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ABSTRACT

In view of the wide discrepancy between previous theoretical
and experimental results the problem of the buckling of clamped
spherical shells under uniform external pressure is reexamined.

A theoretical study is carried out to determine if asymmetri-
cal modes participate in the snap-through process. It is shown that
asymmetrical buckling does occur in a certain range of a geometric
parameter, at loads which are significantly less than those predicted
from symmetrical theory. Additional effects can be expected if the
shell has symmetrical or asymmetrical imperfections, however, the
present study considers only the perfect shell,

Experiments were carried out with copper shells fabricated by
an electroforming process. The initial imperfections in the test
specimens were of the order of 1/10 of the thickness. The buckling
loads of these shells exceeded the loads which have previously been
reported by as much as a factor of two at higher values of the
geometrical parameter X

Good agreement is found between theory and experiment, and

with the recently published asymmetrical theory of Huang.
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NOTATION

List of Symbols

b Radius of spherical segment

E Young's modulus

F(r,0) Stress function

G(r) Symmetrical component of F

H(r) Radial dependence of the asymmetrical component of F
h Center rise of shell

m Wave number in assumed form of U(r)

N Number of terms in assumed form of U(r)

n Wave number in assumed form of V(r, 9)
Nr’NG’NrG Membrane stress resultants

P Pressure

q (—Et-{—)2 ——-————w 13

R Spherical radius of shell

r,0 Polar coordinates

t Thickness

U(r) Symmetrical component of W

U, Guellicients of asswmed form of U(r)

V{r,9) Asymmetrical component of W

V(r) Radial dependence of V(r,0)

Vl Coefficient of assumed form of V(r)

W*(r, 0) Final deviation of middle surface from the r, 8 plane
Wo(r, 9) Initial deviation of middle surface from r, 6 plane
W(xr,9) w* - w

0



X,V Rectangular coordinates

| Inplane radial displacewmnent
1/4
X [lZ(l-L/Z) ba}]
2,2
R™t
€ Inplane tangential displacement
i Density
J Poisson's ratio
mw
P 5T
4> Angle between center of segment and edge,

measured at spherical center

Non-Dimensional Quantities

A bar over a quantity indicates it has been non-dimensionalized
as indicated on page 15
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I. INTRODUCTION

The stability of thin elastic shells which are shallow and have
a spherical shape and clamped edges, will be considered in this thesis,
It is well known that for finite deformations, the equations governing a
thin shell are nonlinear. This nonlinearity arises from the nonlinear
strain displacement relationship, although the strain itself may be infin-
itesimal so that the stress-strain law remains linear.

The criterion éf buckling must be defined, since there is no
unique definition of instability for a nonlinear system (Ref. 1). The
definitions which follow have been adopted from reference 2.

1. Snap Buckling: Let the configuration of the shell, under a

uniform pressure load p, be specified by W(r,6,p), where W is the
deflection of the mid-surface normal to the r,6 plane (Fig. 1). If an
approximate solution for W(r,0,p) is carried out using a Ritz or
Galerkin procedure, the function W(r,8,p) can be made to depend upon
a finite numbef of parameters Ui(i = 1, 2, ..., N) through the

assumption

W(r,0,p) = U, (p) £; (r,0)

i=1

where the fi(r, 6) are chosen functions of r and 6. Thus the configu-
ration can be represented by a point in an N dimensional space with

coordinates (Ul’ UZ’ ..y UN). The potential energy Y éan be
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written as a function of these parameters and the load p, \lj =

oY/

\f (Ul’ UZ’ e ey UN’ p), and the N equilibrium conditions _E)Tf; =0
can then be used to define equilibrium paths in the N dimensional
configuration space. Each point along an equilibrium path is associated
with a unique pressure p, although the inverse association is not
nccessarily unique.

Consider the path which passes through the origin, and unfolds
in the direction corresponding to an initial increase in p(path A, Fig.
2a). Denoting arc length between the origin and a point P on the curve
by S(P), we can consider the pressure p as a function of S (Fig. 2b).
If p is not a monotonic function of S, then the first maximum of p,
which occurs at S = Ss’ will be called the "snap buckling load" Py

Any attempt to increase the pressure to p = Py + Ap will lead to a

finite change in configuration, since no adjacent static equilibrium con-

°r P =P 1 Ap.

2. Bifurcation Buckling: A second equilibrium path may

intersect the path which passes through the origin (Fig. 2a). A change
in stability can occur at this intersection (Ref. 2), and the shell dis-
placements may jump to non-adjacent values. The pressure
corresponding to this intersection will be called the "bifurcation buckling
load" Py, provided the corresponding arc length Sb satisfies the
condition 0 < SbS Ss'

In these definitions, stability of the static equilibrium configura-
tions with respect to adjacent static configurations, is considered.

Static theory has proven entirely adequate for predicting the buckling of

many types of structures. However Ziegler (Ref. 3) has given examples
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where static considerations do not suffice, Hoff and Bruce (Ref. 4)
have studied the stability of an arch under a dynamic definition of
buckling. They find that the arch, which exhibits features analogous
to a spherical shell, has identical buckling loads under static and
dynamic buckling criteria. In this thesis it will be shown that a theory
of buckling based on definitions 1) and 2) is in reasonable agreement
with experiments conducted with near perfect shells. It is unlikely,
therefore, that theories based on other definitions of buckling will add

significantly to the understanding of this particular problem.

1.1 Brief Review of Previous Work.

The problem of the instability of a shallow spherical shell,
clamped along its boundary, and subjected to a uniform pressure p
(Fig. 1), has been the subject of many papers in recent years (Refs.
E-16 inc. ). Initially the prohlem was studied in conjunction with the
buckling of a complete sphere (Ref. 5). In their classic work
von Karman and Tsien showed the importance of nonlinear effects in
the problem. More recently, the basic differences between perfect
complete shells, and perfect shallow shells, have been pointed out, and
the shallow shell has been studied in its own right.

With the exception of Refs. 13-16, the shell has been constrain-
ed to deflect in a radially symmetrical manner. Three of the papers
(Refs. 10-12) find buckling loads which agree with each other, and are
now generally believed to be correct for an analysis based on symmet-
rical equations (curve 4 of Fig. 3). Four recent papers have attempted

to remove the constraint of symmetry (Refs. 13-16). The first of these
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does not present buckling data. The second is of little interest due to
the crudeness of the assumptions, and the third and fourth are in
disagreement with each other, and with the existing experimental data
to varying degrees (Fig. 4).

The existing buckling data (Refs. 7, 17, and 18) leaves a good
deal to be desired from the standpoint of consistency (Fig. 3). The
experimental techniques which have been employed are questionable
(see Experimental Section) and the shells which have been tested have
had significant imperfections. Thus there is some question if the
existing test data is suitable for comparison with theory, if the object
of the comparison is to judge the validity of the buckling theory of
perfect shells,

In view of these facts, the question of the stability of shallow
spherical shells appears far from closed. The following experimental
work was undertaken in an effort to improve upon the test data and to
substantiate or refute the various theoretical results.

It might be noted in passing that the idea of considering asym-
metrical modes of buckling apparently arose quite independently in
various quarters, the present theoretical work (Section 11) having been
initiated some time before the aforementioned works on asymmetrical

buckling were published.
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II. THE MATHEMATICAL PROBLEM

2.1 Preliminary Remarks about Symmetry.

In many of the papers which were discussed in the previous
section, the deflections of the shell were assumed to be symmetrical.
In view of the fact that the shell exhibits radial symmetry, the bound-
ary is clamped symmetrically, and the load is uniform, this may seem
to be a reasonable assumption. If the stability of the shell with respect
to small perturbations is of interest, however, these symmetry argu-
ments do not rule out asymmetrical perturbations. Only the stable
equilibrium positions can be expected to exhibit radial symmetry.

In order to crystallize this idea, it is instructive to consider a
well known buckling problem, the problem of a perfectly straight
column subjected to axial end load.

Symmetry dictates that the dis-
placement in the x direction will

be zero

u = 0
and the equations of elasticity

reduce to
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a uniform contraction in the y direction. This solution, based on
equations derived from symmetry considerations, shows no instability.
If non-symmetrical deflections, u, are considered, they will be

governed by the beam column equation

dZu P
~— + =
dx EI

u = function (transverse forces and moments)

(2)

Now the transverse forces and moments are zero, so the equation is
homogeneous and has the solution u = 0, which is in agreement with
the assumption of symmetry. However, the solution based on symme-
try did not suggest that an asymmetrical deflection could be coupled to
the symmetrical load system through the coupling term —EI-)I— u! The
presence of this term casts an entirely new light on the question of
stability, because it opens up the possibility of non-trivial solutions to
the asymmetrical equations for certain special values of P.

