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ABSTRACT

Two modern multistory buildings, one a five-story reinforced
concrete building, the other a nine-story steel frame building, have
been the subjects of an extensive series of dynamic tests. The
vibrations of the buildings were induced by means of synchronized
vvibration exciters. The mathematical analysis needed in order to
determine the stiffness and damping matrices from the experi-
mentally determined modal properties of a structure has been

developed.

Three translational and one torsional mode of vibration of the
reinforced concrete building were investigated in considerable detail.
The damping in each mode and the resonant frequency was determined
under various levels of excitation. Complete mode shapes were
determined as well. The measurements of the resonant frequencies
show a well-defined nonlinearity that can be well explained from the
hysteretic material properties. The values of damping were for all
modes approximately 2% with a tendency for the value of damping to

increase with increasing force levels.

A total of seven translational and three torsional modes of
vibration of the nine-story steel frame building were investigated
in detail. A mode in which the floor slabs vibrate horizontally as
free-free beams was excited as well. The lowest translational
modes in the two principal directions of the building had damping
values of about 0.5%. The second lowest translational modes had

damping values of approximately 1.0%. For both buildings the
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damping values are considerably less than the values usually men~
tioned in the literature. Since most earlier tests used run-down
tests rather than the steady~state tests used in the present work,
comparison tests were run to explore possible differences in the
test results. It was concluded that run-down tests could easily
‘overestimate the values of damping by several hundred per cent.

A new method for the measurements of natural periods of vibration
of structures is proposed. The new method has several important
advantages over wind-excited vibration tests which have been used
extensively in the past to measure the natural periods of vibration

of structures.
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CHAPTER I

INTRODUCTION

The transient response of a multistory building excited by an
earthquake or an explosion is difficult to analyze in its full generality.
‘Simplifying assumptions must be made concerning the force input as
well as the dynamic characteristics of the structure. It would be
desirable to have experimental results of the stresses and strains
induced in actual buildings during strong-motion earthquakes or
explosions in order to obtain information about the true interactions
of the various elements of a multistory building. The response of the
structure would depend upon many factors such as force input, size,
shape, masses, stiffnesses of the various elements, degree and kind of
foundation compliance, number and location of intentional and uninten-
tional joints, energy dissipation characteristics, etc. Information of
this kind is difficult to obtain since in any particular location, strong-
motion earthquakes occur infrequently. Preliminary work in the
determination of the dynamic properties of multistory buildings from
measurements taken during earthquakes or nearby explosions has

(1) (2) (3)

been carried out by Kobayashi, Hudson, Blume and Hudson

and Housner. (4)
Another method of obtaining information about the dynamic

characteristics of multistory buildings is to somehow excite the

buildings artificially into a vibrational motion. This would, of course,

give no direct information about the effect an earthquake would have

on the structure, but it would give information about the dynamic



characteristics of the structure such as its periods of vibration, mode
.shapes and energy absorption. Some of the earliest forced vibration
tests are reported in ref. (5). Later tests have been carried out by a
number of investigators; a description of the numerous ways of

(6)

,perforrni:qg dynamic tests has been given by Hudson' ' whose paper
contains an extensive bibliography listing most of the structural
dynamics research carried out during the last 40 years.

Numerous laboratory tests on models and isolated building
elements are reported in the literature. For example, Wilbur and

(7)

report static and dynamic tests of simply-supported

(8)

Hansen
reinforced concrete beams. Penzien studied the damping character~
istics of prestressed concrete beams. Pian, Hallowell and

Bisplinghoff(g)

investigated the damping capacity of built-up steel
beams. While all of these studies are of value in extending our
knowledge of the dynamic characteristics of the materials tested, it
is very difficult to extend this knowledge to a description of the
dynamic characteristics of any specific multistory building since, as
already pointed out, the dynamic characteristics of a multistory
building are affected by a large number of factors not neccssarily
governed by the characteristics of the materials of the structure.
The effect of foundation compliance on the dynamic response

(10)

has been treated analytically by Liycan and Newmark,
(11)

an analog

‘computer study was made by Merritt and Housner

(12)

and by
Housner who analyzed simultaneous recordings of acceleration

of the basement of a building and of the ground some distance away

from the building during an earthquake. The results indicated that
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the effect of horizontal ground coupling was not appreciable for
typical California soil conditions. It is of interest to note that in the
dynamic tests described in Chapters III and IV, the motion of the
ground floor in translation as well as in rotation was extremely small.
On the other hand, in most of the dynamic tests of multistory

(13)

buildings in Japan, as reported by Kawasumi and Kanai

(14)

and by
Hisada and Nakagawa, the results indicate that the ground motion
accounts for most of the total response of the buildings. It is
reasonable to assume then that in most of the Japanese tests a large
portion of the energy dissipates into the ground rather than being
dissipated in parts of the structure. In the present tests, as reported
in Chapters III and IV, the reverse would be true. This points to the
danger of comparing the results of dynamic tests without taking soil
conditions into account.

The advent of modern high-speed computers has meant that
many of the problems that are involved in analyzing the response of
multistory buildings subjected to dynamic loads can now be treated
in much more detail than was possible before. The analysis of
nonlinear systems has been carried out by a number of investigators

(15)

such as Penzien,

(18)

Veletsos and Newmark, (16) Berg(l7) and
Thomaides. Computers have also made possible a closer look

at some of the assumptions that are sometimes made in the analysis.

Sekar_an(lsa)
(19)

treated the effect of joint rotation. Rubenstein and

Hurty investigated the effects of joint rotation of a multistory steel

(20

frame building and Rubenstein investigated the effect of axial de-

formation of the same building. The work presented here is no
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exception; without the aid of a computer it would have been impossible
to analyze in detail the data obtained from the forced vibration tests.

In the present work much attention has been given to the question
of damping in structures. The question has been explored theoreti-

(21) (22) (23) (24)

cally by Kimball, White, Den Hartog and Jacobsen.

Values of damping determined from vibration tests are given by

(26

Kanai and Yoshiza,wa,(zs) Dockstader, Swiger and Ireland, ) Bleich

(28)

and Teller(27) and Jacobsen. The last reference includes

abstracts of a large number of publications, most of them covering the

damping as determined from Japanese vibration tests. The values

of damping determined from the present tests are significantly

smaller than the values usually mentioned in the literature. It was

found that a very accurate speed control was needed to define precisely

the response curve from a steady-state test. It was also found that

run-down tests could lead to a determination of damping values that

are up to 2. 5 times as large as the damping determined from a

steady-state test. Since most of the vibration tests of full-scale

structures in the past have been in the form of run-down tests or,

in a few cases, in the form of steady-state tests in which the speed

of the exciter could not be controlled precisely, the values of

damping as determined by earlier investigators should be treated

with caution. These problems are discussed in detail in Chapter V.
The problem of determining the properties of a multistory

building, when the force input as well as the response of the structure

is known, has received very little attention. The most systematic

(29) (30)

treatment has been given by Berg. Kanai treated the special
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problem of determining the stiffnesses of a multistory building when

only information from one of the modes was available.

Contents of the Thesis

The aim of the work reported in this thesis has been to explore
'in considerable detail the dynamic characteristics of two modern
multistory buildings.

In Chapter II the mathematical background of structural testing
has been given. It is shown how the excitation of pure normal modes
in general is an iterative process. The equations necessary to deter-
mine the stiffness and damping matrices from the experimentally de-
termined modal properties have been developed. The determination
of damping from the experimentally deter mined response curves has
been treated in some detail. Some special problems encountered in
the numerical analysis have been discussed in detail.

Chapter III discusses the experimental results obtained from
dynamic tests of a five-story reinforced concrete building. Non-
linearities of the response are treated in detail. Four modes were
excited in this structure; three of these were translational and
one was a torsional mode.

Chapter IV concerns itself with the results of dynamic tests
of a nine-story steel frame building. A total of eleven modes were
determined experimentally, seven of these were translational, three
were torsional and one was the mode in which the floor slabs
vibrated horizontally as free-free beams. The natural periods of

vibration were detcrmined at 18 different stages of construction
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‘covering a period of about 10 months.
In Chapter V the results of steady-state tests have been com-
pared to those of run-down tests. In Chapter VI a new method for

the measurement of the natural periods of structures is proposed.

Structural Vibration Exciters

A vibration exciter employing counter-rotating weights will
apply inertia forces to the structure in one direction only, since the
centrifugal forces from the rotating masses will be additive in one
direction while their effects will cancel each other in the perpendicular
direction. The forces applied to the .structure are proportional to the
square of the frequency and they vary sinusoidally with time. The
four vibration exciters designed and developed at the California
Institute of Technology for the California State Division of Architecture
are of the above ’mentioned type in which two weights counter-rotate
around a vertical axis. While the basic principle of creating sinu-
‘soidal forces by means of counter-rotating weights is the same as
has been used in earlier vibration exciters, the present exciters
are unique in two ways, (1) any number of the four can be run
synchronized in phase of 180° out of phase, (2) the speed control of
the exciters is extremely accurate, much more so than the speed
controls of earlier vibration exciters. The speed can be controlled
to an accuracy of about 0.1%, i.e., after running the exciters at a
specific frequéncy; and recording the building response, it is
possible to change the frequency of excitation to a new value that
' only differs O. 1% from the previous value.

The development of the exciters has been under the direction
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.of a special committee of the Earthquake Engineering Research
Institute. The mechanical design of the vibration exciter and drive
unit was carried out at Caltech under the direction of Professor

D. A. Morelli. The electrical speed control and synchronization
system was developed by Professor T. K. Caughey of Caltech. A

(31)

description of the vibration exciters has been given by Hudson.

Instrumentation

A total of six accelerometers were used simultaneously to re-
cord building response at different points in the building. The accelero-
meters were Statham strain gage accelerometers of +2g range and
100 cps natural frequency. All accelerometers were mounted on a
6-3/4 1b steel block which made the assembly sufficiently heavy that
friction could hold the block to the surface on which it was placed.

The signals from two of the accelerometers were amplified by a
Brush carrier amplifier and were recorded on a direct inking Brush
oscillograph. The signals from four of the accelerometers were ampli-
fied by two dual channel Sanborn carrier recorders and recorded by
hot-wire writing arms on heat-sensitive recording charts. The two
recorder‘s were synéhronized time-wise so that phase shifts in the
responscs of the four accelerometer s could be investigated. The instru-
mentation set-up is shown in F‘ig. A -4 in the appendix. Typical re-
sponse records from the Brush equipment are shown in Fig. 5-6 and
from the Sanborn equipment in Figs. 5-2 and 5-4. A very complete
description of instrumentation for structural vibrations has been given

by Keightley. (3?)



CHAPTER II

THEORY OF STRUCTURAL TESTING

The equation of motion of the multistory building of Fig. 2-1'is

] gx)g + [c]gx}r [x]{x}- {f(t)% (2. 1)
In reducing the aétual structure to the mathematical model of Eq. &.1
and in the analysis that follows, the following assumptions are made:
1) The structure can be treated as a lumped-parameter
system, i.e., thev masses can be concentrated at the
floor levels.
2) Thek system is linear.
3) Classical normal modes exist.
4) There is no base compliance.

5) The axial deformations of the columns are neglected.

The mass matrix [M] is a diagonal matrix

-ml 0 0]
0 m, O 0
] - 2
LO Om
n.é

. .th
in which m, is the mass of the 1t1 floor plus the contribution from the

adjacent stories.

The stiffness matrix is

1 12T In
[K] = . k21
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* in which kij is the force exerted on the ith mass by the springs when
| : th o
the system has a configuration such that the i mass has a unit dis-

placement and all other masses have zero displacement, i.e., xi=1,

=0, j #1i.
XJ A J
The damping matrix is
- 1
| C11 ClZ ...... Cln
[¢]- Ca
pltcrereee e Cnn ]

in which Cij is the force exerted on the ith mass by the dashpots when
the velocities of the masses are such that the ith mass has a unit
velocity and all other masses have zero velbcity, i.e.,

=L k=0, A

fxd = < :&k

and the forcing vector be

Cfrmy =L )

[ fa® )

[Ml is a diagonal matrix with positive diagonal elements. [K] and
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' [C} are symmetrbicu
The undamped natural frequencies and mode shapes are found

from the homogeneous equation:

] §53 + (k] 63 = S0l (2. 2)
£y = (M™%} (2.9

Equation 2.2 then becomes

[na] [n] 7268 + [ ] [M] /2§73 = o3 (2. 4

“1/2,

Let

Premultiplying by [M:\

[ 72 [oa) ) 72608+ ]2 )] 260 =0} 2o 9)
[I]gr’Z%Jf [E] 7= o (2. 6)

P>
[K] is symmetric so [K] is also symmetric since

) ([M]‘l/z (][] 22 T (] k) (] 2= 2 ] ]2
]

s - -
It is of interest to note that while {K] = [M] 1/2 [K][M] 1/2 is a

or

=5
=
[

symmetric matrix, the matrix [Mlnl [K] formed by premultiplying
Eq. 2.2 by [M]_l is not in general symmetric. [M]-l [K] would only
be a symmetric in the special éase where all the masses in the
system are identical.

A well known theorem in matrix algebra, see Perlis, (33)

(34)

Hildebrand, states that a symmetric matrix can be diagonalized

by an orthogonal transformation. If it is assumed that the eigenvalues
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are distinct and the orthogonal transformation matrix is normalized,
then this transformation is unique. The elements of the diagonal

matrix are equal to the eigenvalues. Let the transformation be

(=[5} (2. 7)
[¢)" [¢] = [1] (2.8)

Using the transformation given by Eq. 2.7 and premultiplying‘by

[¢]T, Eq. 2.6 becomes

[¢]T[¢}§S’§+ [¢]T[§][¢]§9§=€0§ (2.9)
3 [‘wi} 59} =§0¢ | (2. 10)

The columns of [¢] are the eigenvectors of the system described

such that

or

by Eq. 2, 6, so by the use of Eq. 2.3 the eigenvectors of the original

system Eq. 2.2 are found to be:

[9’]= [M}__l/z [¢] (2.11)

The columns of [(//'] are the normal modes of the original system.

From Eg. 2.1l it follows that

[¢)- M2 o] - (2.12)
[¢]T = [ ‘/’]T [M]UZ | (2. 13)

Then from Eq . 2. 8

[g1" (81 [ [ [ [ )= [o]" [][y)-[x]) (2.14)

From the above equations it follows
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(8 [RYP) (6] 02 [2)["2 []
- (o] D2 [a 2] ] /2 (W2 [0]- (0] [ [#]

- [\w%] (2. 15)

It would seem more direct to uncouple Eq. 2.2 by letting

£x1=[yés? (2. 16)

After premultiplying by [L}J]T, Eq. 2.2 becomes

)" [ [t [o)T [x)[0)Ee3 03 (2.17)
[ 2] fot -0 219

However, in some of the numerical analysis that follows it is more

or

convenient to use the modal matrix in the form of Eg. 2,11

lv)- [M]'”Z[gé] (2. 11)

Expressed in this form one can take advantage of the fact that [¢] is a
‘normalized orthogonal matrix.

In a passive system [M] and [K] are positive definite matrices
and [C ]}is a non negative matrix. This follows from the expressions

for kinetic energy, potential energy and the dissipated ener gy, since
Ey, = ; gx} { ]{x§>o for any {x} ;égo; (2. 19)
[K] Ex}>0 for any gx} # go;( (2. 20)

[c] 20 for any gxz #gog (2. 21)

1\.1-— Nl.a

E
Edi

It is well known that since [M] and [ } are positive definite
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: . 2
matrices the eigenvalues @ will be real and positive; also the
eigenvectors g(-,bgwill have real components. Including now the

damping matrix Eq. 2.2 takes the form

[Mlgy+ [c]sg+ [x]§=3 = fol (2. 22)

As before let
£xb = M2 {7 (2.3

]—1/2

After premultiplying by [M Eq. 2. 22 becomes

[I]§f)j}+ [M]_‘l/r.‘?- [C] [M}-1/2g,;z + [M]—l/z[ ][ ]1/2%)z z (2. 23)
" [z)¢3+ [€ ]E”Z? % ]2”5 0} (2. 24)

Since {K] and[C] are symmetric, [Ih{]vand [%] are also symmetric,

(3= [¢) £°3 @)

[(f] is the unique normalized orthogonal transformation matrix that

let

uncoupled the undamped system. After premultiplying by [¢]T,

"Eq. 2.24 takes the form

G (61580 [ [ETR)0- [ [EIRlER- e
Ll L)l 2] o -6 o 20

35)

or

Rayleigh( showed that if the damping matrix is a linear combination
of the mass matrix and the stiffness matrix, the damped system will
possess classical normal modes. The same transformation that led

to uncoupled equations in the undamped case would also lead to

uncoupled equations in the damped case. Let
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[c]=e [M]ex[x] (2. 27

(¢ [E)fg]- [ (4™ [e] M2
(977 ()72 [ ) s (] ] /2 9)
o (8] % [aa] ()2 e 4[] [ ™2 ] /2 8]

« [¢]"[¢)+ = [‘cof] =a 1l v [‘wf] (2. 28)

Rayleigh's result is ver y useful since it attaches a physical description

1

to the damping matrix. Since Eq. 2.27 is in terms of the uncoupled

coordinate the ith equation becomes
"+(+co‘2)'+u>2 =0 (2. 29)
Pitlat¥o) gt @ p;= | ‘

Expressing this equation in terms of the percentage of critical damping,

Eq. 2. 29 becomes

v ) 2
91+ ZﬁiwifiJ' @, yi_o (2. 30)
"In this equation
2
c a + chi
B = C Ry ‘ (2. 31)
cr 1

If a =0 the damping matrix is proportional to the stiffness matrix and
the damping mechanism can be represented as inter floor dashpots,
i.e., relative damping. From Eq 2. 31 it follows that the percentage
of critical damping is proportional to the natural frequency of the
system. If % =0 the damping matrix is proportional to the mass
matrix and the damping me chanism can be represented as dashpots

connecting the masses to the base of the structure, i.e., absolute
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| damping. In this‘ ca;se it follows from Eq. 2. 31 that the percentage of
critical damping is inver sely proportional to the natural freque ncy.

As shown above the requirement that the damping matrix be a
linear combination of the stiffness matrix and the mass matrix will
lead to uncoupled‘equations of the type expressed in Eq. 2.30. Further-
more, the same unique transformation that uncouples the system with-
out damping will also uncouple the damped system, i.e., the mode
shapes are the same in the two cases.

While Rayleigh's assumption is a suffiecient condition, it is not

(36)

a necessary condition. This was pointed out by Caughey who went
on.to show that the nece ssary and sufficient condition for the existence
of classical normal modes is that the same transformation that
diagonalizes the damping matrix also uncouples the undamped system.
In an undamped linear system the masses pass through their maximum
and minimum positions at the same instant of time. If classical
‘normal modes are to exist in a damped system the mode shapes must
be fhe same as for the undamped system and the masses must pass

thr ough their maximum and minimum positions at the same instant of
time.

Recently Caughey( 37)

showed that for linear systems with
symmetric mass and stiffness matrices and for distinct eigenvalues a
necessary and’sufﬁ_;cient condition for the existence of classical

normal modes could be expressed in the following form:

n-1

b )BT o [ D) e

£=0
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" In this equation n'is‘the number of degrees of freedom of the system
aﬁd £ takes on integer values. Equation 2. 32 expresses a much
wider class than Rayleigh's assumption. It can be seen that Eq. 2. 32
leads to Rayleigh's aésumption by letting ag=a, a.1=’x s @y=as=...a
=0,

In the vibration tests on two multistory buildings described in
Chapters III and IV, simultaneous measurements were recorded of
the motion of several floors. The response records were synchronized
timewise so it was possible to investigate whether the different floor
masses passed through their maximum and minimum positions at the
same instant of time when the system was excited into a pure natural
mode. It was found that the masses did attain their maximum and
minimum positions at the same instant of time.

This, however, does not prove that the damping matrix is truly
of a form that would lead to classical normal modes in the situations
investigated. It only shows that the damping matrix can be well
approximated by a classical damping matrix, i.e., a matrix that is
diagonalized by the same transformation that diagonalizes the mass

and the stiffness matrices. O‘Kelly(38)

showed in performing per-
turbation analysis on a non-classically damped system that the first
order approximation of the transformed damping matrix was the
diagonal elements of this matrix. He went on to show in an analog
computer study that for damping in each mode ranging up to 20% of

critical damping that this approximation was well justified. Since the

damping in the actual tests of structures was found to be less than 5%
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of critical dampihg in all modes investigated, the assumption that
classical normal modes exist seems well justified. In cases where
classical normal modes do not exist the system can be analyzed by
the more general méfhod of Foss. (39)

A The effect of damping on the natural frequencies of linear
dynamic systems has been investigated by Caughey and O'Kelly(4o)
treating the case of classical normal modes as well as the case of
nonclassical normal modes. It is of interest to note that if a system
pos sesses classical normal modes the damped natural frequencies
are always less than, or equal to, the corresponding undamped
frequencies. In a system not possessing classical normal modes the
damped natural frequency of the lowest mode may be higher than the
corresponding undamped frequency. For damping values of the
magnitude found in tests of multistory buildings, the differences

between the damped natural frequencies and the undamped natural

frequencies would be negligibly small.

Forced Excitation of Pure Normal Modes

- The equation of motion of the damped system subjected to a

forcing vector is:
[M]§ + [c]g e [&]§xd= faend (2. 1)
Let the system be ﬁncoupled by the transformations used above, i.e.,

gg);J“ ‘[\Zwipi\] $67 + [\C"iz\} §o8 = [‘/’]T [M}_l/zgf(t)g =€g(t)§

(2. 33)
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The ith equation then becomes

2 [ 2 -
Pyt 2B Pt wm P, = g(1)

(2.

Assuming zero initial conditions, i.e., Pi(o) = Pi(O) =0 for all i

then the rth mode will be purely excited if
gi(t) =0 alli #r

gr(t) £0

or expressing the right hand side of Eq. 2. 33
(0 )

) = [¢]T[M];l/2£f<t)§

/

TACIES

O—0O m O~

Premultiply Eq. 2. 36 by ([¢]T

ot = B o]

[#]

O~ =0 -

Premultiply Eq. 2.37 by [M]l/z

tef = ][] 5

(t)}

© O 0 ©O C©

Using

[6]- [ 9]

Eq. 2. 38 takes the form

(2.

(2.

34)

35)

. 36)

37)

. 38)

. 13)
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S
%f(t)g _ [M]I/Z[M]l/z [‘W

0 0
I !
gr(t)L= [M][l}’ gr(t) > = [M] gu](r)g g.(t)  (2.39)
0 0
I |
0 0

3 /

gr(f) may be any function of time. All that is required in order to
excite the rth mode of the system is that the force amplitudes be
proportional to the mass at each station times the displacement
coordinate of the rth mode of that station. The largest response will
of course be attained if the frequency of excitation is close to the

natural frequency of the rth mode.

