 8.1 was indeed capable of cleaving the peptide backbone through the proposed 

mechanism.  Unfortunately, a clean ESI-MS of only the cleavage product was never 

obtained, despite the many attempts to alter the nature and pH of the photolysis 

environment.  We concluded that 8.1 was inefficient at SNIPP.  Efficient SNIPP is 

necessary in an in vivo experiment to trust that a phenotypic response seen after 

irradiation is an effect of the experimentally controlled proteolysis.  Ideally, all of the 

desired protein would be cleaved upon photolysis since results from a heterogeneous 

protein population could be skewed by the unknown percentage of protein that remained 

full and intact.  Thus, a more efficient analog of 8.1 was desired. 

We combined literature precedent with the knowledge gained through the previous 

photolysis experiments in the design of arylalkyl selenide α-hydroxy acid 8.2 (figure 

8.3).  Much of the inspiration for 8.2 came from the phenyl selenide anion used to cleave 

esters and lactones through the SN2 attack of the carbinol carbon.23,42,43  The decaged aryl 

selenide anion may be a less potent nucleophile than the decaged alkyl selenide anion in 

8.1 due to its delocalization of the negative charge, but literature precedent suggests that 

an aryl selenide anion should be potent enough to initiate attack of the carbinol carbon.  

Also, fewer rotatable bonds in 8.2 have to be restricted to form the transition state during 

the cleavage reaction, which should lower the reaction barrier necessary to form the ring-

closed product.  The final important element in the design of 8.2 was the removal of the 

δ-hydrogen atoms that caused the syn elimination of the selenoxide.  This change should 
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make 8.2 more stable than 8.1 to oxidative damage.  The combination of these design 

elements are anticipated to make 8.2 a superior photoreactive α-hydroxy acid capable of 

site-specifically cleaving the protein backbone. 

 

Attempts to Synthesize Arylalkyl Selenide α-Hydroxy Acid 8.2 

The initial strategy for the synthesis of 8.2 involved either a Grignard reaction or a 

lithium-halogen exchange reaction for the addition of selenium to the aromatic ring 

(scheme 8.7).  First, ο-bromophenylalanine was converted to an α-hydroxy acid,44 which 

was then protected on the acid as an oxazoline45 and on the alcohol as a large, bulky silyl 

ether46 to make 8.16.  Oxazoline and tert-butyldiphenyl silyl ether are protecting groups 

that are typically stable under Grignard and lithium-halogen exchange reactions.47  Also, 

tert-butyldiphenylsilyl ether is supposed to be stable to acid and have a low propensity to 

migrate.  Unfortunately, neither the Grignard reaction nor the lithium-halogen exchange 

reaction was capable for forming the aryl selenide. 

 

Scheme 8.7.  An unsuccessful route for the synthesis of 8.2. 

 



 
283 

Successful Synthesis of Arylalkyl Selenide α-Hydroxy Acid 8.2 

Another graduate student in the Dougherty laboratory, Angela Blum, succeeded in 

synthesizing arylalkyl selenide α-hydroxy acid 8.2.  The successful synthesis of 8.2 

(scheme 8.8) began with a reduction of 2-nitrophenylpyruvic acid by (+)-B-

chlorodiisopinocampheylborane (“Ipc2BCl”) as reported by Wang et al. to yield the α-

hydroxy acid in high-enantiomeric excess (94%).48  The selenocyanate was prepared by a 

modification of the standard sequence, and the nitrobenzyl group was introduced by 

reductive alkylation.  The bulky tert-butyl protecting groups were installed to discourage 

intramolecular cyclization seen during direct reduction of the nitro group of the o-nitro-

phenylalanine α-hydroxy acid and to improve the solubility and ease of purification of 

subsequent compounds in the sequence. 

 

Scheme 8.8.  Successful synthesis of arylalkyl selenide α-hydroxy acid 8.2. 
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Using the reagents precedented in the depsipeptide syntheses described above, Blum 

incorporated 8.2 into a depsipeptide that was similar to depsipeptide 8.10 (scheme 8.9). 

 

Scheme 8.9.  Synthesis of depsipeptide 8.17. 

 

Initial Photolysis Studies on Depsipeptide 8.17 

The conditions optimized for depsipeptides 8.9 and 8.10 were initially used in the 

photolysis of depsipeptide 8.17.  It was subsequently determined that a reduction to 10 

equivalents of DTT was enough to minimize the oxidative side products in the photolysis 

of 8.17.  The requirement for severalfold less DTT confirmed one of the key design 

elements that was supposed to make 8.2 and improvement over 8.1—that of increased 

stability to oxidative damage.  

While running small-scale photolysis studies on depsipeptide 8.17, Blum discovered that 

heating the reaction mixture after irradiation greatly improved the efficiency of the 

cleavage reaction. Heat was found to also improve the ability of 8.1 to cleave 

depsipeptides 8.9 and 8.11 (depsipeptides 8.10, 8.12, and 8.13 were not tested).  Heating 

to 70 ºC for one hour maximized the abundance of the m/z ratio corresponding to the 
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selenacyclopentane in the ESI-MS.  While heat, especially at this high of temperature, is 

not ideal for in vivo studies in Xenopus laevis oocytes, it allowed for the scaling up of the 

photolysis reaction to a preparatory scale, which was necessary to isolate and characterize 

the selenacyclopentane products. 

 

Isolation and Characterization of the Selenacyclopentane Cleavage Products 

Preparative-scale photolysis reactions were performed using a Hg-vapor UV immersion 

lamp with a pyrex filter (>300 nm).  The reactions were again followed by ESI-MS. 

Depsipeptide 8.11 was irradiated in an equal volume mixture of acetonitrile and pH 7.6 

20 mM phosphate buffer with 100 equivalents of DTT (scheme 8.10).  After irradiation 

but before heating, the major m/z ratio seen in the ESI-MS was 709.1, the selenol 

([M+Na] m/z = 709.3), but 444.0, 627.2, and 1391.2, the selenacyclopentane 8.18 

([M+Na] m/z = 444.1), dehydronorvaline ([M+Na] m/z = 627.3), and diselenide ([M+Na] 

m/z = 1393.5), were also seen.  The subsequent heating of 8.11 went smoothly and the 

final ESI-MS showed m/z ratios of 444.0, 627.2, and 862.9, corresponding to the 

selenacyclopentane 8.18 ([M+Na] m/z = 444.1), dehydronorvaline ([M+Na] m/z = 627.3), 

and noncovalent dimer of the selenacyclopentane ([2M+Na] m/z = 865.3), respectively.  

The reaction was considered complete since the abundances of the m/z ratios for the 

selenol and diselenide, the two products that could be driven to SN2 cleave the peptide 

backbone, were baseline.  The three m/z ratios reported above were of similar high 

abundances in the ESI-MS after heating, although after irradiation and prior to heating 

the abundance of the m/z ratio for the dehydronorvaline had been low.  ESI-MS is not 
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quantitative, but the shift in the abundance of the dehydronorvaline from low to high 

suggested that either the elimination reaction continued to occur during heating or the 

quantities of all of the final products were much reduced after heating.  Either situation 

would predict a decrease in the absolute quantity of the desired selenacyclopentane 

product present.  Purification of selenacyclopentane 8.18 was difficult due to the large 

amount of DTT present in the reaction.  After two successive purifications using flash 

column chromatography, pure 8.18 was obtained in 29% yield.  

Initially, irradiation of 8.17 was performed using the same immersion lamp and filter as 

was used for depsipeptide 8.11.  The reaction took place in a solution of equal volumes of 

acetonitrile and pH 8 water with 10 equivalents of DTT.  A surprising side product that 

formed after photolysis was the depsipeptide in which the original nitrobenzylselenyl α-

hydroxy acid had been replaced by its phenylalanine analog.  While this work was in 

progress, however, Kitahara and co-workers reported that short wavelength photolysis of 

arylalkyl selenides can lead to carbon-selenium bond cleavage.49  As suggested by that 

study, changing the photolysis wavelength from >280 nm to >330 nm (uranium filter) 

eliminated this side reaction. When reaction conditions were fully optimized for the 

photolysis reaction of depsipeptide 8.17, a 72% yield was obtained of the aryl 

selenacyclopentane 8.19 without the need for the additional heating step (scheme 8.11).  

