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by
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Doctor of Philosophy

Abstract

In this dissertation, we examine a formulation of problems of undulatory robotic lo-
comotion within the context of mechanical systems with nonholonomic constraints
and symmetries. Using tools from geometric mechanics, we study the underlying
structure found in general problems of locomotion. In doing so, we decompose lo-
comotion into two basic components: internal shape changes and net changes in
position and orientation. This decomposition has a natural mathematical inter-
pretation in which the relationship between shape changes and locomotion can be
described using a connection on a trivial principal fiber bundle.

We begin by reviewing the processes of Lagrangian reduction and reconstruc-
tion for unconstrained mechanical systems with Lie group symmetries, and present
new formulations of this process which are easily adapted to accommodate exter-
nal constraints. Additionally, important physical quantities such as the mechanical
connection and reduced mass-inertia matrix can be trivially determined using this
formulation. The presence of symmetries then allows us to reduce the necessary
calculations to simple matrix manipulations.

The addition of constraints significantly complicates the reduction process; how-
ever, we show that for invariant constraints, a meaningful connection can be syn-
thesized by defining a generalized momentum representing the momentum of the

system in directions allowed by the constraints. We then prove that the generalized
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momentum and its governing equation possess certain invariances which allows for
a reduction process similar to that found in the unconstrained case. The form of the
reduced equations highlights the synthesized connection and the matrix quantities
used to calculate these equations.

The use of connections naturally leads to methods for testing controllability and
aids in developing intuition regarding the generation of various locomotive gaits.
We present accessibility and controllability tests based on taking derivatives of the
connection, and relate these tests to taking Lie brackets of the input vector fields.

The theory is illustrated using several examples, in particular the examples of the
snakeboard and Hirose snake robot. We interpret each of these examples in light of
the theory developed in this thesis, and examine the generation of locomotive gaits
using sinusoidal inputs and their relationship to the controllability tests based on

Lie brackets.
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Chapter 1

Introduction

The methods by which both living creatures and robotic systems move through
their environments are at once extremely complicated and highly commonplace.
While it is quite easy to conjure up images of various modes of locomotion, such
as legged walking, serpentine slithering, or wheeled rolling, there has been little
work done in exploring the underlying structure which is common to many types
of locomotion. Instead, researchers have focused on studying particular systems, or
morphologies, in an attempt to derive strong results about these specific examples.
The emphasis of this dissertation is not to replace this type of analysis by a general
scheme, but instead to enhance it by providing a firm foundation upon which to
analyze problems of locomotion within a unified framework. This framework can
be greatly simplified by understanding and utilizing the extra structure inherent in
these types of problems.

In the present day use of robots, most are either fixed in one place with an
end effector that moves within a bounded workspace, or are based on some type
of wheeled platform, which has its own type of environmental restrictions. How-
ever, nature has shown us that there are many more forms of locomotion than are
presently used by roboticists. While some uses of robotic locomotion were studied
in the early days of robotics, a recent trend has been towards incorporating these
alternative modes of movement into our repertoire, especially as we move into more

diverse and challenging environments. For instance, the study of robotic legged



locomotion, which has been ongoing for at least the past thirty years, continues
to develop, particularly in pursuit of the holy grail of legged motion— dynamic,
bipedal walking and running (refer to [49, 82, 91] for excellent historical reviews
on these developments). Legs provide a means for moving through untamed and
unexplored environments which are not easily accessible with wheeled vehicles. Al-
ternatively, researchers using snake robots have been able to expand our capabilities
by providing machines that could explore fallen or severely damaged buildings (e.g.,
after an earthquake), narrow and winding nuclear waste storage facilities, or even
the internal organs of human beings [22, 36].

Certainly, the study of new and interesting forms of locomotion continues to
show great potential. As new fabrication techniques are invented, the number of
potential robotic applications increases. For example, ultrasonic and piezoelectric
motors have already found industrial applications, having been employed in driving
the motion used to focus cameras [15], or using inch-worm-like steps to generate
linear motion. They also are beginning to see usage as locomotive devices for very
small scale mobile robots [3, 29, 39]. Continued advances in our ability to machine
smaller and smaller mechanical parts has forced us to seek out new methods of
moving these miniature robotic systems. The advances in microelectromechanical
systems (MEMS) technology have been astonishing, and yet it is not possible with
current technologies to build a wheeled micro-robot. While this achievement may yet
occur, we should also expect to see alternative forms of locomotion being developed,
such as walking, swimming [29], or even flying micro-robots.

With these thoughts of the future in mind, we turn now to review some of the
previous work done in the area of locomotion. In particular, we are interested in
locomotive systems which have potential applications in terms of robotic implemen-
tations. The desire here is not necessarily to give a comprehensive review of all of
the locomotion literature, but instead to highlight those developments which have

been important factors in motivating the current research.



1.1 A Survey of Locomotion

In engaging in the study of locomotion, a natural first step is to try to make infer-
ences from living creatures found in nature. Following along these anthropomorphic
lines, one of the original studies of non-traditional means for robotic locomotion
was the study of snakes. Hirose [33, 36] first examined snake robots from a bio-
logically inspired point of view. In doing so, he performed a series of experiments
designed to investigate the existence of generic patterns of motion in snakes. By
videotaping their locomotive patterns, he was able to gain a great deal of insight
into this problem, and developed what he termed a serpenoid curve— a curve repre-
senting the path that a snake would trace out as it slithers forward. The serpenoid
curve is characterized by a sinusoidal variation in curvature along its length, and
is very suggestive of the serpentine path followed by real snakes. Hirose was also
able to show theoretically that a snake that assumed this shape could generate a
net forward force by applying torques along the length of its body. Using these
results, he successfully built a snake-like robot capable of propelling itself forward
using only internal torques (that is, without directly driving the wheels). The robot
(see Figure 1.1), called the Active Cord Mechanism Model 3 (ACM III), consisted
of a long chain of serially connected segments, each of which sat upon an actively
controlled, rotating wheel base (the wheels are designed to act like the belly of a
snake in preventing lateral slipping). With all of these developments, however, the
control of the position and guidance of the snake robot remained a heuristically
derived procedure, without the ability to give precise feedback control for this form
of locomotion. The next generation of snake-like robots built by Hirose (called Ko-
ryu) were modified to allow each segment, or bay, to move vertically with respect
to the neighboring segments, as well as to exert a rotational torque on its nearest
neighbor [35]. Furthermore, the wheels in the Koryu robot were no longer allowed
to move freely, but instead were controlled to move in unison. Thus, these robots
were able to climb stairs and even cross over gaps in the floor (consider, for example,
the need to cross a partially collapsed bridge).

In [22], Chirikjian and Burdick coined the term hyper-redundant to describe



Figure 1.1 The Active Cord Mechanism (ACM III) [33] grasping an
object

robots which have a very large number of independent degrees of freedom. Natu-
rally, snake robots fall into this category, and the optimization algorithms developed
by Chirikjian and Burdick have been used quite successfully in a variety of applica-
tions, including stable grasping [22] (done by enveloping an object) and local sensor-
based path planning/obstacle avoidance [23]. Possible implementations which are
currently being developed include satellite grasping and retrieval, hazardous site
inspection, including nuclear waste facilities and damaged buildings, and medical
applications, such as laparascopic and endoscopic surgical procedures [90]. The ini-
tial theoretical motivations for Chirikjian and Burdick were to develop cost-efficient
routines for solving the inverse kinematics problem, i.e., determining joint configu-
rations given a specified end-point, or tool, configuration and possibly some type of
energy or obstacle constraints. As such, they were really concerned with the kine-
matics of hyper-redundant robots. In investigating locomotion, our concern will be
primarily with understanding the dynamics of this type of robotic motion. Certain
types of snake locomotion, such as sidewinding [17] and inchworm-like motions [43],
have previously been investigated, but the problem of dynamic snake locomotion
reminiscent of Hirose’s snakes has yet to be fully solved.

One particular research effort that has recently begun to address these issues
is found in the work of Tsakiris and Krishnaprasad [48]. Using the same Variable
Geometry Truss (VGT) mechanism (Figure 1.2) employed by Chirikjian and Burdick

(which allows each bay to move in the plane with three degrees of freedom relative



Figure 1.2 Variable Geometry Truss (VGT) assembly (two bays shown)

to its neighbor), they develop models that employ no-slip wheel constraints and can
be used to generate locomotion patterns. They term these models “G-snakes,” in
reference to the notion that each segment must move within a constrained subset of
a Lie group, G. In fact, they show that gaits (i.e., specified input patterns) can be
explicitly integrated by quadratures to give the trajectories of the overall G-snake
motion.

The framework used in establishing the governing equations for G-snakes in [48]
is very similar to that introduced here, and some of the ideas developed by Tsakiris
and Krishnaprasad will be used in our treatment of models based on Hirose’s original
snake robots. The intent here is not simply to rehash Hirose’s ideas in a new
geometric setting. Instead, the aim is to formulate the problem in terms of some
of the intrinsic properties found in general modes of locomotion, and in the process
gain an understanding of how to control particular gaits demonstrated by Hirose.
In doing so, we hope to demonstrate theoretically how to implement locomotion
schemes which to date were found purely heuristically, and to add additional gaits
that may not have been realized in previous works.