This is of course, well known, but it focuses attention on the
dubious nature of conclusions which are drawn about buckling, from
equations which have been simplified by assumptions based on symmetry.
The assurnption vl syminetrical dellections places a constraint upon the

theoretical problem which is not placed on the experiment, and may

entirely mask the phenomenon of bifurcation buckling.
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In the course of this thesis it will be shown that an entirely
analogous coupling exists between the symmetrical pressure loading
on a spherical shell, and the asymmetrical deflections of the form
V(r) cos nB. Because of this coupling, certain symmetrical configura-
tions permit non-trivial solutions for asymmetrical deflections to exist.
This bifurcation in the symmetrical solution opens up the possibility
that bifurcation buckling may occur before snap buckling, which can

bring about changes in the stability curve shown in Fig. 3.

2.2 The Nonlinear Equations of Shallow Shells

Simplifications can be introduced into the theory of shells, as
a consequence of its thinness, The classical approach introduced by
Kirchroff is to make the followirg assumptions:

a. Lines perpendicular to the mid-surface of the shell remain
perpendicular during deformation,

b. Stresses normal to the surface are neglected.

Additional simplifications can be made by assuming that the
shell is '""shallow'. If the deflection normal to the x-y plane is denoted
by W, and the ''rise' of the shell above the x-y plane is denoted by

WO, then the ""shallowness assumption' is

oW 2 oW 2 2 2

o o oW EAY
(_—8;) << 1, ( By ) < 1, (’5;) << 1, (—8"37) << 1

In particular, it is common practice to restrict the term '"shallow

spherical shell' to shells for which



h < b/8
so that
BWO 2 8W0 2 .
5o = (_ay ) ~ 1/16
max max

The nonlinear equations of shallow shells have been derived by
Marguerre using these assumptions. They can also be obtained by a
slight extension of von Karman's large deflection equations for the flat

plate (Ref. 1). The Marguerre equations are:

2 2

V4W=—l— p+8F 0" (W + Wo) _
D 2 2
oy 9x
2 2(W + W 2 BZ(W + W)
, 3°F %! o) . 8°F o
9x0y 0x 9y axz Byz
(3)
4 BZW 2 SZW SZW
vVE = S 5 - T2 Tz
y 0x oy
2 2 2
82W oW 82W oW, , 82W 9 Wo
I ) z
0x oy oy ox 0x0y 0x0y
where the stress function F is defined by
8°F . _ 8°F 8°F
NX:——,), N =—-—.-2, nyz._._....._.
oy~ y 9x Oxdy
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and the membrane stress resultants are defined as follows:

t/2 t/2
N = o dz N
-t/2 -t/2

dz

it
Q

t/2

Xy xy

-t/2

The nonlinear terms which appear on the right hand side of equations
(3) arise from the non-linear terms which involve W in the strain
displacement relationship. In other words, these equations are not
limited to infinitesimal displacements pesrpendicular to the x-y plane.
Using the shallowness assumption, the initial spherical shape
of the shell can be written
1 2 2
WO(I‘) = ISR (r” - b7)
Substituting Wo(r) into equation (3), and transforming to cylindrical

coordinates, the equations of a shallow spherical shell are obtained.



DV =ptiF w o+ L F w
r rr r r2 rr ee
tiFr w_ o+ LF ow_ - 2F w
r r rr 2 " ee rT 2 re re
T T
+—2~F W +—2—F w - Z—F W
3 "re e 3 re 4 "o e
T r T
1 1 1
+ = F  + == F_ + F
R rr Rr ' r er e9 (4)
1 4 1 2 2 1 2
EtV YT = 2V m T VoWt 73 W,
T T T
1 1 1
B Wrrwr' :Z_Wrrwe—— —R-rwr
1 1
- W - = W
er e9 R rY
where
4 84 2 83 1 82 1 9 4 82
V=2t 735" 7272 Y39tz 3
or or r Or T r 006
IR ST T LS B
r3 81‘892 rZ 81‘2862 1’4 86
2
N = L _gf + ~12_ _8__.}3;_
T T T R 56
_ b5} 1 9F
Noo® = 5r ['r‘ a_“]
N _ BZF
e 2
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If the in-plane displacements (Fig. 1) in the r and
6 directions are denoted by n and §{ respectively, and nonlinear

terms in W are retained, the strain displacement relations are

2
S bny L[]
€rr 8r+2 T
n 1 8¢ 1 8W2

€’ee =r+—f ’8—é+22 [5—9—:[ (5)
T

. LB loam 1 oW aw

€  T5 Tree "r"V"T T 3T 56

re

The relationship between mid-surface strain and the stress
function F can be obtained from Hooke's law, and the definitions of

stress resultants and stress function.

1
Cov = N - UN)
1
€Coo = Fx N -UN)
o201 +U)
€re T T TEt Noo

so that
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€ =1~{19§+_1_82F_u82f‘}
rr Et r Or rZ 862 8r2

c =i782F_J(L§E+L QZ_P-_“H )
=Y:) Et Larz r Or rZ 882

21+ o ,1 oF
C.o - (L um]

In the next section, equations (4) will be used to find the non-
linear equations of a symmetrical deformation, and the homogeneous
equations which govern asymmetrical perturbations around this
symmetrical state. These equations will be analogous to equation (2)

in the Euler buckling problem,

2.3 Reduction of the General Equations,

The equations of a symmetrical deformation of the shell can he
obtained from equations (4) by assuming W and F to be independent
of ©. Since the equations governing small asymmetrical perturbations
are also required, however, the entire set can be generated from (4)

by assuming:

n

W(r, 6) U(r) + V(r,8)

f

F(r, 6) G(r) + H(r,9)

where
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V(r,0) << | U(r)

max max

'ﬁz(r,e) < | G(r)

max max

In order to simplify the problem further, only perturbations

of the form

A
V(r,8) = V(r) cos n8

(7)

A
H(r, ) H(r) cos n6

L]

will be considered. This restriction on the asymmetrical perturbations
has also been assumed in Refs. 13-16. When equations (7) are
substituted into equations (4), and the resultant equations separated
into the parts dependent on 6 and independent of 6, the following

four equations are obtained:

4 _ 1 1 1
(a) Der = D +;(GI'I'UT+GI'U1’I')+§ (G]'.'I'+.I_’ Gl')
1 _4,. 1 1 1
(b) g V,G =-7 0V -5V, -5 U,
(8)
() pvf v -l@wH +ve +HU +v_ G +im)
=) T r'rr r rr r rr rr r R ' r
+ L (-G V-HU - +m+ i m
I_Z rr T R - R rr
: 1 4 _ 1 1 1 1 1
g v H= - 2OV FU Vg VIt 5O Vg V)- gV,
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where

4 a2 4l G 1 4
Ve S T3ty —3 "2 =2t 33
dr dr r dr r
4 a* 2 & 1+ 4° 1 +2n% d , n°@%- 4)
ve o= +2 - + =+ B
) T 3 2 2 3 dr 4
dr dr r dr r r

Second order terms in the small quantities V and H have been
eliminated from equations (8c) and (8d).
Equations (8a) and (8b) are the usual nonlinear equations of the

shell for symmetrical deflections. Equations (8c) and (8d) which govern

~1 TT/ .\ - e e e el e
th a nyr) 4arec nornogencous 45

¢}
Q
w
Y
,.
o
o
o
o
o
ot
a1
-
(¢)
[
|
el
(4]
2
o
e
H
jon
o
o
N
e}
L
w
<
—~
—

expected. The presence of the functions U and G on the right hand
side of these equations shows that the asymmetrical deformations are
coupled to the symmetrical load (U(r) and G(r) can be looked upon
as functions of p upon inverting equations (8a) and (8b)) so bifurcation
buckling analogous to Euler column buckling can occur for certain
values of p.

These four equations can be written in non-dimensional form by

defining the following non-dimensional quantities
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2
p =g Vo= Ry
2 2
T = (%l) " RU g = 220 ‘3‘/ S,
Et
2 2
c - l2a-J%) o ?f=(7)5‘~) 2 Ry
Et
2~/ 2 2
R 3(1 - o/ — 2 .
a =) éE L p €=(—%)ng
>\4- 1200 - U4 pt
R4t
Equations (8) then become
4 = _ 4 4 1 [= = , = 2 (= 1 =
a) v* T =% +—-[G +G ] [G +—G]
) P a2 A P PP P P PP A PP P P
4 — 1 U 5 U
(b) vS G = - S S o >\(__.9+ U )
P T P pp
(c) v4V=l[ﬁ— +VGE +HT +"—+,\2ﬁ}
= p p pp p pp popp pp P P
(9)
+ N H o [G V+HT + }\ZEJ
PP pZ PP pp
4 — 1 1 [= & .= = 0 o
@ vrH =L -——-[U + v U}+-2-U v
e = P PP P PP Pl 2 Tpp



where
4 _ gt 2 a’ G 1 4
Vo R T3ty T3 T =2 Tzt —
dp dp p dp p dp
4 _ a2 4 1 +2n% d° 1 +2n% d . n%(n? - 4)
Vo =Tz v 5 T3~ 2 2 t T3 —t =
dp dp P dp P dp P

Notice that the non-dimensional displacement U is a function
only of the non-dimensional parameters ¢ and A . Thus the non-
dimensional buckling pressure Aepit will be a function of the
geometrical parameter >\ , and Poisson's ratio % , which enters
through the boundary conditions.