Forced Excitation of Pure Normal Modes as an Iterative Process

In a complicated dynamic system the mode shapes may not be
sufficiently well known to permit the use of the procedure explained
above. An iterative process that converges on the excitation of a
pure natural mode, say the rth mode, might then be needed. ILet all

' components of the initial forcing vector be sinusoidal with frequency
& but with arbitrary amplitudes. The equation of motion takes the

form:

[M]gx} + [C]gx}+ [K]gxg = gf(t)g =§ P} sincot (2. 40)
s before le gx_g [M]-I/Z ngz (2.0 3)

et = [#) 83 | (2. 7)

After performing the transformations of Eqs. 2.3 and 2. 7 and after

-1/2

premultiplying by [M} and [¢]T, Eq. 2.40 takes the form:



2]

: {?@Jf [\251”1\]%?} * [\@iz\ ] (ol = '[QS]T [M]"l/z gp sinwt; =€g(t)}
(2. 41)

The steady-state solution of Eq. 2.4l is known to be

¢ F5- [ z(m)\] [¢] (M) %{ P sineot-g ) (2. 42)

where for simplicity

2 —
2 2
z.(w) =’ '\/ 1-{-9‘-’—) ] + [ZB. © (2. 43)
i i wi | 1 Coi

gﬁ’?} - [¢] EPZ (2.7)
£ x5 = [M]-l/z £l (2. 3)

Eq. 2.42" takes the form:

ER R R N e S RTE B SCP

and since the motion is steady state:

gx-g = w? [M]-1/2>[¢].[\E%——w)\] [¢]T [M]-l/ng sin(cot-q )} (2. 45)

Expressing Eq. 2. 45 in terms of amplitudes of acceleration:

o3 1L

Since

and

i iR o B8] o] [0 [M726Y 1200
X

n
Let EP§® be any arbitrary distribution of force amplitudes and let

w9 o, Then it follows from Eq. 2. 46:
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3 <] w2 ¢ 0
g } l/z[gb][leJ)\] (4] M) 1/2 EP% (2. 47
Change the force distr1but10n s0 that

P} = [ ]E”’% (2. 48)

8% L (9 ] [ 2 e B2 ]
s

M () pd 2 ) o

97 [9)- 1] o9

so Eq. 2.49 becomes

| E?':E@":‘ ot [M]'M[ ][z(w ] [¢]" [m ]l/zﬁP}(D (2. 50)

After k iterations Eg. 2. 50 takes the form:

but

and

k

= 2k [Ml-l/z [¢] [\2(%)\] [¢]T [M]“l/z EP}(D (2.

As w& o and assuming distinct eigenvalues and small damping, say

o

1)

less than 10% of critical damping, the rth element in the diagonal

~1

—_——  will be large compared to all other elements in
Z(Go)\

matrix [

the matrix, i.e.,
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2 (€) - P 2 > _ A2 2
T el b T g
:mlw for r #1i (2. 52)
1
As k becomes large
~ 1 k 0‘0 Lk
[ Z(co)\] > (z © )0 (2.53)
o
Let . '
T -1/2 @
[ [M]7° £E = €22 (2. 54)
Then
_ - 1
; 0
k ‘ Q
N1 Troa-1/2¢.5@ [0 1 |k 0f 1 \k
Do) 7 b | ] ez )
0
o i 0 2
5 2 (2. 55)
:ﬁ br
0
|
| 0
Equation 2. 51 then becomes
. ')
g?&% e_é[M]"l/z[Sé] b_? (2. 56)
0
5 )

But since
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[M]’”Z [gé] = [gb] (2. 11)

Eq. 2. 56 takes the form:

0
0

g?;% O [‘f] 9 bp =b_ g(//(r)} (2. 57)
0
0

\

For k sufficiently large the amplitudes of acceleration will be propor-
tional to the rth Iﬁode shape and since for steady state motion the
acceleration is proportional to the displacement, the motion excited
will be purely the rth mode. It is obvious that the lower the damping in
the structure and the better the separation of the natural frequencies,
the fewer the number of iteré,tions will be needed. Similarly, since
the mode shapes are approximately known from an analysis of the
structure, it is possible to cut down on the number of iterations needed
by choosing an initial distribution of force amplitudes close to the
masses multiplied by the components of the desired mode shape.

The iterative procedure has been found necessary in exciting the
pure modes of aircraft structures for which the natural frequencies are

(41)

usually close together. Lewis and Wrisley report using 24 electro-
dynafnic synchronized vibration exciters, the forces applied being
variable in both frequency and magnitude in order to apply the iterative
procedure in exciting pure natural modes. In most multistory buildings
the natural modes .:are sufficiently well separated so that the natural

modes of interest can be excited with only one or two vibration exciters

placed in advantageous positions on one of the floors of the building.
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' Probléms of modé iﬁterference usually do not exist for natural modes
- of the same type, for instance, if a multistory building behaves
dynamically as a uniform shear beam, the lowest translational
frequencies would be in the ratio of 1, 3,5, 7 etc. However, the
posnsibility exists that some torsional frequency might be close to

one of the the translational frequencies. Similarly the natural fre-
quency of the mode in which the floor slabs vibrate as free-free beams
couldbe close to the natural frequency of one of the translational or
torsional modes. These problems can, as will be shown later on, be
solved by positioning two synchronized vibration exciters on one of the
floors such that the undesir ed modes are subdued or eliminated

entirely.

Forced Excitation of Pure Natural Modes, Synchronized

Vibration Exciters Acting on Only One Mass

Let a sinusoidal force act on the klch mass, i.e.,
) ( )

sin cot L

{0} =

-0 Ho—0
w
—
o+
—
———
1"
N
o-0 MHo—-o

The equation of motion then becomes

bt 16+ (<]t

3

sinCot (2. 58)

g

Performing the usual transformations leading to the uncoupled

equations, Eq. 2. 58 takes the form



b e |83 o] fe3e [

»

0 ) ( (/,k(l) )
- [(/J]T insinaot Y = (Pk(z) kpksinwt (2. 59)
L ?) L}lk(n)J
The steady state solution is equal to
p.= SUk(i) P, 1 22 : sin(wt- @) (2. 60)
o/ e/ g

Assuming small damping, say less than 10% and for ¢ & co_itis

r
evident that if the natural frequencies of the system are well separated

fifzo i#r

and
_qy (T 1 ,
.F = gak Pk > ’ 2' sin(cwt- c,or) (2. 61)
T co r w
T
Since /

g} = [M] 2 [#]653- [¢] €52
§x1= (6] ¢ 1

(2. 11)
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FrornA this equation it can be seen that the larger the kth component in
the rth mode the larger the response. Also, if the kth floor should be
(r)

th . . .
a node for the r ~ mode, i.e., Sbk =0, no motion will occur. So
in order to eliminate the response of a specific mode the vibration

exciters should be placed at one or more of the nodes for that

particular mode.

Determination of the Stiffness and Damping Matrix From

Experimentally Determined Modal Properties

Assuming again that classical normal modes exist, consider

the equations:

[V’]T [M] [‘/’]= [I] (2. 14)
[‘U]: [\wii} (2. 15)

[¢]f ] [SU] = [\Zﬁiwi\} | (2. 63)

-1
Premultiply Eq. 2.14 by ( [(P]T):
-1

SIGHIOE

Since the normal modes, i.e., the columns of [(/J] , are linearly
independent, the modal vectors span the space and the existence of

( [([}]T)-l is guaranteed. Combining Eq. 2. 64 with Egs. 2.15 and 2. 63

[K] [,‘PL: [M] [‘V] [\C"if] (2. 65)
SIOASICIETN

Expressing the equivalence of the rth column of the left hand sides

results in:
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‘and right hand sides.of Egs. 2.65 and 2. 66:
&) £ - M) f0™Y o, ? | (2. 67)
[c] gq”“? = [m] §9 " 2p co (2. 68)

If the masses are known and g(P(r); ., and ﬁr have been determined
from vibration tests of the structure, Eg. 2. 67 expresses the unknown
elements of the stiffness matrix in terms of known quantities. For
each mode of an n degree-of-freedom system, Eq. 2.67 expresses n
equations. If s modes have been determined experimentally, va total
of s times n equations are available to determine the unknown
eiements in the stiffness matfix. Similarly s time s n equations are
available to determine the elements of the damping matrix, the
equations being in the form of Eq. 2, 68.

The number of unknown elements in the stiffness and damping
‘matrix depends upon the coupling in the system. Three cases of
practical intere st will be considered here: I. Simply coupled system;

II. Close couplbed system; and III. Far coupled system.

I. Simply coupled system

Let the structurce be represented by a mass-spring-dashpot
system in which each mass is connected by springs and dashpots to
adjacent masses oﬁly, and only one mass in the system is connected
by a spring and a dashpot to the base. This type of a model would
correspond to a '"'shear building'" with infinitely rigid girders, i.e.,

with no rotation of the joints of the structure. In this case both the
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.st;’tffness and damping matrix will be tridiagonal; since in each row of
the stiffness or damping matrix the elements in the matrix are inter -
related there will be n unknown elements in the matrix. In order to
solve Egs. 2.67 and 2. 68 the number of equations must be equal to or
larger than the number of unknowns. Let the number of experimentally
determined modes be s, then
syn Zn or s

>1 (2. 69)

So, for the case of a simply coupled system only one mode is needed
regardless of the number of degrees of freedom of the system. How-
ever, as will be shown, the equations resulting from only one known
mode may be rather ill-conditioned.

For the sake of simplicity, the equations will be developed for a
five-degree of freedom system. The extension to other systems will
be obvious. Alsé, since Egs. 2. 67 and 2. 68 are of the same form
except for the difference in the column vector on the right hand sides,
let the equations be developed only in terms of the elements of the

stiffness matrix. Equation 2. 67 can be expressed as

.‘k1+k,2 -k, o 0 0] 'g;l(rﬂ 'ml %(r)wrz\
S 0 0 gyz(r) m, 9,,Z(r) COrz
0 “ky  kgtk, -k, WA TR S AL
0 0 -;;4 k4+k5 ¢4(r) m, ¢4(r) wrz

I 0 0 0 -k, J \%(1‘)4 \m5 %(r)wr& |

(2. 70)

For each mode determined experimentally, a set of equations in the
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form of Eq. 2. 70 can be constructed. Equation 2. 70 can be expressed

so that the unknown quantities appear as a column vector:

—

e o 0 o | [x) ;nl("’{r)wrz \
0 ¢5-f7 ¢ o 0 | maty e
Y N IR | M B R
0 . S I RS | P

Lo 0 0 0 ‘Fsr)“/’z(}r)J | *5) msg&ér)wa

Equation 2. 71 is in the form:’

[A] fvi= gb} (2. 72)

For an n degree of freedom system in which s modes have been
determined experimentally [A] will be a known (sn by n) matrix, Eyz
will be an (n by 1) column vector containing the unknown quantities and
{b; will be an (sn by 1) column vector with known elements. If more
than one mode has been determined experimentally the experimental
errors will make the equations inconsistent. In this case a fitting
procédure will be needed to make use of all the available data. The
application of the method of "least squares' to this problem will be
described later on.

If only one mbde has been determined, Egs. 2.7l constitute a
determinate set of equations. It can be seen from Eq. 2. 71 that the

stiffness elements can be expressed in closed form as follows
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Z n
" L my Sbi(r)
1=8

SR
;bs - y}s-—l

k =
S

(2. 73)
s=(1, 2,...n)

In this equation ks is the spring constant connecting the sth mass to the
(s—l)th mass. If the rth mode shape should be such that both ¢s(r)
and glis(lli are large and almost equal, the equation determining ks
could be very ill-conditioned. Figure 2-2 shows the experimentally
determined mode shapes of the steel frame building described in
Chapter IV. If only the fir st mode is used to determine the spring
constants Eq. 2. 73 could lead to relatively large errors in the determi-

nation of kg and k If the modal coordinates shown in Fig. 2-2 were

7
only accurate to within say £ 2% it is evident from Eq. 2. 73 that the

results for k8 and k., could be in error by several hundred per cent.

7
Similarly if only the second mode were used the results for k3 and k4
~would be of doubtful value. In general, if only one mode is used in
the determination of the stiffnesses, the use of Eq. 2. 73 could lead to
large errors in the determination of some of the k's.

From Eqs. 2. 67 and 2. 68 it is evident that the elements of the

damping matrix can be determined in similar fashion leading to

n
Zﬁrcor iZs my ('bi( ) )
= ) (2. 74)

=)
$Ds - (rbs -1

It is interesting to note that the spring constants (or damping constants)

that would be poorly determined by using the first mode only would be
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well determined by using the second mode only and vice versa.

II. Close coupled system

Let each mass in the system be connected to adjacent masses by
springs and dashpots and let each mass be connected by a spring and
a dashpot to the base. If the damping matrix is a linear combination
of the mass matrix and the stiffness matrix, i.e., the damping can
be represented as a combination of relative and absolute damping, then
the damping mechanism would be represented as a close coupled
system. The stiffness and damping .fnatrix would be tridiagonal but
with no interrelation between the elements of each row or column.
Eaéh matrix would consist of 2n-1 unknown elements. For each mode
experimentally determined, n equations of the type expressed in Egs.
2. 67 and 2. 68 would be available. Let the number of experimentally
determined modes be s, then in order to solve for the unknowns it is

necessary that

sn 2 2n-1

or

51—

s> 2 - (2. 75)

It is interesting to note that independent of the number of degrees of
freedom in the system, two experimentally determined modes will
suffice for the determination of the stiffness and damping elements
in a close coupled system. Also, if two or more modes have been
deter mined experimentally, the system of equations expressed by
Eqs. 2.67and 2,68 will always be oyerdetermined, i. e., the number

of equations available will always exceed the number of unknowns.



Equation 2. 67 states that:

k11

klZ

0

0

0

k12

kZZ

k)3

0

0

0

k2.3

k33

K3y

0

-34-
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(2. 76)

Rewriting Eq. 2. 76 so the unknown quantities appear as a column vector

o~

o

(l/l(r) q;z(r) 0

0

0

p ) ¢ o
o g ¢ ¢ o

0

0

0

O .

0

0

0

0o ¢ el ¢ o
o 0 o0 %(rr)gbérj

0

0

0

0

Equation 2. 77 is now in the form

[2]6% - €03

For an n degree of freedom system for which s modes have been

0

0

0

0

0 K

r & & &

k
I
I3
k
k

11W
12 r
22

23
33

34

44 | |
45

55 )

~

(2. 77)

(2. 72)

deter mined experifne ntally [A] is an (sn by 2n-1) matrix expressing

the known mode shapes; Eyg is a (2n-1 by 1) column vector expressing

the unknown spring constants and {b; is an (sn by 1) column vector of

experimentally determined elements.

A similar analysis gives the
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| expression for the elements of the damping matrix as

-~

C11)
‘ - %12
‘/’ir) %fr)o o 0 0 0 0 O C22 r‘;"Inlﬁrgljfr)c"r \
0 9"{1')9‘2(1')9‘3(,1‘) c o 0 0 0 €23 Zmzﬁr%ér)c"r
o 0 o ¢MENeN e 0 o JC33 =q2msp g,
O 0 0 0 0 ?ér)%(,r)9‘5(,r) 0 C3y zm4ﬁr¢f)wr
o 0 0 0o o0 0 o0 ?ir)‘/’e(arz Ca4 »2m5ﬁr¢ér)°"r /
C45
| Css ) (2. 78)

III. Far coupled system

Let each mass in the system be connected to every other mass
by springs and dashpots and let each mass be connected to the base by
a spring and a dashpot. In the case of a multistory building, far
coupling results when the girders are not infinitely rigid so that the
joints in the structure rotate. For this case the stiffness and damping
matrix are full. Each matrix will contain n(nt+1)/2 unknown eleme nts.

" For each mode experimentally determined, n equations of the
type expressed in Eqs. 2.67 and 2. 68 are available. If s modes are
determined experimentally in én n-degree of freedom system, then in
order to solve for the unknowns, it is necessary that |

sn 29_(_1511_2 or s )%—— (2. 79)

Equation 2. 67 states that:
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(2. 80)

Rewriting Eq. 2. 80 so that the unknown quantities are expressed as a

column vector:

0 ¢ 0

0

91 4, ¢ 94950 0 0 0 0 00
0 0%, 4 ¢, ¢ O
00 0¢ 00 0¢ 00%¢ ¢
lo oo 0008 00¢ 0¢ ¢ 0

000 04 00 0¢, 0 0%, 0¢, ¢ |

0

P‘_,\

12
13
14

15

» rFr O x & N
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~
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33
34
35
44
45

® " ® x & ®

55 |

T

r

(2. 81)
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Equation 2. 81 is now in the form

[a]{r = (]

(2. 72)

For an n degree of freedom system for which s modes have been

determined experimentally [A] is an (sn by n(nt1)/2) matrix express-

ing known mode shapes; gy; is an (n(nt+1)/2 by 1) column vector

containing the unknown spring constants and 3 b¢ is an (sn by 1)
g _ 8 Yy

column vector of experimentally determined elements. A similar

analysis gives the expression for the elements of the damping matrix:

Y3 ¥44s 0000000000
o(flooogbz%h%oooo‘oo
005‘1000¢200(F3(/)4$b5000
|0 0 071100‘0§b200(//3 OQL4(7L50

LO 0 0 04 00 0%, 0 0¢, 0¢, %

€11

12
14

15

QO O a a o

22

Cus3

€24

CZ;5

'Zml By ?1\
2maB . ¢,

(= (2mgB@ ¢y
2m B gy

LzmSﬁrwr %5 J

(2. 83)



-38-

Solution of [A]gy} ={pl

Let [A] be a (p by q) matrix with known elements; let gy; be

a (q by 1) column vector containing unknown elements and let gbg be a
(p by 1) column vector with known elements. If q < p there are fewer
independent equations than unknowns and no unique solution exists. If
¢ = p the number of independent equations is equal to the number of
unknowns, [A] is a sguare matrix and %yg = [A]_'l gb} is the unique
solution.

If g > pthere are more equatidns than unknowns and, in general,
there will be no exact solution since inaccuracies in the experimental
data will make the equations inconsistent. The Gauss-Markoff

(42)

theorem states that the least squares estimates are the '"best"
linear unbiased estimates, where '"best" means minimum variance

among the unbiased estimates.

Returning to
ALES

and rewriting Eq. 2. 72 in terms of the error vector Se}

[a)6v} - €03 = ¢ (2. 84

Squaring both sides of Eq. 2. 84

[NERE N T RS RESS oo
6 [A]" )} - S [T £} - €67 a3 7] - 6017 54

(2. 86)
The minimal condition is determined by partial differentiation of

Eq. 2. 86 with respect to either g‘f}T or EY} :
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2 [A]T [A]{y} -2 [A]Tgb} =$ol (2. 87)
[A)7 [a) 93 = [a] ¢ 5} (2. 88)

Equation 2. 88 gives the '"normal equations" and the simple expedient
of premultiplying Eq. 2. 72 by [A]T leads to Eq. 2. 88 in which
1) the number of unknowns is equal to the number of equations
2) [A]T [A] is a symmetric matrix, and 3) the solution of Eq. 2. 88
will be the ''least squares' solution.

If some equations should be more reliable than others it would
be necessary to minimize the weighted errors and Eq. 2. 84 would

then be of the form;:

71636587 [w] [a)63 -3 - €77 [w] e} 2.

[W} is a diagonal matrix in which Wi is the weight attached to the ith

equation. Again partial differentiation with respect to g.y}T or gyz
leads to the equation:
[A]T [W] [Al{y} - [A],T [W]%b} (2. 90)

It should be noted that in a system of equations in which the
number of equations exceeds the number of unknowns one is not free
to multiply some equations by a constant and other equations by a
different constant. This procedure would tend to weight some
equations differently than other equations. An example will show this;

let a system of equations be given, case I
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2x~-y =1
3x+ 5y = 9 | (2.91)

10x + 12y = 25

Solving the equations using the method of '"least squares'!, Eq. 2.91

takes the form:

2 -1 1

[2 3 10] 3 5 {X§=[2 3 10] 9 (2. 92)
a5 12l Llly 105 12

25

[113 133} x 279
133 170) v\~ (344 (2.93)

The solution of Eq. 2.93 is

or

x = 1.10322

(2. 94)
y = 1. 16042

Let the same set of equations be given in the following form, case II

2x-y =1

let2y=1 (2. 95)
3xtg '
0 12

The '"least squares'" solution now takes the form

, 1] (2 M [ ] [
3 25 1 5 3 25
5 12 3 3 = . (1) (2. 96)
h _9- _—_5- Y -1 — -
10 12 9 25 !
_-2_5 ZSJ 4 /

The solution of Eq. 2.96 is



-41-

x=1,08237

_ (2.97)
v = 1. 16441

This example was constructed so that the right hand sides of Eq. 2. 91
correspond to fhe measured values of the three lowest natural
frequencies squared, i.e., Colz, COZ and C032, After having found x
and y from Eqgs. 2.91 and 2. 95 it is of interest to see how case I and
case II would appr oximate the experimentally determined ®!'s,
Using Eq. 2. 94 the left hand sides of Eq. 2. 91 have the values:

2x~-y = 1. 046

3x+ 5y = 9.112 (2. 98)

10x + 12y = 24. 957

If one instead used Eq. 2.97 the left hand sides of Eq. 2.91 have the

values:

2x~-y = 1,000
3x+ 5y = 9. 069 (2.99

10x + 12y = 24. 797

The right hand sides of Eqs. 2.98 and 2.99 are:

Case I . Case II
w? = 1 046 e>? = 1. 000
2 : 2
w = y, w =
> 9.112 > 9.069
cu32 = 24,957 cu32 = 24,797
The measured values in this hypothetical example were wlz':l;

2
COZ =9 and w32:25._ While case I tends to give the same absolute

errors in the three equations, case Il tends to give the same relative
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2
3 -

Aerrors‘ when com?ared to the measured values Cl-)l R COZZ and Co
The above example was constructed so that it corresponds to

the equations by means of which the stiffness matrix is determined from

the experimentally measured natural frequencies and mode shapes.

If the three lowest modes were determined experimentally

Eq. 2.67 could be written

2] g} - o] 913 52
g1 - ]
[A(?’)]gk} - [M] E (3)

| 2
in which [A(l)], [A( )} and [A(3)] are constructed from the experi-

gu/ (2) Z (2. 100)

mentally measured components of the first, second and third mode
shapes. Ior an n degree of freedom system there would be 3n
equations corresponding to Eg. 2.100. Equation 2.100 could have been
written in the following form

L [aM0= [ad] S}

i

-4 [A(Z)]gk§= [M] %w‘z’} (2. 101)

“2

o (a3 - ] §918

oy

Referring to the numerical example above the solution of Eq. 2.100
would lead to a determination of the unknown %kg such that the stiff-

ness matrix would determine natural frequencies that would have about
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' . ' 2 . 2
the same absolute errors in wl s Cozz and Cu, when compared to the

experimentally measured values. On the other hand Eq. 2.101 would

give a stiffne ss matrix that would determine natural frequencies that

2 2
would have approximately the same relative errors in Col s wz

2
and 003 when these values are compared to the experimentally

measured values.