Interestingly, all of the locomotive robots mentioned above have used wheeled
approximations to snakes. The class of robots using no-slip wheel constraints (an
example of a nonholonomic, or non-integrable, constraint) is quite large, and in-
cludes almost all mobile robots presently in use. Although there has recently been
a growth in the study of “holonomic” (a true misnomer, if there ever was one),
or omni-directional mobile robots [81], the bulk of mobile robots in existence use

wheels, much like those found on cars or bicycles, to move through their environ-



ments. These nonholonomic systems have largely been treated as purely kinematic
systems, i.e., the dynamics of these mechanical systems are assumed to be con-
strained in a manner such that only configuration wvelocities need be considered.
This assumption is generally quite valid, and has led to some excellent progress
in areas such as controllability [11], stabilization [20], and trajectory generation
(including the N-trailer problem) [16, 74].

Within the context of locomotion, Kelly and Murray [43] have successfully mod-
eled a large number of locomotive systems using kinematic constraints, with some
strong results on controllability and motion generation. They have studied basic
inch-worm and sidewinding gaits (using a viscous friction model), as well as some
preliminary models of continuous-contact hexapodal walking. They provide results
for determining controllability, as well as suggestions for the generation of locomo-
tive walking patterns, or gaits. An important part of the structure of the equations
they present, which we continue to develop here, is the division of the configuration
variables into two classes— shape and position (see also [79]). In doing so, the aim
is to divide locomotion according to its basic structure, by investigating the effect of
internal shape or body changes on the generation of motion. Thus, we choose first
a set of position variables, which describe the position and orientation of the body
with respect to some inertial frame. Next, we pick from the remaining configuration
variables the shape of the system. The cyclic variation of the shape variables in-
duces locomotion. Obviously, it could be argued that in some systems there will be
configuration variables which do not directly contribute to locomotion (e.g., the use
of arms for posturing in humans). These variables, however, most likely are either
used to affect a larger mode of locomotion— for this example, we can think of pos-
turing as a rigid body orientation problem, instead of just a problem of moving in
Cartesian coordinates— or they perhaps are extraneous variables in an analysis of
locomotion. The goal of our research, then, is to determine useful ways of describing
the relationship between shape changes and position changes, using a mathematical
construction known as a connection.

While there have been great successes studying kinematically constrained sys-



tems, there are some systems for which the dynamic effect is essential to the motion
of the system. These systems include the wobblestone [13, 18, 21] and the snake-
board [57]. For the most part, these dynamic nonholonomic systems have not been
treated in the literature. Of notable exception is the work of Bloch, McClam-
roch, and Reyhanoglu [12], where control results were established, with the assump-
tion that the unconstrained directions be fully actuated, and Bloch, Krishnaprasad,
Marsden, and Murray [10], which has been a valuable reference and foundation for
many of the results presented here. Interestingly, current research in the area of dy-
namic nonholonomic systems has led to an understanding of how to include within
this formulation purely dynamical systems [10, 79] (i.e., systems with symmetries,
but no external constraint forces). This is done by treating momentum conservation
laws as a type of internal nonholonomic constraint. Applications of this approach
have primarily been applied to problems in rigid body reorientation, such as the
spinning satellite [19, 27, 76, 98] (Figure 1.3) and the falling cat [70]. We see that
each of these problems can effectively be thought of as problems of locomotion,
where the change in position is one of orientation. Notice that they quite readily
decouple into a set of cyclical internal shape changes (e.g., the wriggling of a cat in

mid-air), and a resulting net change in orientation.

body
frame

Figure 1.3 Satellite reorientation problem using (two) momentum
wheels

Along with these interesting problems of reorientation, there are other locomo-

tion problems that do not necessarily rely on wheel-based constraints. For instance,



Shapere and Wilczek [87, 88] have studied the ability of a paramecium to swim
through a highly viscous fluid medium using infinitesimal deformations of its exter-
nal shape. This research relates directly back to the above mentioned structure as
they have chosen to decouple the shape deformations from the inertial positioning,
and describe locomotion as a net effect of cyclical changes in the internal shape of
the body. In the same vein, other researchers have studied the self-propulsion of air
bubbles as they propagate through a fluid medium [7, 67]. The means of propulsion
here again stems from internal shape deformations leading to a change in position.
Finally, we give a brief review of a distinctly different form of locomotion, namely
legged locomotion. This mode of transport will not be given much attention in this
dissertation, but it is hoped that the results presented here can be adapted for use
with legged robots. The research to date in legged locomotion has largely fallen
into two categories: multi-legged (i.e., quadrupeds and hexapods) and bipedal. For
the most part, multi-legged research has focused on systems which are statically
stable. That is, the center of mass of the body is supported over a stable foundation
of legs at all times, so that it is not possible for the robot to fall over. On the
other hand, research into bipedal locomotion has sought to analyze dynamically
stable legged locomotion, in which continuous control is necessary to keep from
falling down. While some early research into bipeds employed statically (or quasi-
statically) stable gaits [41, 42], and modern research by Raibert has used dynamic
hopping gaits for multi-legged robots [82, 83], the research into legged locomotion
has generally been clearly divided into these two regimes. For the most part, this
division has also been based on the proposed utility of the legged machines. Multi-
legged robots tend to be larger, with greater payloads, and are generally designed for
all-terrain transport operations. Bipeds, on the other hand, are more often designed
anthropomorphically, for use in exploring unsafe or dangerous environments, or as
prosthetic devices. Of notable exception are more recent investigations into “insect”-
like robots by Brooks and Beer [6, 28] and Raibert’s hopping quadrupeds [83].
One of the earliest successful walking machines of the modern era was the “walk-

ing truck” built by Mosher at General Electric in the 1960’s [58]. This machine was



11 feet tall, weighed 3000 lbs., and was directly controlled by a human operator.
It is significant not only for its technical achievement, but also because it would
turn out to be one of the last legged robots to be implemented without the use of
computer control. One of the first quadrupeds to use digital control was the Phony
Pony built by McGhee and Frank [66], which used basic flip-flops to coordinate the
robot’s two-DOF legs as a finite-state machine. McGhee was also involved in the
building of one of the first truly successful computer-controlled legged machine—
the Ohio State University Hexapod [94]. This robot has been used for a wide vari-
ety of experiments, including climbing stairs, using sensor feedback, and testing out
different gaits.

Other multi-legged robots have included the Adaptive Suspension Vehicle at
Ohio State [91], several hexapods built in Russia [78, 97], a computer-controlled
walking machine made by Sutherland and capable of carrying a human [84], and
several very efficient and cleverly designed quadrupeds built by Hirose et al. [34],
just to name a few. Obviously, the study of multi-legged robots has a rich history
and even today continues to grow and diversify.

One particular study of note, however, has been the hopping robots built by
Raibert. Although his robots do not fall into the same framework as the more
traditional, anthropomorphically-designed legged robots, they have had a significant
impact on the study of legged locomotion. Interestingly, contributions have been
made to both multi-legged and bipedal robots using the same fundamental control
and design algorithms. Beginning with a basic “pogo-stick” design— a single-legged,
vertical hopping robot— Raibert showed that it was possible to stabilize lateral
hopping motions using a simple feedback control law [82]. Adding a second leg,
he demonstrated running and even basic gymnastics [37]. With the addition of two
more legs, he developed quadruped robots which could demonstrate several different
gaits, using the concept of a virtual leg [83] (whereby the stabilization routines for
the single-legged hopper could be extended to a four-legged machine).

While Raibert’s robots must continuously hop in order to maintain stability,

there are also several more traditional walking biped robots that have been built.
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The bulk of the research into bipeds has taken place in Japan, starting with Kato
et al. in the early 1970’s [41, 93]. This has been followed by several successful
research programs, each with a different control philosophy and mechanical design:
Miura and Shimoyama developed a 3D stilt-type biped series called Biper [68];
Miyazaki and Arimoto used a reduced-order model approach to control their walking
machines [69]; Furusho and Sano used ankle torques to provide a kick action [30};
and Kajita and Tani restricted trajectories to potential energy conserving orbits [40]
(the reader is referred to [30] for a very nice review of the biped literature).

Lastly, we mention the biped research of McGeer [65], which is of a very different
variety than that described above. It has no computer control at all, but is instead
a passive dynamic walker. Although technically a three-legged machine (it has two
outside legs that move in unison and provide lateral stability), McGeer’s passive
walker demonstrates the feasibility of using the energy added by gravity (walking on
a downhill slope) to maintain a stable dynamic biped gait. One of the many lessons
learned from McGeer’s work is that maintaining a stable walking pattern does not
necessarily require large amounts of energy or control. While this is obviously not
the solution to the full problem of bipedal locomotion, it certainly provides stimulus
for deeper thought about the mechanics and control of biped locomotion.

One of the many important aspects of locomotion that has arisen from the study
of legged systems is the notion of gaits. As a baseline definition, we will say that a
gait is a cyclic pattern of internal shape changes that lead to a particular pattern of
locomotion. For this work, we will further refine this definition by specifying a gait
to be a class of cyclical shape changes with a characteristic set of frequencies and
phasing. In this manner, the quadruped gait in which all legs move with the same
frequency and phasing is still called a “pronk,” regardless of the magnitude of the
motion of the legs. Note, however, that this definition can present some difficulties
in classification, most notably in the context of legged locomotion, where walking
and running may use the same basic frequencies and relative leg phasing. It is for
this reason that we include these two notions of a gait, each of which can play an

important role in thinking about and beginning to understanding the patterns of
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locomotion. This distinction aside, we relate the underlying perspective of this work
in relation to gaits— that the analysis of locomotion can be simplified by dividing
locomotion into internal cyclical shape changes and net motions of the body resulting
from these shape changes. From this point of view, gaits very naturally arise by
simply changing the cyclic patterns of inputs to the system.