The non-dimensional parameter ¢ is simply the pressure
normalized by the classical buckling load of a complete sphere of the
sarne radius and thickness:

o) = 22 (—EK) (complete sphere)

crit
V3(1 - 1/ 2)

Thus a buckling pressure Aorit = 1 will indicate a shallow spherical
shell which buckles at the same pressure as that predicted for a
complete spherical shell of similar geometry.

Under the assumption of shallowness, A can be expressed

in the form
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N = \L% 48(1 - 1/2)[;?]2

Thus a wide range of A s possible without violating the shallowness

assumption. Vastly different shells of the same >\ will be expected
to buckle at the same value of g, provided they are sufficiently shallow.
For shells which do not satisfy the shallowness as sumption,

there is no reason to expect that Ay depends only on >\ and /

it
Thus it is advisable in experiments to increase >\ by decreasing t,
rather than increasing h, whenever possible, if the object of the
experiments is to check conclusions drawn from equations (9).

The method of solution can now be outlined:

1. Equations (9a) and (9b) are to be used to obtain U(p) and
G(p) as functions of gq. This solution will define equilibrium curve A
of Fig. 2a, and snap buckling loads can be located.

2. Ulp) aﬁd G(p) from step 1) are to be substituted into
equations (9c) and (9d). These linearized equations describe the behav-
ior of asymmetrical equilibrium paths of the form V(p) cos nb, along

the symmetrical equilibrium path A, Thus points where the paths

intersect can be located.
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2.4 Solution of the Symmetrical Equations.

The first step is to solve equations (9a) and (9b) for ﬁ(p) and
G(p). The following scheme will be used. First, U(p) is approxi-

mated by the expression

where the functions fi(p) and the number N are choosen to give an
adequate representation of U(p), and the magnitudes ﬁi are to be
determined by Galerkin's method. This approximation to U(p) will
then be substituted into the right hand side of (9b), and the resulting
linear equation will be solved for a G(p) which is compatible with the
assumed ﬁ(p). G(p) and ﬁ(p) will then be substituted into (9a), and
equation (9a) will be approximately satisfied in the Galerkin sense by

the choice of Tj—i' In other words, the N algebraic equations

ki
K [ Gle) Tlp) | - £,0p) - 2wpdp =0 (i=1,2,...N)
(8]
where
— 4 \4 1 [= = . = —
K[G,U] = = + = [G + 8) }
o A4 P PP P p PP
2[— 1~] 4 -
+ t+ = G - v U
A PP P P
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will be solved for the N unknowns '[—Ji. In this manner, the operator
K G,U , which is zero everywhere in the domain of the shell for the
exact solutions, is made zero in a weighted average sense in this

domain,
The functions fi(p) must be chosen so that they are capable of

representing ﬁ(p), and must satisfy the boundary conditions on ~I_J—(p),

namely
80 l - T - -
3p |per = U oz 0 (clamped at p = )
U _
) { pro = 0 (symmetry)

Assuming that the deflections of the exact solution agree with experi-
ment, the choice of fi(p) can be based on the measured deflections.
Experimental results show that the deflection shape is wavy, and that
it becomes increasingly wavy with increased A (Fig. 5). Thus the

experiments suggest the choice

f (p) = 1+ (__l)m+1 cos mp
The term m = 1 will dominate for A< 5, m =1 and m =2 will be
important in the region 5 < A< 7, and m = 3 will be required to
represent the mode shapes for 7 < >\< 10, For >\ > 10, the terms
m = 4 etc. will become increasingly important. In view of this, terms
up to and including m = 3 have been included in this analysis. Thus,

the deflection is assumed to be
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ﬁ(p) = ﬁ_l(l + cosp) + U,(1 - cos2p) + 63(1 + cos 3p) (10)

2

On substituting this expression into the right hand side of

equation (b) the following equation in E(p) is obtained

3 3
4 = 1 m+nmnzsinm cos n —_ =
e =- 4 ZZ(—I) pSosSnp [F I

P m n

3

2 = 2 51

f 2 Y o, [micosmp + El_b._.__l;”ae_”
m=1

The solution is straightforward, but lengthy. It has the form

3 3
Gle) = Z Z l,n,m(p) Un+§2,, (p) m
m=] n=l

In other words, G(p) is quadratic in ﬁi and also contains terms of

first order in Ui

The solutions to the homogeneous equation VL; G =0 are
added to satisfy boundary conditions. The boundary conditions

appropriate to this problem are:
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1. Stresses finite as p-—0
2. The radial in-plane displacement 7(p) must be
zero at the edge, since the edge is clamped.

The homogeneous solution is
= 2 2
G(p) = Ap + Blogp+Cp logp+D

Now, since G plays the role of a stress potential, and is related to
the physical problem only through its derivatives, D can be chosen
arbitrarily, say D =0. B and C are determined so that condition 2)

is satisfied,

Using equations (5) and (6),

W = Ul(r) F = G(r) £ = 0
so that
2 J
n(r) _ _1 9°G _  8G
r ~ Et 81'2 r Oor

Transforming to the non-dimensional variables, and setting n = 0 at

the boundary p = 7 the equation



22

pp ™ (1)

is obtained. This equation determines A.

The solution for 6(p) can now be substituted into equation (9a),

and the three algebraic equations of Galerkin's method can be obtained

by integration as previously outlined. It will be noted that since G is

quadratic in _ﬁi and equation (9a) contains terms of the form U - G,

the resultant equations will be cubic in U.. The load, g, however,

appears linearly. Thus three equations of the form

4 — 4 —
(Ayo + AN 4, )T+ A, A =Z{(Ui,q) =0

are obtained. Given g and A » these three equations determine

u,, U

12 Uz UB' The deflection of the shell can then be determined from

equation (10).
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2.5 Solution of the Asymmetrical Equations.

The procedure which is followed to find a solution to the asym-
metrical equations is similar to the procedure which was used in the
previous section. Referring again to the four basic equations, it will
be noted that if V(p) is assumed, and U(p) and G(p) have been
determined by the symmetrical solution, equation (9d) can be solved
for H(p). H(p) and TU(p) can then be substituted into equation (9c),
and this equation can be satisfied in the Galerkin sense.

The functional form of V(p) must satisfy certain boundary
conditions. First, it must satisfy
dv

dp

7

e ¢
p=

e

since any admissible perturbation must leave the shell clamped at its

edge. Secondly, since the complete asymmetrical shape is given by
V(p) cos n8

conditions of continuity and smoothness at p = 0 require that
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is not required for n = 1. Applying it in this case places an unnecessary
constraint upon V. However, the effect on the buckling loads is of
minor importance.

In view of these boundary conditions, 7(p) has been chosen in

the form
— — 4 3 2 2
V(p)=V1{ p -2mp +"p}

where '\71 is an undetermined amplitude.

Substituting this assumption into equation (9d), the following
equation for ﬁ(p) is obtained
H

v4
e

<

3
m
= Z —(;1—2-— mZ cosmp [(m2 - 4)p2 - 2(n2- 3) wp
m=l 7

1

2
2 2 . 2w ==
+ (n —Z)Tr]—mmnmp[lZp—err-l-———J U
p m

2 .
}\7‘: (n2 - 16) pZ - Z(n2 - 9)mp + (nZ - 4:)T1'2

m

+

so that H(p) will be linear in Urn and linear and homogeneous in Vl’

The homogeneous solution is

H(p) = Ap™'% + Bp™+Cp° ™+ Dp

-n

n ¥1

i

or H(p) Ap3+Bp+Cp lnp+—]§— n=1
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The constants A, B, C, and D are chosen by the following boundary
conditions
1. All stresses finite at p =0

0

1

2. mlm)
3. E(w)

where g(p) is the in-plane tangential displacement, which is not

1

0

identically zero, as it was in the symmetrical case, because of the
6 dependence of the solution.

The first condition determines C and D for all values of n,
while the second and third conditions are used to determine A and B.

From equations (5) and (6)

n, lag, 1 (zg_y_v)z_ 1 [ o°F d[g_ oF 1 o°F

T T 86 2'86°' T Et 2 r or 2 —"’2']
2r or T 08

o, Lew® _ L[ 1er, 1 o'F ) oF

dr 2 ' or T Et r or r2 aez arz

On substituting

W = U(r) + V(r) cos n0
F = G(r) + H(r) cos n0

and using equations (8a) and (11), the in-plane displacement boundary

conditions can be written
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™

H(m) + (1 - nz) H(p) dp - af

m P de | __
o p=r
2 i m
1 aU av _
0] (o]
%\ y (difx i V= 0
"z ap - TR =

p p:-n- p:‘n’ p:n-

When H(p) and V(p) are substituted into equation (9c) and
the Galerkin integration is carried out, an equation of the following

form is obtained tor each n.