Finding the Natural Frequencies and Mode Shapes from

Known System Properties

After having determined the system properties from the experi-
mental measurements it is necessary to examine how well the mathe-
métical model of the system really represents the actual structure.
The equation of motion for undamped free vibrations is

[M]{x} + [K]£ x§ =§ og (2. 2)
where [K] is determined from the experimental results. A number of
methods are available to solve the eigenvalue problem of Eq. 2. 2. Some
methods would be practical to use if only a few of the eigenvalues were
needed. Other methods would be more practical to use if all the eigen-
values were needed. For example, Stodola's method (or matrix
iteration) would be useful if only the dominant (or a few dominant)
eigenvalues were needed. The.fir st matrix iteration would yield the
dominant eigenvalue and eigenvector. After using the orthogonality
relationship thé pr ;)blem is "deflated" and the next matrix iteration
yields the now dominant eigenvalue and eigenvector. However, round-

off errors will give some ihaccuracy in the determination of the



-44-

dominant eigcnval‘ue and the process of '"deflation' will lead to a
furfher loss of accuracy in the determination of the second eigenvalue.
The process involves "'successive contamination' and would not be a
pra_ctical method if all the eigenvalues and eigenvectors were needed.
Holzer's method can be made to converge towards any eigenvalue with
any degree of accuracy desired but the method is based on a simple
recurrence relationship that only holds frue in the special case of a
simply connected system. In the present problem the system is not in
general simply connected and it is of interest to determine all the

(43)

eigenvalues and eigenvectors. Jacobi's method requires the use of
a computer but it leads to a determination of all the eigenvalues and
eigenvectors to any desired degree of accuracy.

Let as before |

Y= (M2 (2.3

After premultiplying by [M] -1/2 , Eq. 2.2 takes the form

)% [aa) [) 26070 ] M2 [ | [M) ™%t = o (2. 5)
73+ [Blim- o (2.6)

[CI?] is a symmetric matrix and as shown before Eq. 2. 6 can be

or

reduced to the following form

(6] [#) 808+ (o] [®][p)¢r2=808 (2. 9)

or

g?;* [\‘*’2\} Eg)% =§0g (2. 10)
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(If the [¢] can be found such that
[-¢]T [¢]: [I] (2. 8)
PR [

the eigenvalues of the problem expressed in Eq. 2.2 will appear on

the diagonal of the matrix in Eq. 2.15 and the eigenvectors of Eq. 2.2

¥)- b2 4]

Without loss of generality, let the la.fgest off-diagonal element of [I?]

will be

<y [~
be klZ" and let [K] be rotated as follows

[.RI]T [ﬁ’] [Rl] (z.. 102)
in which
[Rl] = |° e O (2.103)
O N
1
and
__ 1 . ot
¢ = ; s

c e . e em (2 !
X K -F
p=—22 M _22 Ui, (2.104)
&klz Zk].Z

Since c2+ sz= 1 the rotation matrix [Rl] is clearly an orthogonal
matrix, i.e., l-_l}l]T [Rl] = [I] After perfor ming the rotation of

Eq. 2.102 the resulting matrix will be



17 9 bypee-.s b, }
T e vbzz Bygerennees
'[Rl] [K} [Rﬂ = by bgy bogeenen.n. = [bl] (2. 105)

n2 }

Next make a new orthogonal rotation such that the largest off-diagonal

element in [bl] is made zero, i.e.,

R [o1)[R2) = [B2) [ [R][Ry [R2) = 2] (2. 106)

P~
Continying this process [K] will after k rotations be of the form

BT [T T [R]) a) [ ] - P2 | eom

It is not obvious that the rotation process will converge to the diagonal

(43)

matrix expressed in Eq. 2.107 but it was shown by Newman that by
choosing k sufficiently large the sum of the squares of the off-diagonal
elements of the rotated matrix can be made as small as desired. Thus
by choosing k sufficiently large the matrix of Eq. 2.107 can be made to

‘differ from a diagonal matrix by as little as desired. The eigenvalues

are then found to any desired degree of accuracy from

G 0 o [ O S B S H A R

while the eigenvectors of the original problem of Eq. 2.2 are found as

[v)- )2 #) (2.12)

The above mentioned operations were programmed for the Burroughs
220 computer. Subroutines have later become available that more

efficiently solve the eigenvalue problem by a tridiagonalization of the
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matrix rather than the complete diagonalization procedure used

above.

Deter mination of Damping from the Experimental Results

In the preceeding analysis the damping was treated as if it were
purely viscous, i.e., damping forces proportional to velocities and
independent of amplitudes. In an actual structure the damping forces
are of course not truly viscous, but they can be treated as such by
employing the principle of ""equivalent viscous damping' as used by

(24)

Jacobsen to investigate the steady-state response of a single degree
of freedom system with non-viscous damping. By using, instead of

the actual damping force, the viscous damping force that would
dissipate the same amount of energy per cycle it was possible to
compare the steady-state response in the two cases. It is evident
from Jacobsen'svwork that as long as the total damping in the structure
is reasonably small, say less than 15% of critical damping, mixed
damping can be treated satisfactorily by using the concept of equivalent
viscous damping. The actual damping in a structure would probably

be a combination of several kinds of damping, such as, viscous damping,
Coulomb damping and quadratic velocity damping, It is not possible

to detect from the shape of the resonance curve the type of damping

(44)

that is present in a structure. Iwan calculated theoretical steady-
state response curves for a one degree of freedom system having a

combination of hysteretic damping and viscous damping. The results
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show Clearly that the response curves are very similar to those of a
system having viscous damping only. Several methods are available
to determine the percentage of critical damping from an experimentally

determined steady-state response curve.

Method I

It is well known that the damping in a linear single degree of
freedom system can be evaluated from the width of the response curve
measured at an amplitude of N 2/2 times the resonant amplitude. The
response curve is constructed as the displacement at constant force

ver sus frequency. The damping is found as

_c . Ao
B=— = e (2. 109)

where A ¢ is the width of the response curve and o is the natural
frequency. In using this method of finding the damping it is assumed
that the damping does not vary significantly over thec amplitude range.
‘Should the damping be strongly dependent upon amplitude level, it
would be necessary to work out a scheme so that the forces applied by
the vibration exciters could be regulated in such a way that the
amplitude could be kept constant at all frequencies of excitation. This
would require the eccentricity of the rotating weights to be changed as
the frequency of excitation was changed.

Method II

(45)

Hudson noticed a very simple approximate method of finding

the equivalent viscous damping based directly on the acceleration

response for a structure excited by an (0 -excitation. Figure 2-3
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shows.the'acceleration response of a single degree of freedom system
for various values of damping. The acceleration is plotted versus
frequency for an wz,-excita,tion. It will be noted from the curves that
for a frequency that lies above the resonant frequency the acceleration
response curve will have a horizontal tangent and that at this point for
moderate values of damping the acceleration will have approximately
the same value regardless of the value of damping. On the other hand
the values of acceleration at resonance will depend strongly on the
damping value. Hudson calculated the ratios of the resonance peak
amplitude to the amplitude of the curve where it has the horizontal
tangent. Figure 2-4 shows these ratios as a function of damping. This
method is very practical since if the acceleration is measured as the
structure is excited by an wz—excitation, no data reduction is needed.
For a multi degr’ee of freedom system the question arises whether the
response at the horizontal tangent to the response curve is influenced
'by the next higher mode. In order to investigate this from the experi-
mentally determined response curve, it is of value to find an analytical
expression that expresses the value of the frequency for which the
response curve for the one degree of freedom system has its horizontal
tangent. The expression for the acceleration of the single degree of

freedom system is:



RATIO A,[/A,

-51-

14 :
12 \
RATIO OF PEAK RESONANCE AMPLITUDE
10 TO AMPLITUDE AT HIGHER FREQUENCY _|
HORIZONTAL TANGENT A, /A,
8 L T_ —
2
£
& A
P
< =
8 \ 43
4 \\
\\
2
0
o ! 2 3 4 5 8

PER CENT CRITICAL DAMPING

FIG.2-4 RATIO OF PEAK AMPLITUDE TO HIGHER
'FREQUENCY HORIZONTAL SLOPE AMPLITUDE



-52-

' Lo
% Ct.)n !
= ' (2. 110)
m r o 2 2 2 2
N IR A
wn wn CCI‘
For simplicity let
X%—zz, -io—:y and < = B.
mo. 2 ¢on Cer
M T
Equation 2.108 then becomes
(2.111)

4
7 = , b 5
\/(1-y2)2+ (.zgaay)2

The horizontal tangent to the response curve occurs at a value of
y = w/ _ such that dz/dy = 0. This condition gives:

vroayls 4g%y%r 2= 0 (2. 112)

For small damping, say f € 10%,
2 2 2
3y >> 4By

and Eq. 2.112 can be written to a good approximation as

vyl s 220 (2. 113)
or :
o (7
S . (2. 114)
Wy 1

It is also possible to express the damping as a function of the ratio of
peak acceleration amplitude to the acceleration amplitude at

w/ W, = N 2. At resonance w/cun =1 and Eq. 2.110 reduces to:
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% 1 -
'_1’2 - 5 = Al ..—Z-B (2. 115)
M n

For o/ o = N 2, Eq: 2.110 reduces to:

4

. A (2. 116)
m e 2 V1+8{32
M n
Combining Eqs. 2.115 and 2. 116 gives
Ay Viggg? (2. 17)
A, 8B :

For small values of damping, say f < 10% less than a 5% error in the
determination of B will be made by expressing Eq. 2.115 in the

following form

A

2

1 1
36 (2. 118)

It can be seen that Eq. 2.118 corresponds closely to Hudson's result

‘expressed in Fig. 2-4.

Method III
The damping in any purely excited mode can also be found direct-
ly from the equations of motion of the structure. When synchronized

sinusoidal forces act on all masses of the structure the equation of

motion takes the form: ,
[M]gx§+ [c]gx}Jr [K]gx} - Ef(t)} ={F{ sinwt (2. 1)
Performing the usual transformations given by

£x3 = [9]E63 (2. 16
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normalized such that: :
[y]* [M][¢)= [1] (2. 14)
After premultiplying by l# T, Eq. 2.1 becomes

e Dee |f6he [W2]geb - [ gemer o

If the structure is excited in the ith mode by letting o & ©w,s the

steady-state response will be

T
. = ng(i)} gF} ! > —— sin(cw t- &) (2. 120)
, 2 2
wJ ][0, 2]
1 1

As shown earlier for moderate damping and well separated modes,

.FJ =0 for j #1i and

5 T
]f’il - E‘P‘“? gF} le‘&rﬁl— (2.121)

Since
| £x1 = [w]€s3 (2. 16)

Eq. 2.121 becomes

I - (o] gq,m;TgFg c_o_%ﬁ_ (2. 122)
Then ‘
_ Cald = £ gq,(i)ngF} 2_% .12

1! = (1) (1) (1) (i 1 )
glx‘g_gq,lg (¢11F1+ 51;21 F2+..°+ (/Jnl)Fn)z—ﬁi_ (2.124)

Knowing the force applied at each mass and determining the mode shape
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- and peé,k acceleration from a vibration test, Eq. 2.124 will allow a
determination of the damping in the fith mode. If only one vibration

. . th )
exciter is used say at the m floor and the acceleration at resonance

is measured at the kth floor, Eq. 2.124 becomes

My O g
- N Yom P (2. 125)
2 |3 |

It should be noted that the mode shape must be normalized so that

n . 2 .
Z mj(q,j(”) -1 | (2. 126)
IEE

i

Equation 2.125 in the case of a single degree of freedom system is
reducible to the well known expression for the dynamic magnification
factor as a function of damping.

Specific examples of the use of all three methods will be given

in Chapters III and IV.
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CHAPTER III
STEADY STATE VIBRATION TESTS OF A FIVE-STORY REINFORCED
CONCRETE BUILDING

A five-story reinforced concrete building became available for
dyné.mic testing during the period of construction of the building. The
building is typical of the modern reinforced concrete frame buildings
that are presently being constructed in the Southern California area.
In order not to interfere with the construction, the tests had to be run
Satui'days and Sundays. The tests were conducted in three weekends
over a period of about two months. At the time of the initial tests,
the building was completed except that partitions, false ceilings and
windows were not yet in. The initial tests were chiefly exploratory
in nature but the tests were also used to compare the results obtained
from a run-down test with those obtained from a steady-state test.
The results of the initial test are given in detail in Chapter V; this
chapter also contains a description of the changes in dynamic
characteristics of the building caused by the addition of partitions,
false ceilings and windows. The vibration tests described in the
present éhapter weré carried out when the building was in its finished

state.

Description of Building

The building tested was a five-story reinforced concrete build-
k ing, rcctangular in plan, with no basement. The building was part of
a complex of buildings; a service tower located at the northeast end of

the building contained elevators and stair cases. This tower was not
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» connected to the buiiding being tested. However, the basement under
thevtower did extend slightly under the north end of the building that
was tested by means of one foot thick reinforced concrete walls.
Overall dimensions of the building are shown in Fig. 3-1 and details
of the building can be seen in Figs. A-1 through A-4 in the appendix.
The total weight of the building was estimated from coﬁstruction
drawings to be 3810 kips.

The building was supported on a firm layer of sand with gravel
enco‘unter ed at a depth of about tecn fect below the ground level by the
use of drilled-and-belled caissons. The caissons on the sand and
gravel were designed to carfy a dead plus live load of 8, 000 psf.

The ground floor rested on compacted fill,

Specifications called for a minimum compressive strength of
the concrete at 28 days to be 3,000 psi, The actual 28 day compress-
ive strength of the concrete used varied between 3, 100 psi and 3, 900
‘psi as determined from standard cylinder tests.

The floor slabs were 4-1/2 inch reinforced concrete slabs,
reinforced with No. 4 bars, 12 inch on center. Typical girders in
the north-south direction had a depth of 3'-4'"" and a width at the base
of 1'-2', top reinforcing consisted of two No. 10 bars, two No. 7 bars
a‘nd'three No. 9 bars, bottom reinforcing consisted of two No. 10 bars
and two No. 11’bar$, Typical beams in the north-south direction had
a depth of 1'-6" and a width at the bottom of 1'-4", top reinforcing
consisted of three No. 7 bars and bottom reinforcing consisted of

three No. 8 bars. Typical joists in east-west direction had a depth
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of 11-6n and a width at the bottom of 5-1/2", top reinforcing consisted
of two No. 5 bars and bottom reinforcing consisted of two No. 7 bars.
The end walls were 10" thick reinfor ced concrete walls reinfor ced

with No. 4 bars, 10 inches on center each way.

Translational Motion in the Long North-South Direction

With the two vibration exciters located as shown in Fig. 3-1,
the building was excited in translation in the long north-south
dir ection by running the vibration exciters synchronized in phase.
Figure 3-9 shows the recorded single amplitude acceleration of the
third floor as a function of frequency. It can be seen that the first
and second translational modes were excited. The modes are well
separated. The lowest translational frequency is &)1=2. 31 cps and
the second translational frequency is 0)2=7. 26 cps. The ratio of the
two ffequencies is 3.14. This can be compared to a ratio of 3. 0 for
‘the vibration of a uniform shear beam. It can be seen from Fig. 3-10
that the first translational mode shape is close in appearance to that
of a uniform shear beam.

It was possiblé to excite the fir st translational mode at several
for ce levels. The second mode could only be excited at one force
level without exceeding the load limit of the vibration excitefs.
Accelerometers were located on all floors at the geometrical center
of the building andvsimultaneous readings were taken as the frequency
of excitation was varied in steps of about .0l cps. Figures 3-2 and

3-3 show the response of all floors at and close to the lowest
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| translational freq@ncy. It is evident from Figs. 3-2 and 3-3 that all
floors experience their maximum response at the same frequency. The
form of all the response curves is the same. For instance, it is found
that measuring the width of the response curves at N'2/2 times the
peak response, the same value for the width is found regardless of
which one of the response curves shown in Figs. 3-2 and 3-3 is used.
It should be notedv that all the response curves show single amplitude
acceleration versus frequency, and the force output is proportional to
the frequency squared. The width of the response curves at NZ/2
times the peak acceleration amplitude cannot directly be used as an
estimate of damping since this method is based on displacement
amplitude at constant force excitation. However, the response

curves are so narrow that the part of the curve pertinent to a determi-
nation of damping is very little affected by a reduction to displacement
amplitude at constant force.

Table III-1 shows the peak response of all floors as the structure
is excited at different force levels. It is seen that the mode shape
stays constant regardless of level of force excitation. The resonant
freqﬁency of the first translational mode does change as the structure
experiences higher stress levels. At the lowest stress level (test
No. 1) the resonant frequehcy is 2. 31 cps while at the highest stress
level (test No. 3) the resonant frequency is 2. 21 cps. It is interesting
to note that test No. 4 corresponding to an intermediate stress level
showed a resoné,nt frequency of 2,21 cps. The sequence in which the

tests are conducted is thus of importance in exploring the non-



Test number
mode

force at reson-

ance

-63-

TABLE IIi-1

Peak response values, N-5 translational modes

¢ f 2nd 3rd 4th 5th Roof
resonant frequency fl. fl. 1l f1. 00
1 single ampl. '
lst mode accel. gx10~ 1.59 | 3,10 | 4.36 | 5.15 | 5.55
567 1bs - T
2. 31 cps .81ngle. armp-.
displ. in.x10-3} 2.91 | 5.67 | 7.99 | 9.42 |10.18
mode shape .17 . 33 . 46 . 55 . 59
1 single ampl.
accel. gx10-3 | 9.55 [12.80 | 8.00 [-3.64 |-13.2
2nd mode :
5620 1bs single ampl.
226 displ. in.x10" 1.77 | 2.36 | 1.48 | -.67 [-2.42
i mode shape 42 | .57 .36 [ -.16 [ ~.59
2 single ampl.
I1st mode accel. gx10~ 3.98 | 7.65 [10.95 | 12.90 |13, 10
1422 1bs. single ampl.
2. 27 cps displ. in, x10-3 | 7.54 {14.5 [20.7 |24.4 [24.8
: mode shape .17 . 33 . 47 . 56 .57
3 single ampl. '
Ist mode ‘ asci(;eglie i}ﬁsl 8.90 117.1 24,35 |28.45]28.75
2805 Ios displ, in.x1073 |17.8 [34.2 [48.7 |57.0 |57.5
: P mode shape .17 34 . 48 . 56 .56
4 single ampl. 6.65 {12, 5 [18.3 21,3 | 21,75
1st mode accel. gx10~
1942 1bs single ampl.
2,21 cps displ. in.x107- [13.3 25.0 ) 36.6 }]42.6 ]43.5
~ ' mode shape .17 .33 .48 . 56 .57
Values used in the determination of [K] and [C} :
2nd | 3rd | 4th 5th
| fl. | . | 6. p, | Roof
wlz 2. 27 cps;. ﬁl= 2.0% L17 | .33 .47 . 56 .58
w,=T. 26 cps; B,= 2.1% .42 | .57 .36 | -.16 -. 59
masses (kips) 770 | 770 | 770 | 770 730
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.1ineari‘ties in the fesponseo This will be discussed at the end of this
chapter in the section on non-linearities of the response. The change
in resonant frequency.frorn the lowest to highest stress level is about
4%; since the stiffness of the structure is proportional to the resonant
frequency squared test No. 1 would lead to a determination of stiff-
nesses that would be about 8% higher than the stiffnesses determined
from test No. 3. ‘This non-linear behavior is also evident from
Fig. 3-4, since the resonant frequency decreases with increasing
stress levels; the behavior corresponds to that of a ""softening spring".
In the following determination of the stiffness matrix the inter-
mediate resonant frequency éf 031:-2, 27 cps from test No. 2 has been
used. The resonant frequencies and mode shapes as used in the
determination of the stiffness matrix are listed in Table III-1 and also

shown in Fig. 3-10.

Determination of [K] Using lst and 2nd Mode

As shown in Chapter II, the stiffness matrix [K] can be

determined from the following equation

%] gkf)(r)g= [m) gap(r)} w. (2. 67)
For each experimentally deter mined mode one equation of this form
exists while Eq. 2. 67 expresses as many equations as the system has
degrees of freedom. In the present case two modes were determined
experimentally in a five degree of freedom system, so 2 x5 = 10
equé,tions are available to determine the elements of the stiffness

matrix. This allows for a determination of [K] under two assump-
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‘tions, since for a simply coupled system [K] would have five unknown
elements and for a close coupled systerh [K] would have nine unknown

elements.

Close coupled systefn.

" In a close coupled system the stiffness matrix [K] is tridiagonal
with no interrelation between the elements of each row (or column).
There are (2n-1) unknown elements in [K] . Using the resonant
" frequencies, mode shapés and values of masses as listed in Table

III-1, Eq. 2. 77 takes the form

17 .33 0 0 0 0 Oﬂ’k“‘ [ 69.2
17 .33 .47 0 ¢ o 0 ||k, 134, 2
0 0 .33.47 .5 0 0 0 ||k, 191, 2
0 0 0 0 .47 .56 .58 O ||k,, 228.0

o 0 o0 0 .56.58gk33L=ﬂ224.0L

42 .57 0 0 0 0 0 o ||k, 1742

0 .42 .57 .36 0 0 O 0 ||i,, 2365

0 0 0 .57 .36-.16 0 0 ||y 1494

0 0 .36 -.16 .59 O ||k, _665

o o o o o o 0 -16-59| | [-2450

These equations are now in the form of

[A} gy} - gb§ (2. 72)

There are 10 equations and 9 unknowns to determine. Performing

the least squares fit by premultiplying Eq. 2. 72 by [A]T:

W] )3 [ £

or
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/

<

l.205 .296 0o 0 0 0 0 o0 ||k, 743.4 ]
.296 .639 .296 .231 0 0 0 ||k,| |2031.9
0 .296 .434 .360 0 0 0 ||ky,| [1392.3
0 .231 .360 .784 .360 .094 0 0 0 ||kyy| [1829.2
0 0 0 .360 .351 .206 O 0 0 |(k,,0=¢ 627.7
0 0 0 .094 .206 .690 .206 .060 0 ||k, | |-264.21
0 0 0 .206 .339 .419 0 |k, , 234.08
0 0 0 L060 .4191.024 . 419| [k, | 1042
| o 0 0 0 0 .419 .685] |k | [1575

kll thr ough k55 can now be determined. The results expressed in the

form of [K] are

(12911 -6455 0 0 0o |
_6455 13052 -6556 0 0
@(]: 0  -6556 11951 -5832 0 Kips/in (3. 1)
0 0 5832 10893  -5395
| o 0 0 5395 5606 |

Simply coupled system

In a simply coupled system, springs interconnect adjacent
masses and only one mass is connected by a spring to the base. The
stiffness» matrix is tridiagonal but the elements in each row (or
column) are interrelated. The number of unknown elements in the
stiffness matrix is equal to the number of degrees of freedom of the
system. Using the information from the two experimentally deter-
rninedvmode s, Eq. 2,‘70 expresses 10 equations in the 5 unknowns kl’

k k and k_. After expressing Eq. 2. 70 in the form of

2’ k3’ 4 5
Eq. 2. 71, performing the least squares and solving Eq. 2. 88, the

results are
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13082 -6573 0 0 0
~6573 13015 -6442 0 0
[K]: 0 ~6442 12103 -5662 0 | kips/in (3. 2)
0 0 -5662 11176 -5514
o 0 0 5514 5514

Comparing the stiffness matrices expressed in Eq. 3.1 and

Egq. 3.2 it can be seen that they are almost identical. The stiffness
matrix of Eq. 3.1 was found assuming springs between adjacent
masses and also '""absolute' springs connecting each mass to the base;
since identical results are obtained onr the stiffness matrix assuming
only springs connecting the adjacent masses, it is concluded that
there are no springs connecting each mass to the base. This, of
course, is as would be expected. The result is of interest since, as
will be shown later, a determination of the damping matrix will yield
quite different results according to the two similar assumptions for
the damping matrix indicating that the damping is best described by
using not oﬁly nrelative!' dashpots but "absolute! dashpots as well.
The fact that no "absolute! springs exist can also be seen from the
stiffness matrix of Eq. 3.1; no assumption was here made as to any
interrelation between the elements of each row (or column). Never-
theless, it can be seen from Eq 3. 1 that for each row the sum of the
absolute values of the off diagonal terms is very close to the value of

the diagonal term.
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Determination of [K] Using One Mode Only

The "best!" determination of [K] using the experimental
results from both the fir st and the second translational modes was
shown above. However, it is of interest to determine the stiffnesses
as well by using in one case the first mode only and in another case
the second mode only. For many structures the frequency limitations
of the vibration exciters might allow a determination of one mode
only so it is of interest to find how well the stiffnesses found from an
experimental deter mination of just one mode compares with the
results found by using two experimentally determined modes. As

shown in Chapter II the stiffnesses can be expressed as

2 ¢ (r)
“ Z m; ¢
k = 1=8 (2. 73)

s
(r) ,, (r)
(I}s - ¥si1

s=(1,2,...,n)

The results are listed in Table III-2. In order to compare the
results with those found by using both modes simultaneously in the
calculations, the results expresscd in Eq. 3. 2 are also listed.