The greater stability to oxidative damage, higher yield of cleavage product, and ability to 

efficiently cleave without heat proved that the addition of the aryl group in 8.2 created an 

improved α-hydroxy acid capable of SNIPP. 
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Scheme 8.10.  The progress of the large-scale photolysis and heating reaction on depsipeptide 8.11 as 

followed by ESI-MS.  Selenacyclopentane 8.18 was isolated in 29% yield.  Only relevant products are 

shown. 
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Scheme 8.11. The large-scale photolysis and heating reaction on depsipeptide 8.17.  Aryl 

selenacyclopentane 8.19 was isolated in 72% yield.  Only the relevant product is shown. 

 

Preparing 8.1 and 8.2 for Nonsense-Suppression Studies 

Since isolation and characterization of the predicted cleavage fragment proved that the 

proposed mechanism of the photoinduced proteolysis was correct, 8.1 and 8.2 could now 

be studied in full proteins.  To prepare 8.1 for both in vitro and in vivo nonsense-

suppression experiments, it was activated as the cyanomethyl ester, coupled to dCA, and 

ligated to both THG73 tRNA (CUA anticodon) and YFaFS tRNA (ACCC anticodon) 

(scheme 8.12).  The same was repeated for 8.2.  Typically, amino acids are also protected 

on their α-amino group due to the instability induced by the electron withdrawing effects 

of the amine.  Neither 8.1 nor 8.2 needed to be protected on its α-hydroxy group because 

the hydroxyl does not have the same inductive effect as the amine. 
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Scheme 8.12.  The activation, coupling, and ligation reactions performed on 8.1 in preparation for in vitro 

and in vivo nonsense-suppression experiments.  The same were repeated for 8.2. 

 

Attempts to Visualize Proteolysis Using Western Blotting Techniques 

Western blotting was anticipated to produce a clear visual result if photolysis of either 8.1 

or 8.2 led to proteolysis of a large protein. Proteins made using the in vitro nonsense-

suppression methodology will separate by polyacrylamide gel electrophoresis (PAGE) 

based on their mass, and visualization through Western blotting techniques will identify 

if irradiated samples contain the smaller protein fragment predicted for SNIPP.  Earlier 

studies performed by Zacharias using rabbit reticulocyte lysate to incorporate 8.1 at 

Leu250 in the α1 nAChR subunit showed that 8.1 was ribosomally competent and was 

susceptible to base hydrolysis of the backbone ester, but irradiation-induced proteolysis 

was never seen.31  Rabbit reticulocyte lysate is the preferred system for in vitro nonsense 

suppression because it is readily available; because it is also a eukaryotic system like 

Xenopus laevis, the traditional system for in vivo nonsense suppression; and because it is 

much higher yielding than other in vitro transcription methods.  The drawback for using 
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this lysate in these experiments is that this lysate contains a high level of heme, which 

makes it deep red in color and may stifle the photolysis reaction.   

Zacharias tried to isolate the in vitro transcribed protein from the lysate and the negative 

effects of the heme prior to irradiation using a seven-histidine tag that had been 

incorporated into the C-terminal sequence of the protein.  This short sequence enables the 

protein to bind to a column of Ni2+ agarose beads, isolating it from the rest of the lysate 

mixture.50-52  Elution with 300 mM imidazole followed by irradiation resulted in a 

complete loss of protein, not only in the experiment but also in the positive controls.  

Potentially, the high levels of imidazole were aggregating the protein during photolysis. 

Enantiopure 8.1 was incorporated into two sites in the nAChR α1 subunit, α1Leu253 and 

α1Ile247, using in vitro nonsense-suppression techniques and rabbit reticulocyte lysate.  

The histidine tag was again used to purify the transcribed protein, but unlike the previous 

experiments performed by Zacharias, the protein was eluted from the column of Ni2+ 

agarose beads using an eluant with a pH of 4.5,53 removing the potential for imidazole-

related protein loss upon photolysis.  The eluate’s pH was raised, and then it was split 

into equal portions, one of which was irradiated by the same 1000 W Hg/Xe arc lamp 

used in the small-scale depsipeptide reactions, and one of which was left untreated.  

Unfortunately, though photolyzed protein was now present in the Western blot, 

proteolysis was never seen and the quantitiy of photolyzed protein was much less than the 

untreated portion (figure 8.13). Neither dilution nor the addition of TCEP encouraged 

proteolysis.  The same loss of protein was not seen when the same techniques were used 

to visualize caged phosphoproteins.53  Due to these inconsistencies, another in vitro 
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transcription system was sought that would eliminate the need to purify the transcribed 

protein prior to photolysis. 

 

Figure 8.13. Western blot of rabbit reticulocyte lysate in vitro nonsense suppressed proteins.  The asterisk 

marks the full-length protein.  Control reactions are not shown.  A reduction in the quantity of protein was 

seen upon exposure to UV light.  Proteolysis was not seen. 

 

Wheat germ lysate is another commonly used in vitro translation system, and its 

translucent white color made it a better choice for photolysis experiments than the rabbit 

reticulocyte lysate system.  Several different commercially available wheat germ lysate 

translation systems were compared to determine which system was most proficient at 

nonsense suppression.  The TNT T7 Coupled Wheat Germ Extract System (Promega, 

Madison, WI) and the Wheat Germ Extract Plus (Promega, Madison, WI) gave 

inefficient or no suppression, but the wheat germ extract from the Rabbit Reticulocyte 

Lysate/Wheat Germ Extract Combination System (Promega, Madison, WI) gave reliably 

consistent suppression.  This system successfully incorporated 8.1 but not 8.2 into 
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proteins using in vitro nonsense suppression (figure 8.14).  Potentially, 8.2 was too large 

to be compatible with the yeast ribosome.  Protein containing 8.1 was found to be 

susceptible to base cleavage of the backbone ester, but irradiation-induced cleavage was 

never observed.  Attempts to optimize photolysis by using different UV light sources (the 

1000 W Hg/Xe arc lamp described above and a 288 W Hg lamp), by increasing the pH of 

the protein-solubilizing solutions, by the addition of TCEP, and by exposing the protein 

to 70 °C heat for one hour postphotolysis did not encourage proteolysis. 

 

Figure 8.14.  Western blot of various wheat germ lysate in vitro nonsense suppressed proteins.  The asterisk 

marks the full-length protein.  The arrowheads mark the hydrolysis products.  Alanine was used as a 

positive control for efficient suppression and a negative control for the addition of base or UV light.  Serine 

α-hydroxy acid (Sah) was used as a positive control for base hydrolysis of an ester backbone.  Proteolysis 

is only seen upon the addition of base to proteins with an ester in the backbone, not upon irradiation of 

protein containing 8.1.  No suppression of 8.2 was seen. 
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A Positive In Vivo Control for the Efficiency of the UV Light Sources  

Although no successful SNIPP was seen in the in vitro photolysis reactions, conditions 

for successful in vivo photolysis reactions were still sought.  Several UV light sources 

were available for irradiating Xenopus oocytes in these in vivo experiments, including a 

500 W Hg arc lamp connected to an electrophysiology rig by a liquid light guide and the 

288 W Hg lamp mentioned above.  To ensure that these sources of UV light could 

successfully initiate the o-nitrobenzyl deprotection event, the reproduction of the 

previously published o-nitrobenzyl-protected tyrosine (TyrONB) suppression and 

photoinduced deprotection in the nAChR was sought.5 The TyrONB markedly differs in 

size from the natural tyrosine, and its suppression makes a mutant channel that is 

relatively insensitive to agonist.  Upon the addition of 300-350 nm wavelength light, the 

tyrosine is decaged and a wild-type channel is revealed, increasing the channel’s 

sensitivity to agonist. 

Whole-cell recordings were done on an OpusXpress workstation at both 24 and 48 hours 

after injection of TyrONB-tRNA and the mRNA for the muscle nAChR containing an 

amber suppression codon at either α1Tyr93 or α1Tyr198.  A solution of 250 µM ACh 

was used to test for channel expression and function.  Little to no current was seen prior 

to photolysis (figure 8.15).  After photolyzing the oocytes suppressed at either site for as 

short as 10 seconds on the 288 W Hg lamp described above, an increase in whole-cell 

current was seen.  The same result was observed with 5 seconds of irradiation from the 

500 W Hg lamp on the electrophysiology rig.  Thus, the o-nitrobenzyl deprotection was 

efficient with brief exposure to UV light by both UV light sources. 
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Figure 8.15.  Whole-cell currents from the suppression of the nAChR at α1Tyr93 with TyrONB after 

photolysis.  The first trace shows the lack of current prior to photolysis.  The second trace shows the 

increase in current after 1 minute of photolysis on the 288 Hg arc lamp.  The third trace shows the increase 

in current after 5 seconds of photolysis on the 500 W Hg lamp connected to the electrophysiology rig.  250 

µM ACh was applied to the oocytes during the time noted by the black bar above the traces. 