— I

v, [ £ (U7, T) ] = 0
with solutions

Y = 0 or f ”:2 T.) = 0

1 n'i’? i’

The first solution is trivial and tells us that no equilibrium perturba-
tion of the assumed asymmetrical form is possible under clamped
boundary conditions. The second solution gives a‘condition on the ﬁi’
which may be satisfied at certain points by the solutions to the three

cubic equations given in the previous section. At these exceptional
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points, bifurcation of the symmetrical solution occurs, and buckling
involving nth mode asymmetrical forms may occur.
This procedure has been carried out for n = 1, 2, ..., 6, so
that information can be obtained for buckling in any of the first six

asymmetrical modes. In detail, the equations have the form

) - - - ) _
B,0{+B,0, 0,+B,0,0,+8,0;+B,0, U+
(13)
2 2 — - - 4
B, U + N [B7U1+BSUZ+B9U3:|+ A B o+ B,
- £ (T2, T) = 0

n' i’ 71

2.6 Solution of the Algebraic Equations.

The solution of the symmetrical problem has been reduced to
the solution of three cubic equations. The bifurcation of this solution
in an asymmetrical mode V(p) cos n6 has been reduced to a quadratic
side condition for each n. Now solutions to these algebraic equations
must be found.

The branch of solutions which is sought among the many possible

solutions Ul’ UZ' I—J—S for a given q is the path which passes through

the point ﬁl = ﬁz = U—3 = 0 for g = 0. The solution can be

extended step by step from (0,0, 0) by making an initial guess at an
adjacent solution, and then improving upon this guess with an iteration
procedure which is analogous to the single variable Newton's method.
. =0 =0 =0
Assume that the solution (Ul’ UZ’ U3)

pressure g has been found. The solution for an adjacent point

corresponding to
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= = T =0 = =0 = =0 = .
(Ul’ UZ’ U3) = (U1 + AUI’ UZ + AUZ, U3 + AU3) corresponding to
9 = 9, + Aq (see Figs. 6 and 7) is sought. The solution could be

extended by using the three equations (equation 12), and assuming

AI_Jl = AI_JZ = ATTIS = 0, Aq = &, where & is some small, pre-
assigned step. It could also be extended by assuming a step in any one
of the ﬁi’ say Aﬁm = &, Aﬁi = 0 i=m, Aq = 0. Having chosen
one of these procedures, some iteration procedure could then be used to
find the corresponding changes required in the other three variables in
order to satisfy equations (12). This is not a satisfactory procedure,
however, since there is no assurance that either g, or any of the ﬁi’
will be monotonic functions of arc length along the path (Fig. 6)
beginning at (0,0, 0, 0). These thoughts suggest the following procedure.
The solution can be extended by proceeding from one solution to the
next in steps of arc length. To apply this method, the equations must
be rewritten so that a new solution can be easily specified by a step in
arc length. First, the parameter ¢ can be eliminated from the

equations. The load enters each of the three equations (12)

Ek(Up Up» Uss @) =0 k =1,2,3

linearly. Thus linear combinations can be formed from these three

equations, and g can be eliminated. The new equations

"

§1'C1§2 =0

901(U1, 7,, U,)

1
(@]

f

sﬂ.z(ﬁl’ ﬁ2’ I73) §1 -G, § 3
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are obtained, where the Ci are chosen so that g will be eliminated.

These two equations are satisfied by every point along the equilibrium

path. Once a solution S

i has been found, the path is extended by

seeking a new solution ﬁi such that

-2 2 -2 2 e -
2T + AU2+AU3-5 = §ﬁ3(U U,, T

>
c
n
cif
1
cl

where § isa pre-assigned constant. In other words, the next solution
is constrained to lie an arc length & from the given solution

Cl), ﬁcz), U—(;) (see Fig, 7). This does not uniquely define the next solu-

(T
tion however, since there are at least two adjacent solutions which

satisfy this condition. The solution corresponding to a retrogression

in arc length is eliminated by making a good initial guess at AUI, AU

2
and AU3. This first approximation is obtained by extrapolating the
previous four solutions.

The three equations
Wk:o Kk - 1,2, 3 (14)
are used to im h i g gl )
prove the solution. Let (U1 » Us s U3 )
(ﬁ(l) + Aﬁ(ll), ﬁg + Aﬁél), _ff;) + Aﬁgl)) be the initial guess. This first

approximation does not in general satisfy equations (14), so a second

approximation is sought, which more nearly satisfies the equations.
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=(1) =(1)
T+ €, U, +€3)

In order to determine the effect that a change €i has on the value of

gﬁk, (ﬂk is expanded in Taylor's series.

T — ]
u.=ol =3 0T | o=pll)
J o] J ol
. . 2} .
The second approximation Ui should make 9ﬂk = 0 so the linear
equations
:Rg 8¢, 8¢
-k €, TR €, +——5-€3 =-¢, k=1, 2, 3
8U1 BUZ E)U3
=yll) =yll) g1 -yl
U, =U, UZ—-U2 U3-—U3 Uj—UJ.

for determining éi are obtained. By replacing the first approximation
by the second approximation, the procedure can be repeated to obtain a
third approximation and so on until the successive approximations to

ﬁi converge. The value of q corresponding to a solution ﬁi can be
evaluated from any one of the three equations § K = 0.

In this manner, the equilibrium configurations extending from
the unloaded state to the snap buckling point (Ist local max. in q), and
beyond, can be found.

As each triple (Ul, ﬁz, ﬁ3) is found along this curve, it is

tested in each of the six quadratic side conditions (equation 13). For

certain ranges of A » one or more of the expressions may change sign
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in passing from one solution to the next. When this occurs, the quad-
ratic surface fn(ﬁiZ . ﬁi) = 0 has been intersected by the symmetrical
equilibrium path (see Fig. 7). Deno*e the pressures corresponding to
these two adjacent solutions by q; and dy» where the first change of
sign in the value of fn(I_JiZ s ﬁi) was observed at the solution corre-
sponding to dye The solution corresponding to q is separated in
configuration space from d, by an increment in arc length - S. A
zero of fn(fjiz , ﬁi) occurs at some point along the arc length S, so
the limits q; < qg < g9, are obtained for the nth mode bifurcation
buckling load q7.

The snap and bifurcation buckling points which have been found
in this manner, are shown in Figs, 8-11 inclusive., No bifurcation
points were found in the range of >\ which was investigated, for
n = 5 or n = 6, These results should be compared with those of
Huang (Ref. 16) and Weinitschke (Ref. 15) (Fig. 4). Except for the
absence of solutions for n = 5 and n = 6, the results agree in gen-

eral with those of Huang.

The present results cannot be expected to hold for >\ > 10,

and will be increasingly inaccurate as >\ 10, because the assumed
form for U(p) is incapable of representing the experimental shapes for

>\ > 10, In view of this limitation, the present results do not con-

flict with those of Huang, although no confirmation can be offered for

>,
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2.7 The Effect of Poisson's Ratio on Buckling.

The non-dimensional differential equations do not contain
Poisson's ratio U/ , as it has been absorbed in the definitions of the
non-dimensional parameters q and >\ . However, V) occurs in the
boundary conditions which are applied to both G(p) and H(p), so the

solution for W and the curves ¢ vs. A\ are not independent of

V.

crit

In order to find out how strongly the occurrence of / in the
boundary conditions affects the solutions, the procedure has been
carried out for ¢/ = 0, 1/4, 1/3, and 1/2. The values of the coeffi-
cients of the three resulting cubic equations (12) are given in Table I

for each value of L/ . The coefficients of the quadratic expressions

£ (T2

U I—Ii), which determine nth mode bifurcation (equation 13) are

given in Table Il for n = 1, ..., 6 and the above values of V.

Carrying out the solution of these equations q ( \) is found to vary

crit

with ¢/ as indicated in Figs. 8, 9, 10, and 11.
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III. EXPERIMENTS

3.1 Review of Previous Experiments

Experiments on shallow spherical shells have been reported
by Kaplan and Fung (Ref. 7), Homewood, Brine and Johnson (Ref. 17),
and Bellinfante (Ref. 18). The buckling loads are shown in Fig. 3.

Note that the scatter band is fairly wide, and that the results tend to be
in agreement, insofar as the data from the three sources overlaps
throughout the scatter band.

Kaplan and Fung tested shells which were 8 inches in diameter
and had nominal radii of curvaturc of 20'' and 30", and varied in thick-
ness from 0. 032" to 0, 102", The shells were spun hot from
magnesium plates. This procedure probably resulted in thickness
variations, however the magnitude is not given, The value of >\ was
calculated from the measured shell rise. Maximum variations from
sphericity in a given shell ranged from 0. 005" up to 0. 020", resulting
in initial imperfections as great as 40 O/0 of the thickness. The shells
were held between two rings which were bolted together to provide the
clamped edge boundary condition during testing. Tests were conducted
with both air and oil pressure loads (appro;cimations to dead weight load
and a rigid testing machine respectively), however, no significant varia-
tions were observed in the buckling loads obtained by the two methods.