TABLE III-2
Spring Constants (N-S)

Experimental 1st and 1st Z2nd

results used 2nd mode mode
in calculations mode only only
‘k5 kips/in 5514 11200 5698
k4 kips/in ' 5662 5022 5990
k3 kips/in ‘ 6442 4594 7719
kz kips/in - 6573 4859 4960
k;"  kips/in . 6509 4980 5911
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It is clear from Table III-2 that a determination of the stiffnesses in
a building from only one experimentally determined mode can lead to
quite erroneous results for some of the stiffnesses. From the above
Eq. 2. 73 it is evident that the results most in error can be expected
for springs connecting floors that in a particular mode have large
and nearly equal displacements. Figure 3-10 shows the two experi-
mentally determined mode shapes. It is evident that in using the first
mode only that results very much in error could be expected for the
deter mination of k5. In using the second mode only results very much
in error could be expected for kZ and k3. Tablie I1I-2 shows that
these are the stiffnesses that are most in error when compared to the
best determination accomplished by using the first and the second
modal information simultaneously.

It is interesting to note from Table III-2 that if only one mode
was deter mined experimentally the modal data from the second mode
would lead to a better determination of the stiffnesses than would the

modal data from the first mode only.

Natural Frequencies and Mode Shapés Determined from the
Model of the Structure

After having deter mined the stiffness matrix from the available
experimental results, it is of interest to see how the natural fre-
quencies and mode shapes of the model cémpare to the experimental
results, Since the determination of the stiffness matrix in general
involves more equations than unknowns and a ''least squares fit" was

used in its determination, the natural frequencies and mode shapes
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fqund from the médel cannot be expected to show a complete agreement
with the experimentally determined frequencies and mode shapes.
Table III-3 shows the computed natural frequencies and mode shapes
usi:ng the stiffnesses as determined above. In case a) the stiffness
matrix is deter mined from the experimental results using the first
and second mode. The stiffness matrix was found from 10 equations
in 9 unknowns so little fitting of data was needed and one would expect
the modal data for both the first and second mode to be very close to
the experimental data. Table II1-3 allows for a comparison between
the calculated first and second mode and the experimentally determined
modes. The agreement is séen to be very close. In case b) the
frequencies atnd mode shapes wer e found using the stiffnesses as
determined by using the experimental data from the first mode only.
The stiffnesses were determined from a determinate system of 5
equations in 5 unknowns so no data fitting was necessary and the first
mode as determined from the stiffnesses should of course be identical
to the experimental results for the first mode. It is interesting to see
in this case how well the second mode compares to the experimental
results. The frequency of the second mode is found to be 6. 94 cps
versus the expcrimentally determined value of 7.26 cps. Thec mode
shape of the second mode is distorted rather badly when compared to
the experimentally determined mode shapé. It is concluded that using
the experimental data from the first mode only will not allow for
extrapolation to give meaningful results for the higher modes.

Case c) corresponds to case b) but here only the experimental
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results from the second mode have been used. Again in this case the
stiffne sses were found from 5 equations in 5 unknowns, no data fitting
was needed, and the frequency and the mode shape for the second
mode is in compiete agreement with the experimental results. It can
be seen that in this case the fir st modal data is very close to the
experimentally deter mined data indicating that had only the second
mode been known from experimental data it would still be possible
from this data to establish quite well the modal properties of the
first mode.

Table III-3 shows the frequencies and mode shapes for all fhe
modes. Itis, of course, conjecture to state anything about how well
the higher modes would be in agreement with the actual higher modes
of the structure. All that can be said f.i. in case a) is that the stiff-
ness matrix as deter mined from the experimental results by exciting
the structure in its two lowest modes leads to a model of the structure
for which the two lowest modes are in exact agreement with the
experimental results.

. Experimentally Determined Stiffnesses Compared With

Calculated Stiffnesses

From the known properties of the structure it is possible to
caléulate the stiffnesses of each story of the building. The stresses
induced in the vibration tests are of such small magnitude that it is
reasonable in calculating the moments of inertia for columns, walls
and floor slabs to aséume that concrete can resist tension as well as

compression. In transforming the reinforcing steel into equivalent
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concrete areas, a'va‘lue of n equal to ten has been used. In calculating
the stiffness of the girders, beams and floor slab, it is evident that
the slab and the beams do not add fully to the stiffness as would be
indicated by the eleméntary theory of bending. The slab was reduced
in Qid:h using only the effective width as indicated by Timoshenko and

(46)

Goodier. Similarly, the effective stiffness of the beams was
estimated at half of the otherwise indicated stiffness. It was found
" that the floor system had sufficient stiffness to make the effect of

joint rotation negligible. The total stiffness of the individual stories

can then be found from

K = Z}_@gl_ (3. 3)
L

In Eq. 3. 3 the summation extends over the stiffnesses for all the
columns and the two end walls. The moments of inertia have been
calculated assuming no cracks in the concrete and also assuming
perfect bond between reinforcing steel and concrete. There is some
doubt as to which value should be used for the dynamnic modulus of
elasticity for concrete and also which value should be used for the
effective distance befween floors.  The static modulus of elasticity

(47)

for concrete can be found as shown by Pauw from the following

equation

E_ =33 w3/2\/? (3. 4)

In this equation w is the unit weight of concrete in pounds per cubic
foot and fc‘ is the concrete compressive strength in psi at 28 days.

Equation 3. 4 is based on laboratory tests of standard cylinders. It is
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, not at all cvident thaf the dynamic modulus of elasticity of concrete
as it affects the vibrational characteristics of a multistory building
should be the same as that found from either static or dynamic tests
of laboratory specimeﬁs. Even dynamic tests on models might not
give— an accurate indication of the true dynamic modulus of elasticity
to be used as an average value extending throughout a multistory
building. The value of E might not be a true materials constant; it
might be affected by the geometry and dimensions of the structure,
by the number and location of intentional and unintentional joints, by
the quality of the workmanship, etc. Calculating the static modulus
of elasticity for the type of concrete used in this building (150 pounds
per cubic foot, 3000 psi at 28 days), Eq. 3.4 gives a value of

EC= 3.4 x 106 psi.

Of even more importance in using Eq. 3.3 is the use of the
effective story height. As seen in Fig. 3-1the distance between
finished floors is 150 inches, the girders in the long north-south
direction have a depth of 40 inches, making the "free" height between
floors equal to 110 inches. The dynamic modulus of elasticity of
concrete bcan be calcﬁlated using the experimentally determined stiff-
nesses and Eq. 3.3, the E—vaiuc has been calculatcd using in one
case a story height L. equal to 150 inches and in the other case using
L equal to 110 inches. The results are tabulated in Table III-4. The
values of E found by using L = 150 inches are quite consistent from
one story to the next; the values are generally slightly higher than the

static modulus of elasticity of 3. 4 x 106 psi. The values of E found by



-77-

G'¢ 000 ‘0¢S 080 ‘0¥ 6099 1I00[F pUZ - JI0OTJ 18T
g1 L’¢ 000 ‘c 6t 096 ‘9¢ €L99 100[§ piI¢ -I00TF PU?
9°1 0y 000 ‘95¥ 08 ‘e¢ rr9 I00TF Yl - JI0O0TF PI¢
12! g'¢ 000 ‘96% 0¥8 ‘c¢ 2999 I00T¥ Y3G - JIO0OTF Yip
€1 . A 000 95 o8 ‘€€ r16G JOOY - 10073 U3

Is 01 x3H
1sd o0 e e mmﬁqw 0ST="T mﬁ I —_ ut/sdy ¥
soyoui QII="1 Sutem Tem b S 9S SOUJIIIS
dursn o1 : pus snid Twniood P oUW, I9}9P
171 =7 G =5 STOD 7T yoe g ArTRruswitaadxay
qu ¢ :

(S-N) T J0 UOTIRUTWLID}dJ
v-111 A TdV.L




-78-

using the "'free! sfory heights are on the othe’r hand considerably
lower than the expected values. Of course no definite conclusions as
to the correct value of the dynamic modulus of elasticity of concrete
ca.n_be reached from dynamic tests of just one reinforced concrete
multistory building, but the fact that these tests, even with the
simplifying assumptions that had to be used in the calculations, have

shown lower than expected values points towards interesting future

research.

Determination of the Damping in Each Mode From the

Experimental Results

The value of damping expressed as the percentage of critical
damping can be found from the response curves shown in Figs., 3-1to
3-7 and from the peak responses as listed in Table III-1. In Chapter II
three methods of determining the damping from the experimental
results were listed:

I. Using the width of the response curve at N 2/2 times the

peak response after having reduced the response to
» displacemgnt amplitude at constant force.

II. Using the relation between the peak acceleration response
and the acceleration response at a frequency equal to N2’
times the resonant frequency.

III. Using the: expression
0, 0y Wp
pi = zl';c \ (2.125)
k

in which ﬁi is the percentage of critical damping in the ith mode.
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Fig. 3-5 RESPONSE OF ROOF, LOWEST TRANSLATIONAL
MODE (N-S), TEST No. 1
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Fig. 3-6 3rd FLOOR RESPONSE, LOWEST TRANSLATIONAL
MODE (N-S), TEST No. 1
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)

| 9’ () and (f (i are the components of the ith mode
k m
shape of the kth mass and mth mass, where the exciting
force acts on the mth mass and lxk‘ is the absolute value
of the single amplitude acceleration of the kth mass.
The damping as calculated by the use of all three methods is
shown in Table III-5.
TABLE IiI-5

Determination of Damping (N-S)

Resonant |Force at
Test | frequency| resonance | Mode | Method Method Method
No., cps Ibs I IT 111
1 2,31 567 1 1. 7% 2.0% 2.2%
1 7. 26 5620 2 2.0% : 2. 1%
2 2,27 1422 1 1.7% 2.0% 2.2%
3 2.21 1 2805 1 1. 1% 1.8% 1.9%
4 2. 21 1942 1 1. 3% 1. 8% 1. 8%

The width of the different response curves used in method I are
shown on Figs. 3-2 to 3-8. It can be seen from Figs. 3-2 and 3-3
that ’the same value of damping is obtained regardless of which floor
response is used for this determination. Method I gives lower values
for the damping than the other two methods. There are several
reasohs why method I can be expected to give less accurate results
than those obtained fr om either method II or III. First, as can be
seen from Figs. 3-5, 3-6 and 3-8, the response as plotted by using

decreasing frequencies of excitation tend to give a broader response
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‘ bcu‘krve than that plottevd by using increasing frequencies of excitation,
indicating that the structure after having been excited at higher force
levels has increased its damping capacity. The points enclosed by
circles correspond to measurements taken as the frequency is being
increased in steps of about . 01 cps while the points enclosed by
triangles correspond to measurements taken as the frequency of
excitation is being decreased. All the response curves have been
- drawn using the results from tests using increasing frequencies of
excitation. ,
Secondly, as shown by Caughey, (48) in structures with low
- damping, a region of instability might exist in the negative slope
portion of the response curve above the resonant frequency. At the
higher force levels of excitation, it was found that several minutes
were needed for the vibration exciter to settle down to a steady
frequency of vibration. Figure 3-4 shows clearly how at frequencies
above the resonant frequency some of the points seem to depart from
the otherwise smooth curves. Methods II and III on the other hand
use information from the peak acceleration values and it was found
in the vibration tests that not only was the response extremely steady
when exciting the structure at the resonant frequency, but also, as is
evident from the response curves shown, the exciting frequency could
be changed in smalier steps close to the resonant frequency than at
the steeper portions of the response curves.

Method II gave results that are very close to those of method IIL

In the present case the two modes are very well separated. In cases
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of less separatiori between modes, method II cannot be expected to
give reasonable results since the acceleration AZ as determined at N 2
times the resonant frequency would be influenced by the response of the
next higher mode. Ail in all, method III seems to be the best method
of éetermining the amount of damping from the experimentally
determined peak response values.

It should be noted that all methods assume the structure to have
a linear response; however, as shown in Fig. 3-4 the resonant
frequency does change with force level, but the change in resonant
frequency from the lowest to the highest force level is less than 5%.
This change would have a negligible effect on the determination of the
damping. Comparing the values of damping as determined by method
III, it is evident that the damping of a purely viscous type that could be
represented by dashpots connecting adjacent floors only, the amount
of damping in the second mode would be expected to be abouﬁ three
‘times as much as the damping in the first mode. The damping in the
first mode varies from 1. 8% to 2. 2%, showing a slight tendency for

the damping to decrease with increasing stress levels.

Determination of the Damping Matrix [C]

As shown in Chapter II, the damping matrix can be determined

from the following equation

el N - [] o
[C] EL]/ = |M Y Zprwr (2. 68)
For each of the experimentally determined modes one equation

of this form exists while each of these matrix equations consists of as



~86 -

" many equations as the system has degrees of freedom. = Since two
ﬁwdes were determined experimentally, 2 x 5 = 10 equations are
available to determine the unknown elements of {C] . This allows for
a determination of [C] under two assumptions since in a simply
coﬁpled system [C] contains five unknown elements and in a close
coupled system [‘C] contains nine unknown elements. It has already
been shown that the percentage of critical damping in the two modes is
of approximately the same magnitude so the simply coupled system
cannot be expected to give a good répresentation of the damping in

the system. The simply coupled system is represented by dashpots
connecting adjacent floors only, i.e., relative damping only, but for
this system it has been shown that the percentage of critical damping

will increase with increasing frequencies.

Close coupled system

The damping malrix is tridiagonal with no interrelation between
the elements of each row (or column). Using the values for the
natural frequencies and the mode shapes as listed in Table III-1 and
damping. values of [31=2. 0% and BZ=2. 1%, mthe (2n-1) unknown elements
of the damping matrix can be found from Eq. 2. 68. This equation
written in the form of Eq. 2. 78 is of the type

[A] fy] = gb} (2. 72)
In the present case Eq. 2. 72 represents ten equations in the nine
unknown elements of the damping matrix. After performing the least
squares fit by preinultiplying Eq. 2. 72 by [A]T, the resulting set of

equations can be solved. The results expressed in the form of [C}
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are:

10,09 -4.59 0 0 o
r -4.59 10.20 -4.68 0 0 kips. -sec.
LC}: ~4.68  9.40 -4.17 0 in.
0 -4, 17 8.56 -3.79
0 0 -3.79  4.72 | (3. 5)

It can be seen that for each row the diagonal element is larger
than the absolute sum of the off-diagonal elementvs. This indicates
that the mathematical model that represents the system will have
not only "relative'' dashpots but "absélute” dashpots as well. This
of course was to be expected since the damping in the two modes is
nearly equal. A system described by ""relative' dashpots only would
lead to values of damping that would increase proportionally with
increasing frequencies. The second mode would thus have about
three times as much damping as the first mode. The determination
of [C] involved a ''least squares' fitting of data so it is necessary to
investigate how well the damping matrix determines the percentage of
critical damping in the two lowest modes for which the damping was
found experimentally. In Chapter II it was shown that the damping
matrix [C] could be diagonalized by the following transformation:

[(,V}T [c}[q/] - [\Zﬁ.w. ] (2. 63)
iTig :
Using the natural f:i-equerncies and mode shapes as shown in case a) of

Table III-3 and normalizing the mode shapes so that

[.(}']T () [¢] = = ] (2. 8)

the following result is obtained by the use of |C | as givenin 3.5
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.57 o1 o 0 0 |
.01 194 .02 -.01 0
[%]T [c][(//] = 0 .02 4.14 .03 -.01 (3. 6)
0 -.01 .03 6.42 .01
0 0 -.01 .01 8,63 |

As can be seen from Eq. 3.6, the transformed matrix is well
diagonalized, the elements on the diagonal are equal to Zﬁiwi where ﬁi
is the percentage of critical damping in the ith mode and w; is the
natural frequency of the ith mode in rad/sec. Using the natural
frequencies of case a) of Table III-3, the following results for the
damping in all modes are obtained:

B=2.0%; B,=2.1%; B,=2.9%; B,=3.5%; B.=4.0%.

It can be seen that the damping in the two lowest modes is exactly
equal to the damping used in the determination of the damping matrix
[C} . 'This is not surprising in viéw of the fact that very little data
fitting was necessary in the determination of [C] . Also, in the
matrix-multiplication of Eq. 3.6, the determination of 2[3_1&)1 and
sz 0, involves only the use of the first and second mode and these as
shown in Table III-3 deviate only slightly from the experimentally
determined values. |
It is questionable how well the values of damping in the higher

modes represent the actual values of damping in the structure. To
determine these values Eq. 3.6 involves the use of the mode shapes

for the third, fourth and fifth mode and these were found from a

knowledge of the modal properties of the first and the second mode
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| only. So all that éaﬁ be conservatively said is that the model of the
structure shows the exact natural frequencies, mode shapes and
values of damping in the first and second mode as the corresponding
values found from thev vibration tests of these two modes. Figure 6-11
sho§vs the model of the structure or more precisely the "equivalent
frame!' representing the structure in the north-south direction. The
wabsolute damping” is much lower than the "'relative" damping but it
is still more than might be expected. Air damping would not be of a
sufficient magnitude to account for the '"absolute'" dashpots. This has
been shown by Merchant. (49)

But it should bheinoted fhat the representation of the damping by
the use of equivalent dashpots is open to question. The "absolute"
dashpots appear in the model due to the fact that the damping in the
second mode is approximately equal to the damping in the first.mode
and this requires both "relative! and ""absolute! dashpots.

If part of the damping were due to a Coulomb type damping, the
damping would not be frequency dependent. It is possible that the
"absolute!" damping stems from movement of the foundation. This
motion hés been disr<egarded in the analysis above since very small
motions of the base were reco:ded. A description follows in a

subsequent section.

Translational Motion in the Short East-We st Direction

With the same location of the two vibration exciters as
described above, the structure was excited in translation in the short

east-west direction by running the vibration exciters synchronized in
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phase; In this direction it was only possible to excite the lowest
translational mode, the exciters were run up to a maximum speed of
about 8.5 cps and no indication of a second mode was evident from the
recorded accelerations, Accelerometers were placed on all floors

at the geometrical center of the floor slabs. Figure 3-12 shows the
response of all floors at and close to the lowest translational frequency
of 2. 52 cps. It is evident from Fig. 3-12 that all floors experience
their maximum response at the same frequency. Again in this case
the form of all the response curves is the same and the percentage

of critical damping as determined from the width of the response
curve is found to give identical values regardless of which floor
response is used in the determination of the value of damping.

Table III-6 shows the peak response of all floors as the structure
is excited at different force levels. It is evident that the mode shape
stays constant regardless of level of force excitation. The resonant
frequency changes as the structure experiences higher stress levels.
At the lowest stress level (test No. 5) the resonant frequency is
2. 62 cps while at the highest stress level (test No. 10) the resonant
freqﬁency'is 2.49 cps. Again in this case it is evident that the
sequence in which the tests are conducted is of importance. Test No.
8 and test No. 11 correspond to approximately the same force level
but' the responses .:frorn the two tests are not identical. The fact that
the structure experienced higher stress levels in tests No. 9 and 10
has changed the dynamic characteristics of the structure slightly, but

enough so that these changes are evident from the response of the
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3-12 LOWEST TRANSLATIONAL MODE (E-W), TEST No. 9
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_95;

TABLE III-6

Peak response values, E-W translational mode

mode force
at resonance 2nd 3rd 4th 5th Roof
resonant frequency fl. fl. fl. fl.
5 single ampl.
1st mode accel. gx10-3 2.00 {3.54 | 5.47 | 7.05 7. 92
729 1bs single ampl.
2.62 cps displ. in.x10"3 |2.84 |5.03 | 7.77 |10.02 |11, 27
' mode shape . 16 .28 .43 . 56 .63
6 single ampl.
Ist mode accel. gx10~ 3.33 |5.85 [9.10 [11.8 13. 55
1302 1hs single ampl.
2. 59 cps displ. in.x10-3 {4.83 |8.47 |13.2 [17.10 19. 6
mode shape . 16 .28 .43 . 56 . 65
7 single ampl.
Ist mode accel. gx10~ 4,43 | 7.87 |12.42 |16.2 18.9
1818 1bs single ampl.
2.57 cps displ. in.x10-3|6.55 [1l. 65 [18.4 [24.0 [28.0
mode shape .15 . 27 .43 . 55 .65
3 single ampl.
lst mode accel. gx107~ |5.50 [10. 2 15. 65 20,3 22.5
2380 lbs single ampl.
2. 54 cps displ. in.x1073[8.33 |15.45 [23.7 |30.8 34,0
mode shape .15 | .28 .43 . 57 .63
9 single ampl.
1st mode accel. gx1073 |6.92 |12.65 [19.7 |25.8 | 28,5
3085 1bs single ampl.
2.52 cps displ. in.x10-3 [10.6 |19.5 [30.4 [39.7 43. 8
mode shape . 15 . 28 .43 . 57 .63
10 single ampl.
1st mode accel. gx10-3 | 8.50 |15.8 |24.6 | 32.5 35.5
4110 1lbs single ampl. , .
2.49 cps displ. in.x10"3|13.4 [24.8 | 38.8 | 51.2 56. 0
"mode shape .15 . 28 .43 .57 .62
11 single ampl.
1st mode accel. gx10~ 4.97 | 9.32) 14.7 | 19.15 21,6
2330 lbs single ampl. ,
2. 51 cps displ. im x10"3| 7.70 | 14.5 | 22.8 | 29.7 33.5
mode shape .15 . 28 .43 . 56 .63
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structure. This non-linear effect will be discussed further in the end
of this chapter in the section on non-linearities bf the response,
Figure 3-13 shows the acceleration response of the 3rd floor as
the structure is excited in the lowest translational mode at different
force levels. Again in this case the decrease in natural frequency as
the structure experiences higher stress levels is typically that of a
"softening spring“'. The decrease in resonant frequency from the
lowest to the highest stress level is about 5%. The corresponding

change in stiffness of the structure is thus about 10%.