The study of gaits has a particularly long history, dating back at least as far
as 1878 where Muybridge published a series of stop-motion photographs showing
that in fact a horse does leave the ground while trotting. He went on to accumulate
photos from many other animals; even today this compilation remains as a valuable
resource for studying gaits and locomotion [75]. In the biological literature, there
has been a continued interest in studying gaits found in many different species. For
instance, Hildebrand [32] emphasized the symmetry which is present in many gaits.
This can take the form of an obvious symmetry, such as the bounding gait of a
quadruped (where pairs of legs move in phase), or more subtle symmetries, as are
found in the various gallops of a horse [25] (in which pairs of legs move together, but
slightly out of phase). The relative phasing of legs for different gaits was studied
extensively by McGhee [66], who also examined the duration of the gait cycle for
which the foot was in contact with the ground (which he called the duty factor),
and Gambaryan [31], who represented patterns of locomotion using various graphical
representations, including successive snapshot drawings of animals and their gaits.

One area of modern research into gaits that has particularly influenced our
thinking has been the study of coupled nonlinear oscillators. Significant results have
been derived regarding the natural oscillation patterns (interpreted as gaits) that
occur when oscillators (mathematical models of central pattern generators (CPG’s))
are coupled. Also, changing the parameter of the models can break these patterns
and form new ones (representing a change of gait). While these studies ignore the
mechanics of the actual problem in favor of studying a more neural-based approach,
they are able to represent a wide variety of systems and their gaits. Some of these
include snakes and fish, where the muscles are thought to be controlled locally by

pairs of coupled oscillators spooled in a long chain, and multi-legged systems, where
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the phasing of each leg is driven by a single oscillator. For instance, Ashwin and
Swift [4] generate results for a system of n-weakly coupled oscillators by looking at
the spatio-temporal symmetries that arise. Kopell [47] and Rand et al. [85], on the
other hand, focus their attention much more directly towards the modeling of living
organisms, particularly using coupled oscillators to generate traveling waves moving
along the spine of a snake or fish. We will see that this concept of a traveling wave
will be very important in examining the locomotion patterns in the snake robots of
Hirose. Finally, excellent literature reviews and research results on symmetries and
symmetry-breaking of animal gaits can be found in a series of articles put together by
Collins and Stewart [24, 25, 26]. The symmetries in this case are discrete symmetries
(e.g., permutations), and so are not within the scope of this work. These papers,
however, provide intuitive ideas about possible ways to extend the work in this

thesis to include legged locomotion systems.

1.2 Theoretical Statement of Purpose

The mathematical purpose of this dissertation is to present new results in the study
of mechanical systems with nonholonomic constraints. This statement of purpose
is intended primarily for researchers with some familiarity with the nomenclature
of differential geometry, particularly in the context of Lie groups and principal
fiber bundles. A review of these ideas is given in Chapter 2. We restrict our
attention to a class of systems possessing Lie group symmetries and evolving on a
trivial principal fiber bundle. This work is an extension of results from geometric
mechanics on the reduction of dynamical systems [60, 61], and in particular relies
strongly and builds upon the exposition by Bloch, Krishnaprasad, Marsden, and
Murray on nonholonomic mechanical systems with symmetry [10].

When people speak of nonholonomic constraints, the most frequently found us-
age, particularly for applications, is that of a linear velocity constraint, most often
arising from some type of external forcing, e.g., wheel constraints or finger contacts.

Usually, these systems are assumed to have unconstrained dynamics (most often
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the control inputs) that are expressible in terms of velocities only. Therefore, no
actual dynamics (second derivatives of the configuration variables) appear in these
formulations. As mentioned above, controllability results have been derived for sys-
tems which do involve full Lagrangian dynamics [12], but with the restriction that
the unconstrained degrees of freedom be fully actuated. In this work we investi-
gate a formulation of the dynamics that does not place this requirement on the
unconstrained variables.

Along with externally applied nonholonomic constraints, we also examine what
we call internal, or intrinsic, nonholonomic constraints that arise when the La-
grangian is invariant with respect to the action of a Lie group. These will be
written as linear (or affine) velocity constraints, and often take the form of momen-
tum conservation laws, e.g., conservation of linear and angular momentum for the
rigid body. The process of reduction entails using the conservation laws to define a
connection on a principal fiber bundle. The connection relates the dynamics in the
symmetry (group) directions to the dynamics of the reduced space. Reduction then
consists of writing the dynamics on a reduced space, and is coupled with a recon-
struction process, where the motion in the reduced space is used to reconstruct the
full dynamics of the original system. Thus, the system’s dynamics may be analyzed
on a lower dimensional space (often greatly simplifying the problem), without loss
of any information. In addition, the reconstruction of the dynamics affords signif-
icant insight into the geometry of the problem and is often an invaluable tool for
understanding the dynamics of physical systems. Some modern examples mentioned
above include the problems of satellite reorientation and the falling cat.

It is well known that holonomic constraints will allow for the persistence of con-
served quantities, and more recent studies have identified certain types of nonholo-
nomic constraints which also allow for reduction to be performed using traditional
methods [10, 45]. The nonholonomic constraints for which the reduction process
has been previously studied can largely be broken down into two types. First, it
is possible that the constraints are such that they preserve a sub-group of sym-

metries, and so reduction is performed using the invariances which correspond to
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this sub-group. This category is very closely related to the class of systems with
holonomic constraints, and includes the rolling penny [12] and the ball on a rotating
plate [10, 16]. Second, in the principal kinematic case [10] (these are often called
Chaplygin constraints), the constraints are such that all of the group symmetries
are annihilated. However, this case is characterized by the existence of the correct
number of equations of constraint to replace the conservation laws and define a
connection. While the additional structure that arises due to group symmetries is
no longer of any use, a similar process of reduction and reconstruction can still be
performed using the constraints directly [5, 43, 45].

Thus, the potential systems to which the reduction procedure can be applied
forms a large spectrum— at one end is the principal kinematic case, and at the
other end are unconstrained systems with internal (momentum) constraints. While
the results at each end of the spectrum have been worked out, the aim here is to
investigate the middle ground in which the constraints break some of the group sym-
metries, but do not by themselves define a connection. This type of problem is said
to have mized constraints, since both internal and external constraints will appear.
It has been shown that for the mixed case there no longer exists a conserved quan-
tity. Instead there exists a momentum along the remaining unconstrained directions,
called the generalized momentum [10]. The flow of the generalized momentum is gov-
erned by a generalized momentum equation— a differential equation dependent on
the interaction between the constraints and the Lie algebra of the symmetry group
(first derived in [10]). The present research has evolved from a desire to investigate
possible means of adapting previously existing methods of reduction to systems with
nonholonomic constraints which break the group symmetries. The theory is formu-
lated in such a manner as to apply for both constrained and unconstrained systems
of this form.

The utility of maintaining a structure similar to that found in unconstrained
systems is greater than simply to allow us to describe the system’s dynamics on a
reduced space. There is also an extensive literature devoted to analyzing certain

aspects of reduced systems, including control and stabilization [9, 99], stability of
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equilibria [60, 89] , and the role of geometric phases in generating motion [61, 70, 88].
It is hoped that these results can be extended to aid in investigating the modified
form presented below.

While the constraints do add an additional degree of complexity to the analysis,
they also give rise to something which does not exist in unconstrained systems with
symmetries— the ability to increase or control momentum. This can be an extremely
important effect in generating locomotion. The role of the generalized momentum
equation on locomotion is more clearly defined and discussed in Chapter 5, where
various examples are investigated, including the Snakeboard(see [57] for a brief in-
troduction) and the Hirose snake. In both cases, the constraints interact with the
group action in a nontrivial manner to produce momentum changes which result
in locomotion. This interaction of the constraints with natural group symmetries
plays an integral role in defining a connection for these systems. The mathematical
properties of a connection allow us to establish greatly simplified results for both the
dynamics and control of locomotion systems. As we will see, the connection plays
a very important role in the study of locomotion, where the reduced space is just
the internal shape space of the locomotive system. Thus, it allows for the study of
locomotion to be decomposed into the analysis of the dynamics on the shape (base)
space, and the process of reconstruction in which the motion in the shape space
produces desired locomotion of the body.

The layout of this thesis is as follows. In each case, we have tried to highlight
the contributions being made to the existing theory. It should be noted that there
are some similarities between parts of this work and that of Bloch et al. [10]. This
is largely due to the fact that these two works were done in parallel, and often in
conjunction, with each other. This thesis is meant to focus on the original work done
by this author, though there is obviously overlap with [10] which is unavoidable.

Chapter 2 provides a brief introduction to the mathematical background and
notation necessary to work with constrained systems having Lie group symmetries.
This includes a discussion of Lie algebras and principal fiber bundles, which will be

used to analyze the basic structure of locomotion. We also define the basic equations
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of motion to be used for both unconstrained and kinematically constrained systems.

The processes of reduction and reconstruction for the unconstrained case are
described in Chapter 3, along with a few illustrative examples. The Lagrangian
reduction process has been addressed previously in the literature, and to this we
add an interpretation of reduction in terms of body coordinates that allows for the
inclusion of invariant constraints, and a local formulation of the reduced equations in
terms of simple matrix manipulations. In particular, we show that the local forms
of the mechanical connection and the locked inertia tensor can easily be found
directly from the matrix structure of the reduced Lagrangian (the function induced
on the reduced state space by a group-invariant Lagrangian). Finally, we show that
the dynamic constraints can be used with the constrained variational principle to
perform reduction using a method which we can extend trivially to systems with
external constraints.