The shells tested by Homewood, Brine and Johnson were 34" in
diameter with nominal radii of curvature of 40" and 78", They varied
in thickness from 0. 067" to 0.260" and had average thickness variations

of + 4 %/o. Unfortunately, the initial imperfections are not given in the
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reference, nor is the method of determining >\ indicated. The shells
were spun from hot rolled steel or wrought aluminum alloy. The
method of clamping and testing was similar to that of Kaplan and Fung.
Based on the experiences reported by Kaplan and Fung with spun alumi-
num shells, it may be assumed that the residual stresses were high.

Bellinfante utilized a hydroforming technique to make shells
with nominal radii of curvature of 23" and 8" from aluminum. He
considered this process superior to spinning as thickness variations
were reduced. The thicknesses of the shells varied from 0, 028" to
0.251" and had typical thickness variations of + 0.001. Initial imper-
fections, and the method of determining >\ are not given. The shells
were clamped between rings whose inside diameter was 10", and tested
under oil pressure.

The 8'" radius of curvature shells tested by Bellinfante violate
the shallowness assumption h b/8. Itis true, as he points out, that
one can calculate >\ for a non-shallow shell. However, it is likely
that >\ is not the only geometric correlation factor for a non-shallow
shell, so comparing non-shallow shell data with shallow shell data of
similar >\ , 1s a questionable practice.

None of the papers referred to above have made any mention of:

1. How E and ¢/ were determined (probably handbook

values),

2, How t was determined or how rough was the surface,

3, How R and hence >\ were determined (probably from

nominal values).
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In view of the crudeness of the results, perhaps refinements were not
justified. However, attention to these details can be of primary

importance in buackling experiments,

3.2 Basic Requirements of an Experiment to Compare with Theory,

The experimental problem can be simply stated: To build stress-
free shallow shnells which match the geometry of the theory, clamp them
rigidly without inducing edge moments, and buckle them with a uniform,
slowly increasing pressure. Once the shell has buckled, a correspond-

ing point must be placed in the q Se >\ plane for v appropriate

.,V
crit

to the shell (see Figs, 8-11). From the definitions of these quantities

>
1

12(1 -J)% —P
W ==

Y 0 -J%  R?

crit 2F t

crit

it is clear that the quantities b, r, t,l/ , E, Perit must be measured,
' 2 .

to varing degrees of accuracy. Let £ = {1 - t/ “). Then the relative

error in >\ and g, as a function of the relative errors in b, R, t, E,

p and §, will be
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erit 21 R t E Perit

Note that the error in >\ depends most heavily on b, which can be
easily measured to high precision, The determination of g is much
more difficult, due to the quadratic dependence on R and t.

If the accuracy with which the components of >\ can be meas-
ured is considered, it becomes apparent that >\ can be measured to
2 %°/o or 3 °/o without much effort. The proper location of the experi-
mental point in the q wvs. >\ plane hinges mainly on determining the
value of t to use in evaluating q.

The error in t arises from two distinct sources: Error due
to measurement of t, and error due to the "uncertainty' in t. The
error in measurement is a clear concept, and can be reduced by
diligent measurement. The '"error of uncertainty" is fundamental to
the experiment itself, and must be dealt with more carefully. The
theoretical shell is uniform in thickness, and has a perfectly smooth
surface. The experimental shellpossesses neither of these virtues,

If the experimental shell has thickness variations from point

to point of + 3 O/o, values of d.pip €30 be calculated which differ by
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as much as 12 O/o, depending on whether the maximum or minimum
thickness, or perhaps some intermediate value is used. No theoretical
study suggests which, if any,of these thicknesses should correlate with
the uniform thickness theory, Indeed, the answer is probably not defined
without a detailed statement of the thickness distribution.

A rough surface on a shell leads to uncertainty in the thickness
in still another way. The bending stiffness of the shell depends on
Et3, but how effective is a disconnected, random array of lumps on the
surtface, in resisting bending? The resistance to stretching depends on
Et. It is perfectly conceivable that the effective thickness t, in bending
is not the same as the effective thickness in stretching ts.'
This conclusion leads one to reconsider the derivation of Pelass’
the classical buckling load of a complete sphere, which is used to

normalize the present data. If the derivation of Pclass is carried out

assuming that t_= t_, then (Appendix I)

1/2 t3/2.
- s b

Pelass ©
R4/ 3(1-/%)

2Et

Young's modulus must also be measured for the material of the
shell. The method which has been used in these experiments is a
simple tension test, where the change 5A in the length of a specimen
of length A is observed as a function of the load L. Under these

conditions
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L{
t +a-df

e

where a is the width, and te is the thickness, of the tension speci-
men. Unfortunately a test for E has not been devised which utilizes
material from the spherical shell, so a third thickness must be

measured. Substituting this expression for Pelass into the normal-

ization equation the following expression for Aerit is obtained.

V30 - v % R” te @ -84

Uerit ©
crit 2 ti/Z ti/Z L - £

This leads to the following expression for relative error

R s R A e
max
+;—A%‘—' + %%Q,+ i:e +’%§ + }%'

Using the measuring techniques which have been developed for these
experiments, the contributions to the error in g from the quantities
R, 1L, Y ,a and § are negligible compared to the error arising
from the thickness terms.

These considerations emphasize the necessity of minimizing
thickness variations and surface roughness. Most of the tests haveé
been run with shells whose RMS surface roughness (measured with a

'"Profilometer' made by Physicists Research Company) was about
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60 micro inches, with typical thickness variations of + 2 °/o (see
Table III).

The practice of bolting the shells between rings to obtain a
clamped boundary condition is questionable, Past experience at
GALCIT * has shown that this offers a very poor approximation to a
clamped condition, Of even more importance, however, is the fact
that this method of mounting almost inevitably will put random moments
into the edge of the shell, which depend on how well the shell and the
ring conform, and how much normal pressure is applied by the bolts.
These moments could buckle the shell: At the very least they will intro-
duce scatter into the value of pressure which is required for buckling,

A method of mounting the shells into the rings without inducing
initial deflections via edge moments, which will simulate a true
clamped condition to a high degree of approximation, appeared neces-
sary before consistent buckling data could be obtained. The method
used for this work shows considerable promise and is outlined in a
later section.

Due to the fact that the deflections are governed by nonlinear
eqyuations, the effect of internal stress in the unloaded specimen is
difficult to evaluate. Kaplan (Ref. 7) attempted to spin shells from
aluminum before he turned to magnesium. He found the aluminum shells
had high internal stresses and would, he reports, snap with very little
external urging, Clearly internal stress should beeavoided, and plasred

a part in the choice of material for the present shells.

X

Graduate Aeronautical Laboratories, California Institute of
Technology.
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3.3 The Electroforming Process.

Electroforming has been used by Babcock (Ref., 19) for several
years to make highly successful cylindrical shells at GALCIT, The
method is patterned after one used by Thompson (Ref, 20), to make
complete spherical shells, The method is quite simple in concept. A
wax form is cut to the desired shape, painted with a conducting paint,
and placed in an electroplating tank, Current is passed between a
metal anode and the silver coating, and metal is deposited. When the
desired thickness is obtained, the wax is melted, leaving a thin shell,

Following Babcock, the plating was carried out in a Copper
Fluoborate bath, and the shells were plated from copper. The choice
of copper may seem surprising, due to its usual nonlinear stress-
strain behavior, even at low stress levels. It was chosen for this work
because it is easy to plate, and developes the lowest internal stress
during plating of any of the materials considered (Ref, 21). Consist-
ency of bath temperature also plays a role in freedom from internal
stress. In order to keep the bath at constant temperature during
plating, cooling coils made from 5/8" diameter polyethylene tube were
installed. This proved adequate to handle the 160 watts of electrical
power which are dissipated in the solution during normal plating, plus
any heat generated by mechanical motion. The resultant shells can be
cut apart with no visible change of curvature, showing the internal
stresses are, indeed, small, |

It has been found that 200 cc. of black-strap molasses in thirty

gallons of Copper Fluoborate Solution will increase the linear region
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of the stress-strain curve markedly. As a result, the material shows
no measurable deviation from linearity up to 11,000 psi, and has a
defined yield point (0. 0001 offset) of about 17,000 psi (Fig. 12). The
ultimate strength is about 65, 000 psi.

In the previous section, the importance of uniform thickness
was stressed. The rate of plating at a point on the cathode surface is
governed, all things else being equal, by the electric field strength.