 

Attempts to Observe Photolysis-Induced Proteolysis In Vivo 

8.1 had previously been incorporated by Zacharias into ShB at Leu47 in the “chain” 

region of the channel, a site at which England incorporated Npg (figure 8.2).4,31  

Zacharias found that 8.1 suppressed well and that one minute of photolysis resulted in a 

33 ± 5% reduction in N-terminal inactivation.  This result was extremely promising—one 

minute was a vast improvement over the 4 hours necessary to remove two of the four N-

terminal inactivation domains of ShB with Npg (a 27% reduction in inactivation).4   

Unfortunately, this same encouraging result was not seen when the photolysis 

experiments were repeated in these studies, although suppression of the UAG amber 

nonsense codon with both 8.1 and 8.2 at Leu47 and at Pro64 in ShB was successful.  The 

- - 
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read through and reaminoacylation negative controls were always run in conjunction with 

each experiment to ensure that the current seen in the experiment was at least ten times 

greater than that seen for mRNA only (a test for read through) and of mRNA and 

unaminoacylated tRNA (THG73 ligated with dCA, a test for reaminoacylation).  

Reaminoacylation often led to substantial current with both Leu47UAG and Pro64UAG.  

Suppression of the GGGU four-base codon with both 8.1 and 8.2 at Pro64 was also 

successful.  The four-base codon suppression method was anticipated to limit the amount 

of protein made from reaminoacylated tRNA since the YFaFS tRNA has been shown to 

be more orthogonal to the Xenopus oocyte translation system than THG73.54  In each of 

the successful suppression experiments, irradiation of Xenopus oocytes containing ShB in 

which either 8.1 or 8.2 had been incorporated did not cause a reduction of N-terminal 

inactivation.  Both of the UV light sources tested above with TyrONB were tried, as well 

as the 1000 W Hg/Xe arc lamp used in the small-scale depsipeptides studies.  Oxidation 

was not expected to be a problem due to the naturally reducing environment of the cell, 

but no amount of optimization encouraged 8.1 or 8.2 to cleave the protein backbone at 

these sites in ShB.   
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Figure 8.16.  Whole-cell currents from the suppression of ShB Pro64GGGU with 8.1, 8.2, and dCA 

(negative control).  No decrease in N-terminal inactivation was seen after one minute of photolysis on the 

500 W Hg arc lamp connected to the electrophysiology rig for channels containing 8.1 or 8.2.  The 

membrane voltages of the representative voltage jumps are shown at the bottom of the figure. 

 

Hydrophobic protein environments have been known to increase pKa values.55 If this 

effect were occurring here, it would decrease the likelihood that the selenide was anionic.  

To encourage the formation of a selenide anion, the extracellular site used by England in 

- 

- 
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the Npg studies was targeted4 since the pH of the extracellular environment could be 

controlled. Whole-cell recordings were made on the OpusXpress workstation by applying 

a high concentration of ACh (1000 µM = 20x wild-type EC50) to each oocyte to test for 

channel expression.  Suppression of α1Val132UAG by either 8.1 or 8.2 was difficult.  

Triple injections were necessary to get 200 nA of current, although the reaminoacylation 

negative control (injection of dCA-tRNA) produced 100 nA of current under the same 

conditions. Oocytes were then irradiated in pH 9.0 ND96 buffer with CHES replacing the 

HEPES,56 and then channel expression and function were tested again.  Since ACh is not 

stable at high pH, all whole-cell recordings were run in pH 7.5 ND96 buffer (with 

HEPES) to ensure any observed decreases in current would be from successful 

proteolysis.  As described by England et al., photolysis of channels with Npg at this site 

resulted in a dramatic decrease in current.4  The suppression of neither 8.1 nor 8.2 caused 

a decrease in whole-cell current after irradiation.  Though the negative control showed a 

substantial amount of current, suggesting that there could be a mixed population of 

channels—some expressing the desired α-hydroxy acid and some expressing a natural 

amino acid, proteolysis was still expected to show some decrease in current.  None was 

seen.  Thus, the high pH environment did not foster backbone cleavage upon irradiation. 
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Figure 8.17.  Whole-cell currents from the suppression of nAChR at α1Val132 with 8.1, 8.2, and dCA 

(negative control).  No decrease in current was seen after one minute of photolysis on the 500 W Hg arc 

lamp connected to the electrophysiology rig for channels containing 8.1 or 8.2, though there was a 

substantial amount of reaminoacylation current. 

 

No further in vivo experiments were attempted.  Thus, neither 8.1 nor 8.2 were successful 

at SNIPP in a full protein in these studies even though proteolysis was seen in the 

depsipeptide model system.  Despite the speed of deprotection of 8.1 and 8.2, Npg 

remains the superior SNIPP-capable compound due to its in vivo success, even with the 

extended photolysis times needed. 

 

Conclusion 

In this study a novel approach to photochemically-induced backbone cleavage of peptides 

and proteins was described.  The two unnatural α-hydroxy acids presented here were 

- 
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proven to cleave the protein backbone by the anticipated mechanism through the isolation 

of the cleavage fragment from model studies using depsipeptides.  Unfortunately, though 

photochemical decaging of both selenides was complete in approximately 10 minutes in 

the model studies as monitored by ESI-MS, proteolysis of a full protein in either an in 

vitro system or an in vivo system was never seen. 

The model studies provided important information about the selenide compounds.  The 

initial model studies showed the sensitivity of the alkyl selenide 8.1 to oxidative 

elimination and diselenide formation.  Since this sensitivity was minimized in a reducing 

environment, as seen from the addition of DTT or TCEP, it was not expected to play 

much of a roll in vivo due to the reducing environment of the cell.  Selenomethionine 

would form dehydroalanine if oxidative elimination were rampant in the cell.  However, 

minimizing the possibility of forming these unwanted byproducts was anticipated to 

strengthen the success of the cleavage reaction, something that was gained through the 

aryl selenide 8.2.  The initial depsipeptide studies also showed that the alkyl selenide α-

hydroxy acid 8.1 was not efficient at cleaving the peptide backbone on its own and that 

the aryl selenide α-hydroxy acid 8.2 could only cleave the peptide backbone without an 

outside driving force under extremely optimized conditions.  The surrounding pH was 

very important, and the addition of heat drastically improved the efficiency of the 

reactions.  These two elements did not translate to encourage successful proteolysis in the 

in vitro or the in vivo experiments though.  Further attempts could be made to incorporate 

8.1 or 8.2 into a more exposed extracellular site than nAChR α1Val132. 

Ideally, SNIPP would be instantaneous upon irradiation—there would be no lag time 

between the time of photolysis and the time of proteolysis, and proteolysis would occur 
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in all of the desired proteins.  Unfortunately, neither 8.1 nor 8.2 met the requirements for 

the speed and efficiency of the ideal SNIPP.  Npg still allows for in vivo SNIPP, even if 

irradiation times are prolonged.  Other potential solutions include further enhancing the 

propensity for the ring-closing reaction of 8.2 by incorporating the trimethyl lock 

elements that made the o-nitrobenzyl caged phenol successful.13  Though successful 

suppression by in vitro transcription reaction with wheat germ lysate of 8.2 was not 

observed by Western blot, this bulky α-hydroxy acid was successfully incorporated into 

channels in the Xenopus oocyte.  Therefore, the rabbit reticulocyte lysate might be a 

better translation system to test the suppression of any trimethyl lock derivatives that may 

be developed in the future. 