Chapter 4 begins with a section on the assumptions being made within this
dissertation, along with a constructive method for generating a basis for the con-
strained Lie algebra (the subspace of the Lie algebra that satisfies the constraints).
Also in this chapter we introduce the generalized momentum, originally developed
in [10]. First, an alternative development of the generalized momentum equation is
given, which includes general external forcing. In the case where the external forces
of constraint are themselves group invariant, certain invariances of the generalized
momentum arise. Proofs are given to show that the generalized momentum and the
generalized momentum equation satisfy certain invariance conditions and thus can
be reduced to a lower dimensional base space. It is also shown that the symmetries
of the generalized momentum equation can be used to rewrite it in a form which is
quadratic in the momenta and the base velocities, and give explicit equations for its
calculation. We discuss the construction of a nonholonomic connection (developed
in [80] and [10]), and show that if the constraints are invariant, then one can always
build this connection. Additionally, the steps necessary to perform the processes of
reduction and reconstruction are developed.

In Chapter 5 two locomotion examples illustrating the theory are introduced,
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namely the snakeboard and a model of Hirose’s snake robot. The Snakeboard [10,
57, 79, 80] (we use italics and capitals to distinguish between the model presented
here and the product manufactured and distributed by Snakeboard USA, Inc.) is a
commercially available variant of the skateboard in which the wheels are allowed to
pivot freely. By coupling a twisting of the torso in phase with turning the wheels,
a rider can effectively generate a snake-like locomotion pattern for this type of
skateboard without having to kick off the ground. This effect is generated by a
coupling of the angular momentum generated by twisting one’s body with the forces
of constraint generated by the wheels’ contact with the ground. The snakeboard
has been one of the motivating examples in the development of the theory, and
provides a good perspective as to how this theory can be used to study general
problems of locomotion. The second example is a theoretical model of some of the
early snake robots built by Hirose. It consists of a series of connected segments,
each of which sits upon an independently controlled wheel base (though again, the
wheels themselves are not driven). In this example, we show that a three link robot
kinematically fully specifies the motion of the snake, and describe how additional
links can be added. We also give some initial results on three gait patterns, one of
which is shown to closely follow the theoretical serpenoid curve of Hirose. We also
give some discussion to the notion of picking out optimal gaits for these types of
robots.

Finally, in Chapter 6 we develop some preliminary results for control of these
types of systems. We begin with initial definitions of accessibility and controllability
for nonlinear systems, and continue with a discussion of existing results for the kine-
matic case developed by Kelly and Murray. However, the systems of interest for this
presentation are fully dynamic, not just kinematic, and so require the development
of new controllability tests. We provide an analysis based on Sussman’s conditions
for small-time local controllability, and give sufficient conditions for establishing

nonlinear accessibility and controllability.

Contributions

This dissertation seeks to provide a general theoretical framework within which
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a diverse set of locomotion problems can be analyzed. The goal is to demonstrate
that there are certain structural properties common to many forms of locomotion
that can be used to simplify the problem. To this end, we feel that there are four

primary contributions to this work:

1. To give a thorough exposition of the process of reduction for locomotion sys-
tems (more generally, for nonholonomic mechanical systems with symmetries),
and to show that this type of reduction can always be done when the con-

straints and Lagrangian function are group invariant,

2. To provide explicit details on the reduced equations and to put them in an
easily computable form using a reduced mass-inertia matrix with correction

(curvature) terms,

3. To demonstrate the theory using two new examples— the snakeboard and the
Hirose snake— and to give some intuition as to how locomotive gaits can be

generated, and

4. To provide initial results on local controllability of locomotive systems which

make use of the structure that is developed in the reduction process.
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Chapter 2

Background

2.1 Symbols and Notation

We begin by establishing some of the notation used throughout this work. The
basic notation and methodology is fairly standard within the geometric mechanics
literature, and whenever possible we have attempted to use traditional symbols and
definitions. Additionally, we have attempted to provide enough details and intuition
in order to allow a reader familiar with [73] to be able to use these methods. The

following symbols will be used frequently:

Q : a smooth n-dimensional configuration manifold.
G : an l-dimensional Lie group.
M : the m-dimensional base space = Q/G.
x(Q) : the set of vector fields over Q.
®,:Q—Q : the left action of the group G on @, such that
Dy(q) =9 ¢
g : the Lie algebra of G.
'Je) : the infinitesimal generator for £ € g.
L:TQ—R : a Lagrangian, which is simply a function on T'Q.
«,» : an inner product based on the kinetic energy metric.

() : the natural pairing between covectors and vectors.
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We will also use indicial notation throughout this dissertation. This includes an
implied summation whereby “up” (superscripted) indices are paired with “down”
(subscripted) indices to form a sum. Thus, for appropriately indexed quantities,

a;vt = 3, a;vt. This will also come up quite often when differentiating by indexed

quantities: -(%«vi =3, %vi. Notice that an “up” index in the denominator becomes

a “down” index for the purposes of summation. Whenever possible, we will use

distinct types of indices to represent different ranges of summation. For instance,

a,b,c,... will be used to index group or fiber variables, and so the index runs
1,2,...,l. Similarly, i,7,k,... will be used for base variables, in which case the
range is 1,...,m.

In referring to differential geometric objects such as manifolds, tangent bundles,
and dual spaces, we follow the notation found in Boothby [14]. Let M be a C*-
manifold of dimension m, and let 7 be a point in M. The tangent space of M at
r, denoted T, M, is the linear vector space which best approximates M at r. The
tangent bundle, denoted T'M, is the disjoint union over M of each of its tangent
spaces. We denote by v, € T, M a tangent vector at r, and define a (smooth) vector
field X on M to be a smooth mapping X : M — TM : r — X, which assigns to
each point r € M a tangent vector X, € T,M. The set of all vector fields over M
is denoted X(M).

Let f : M — N be a smooth mapping between manifolds M and N. Then we
write Tr. f : ToM — Ty)N to denote the tangent map or differential of f. This is
often seen in other notations as f, (Boothby), Df, or df. We use the operator T’
because it allows for easy reference to the base point of the differentiation (i.e., T5),
and because it mimics the standard notation for tangent spaces.

Given a finite-dimensional tangent space, T, M, we call the space whose elements
are linear functions from T, M to R the dual space, T M. Note that using similar
definitions as above, we can take the disjoint union of T;*M over M to define the
cotangent bundle and use this to define covector fields. An element w € T'M is
called a dual vector, or covector. As dual vectors are linear functions on T.M, we

will write the natural pairing of w € T*M with v, € T, M as (w;v,;) = w(vy). The



21

tangent map given above, T} f : T.M — Tf)N, uniquely determines a dual linear

map (or just dual), T f : T,y N = T "M, by the relation
(Ty fw;vr) = {w; Tr for),

for all v, € T,.M,w € TFM. Note that if A is a matrix representation of a linear

map, the dual map for A is just its transpose, i.e., A* = AT,

2.2 Lie Groups and Associated Structures

As mentioned in Chapter 1, one point of commonality among the various problems
of locomotion and reorientation is that the motion of the system evolves on a simple
spatial manifold, such as SE(2) or SO(3) (respectively, translation and rotation in
the plane and spatial rotation of the rigid body). For example, locomotive systems
like snakes, inch-worms, and paramecia can be modeled as simple planar objects, and
hence move in SE(2). We can also consider problems of rigid body reorientation on
S50(3), e.g., the falling cat or a spinning satellite, or even more complex locomotion
such as birds and fish which move in SE(3). These manifolds are all examples
of Lie groups, and so we would like to make use of the mathematical structure
inherent in working with Lie groups. While examples evolving in SE(3) will not be
presented here, the results we derive in this work are equally valid for any Lie group

of symmetries, including SE(3).

2.2.1 Lie Groups

Let G be a differentiable (C*°) manifold which is at the same time a group. For

g,h € G, let hg denote the product of g and h.

Definition 2.1 [14] The manifold G is said to be a Lie group if the product map-
ping, hg : G X G — G and the inverse mapping, g~ !: G — G are both C* mappings.
We denote by e the identity element of G, such that e = gg~l.
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Example 2.2 As an example, we look at SE(2), the group of rotations and trans-
lations in the plane. A point g = (z,y,0) € SE(2) can be represented using homo-

geneous coordinates:

cosf —sinf =z
g=|sinf cosf y
0 0 1

In doing so, the product of two elements in SE(2) is given simply by matrix multi-

plication. Thus, the element hg € SE(2), for h = (a',a?, @), is given by
hg = (a* + zcos o — ysine,a? + zsina 4+ ycos o, 0 + a).
Similarly, we can write down the inverse mapping as

cosf sinf —zcosf —ysinf
g = | —sinf cosf zsinf-—ycosh |,

0 0 1

which is also a smooth operation.

Note that because matrix multiplication in general does not commute, multipli-
cation by g on the right differs from multiplication by g on the left. Lie groups for
which this is true are called non-Abelian, and naturally come equipped with two
maps, Ly : G — G : h— gh and Ry : G — G : h — hg, called respectively left and
right translation (or action) of G on G. The terms “left” and “right” apply obviously
to matrix groups such as SE(2), as multiplication on the left and multiplication on

the right.

Definition 2.3 The adjoint action of G on G is defined to be the inner automor-

phism 7y : G — G given by Zyh = Ly(Rg-1h).

The adjoint action in some ways measures the non-commutativity of the left

and right actions. If H is an Abelian group, then the adjoint action reduces to
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the identity on H: Zng = g for all h,g € H. When considering motion along non-
Abelian groups, a choice must be made as to whether to represent translation by
the left or right action. The adjoint action forms a means of transforming between
these two choices of representations. For the purposes of this dissertation, we will
almost exclusively make use of the left action, though the results contained here can

quite easily be formulated in terms of right actions.

2.2.2 Algebras

In discussing algebras, we consider objects over the field of real numbers, though
definitions can be generalized over a commutative ring with a unit. We use Lang [50]

as a reference.