In order to obtain uniformity in the shell thickness, therefore, the
plating geometry must lead to a uniform field. The field between two
conccentric spheres is uniform. By making the anode spherical, and
spacing it about 3/4'" from the spherical cathode, (see Figs. 13 and 14)
a uniform spherical field is obtained between the plates, except in a
region near the edge., From parallel plate capacitor theory, it is
known that this edge disturbance, or '"bridging field", affects the
uniformity of the field in a band near the edge whose characteristic
width is the spacing between the plates., The wax form is 11" in
diameter, while only the central 8" is used for the shell, By rejecting
a l 1/2' band at the edge, the thickness variations due to non-uniformity
in the field are effectively eliminated.

In order to promote uniformity and smoothness, the shell is
removed from the bath four times during plating, and carefully sanded.
The anode is then rotated 900 with respect to the cathode, and the
plating is resumed. DBy rotating the anode with respect to the cathode,
imperfections in the plating system are randomized and thickness

variations due to this source are minimized,
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The bridging field at the edge tends to cause treeing of the
plated material. This is suppressed with a plexiglass ring (see Fig,
13) which retards the flow of ions into this region and effectively
prevents plating and therefore treeing. A plating current of 20 amps
is normally used, which gives a current density of about 30 amps/sq. ft.

The machining of the wax is straightforward. The dish is turned
in a lathe, and the spherical surface is cut by a tool which is pivoted at
the desired spherical radius (Fig. 15). A two to one mixture of
refined paraffin and Mobile Cerese 2305 wax has been found (Refs. 19
and 20) to have good machining characteristics, and can bec cast free of

bubbles. It adequately fulfilled the requirements of this job.

3.4 The Mounting Process

Once the shell has been electroformed, and the wax has been
melted from it, it must be cleaned and mounted into rings for testing,
without inducing edge momenls, and without distorting the spherical
shape., Clamping the shell between the rings was rejected for the
reasons outlined in Section 3, 2. Fixing the edge with a low melting
point alloy (Ref. 19) was rejected because of the possibility of intro-
ducing thermal stress. Setting the edge into an epoxy cement which
would harden at room temperature seemed like an ideal solution. Since
a 0.005" to 0, 015" void would be filled by the epoxy, it was required to
have low shrinkage during hardening. '"Devcon Type B Plastic Steel"
fulfilled this requirement. In addition, it is easily softened and

removed with acetone or alcohol, which facilitates re-use of the rings.
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Residual wax is cleaned from the shell with benzene, In its
free edge condition, the shell is very flexible, and can be readily
distorted from the desired shape. It was evident, therefore, that the
shell must be supported in the correct shape until the edge was
clamped, in order to maintain close conformity to a spherical shape.
A spherical dish 8 1/2'" in diameter was machined from jig plate
aluminum to support the shell. The shell itself is cut to an 8 7/8"
diameter on the lathe while it is still supported by its wax form.

The 8 7/8" shell is centered in the dish and weighted with lead
shot. The bottom ring is then glued to the shell, the excess glue is
removed, more lead shot is added,; and the assembly is allowed to
harden (see Fig., 18). The overhang of the shell with respect to the
dish provents glue from sceping between them, and facilitates cleanup
of the excess glue. Once the glue has set, the lead shot is removed
and the ring-shell assembly is lifted from the dish. The shell is now
rigid, due to the clamped edge support, so the upper ring caun be glued
in place without further support for the shell (see Fig. 19), Two pins
are used to locate the rings concentrically, The upper and lower rings
are held together by six bolts while the glue is drying, but shims are
inserted between the rings to insure that the upper ring does not bear
on the shell. A cap now closes off the upper half, and forms a pressure

chamber., A valve is provided so that air can be bled from the system.
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3.5 Testing Procedure,

A basic requirement for the testing program was a device to
measure shell deflections as a function of radius. The requirements
for this device were:

1. It should apply as little force as possible to the

shell during measurement,

2. It should be able to quickly traverse a radius, and

preferably also traverse in the theta direction,

and measure deflections of a few percent of a shell

thickness,
The device which was built is capable of repeating measurements to
0.0001". The absolute error, determined by traversing a precision
flat, is better than + 0.0002". The details are shown in Fig. 17 and
20, Unfortunately, the present device must be locked in place along
a preselected radius, and cannot be moved in the 6 direction during
loading.

The location of a point on the surface of the shell is deter-
mined by a screw which sets the r coordinate, and a micrometer
which measures the distance down to the shell from the traversing
plane., A spring loaded point is brought into electrical contact with
the shell, as determined by an ohmmeter, This system approaches
the ideal of no force which is attained with electronic "measurement
at a distance'' gages such as the eddy current Benﬂy gage (even these
gages exert small electromagnetic forces of course), and at the same
time maintains a very precise knowledge of the r, 6 location of the

measurement, Most of the electronic gages give an integrated average
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distance to some small area, of order say 1/50 inz, while the point
on the micrometer (Fig. 20) obviously integrates over an area several
orders of magnitude smaller.

The shells were loaded with oil pressure, Since buckling
pressures ranged from a few cm. of mercury to over 150 cm., both a
water and a mercury manometer were provided to measure the
pressures, The use of a manometer decreased the rigidity of the test-
ing machine, and made the test condition a very poor approximation to
either rigid displacement or dead weight testing. However, the testing
machine makes no difference in the buckling load, if buckling occurs
via the '"classical criteria' assumed in the theory of Section II. The
agreement between the buckling loads obtained in these tests and
theoretical loads based on the classical criterion, plus the null result
of Kaplan and Fung®’s (Ref. 7) experiments to detect a difference between
air and oil load, tend to justify the assumption that the elasticity of the

testing machine is of no consequence in these experiments,

3.6 Material Properties,

Three properties of the material are required for data reduction,
namely, E(Young's Modulus), J/ (Poisson's Ratio), and p(Density).
The density was used in the determination of thickness.

The modulus E was measured with a simple tension test. If a
long strip of length 4 and cross sectional area A is loaded in tension
by a weight L, the modulus is related to the resultant change in length

A V4 by the expression
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_ LL
E = Tx—

A

At 10,000 psi, which is the approximate stress limit for this linear

s L

relationship, ~ 6 x 10—4. In order to make A £ an easily
measured quantity, therefore, it is important to make Z large, say
of the order of 102' in.

Specimens 200" long of electroplated copper were obtained
in the following manner. A cylinder 8" in diameter and 15" long was
plated as described in reference 19. The shell, on its wax form, was
then placed in the lathe, and cut with the threading mechanism into a
1/2" wide spiral. The cross sectional area of the spiral was deter-
mined by weighing the strip and using u to find the volume. Upon
dividing the volume by the length, the average cross sectional area
was obtained. Marks 200" apart were scribed on the copper, and the
motion of these points under load was recorded using two traveling
microscopes., In this manner the stress-strain relationship of Fig. 12
was obtained, and E was calculated to be 16 x 106 1b/in2. Several
tests were mads with different shells, and this value was found to vary
+3 °/o from shell to shell. In view of this scatter, which appears to
depend on plating conditions, it was thought to be desirable to develop
a m‘eans of measuring E for each shell which was tested,

Strain gauges were fixed to a 200" specimen, in an effort to
correlate strain measurements from this source with the optical
method. Unfortunately, the strain gauge scatter was at least + 5 O/o,

ending any hope of using strain gauges to measure the strain.
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Testing in an Instron machine, and using the head motion to
determine strain, also proved to be hopeless. Machine deflections
account for at least 25 °/o of the observed strain in a specimen 8" x
1/2" x 0.030", and these deflections proved to be highly nonlinear and
non-repeatable, probably due to random motions in the bearings of
the machine,

Because of these difficulties, the figure E = 16.0 + 0.5 x
106 was accepted for all the shells which were tested.

Poisson's Ratio, v » enters the expressions for Aerit and

>\ in the form 1 -L/Z. Since t/ is constrained to fall between the
limits Vo= 0 and o = 0.5, the determination of / is not critical.
In view of this, a handbook value was expected to be acceptable. A
short survey, however, turned up published values of J ranging from
J = 0.18 to U/ = 0,48,

Strain gauges were attached to a tensile specimen in pairs, one
longitudinal, and one transverse. The ratio of the strains was calcu-
lated, and values for L/ were obtained in the range V/ = 0.35to

/) = 0.38. This result justified comparing the experimental data to
the o/ = 1/3 theoretical data published by Huang (Ref. 16).

The density of vacuo-distilled copper is given in handbooks as
p = 8.9326 gm/cc at 20°C (Kahlbaum, 1902). The electroplated
copper was weighed in air, and immersed in water, and the calculated

density was 8, 9+. Therefore the vacuo-distilled figure was used for

data reduction,
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3.7 Data Reduction

In addition to the material properties, the quantities R,t,b,
and Porit must be measured. The radius b is fixed by the rings,
which were machined to a diameter of 8,000 + 0,002, Thus b is
known to a negligibly small 0, 02 ®/o. The buckling pressure Porit
was measured with either a water or a mercury manometer, to the
nearest millimeter. The shells typically buckled at pressures greater
than 500 mm of water, so Porit Was also determined to ;a fraction of
a percent.