Determination of the Structural Properties from the Experimental

Even though each of the columns of the building is symmetrical
having the same moment of inertia with respect to an axis thr ough. the
centroid ofr‘ the cblumn;regardless of whether this axis be parallel to
the short side or the long side of the building the stiffness of each
column differs widely in the two directions. In the long north-south
direction the deep girders not only restrain the columns against joint
rotation bpt also decrease the effective story heights. In the short
east-west direction the floor slabs afford almost no restraint against
joint rotation and the effective story height is approximately equal to
the .12.’—6” distance from center of floor slab to center of floor slab.

It is evident that almost all of the stiffness in the short east-
west direction stems from the two end walls and the columns cast
integrally with the end walls. The height to width ratio of the end

walls is about 2.5 indicating that the end walls will vibrate partly as
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‘bendin‘g beams and partly as shear beams. The mode shape for the
lowest translational mode in the east-west direction is shown in
Fig. 3-16a, It can be seen that the deflected shape of the structure
varies almost linearly from the ground indicating neither the mode
shape typical of a uniform shear beam nor that of a uniform bending
beam.

In inve stigafing the relative influence of different types of
distortion on the natural periods of uniform cantilever beams

(50)

Jacobsen showed that the Dunkerley's empirical formula:

T = TZ 2
sf ~ - s+Tf

gaf./e excellent results fqr the resultant period Tsf when the "isolated
component!' periods TS and Tf were determined using shear alone and
bending alone, respectively. Assuming that half the total mass of the
building is distributed uniformly along the total height of one end wall

the natural period of vibration considering ‘shear deformation only is:

/ 2
~ . L11wL
T, =488 ZAG

and the natural period of vibration considering bending deformation

only is: )
_ wlL
T, = 258 \/ SET

The end walls are cast integrally with the end columns. This

type of shear wall has been extensively tested and analyzed by

(51)

Benjamin and Williams. In their tests static shear forces were
applied in the plane of the wall and the effect of panel and column

proportions and reinforcing was investigated. The results of interest
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, ‘fo‘r the present in\‘fesltigation are:

1) The reinforcing is only effective after cracking begins and not
before.

2) In calculating thé area of the wall cross section reinforcing steel
and columns should be neglected.

3) In calculating the moment of inertia of the entire cross section
the columns should be included but the reinforcing steel should be
neglected.

Thc static tests were performed on concrete for which the compressive
strength varied between 2 x 103 psi and 4 x 103 psi. E was found to
vary between 2.0 x 106 psi and 2. 6 x 106 psi.

The shear walls are 10 inches thick and the total distance from
the ground to the top of the walls is 65 feet. Distributing half the
total weight of the building uniformly along one end wall the following
values can be found: )

wL = 1905 kips

2760 inZ

>
1

I =43.4X106 in

&
]

65 feet.
Using G = .4E, the following results are obtained for the natural

period T, when taking only bending into account and the natural period

TS when taking only shear into account:

2 5
B A/ L lwLe /7.5 x 10
Ty =-288 T 2AG = . 288 B
6
B wl B /2.6 x 10
T, =.258 o =.258 /22—
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' The natural frequénéy as determined from the vibration tests varied
between 2. 49 cps and 2. 62 cps according to force level used in
exciting the natural mode. This corresponds to a natural period of
approximately . 39 seé. By use of the Dunkerly formula the experi-
meﬁtal result can be related to the expected results; again in this

case the value of E is regarded as unknown:

4
T =.39= TZ_FT2=—\/23.5X10
exp s f —

or 6
E=1.55x10" psi

This value of E is consistent with the values determined from the
vibration tests in the long north-south direction when using an effective
story height equal to the '"free" height between floors. Again in this
case the E-value is lower than expected but no definite conglusions can

be made and interesting future research is certainly indicated. -

Determination of Damping

The values of damping as determined from the response at
resonance ‘a.re listed in Table III-7. In this table the acceleration
amplitude ratios, thé displacement amplitude ratios and the force
ratios are shown as well. These values follow directly from Table
III-6. The values of damping show a consistent increase with in-
creasing force levels. This is also evident from the fact that the
amplitude at resonance increases less rapidly than the exciting
force. It is of interest to note that the displacement amplitude in-

creases more rapidly than the acceleration amplitude. This of course
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- is due to the decrease in resonant frequency as the force level is

increased.
TABLE III-7
Damping of different force levels

Test No. 5 6 7 8 9 10 11

Damping % 2.1 2.3 2.4 | 2.4 2.5 2.7 | 2.6
-{Force ratios 1 1. 8 2.5 3.3 4. 2 5.6 | 3.2

Acceleration

1 . 2. . . .

amplitude ratios b1 3 2.9 31 4 6‘ 2.7

Displacement .

amplitude ratios 1 1.7 2. 4 3.1 4.0 5.1 2.9

It is evident that the damping is not purely viscous since the

resonant amplitude increases less rapidly than the exciting force.

However, as noted before, the damping is quite low making the

concept of "equivalent viscous damping' a reasonable one to use.

Again in this case the values of damping as determined from the width

of the response curve are found to give lower values than those de-

termined from the response at resonance. Determining the values

of damping from the width of the response curves shown in Fig. 3-13

a value of about 1. 8 percent of critical damping is found regardless of

which one of the response curves is used, Only a slight indication of

an increase in damping as the force level increases can be found.

Tor sional Motion

With the same location of the vibration exciters as previously
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~
~

Center of torsion

~
~
~ .
‘ Vibration exciter
at 5th floor
4 A
N Y

Vibration exciter
at 5th floor

. Center of symmetry ~
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POINT A SHOWN IN FIG, 3-15.
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(POINT A IN FIG. 3-14b)
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described, the building was excited in tor sion by running the two
vibration exciters synchronously but with a phase angle of 180°
between them. Figure 3-17 shows the acceleration response of a
point on the longitudinal axis of the fifth floor located 25 feet from
the north end of the building. The lowest torsional mode is purely
excited at a frequency of 4. 10 cps. Figure 3-15 shows the acceleration
response of a point on the longitudinal axis of the second floor at a
distance of 25 feet from the north end of the building, The location of
this point is shown as point A on Fig. 3-14b. During the preliminary
tests three accelerometers were located as shown in Fig. 3-14b at
points A, B and C. Simultahe ous readings of acceleration were taken
as the building was excited in its lowest torsional mode. The peak
response values are shown in Fig. 3-14b. It is evident that the floor
vibrates in pure torsion and that the center of torsion is located very
close to the center of symmetry of the floor.

In order to determine the mode shape for the lowest torsional
mode,accelerometers were located on all floors at a distance of
25 feet from the north end of the building. Again the locations
corfeépond to point<A of Fig. 3-14b. The mode shape as determined
from the simultaneous measurements of all floors is shown in VFig. 3-16h
During the test a malfunction developed in the channel recording the
3rd floor respons«__é. The value shown for the 3rd floor modal com-
ponent in Fig. 3-16b was obtained by a linear interpolation between
the 2nd floor and the 4th floor response va;lues. The deflected shape

of the structure varies almost linearly from the ground, and the
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mode shape for the lowest torsional mode is very close in appearance
to that of the lowest translational mode shown in Fig. 3-16a.

A simple relationship exists relating the frequency of the lowest
tor sional mode to the frequency of the lowest transiational mode,
Let the equivalent spring factor from each of the end walls be k,

then the lowest translational frequency can be found from the equation:

M=%+ 2kx =0 ; cc)lz :—21\32-
The lowest torsional frequency can be foundzfr om the equation:
JC?+2ka&C?:O ; wZZZZI;a
or
wzz ) Maz
Colz B J

J is the polar moment of inertia of the masses of the structure with
respeét to an axis through the centroid of the floor system. The
‘dimensions of interest are shown in Fig. 3-14a. For each floor of
the building the floor slab contributes 60% of the total floor mass,-
girders and columns contribute 30%, and the end walls contribute
10% of the total floor mass. Referring to Fig. 3-14a, the polar

moment of inertia is:

. 2 2 b
1 2, .2 .15M |[b 2 .05M 2 2
le_z.('éM)(A’aJ'b,)“’f > ((E) +XJd.x+ 4[’2 5 (a +y )dy
0 0

= 41\/1:1‘2 + . 14Mb2

The predicted ratio of the frequency of the lowest torsional mode and

the frequency of the lowest translational mode can now be found, noting
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that 2a = 125 feet and b = 25 feet:

Y Ma” = 1. 54
& T T Z z- T

1 .4Ma + . 14Mb

From the forced vibration tests the resonant frequency of the lowest
tor sional mode was found to be 4.1 cps and the resonant frequency of
the lowest translational mode was found to be 2. 6 cps. Thus the ratio

of the experimentally determined values becomes

4.1 ‘
=5 =158

l—lel NS

The theoretically predicted ratio and the experimentally determined
ratio are seen to be in close agreement.

The percentage of critical damping in the lowest torsional mode
was deter mined from the width of the response curve at N272 times
the resonance amplitude. Using the responsc curve shown in Fig. 3-15
‘a value of 2. 3% was obtained. Again in this case it can be seen from
Fig. 3-15 that the points deter mined from the steady-state tests using
decrgasing frequencies tend to give a slightly broader response curve
than the points determined from the steady-state tests using increasing
frequencies.

| The force amplitude applied by each of the two vibration
exciters at resonance for the lowest tofsional mode is equal to 892 lbs.
The distance between the two vibration exciters on the 5th floor is
93 feet, so the ampli‘tude of the moment applied at resonance is

892 x 92 = 82, 000 ft-lbs.
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The torsional vibration tests provide an interesting verification
of how well the two vibration exciters act synchronously in applying a
pure moment to a étructure. Returning to Fig. 3-17 it can be seen
that a small resonance is excited at 2. 6 cps which is the natural
frequency of the translational mode. If each of two vibration exciters
applied exactly the same force and the phase angle between them
were exactly 180° a pure moment would be applied to the structure and
the translational mode would not be excited at all. The small response
at 2. 6 cps is thus an indication of the magnitude of imperfections in
the forcing system when two vibration exciters are acting synchron-
ously with a phase angle of 16130O between them. It is quite evident that
this inperfection is of negligible magnitude. Figure 3-17 shows
clearly that the small response at 2. 6 cps in no way interferes with

the response of the torsional mode.

Motion of Foundation

In the preceding analysis it has been assumed that the structure
was fixed at the ground floor, i.e., that the ground floor did not
e%perienée any translation or any rotation. However, in all the tests
attempts were made to measure the translational motion as well as
the rotational motion of the ground floor. Only at the highest level
of excitation in the short east-west direction (test No. 10) was the
rotation of the groﬁnd floor of sufficient magnitude to be measurable.
To measure the rotation one accelerometer was placed on the north

side of the ground floor and one accelerometer was placed at the
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| squth side of the groﬁnd floor. The distance between the two acceler-
ometers was 31 feet with both accelerometers oriented such that
vertical accelerations were measured. It was necessary to use the
most sensitive setting of the Brush Amplifiers. At this setting the
noise in the instrumentation system becomes noticeable. It is felt
that the results of the vertical acceleration measurements are not
precise enough to warrant an analysis as to the rotational character-
istics of the ground floor. However, the results are indicative of

the very small effect the translation and the rotation of the ground
floor has on the total response. Assuming that the translational
motion of the ground floor represents a translational motion of the
entire structure and also assuming that the measured vertical
accelerations of the ground floor represent a rigid body rotation of the
entire structure, the effect of the ground floor motion can be evaluated
in terms of the total response of the different floors of the structure,
‘as shown in Table III-8.

TABLE III-8

Response of ground floor compared to total response; Test No. 10;
lowest translational mode E-W; single amplitude acceleration.

lst | 2nd | 3rd | 4th [5th [Roof
Translation of ground floor g x ].O—3 . 8 .8 . 8 .8 .8 .8
Rotation of ground floor g x 1073 0 .24 .48 | L721.96 | 1.2
Total response g x 107° .8 [8.5 |15.8 |24.6|32.5| 35.
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FIt is evident from Table III-8 that the motion of the base accounts
for a very small portion of the total response. ‘It is of interest to
compare the results with those found by Japanese investigators.
Kawasumi and Kanai( 13) report that in small amplitude vibration tests
of a seven-story reinforced concrete building having plan dimensions
of 90 feet by 72 feet the translation of the base accounted for 40 per
cent of the total response of the roof, while rotation of the base
accounted for about 20 per cent of the total response of the roof. In
the present tests, as can be seen from Table III-8, the rigid body
translation of the building as found from the response of the ground
floor accounts for only 2 per cent of the total response of the roof,
while the rigid body rotation of the ground floor accounts for about 3
per cent of the total response of the roof. The large differences in
test results can be attributed to two sources. First, the Japanese
building was a very rigid building; this would tend to facilitate the
' rigid body translation and rotation to a higher degree than would be the
case for a more flexible building. Second, the Japanese building is pro-
bably supported on softer soil than that encountered for the building

described in this chapter.

Non- Linearities of the Response

In exciting t_he lowest translational mode in the north-south
direction as well as in the east-west direction, the steady-state
resonance curves were obtained for a number of force levels. Figures

3-4 and 3-13 show clearly how the resonant frequency decreases as
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the force level inérease s. The shift in frequency being typically
that of a '"softening spring'. It is of interest to compare the
response curves of Figs. 3-4 and 3-13 to those shown in Fig. 3-20.
The general shape of the resonance curves of Fig. 3-20 and their
shift in natural frequency bears a close resemblance to the experi-
mentally determined resonance curves of Figs. 3-4 and 3-13., The
resonance curves‘ shown in Fig. 3-20 were obtained by Jennings(SZ)
in a theoretical study of the steady-state response of a yielding one
degree-of-freedom structure subjected to a sinusoidal forc‘e excitation.
It is not possible to make a quantitative comparison between Jennings'
theoretical results and the eﬁperimentally determined results. As
Jennings points out, it would be necessary to extend his theory by
including non-integer values of the parameters used in the description
of the hysteréticrelations. It would also be necessary to inclﬁde a
viscous damping coefficient in addition to the pure hysteretic type
"~ damping in order to account for the observed energy dissipation at
low amplitude levels.

In exciting the lowest translational mode in the east-west
dir eétion, test No., 5 corresponds to the lowest level of excitation
while test No. 10 corresponds to the highest level of excitation. It
was decided that after performing these tests it would be valuable to
duplicate one of thé intermediate tests to investigate whether the
excitation at the higher force levels had changed the dynamic
characteristics of the structure to a measurable degree. Test No. 11

was then carried out with the same set of weights in the vibration
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‘ex‘citer.s as had be‘en used during test No. 8. The 3rd floor response
of test No. 8 is shown in Fig. 3-18, while Fig. 3-19 shows the 3rd
floor response of test No. 1ll. Several differences in the response
from the two tests are noteworthy. First, the resonant frequency
found from test No. 11 is 2. 51 cps while that of test No. 8 is 2. 54 cps.
So by experiencing higher levels of excitation the structure has
nsoftened" as indicated by the 1% lowering of the resonant frequency.
This change in frequency changes the force at resonance from

2380 1lbs in test No. 8 to 2330 lbs in test No. 1. The two tests are in
other words not exactly alike as to level of force excitation but the
difference is only about 2%. ‘A significant change in peak response
value occurs. As can be seen from Table III-6 the mode shape found
from test No. 8 is identical to that found from test No. 11. However,
it is evident from Table III-6 that the peak response values for all the
floors as found from test No. 1l are about 10% lower than those found
from test No; 8. The excitation of the structure at the higher force
levels has increased the damping value by about 10%. This is also
evident fr om the width of the two response curves in Figs. 3-18 and
3—19.'. The percentage of critical damping as determined from the
width of the response curve J;n Fig. 3-19 (test No. 11) is equal to 2. 0%
while that of Fig. 3-18 (test No. 8) is equal to L 8%. Again it is found
that the damping détermined from the width of the response curves

is lower than the damping as determined from the peak response; the
latter values as shown in Table III-7 were 2. 6% for test No. 1l and

2.4% for test No. 8.
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The above méntioned changes in response are of a small
magnitude but they point towards some interesting possibilities.
Since the small amplitude vibration tests were capable of producing
a me‘asurable increase in damping value, it would seem possible that
small vibrations caused by traffic, small tremors, use of machinery
in the building, etc., over a period of time would also tend to increase
the value of dampiﬁg. These effects might be cumulative or the
‘value of damping might approach a limiting value. More research is

certainly indicated to explore these questions.

Level of Excitation in Terms of Base Shear

The lateral for ce requirements of most building codes are based
on the concept of a total lateral force to be distributed roughly linearly
over the height of the building from the basc of the building. It is of
interest to express the levels of excitation of the steady-state resonance
tests in terms of the base shear. Considering the lowest translational
mode it is possible to express the forces acting on the structure as it
is deflected in its extreme position at resonance. The forces acting
on the’ buiiding in this/position can be found by the use of
d'Alembert's principle by considering the inertia force —mi'fci racting
at the ith floor, m, is the mass ‘of the ith floor and ':';i is the single
amplitude acceleration of the ith floor at resonance. The total base
shear is then equal f.:o the sum of the inertia forces. This sum ex-
pressed as a percentage of the total gravity load is shown in Tables

I1I-9 and III-10.
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TABLE II-9

Lowest translational mode (N=-S)

Base Shear

Test No. I 1 ! 2 l 3 l 4
Base Shear, %g R .4 ‘ 1.0 l 2.1 I 1.6

TABLE III-10

Lowest translational mode (E-W)

Base Shear

Test No. ' ” 5 ,

6
Base Shear, %g | .5 | .9 | L2| L5 | L9| 23

The values for the base shear developed during the dynamic
tests can be compared to the design value for the building which
according to the Los Angeles Building Code would be approximately

7% g for both principal directions of the building.
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CHAPTER IV

VIBRATION TESTS OF A NINE-
STORY STEEL FRAME BUILDING

A modern nine-story steel frame building in the southern
California area has been subjected to extensive dynamic testing. The
vibration tests ranged in complexity from '"man-excited' vibration
tests as described in detail in Chapter VI to steady-state resonance
tests employing several synchronized vibration exciters. A total of
eleven normal modes were determined from the steady-state resonance
tests; four of these were translational modes in the long direction of the
building, three were translational modes in the short direction, three
were torsional modes and one mode was excited in which the floor
slabs vibrated in the horizontal plane as free-free beams. Run-down
tests were perfo‘rmed as well in order to explore the differences in
the response as compared to the response of steady-state tests. The

results of these comparison tests are given in detail in Chapter V.

Description of Building

The building is a symmetrical nine-story steel frame building
with plan dimensions 220 feet by 40 feet. Overall dimensions of the
building and some of the pertiﬁent construction details are shown in
Fig. 4-1. Further details are shown in Figs. A-5 through A-14 in the
Appendix. The fldor slabs were 5-inch reinforced lightweight concrete
slya.bs. The 10th floor contained rooms for heavy equipment. At the

time when most of the steady-state vibration tests were performed, the
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weight of each of the floors above the 2nd floor was estimated from
construction drawings to be approximately 920 kips, except for the
10th floor which was estimated to have a weight of 1640 kips.

The steel framé was designed to carry all loads. Details of the
column construction are shown in Fig., 4-1. At the final stage of
construction wire mesh and plaster was used on the inside of the
columns to complete the fireproofing of the steel columns. Details of
the column construction are also shown in Figs. A-11 through A-14.

The building is characterized by the very rigid girders in the
long East-West direction. Details are shown in Fig. 4-1, Fig. A-9
and Figs. A-1l through A-14. The welded girders are attached to the
columns by high-strength bolts. The girders have a depth of 6'-6",
typical top and bottom chords are 8-inch channels. The welded
trusses in the short North-South direction are attached to the columns
by high-strength bolts. The typical truss has a depth of 3'-4", top
- chords consist of two 5'" by 3" angles while bottom chords consist of
two 6" by 3-1/2" angles. The beams in the long East-West direction
are 12WF 27.

Sté.ircases aré located at the ends of the building as can be seen
‘in Fig. A-7. The staircase sections are attached to the building by
expansion joints and will add no appreciable stiffness to the building.
The floor slabs hgd cuts to accommodate air conditioning ducts and
elevators; these cuts can be assumed to have a negligible effect on
the vibrational characteristics of the building.

Soil borings showed that the soil at basement level consisted of



-122-

very dense well-graded sandy gravel. Allowable soil pressure is

6,000 psf, dead load plus live load.

Measurements of Periods During Construction
Measurements of the natural periods of vibration at different
stages of construction of a building can yield important information
about the relative effect on the dynamic characteristics of the building
of the various elements as they are added to the building. Blume and

(53)

Binder measured the natural periods of vibration of a fifteen-story
steel frame building at twenty stage s of its construction. The measure-
ments were made of wind-induced vibrations. As pointed out in
Chépter VI, the method of "man-excited" vibrations has several im-
portant adva.ntages over wind-excited vibrations. One of the main
advantages is that by manually exciting a building at well-chosen
points in the buiiding, it is possible to isolate the periods of interest.
Table IV-1 shows the results of period measuremeﬁts made
during the construction of the nine-story steel frame building described
above. The results obtained from steady-state resonance tests are
listed as well as those obtained from "man-excited' vibrations. It is
interesting to note how well the results from the rather simple "man-
excited" tests compare with those obtained from the much more com-
plex stcady-state tests. Table IV-1 shows in considerable detail the
changes in periods as building elements are added to the structure.
The data could be subjected to an extensive analysis; in the following

only the major points of interest will be considered.

Test No. ‘2., when compared to Test No. 1, shows a decrease in
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natural frequency of approximately 10% for the translational motion in
‘ fhe East-West diréction as well as in the North-South direction. Since
the stiffnesses in the building have not been changed between the two
tests, the change in frequency is solely a function of the added masses.
The natural frequency is inversely proportional to the square root of
the mass of the structure. The 10% decrease in frequency corresponds
then to approximately a 20% increase in mass which is in close agree-
ment with the amount of mass which was added in the period between
the two tests.

VThe changes in frequencies occurring between test No. 2 and test
No. 12 will give information about how the column concrete affects the
effective stiffnesses of the coiumns. The total mass of the structure was
increased by a factor of about 1. 45 between the two tests. The natural
frequency of translational vibration in the long East-West direction has
hardly changed during this interval. Since the natural frequency is
proportional to thc square root of the ratio of the stiffness of the
structure and the mass of the structure, the stiffness must also have
been increased by a factor of 1. 45. The natural frequency of vibration
in the short North-South direction has increased by a factor of 1.1, the
addition of column concrete has then caused an increase in effective
stiffness of (L. 1)2 x1.45=1.75. It sﬁould be noted that this factor can-
not be directly attributed to an increase in the moment of inertia of the
columns. The trusses connecting the columns in the North-South
direction are not of sufficient rigidity so that joint rotation can be

neglected. The addition of column concrete will change the relative



-126-

.rigiditieé of columns and trusses so the effect of joint rotation will be
stronger for test No. 12 than for test No. 2.

| A comparison of the results of tests No. 17 and 18 are interesting
since the additions‘to the building in this time interval have consisted
essentially of the "non-structural"” elements such as partitions, false
ceilings, etc. These additions have caused an increase in stiffness
represented by the 10% increase in natural frequency of vibration for
the North-South direction as well as for the East-West direction. The
increase in the torsional frequencies are of considerably larger
magnitude, this increase being close to 30%. This can be explained
by the fact that the partitions around the staircase sections probably
stiffen up the connection between the building and the two staircase
sections. For small amplitude vibrations the staircase sections will
then add stiffness to the building; this added stiffness will increase the
natural frequenc&r of vibration of the translational modes as well as
the torsional mode. The torsional frequency will, however, be much
more affected on account of the large distance between the staircase
sections.