Definition 2.4 An algebra A is a vector space with a product satisfying

a(uw) = (au)v = u(av)

for every ¢ € R and u,v € A. A vector subspace I of A is called a left ideal
(respectively, right ideal) if for every i € I, ui € I (resp., iu € I) forallu € A. A

subspace I is said to be a two-sided ideal if it is both a left and right ideal.

While an ideal is not necessarily a subalgebra, the quotient of an algebra by a

two-sided ideal inherits a natural algebra structure from A.

2.2.3 The Lie Algebra of G

Associated with the Lie group, G, is a Lie algebra, g. We use Varadarajan [96] and

Boothby [14] as references for the basic concepts on Lie algebras.

Definition 2.5 A vector space g over R is said to be a (real) Lie algebra if it

possesses a Lie bracket— that is, a map

(X,Y) - [X,Y], X, Y, [X,Y]eg
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of g x g into g satisfying the following:

1. Bilinearity over R:
[ X, Y] = & F[X;,Y;), for o, 7 €R,
2. Skew commutativity:

[X,Y] = -]V, X],
3. The Jacobi identity:

[X,[Y,2]] +[2,[X, Y]]+ [V,[2, X]] = 0.

Notice that Condition 2 implies that [X, X] =0 for all X € g. Let f1,...,fi be
a basis for g (as a vector space). Then the structure constants of g relative to this

basis are uniquely determined by

[fa, fol = & fa-

It is easily shown that the Lie algebra is isomorphic to the tangent space of G
at the identity, i.e., that g ~ T.G. The Lie group structure allows us to represent
group velocities (i.e., vectors in TyG) in terms of Lie algebra elements. This is done
by pulling back group velocities to the identity using the lifted left action, TqLg-1.
In a similar manner, we can think of generating a left-invariant vector field on G by

pushing a Lie algebra element forward using TeLy. Thus, if € € g,

XE (9) = TeLg§

defines a left-invariant vector field on G. We can associate with this vector field a
curve in G. Let ¢¢ : R = G : t = expt£ be the integral curve of X passing through
e at t = 0. Thus, % (¢¢)|t=o = & The function exp : g — G : €+ ¢g(1) is called the
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exponential mapping of g into G.

For non-Abelian groups, the non-commutativity of the left and right actions
implies that there are actually fwo natural ways to map g to a vector field on G—
one using the left action as above, and another using the right action. In the context
of robotic manipulation, this arises when writing velocities as screws, in having to
make a choice between body and spatial representations [73]. To be more explicit,
let ¢ € g represent a group velocity, vy € TyG, which has been pulled back to the Lie
algebra. We use superscripts “b” and “s” to denote body and spatial representations,

respectively, which gives
¢ =TyL,-1vy and ¢ =TyRy-1v,.

The relationship between spatial and body velocities can be written in terms of the
adjoint action of G on g, which is determined by taking the tangent map of the

adjoint action Ady on G. By an abuse of notation, this mapping is also labeled Ad,.

Definition 2.6 The (lifted) adjoint action of G on g is defined to be the map
Adg : g — g given by Ady € = Tp1 Ly(Te Ry-:§) for € € g.

Thus, £° = Ad -1 £°.

The adjoint action will come up frequently in what is to follow as a means of
mapping between reduced representations of tangent vectors based on the left and
right translations. The distinction between the adjoint action on G and that on g
will not be made textually, but should be clear from the context. When working
with homogeneous coordinates of a rigid body, it will be useful to think of the adjoint
action as providing a mapping from objects defined in terms of spatial coordinates to
their alternative representation in terms of body coordinates. We will also see that
the dual adjoint map Ad; will come up in mapping between the two representations
of dual elements to the Lie algebra. Traditionally, reduction methods have been
formulated in terms of spatial coordinates, but we will see that the use of body

coordinates can be quite valuable in certain examples.
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2.2.4 Principal Fiber Bundles

Lie groups naturally arise in the study of locomotion as a means of describing po-
sition and orientation. As mentioned above, we choose the remaining variables to
describe the internal shape of the system. The shape space has a natural mathe-
matical interpretation as a quotient space, M = Q/G, and will often be referred to
as the reduced or base space. The entire structure forms a principal fiber bundle. To

define this type of structure, we first must describe the left (or right) action of G

on Q.

Definition 2.7 [62] A (left) action of a Lie group G on @ is a smooth mapping
®: G x Q — @Q such that:

1. ®(e,q) =g forallge @, and
2. ®(g,®(h,q)) = ®(Lgh,q) for all g,h € G and g € Q.

We will normally only be interested in the action as a mapping from @Q into @, and
so will write the action as @, : Q@ — Q, where ®,(¢q) = ®(g,q). As a shorthand,
®4(q) will often be written as g - g, or just gg.

Definition 2.8 An action is said to be free if it has no fixed points, i.e., if the

relation ®4(g) = g implies g = e for each g € Q.

Given the action of G on @, along with the natural quotient space structure, we

define a principal fiber bundle in the following manner.

Definition 2.9 A principal fiber bundle over M with group G consists of a manifold
Q and a free left action of G on Q satisfying the following:

1. M is the quotient space of @ defined by the G-induced equivalence relation,
M = Q/G, where the canonical projection 7 : Q = M = Q/G is differentiable,

and

2. Q is locally trivial. That is, every point ¢ € Q has a neighborhood U such

that 7—1(U) is isomorphic to G x U. Thus, there exists a diffeomorphism
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Y 7w H(U) = G x U given by 9(q) = (¢(g),7(q)), for which ¢ : Y U) = G
satisfies p(®@4q) = Ly(q) forallg € G and g € U.

A principal fiber bundle is commonly denoted by Q(M,G), where @ is called the

total space, M the base space, and G the structure group or fiber space.

The geometric structure found in problems of locomotion, however, is most often
of a form that can be written globally as the product of the structure group and
base space, i.e., as Q = G x M. For this reason we restrict our attention to systems

of this form, which are said to evolve on trivial principal fiber bundles.

Definition 2.10 A trivial principal fiber bundle is a manifold = G x M such that
G acts freely on Q on the left by trivially extending L, to act on Q. Letting @,
denote the action of G on Q, this implies that ®,(g,7) = (Lng,7), for h € G and
(9,7) EGx M =Q.

In the trivial bundle case, we can easily picture @} as a base manifold M with
fiber, G, attached at each point r € M (see Figure 2.1). This bundle comes naturally
equipped with two canonical projections; namely, on the first and second factors,

given by the maps 71 : Q = G : (g,r) = gand mp: Q — M : (g,7) — 7.

Fibers, G

Base Space,
M=Q/G

Figure 2.1 Trivial fiber bundle picture

Definition 2.11 The lifted action is the map T®, : TQ — TQ : (q,v) =
(®g(q), Tq®y(v)) for all g € G and g € Q.
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In the literature, the action of G on T,Q is very often denoted g = T;®4(q),
for ¢ € T,Q. Similarly, there will be times when we wish to express only the effect
of the action on TG, which we denote as hg = T,Lsg, for ¢ € TyG. Notice that
the action on T'G and the action on TQ are related by T, ®4(g,0) = (TgLrg,0). We
should also mention that the lifted action defined here is the same as the action
denoted &7 by Abraham and Marsden in [1], when considered pointwise in G. Also
defined in [1] is a very important quantity that provides an infinitesimal description

of the action of ®4 on Q.

Definition 2.12 [1] If £ € T.G, then P RxQ — Q: (t,q) — P(expte,q) is an
R-action on Q, that is, ®¢ is a flow on Q. The corresponding vector field on Q given

by

€qlg) = %@(exptf,q)ltzo

is called the infinitesimal generator of the action corresponding to §.

A very important relationship to realize when working with trivial principal
fiber bundles is that the infinitesimal generator is naturally the Lie algebra element
pushed forward via the right action on G. To see this, let { € g and ¢ = (g,7) € Q.
Then, ¢ : Rx Q — Q : (t,(g,7)) — ((expt)g,r), or ®¢(t) = (Rgexpté,r). This
implies that £o(q) = (TeR4€,0) € T,Q.

2.2.5 Symmetries and Invariances

When we speak of a mechanical system with Lie group symmetries, we really mean
that certain quantities, particularly the Lagrangian, remain invariant under the ac-
tion of the Lie group, G. From a differential geometric viewpoint, this will manifest
itself as invariance under the pull-back of the lifted action (see Marsden, Mont-
gomery, and Ratiu [61] for more details). In the context of reduction, the primary
assumption will be that the Lagrangian is invariant. This is a sufficient condition for
establishing the existence of a conservation law for holonomically constrained sys-

tems. With the introduction of nonholonomic constraints, however, we see that the
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Body #1
Body #2 |

Figure 2.2 Elroy’s beanie

conservation laws may be broken. This necessitates our defining invariance for vec-
tor fields and one-forms, as these objects will be used to represent the nonholonomic

constraints.

Definition 2.13 A Lagrangian function, L : TQ — R, a vector field, X € X(Q),
and a one-form, w € X*(Q), are said to be G-invariant if they are invariant
with respect to the lifted action, T®,, i.e., if, respectively, L(®4(q), Tg®qvq) =
L(q,vy), Ty®4X (q) = X(Dy(q)), and Ty Pow(Py(q)) = w(q), for all g € G,vq € T,Q.

Invariance for vector fields and one-forms is perhaps most easily seen in terms

of the following commutative diagrams.

Q%X .T.Q Q —Y . T:Q
3, T,8, & PO g
Q —— Tua@ Q —— T3,Q

Thus, for invariance of a vector field X and a one-form w, respectively, the above

diagrams must commute.