The thickness t, which is very critical in the data reduction,
was calculated from the weight, the measured area and the density of
the shell. However, the small errors inherent in this method do not
reflect the true errors in t, which arise largely from the thickness
variations of the shell and the roughness of the surface, as outlined
in Section 3. 2.

The spherical radius R, was determined from measurements
which were made on the mounted shells, after the chamber was filled
with oil, and just prior to the application of pressure. The traversing
mechanism (Fig. 20) was set up along a diameter of the shell, and the
distance between the traversing plane and the shell was measured at
17 stations. The spherical radius R was taken to be the radius of
the circle which had the smallest least mean square deviation from
these 17 data points.

The deviations from this ""best circle' are shown in Figs. 21

and 22 for typical shells, In order to test the consistency of the
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spherical radius obtained by this method, the measurements were
repeated along a second diameter for several of the shells. The value

of spherical radius obtained from the two sets of data was found to

agree to better than 1 part in 103 in all cases,
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IV, TEST RESULTS

Buckling tests were performed on shells with nominal spherical

radii of 40" and 20". All of the shells were tested in rings whose

radius was 4. 0'"". In order to limit the membrane buckling stress
- _ Et
crit > erit
3(1 -/ )R

to values within the linear region of the plated copper (Ucrit< 11,000 psi),
the restriction t < 0. 045 was adopted, As t — 0.0, the buckling load
Pt 0.0, so a lower limit on thickness is reached, below which the
present handling and testing techniques are not adequate. A second
limiting factor is the initial imperfection of the shell, which tends to
remain constant in magnitude; and thus to grow in comparison to thc
thickness, as thickness decreases, In these experiments the lower
practical limit for t was in the range 0. 005' to 0.0010'". 1In this range
and below, the buckling data became sporadic, and relatively low values
were recorded for some of the shells which were tested. Values of

q as low as Uepit = 0.45 were found for two 20" shells whose

crit it

thicknesses were 0, 0048 and 0, 0073 for example.

Within these constraints it was possible to make shells with
values of >\ in the range 5.5 < A < 20. The 40" shells cover the
range 5.5 < A < 12, while the 20" shells fall in the range 10 < A\ < 20,
The agreement between the data in the region where similar values of

A\ were tested was fair (Fig., 23). The 40' data tended to fall below
the 20" data near A = 12. The thinness of the 40" shells probably

accounts for the difficulty.
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The rise of the shells can be calculated from the equation

‘ e 2
h = R(l ~cos¢) = R(1 -V1- bZ/RZ) ~ .2

2R

For the two types of shells which were tested, the values h, '" = 0, 2"

40
and hZO” = 0.4'"" are obtained. Thus, both typcs of shells fulfill the
'"'shallowness assumption'" h/b < 1/8, and can properly be classed as
shallow spherical shells,

Since the buckling loads calculated by Huang (Ref. 16) using
numerical methods agree with those of Section II, which were obtained
by Galerkin's method, within the range of X where the approxima-
tions of Section II are valid, the buckling loads of Huang are used in
the subsequent comparison between theory and experiment,

The initial imperfections for the shells, along an arbitrarily
selected diameter are shown in Figs. 21 and 22, The buckling pres-
sures as a function of A are shown in Fig. 23,

Deflection vs. radius measurements were made along an
arbitrarily selected diameter, as a function of load. These measure-
ments are shown for typical shells in Figs. 24-33 inclusive. The
deflection vs., load behavior according to the approximate theory of
Section II is shown for shells for which >\ < 12, The agreement is

quite good, while the inadequacy of the assumed deflection shape is

evident as >\~"12,
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V. CONCLUDING REMARKS

The wide variance between the present experimental buckling
loads and previous data lends support to the thesis that small differ-
ences between experimental and theoretical conditions can lead to
large differences in buckling load. In particular, the uncertainties
introduced by variations in thickness and improper boundary conditions
should be emphasized. On the other hand, the agreement with the
theory of Huang indicates that the classical static criterion of buckling
may be adequate. In particular, artificial buckling criterion such as
the ""energy criterion' of Tsien are not required to explain these
experiments.

The recent theoretical results of Weinitschke (Ref. 15) are in
striking contrast to the present result. Although the same governing
differential equations are used, no agreement between his asymmetri-
cal buckling loads (Fig. 4) and the present theory or experiments can
be found. The agreement between his theory, and previous experiments,
appears to be fortuitous, since the stability curve has been computed
for the asymmetrical buckling of perfect shells, while the low values
which were previously found for buckling loads now appear to have been
the result of imperfections in the experiments, Recent calculations by
Thurston (Ref. 22), in which the effect of symmetrical imperfections on
buckling load is considered, substantiate this opinion.

The present work raises one interesting point with regard to
Huang's (Ref. 16) results. For >\ < 10, both the present theory and

experiment support the existence of n = 2 and n = 3 asymmetrical
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buckling, However, for A< 10, the experimental results lie above
the stability curve of Huang (Fig. 23), and may indicate a return to
symmetrical buckling. lhe present theory is not valid in this region
of course, However, the n = 4, and n = 5 mode solutions begin to
occur below the snap buckling load for values of A as low as >\ = 7
in Huang's theory (Fig, 4). No solutions for n = 5 or n = 6 were
found in the present theory (Figs. 8 - 11 inclusive),

This observation may simply reflect inadequacies in the present
work. On the other hand, the n > 4 instabilities which Huang has
found may be in error.

The variation of the stability curve with t/ has not been
pointed out before. Some authors have presented curves for a stated
value of / , while others have presented curves without mentioning
the value of U/ which was used in the calculations. The 20 /o
variation from this effect (Figs. 8 - 11 inclusive) will become signifi-
cant as the experiments improve,.

In conclusion, it appears that some of the questions which have
shrouded the problem of the buckling of shells have at last been
answered. Agreement between theory and experiment has been
obtained using time honored concepts of buckling. The approach to
more complicated problems seems clear. The nonlinear equations
governing the precise shape of the shell must be investigated for snap
buckling pointe, The boundary conditions must be carcfully spccified.

In addition, the linear equations governing admissible perturbations
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around the large deflection equilibrium positions must be investigaled
to determine bifurcation buckling points. Diligent adherence to this
program may well clear up the mystery which has surrounded certain

shell buckling problems.
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APPENDIX A

The problem of calculating the classical buckling load of a
complete sphere is considered in detail in reference 23, for the case

of a symmetrical buckling mode. In terms of the parameters

D(1 - 2
< = 20 )
RE t_

$ = B R(1 - V%)

2Et
s

where

£t

b
D & ———ur
12(1 -/ °)

the lowest critical buckling load is shown to be given by the condition

2V - V< —eld=<

——
f

Thus

'
i

2Et
s 2V (1-U¥H< -6

crit R(1 —L/Z)

If the distinction between tb and ts is maintained the

expression
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3
. _ 2E B ot
crit R(1 - %) 12 ths

is obtained for the buckling pressure, For thin spherical shells, the
second term in the brackets can be ignored compared to the first and

the buckling load can be written

2B t3/2 t1/2
b ]

crit ~
R V31 -V %
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TABLE I

COEFFICIENTS OF THE SYMMETRICAL EQUATIONS
{Eq. 12) FOR VARIOUS VALUES OF POISSON!S RATIO

V=0 Vo=1/4

Eq. 1 Eq. 2 Eq. 3 Eqg, 1 Eq. 2 Eq. 3
Ay -5,814 ~-1.699 1, 644 -6.869 -2. 460 1. 644
A, -5, 099 -29.25 -5,406 -7, 380 -34, 57 -7.870
A3 4,934 -5.406 ~53, 57 4. 934 -7.870 -63.07
Ay -6. 327 -81. 54 -21.94 -9.369 -98.43 -31.80
Ag -29.25 -18. 98 ~-18.93 -34, 57 -29.11 -22,48
A6 -18.93 -65, 82 -244. 9 -22.48 -95.39 -294., 4
A7 6. 692 -50.10 -398.9 6. 692 -72,28 -484, 4
Ag -53. 57 -11.27 20,08 -63.07 -18,12 20. 08
A9 -11.27 -244,9 -150.3 -18.12 -294.4 -216.8
AIO 36.53 25,28 5.431 44, 06 33,12 9. 463
Al 71.79 171.8 128, 4 87. 92 222.5 164.3
AlZ 109. 6 190, 8 331.9 132.2 247, 6 440, 8
Alg 50, 57 143, 6 51.76 66,25 175, 8 69.29
Ay 10. 86 51. 76 219.1 18.93 69.29 264. 3
A15 51.76 256, 9 381.5 69.29 328.6 495, 2
Al -3686. -3283, -1015, -3686, -3283. -1015.
T -52, 84 -71. 66 -56. 62 -64.79 -91. 75 -75. 80
A18 -3283., -45710. -32400,. -3283., -45710. -32400.
A19 -71. 66 -126.7 -107. 4 -91.75 -160. 4 -139.7
AZO -1015, -32400. -215700. -1015. -32400, -215700.
A21 -56, 62 -107. 4 -117.6 -75, 80 -139.7 -148. 4
AZ’ 1189, 2000, 1910. 1189, 2000. 1910.
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TABLE I {Cont'd)