Testing Procedure and Results of the

Preliminary Tests

In the initial tests one vibration exciter was installed on the
6th floor. The location is shown in Fig. 4-1. The exciter was located
away from the center of the floor so that both translational and
torsional modes could be excited. It was known from the "man-excited"
tests as described in Chapter VI and also from an approximate analysis

of the structure that the 6th floor would be quite close to a nodal point
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‘for the third lowest trbanslational and torsional modes. It was felt,
hoWevér, that at the relatively high frequencies for these modes the
vibration exciter would create enough force output to overcome the
difficulties in exciting the modes close to a nodal point. This proved

to be a fallacy; it was not possible to excite accurately the third

lowest translational mode in the North-South direction nor the third
lowest torsional mode. The mode shapes for these two modes, as

they were later determined by installing two vibration exciters on the

4th floor are shown in Figs. 4-12 and 4-16. It can be seen that the nodal
points are extremely close to the 6th floor.

The main problems in gaining the most information from forced
vibration tests are (1) to locate the vibration exciters far enough away
from nodal points of the desired modes, (2) to locate the vibration
exciters such that interference between the response of modes that
have frequenciesk close together is eliminated. Figure 4-2 shows the
frequencies of all the modes excited and the close spacing of some of the
‘modes. There is a close connection between the points mentioned
above. With the location of the vibration exciter at the 6th floor, the
third lowest translational mode in the North-South direction and the
third lowest torsional mode could not be cleanly excited; the response
records indicated that not only was the response very small due to the
closeness of the exciter to the nodal point, but also that mode interference
took place. There was possibly even some interference from the mode
in which the floor slabs vibrated as free-free beams. (3) The problems
in positioning the response pick-ups correctly so that a clear indica-

tion is gained about the type of mode that is being excited. The
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preliminary tests proved to be an excellent example of the care that
should be tbaken in vibration tests.

In order to locate approximately the frequencies of the modes
that could be excited, two accelerometers were placed on one of the
floors, one at each end of the building. In exciting the building in the
North-South direction it was felt that by noting the phase angle between
the two responses, it would be evident from the records at which
_ frequencies the translational modes were excited and at which fre-
quencies the torsional modes were excited. The second lowest
translational mode occurred at about 3.2 cps, the responses of the two
accelerometers being in phasc and cqual in magnitude. The second
lovv‘est torsional mode occurred at about 3.7 cps, the resi)onses being
equal in magnitude with a phase angle of 180° between them. At about
4.9 cps a mode was cleanly excited, the responses of the two
‘accelerometers being in phase and of equal magnitude. At the time this
was erroneously considered to be the third translational mode. As the
tests progressed and the responses of all the floors were recorded, it
became evident that the mode excited at 4. 9 cps could not possibly
bé the third translational mode, since the responses of all floors
were in phase. It was then decided to locate all four accelerometers

connected to the Sanborn equipfnent on the 6th floor to explore in more
detail the response at the frequency of 4. 9 cps. The results are shown
in Fig. 4-3c; it is obvious that the floor slab vibrates as a free-free
beam. As pointed out later, calculations of the period of vibration of

the floor slabs vibrating as free-free beams are in close agreement
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“with the experimenté.l results, so thi‘s mode of vibration should have
béen anticipated.

Figure 4-3 shows also the recorded motion of the 6th floor as the
translational and toi‘éional modes are being excited at resonance. It
is of interest to note that the center of torsion falls very close to
the center of symmetry of the building.

Permission was later given to install two additional vibration
exciters. The results of the preliminary tests were used in locating
the vibration exciters so that the missing modes could be excited.
Vibration exciters B and C were located as shown in Fig. 4-1
on the 4th floor. The 4th floor location was dictated by the fact that the
component of the 4th floor of the mode shapes for the third lowest
translational and torsional modes would be relatively large. In order
to eliminate any possible interference from the mode in which the floor
slabs vibrate as free-free beams, the vibration exciters B and C
“were located as close as practically possible to the nodes of this motion.
It is clear from Fig. 4-3c that each of the vibration exciters should be
positioned at a distance of close to 40 feet from the end of the building.
With theée positions/of the vibration exciters it was possible to excite
cleanly the third lowest translational and torsional modes.

The instrumentation sysfems used were the same as those
described in Chaptcr III. Since only six simultaneous records of
acceleration couldvbe obtained, it was necessary in order to determine
mode shapes to repeat each of the tests. In all the tests one
accelerometer was kept in the same position for the two tests required

to determine the complete mode shape. This was done for two reasons.
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, Fi;' st, it would giv.e information about the repeatability of the two
tests; it would also give information whether the tests in any way
affected the dynamic characteristics of the building. As shown in
Cha.pter III this indeed was the case for the five-story reinforced
concrete building. In the tests of the nine-story steel frame building
as reported in this Chapter, the response stayed quite constant from
one test to the nexf test conducted at the same force level even in
cases where the building had been excited at higher force levels in

between the two similar tests.

Translational Motion in the Long East-West Direction of the Building

In this direction four modes were excited. The natural fre-
quencies are w1=1- 01 cps; @,=3. 00 cps; Co3=5. 07 cps and co4=7. 50
cps. It can be seen that the ratios of frequencies are very close to the
1:3:5: 7theoretical ratios for the vibration of a uniform shear
beam. The mode shapes for the four experimentally determined modes
are shown in Fig. 4-8. Most of the modes were excited at a number
of force levels. It was found that all mode shapes stayed constant
régar.dles’s of level of force excitation. Similarly it was found that
for all of the four modes all the floors experienced théir maximum
response at the same frequency. For each of the modes excited it was
also evident that the shape of the response curve close to the resonant
frequency was the same regardless of which floor response Was used
in plotting the response curve.

Figure 4-4 shows the response of the 5th floor as the structure

is being excited at and close to the natural frequency. It is evident
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that the damping is very small; all the measurable responses are
contained within a range of only about 0.04 cps. The response
curves clearly indicate the extreme accuracy of the speed control
necessary to precisely define the response curve. Figure 4-4 shows
a slight tendency of a decrease in natural frequency as the force level
is increased, except for the test in which the force at resonance is
142 Ibs. The response curve from this test could well be inaccurately
determined for the following reason. It was found that on account of
the very low amount of damping in this mode that extraordinary care
had to be taken in recording the response. It was necessary to wait
for several minutes before té,king records after the exciters were set
at a specific frequency. As pointed out in Chapter V, the transient
vibrations from the prior excitation took that long to damp and leave
only the true steady-state response from the prese’ntly excited
frequency. By running the recorders for a sufficiently long time at
each frequency of excitation, it was possible to detect this interference,
since the records shoWed clearly a typical series of ''beats!. Also, by
running recorders for a sufficiently long period of time it was possible
to détect whether the true steady-state response was obtained as
indicated by the absence of "beats' on the reccords. The mode shape
for the lowest mode is shown in Fig. 4-8; it is very close in appear-
ance to that of a uniform shear beam.

Figure 4-5 shows the response of the second lowest mode.
Again in this case a small non-linear effect is noticeable since the

resonant frequency decreases slightly as the force level is increased.
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The behavior is fypically that of a "softcning' spring.

The response curves for the third lowest and the fourth lowest
mode are shown in F‘igs. 4-6 and 4-7. The mode shapes are shown
in Fig. 4-8. It should be noted that all the response curves show
single amplitude acceleration versus frequency, and the exciting

force is proportional to the frequency squared.

Determination of the Stiffness Matrix

The mode shapes and the natural frequencies of the four ex-
perimentally determined modes of translational vibrations in the
long East-West direction are shown in Fig. 4-8. As shown in

Chapter II, the stiffness matrix can be determined from

[K] W”} = [M] W”g wrz (2. 67)

For each of the experimentally determined modes one equation
of this form is available while Eq. 2. 67 expresses as many equations
as the system has degrees of freedom. In the present case four modes
were experimentally determined in an eight degree of freedom system,
so a total of 32 equafions are available to determine the elements of the
stiffness matrix. The girders in the long East-West direction of the
building are sufficiently rigid fo make the effect of joint rotation
negrligible. The miathematical model of the building can then be
represented by a éimply coupled system, i.e., a system in which the
stiffness matrix [K] is tridiagonal, the elements of each row (or

column) being intcrrelated. The stiffness matrix would contain
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8 unknown elements, namely the spring factors connecting each mass
to _the‘ adjacent masses. The stiffness matrix could also be looked
upon as representing a close coupied system, i.e., tridiagonal with
no assumed interrelation between the elements of each row (or
column). It is in this case of interest to see from the results of the
calculations whether the elements of each row (or column) are in fact
interrelated.

As shown in Chapter Il the above Eg. 2. 67 can be written in

the following form:

1 [0 - B o0

wl‘
(r=1,2, 3, 4)

In this equation [A(r)] contains elements from the known mode shapes
and gk% represents the unknown elements of the tridiagonal stiffness
matrix. Since symmetry of the stiffness matrix is assumed, gk}
will'in the present case contain 15 elements. The equations are in

the form

[A]gygz (b (2. 72)

There are 32 equations and 15 unknowns to determine. Performing
the least squares fit by premultiplying Eq. 2. 72 by [AJT and after
solving the resulting system of equations, the results expressed in

the form of [K] are
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7488 -3483 0 0 0.

0 0 0
-3483 7233 -3606 0 . 0 0 0 0
0 -3606 7016 -3493 0 0 0 0 kips
[K]: 0 0 -3493 7137 -3914 0 0 0 m
0 0 0 -3914 7494 -3373 0 0 (4. 1)
0 0 0 0 -3373 6188 -3045 0
0 0 0 0 0 -3045 6101 -2909
o 0 0 0 0 0 -2909 2896

No assumption was made concerning any interrelation between the
elements of each row (or column)., Still, it is evident that for each
of the rows (or columns) the sum of the absolute values of the off-
diagonal terms is quite: close to the value of the diagonal term. In
the "pure shear" building with no joint rotation these sums would be
exactly equal. The small differences in the stiffness matrix ex-
pressed in Eq. 4. 1 probably stem from inaccuracies in the data.
The stiffness matrix of Eq. 4. 1 was determined from 32
equations containing 15 unknown elements. There will be both
random and systematic errors in the original data rendering in-
consistencies in the equations. Some idea about the magnitudes
of these inconsistencies can be obtained by substituting the values

of {k.g back into the original Eq. 2. 72. The results are
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Consideringv that the solutions stem from 32 equations in only
15 ﬁnknoWns, the errors are reasoné,bly small. It is possible to gain
a better physical picture of the errors involved. The stiffness matrix
expressed in Eq. 4.1 represents a model of the structure determined
from a knowledge of some of the experimentally determined modal
properties of the structure. Knowing the mass matrix and using the
stiffness matrix of Eq. 4.1, the natural frequencies and mode shapes
can be determined as explained in Chapter II. The frequencies and
mode shapes can then be compared to the experimentally determined
frequencies and mode shapes that were used in the determination of
the stiffness matrix. The cdmparison will give a good indication of
how well the determined model represents the actual structure. The
results are listed in Table IV-1.

TABLE Iv-1

Frequencies and Mode Shapes
Translation (E-W)

‘Experimentally Determined from [K]
determined of Eq. 4.1
Frequency T
cps 1.01(3.00(5.07(7. 50 | .99 {3.02(5.12 (7. 00
Mode 1| 2 3 4 1 2 3 4
10°2 f100r 49 1-. 45| .35(-.18 | .49 |-. 47| .32 |-.23
9 46 1-.2210~.161 .43 | .46 |-.22|-.15]| .40
8 44| .07 |-. 46| .33 | .44 ] .06 |-. 49| .42
7 .38 .31 |-.44{-.19 | .38 | .30 |-.40 |-. 17
6 .34 | .46 (<. 11 |-.50 | .34 | .46 [-. 09 |-. 48
5 261 .49 | .31 1=, 25 .26 .48 .32 |-. 16
4 J17| .40 | .47 | .31 |.17 | .38 .50 .36
3 08 [ L2l [ 33 .47 [.08 .20 | .35 .44
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Table IV-1 éhows a reasonably close agreement between the
natural frequencies and mode shapes of the model and those
determined experimentally.

The stiffness matrix expressed in Eq. 4.1 is a "best!" determi-
nation in the sense tha‘c all the available data was used. It is of some
interest to see how well the stiffness matrix would be determined if
only part of the available data was used in the determination of [K]
For instance, in the preliminary tests it was not possible to obtain
any information about the third lowest mode, so it would be of interest
to see how well the stiffness matrix determined by using modes 1, 2
and 4 would compare with thé "best' stiffness matrix obtained by using

‘modes 1, 2, 3 and 4. The results for a number of combinations of
modes are shown in Table IV-2.

In Table IV-2 the individual story stiffnesses can be read off

as follows; klZ is the stiffness between the 2nd and the 3rd floor, k23
"is the stiffness between the 3rd floor and the 4th floor, etc. In general
it can be seen that in all the cases where three of the experimentally
determined modes are used the stiffnesses are rather close to the
”besf” determined stiffnesses. In the cases where only two experi-
mentally determined modes are used in the calculations, some rather
large discrepancies start'showing up. For example, in using modes

1land 2 k23 is almost 20% lower than the '"best" value of k In

23’
using modes 1 and 4 k45 and k67 are much higher than the corresponding

values as determined from modes 1, 2, 3 and 4.
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Exper.imentally Determined Stiffnesses Compared With Calculated

Stiffnes ses

The stiffnesses determined by the use of all four experimentally
determined modes can be seen in Table IV-2. The stiffnesses de-

cre;a,se in magnitude from the top of the building down, except for k45

which has a larger value than the stiffness k34- Theoretically, k

45
and k., , should be equal. The stiffness between the 5th floor and the

34
6th floor is represented by k45 and k34 represents the stiffness
between the 4th and the 5th floor. The column size stays constant
between the 4th floor and the 6th floor so there is no apparent reason

why k,. should be larger than k3

45 4

The forces transmitted from the floors to the columns do not act
through the centroids of the column sections since the column concrete
is so heavily concentrated towards the outside of the steel columns.

As the floors vibrate the columns will be acted upon by a twisting
moment as well as a translational force. The increase in stiffnesses
of the steel columns by the addition of the concrete to the columns was
earlier shown to be approximately 45%. Let the known moment of in-

ertia of the steel columns be increased by 45% and the stiffness of any

story can be expressed as

s 12E 1 x1.45
k:z st
' L

3

where the summation extends over all the columns. The calculated
results show a reasonable agreement with the experimentally determined

stiffnesses. For example, consider the stiffness between the Tth floor
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‘ and the 8th floor. From Table IV-2 this stiffness is found to be
4

9

3373 kips/in. The moment of inertia of the steel column is 473 in
3

Let E_ 1= 30 x 107 ksi and let the effective story height L be con-

sidered unknown. Extending the summation over the 24 columns

the above equation takes the form

12X30X103X473X1.45

L3

3374 = 24

or L, the effective story height, is found to be 10 feet. The distance
between the floors is equal to 14 feet, while the "free" height from top
of girder to bottom of the girder above is equal to 7-1/2 feet. The
effective story height is seeﬁ to be closer to the '"free' height between

stories than to the distance between floor slabs.

Determination of Damping Values

As shown in Chapter II the values of damping can be found from
the acceleration response at resonance. The values of damping for the
lowest translational mode are shown in Table IV-3. In this table the
acceleration amplitude ratios and the force ratios are shown as well.
All of these values follow directly from Fig. 4-4.

TABLE 1V-3

Damping at different force levels,
lowest translational mode (E-W)

Damping % .5 .5 .5 .6

Force ratios 1 1. 98 2.98 9, 15

Response ratios 1 2. 25 2.9 8. 4
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It can be seen that there is only a slight indication of an increase
in damping as the force ,level. increases. A detérmination of the
damping from the width of the response curves in Fig. 4-4 yields
almost identical results.

Table IV-4 shows the damping values obtained from the response
at resonance for the second lowest translational mode. The values
listed follow from Fig. 4-5.

TABLE IV-4

Damping at different force levels,

Second lowest translational mode (E-W)

Damping % .8 1.0 1.1
Force ratios 1 1.98 2.9
Response ratios 1 1. 65 2.2

The values in Table IV-4 seem to indicate a definite increase in
damping as the for ce level is increased.

The value of damping for the third lowest translational mode was
found to be 2. 0% and the damping in the fourth lowest translational
modé was found to be 3. 6%. These values were determined from the
peak response values. It is of interest to note that by using the width
of the response curve in determining the value of damping in the fourth
lowest‘ tr a,nslationél mode, a damping value of only 1. 5% is found. The
responsc curve shown in Fig. 4-7 gives an indication of the reason.
for the larpe difference in results. At frequencies higher than the

resonant frequency the response is clearly affected by the next higher .
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, ‘mode. - This interfer ence will affect the peak response value less
than it will the responses at the higher frequencies leading to a much
less accurate determination of the damping value from the width of

the response curve.

Determination of the Damping Matrix [C]

As shown in Chapter II, the damping matrix can be determined

~ from the following equation

(16 T] ) 25, o
| (r=1, 2, 3,4)

The mode shapes and the values of damping to be used in the determi-
nation of [C} are listed in Fig. 4-8. Assuming a close coupled
system, i.e., a tridiagonal matrix with no interrelation between the
elements of each row (or column) a‘total of 32 equations are available
to determine the 15 unknown elements of [C} . After performing the
least squares fit and solving the resulting set of equations, the results

in the form of [C] are:

[ 9.48 -4.42 0 o 0 0

-4.42 8.49 -4.13 O 0 0 0
0 -4.13 7.79 -3.78 0 0 0

[C]: 0 0 -3,78 7.57 -4.04 0 0 kips-sec
0 0 0  -4.04 7.60 -3.30 0 n
0 0 0 0 -3.30 6.09 -2.94

0 0 0 0 -2.94 6.13 -2.94
0 0 0 0 0 0 -2.96 3.06
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It is of interest to note that no as sumption was made as to any
interrelation between the elements of each row (or column). Never-
theless, it can be seen that for each row the sum of the absolute
values of the off diagonal terms is very close to the value of the
diagonal term. This is an interesting point since this interrelation
was not evident in the damping matrix determined in Chapter III for
the five-story reinforced concreté building. For that building the
conclusion was that the model of the structure should be represented
as having "absolute dashpots' as well as '"relative dashpots'. In the
present case the conclusion is that the model of the structure should
have only inter -floor da.shpot‘s.

This difference in results obtaincd from the tests of the five-
story reinforced concrete building and those obtained from the nine-
story steel frame building is also evident from the fact that in the
tests of the five-story reinforced concrete building the damping values
‘of the lowest and the second lowest translational mode were almost
identical. Figure 4-8 shows clearly how the damping values found for
the nine-story steel frame building increase almost linearly with
incréasing frequencies.

The damping matrix shown above is a "hest!! determination since
all the available data was used in its determination. Again here, as it
was done in the case of the stiffness matrix, the damping matrix
has been calculated using a number of combinations of the experi-
mentally determined modes. The results are shown in Table IV-5.

Again in this case it is evident that by using any three of the
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experimentally determined modes the elements of the resulting damping
matrix will be reasonably close in value to the '"best' determined

elements.

Translational Motion in the Short North-South Direction

In the short North-South direction, the trusses give very little
rigidity to the floor system. The joints are only restrained against
joint rotation to a very small degree. It was shown in Chapter II that
far coupling resulted when the girders were not of sufficient rigidity
to prevent joint rotation. For an n-degree of freedom system, the
matrix would contain n(n+1)/_2 unknown elements. If s modes are de-
ter mined experimentally sn equations are available to determine the
unkn0‘§vns. In casc the number of unknowns exceeds the number of
equations, no unique solution exists.

In the short North-South direction it was only possible to excite
the three lowest translational modes due to the frequency limitations of
the vibration exciters. A total of 3 x 8 = 24 equations are then available
to determine the 8 x—Z— = 36 unknowns and no unique solution exists. It
is obvious from physical considerations that the elements farthest away
from the diagonal elements will be of the smallest absolute value. It
was felt that by treating the stiffness matrix as a five diagonal matrix,
it Would be possible to get a sornéwhat reasonable approximation to the
compléte matrix. .This proved not to be the case. By assuming the
stiffness matrix to be five diagonal, the matrix will contain 21 unknown
elements; since 24 equations are available from the three modes

determined, it is possible to solve the resulting set of equations by
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» using the least squafes procedure previously described. The resulting
stiffness matrix did not make physical sense. For instance, sorme of
the off-diagonal terms were larger in magnitude than the corresponding
diagonal terms, Thié of course cannot occur in a passive system with
posﬂitive stiffnesses. The best approach to the problem of finding the
stiffness matrix and the damping matrix in such cases where the
number of unknowns exceeds the number of equations would probably
be a trial and error procedure. Starting with a stiffness matrix
calcﬁlated from a knowledge of the structure, without much regard to
the experimentally determined frequencies and mode shapes, it might
be possible by making succeésive changes in the assumed stiffnesses
to approximate reasonably well the experimentally determined
frequencies and mode shapes. These problems could well deserve
some future attention.

The resonant frequencies of the three lowest translational modes
were found from steady-state tests to be €0 =0. 97 cps; CO2=3. 20 cps
and w3:6. 25 cps. The ratios are approximately 1: 3.2 : 6.25. It is
interesting to compare the ratios to those found from the three lowest
tranSlatibnal modes in the long East-West direction. These were
1: 3.0: 5.1 or very close to those of a uniform shear beam.

Figure 4-9 shows the 9th floor response of the lowest translational
mode as the structure is being excited at a number of force levels.
The values of damping as determined from the peak responses are shown

in Table I1V-6.
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Fig. 4-9 9th FLOOR RESPONSE, LOWEST TRANSLATIONAL
MODE (N-S), VIBRATION EXCITER A.
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Single amplitude acceleration, g x 10

Fig. 4-10 6~ FLOOR RESPONSE, SECOND LOWEST
TRANSLATIONAL MODE (N-S), VIBRATION
EXCITER A.
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TABLE IV-6
Damping at different force levels,

lowest translational mode (N-S)

Damping % .4 .5 .6 .6
Force ratios 1 2 4,13 7. 25
Response ratios 1 1.53 | 2.66 | 5.1

A slight increase in damping as the force level is increased is
seen from Table IV-6.