Example 2.14 Elroy’s Beanie
To illustrate the ideas presented above, we examine a system consisting of two
planar rigid bodies attached at their centers of mass, shown in Figure 2.2. This is

perhaps the simplest example of a dynamical system with non-Abelian Lie group
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symmetries in which the configuration space is a fiber bundle over a nontrivial shape
space. We will allow the rigid bodies to move freely in the plane (though still pinned
together), and assume the existence of control torques between the two bodies (for
the center of mass fixed in the plane, this problem is often referred to as Elroy’s
beanie).

Let (x,y,0) € SE(2) be the position and orientation of the center of mass of
body #1, and let 9 € S be the relative angle between body #1 and body #2.
Also, denote by m the total mass of the system, and J and Jy the inertias of body
#1 and body #2, respectively. Thus, the configuration space is the fiber bundle
Q = SE(2) x S = G x M, with fiber coordinates g = (z,y,0), and base coordinate

r = 1. The Lagrangian has no potential energy term, so
. P ST N e Y
L(q,q) = -Z—m(a; +79°) + §J9 + §J¢(0 +)°.

Notice that the Lagrangian is actually independent of the configuration variables.
In such cases where the Lagrangian is solely a function of velocities, the position
variables ¢ = (z,,0) are called cyclic variables (and here also r = % is cyclic).
In the case of cyclic variables, reduction is always possible using a Lie group with
addition as its product (e.g., for ¢ = (z,v,0), we could use the group R? x S with
addition). In this particular example, however, we can use a slightly more structured
Lie group, namely SE(2), the group of translations and rotations in the plane.
First, we show that the Lagrangian is G-invariant. The group action is that of

G = SE(2) on @, similar to Example 2.2 above:

al + zcosa — ysina
a’? +zsina+ycosa

Py(q) = (2.1)
a+0

¥



31

and the lifted action is

cosa —sina 0 0 T Tcosa—ysina
i sinae cosa 0 O |y zsina + ycosa
Ty®y(9) = = . ; (2.2)
0 0 1 0118 0
0o 0 0 1)\g ¥

where g = (a',a?,a) € SE(2). Notice that since we are working with matrix groups,

we can easily write the dual map Ty ®, as

cosa sina
T;(I)g = (Tq@g)T =
0 0

0
—sina cosa 0
1
0 0 0

- O O

A straightforward calculation shows that the Lagrangian is invariant:

1
L(®gq, T, ®4q) = im((a: cosa — sina)? + (&sina — g cos a)?)
1 ., 1. . .
+ 5 0%+ STy (0 + 1)
1 1. 1 .
= 5m(:‘c2 + %) + -2-J02 + 5 Jp(0 + h)?

= L(g,9)-
Finally, we compute the adjoint action of G' on g by

Ady = To(Ry-1Ly) = TyRy-1Te L,

1 0 y cosf —sinf O cosf —sinf y
=10 1 -z sinf cosd O =1|sinf <cosf®@ —=zx

0 0 1 0 0o 1 0 0 1

In order to represent the Lie algebra, let fi,...,f; denote a basis for g, and
f1,..., f* be its dual (a basis for g*). Then we can write an element of g as { =

¢'f;, and compute the infinitesimal generator for £&. For this example, we use the
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standard basis for se(2) which arises by identifying the Lie algebra with TeG, where
G has coordinates (z,y,0). The exponential mapping, which takes elements in g to
elements in G, is given by

' &

£ sin &3 t+§

exp(t) = ( ] &

& ¢!
(cos €3t — 1), sm§3t+ ==(1 cos§3t),§3t) eG

(notice that for ¢3 = 0, PHospital’s rule implies that exp(t{) = (€'t,£%t,0)). Then
we find that

alo) = S [®(expst,0)]

s=0

= %[(m+g)cos§3s+(§; y)sinfg’s—g—,
(y— 51)cos$3s+(§ +:c)sm§‘°’:>~r€1 0+&%,9)|
&3 &3 £’ =0

= (é - €3y,§2 +§3$7§3a0) = (TeRggaO)a

where {g € X(Q).

2.3 The Euler-Lagrange Equations

We begin this section by looking at how to define a general Lagrangian system.
We do this using the integral Lagrange-d’Alembert principle, which includes general
forcing functions. For much of the discussion to follow, however, we will gain certain
advantages by restricting ourselves to study only mechanical Lagrangian systems.
This should not seem too restrictive in the context of locomotion systems, which
are most often described as mechanical (Lagrangian) systems.

Assume the existence of a Lagrangian function, L(g,v), and a forcing function,
7(q,v), both on T'Q. In order to specify the dynamics of the Lagrangian system
associated with L, we use a variational principle to seek extrema of the function
L integrated over possible paths. Thus, we will take variations along a curve c :

[a,b] € R — Q, with fixed endpoints, i.e., such that dc(a) = dc(b) = 0.
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Proposition 2.15 [62] A curve, c(t), is said to satisfy the integral Lagrange-
d’Alembert principle if

5 / " Lic(t), é(t)dt + / " (e(t), é(t))6cdt = 0,

for any given variation dc that vanishes at the endpoints.

Applying the variation and simplifying the result using integration by parts
allows us to express this principle in a differential form which will be more useful
to us. This is the Euler-Lagrange equations with external forces, given in local

coordinates (¢*,¢*) on TQ by

d 8L 0L
wog " og "

This formulation of the equations of motion holds true for general Lagrangians.
For the purposes of studying locomotion, though, it will often be useful to consider
a subset of these general systems, namely mechanical systems [1]. A mechanical
system is characterized by a decomposition of the Lagrangian into two terms: kinetic
energy, T, and potential energy, V, such that L = T — V. The kinetic energy can
be defined in terms of a metric function, G(q) : T,Q x T,Q — R by

T = G(g)(vg, wq) = {vg, we)),

for vy, wy € T,Q (hence forward we will drop the g-dependence of G). The potential
energy is any function on @, and very often is used to represent conservative forces.
For a mechanical system, we can make the equations of motion slightly more

explicit:

. (oL 8L
o= | 22 . .k .
1 <aqz agagk” ”) :

8%L

where [G¥] is the inverse of the metric tensor, G;; = 3o
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2.4 Noether’s Theorem

The use of momentum conservation laws is central to our study of locomotion and
reduction. The concept of a conservation law is a well-known physical principle that
has a very nice mathematical interpretation in the context of Lie group symmetries.
For unconstrained systems, the group invariance of the Lagrangian function, L,
implies that configuration variables used to describe the unforced dynamics of the
system are in some sense redundant. That is, they are more than sufficient to fully
describe the trajectories of the system. Therefore, there is a conserved quantity— a
constant of the motion— that allows us to factor out this redundancy in the process
called reduction. The content of the conservation laws for Lie group symmetries is

given by Noether’s theorem.

Theorem 2.16 (Noether) Given L, a G-invariant Lagrangian, the momentum

mapping J : TQ — g*, given by

(J(vg); ) = ((vg, Q) VEE€ B,

is a constant of the motion defined by the Euler-Lagrange equations.

Thus, given an initial velocity for the system, vg, there is a related value of
the momentum map, p = J(vo) € g*. If ¢: [0,7] — Q is the solution to the Euler-
Lagrange equations with ¢(0) = vy, and ¢(t) is the tangent to this curve at c(t), then
Noether’s theorem implies that J(c/(t)) = u for all ¢ € [0,7]. For an /-dimensional
Lie group, this effectively implies that the conservation laws define { internal afline
constraints on the system. And, since p is fixed by the choice of initial condition,
we see that the allowable dynamics of the system must exist within a well-defined
affine subspace of TQ for all t € [0,T]. For pu = 0, this becomes a linear subspace
(i.e., it contains the zero tangent vector), and further simplifications will occur. The
process of reduction, in which the internally constrained dynamics are factored out,

is taken up in Chapter 3 below.
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2.5 Distributions and Frobenius’ Theorem

As mentioned above, the conservation laws in systems with symmetries are affected
in a nontrivial manner by the presence of nonholonomic constraints. Thus, we
will need to develop some of the language of distributions used when working with

constraints.

Definition 2.17 Let Q be a differentiable manifold. A distribution, D, on @ is a
subbundle of T'Q. The dimension of D at ¢ € Q, denoted dim Dy, is called the rank
of D at q. If m = dim D(q) is constant in a neighborhood U of ¢ € @, then we can
write D, in terms of m linearly independent C*-vector fields Xi,..., X, for each

z € U, called a local basis of D.

In anticipation of the controllability results in Sections 6.2 and 6.3, we also

introduce Frobenius’ theorem.

Definition 2.18 A distribution D is said to be involutive if [X,Y] € D for each
X,Y € D. If N is a connected C*® submanifold of @ such that T, N C D, for each
g € N, then we shall say that N is an integral manifold of D. A distribution is said

to be integrable if for each point ¢ € Q there exists a local integral manifold N 3 ¢
such that TN = D|.

Theorem 2.19 (Frobenius) A distribution D on a manifold Q is integrable if and

only if it is involutive.

Frobenius’ theorem states that integrability and involutivity are (locally) equiva-
lent notions. The content of this theorem is very interesting when applied to driftless
systems. It says that if a given set of control vector fields, X1,..., Xp, and all of its
iterated Lie brackets form an integrable distribution, then the motion of the control
system is locally restricted to a local integral manifold. Thus, on a manifold Q, it is
possible to move from one point to any another point in a local neighborhood only

if the integrable distribution spans T'Q) around that point.
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2.6 Equations of Motion with Nonholonomic Con-

straints

In the presence of constraints, we must slightly modify the equations of motion in

order to incorporate external constraint forces.