 

Methods  

The work in this chapter was a collaborative effort that included important contributions 

from Zacharias and Blum.  Detailed methods for the experiments discussed in this 

chapter that were not performed by the author can be found in Zacharias’s thesis31 and in 

Eastwood et al.57 

 

Synthesis 

All reactions were performed at ambient temperature unless otherwise noted.  All 

reactions involving potentially air-sensitive compounds were conducted under an inert 

atmosphere using Schlenk techniques.  Solvents were purified by passage through 
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alumina.58  Unless otherwise noted, all chemicals and reagents were used as received 

without further purification.  Flash chromatography was performed using EMD 

(Gibbstown, NJ) silica gel 60 (particle size 0.040-0.063 mm).  TLC was performed using 

EMD (Gibbstown, NJ) silica gel 60 F254 precoated plates (0.25 mm) and visualized by 

UV light, potassium permanganate, or ceric ammonium molybdate.  NMR spectroscopy 

was preformed on either a Varian (Palo Alto, CA) Mercury 300 or Inova 500 instrument, 

and NMR resonances are reported relative to Me4Si (δ 0.0), CD3OD (δ 3.31 for 1H NMR 

and δ 49.1 for 13C NMR), or D2O (δ 4.79 for 1H NMR).  Data for 1H NMR spectra are 

reported as follows: chemical shift (δ ppm), integration, multiplicity, and coupling 

constant (Hz).  Data for 13C NMR spectra are reported as chemical shift (δ ppm).  High-

resolution mass spectroscopy (HRMS) spectra were obtained from the Caltech Mass 

Spectrometry Lab.  ESI-MS used to analyze the proteolysis reactions was preformed on 

an LCQ Classic ion trap (ThermoFinnigan, Waltham, MA) in direct infusion mode.  

HPLC was preformed using Waters (Milford, MA) equipment and software (510 HPLC 

pumps and 996 Photodiode Array Detector) and reverse-phase Nova-Pak 18C columns 

(3.9 × 150 mm analytical column, 7.8 × 300 mm preparatory column). 

 

tert-Butyl ester 8.3:  (S)-(−)-Tetrahydro-2-furoic acid (2.42 mL, 25.0 mmol, 1 eq) was 

placed in a round-bottom flask under Ar (g) and dissolved in THF (250 mL).  To this 

solution was added 4-(dimethylamino)-pyridine (0.919 g, 7.5 mmol, 0.3 eq) and di-tert-
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butyl dicarbonate (11.5 mL, 50.0 mmol, 2 eq), at which time the solution turned yellow.  

The reaction was allowed to stir for 4 hours, and then the solvent was removed under 

vacuum.  The crude product was purified by flash column chromatography (9% EtOAc in 

hexanes) to afford tert-butyl ester 8.3 (4.15 g, 24.1 mmol, 96% yield).  Rf = 0.33 (9% 

EtOAc in hexanes); 1H NMR (300 MHz, CDCl3, 298 K) δ 4.4 (1H, m), 4.0 (2H, m), 2.2 

(1H, m), 2.0 (3H, m), 1.5 (9H, s). 

Conversion back to (S)-(−)-tetrahydro-2-furoic acid:  tert-Butyl ester 8.3 (0.045 g, 0.26 

mmol, 1 eq) was placed in a round-bottom flask under Ar (g) and dissolved in CH2Cl2 (5 

mL).  This solution was cooled to 0 °C and charged with the dropwise addition of 

triethylamine (0.010 mL, 0.075 mmol, 0.29 eq).  Dimethylboron bromide (2.0 M in 

CH2Cl2, 0.50 mL, 1.0 mmol, 3.8 eq) was added via cannula to the solution.  The reaction 

was allowed to stir at 0 °C for 2 hours.  To quench, the reaction mixture was poured over 

saturated NaHCO3 (aq) and stirred for 20 minutes.  An extraction with ether was 

attempted, but the product remained in the aqueous layer.  The pH of the aqueous layer 

was lowered to 3 with concentrated HCl and then extracted with EtOAc (2×), dried over 

Na2SO4 (s), and concentrated to afford the original acid (0.022 g, 0.19 mmol, 73% yield).  

1H NMR (300 MHz, CDCl3, 298 K) δ 4.4 (1H, q), 3.9 (2H, dq), 2.2 (1H, m), 2.0 (3H, m). 
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8.4  

Ethyl ester 8.4:  (S)-(−)-Tetrahydro-2-furoic acid (25.0 g, 215 mmol) was placed in a 

round-bottom flask under Ar (g) and dissolved in ethanol (63 mL) and toluene (72 mL).  

To this solution was added concentrated H2SO4 (1.2 mL), and the reaction was allowed to 

reflux for 6 hours at 80 °C.  The reaction was then cooled to room temperature, quenched 

with concentrated H2SO4 (2 mL), diluted with toluene, and washed with saturated 

(NH4)2SO4 (aq), and then H2O.  The aqueous layers were back extracted with toluene 

(2×).  The combined organic layers were washed with saturated (NH4)2SO4 (aq) and then 

saturated NaHCO3 (aq), dried over Na2SO4 (s), and concentrated.  The crude product was 

purified by flash chromatography (33% EtOAc in hexanes) to yield ethyl ester 8.3 as a 

yellow oil (18.3 g, 127 mmol, 61% yield).  Rf = 0.35 (33% EtOAc in hexanes).  1H NMR 

(300 MHz, CDCl3, 298 K) δ 4.43 (1H, dd, J = 8.1, 5.1 Hz), 4.19 (2H, qd, J = 7.2, 0.9 Hz), 

4.01 (1H, m), 3.91 (1H, m), 2.23 (1H, m), 1.95 (3H, m), 1.27 (3H, t, J = 7.2 Hz); 13C 

NMR (75 MHz, CDCl3, 298 K) δ 173.3, 76.7, 69.2, 60.7, 30.1, 25.2, 14.2; HRMS-EI 

(m/z): [M+] calc’d for C7H13O3 145.0865, found 145.0877. 
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Bromoalcohol 8.5:  Ethyl ester 8.4 (18.3 g, 127 mmol, 1 eq) was placed in a round-

bottom flask under Ar (g) and dissolved in CH2Cl2 (450 mL).  This solution was cooled 

to 0 °C and charged with the dropwise addition of triethylamine (2.54 mL, 19.1 mmol, 

0.15 eq).  Dimethylboron bromide (1.56 M in CH2Cl2, 163 mL, 254 mmol, 2 eq) was 

added via cannula to the solution.  The reaction was allowed to stir at 0 °C for 2 hours.  

To quench, the reaction mixture was poured over saturated NaHCO3 (aq) and stirred for 5 

minutes.  It was then extracted with ether, washed with brine (2×), dried over Na2SO4 (s), 

and concentrated.  The crude product was purified by flash column chromatography 

(20% EtOAc in hexanes) to afford bromoalcohol 8.5 as an orange oil (20.4 g, 90.6 mmol, 

71% yield).  Rf = 0.31 (33% EtOAc in hexanes); 1H NMR (300 MHz, CDCl3, 298 K) δ 

4.26 (2H, dq, J = 7.2, 0.9 Hz), 4.20 (1H, m), 3.45 (2H, m), 2.81 (1H, d, J = 5.4 Hz), 2.00 

(3H, m), 1.79 (1H, m), 1.31 (3H, t, J = 7.2 Hz); 13C NMR (75 MHz, CDCl3, 298 K) δ 

174.9, 69.7, 62.0, 33.3, 32.8, 28.2, 14.2; HRMS (EI) m/z calc’d for C7H14BrO3 [M+]:  

225.0126, found 225.0137. 
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Diselenide ester 8.6:  Elemental selenium (3.58 g, 45.3 mmol, 0.5 eq) and sodium 

borohydride (3.43 g, 90.6 mmol, 1 eq) were placed in a round-bottom flask and dissolved 

in H2O (265 mL).  After stirring for 20 minutes, more elemental selenium (3.58 g, 45.3 

mmol, 0.5 eq) was added.  The mixture was then stirred over a steam bath for 15 minutes, 

at which time it turned dark brown suggesting the formation of Na2Se2.  Bromoalcohol 

8.5 (20.4 g, 90.6 mmol, 1 eq) was dissolved in a 1:1 mixture of THF:H2O (106 mL) and 

added to the reaction.  After stirring overnight, the reaction was quenched with 1 N 

AcOH (106 mL) and H2O (264 mL), extracted with CH2Cl2 (4×), dried over MgSO4 (s), 

filtered through a pad of celite, and concentrated.  The crude product was purified by 

flash column chromatography (50% EtOAc in hexanes, dry loaded in CH2Cl2) to afford 

diselenide ester 8.6 as a yellow oil (19.7 g, 43.9 mmol, 97% yield).  Rf = 0.17 (33% 

EtOAc in hexanes); 1H NMR (300 MHz, CDCl3, 298 K) δ 4.26 (4H, q, J = 7.2 Hz), 4.20 

(2H, m), 2.91 (4H, m), 1.84 (8H, m), 1.31 (6H, t, J = 7.2 Hz); 13C NMR (75 MHz, 

CDCl3, 298 K) δ 175.1, 70.0, 61.8, 34.0, 29.3, 26.3, 14.2; HRMS (FAB) m/z calc’d for 

C14H26O6Se2 [M+]:  450.0059, found 450.0080. 
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Diselenide acid 8.7:  Diselenide ester 8.6 (18.6 g, 41.5 mmol) was placed in a round-

bottom flask and dissolved in 6 M HCl (240 mL).  The reaction was allowed to stir at 75 

°C for 12 hours.  The solvent was concentrated yielding diselenide acid 8.7 as a yellow 

solid (15.6 g, 39.8 mmol, 96% yield).  Rf = 0.06 (1% formic acid in EtOAc); 1H NMR 

(300 MHz, CDCl3, 298 K) δ 4.04 (2H, dd, J = 7.1, 3.6 Hz), 2.96 (4H, t, J = 6.9 Hz), 1.85 

(8H, m); 13C NMR (75 MHz, CD3OD, 298 K) δ 177.9, 71.1, 35.2, 30.4, 27.9; HRMS 

(TOF) m/z calc’d for C10H18O6Se2 [M−H]:  392.9356, found 392.9360. 