Figure 4-10 shows the 6th floor response as the structure is being
excited at various force levels in its second lowest translational mode.
The response curves show a well-defined shift in resonant frequeﬁcy
as the force level is increased. This shift in frequency is typically
that of a softening spring. The shift in resonant frequency from the
lowest to the highest level of force excitation is approximately 2%;
this would then correspond to a 4% change in stiffness between these
two levels of excitation. The values of damping as determined from
the peak responses ére shown in Table IV-7. A slight but very
systematic trend for the damping values to increase as the force level
increases can be seen from Téble wv-1.

The 3rd floor résponse of the third lowest translational mode
is shown in Fig. 4-1l. All the mode shapes, frequencies and damping
values are listed in Fig. 4-12. It can be seen that the value of damping

increases almost linearly with the increase in frequency.
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TABLE IV-7
Damping at different force levels,

Second lowest translational mode (N-S)

Damping % 1. 13 1. 18 1, 28 1. 37 1. 64
For ce ratios 1 1.97 2.92 4.00 6.8
Response ratios | 1 1. 88 2,59 3. 30 4. 74

Torsional Motion

With the two vibration exciters located at the 4th floor it was
possible to excite the torsional modes of vibration by running the two
exciters synchronized with a phase angle of 180° between them.

Figure 4-13 shows the 10th floor response as the structure is being
excited at and close to its lowest torsional resonant frequency. From
the 'widfh of the fesponse curve, the damping was estimated to be 0. 8%.
The response was not of sufficient magnitude to make possible a
determination of the mode shape.

Figure 4-14 shows the response curve for the motion of the 3rd
floor as the second lowest torsional mode is being excited. The value
of damping as measured from the width of the response curve is
estimated to be 1. 3%. The mode shape is shown in Fig. 4-16.

Figure 4-15 shows the 3rd floor response as the third lowest
tor sional mode is being excited. The value as détermined from the
width of the response curve is equal to 3.1%. The mode shape is

shown in Fig. 4-16.
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Force at resonance:
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Fig. 4-13 10" FLOOR RESPONSE, LOWEST TORSIONAL
~ MODE, MEASURED 20 FEET FROM EAST END
OF BUILDING,VIBRATION EXCITERS B AND C.
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3

%)

Single amplitude acceleration, g x 10
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w
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Force at resonance:
2830 Ibs each
. | 1 s L 1
6. 4 6.‘6 6.8 7.0 7.2 7.4 7.6 1.8
Frequency, cycles per second
Fig, 4-15 3rd FLOOR RESPONSE, THIRD LOWEST TORSIONAL

MODE, MEASURED 60 FEET FROM EAST END OF
BUILDING’VIBRAT ION EXCITERS B AND C.
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Fig. 4-16 MODE SHAPES, TORSION
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Slab Vibration, Free-Free Beams

It has already been mentioned that a mode was excited in which
the floor slabs vibrated as free-free beams. Figure 4-17 shows the
configuration of thc 6th floor as thc resonant frequency for this mode
is being excited. The mode shape is also shown in Fig. 4-17. In
determining this mode shape, accelerometers were located at point
A on all the floors. Itis of interest to note that the building moves
with essentially no relative displacements between adjacent floors.
This means that in this mode of vibration no stresses are developed
in the columns.

The response curve for point A in Fig., 4-17 is shown in Fig. 4-18.
The value of damping as deter mined from the width of the response
curve is found to be close to 2% of critical damping. It is interesting
to note that the V;ibration tests of the five-story reinforced concrete
building as described in Chapter III generally showed damping values

| close to 2% of critical damping. |

The natural frequency of a beam vibrating as a free-free beam

can be found from the following expression

£ =3.567] EI4
o mL

Since the floor slabs are made of light weight concrete, the modulus

6
of elasticity for concrete is estimated to be 2 x 10~ psi; the typical floor
weight'is 920 kips. Distributing the masses uniformly over the slab

‘ 2, 2 .
gives a value of m equal to .9 lbs-sec /in . The moment of inertia
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is calculated using the total cross-section of the slab but excluding

reinforcing bars. The result of the frequency determination is

6 3 3’
¢ =3.56\/2X10 x5x(44(f)) (12) - 5.1 cps
o 12 x .9 x (220)7 (12)

The resonant frequency excited during the vibration tests was equal

to 4.9 cps; the two values are in close agreement.
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CHAPTER V

STEADY-STATE VERSUS RUN-DOWN TESTS OF STRUCTURES

The vibration tests described in Chapters IIIl and IV were steady-
state resonance tests. In these tests the speed of the vibration
exciters can be controlied to aﬁ accuracy of about 0.1%, i.e., after
running the exciter at a specific frequency, and recording the building
response, it is possible to change the frequency to a new value that
only differs 0.1% from the previous value. Dynamic tests of buildings
and other civil engineering structures have in the past often been in
the form of run-down tests, Vin which a sinusoidal vibration exciter
is allowed to decelerate through resonance under friction forces. In
this case the response curve, the natural frequency, the damping, etc.,
are determined fr om the recorded run~down motion of the structure.
The speed control on the earlier exciters was not very precise so
run-down tests were the most feasible method of performing structural
dynamic tests on full-scale structures. Since the present vibration
exciters can be used to subject a building to forced vibration run-down
tests as well as forced vibration steady-state tests, the two methods
of testing were used on the two buildings described in Chapters III and
IV. The response curves obtained from the two types of tests were then
analyz‘ed and the résults were compared.

In a run-down test it is not possible to use multiple vibration
exciters since the electrical synchr onization system is not energized

while the units coast to rest with the power off. The comparison tests
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were fherefore run using only one exciter on one of the upper floors
without changing the instruménta.tibn for the response pick-up between
tests. The comparison vibration tests on the five story reinforced
concrete frame building were part of the preliminary tests performed
three weeks prior to the tests reported in Chapter III. In this three
week period several non-structural elements were added to the
building such as windows, false ceilings, air conditioning ducts and
facing bricks. These additions had no significant effect on the
vibrational characteristics of the building; the tendency was to lower
| slightly the natural periods of vibration and to increase slightly the
amount of damping in the various modes of vibration.

In Fig. 5-6a the acceleration response of the 4th floor of the
9-story steel-frame building of Chapter III is shown; the mode excited
is the second torsional mode. It is clear from this record that a very
slight change in frequency can give a significant change in the response
amplitude; the record shows clearly that with a less accurate control
of the frequency, a significant part of the response would have been
lost. Actually, the steady-state acceleration response reproduced in
Fig. 5-6a corresponds to discrete changes in frequency from 3. 680
cps to 3. 713 cps or less than a 1% total change in frequency. If it had
only been.pos sible to change the frequency in steps of about 1%, all
the record between 3. 680 cps and 3. 713 cps could have been lost.
Since the acceleration at 3. 700 cps is about 20% more than at 3. 680
cps, the peak amplitude would thus have been found as only 80% of the

true value. While this would have had only a very minor effect upon
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the de;cerrrlination of the natural frequency, it would affect the
determination of the damping significantly.

It is interesting to note that in performing the steady-state
dynamic tests as described in Chapters II and III, it was necessary in
some cases to wait for several minutes before taking records after
the exciters were set at a specific frequency. The transient vibrations
from the prior excitation took that long to damp out and leave only the
true steady-state response from the presently excited frequency.
Especially at frequencies slightly higher than a natural frequency this
interference between the natural frequency of the system and the
frequency of excitation appeared on the records of acceleration as a
typical series of ""beats!'" The fact that many cycles of excitation were
needed for the structure to obtain its true steady-state response led
to the que stions’explored in this chapter. Since a run-down test
employs not discrete changes in frequency, but rather a sweep through
the frequencies of interest, it was felt that run-down tests might not
give a good representation of a steady-state response but rather an

obscure mixture of transient and steady-state responses.

Run-Down Tests

In a run-down test the forces are applied to the structure in the
same way as for t_he steady-state tests, but instead of exciting the
structure with discrete changes in the frequency, a continuous sweep
of the frequencies is made. The vibrator is speeded up to a frequency

that is higher than the natural frequency of interest; the power to the
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vibrat‘or is then cut off or the belt connecting the motor to the rotating
weights is removed, and the ‘syster'n is permitted to decelerate under
action of friction forces. As the vibrator coasts down to rest, con-
tinuous measurements of the response are taken. The record will
directly show how the response varies with the frequency. By measur-
ing the amplitude of the response and the corresponding frequency at
several points on the record it is possible to plot the response in the
form of a response curve. In the past this response curve has been
analyzed in the same way as the response curve from a steady-state
test to find the natural frequency of the system and the damping in the
particular mode. The implication of this procedure is that the response
found from a run-down test is the same as that found from a steady-
state test. Indéed this would be true if the vibrator were to coast down
to rest slowly ehough so that at any exciting frequency the structure has
time enough to build up to its steady-state response.

If the vibrator coasts down too fast, the response at any frequency
will consist of both transient vibrations and steady-state vibrations.
Fur‘;her more, at frequencies close to the natural frequency of the
system, the amplitude might not have time enough to build up to its
steady-state value during the time the system is being vibrated near its
natﬁral frequency. The rkeason Why s0 many structural dynamic tests on
full-scale structures in the past have used run-down tests is that it
appeared to be the most feasible method. The speed control on the
earlier exciters v&‘ere not very precise and thus it was difficult to trace

out a response curve by means of discrete:changes in frequency. Also

another difficulty appearing in some drive systems is that close toa
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resonant condition the speed control coﬁld not keep the exciter running
at a constant frequency. While it is obvious that the rate of sweep of
the frequenéies in a run-down test will affect the response of the
structure, this is not the only factor that determines how well the
response would compare with the true steady-state values of the
response. As will be shown later on, the response is also affected by
the natur al period of the structure and to a very high degree by the
amount of damping in the mode investigated.

The problem of how well the response found from a run-down test
compares with that found from a steady-state test has been treated
theoretically in connection with mechanical engineering problems in-
volving the acceleration of unbalanced rotating machinery through
critical speeds. While the problem has been looked at from a somewhat
differ-ent viewpoint fr om that used in the present discussion, the results

(55)

~are still useful. Lewis analyzed the response of a one degree of
freedom system acted upon by a sinusoidal force whose amplitude is
constant but whose frequency either increased or decreased at a uniform
rate. The main conclusions to be drawn from Lewis' work are the
following: (1) The natural frequency of the system found by letting the
applied force sweep through résonance with a uniform decrease in
frequency is less than that found from a steady-state test, the highér

the rate of swéep é,nd the lower the damping in the structure the greater
the shift in frequency. (2) The peak amplitude found from a run-down

test will be less than the peak value found from a steady-state test; the

fastér the rate of run-down and the lower the damping the greater the
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changé in peak value. (3) For low values of damping the amplitude of
motion in a run-down test will decay in a series of beats which can

be regarded as an interference between the free and the forced motion
of the system.

As Lewis points out, it was not possible to find an analytical
expression relating the above mentioned shifts in frequency and peak
value to the rate éf sweep and the damping in the structure. Attempts
at fix;ding general empirical relationships which would express approxi-
mately the changes in frequency and peak value as a function of run-down
rate and damping in the structure have not been sutcessful. However,
it was possible to solve the problem for a number of given sweep rates
and for different values of damping. Parker(56) later treated the same
problem by use of an analog computer, extending Lewis' work by con-
sidering a wider range of damping values.

References (55) and (56) show clearly that for values of damping
‘and rates of sweep that would be typical for a run-down test on full-
scale structures the shift in frequency is of little importance. This
shift in frequency would at the most be of the order of 10%. On the
other hand, it is quite evident from references (55) and (56) that the
peak response value as found from a run-down test could be quite
different from the steady-state response. The peak response values
found by sweeping thr ough the natural frequency of a linear single -
mass system are shown in Table V-1. The numerical values given in
Table V-1 are the ratios of the peak response from a sweep of fre-

quencies with an infinitely slow sweep rate (i.e., a steady-state test)
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Table V-1
(From References (55) and (56) )

2 |

q=+— | B= . 5% 1. 0% 1. 67% 2. 5% 5%
-385 2. 17 1. 49 1. 17 1. 04 1. 02
-131 1. 46 1. 24 1. 10
-42 _ 1. 47 1. 23

divided by the peak response found from a sweep of frequencies at a
finite constant sweep rate. In this table P is the percentage of critical
damping ghile q is a factor expressing the natural frequency and the
rate of change of frequency during the sweep. The factor q is equal
to the square of the system's natural frequency in cycles per second
divided by the rate of change of frequency in cycles per second per

second, i.e., 2

N
4=

Table V-1 can be regarded as the correction factor that should be
applied to the peak value as found from a test using a sweep through the
natural frequency in order to obtain the steady-state response. How-
ever, as will be shown later on, the damping is not sufficiently well
known from a sweep test to make this a practical way of finding the
steady-state peak response value. It is clear from the table that this

correction factor depends strongly on the damping in the structure.

Experimental Results

Figure 5-1 shows how the speed of the vibration exciter changes
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IO~ 20 30 40 50 60

Time, seconds
FIG. 5-1 FREQUENCY CHANGE DURING RUN - DOWN
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with time as the vibrator coasts down to rest. The speed of the
vibration exciter was read from a digita.l electronic counter which was
triggered by a tachometer mounted on the drive motor shaft. The
counter contains its own frequency standard accurate to 0.01%. The
record is typical in the sense that there seems to be no significant
changes in the rate of change of speed during run-down, regardless of
the type of structure the vibrator is attached to. The mechanical
condition of the vibrator, however, could be an important factor as the
rate of change of speed during run-down could be affected by such
factors as tightness of the drive chains and the lubrication of the
bearings. It was found that the curve shown in Fig. 5-1 could be well

represented by the following expressiom

f=6.1e 0% (5. 1)

where f is the speed of the vibrator in cycles per sec and t denotes
‘time in seconds. The rate of change of speed at any frequency then
becomes

L

55 (5. 2)

df"- _ -
h=o =-.04f =

It is of iﬁterest to note thatvthe rate of change of speed of the exciter
during run-down is proportional to the speed. This is perhaps for-
tuitous as the friction causing the vibrator to slow down comes from
several sources. The air resistance against the rotating buckets that
carry the weights would be approximately proportional to the frequency
squared while other friction effects ih chains and bearings probably

would be more or less independent of speed.
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The sweep expressed by Eqs. 5.1 and 5. 2 is known as a logarith-
mic sweep. It will be shown later that less than half of a cycle per
second is needed to fully define the response curve. Within this short
range of frequencies the rate of change of speed would bé nearly
constant and can be expressed as

1
h=-ogf=-ae N (5. 3)

where N is the system's natural frequency in cycles per second. By
means of Eq. 5.3 the factor q used by Lewis and Parker can be

expressed as
2 ) -NZ
- 1

N
h

q = = - 25N (5. 4)

N

38

5

The range of frequencies of excitation that can be obtained by using the
vibration exciter is 1 to 9 cps so from Eq. 5. 4 it follows that the
applicable values for q fall in the range -225 < q < -25. This range is
~covered approximately by the values of q in Table V-1,

One of the buildings tested was i:hé five-story reinforced concrete
frame building of Chapter III. The vibration exciter was attached to the
fifth floor of the building close to the longitudinal axis of symmetry at
a distance of 16 ft from one end. Accelerometers were located on all
floors on the longitudinal axis éf symmetry at a distance of 50 ft from
one end. With this location of the exciter and the accelerometers it
was possible to excite and record both translational and tor sional
modes of vibration.

Figure 5-2a shows the acceleration measured at the fourth and

fifth floors from a steady-state vibration test as the structure is
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exciteAd into its lowest torsional mode with discrete changes in
frequency. ~Figure 5-2b shows the same recorded response but from
a run-down test as the vibrator sweeps through the resonance for this
mode. It is evident from Figs. 5-2a and 5-2b that the peak acceler-
ations obtained from the steady-state test are considerably greater
than those obtained from the run~-down test.

In Fig. 5-3.the responses of the fifth floor have been plotted as a
function of frequency. The response has been reduced to single
amplitude displacement at constant force. With the steady-state
response plotted in this fa.sh‘ipn it is common practice to evaluate the
damping from the width of the response curve measured at an amplitude
of N'2/2 times the resonant amplitude. The same procedure has been
commonly used on the response curves of run-down tests. A summary
of the quantities determined from Fig. 5-3 is shown in Table V-2.

It is seen in Table V-2 that the resonant frequency as found from
‘the run-down test is slightly smaller than the value found from the
steady-state test, the difference in frequency being about 3%. How-
ever, the damping deduced from the run-down test is almost twice as
, largé as the value determined from the steady-state test. The peak
response values obtained from the two types of tests are also significant-
1y‘ different.

The ratio of fhe maximum steady-state acceleration divided by
the maximum run~-down acceleration is 1. 45 for both the fourth and
fifth floor measurements. This factor can be compared to the

theoretically deduced factors given in Table V-1. Using the value of
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Table V-2

5-Story R. C. Building, Lowest Torsional Mode

Run-down Test Steady-State Test
Resonant 4. 16 4,28
frequency, cps
Damping 3.8 2.0

% critical

4th Floor 5th Floor 4th Floor 5th Floor

Peak accelera-
tion single 5,05 6. 70 7. 30 9, 80

amplitude

10~3g

Peak displace-
ment single 2. 84 3.75 3.90 5. 25
amplitude

10~ 3 inches

B = 2% and from Eq. 5. 4 the value of g = -25N = -25 x 4, 28 = -107 it is
seen that the experimental factor 1. 45 is consistent with the values in
Table V-1. It is only possible to make an approximate comparison of
the experimental value and the theoretical values of Table V-1 as the
experiméntally deter mined values for B and q fall slightly outside the
range of values in Table V-1. However, enough of a trend can be
established to conclude that thé theor etical work done by Lewis and
Parker on a one degrec of freedom system is well supported by the.
experimental resuits obtained from actual tests of multi-degree of
freedom systems. The mode being tested was sufficiently well
separated from other modes 80 that in the short range of frequencies

needed to define the response curve there was no interference of
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otherAmodes. The theoretical results were found assuming the force
amplitude to be constant and a linear sweep of frequencies during
run-down. In the actual tests the force varied as the frequency
squared and the sweep of frequencies was a logarithmic sweep rather
than a linear sweep. However, as can be seen from Fig. 5-3 the
resonance curve spans only a very narrow range of frequencies, less
than half a cycle per second is needed to fully define the resonance
curve. Within this short range of frequencies the for ce applied would
be almost constant. Similarly, it is evident from Fig. 5-1 that even
though the rate of change of speed is not constant for the full range of
frequencies, the rate of change of speed would be nearly constant for
a range of frequencies spanning only about half a cycle per second.

With the same location of the vibration exciter and the accelero-
meters, the fir ét translational mode in the short direction of the
building was also investigated. The acceleraj:ion me asurements are
shown from the steady-state test in Fig. 5-4a and from the run-down
test in Fig. 5-4b. Again, it is evident that the peak accelerations
found from the steady-state test are considerably greater than for the
run-down test. Figure 5-5 shows the resonance curves for the fifth
floor as found from the two tests, the response being reduced to
single amplitude displacement at constant for ce.

Table V-3 gives a summary of the results, In this table the peak
acceleration values are also given for the other floors of the building so
that differences in mode shapes, if any, can be seen. The resonant

frequency determined from the run-down test is about 3% lower than
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the resonant frequency determined from the steady-state test. It is
significant that damping deter mined from the run-down test is about
2.5 times as large as the damping determined from the steady-state
test. By dividing the peak acceleration found from the steady-state
test with that obtained from the run-down test, a factor of 1. 75 is found
from measurements at all floors.. Using the value of B =1.3% and
from Eq. 5.4 q = -25N = -25x 2. 77 = -70 it is possible to compare the
experimental value of 1. 75 to the theoretical values listed in Table V-1.
Again in this case it is found that the experimentally determined value
is consistent with the values in Table V-1

It is of interest to note in comparing the results of the run-down
test with those of the stcady-state test that the values of damping differ
much more than the peak response values. This is also evident from
Fig. 5-5 where it can be seen that not only is the peak response lower

’ in the run-down test, but the response curve found from the run-down
test is much broader. It is evident from Table V-3 and Fig. 5-5 that
the response curve, as plotted from a run-down test, cannot be
analyzed as if it were a steady-state response curve.

Table V-3 shows also the normalized mode shapes as obtained
from the fwo types of tests. The results are almost identical, as
would be expected, since it is clear from the acceleration records
that the structure is excited in a normal mode as the vibration exciter
sweeps through the natural frequency of the structure during the run-
down test.

Steady-state tests and run-down tests were also carried out on
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the 9—étory steel frame building of Chapter IV. A vibration exciter
was attached to the fourth floor away from the shear center so both
translational and torsional modes could be excited. Figure 5-6a shows
the recorded acceleration response of the fourth floor as the structure
was excited near its second lowest torsional frequency by discrete
changes in frequency. Figure 5~6b shows the same recorded response
but from the run-down test. It is seen that the peak acceleration during
the steady-state test is much lar ger than during the r@—down test. It
is seen in Fig. 5-6b that after the structure has been excited into
resonance the acceleration résp0nse decays in a series of '"beats'.

The physical explanation is that the motion at frequencies slightly lower
than the resonant frequency is partly a free motion and partly a forced
motion. The '"beating'' phenomena can thus be regarded as an inter-
ference between the free and the for ced motion.

The "beats! in the run-down record make it impossible to con-

struct the resonance curve and calculate the damping from the run-
down test. The steady-state test determined the damping in this mode
to be 1.1%. The peak single amplitude accelerations during the steady-
state test and during the run-down test are equalito 6.1 x 10—3g and

3.4 x 10—3g, respectively., The ratio of the two measur ements is 1. 8.
Using the value of B = 1.1% and from Eq. 5.4 q = -25N = -25 x 3.7 =
~92 it is seen that »:the experimental value 1. 8 is consistent with the
range of theoretical values in Table V-1. It is evident that the ratio

of maximum steady—étate acceleration divided by the maximum run-

down acceleration depends strongly upon the damping in the structure.
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The vé,lue of q in the example above is-equal to -92, but even if the run-
down rate were more than foﬁr times as slow, say q = -385, then the
values given in Table V-1 would predict that for a structure with 0. 5%
damping the ratio of peak acceleration responses would be 2.17 and

if the damping was 1. 0% the predicted ratio would be L. 49.

Conclusions

Steady-state and run-down tests have been made on two modern
mulfistory buildings. The response curves obtained from the two types
of tests have been analyzed and the results compared.

The natural frequency as determined from a run-down test is a
few per cent lower than the natural frequency determined from a steady-
state test. The mode shapes, as determined from the two types of tests,
are identical. The peak response value determined from a run-down
test is as much as 50% lower than the steady-state response value.

- Damping determined from a run-down test is up to 2. 5 times as large
as the damping determined from a steady-state test. It is concluded
that a run-down test is not, in general, a suitable experimental
method f.or dynamic <1:esting of structures. It is also.concluded that

data from past run-down tests are of questionable accuracy.
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CHAPTER VI
A NEW METHOD FOR THE MEASURE-
MENT OF THE NATURAL PERIODS OF
BUILDINGS
The natural periods of vibration of a structure are perhaps the
most significant dynamic parameter s involved in response analysis.
Not only are the numerical values needed for computations, but a
comparison between experimentally determined values and calculated
values is an important check on the validity of the simplified mathe-~
matical models which must of necessity be used in the analysis. (58)
The importance of the fundamental natural period as an indication
of the dynamic behavior of structures is emphasized by the introduction
of this parameter into some modern earthquake-resistant building codes.
The ”Recommen&ed Lateral Force Requirements! of the Structural

(59)

" Engineers Association of California, for example, fixes the basic
lateral force coefficient to be used in design by a formula involving
the fundamental natural period.