Definition 2.20 A constraint distribution D is a distribution on () composed of the
allowable directions of motion at each point ¢ € Q, written D,. A curvec: [a,b] = Q

is said to satisfy the constraints if ¢(t) € De), Vt € [a,b].

We will throughout this work require dim D to be constant over Q. Making this
restriction allows us to write D as the kernel of a set of one-forms over Q). An inter-
esting, open research question is the effect of allowing more general constraints, but
it is unclear at present how to use the Lagrangian formulation in this setting. One
possibility that is currently under investigation is the use of alternative formulations
for the equations of motion, including the Gibbs-Appell equations [54].

We saw above that D can be expressed in terms of a local basis of vector fields.
In order to formulate the equations of motion, however, it will prove easier to use an
alternative method for representing D, in terms of linear functionals on the velocities,
or one-forms. Given k linear constraints, we can write them as a vector-valued set

of k equations:

wi(g)g? =0,  for i=1,...,k, (2.3)

where w!, ..., wF have a natural interpretation as one-forms over ). Let dqt,...,dq"

be a basis for T*Q, then the constraints can be written as W= wz-dqj , and
D ={veTq| (w“;v)w}‘vj =0,fora=1,...,k}.

We denote by (L,D) the constrained system with Lagrangian L and constraint
distribution D. It now makes sense to describe the dynamics of (L, D) by writing

its equations of motions. To do so, we employ the following constrained variational
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principle.

Definition 2.21 A curve, c¢: [a,b] = @Q, is said to satisfy the Lagrange-d’Alembert
equations of motion for a constrained system if the following constrained variational

principle holds:

5 / " L(e(t), é(t))dt = 0,

where variations are taken over all possible curves, but with the restriction that

dc € D and that the resultant curve satisfy ¢(t) € De).-

For this principle, we have chosen the method of taking the variations before ap-
plying the constraints. The alternative is to impose the constraints before taking
the variation, thereby restricting the possible variations. This is known as the vaka-
nomic principle, and the problems associated with this method are discussed by
Lewis and Murray in [55].

Define coordinates for TQ as (¢*,¢%), for i« = 1,...,n. We can rewrite the
equations of motion more explicitly by using the method of Lagrange multipliers. A
good summary of how this can be done using the principle of virtual work is given

in [53].

Definition 2.22 A curve c : [a,b] — Q is said to satisfy the nonholonomic con-

strained variational principle if ¢(t) € Dy for all t € [a,b] and

& (So(cl0), ) = el £00) = Nt 7 24
This defines a set of n second order and k first order differential equations. For
mechanical systems, the Lagrange multipliers, Aj,..., A, can be solved for alge-
braically and eliminated in order to yield the equations of motion with constraints.

In order to establish results on momentum and reduction for systems with con-
straints, we would like to be able to eliminate the Lagrange multipliers without going
1 k

through this process. One way to do this is to recognize w”,...,w" as one-forms,

and recall that all vectors in the constraint distribution (i.e., all allowable velocities)
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will lie in the null space of these one-forms. Noting this, we rewrite Eq. 2.4 in a

more natural geometric setting as a set of n one-forms:

0006, = { & (S0, d(0)) = G(a(0),400) + st — 7 o’

(2.5)

where the )\,’s are at this point undetermined. The A,’s naturally enter as scaling
factors for the constraint one-forms. An interesting calculation is to show that the
terms involving L which arise from the unconstrained Euler-Lagrange equations
fit naturally in a geometric context as one-forms, since they transform through
coordinate changes as such. The same is true of the forcing function 7, which is
more traditionally thought of as a one-form. Sy provides an alternative, coordinate

version for the equations of motion, written simply as:

Definition 2.23 A curve, c: [a,b] = @, is said to satisfy the Lagrange-d’Alembert

equations of motion for a constrained system if

Br(c,é,t) =0

and ¢&(t) € D) Vi € [a, B].
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Figure 2.3 Two-wheeled planar mobile robot.

Example 2.24 Two-wheeled mobile robot
Consider the two-wheeled planar mobile robot presented by Kelly and Murray
in [43] and shown in Figure 2.3. The robot’s position, (z,y,0) € SE(2), is measured
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via a frame located at the center of the wheel base. The position of the wheels
is measured relative to vertical and is denoted (¢1,¢2). Each wheel is controlled
independently and is assumed to roll without slipping. The configuration space is
then Q = G x M = SE(2) X (S x S). Let m denote the mass of the robot, J its
inertia about the center of mass, and J,, the inertia of each wheel about its pivot

point. Then the Lagrangian is just

I RPNV BV ST
L(q,q) = gm(a® +§%) + 5707 + SJu(dt + 63)-

The group action is that of G = SE(2) on Q, similar to Example 2.14 above:

a' + zcoso — ysina
a’? + rsina+ycosa
®4(q) = a+0 (2.6)
¢
b2

and the lifted action is

cosa —sina 0 0 0 T Zcosa —ysina

sina¢ cosa 0 0 O Zsina -+ ycosa
T,2,@) =] 0 0 100[|6f= 6 ;

0 0 01 0|]|¢ é1 (2.7)

0 0 00 1) \4 $2

where g = (a!,a?,a) € SE(2). A straightforward calculation like the one above for
Elroy’s beanie (Example 2.14) shows that the Lagrangian is invariant.

The constraints defining the no-slip condition can be written as in Eq. 2.3:

4080 + gsinf — -g(cia1 + ) =0
— &sinf +ycosf =0 (2.8)

60— ﬁ(dﬁ —¢9) =0,
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and similar calculations readily show that the constraints are also G-invariant. Using

Lagrange multipliers, we can write the dynamical equations as

ma + A cos@ — Aosinf =0

my + A1 sinf + Ay cos 0 =0

Jé‘i— A3 =10
Juwdr — £>\1 - -{LM =T
Juws — -Al + 5—/\3 = To,

along with the constraint equations given by Egs. 2.8. Differentiating Egs. 2.8,
solving for the unknown multipliers, and eliminating the group variables yields the

reduced base equations:

2 2 2 .

o+ 22 +(—i’-’—+Tf—>¢z = (29)
2

(--‘ip— + —p—)¢1 + (Juw + -‘g’- + %p—)cbz = 2. (2.10)

For the mobile robot, this process of eliminating the Lagrange multipliers is straight-
forward, but non-trivial. In more complicated examples, the resulting equations for
the base space can become rather unwieldy. This provides additional motivation for
us to re-examine the elimination of these extra variables and unknown multipliers
using techniques based on the geometry of the problem.

Notice that Eqgs. 2.8-2.10 fully specify the motion of the two-wheeled mobile
robot. This example illustrates what are called Chaplygin, or principal kinematic,
constraints, in which there are the same number of constraints as the dimension of
the Lie group, and for which it is possible to invert the group velocities in terms of
the base variables. The division of variables given by these equations is precisely
the division that we would like to have when describing locomotion. The shape
variables are separated out in a manner that clearly highlights their independence
from the group variables (Egs. 2.9 and 2.10), and by which it is easy to show that

they are controllable given the proper input torques. At the same time, Eq. 2.8 can
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be inverted in the following manner, which makes explicit the dependence of the

group variables on the shape variables:

cosf® sinf 0\ [z £ £ .
: $1
TgLg-19=|—sinf cosf O |y =—|0 0 ¢
. 2
0 0 1 6 5% —5%

Notice that the changes in position are described by first order differential equa-
tions as defined by the kinematic constraints. Written in this form, we see that
the constraint equations explicitly define the role of shape changes in generating
net motion along the fiber— that is, in generating locomotion. When we write the
equations in the form of Eq. 2.11, we are implicitly defining a connection for this
trivial principal fiber bundle. The definition and usage of a connection in the setting

of general locomotion systems is the subject of Chapters 3 and 4.
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Chapter 3

Lagrangian Reduction in the Absence of

Constraints

The process of Lagrangian reduction in the unconstrained case consists of splitting
the dynamics of the system according to its symmetries and then reducing the system
to a lower dimensional space in which the symmetries have been modded out. In this
chapter, we discuss methods for performing this splitting on a trivial principal fiber
bundle. For comparison, we briefly review in Section 3.3 the traditional reduction
procedure for unconstrained systems (for a more thorough presentation, the reader
is referred to [60, 61, 63]), and then in Section 3.4 develop an alternative procedure
which makes use of the body coordinate representation. This alternate form can be
quite useful in the presence of body (left-invariant) forces, and, as we show in the
sequel, generalizes quite easily to the addition of invariant nonholonomic constraints

arising in problems of locomotion.

3.1 Connections on Principal Fiber Bundles

We seek a splitting of the dynamics that is compatible with the Lie group symme-
tries, and which naturally highlights the structure of the shape space for particular
locomotion systems. Thus, we must initially define two subspaces: one which con-
tains the group directions and one which encodes the pertinent information regard-

ing the internal shape of the system (and, as we will see, may include information
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regarding the constraints). The process of reduction, then, consists of modding out
by the group and reducing to a lower dimensional shape space. For a general prin-
cipal fiber bundle, Q(M, @), there is a natural way of defining the set of vectors

tangent to the group orbits.

Definition 3.1 The vertical subbundle (also called the fiber distribution) is the sub-
bundle of T'Q defined by

VQ = U V:]Q = U {vq € Tqu Vg € keI'Tqﬂ'Q}.
qeQ qeQ

Vectors in VQ are said to be vertical.