HO
OH

O

8.1

Se

O2N

 

Alkyl selenide α-hydroxy acid 8.1:  Diselenide acid 8.7 (12.5 g, 31.7 mmol, 1 eq) was 

placed in a round-bottom flask and dissolved in 0.5 N NaOH (169 mL) and ethanol (42.5 

mL) at 0 °C.  Slowly NaBH4 (12.0 g, 317 mmol, 10 eq) was added.  The dark orange 
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solution turned white as it was allowed to come to room temperature.  The temperature of 

the reaction was lowered back to 0 °C and then 2 N NaOH (84.3 mL) and o-

nitrobenzylbromide (27.4 g, 127 mmol, 4 eq) were added.  The reaction was allowed to 

stir for 3 hours as it warmed to room temperature.  The mixture was washed with EtOAc 

(3×), and then the pH of the aqueous layer was lowered to 4.  The product was removed 

from the now cloudy aqueous layer by extraction with EtOAc (3×).  The organic solution 

was filtered through a pad of celite and concentrated to afford alkyl selenide α-hydroxy 

acid 8.1 as an orange oil (17.9 g, 53.9 mmol, 85%).  Rf = 0.11 (1% formic acid and 49.5% 

EtOAc in hexanes); 1H NMR (500 MHz, CDCl3, 298 K) δ 7.99 (1H, d, J = 8.0 Hz), 7.53 

(1H, td, J = 7.5, 1.5 Hz), 7.38 (2H, t, J = 8.0 Hz), 4.25 (1H, m), 4.10 (2H, s), 2.59 (2H, 

m), 1.92 (1H, m), 1.78 (3H, m); 13C NMR (125 MHz, CDCl3, 298 K) δ 178.6, 148.1, 

135.9, 133.2, 131.9, 127.9, 125.6, 76.5, 69.7, 34.1, 25.5, 24.2, 23.8; HRMS (TOF) m/z 

calc’d for C12H15NO5Se [M−H]:  332.0037, found 332.0050. 

HO
O

H
N

O

O

OO

Se

O2N

8.8  

Alkyl selenide-glutamate dipeptide 8.8:  Method A: Alkyl selenide α-hydroxy acid 8.1 

(0.787 g, 2.40 mmol, 1 eq), L-glutamic acid di-tert-butyl ester (0.775 g, 0.262 mmol, 1.1 
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eq), 1,3-dicyclohexylcarbodiimide (0.480 g, 2.33 mmol, 0.97 eq), and 1-

hydroxybenzotriazole (0.324 g, 2.40 mmol, 1 eq) were placed in a round-bottom flask 

under Ar (g) and dissolved in CH2Cl2 (20 mL).  After stirring for 24 hours, the reaction 

was diluted with EtOAc.  The solution was then washed with 1N HCl, H2O, saturated 

NaHCO3 (aq), H2O, and brine, filtered through a pad of celite, dried over MgSO4 (s), and 

concentrated.  The crude product was purified by flash column chromatography (33% 

EtOAc in hexanes, dry loaded in CH2Cl2) to afford the dipeptide 8.8 as a pale yellow oil 

(0.373 g, 0.650 mmol, 33% yield). 

Method B:  Alkyl selenide α-hydroxy acid 8.1 (0.076 g, 0.23 mmol, 1 eq), L-glutamic 

acid di-tert-butyl ester (0.076 g, 0.26 mmol, 1.1 eq), 1,3-dicyclohexylcarbodiimide (0.083 

g, 0.40 mmol, 2 eq), and 4-(dimethylamino)pyridine (0.013 g, 0.10 mmol, 0.5 eq) were 

placed in a round-bottom flask under Ar (g) and dissolved in CH2Cl2 (2 mL).  After 

stirring for 24 hours, the reaction was diluted with EtOAc and gravity filtered to remove 

the solid dicyclohexylurea byproduct.  The eluate was washed with saturated NaHCO3 

(aq) and brine, filtered through a pad of celite, dried over Na2SO4 (s), and concentrated.  

The crude product was purified by flash column chromatography (33% EtOAc in 

hexanes, dry loaded in CH2Cl2) to afford the dipeptide 8.8 as a pale yellow oil (0.045 g, 

0.070 mmol, 34% yield).   

Method C:  Alkyl selenide α-hydroxy acid 8.1 (0.998 g, 3.00 mmol, 1.1 eq), L-glutamic 

acid di-tert-butyl ester (0.808 g, 2.73 mmol, 1 eq), and benzotriazol-1-yl-

oxytripyrrolidinophosphonium hexaflurophosphate (1.56 g, 3.00 mmol, 1.1 eq) were 

placed in a round-bottom flask under Ar (g) and dissolved in DMF (10 mL).  To this was 

added N-methylmorpholine (0.99 mL, 9.01 mmol, 3.3 eq), and the reaction stirred for 12 
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hours.  The reaction was then diluted with EtOAc, and the solution was washed with 5% 

KHSO4 (2×), 5% NaHCO3 (2×), and brine, filtered through a pad of celite, dried over 

Na2SO4 (s), and concentrated.  The crude product was purified by flash column 

chromatography (50% EtOAc in hexanes, dry loaded in CH2Cl2) to afford the dipeptide 

12 as a pale yellow oil (0.698 g, 1.22 mmol, 41% yield).  Rf = 0.25 (50% EtOAc in 

hexanes); 1H NMR (500 MHz, CDCl3, 298 K) δ 7.98 (1H, d, J = 7.5 Hz), 7.53 (1H, td, J 

= 7.3, 1.0 Hz), 7.38 (2H, t, J = 7.5 Hz), 7.22 (1H, d, J = 8.0 Hz), 4.47 (1H, dt, J = 8.5, 5.5 

Hz), 4.13 (1H, m), 4.09 (1H, s), 2.56 (2H, t, J = 6.5 Hz), 2.30 (2H, m), 2.15 (1H, m), 1.92 

(1.5H, m), 1.79 (1H, m), 1.71 (0.5H, m), 1.47 (9H, s), 1.44 (9H, s); 13C NMR (125 MHz, 

CDCl3, 298K) δ 174.0, 172.1, 171.1, 161.0, 148.1, 136.0, 133.1, 131.9, 127.8, 125.6, 

82.5, 80.9, 71.3, 52.0, 34.8, 31.5, 28.1, 28.0, 27.5, 25.7, 24.2, 23.7; HRMS (FAB) m/z 

calc’d for C25H38N2O8Se [M+H]:  575.1871, found 575.1862. 
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8.9  

N-Acetyl-phenylalanine-alkyl selenide-glutamate depsipeptide 8.9:  Dipeptide 8.8 (0.373 

g, 0.650 mmol, 1 eq), N-acetyl-L-phenylalanine (0.135 g, 0.650 mmol, 1 eq), 4-

(dimethylamino)pyridine (0.0794 g, 0.650 mmol, 1 eq), and N,N’-
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dicyclohexylcarbodiimide (0.136 g, 0.660 mmol, 1 eq) were placed in a round-bottom 

flask under Ar (g) and dissolved in CH2Cl2 (120 mL).  After stirring for 24 hours, the 

reaction mixture was diluted with EtOAc and gravity filtered to remove the solid 

dicyclohexylurea by-product.  The solution was washed with 1 M KHSO4 (2×), water, 

and 5% NaHCO3.  The organic layer was filtered through a pad of celite, dried over 

MgSO4 (s), and concentrated.  The crude product was purified by flash column 

chromatography (33% EtOAc in hexanes, dry loaded in CH2Cl2) to afford depsipeptide 

8.9 as a pale yellow oil (0.330 g, 0.433 mmol, 67% yield).  Rf = 0.26 (50% EtOAc in 

hexanes); 1H NMR (300 MHz, CDCl3, 298 K) δ 8.03 (1H, dd, J = 7.95, 1.2 Hz), 7.57 

(1H, td, J = 7.35, 1.2 Hz), 7.30 (7H, m), 5.13 (1H, t, J = 6.3 Hz), 4.77 (1H, q, J = 7.2 Hz), 

4.38 (1H, m), 4.10 (2H, s), 3.16 (2H, t, J = 6.9 Hz), 2.47 (2H, t, J = 7.2 Hz), 2.36-1.8 

(8H, m), 2.02 (3H, s), 1.48 (9H, s), 1.48 (9H, s); ESI-MS m/z calc’d for C36H49N3O10Se 

[M+Cl]:  798.8, found 798.2.  