An additional reason for an interest in these natural periods is
the belief that concealed structural damage such as might occur during
a strong earthquake might significantly alter the fundamental period,

and hence period measurements before and after an earthquake might

reveal such hidden damage. Although there is some evidence from

sk
This chapter has been published with minor modifications in the

Bulletin of The Seismological Society of America. (57
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past rﬁeasurements that significant period shifts have been caused by
earthquakes, the presently available data are not sufficient to arrive
at any definite‘ conclusion. It is important that period measurements
be made on existing structures so that, should an earthquake occur,
the basic data will be available for comparison. At present, accurate

period data is at hand for only a very few buildings.

Experimental Methods

The experimental methods that have been used for period
measurements of full-scale structures are: (1) resonance testing,
using a variable frequency sinusoidal vibration generator; (2) free
vibration decay tests, excited by initial displacements or velocities;
(3) wind-excited forced vibration tests, using the very small amplitudes
set up by natural gusts.

The first two types of tests require relatively elaborate equip-
‘ment, and in practice it is seldom possible to secure permission to
make such tests in buildings. The wind-excited tests can be quickly
carried out without the installation of any equipment in the building, it
being only required to temporarily place a portable seismograph in
an upper story position.

The difficulties with the wind excited tests are: (l) suitable
natural gusts may not always be available; (2) very low amplitude
levels are set up, and thus some strucfural elements may not be
brought into action in a typical way; (3) since the form of the exciting

force is not known, no information on structural damping can be
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deducéd from the record; and (4) usually only the fundamental mode
of vibration will have an appreciabie motion, and thus no information
on the higher modes is obtained. In spite of these defects, the
simplicity of the test, and the fact that it is the only possibility for
most buildings, has given it an important place in structural dynamic
investigations. A considerable amount of such data was collected in
the early 1930's by the United States Coast and Geodetic Survey and
reported in the publication ""Earthquake Investigations in California. (60
At the present time the United States Coast and Geodetic Survey is
reactivating and enlarging this period measuring program with
improved instrument ation.

As an example of the results that can be obtained with such
wind-excited tests, Fig. 6-1 shows measurements made on a 100 ft

(61)

high concrete infake tower of a dam. This test was unusual in that
a second mode ‘of vibration was also clearly excited during part of the
record, and hence the first two periods of vibration could be
determined. The records of Fig. 6-1 were obtained on a photographi-
cally recording portable seismograph having a natural period of about
2 seconds and a magnification of approximately 400.

There is a possibility that some information on structural
damping could be extracted from a wind-excited vibration record such
as Fig. 6-1 if someé data on the input force could Ee obtained. If, for
example, the exciting force power spectrum could be simultaneously

measured, something might then be deduced about the damping. This

does not seem to be feasible in practice, however, because of the
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large size of the structures involved, which would require that the
input wind forces be simultane ously measured at a number of points

to arrive at the integrated exciting force.

A New Method of Excitation

During some wind-excited tests of a 150 ft high concrete intake
tower, it was noted that a considerable deflection of the seismograph
recorder could be set up by the operator jumping laterally at the top of
the tower. This suggested that the small inertia force generated by
the operator himself, if it were properly synchronized with the natural
period of the tower, might be sufficient to build up a measurable
resonant vibration. With a little practice it was found that this was
indeed the case. By keeping one eye on the seismograph recorder to
observe the 'way‘ the vibrations were building up, an operator with an
ordinary sense of rhythm could by periodic motions of his body produce
considerably larger amplitudes of motion at the fundamental period
than had been produced by the wind., Figure 6-2 shows the record
obtained in this way. on the 150 ft high concrete intake tower using the
same seismograph that was used for Fig. 6-L

It was immediately evident that this method of excitation had
thr ee important advantages over the wind-excited force: (1) larger
amplitudes of motion could be built up at ‘a definite period; (2) the
test could be carried out at any time, in the presence or absence of
wind; and (3) in the absence of wind, by stopping the exciting for ce

after an appreciable motion had been built up, the decay of free



-195-

:[0.001 IN.

n“““

"Il HHHHIHHW"

I IIIIII
FIG.6-2 "MAN-EXCITED" VIBRATIONS OF 150 FT. HIGH
CONCRETE INTAKE TOWER OF DAM



-196-

vibrations could be recorded, and hence damping could be measured.

A vibration of the above kind is in one sense a ''self-excited"
vibration. Since this phrase, ''self-excited', is already used in
mechanics for a rather different phenomenon in which the forces sus-
taining the motion are derived from the motion itself, it might be
better to refer to this particular type of forced vibration as a '""man-
excited!" motion. This method of excitation naturally recalls the old
stories often mentioned in mechanics lectures of bridges destroyed by
marching armies, and the supposedljr common rule that soldiers
should break step when crossing a bridge.

At first thought it seemed unlikely that a sufficient exciting for ce
could be obtained in this very simple way to be useful for large
structures such as multistory buildings. However, it turns out that it
is just for such large structures with their relatively low natural
frequencies that the method is most useful. As will be shown by some
specific examples, it is often possible in multistory buildings to
achieve an amplitude far exceeding that obtained from the wind.

. The essential feature in producing a significant '"man-excited"
vibration is to insure that the center of mass of the body moves with
as large as possible an amplitude at a reasonably constant frequency.
One effective technique is to stand facing perpendicular to the
direction of excitation and then to sway the body sideways, shifting
the weight from one leg to the other. Another technique is to hold a
column or door -jamb, and then move the body backward and forward,

transmitting the force to the structure through the arms and legs.
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Other interesting possibilities, perhaps involving the synchronized
efforts of several people, will suggest themselves.

An idea as to the magnitude of the force generated in this way
can be gained by supposing that the center of mass of a 150 1b man is
moved sinusoidally through a double amplitude of 6 in. at a frequency
of 1 cps. This would produce an inertia force magnitude of 46 1b.
Considering that a structure having 1% of critical damping has a
dynamic amplification factor at resonance of 50, such force magnitudes
can easily produce measurable displﬁcement S.

Returning to Fig. 6-2, it is of interest to note how quickly the
vibration amplitudes build up at resonance. Only four cycles of |
motion were required to bring the amplitude to a large value, from
which a clear free vibration deca'y record was obtained. From this
decay curve, the damping can be calculated to be less than 1% of
~critical. The values of period and damping obtained in this way were
subsequently found to be in good agreement with those calculated from
resonance curves determined with a éinusoidal vibration generator
installed at the top of the tower.

At this stage in the investigations, a new portable seismograph
became available which proved to be particularly well suited to such
tests. Through the couftesy of the Seismological Laboratory of the
California Institute of Technology, an experimental model of the

"lunar seismometer!', (62)

along with a compact recording drum and
pen recorder system, was borrowed for a number of building period

tests. This lunar seismometer is a permanent magnet-moving coil
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type aAdjus'te‘d to a natural period of about 1 second. By means of a
sirﬁple transistor amplifier, a 5 in. ink-recording pen can be driven at
a maximum magnification of about 10,000 at 4 cps and about 1000 at

1 cps. A small recording drum of 3-3/4 in. diameteriis operated at

a recording speed of 1 cm/sec. The combination of large output, high
gain variable over a large range, compactness, and ruggedness, makes
this instrument very suitable for building period tests. Another
important advantage is the pen-recorder, which not only gives an
immediately visible record, but which has a relatively large
mechanical moving element to watch, which assists in synchronizing

the applied inertia force and the resonant vibrations.

Tests on Building Frames

The first tests with the lunar seismograph were made during
construction of the five-story reinforced concrete building described in
" Chapter III. Figure 6-3 shows typical records from which both the
fundamental natural period and the damping can be obtained as given.
These values are in‘good agreement with the resonance curve
calcﬁlations from the steady state sinusocidal vibration generator tests.

A second test of the method was made at various stages of con-
struction of the steel-frame building described in Chapter IV. In this
case it was possibvle to clearly distinguish between 8 different modes
of vibration, as shown in Figs. 6-5, 6-6 and 6-7. Figure 6-4 shows
the general configuration of the building, and indicates the locations

of the points of excitation. These points of excitation should be
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— > |——| ONE. SECOND

FUNDAMENTAL N-S TRANSLATION, 0.86 CPS
[POINT A IN FIG. 6-4)

/ /‘ TAAAN
\/\/\/\ ﬂ;\ ,/’}, i, l q ﬂ mﬁ [‘ ’1 /\1 / \J’\/\/’\l/\/\/ AVAVAVAVAVAVA
j \ Ly bl

SECOND MODE N-S TRANSLATION, 2.8 CPS
(POINT A IN FIG.6-4)

THIRD MODE N-S TRANSLATION, 5.0 CPS
(POINT D IN FIG. 6-4)

FIG. -6 "MAN-EXCITED" VIBRATIONS OF NINE-STORY
STEEL-FRAME BUILDING. N-S LATERAL
TRANSLATION MODES.
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—= |——- ONE SECOND

(a)

FUNDAMENTAL TORSION MODE, 108 CPS
(POINT B IN FIG.64)

AW R
SECOND TORSION MODE, 3.5 CPS
(POINT B IN FIG. 6-4)

THIRD TORSION MODE, 72 CPS
(POINT E IN FIG. 6-4)

FI1G. 6-7 "MAN EXCITED' VIBRATIONS OF NINE STORY
STEEL-FRAME BUILDING. TORSIONAL MODES.
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selected to emphasize the que desired, and to suppress other modes.
For example, by applying the exciting force at a node for the 2nd
mode of vibration, the 3rd mode can be more easily recognized,
Although these mode shapes will, of course, not be accurately known
for actual structures, it will be possible to make a sufficiently
accurate estimate from the general configuration of the structure.

Figure 6-5 shows two lateral translationalmodes inthelong E-W
direction of the building. The damping in the fundamental mode is
about 1% of critical, definitely less than that of the reinforced concrete
frame of Fig. 6-3.

| Figure 6-3 shows three lateral translation modes in the short
N-S direction of the building. The damping of the fundamental mode is
considerably less than in the other direction; in fact, the decrease in
the successive amplitudes is so small as to be scarcely ne asurable.
In this case an approximate value of damping of the second mode could
also be obtained.

Figure 6-7 shows three tor sional modes excited by transverse
ihertia for ces at the ‘end of the building. The damping of the fundamen-
" tal mode in torsion is appreciably greater than the lateral modes, and
is about 2% critical. The value of the fundamental tor sional frequency,
1.08 cps, is very close to the lateral E-W frequency of 1. 04 cps. It
should be noted, however, that the direction of the exciting force for
the torsional mode is perpendicular to that which would excite this
E-W frequency, and hence the two modes can be se‘paratéd even though

their frequencies are so close together.
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As an additional means of studying the dynamic properties of
structures, period tests with the lﬁnar seismograph were made at
intervals during construction of the nine-story building. By noting the
way in which the periods change as various structural elements are
added, considerable detail concerning the dynamic action of these
structural elements can be obtained. These results are described in

detail in Chapter IV.

- Earthquake Response of a Steel Frame Building

In the course of the period measurements on the nine-story steel-
frame building, an extra premium was obtained in the form of a natural
earthquake which excited a building motion considerably greater than
had been involved in the period tests.

During adjﬁstment of the lunar seismograph prior to a period
test, a large signal appeared which was at first believed to be an
instrument malfunction. Fortunately the recorder was kept running
for a time, for the cause of the motion turned out to be a magnitude
5.0 earthquake with an epicenter about 70 miles from the building.

(28 February 1963; 4:25:58 PST; 34056'N, 118°59 "W). Figure 6-8 shows
the N-S lateral response of the building to this earthquake. The strong
mofion begins at P and continues for several widths of the record as
indicated. During the short time interval Q-R the recorder was turned
off while the gain was reduced for the remainder of the record. The
initial strong motion of the building quickly passes into an almost pure

3rd mode of lateral translation, which then gradually passes into a
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“motion ;vvhich is almost entirely the fundamental mode. The 3rd mode
frequency is very close to 5 times the fundamental frequency, which
would be the exact ratio for a uniform shear type structure. The 2nd
" mode of lateral translation is not prominent on the record because the
seismograph was located on the 8th floor, near a node for the 2nd
mode of vibration. The frequencies excited by the earthquake of Fig.
6-8 cannot be compared numerically with the "man-excited" frequencies
of Fig, 6-6 because the structure of the building frame was altered
between the two tests by the addition of fire-proofing material to the
columns.

Records of actual earthquake induced motions in multistory
buildings are, of course, very rare, and the above extremely fortuitous
record gives important direct information on the way in which the

higher modes of vibration are set up in such structures.

Conclusions

It is believed that the simple means of building excitation
described above will make it possible to considerably improve the
data hithe'rto obtained from many buildings by wind-excited tests.
Although the amplitude levels of such tests are very small, the data
may be useful for design purpoées. Several instances have already
occurred in which wide differences between building periods as
measured by the ab‘ove means and calculations based on the design
model have led to a re-evaluation of the design pr ocedures, and a

clarification of the way in which the structural members were behaving.
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Since tests of the above type may‘ be the only feasible way of
acquiring data on most actual buildings, possibilities of improvements

in instruments and techniques should be carefully studied.
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CHAPTER VII

SUMMARY AND CONCLUSIONS

Chapter II treated the theory of structural testing; the major
points of interest are:

1. In order to force excite a pure normal mode in a complicated
dynamic system an iterative process that converges on the excitation
‘ of the desired mode is needed. In most multistory buildings the
natural frequencies are sufficiently well separated and the damping is
sufficiently low so that the iterative process is not needed in its full
generality. However, the underlying principles of the iterative
process are of value in positioning the vibration exciters so that the
modes of interest are purely excited and the undesired modes are
subdued or eliminated entirely.

2. The eqﬁations:f‘rom which the stiffness and damping matrices
can be determined from the experimentally determined modal properties
have been developed. The equations were developed for the model
representing a "shear building'" with infinitely rigid girders, i.e.,
each mass is connected by springs and dashpots to adjacent masses
only; also, for the close coupled system in which each mass is
connected by springs and dashpots to adjacent masses as well as to the
base; finally the equations were developed for the far coupled system,
representing the model of the structure in which the girders are not
sufficiently rigid to prévent joint rotation, i.e., each mass is
connected by springs and dashpots to every other mass. For each case

the least number of experimentally determined modes required for a
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solutioﬁ of the system of cquations has been cstablished.

3. In the case of the ”sfxear building' with no joint rotation the
stiffnesses and damping elements can be determined from an experi-

" mental deter mination of only one mode. However, some of the
equations can be very ill-conditioned leading to large errors in the
determination of some of the stiffnesses and damping elements.

4. It has been shown that several methods are available to
determine the amount of "equivalent viscous damping" from an experi-
mentally determined steady-state response curve.

Chapter III describes the results obtained from an extensive series
of steady-state vibration tests of a modern five-story reinforced concrete
building having plan dimensions 25 fecet by 125 feet. The major results
are:

1. In the lbng direction of the building two translational modes
were excited. The ratio of the two resonant frequencies is 1: 3.1
The mode shape determined for the lowest translational mode was close
in appearance to that of a uniform shear beam.

2. Damping in the lowest translational mode was found to vary
between 1. 8% and 2. 2% showing a slight tendency of a decrease in
damping with increasing force levels. Damping in the second lowest
traﬁslational mode was found to be 2.1%.

3. In determining the damping matrix it was found that the
best representation of the model of the structure required "absolute

~hpots as well as "relative' dashpots. While "absolute' dashpots

ar. ded to best describe the mathematical model of the structure,
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" they doA not seem compatible with a physical description of how the
energy is absorbed. This points to the question éf how well the damp-
ing mechanism in a structure can be represented by the simple model
employing dashpots representing the energy absorbing elements of the
structure.

4.  In the short direction of the building only one mode could be
‘ excited due to the frequency limitations of the vibration exciters. The
response curves were determined for a number of different force
levels. The value of damping was found to vary between 2.1% and 2. 7%,
showing a consistent increase with increasing force levels.

5. The response curves show a well-defined nonlinearity
typically that of a '"softening spring''. This nonlinearity can be well
explained from the hysteretic material properties of the structure.

6. After eﬁciting the building at increasing force levels one of
the intermediate tests was duplicated in order to investigate whether
any measurable changes in response could be detected. The changes
in response characteristics were of a small but measurable magnitude.
The most pronounced change was an increase in damping from 2. 4%
to 2. 6%. Since the change is measurable even at these very low force
levels, the possibility exists that vibrations caused by nearby traffic,
smé,ll tremors, use of machinery in the building, etc., over a period
of time would also: tend to increase the value of damping.

7. The lowest torsional mode was excited at a frequency very
close to the theoretically predicted resonant frequency. The value of

damping was found to be approximately 2. 3%.
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8; In all the dynamic tests attempts were made to measure the
motion of the ground floor. Oﬁly at the highest force level of exci-
tation in the short direction of the building was such motion measur-
able. It was found that the translational as well as the rotational
motion of the ground floor constituted a negligible portion of the total
response of the building.

Chapter IV describes the results of the vibration tests of a
modern nine-story steel frame building having plan dimensions of
40 feet by 220 feet. The major results are:

1. "Man-excited" vibration tests were carried out during a
10-month period of construction. The changes in natural periods of
vibration give detailed information on how the various elements of the
building affect the dynamic characteristics of the structure.

2. Steady—’state vibration tests revealed that with the initial
location of one vibration exciter it was not possible to excite cleanly
’some of the desired modes. This was partly due to the fact that the
vibration exciter was located too clqse to oneé of the nodal points of
the desired mode and partly due to interference from other modes. '
The problems were solved by installing two vibration exciters at the
nodal points of the undesired modes and at the same time at points for
Whi;:h the mode shape components of the desired modes were
relatively large.

3. In the long direction of the building it was possible to excite
the four lowest translational modes. The ratios of the resonant

frequencies were 1: 3.0 : 5.0 : 7.5, Damping in the lowest trans-
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lational mode is found to be 0. ‘5% with only a slight indication of an
increase in damping as the force levél is increased. The second

lowest translational mode had damping ranging from 0. 8% to 1.1%
increasing with an increase in force level. The value of damping for

the third lowest translational mode was found to be 2. 0% and the damping
in the fourth lowest translational mode was found to be 3. 6%.

4. It was found that in the long direction of the building the
vibrational behavior was that of a ""'shear-building" with infinitely rigid
girders. Assuming the stiffness and damping matrices to be tri-
diagonal with no interrelation between the elements of each row (or
colﬁmn), the 15 unknowns could be determined from the 32 equations
stemming from the four experimentally determined modes. It was
foundthat the damping mechanism in this case, contrary to the damping
mechanism found necessary for the case of the reinforced concrete
building, was well described by '"relative dashpots only.
| 5. More modes were deter mined than necessary for the solution
of the equations from which the stiffness and damping elements could be
found. The stiffness and damping matrices were then determined using
only some of the experimentally determined modes. It was found that
by using any three of the modes, stiffness and damping matrices quite
close to those found by using all of the four modes were determined.

6. In the short direction of the building the vibrational behavior
was very much different fr om that of the long direction of the building.
The rigidities of the floor systems are such that the joints are very

little restrained against rotation. The three lowest translational
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" modes were determnined from the steady-state vibration tests. The
ratios of the resonant frequencies were 1 : 3.2: 6.25. Damping in
the lowest translational mode was found to be 0. 5% with only a slight
indication of an increase in damping as the force level is increased.
The second lowest translational mode had damping ranging from 1.1%
to 1. 6% increasing with an increase in force level. The third lowest
_ translational mode had a damping value of 3. 7%. It is of interest to
note that the damping in each mode is close to being proportional to
the resonant frequency.

7. In the short direction of the building a sufficient number of
modes could not be determined experimentally so that the stiffness
and damping matrices could be calculated. As pointed out in Chapter
IV, each of the matrices contained 36 unknown elements while only 24
equations were aﬁrailable for the determination of the unknown elements.

8. Three torsional modes of vibration were also excited. The

resonant frequencies were Cu1=1. 08 cps; &)2:3. 72 cps and 603:7. 30 cps.
The values of damping in the three modes were ;= . 8%:; By= 1.3% and

By= 3%

9. A mode in which the floor slabs vibrated in the horizontal
plane was excited at a resonant frequency of 4. 90 cps; the value of
darﬁping being approximately 2%.

In Chapter V the results of steady-state vibration tests are
comparcd to thc results obtained from run-down tests; the main
conclusions to be dra;wn from the comparison tests are:

1. The natural frequerncy as determined from a run-down test



-215-

is a few per cent lower than the natural frequency determined from a
steady-state test. |

2. The mode shapes, as determined from the two types of tests,
are identical.

3. The peak response value determined from a run-down test
is as much as 50% lower thanthe steady-state response value.

4. Damping determined from a run;dO'wn test is up to 2. 5 times
as large as the damping determined from a steady-state test.

5. It is concluded that a run-down test is not, in general, a
suitable experimental method for dynamic testing of structures. It
is also concluded that data from past run-down tests are of questionable
accuracy.

In Chapter VI a new method for the measurement of the natural
periods of buildiﬁgs is proposed. The principle of "man-excited"
vibrations is basically that an operator by periodic motions of his body
’ca.n excite one of the natural periods of a structure, by keeping the
frequency of the periodic motions close to the natural frequency of
interest. = The method has several advantages over wind-excited
vibrations which have been used extensively in the past to measure
the natural periods of buildings. ‘The main advantages are:

1. Larger amplitudes of motion can be attained.

2. The test can be carried out at any time, in the presence or
absence of wind.

3. In the absence of wind, by stopping the exciting force after

an appreciable motion has been built up, the decay of free vibrations
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can be recorded and hence damping can be estimated.

4. By performing the "man-excited" vibrations at well chosen
locations in a building it is possible to excite a lar ge number of modes.
For example, torsional modes can be excited by performing '"man-
excited'" vibrations at one of the ends of a long building.

5. By performing "man-excited" vibrations at a nodal point
for a mode, it is possible to eliminate the effect of that mode in order

to more cleanly excite another mode.
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APPENDIX

FIGS, A-1to A-4;

DETAILS OF FIVE-STORY REINFORCED

CONCRETE BUILDING, CHAPTER III.

FIGS., A-5to A-14:

DETAILS OF NINE-STORY STEEL FRAME

BUILDING, CHAPTER IV.
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Fig, A-2 GENERAL VIEW, LOOKING NORTHEAST,.
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Fig. A~6 EXTERIOR VIEW, LOOKING NORTHWEST.
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Fig. A-7 INTERIOR VIEW, LOOKING EAST.

Fig. A-8 INTERIOR VIEW, LOOKING SOUTHEAST.



Fig. A-9 EXTERIOR VIEW, SOUTH SIDE.

Fig. A-10 EXTERIOR VIEW, NORTH SIDE, SOIL UP
TO 1lst FLOOR LEVEL.
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