COEFFICIENTS OF THE SYMMETRICAL EQUATIONS
(Eq. 12) FOR VARIOUS VALUES OF POISSON!S RATIO

U =1/3 Jo=1/2
. Eq. 1 Eq, 2 51:—3 Eqg. 1 Eq. 2 —Eq. 3
Al -7« 397 -2.840 1. 644 -8, 980 -3. 981 1. 644
AZ -8. 521 -37.23 -9.102 -11.94 -45, 20 -12, 80
A3 4. 934 -9.102 -67. 82 4. 934 -12, 80 -82, 06
A4 -10. 89 -106. 9 -36. 72 -15. 45 -132,2 -51. 51
A5 -37.23 -32.67 -24.26 -45, 20 -46, 36 -29.58
A() -24,26 -110.2 -319,2 -29, 58 -154.5 -393.4
A7 6. 692 -83. 36 -527.2 6. 692 -116.6 -655, 4
A8 -67. 82 -21, 54 20,08 -82. 06 -31. 81 20,08
A9 -21, 54 -319.2 -250,1 -31, 81 -393. 4 -349.9
AlO 47,83 37. 04 11,48 59.13 48, 80 17,53
A11 95, 97 247.8 182.2 120, 2 323, 8 235, 9
Als 143, 4 276.0 495, 3 177, 4 361.2 658. 5
Alg 4, 09Y 192.0 78. 06 97. 61 240, 3 104, 3
Ay 22,96 78. 06 286.9 35. 05 104, 3 354, 7
A 78. 06 364, 4 552.0 104, 4 471.9 722. 4
Alg -3686. -3283. -1015, -3686. -3283, -1015.,
Ao -70, 76 -101. 8 -85.39 -88. 68 -131.9 -114.2
A18 -3283., -45710., -32400. -3283. -45710. -32400.
A19 ~101. 8 -177.3 -155.8 -131.9 -228.0 -204,2
AZO -1015. -32400. -215700. -1015., -32400. -215700,
Asq -85, 39 -155. 8 -163.8 -114.2 -204. 2 -210,0
A 1189, 2000, 1910, 1189. 2000. 1910,

N
bo
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TABLE II

COEFFICIENTS OF ASYMMETRICAL EQUATIONS (Eq. 13) FOR

N = 1—=6 AND VARIOUS VALUES OF POISSON' RATIO
V=0

N =1 N =2 N =3 N =4 N =5 N =56
B1 -3.188 -4,812 -6, 989 -10. 04 -13,98 -18. 82
BZ -5, 983 -6. 555 -14,18 -25. 06 -38.86 -55, 63
B3 -04504 9. 750 18.23 25,72 33.37 41. 51
B, -12,18 -36,49 -51.24 -66. 98 -84, 53 -104.0
B5 -11. 62 -34. 01 -58.27 -87. 64 -125.8 -173.3
B6 -21. 96 -49. 93 -99.10 -154,0 -212.2 -2173.1
B, 15.79 19. 82 30.20 46, 03 66. 96 92.81
B8 26, 42 56, 02 87.70 126.8 175.2 233.3
B9 18, 38 Z23.57 42,78 69,11 10L.5 139.8
B.g -8.793 -8, 311 -8, 034 -7.877 -7, 787 -7.733
B -48 07, -9614. -30440. -86520. -204800. -419800.
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TABLE II (Cont'd)

COEFFICIENTS OF ASYMMETRICAL EQUATIONS (Eq. 13) FOR

N = 1=—=6 AND VARIOUS VALUES OF POISSON'S RATIO

V=1/4

N =1 N =2 N =3 N =4 N =5 N =5
B1 -3.749 -5.639 -8, 587 -12.69 -17.97 -24, 42
BZ -6. 882 -8. 582 -16.76 -28, 88 -44, 53 -63, 62
133 -0, 5580 9. 416 17,74 25, 58 33, 44 41, 67
B4 -14,45 -40,19 -58, 33 -78.07 -100. 7 -126.4
B5 -14, 35 -37.83 -66. 52 -101.2 -145.3 -199. 9
136 ~26, 84 -58.18 -114.0 -178.7 -248. 9 -324,3
B, 18. 54 24, 37 38.13 58. 80 85,95 199. 4
B8 31.18 64, 61 101.8 148. 8 207.4 278.2
B9 22,84 31,52 56, 48 90. 50 132, 7 183.0
B10 -9.215 -8. 559 -8. 180 -7, 967 -7. 844 -7.770
B -4807. -9614. -30440. -86520. -204800. -419800.
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TABLE II (Cont'd)

COEFFICIENTS OF ASYMMETRICAL EQUATIONS (Eq. 13) FOR

N =

l—=6 AND VARIOUS VALUES OF POISSON'S RATIO

J=1/3

N =1 N =2 N =3 N =4 N =5 N =6
B1 -4, 025 -6, 088 -9, 412 -14, 04 -19.98 -27.22
B2 -7, 315 -9,426 -17.98 -30.79 -47,. 38 -67, 62
B3 -0, 598 9.002 17. 65 25,59 33, 52 41.75
B4 -15. 57 -42.18 -61.87 -83.59 ~-108.7 -137.7
B5 ~-15,68 -40. 04 -70. 75 ~-107. 8 -154.9 -213.2
B6 -29,26 ~62.45 -121.7 -191.2 -267.4 -349.8
B7 19. 89 26, 64 42.11 65,20 95. 46 132.7
B8 33.49 68. 80 108.8 159, 8 223.5 300, 7
BC) 25,02 35,42 63,22 101.1 148.2 204.5
B10 -9.374 -8. 652 -8.235 -8. 000 -7. 865 -7.784
B -4807. -9614, -30440. -86520. -204800. -419800,
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TABLE II (Cont'd)

COEFFICIENTS OF ASYMMETRICAL EQUATIONS (Eqg. 13) FOR

N = I——6 AND VARIOUS VALUES OF POISSON'S RATIO

Vo=1/2

N =1 N =2 N=3 N =4 N =5 N =56
1 -4, 847 -7.481 -11.92 -18.09 -26. 00 -35. 64
> -8. 574 -11.74 -21, 60 -36. 52 -55, 94 -79. 67
3 -0.6871 8.772 17.57 25,71 33,72 41. 96
4 -18. 88 -48., 22 -72.40 ~-100.0 -132.9 -171.3
5 -19. 61 -46. 91 -83. 38 -127.7 -183.7 -252.8
6 -36, 52 ~-75.44 -144, 7 -228,4 -322. 4 ~426.2
7 23,86 33.51 54, 09 84, 42 124, 0 172.7
8 40.29 81.11 129. 6 192, 5 271.8 368.0
9 31.45 46. 95 83.24 132.7 194, 6 269.1
10 -9, 722 -8.856 -8, 356 -8.075 -7.912 -7.815

-4807. -9614. -30440. -86520, -204800. -419800.
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TABLE II1

SUMMARY OF BUCKLING TESTS

3

RMS

RMS

Shell R t x 10 A Pyrit Gerit,
inches inches r?ughness roughness (cm.Hg)
convex concave
surface surface

1 40,94 16.8 8.69 40 35 11.2 0.65
2 40.85 9.4 11.62 40 40 3.34 0.62
3 40.58 20.0 8.00 30 110 17.2 0.69
4 39.49 32.3 6.38 50 35 48.0 0.70
5 39.21 2.2 12,02 60 20 3. 49 0.63
6 39.92 40,3 5.68 71.7 0.69
7 19.83 13,1 14,14 40 70 40,1 0.90
8 19.74 10.4 15.88 40 70 21.1 0.74
9 19.87 16.9 12.43 50.0 0.68
10 19.69 12,7 14, 42 40 50 34.7 0.82
11 19,44 15.5 13,13 30 35 56.3 0.87
12 19.54 8.9 17,26 17,5 0.83
13 19.58 26.3 10.04 30 30 138.9 0.76
14 19.48 10,3 16.07 35 40 24.0 0.84
15 19.44 21.2 11.21 25 20 98.0 0.81
16 19.50 8.3 17.88 25 15 15.5 0.83
17 19.42 6.5 20,32 25 15 8.1 0.72
18 38.59 11.5 10.83 20 20 5.9 0.66
19 37.61 10.0 11.73 30 10 4.73 0.65
20 39.55 13.6 9.84 30 25 8.6 0.72
21 39.14 20,5 8,04 35 20 20,0 0.71
22 39.39 9.6 11,71 8 25 4,43 0.73

3¢

“inches x 10

6
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SEC. A-A Vs

FIGURE 1. GEOMETRY
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Figure 14: Wax Form and Anode Assembly Ready for Plating

Figure 15 Machining the Wax Form



Figure 16: Plating Installation

Figure 17: Shell, Mounted in Rings, Ready for Testing
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