 
311 

O
O

H
N

O

O

OO

H
NO

O

O

Se

O2N

8.10

NH

 

Tryptophan-alkyl selenide-glutamate depsipeptide 8.10:  Dipeptide 8.8 (5.51 g, 9.60 

mmol, 1 eq), N-(tert-butoxycarbonyl)-L-tryptophan (3.32 g, 10.9 mmol, 1.1 eq), 4-

(dimethylamino)pyridine (0.586 g, 4.80 mmol, 0.5 eq), and N,N’-

dicyclohexylcarbodiimide (3.98 g, 19.3 mmol, 2 eq) were placed in a round-bottom flask 

under Ar (g) and dissolved in CH2Cl2 (84 mL).  After stirring for 48 hours, the reaction 

mixture was diluted with EtOAc and gravity filtered to remove the solid dicyclohexylurea 

by-product. The solution was washed with 1 M KHSO4 (2×), water, and 5% NaHCO3 

(2×).  The organic layer was filtered through a pad of celite, dried over MgSO4 (s), and 

concentrated.  The crude product was purified by flash column chromatography (20% 

EtOAc in hexanes, dry loaded in CH2Cl2) to afford depsipeptide 8.10 as a pale yellow oil 

(0.989 g, 1.15 mmol, 12% yield).  1H NMR (300 MHz, CDCl3, 298 K) δ 8.1 (1H, d), 7.6 -

6.9 (8H, m), 6.6 (1H, s), 5.1 (1H, m), 4.4 (1H, m), 4.1 (1H, m), 4.0 (2H, s), 3.3 (1H, m), 

2.6-1.6 (10H, m), 1.4 (9H, s), 1.4 (9H, s), 1.4 (9H, s); ESI-MS m/z calc’d for 

C41H56N4O11Se [M+K]:  899.4, found 898.9.  
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8.11  

tBoc-Phenylalanine-alkyl selenide-glutamate depsipeptide 8.11:  Dipeptide 8.8 (0.160 g, 

0.280 mmol, 1 eq), N-(tert-butoxycarbonyl)-L-phenylalanine (0.0891 g, 0.340 mmol, 1.2 

eq), 4-(dimethylamino)pyridine (0.0171 g, 0.140 mmol, 0.5 eq), and N,N’-

dicyclohexylcarbodiimide (0.1156g, 0.560 mmol, 2 eq) were placed in a round-bottom 

flask under Ar (g) and dissolved in CH2Cl2 (3 mL).  After stirring for 45 hours, the 

reaction mixture was diluted with EtOAc and gravity filtered to removed the solid 

dicyclohexylurea byproduct. The solution was washed with 1 M KHSO4 (2×), H2O, and 

5% NaHCO3 (2×).  The organic layer was filtered through a pad of celite, dried over 

MgSO4 (s), and concentrated.  The crude product was purified by flash column 

chromatography (50% EtOAc in hexanes, dry loaded in CH2Cl2) to afford depsipeptide 

8.11 as a pale yellow oil (0.144 g, 0.176 mmol, 63% yield).  Rf = 0.53 (50% EtOAc in 

hexanes); 1H NMR (500 MHz, CDCl3, 298 K) δ 7.99 (1H, dd, J = 8.25, 1.0 Hz), 7.53 

(1H, td, J = 7.5, 1.5 Hz), 7.37 (2H, m), 7.28 (3H, m), 7.19 (3H, m), 5.16 (1H, m), 4.99 

(1H, d, J = 7.5 Hz), 4.59 (1H, q, J = 5.0 Hz), 4.41 (1H, dt, J = 8.0, 5.0 Hz), 4.07 (1H, s), 

3.24 (1H, dd, J = 14.3, 5.0 Hz), 3.12 (1H, m), 2.49 (2H, dt, J = 7.5, 2.5 Hz), 2.31 (2H, m), 
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2.14 (1H, m), 1.92 (3H, m), 1.65 (2H, m), 1.45 (9H, s), 1.44 (9H, s), 1.40 (9H, s); 13C 

NMR (125 MHz, CDCl3, 298 K) δ 172.1, 170.8, 170.3, 169.3, 155.8, 148.1, 135.9, 135.8, 

133.1, 131.9, 129.2, 128.8, 127.8, 127.2, 125.6, 81.1, 80.7, 80.3, 74.2, 54.5, 52.3, 37.2, 

32.0, 31.6, 28.3, 28.1, 28.0, 27.1, 25.5, 23.7; HRMS (FAB) m/z calc’d for C39H55N3O11Se 

[M+H]:  822.3080, found 822.3046.  
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8.12  

Deprotected N-Acetyl-phenylalanine-alkyl selenide-glutamate depsipeptide 8.12:  

Depsipeptide 8.9 (0.076 g, 0.10 mmol) was placed in a round-bottom flask and was 

dissolved in trifluoroacetic acid (2 mL) and CH2Cl2 (2 mL).  The reaction was allowed to 

stir for 45 minutes and then it was concentrated under vacuum.  The crude product was 

purified by reverse-phase semipreparative HPLC using a linear solvent gradient from 5% 

acetonitrile in 25 mM NH4OAc buffer pH 4.5 to 100% acetonitrile to afford depsipeptide 

8.12.  1H NMR (300 MHz, D2O, 298 K) δ 7.92 (1H, d, J = 8.1 Hz), 7.51 (1H, t, J = 6.6 

Hz), 7.34 (2H, t, J = 6.6 Hz), 7.19 (5H, m), 4.88 (1H, q, J = 6.0 Hz), 4.6 (1H, m), 3.99 

(3H, m), 2.9 (2H, m), 2.47 (2H, m), 2.05 (2H, m), 2.0-1.0 (6H, m); ESI-MS m/z calc’d for 

C28H33N3O10Se [M−H]:  650.1, found 650.0. 
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Deprotected tryptophan-alkyl selenide-glutamate depsipeptide 8.13:  Depsipeptide 8.10 

(0.086 g, 0.10 mmol) was placed in a round-bottom flask and was dissolved in 

trifluoroacetic acid (2 mL) and CH2Cl2 (2 mL).  The reaction was allowed to stir for 45 

minutes and then it was concentrated under vacuum.  The crude product was purified by 

reverse-phase semipreparative HPLC using a linear solvent gradient from 5% acetonitrile 

in 25 mM NH4OAc buffer pH 4.5 to 100% acetonitrile to afford depsipeptide 8.13.  ESI-

MS m/z calc’d for C28H32N4O9Se [M−H]:  647.1, found 647.1. 

HO
O

OH

Br

8.14  

Bromophenylalanine α-hydroxy acid 8.14:  o-Bromophenylalanine (1.0 g, 4.0 mmol, 1 

eq) was placed in a round bottom flask and dissolved in 8:2 H2O:acetic acid (40 mL).  

This solution was cooled to 0 ºC and charged with the dropwise addition of sodium 
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nitrate (2 M in H2O, 8.0 mL, 16 mmol, 4 eq).  The reaction was stirred for 3 hours and 

then quenched with methylamine (2M in THF, 4 mL).  The THF was removed under 

vacuum, and the pH of the resulting aqueous solution was lowered to 2 with concentrated 

HCl.  This solution was extracted with EtOAc (3×), dried over MgSO4 (s), and 

concentrated to afford bromophenylalanine α-hydroxy acid 8.14 (0.980 g, 4.0 mmol, 

100% yield). Rf = 0.47 (50% EtOAc in hexanes); 1H NMR (300 MHz, CDCl3, 298 K) 

δ 7.6 (1H, d), 7.3 (2H, m), 7.2 (1H, m), 4.6 (1H, m), 3.5 (1H, m), 3.1 (1H, m); 13C NMR 

(75 MHz, CDCl3, 298 K) δ 178, 136, 133, 132, 129, 128, 125 70, 40; ESI-MS m/z calc’d 

for C9H9BrO3 [M−H]:  243.0, found 242.9. 

HO
N

O

Br

8.15  

Oxazoline 8.15:  Bromophenylalanine α-hydroxy acid 8.14 (1.10 g, 4.00 mmol, 1 eq) was 

placed in a round-bottom flask under Ar (g) and dissolved in 2-amino-2-methyl-1-

propanol (0.380 mL, 4.00 mmol, 1 eq) and xylene (5 mL).  The reaction was connected to 

a Dean-Stark trap and allowed to reflux for 4 hours at 160 ºC.  The crude product was 

vacuum distilled on a kugelrohr (Büchi GKR-50, set to 200 ºC) to yield oxazoline 8.15 as 

a yellow oil (0.149 g, 0.500 mmol, 100% yield). Rf = 0.65 (11% EtOAc in hexanes); 1H 

NMR (300 MHz, CDCl3, 298 K) δ 7.6 (1H, dd), 7.4 (1H, dd), 7.3 (1H, td), 7.2 (1H, td), 

4.6 (1H, m), 4.0 (2H, m), 3.3 (1H, m), 3.1 (1H, m), 1.2 (3H, s), 1.2 (3H, s); ESI-MS m/z 

calc’d for C13H16BrNO2 [M+H]:  298.0, found 297.8. 
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TBDPS ether 8.16:  Oxazoline 8.15 (2.54 g, 8.50 mmol, 1 eq), imidazole (1.27 g, 18.7 

mmol, 2.2 eq), and tert-butylchlorodiphenylsilane (2.43 mL, 9.35 mmol, 1.1 eq) were 

placed in a round-bottom flask under Ar (g) and dissolved in DMF (5 mL).  The reaction 

was allowed to stir for 24 hours, and then the solvent was removed under vacuum.  The 

crude product was purified by flash column chromatography (9% EtOAc in hexanes, then 

flushed with CH2Cl2) to yield TBDPS ether 8.16 as a yellow oil (3.28 g, 6.10 mmol, 72% 

yield).  Rf = 0.83 (50% EtOAc in hexanes); 1H NMR (300 MHz, CDCl3, 298 K) δ 7.8-7.1 

(14H, m), 4.3 (1H, m), 4.0-3.0 (4H, m), 1.1 (6H, s) 1.1 (9H, s); ESI-MS m/z calc’d for 

C29H34BrNO2Si [M+H]:  536.2, found 535.9. 

O

H
N

O

O

OO

8.18

Se

 

Selenacyclopentane 8.18:  Depsipeptide 8.11 (0.0722g, 0.088 mmol, 1 eq) was placed in 

a pyrex photochemical reaction vessel and dissolved in acetonitrile (125 mL).  To this 

was added dithiothreitol (1.36 g, 8.8 mmol, 100 eq) and 20 mM phosphate buffer, pH 7.6 

(125 mL).  The resulting solution was stirred under N2 (g), and a 450 W medium-pressure 
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Hg-vapor UV immersion lamp (ACE Glass), filtered with a pyrex glass absorption sleeve 

and equipped with a water cooling jacket, was assembled to the reaction vessel.  The 

progress of the reaction was followed by ESI-MS.  After 1 hour of photolysis, at which 

point the temperature of the reaction had increased from 25 to 32 ºC, the two major ratios 

seen in the mass spectrum of the reaction were the depsipeptide 8.11 ([M+Na] m/z = 844) 

and the nitrobenzyl-deprotected selenol ([M+Na] m/z = 709).  After 5 hours of photolysis, 

the m/z ratio attributed to 8.11 ([M+Na] m/z = 844) had diminished to a negligible level 

while the m/z ratios corresponding to the nitrobenzyl-deprotected selenol ([M+Na] m/z = 

709), the nitrobenzyl-deprotected diselenide ([M+Na] m/z = 1391), the olefin-containing 

depsipeptide derived from the oxidative elimination of the selenium ([M+Na] m/z = 627), 

and the desired selenacyclopentane 8.18 ([M+Na] m/z = 444) persisted.  At this time, the 

reaction was removed from the photoreactor, heated to 70 ºC, and monitored by ESI-MS.  

After 3 hours of heating at this temperature, both nitrobenzyl-deprotection products (m/z 

ratios 709 and 1391) were no longer detectable, but the m/z ratio attributed to the desired 

selenacyclopentane 8.18 ([M+Na] m/z = 444) and a m/z ratio corresponding to its dimer 

([M+Na] m/z = 865) remained.  The resulting mixture was extracted with EtOAc (2×), 

dried over MgSO4 (s), and concentrated. The crude product was purified twice by flash 

column chromatography (11% EtOAc in hexanes, then 33% EtOAc in hexanes after the 

DTT eluted, dry loaded in CH2Cl2) to afford selenacyclopentane 8.18 as a yellow oil 

(0.0107 g, 0.0255 mmol, 29% yield).  Rf = 0.28 (33% EtOAC in hexanes); 1H NMR (500 

MHz, CDCl3, 298 K) δ 7.08 (1H, d, J = 13.5 Hz), 4.44 (1H, dt, J = 13.5, 8 Hz), 4.08 (1H, 

m), 3.15 (1H, m), 2.97 (1H, m), 2.37 (1.5H, m), 2.26 (1.5H, m), 2.14 (4H, m), 1.92 (1H, 

m), 1.47 (9H, s), 1.44 (9H, s); 13C NMR (125 MHz, CDCl3, 298 K) 172.3, 172.1, 170.8, 
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82.3, 80.7, 52.845.4, 37.4, 32.4, 31.5, 28.1, 28.0, 27.5, 27.1. HRMS (TOF) m/z calc’d for 

C18H31NO5Se [M+H]:  422.1446, found 422.1465. 

HO
O

O

Se

O2N

8.20

N

 

Cyanomethyl ester 8.20:  Alkyl selenide α-hydroxy acid 8.1 (0.23 g, 0.69 mmol) was 

added to a round-bottom flask under Ar (g) and dissolved in chloroacetonitrile (2 mL).  

To this solution was added triethylamine (0.25 mL).  The mixture was stirred at room 

temperature for 75 minutes and then the solvent was removed under vacuum.  The 

residue was purified by flash column chromatography (CH2Cl2, then 5% EtOAc in 

CH2Cl2) to afford cyanomethyl ester 8.20 (0.073 g, 0.20 mmol, 29% yield).  Rf = 0.45 

(17% EtOAC in CH2Cl2); 1H NMR (300 MHz, CDCl3, 298 K) δ 7.98 (1H, d, J = 8.4 Hz), 

7.50 (1H, t, J = 7.5 Hz), 7.38 (2H, t, J = 7.5 Hz), 4.82 (2H, s), 4.28 (1H, m), 4.09 (2H, s), 

2.58 (2H, m), 2.00-1.50 (4H, m); 13C NMR (75 MHz, CDCl3, 298 K) δ 171.1, 133.1, 

131.9, 127.9, 125.5, 69.9, 49.0, 33.9, 29.7, 25.3, 23.8. 
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Alkyl selenide-dCA 8.21:  Cyanomethyl ester 8.20 (0.018 g, 0.048 mmol, 3 eq) was 

added to a round-bottom flask under Ar (g) and dissolved in DMF (0.5 mL).  This 

solution was transferred to another round-bottom flask under Ar (g), which contained 

dCA (0.020 g, 0.017 mmol, 1 eq) as a tetrabutylammonium salt (2.4 eq).  The reaction 

was stirred at room temperature for 18 hours while being monitored by reverse-phase 

analytical HPLC with a linear solvent gradient from 5% acetonitrile in 25 mM NH4OAc 

buffer pH 4.5 to 100% acetonitrile.  The crude product was purified using reverse-phase 

semipreparative HPLC with the same linear solvent gradient.  The fractions containing 

the alkyl selenide-dCA 8.21 were combined, and the solvent was removed by 

lyophilization.  The solid was redissolved in 10 mM acetic acid and reconcentrated via 

lyophilization (3×) to afford alkyl selenide-dCA 8.21 as a white powder (0.014 g, 0.015 

mmol, 88% yield).   ESI-MS m/z calc’d for C12H39N9O17P2Se [M−H]:  950.1, found:  

950.2. 
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Small-Scale Depsipeptide Model Reactions  

General method:  0.1 µM solution of depsipeptide in a 1:1 mixture of acetonitrile and 20 

mM phosphate buffer pH 7.6 (50 µL) was placed in PCR tube and was irradiated for ten 

minutes with a 1000 W Hg/Xe arc lamp (Oriel, Irvine, CT) operating at 400 W equipped 

with WG-335 and UG-11 filters (Schott, Elmsford, NY).  After photolysis, the reaction 

was heated to 70 °C for one hour using an iCycler PCR machine (Bio-Rad, Hercules, 

CA) and then the products were analyzed by ESI-MS. 

Many reaction variables were changed during the course of the work presented in this 

chapter.  These factors include the container used to hold the solution of depsipeptide 

during irradiation, the solvent used during photolysis, the concentration of the 

depsipeptide in solution, the volume of solution irradiated, the filters used for the arc 

lamp during photolysis, the addition of a reducing agent (including the point at which the 

reducing agent was applied to the reaction), the length of time of irradiation, the 

application of heat after irradiation (including the specific temperature, the length of time 

of application, and the method of heating), and the addition of high pH water after 

irradiation.  The variables that were found to be important are discussed in the results and 

discussion section. 

Oxidation:  0.1 µM solution of depsipeptide in acetonitrile (50 µL) was placed in a 1.5 

mL eppendorf tube, to which was added a solution of 30% H2O2 in H2O (100 µL).  After 

an hour the products of the reaction were analyzed by ESI-MS.  As a negative control, 

double-distilled H2O (100 µL) replaced the H2O2. 
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Addition of N-methyl maleimide: 0.1 µM solution of depsipeptide 8.9 or 8.10 in 

acetonitrile (50 µL, 1 eq) and DTT (50 eq) were placed in a 1.5 mL eppendorf tube and 

photolyzed as described above for 10 minutes.  ESI-MS was used to analyze the products 

of the irradiated solution.  Excess N-methyl maleimide was added to the reaction, and 

after several minutes the resulting solution was analyzed by ESI-MS.  The same 

procedure was repeated for depsipeptide 8.12 except it was dissolved in double-distilled 

H2O instead of acetonitrile. 

 

Nonsense Suppression In Vitro 

The site-directed mutagenesis of TAG mutants, gene construction, synthesis of 

suppressor tRNA, and ligation of aminoacyl-tRNA to tRNA have been described 

previously.59-62  Plasmid DNAs were linearized with Not1, and mRNA was transcribed 

using the Ambion (Austin, TX) T7 mMESSAGE mMACHINE kit. 

Method A:  Translation was carried out using rabbit reticulocyte lysate translation system 

(Promega, Madison, WI) according to the manufacturer’s protocol.  Lysate mix (140 µL), 

amino acid mix (6 µL), RNAse inhibitor (4 µL), H2O (18 µL), mRNA (16 µL, 1 µg/µL 

for suppression experiments and 0.3 µg/µL for wild-type experiments) or H2O (16 µL, 

for lysate-only negative control), and either tRNA (16 µL, 1 µg/µL) or H2O (16 µL, for 

mRNA-only negative control) were combined and incubated at 30 °C for 106 minutes.  

Portions of each in vitro translation reaction were purified on Ni2+-columns according to 

the protocol described in Rothman et al.53  The eluted purified protein (30 µL) was 
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diluted with buffer B (70 µL) from Rothman et al.53 to raise the pH and lower the 

concentration of the protein in solution.  This sample was irradiated on the 1000 W 

Hg/Xe arc lamp described above for 10 minutes.  Samples for sodium dodecyl sulfate 

(SDS)-PAGE were prepared by mixing the unpurified in vitro translation mix (5 µL) with 

2× SDS loading buffer (100 mM tris chloride at pH 6.8, 4% SDS, 0.2% bromophenol 

blue, 20% glycerol) (5 µL), the eluates from the column purification (10 µL) with 2× 

SDS loading buffer (10 µL), and the photolysis reactions (10 µL) with 2× SDS loading 

buffer (10 µL).  The samples were then kept at −80 °C until further use. 

Method B: Translation was carried out using wheat germ lysate translation system 

(Promega, Madison, WI) according to the manufacturer’s protocol.  Lysate mix (6.25 

µL), amino acid mix (1 µL), RNAse inhibitor (0.25 µL), 1M KOAc (1 µL), water (2.5 

µL), mRNA (0.5 µL, 1 µg/µL for suppression experiments and 0.3 µg/µL for wild-type 

experiments) or H2O (0.5 µL, for lysate-only negative control), and either tRNA (2 µL, 1 

µg/µL) or H2O (2 µL, for mRNA-only negative control) were combined and incubated at 

30 °C for 4 hours.  Portions of the in vitro translation reactions were subjected to base to 

test for ester hydrolysis following the protocol described in England et al.63  Portions of 

the in vitro reactions were irradiated to test for SNIPP.  For the photolysis, the in vitro 

translation reaction (2.5 µL) was irradiated for 10 minutes on the 1000 W Hg/Xe arc 

lamp described above or for 30 minutes at 4 °C on the 288 W Hg lamp (BLAK-RAY 

Longwave Ultraviolet Lamp, Ultraviolet Products, San Gabriel, CA) equipped with a 360 

nm band-pass filter at a distance of 15-30 cm.  Other photolysis reactions had pH 10.4 

H2O (5 µL) added prior to irradiation.  In certain cases, the reactions were heated to up to 

90 °C after irradiation.  Samples for SDS-PAGE of the hydrolysis reactions were 
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prepared according to protocol.63  Samples for SDS-PAGE of the photolysis reactions 

were prepared by mixing the volume of the reaction (2.5 µL for photolysis reaction with 

base, 7.5 µL for the photolysis reaction with base) with an equivalent volume of 2× SDS 

loading buffer.  The samples were then kept at −80 °C until further use. 

Western blot analysis:  Samples were loaded into prepoured 12% tris chloride gels (Bio-

Rad, Hercules, CA) for SDS-PAGE.  Western blotting was preformed using 

nitrocellulose transfer, a mouse anti-hemagglutinin (HA) primary antibody, and a goat 

anti-mouse secondary antibody conjugated to horseradish-peroxidase.  Protein was 

detected by chemiluminescence. 

 

Nonsense Suppression In Vivo 

Oocytes from Xenopus laevis were isolated and maintained at 18 °C in ND96 solution 

(96 mM sodium chloride, 2 mM potassium chloride, 1.8 mM calcium chloride, 1 mM 

magnesium chloride, 5 mM HEPES, 2.5 mM sodium pyruvate, 0.5 mM theophyline, 10 

µg/mL gentamycin at pH 7.5) according to published procedures.64  Each oocyte was 

microinjected with 50 nL of a 1:1 mixture of mRNA (0.04 ng/nL for ShB and 0.5 ng/nL 

of a 20:1:1:1 α:β:γ:δ for nAChR) and tRNA (1 µg/µL) or unaminoacylated dCA-tRNA (1 

µg/µL).  4PO-protected aminoacylated tRNA was deprotected prior to injection by 

incubating the sample for 15 minutes in saturated I2 (aq).  This saturated I2 solution was 

made by adding an excess of I2 to H2O, then sonicating the mixture for 5 minutes, and 

then heating the mixture to 60 °C for 5 minutes. 
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Electrophysiology 

Electrophysiological recordings were carried out 24 to 72 hours after injection.  Whole-

cell currents from oocytes were measured using a Geneclamp 500 amplifier (ShB) or an 

OpusXpress (nAChR) and pCLAMP software (Axon Instruments, Foster City, CA) in the 

two-electrode voltage-clamp configuration.  Microelectrodes were filled with 3 M 

potassium chloride and had resistances ranging from 0.5 to 1.5 MΩ.  Oocytes were 

continuously perfused with a nominally calcium-free bath solution consisting of 96 mM 

sodium chloride, 2 mM potassium chloride, 1 mM magnesium chloride, and 5 mM 

HEPES at pH 7.5.  In the ShB experiments, the currents from ShB expressing oocytes 

were measured during depolarizing jumps from the holding potential to +70 mV in 25 

mV increments.  In the nAChR experiments, microscopic ACh-induced currents were 

recorded in response to bath application of ACh at a holding potential of −80 mV. 
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