In other words, VQ is the disjoint union over @ of each subspace of T;,Q) which is
tangent to the fiber (and hence each v, € V,Q is in the kernel of the projection to
the base space). For a trivial bundle these are all vectors of the form (vg,0), for
vg € Try(q)G-

For a general principal fiber bundle, there is no canonical way to define a com-
plementary space to VQ. Thus, depending on the problem we may have different
criteria for choosing a horizontal subbundle. For example, in a trivial principal fiber
bundle, we can naturally define a horizontal subbundle by choosing vectors tangent
to the base manifold, i.e., vectors of the form vy = (0,v,) with nonzero components
only in TM. Alternatively, for systems which possess a metric, e.g., mechanical
systems, horizontal vectors are chosen to be orthogonal (with respect to the metric)
to vertical vectors. In the presence of constraints, however, these are not necessar-
ily the most appropriate choices to make. In the Chaplygin or principal kinematic
case, the horizontal distribution consists simply of those vectors which satisfy the
constraints. For systems with mixed nonholonomic constraints (that is, external
kinematic and internal momentum constraints), however, the choice is not so clear.
In Section 4.5 an alternative choice of horizontal will be discussed for systems with
mixed nonholonomic constraints.

For the purposes of locomotion, the vertical distribution really describes the net

velocities of the rigid body, moving as a whole. Thus, a purely vertical motion would
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represent a change in inertial position, with no accompanying change in internal
shape. For the mobile robot example above, the vertical subbundle consists of all
vectors whose last two components are zero. This corresponds to pure rotation and
translation in the plane, without any spinning of the wheels. Suppose that we made
the choice of horizontal according to the natural division into base and fiber spaces
given by a trivial fiber bundle, i.e., using the splitting TQ = TG x TM. Then, for
the mobile robot horizontal vectors would be those involving only a pure rotation of
the wheels. As a constrained system, however, this decoupling of the variables does
not make good physical sense, since the robot cannot move in the plane without
moving the wheels, and vice versa. In fact, it is exactly this notion which leads us
to choose a different horizontal subbundle, or connection, which more appropriately
reflects the interaction between the wheel (shape) motion, and the movement along
the vertical (fiber) distribution. The interaction between shape and position changes
is implicitly defined by the constraints, and so we will build a connection based on
the information encoded by the external constraints.

Mathematically, the connection defines the relationship between the tangent
bundle on the base space and a G-invariant (horizontal) subbundle of T'Q. It pro-
vides the means to “lift” vectors from TM (shape velocities) to the appropriate
vectors in T'Q (shape plus position velocities) during reconstruction. Although the
definition of a connection is not really standard within the literature, we follow a

very common definition given by Kobayashi and Nomizu [44].

Definition 3.2 A connection is an assignment of a horizontal subbundle, HoQ C

T,Q, for each point ¢ € Q such that
1. T,Q =V,Q & H,Q,
2. T,9,H,Q = Hy.4Q, for every ¢ € Q and g € G, and
3. HyQ depends smoothly on g.

The direct sum of condition (1) implies that T,Q can everywhere be divided into

the vertical subspace given by V,Q and a horizontal subspace, given by H,Q. Every
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vector v € T,Q can then be uniquely written in terms of its horizontal and vertical
decomposition: v, = hg + w,, where hy € HyQ and wy € V4Q. Define in this
manner the maps ver and hor to be the projections onto the vertical and horizontal
subspaces, respectively. Using the decomposition v = h + w (assumed to hold
pointwise over @), this implies simply that A = horv and w = verw. Another
benefit of working with connections is that the horizontal subspace defined by the
connection is everywhere isomorphic to the tangent space of the base space: HyQ =~
TryqyM. The horizontal lift maps vectors in Ty, q)M to their corresponding lifted
vectors in Hy C To@ under this identification.

We have defined the connection as a G-invariant horizontal distribution that is
complementary to VQ. An alternate definition that is often used (and encodes the

same information) is given by the connection one-form.

Definition 3.3 A principal connection one-form, A, is a Lie algebra-valued one-

form on @ satisfying the following properties:

1. Alq) -€éqlq) =&, £ € g, and
2. A(®gq) - T,y = Ady Alg) - ¢-

Condition 1 implies that A takes vectors in T,;Q to the Lie algebra elements associ-
ated with their vertical components. Thus, it extracts from a vector the components
in the group direction, relative to some choice of horizontal. This is possible be-
cause for each vertical vector w, € V4@, there is associated a unique Lie algebra
element, & € g, such that £ generates wy. Recalling the definition of an infinitesimal

generator, this means that

wy = Eqla) = - (B(exp(s£),0) lo=o (3.1

where exp : g — G is the exponential mapping of a Lie algebra element to the
corresponding element in its Lie group (see Boothby [14] for more details). The
connection one-form, then, takes the vector, v, € T,Q, and returns the Lie algebra

element associated with the vertical component of v, namely { = A(vg), where
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£o(q) = verv,. Note that the connection one-form is defined so that { € g implies
A(¢g) = €. Conversely, if hy € HyQ, then A(hg) = 0, i.e., the connection evaluates
to zero on horizontal vectors.

An interesting simplification occurs when working with a connection on a trivial
principal fiber bundle. In this setting, one can always write the connection in a
simple local form which is very illuminating (used in [10]). Let ¢ = (g,7) € GX M =
Q. Then we see that the information encoded in a connection can be distilled down

to a map A(r) : T, M — g, as described in the following proposition.

Proposition 3.4 Let A be a principal connection one-form on Q(M,G). Then A

can be written in a local trivialization as

A-g=Adg(g71g + A(r)r),

where g~1¢ is understood to imply the lifted action of g !

TyLy-1. We call A the local form of A.

on § € TyG given by

Proof: Recalling the above conditions for a connection one-form, Condition 1 implies

that A(g,7) - (§,0) = gg~ . Thus
Alg) - (§,7) = 99" + Bg,)r-
Furthermore, Condition 2 implies that
Ady gg~' + Ady, B(g, )7 = hgg *h~t + B(hg,r)7,
or
Ady B(g,r) = B(hg,r).

Setting h = g~ ! gives the desired result, with B(g,r) = Adg B(e,7) = Ady A(r). &

Notice that the heart of the above formula is the local form of the connection,

A. While A is itself independent of g, it is mapped through the adjoint action in
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order to write the result in spatial coordinates. For this reason, we remark that the
body coordinate representation can be important for writing this one-form, since
the information encoded by the connection can be fully decoupled from the fiber

variables. If we denote the body form of the connection by A%, then

Al = Ady1 A= g tdg+ A(r) dr.

3.2 The Momentum Map and Mechanical Connection

One-Form

There are three primary elements involved in the reduction procedure for uncon-
strained systems with symmetries: the momentum map, the locked inertia tensor,
and the connection one-form. These quantities are all standard to the reduction
literature. The reader will notice, however, that in this presentation we also define
body coordinate representations of the momentum map and the connection one-
form, which will be used in the derivations below. We recall here for convenience

the definition of the momentum map given above in Noether’s theorem.

Definition 3.5 For a mechanical system, the momentum map is defined to be the

map, J : TQ — g* which satisfies the following:

(J(Uq);a = «'Uq,fQ»a
for all £ € g and v, € T4Q.
We can also define the momentum map in body coordinates:

Definition 3.6 The body momentum map is defined to be the map, JI.TQ = ¢

which satisfies the following:

(3°(vg); €) =((vg, (Ady-1 £)q(99))

= «Ucn qu@g-ng (99)),
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for all £ € g and vy € TyQ.

Body coordinates are not normally used for performing reduction, but in the pres-
ence of constraints, it appears to be a useful reference frame to use. Obviously the

two are related, via the transformation:
b __ *
J’=AdyJ

Noether’s theorem states that for unconstrained systems the momentum map
in spatial coordinates is conserved along trajectories. This will not be true in gen-
eral for the body momentum map, except in the case that G is Abelian, for which
Ad; = id (the identity mapping). We remark, however, that in the special case that
the spatial momentum is zero, i.e., when p = J(§) = 0, the body momentum defined
by p=1J= Ad; p is also zero and is also constant (shown below in Section 3.4.3).
Thus, for unconstrained systems with zero momentum, the body and spatial repre-
sentations of the equations are almost identical. The choice of which form to use in
this case is purely based on convenience of representation.

Mechanical systems naturally possess a metric on 7'Q), implicitly defined by the
kinetic energy. The existence of such a metric allows one to define the mechanical
connection for systems with symmetries. The mechanical connection one-form is

related to the momentum map via the locked inertia tensor, defined as follows:

Definition 3.7 The locked inertia tensor is the map, I(q) : g — g* which satisfies

(L{@)&;m) = (qsmed

for all &£, € g.

The connection one-form— in this case, a mechanical connection— is given by

A=17"Yq)J,
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and satisfies all of the properties of the connection one-form given above. Again,

we will define a dual quantity taken in body coordinates, namely
AP =1"Y(q) 3.

Notice that the locked inertia tensor used here is the same in both body and spatial
coordinates. This is due to the fact that the locked inertia tensor is Ady-invariant,

in the sense that
Ad; I(®49) Ady = I(q).

The one-forms A and A° are also related in a manner similar to the momentum

maps, via the adjoint mapping:
AP = Ady-1 A

It should be noted, however, that the Lie algebra valued one-form AP is not a
connection one-form, since when evaluated on infinitesimal generators it does not
return the Lie algebra element that generates it, i.e., Ab fg = Ady1§ # & Tt will

arise, though, when building a connection for systems with constraints.

Example 3.8 Elroy’s Beanie (cont.)

We return to the example of Elroy’s beanie in order to illustrate the concepts
that arise when building a connection. Recall from above that the Lagrangian is
G-invariant. This suggests the existence of a conserved quantity, and so we will
formulate the momentum map and mechanical connection for this system. We
would also like to investigate the distinction between body and spatial coordinates,

and so recall the adjoint action given above:

cosf —sind y
Ady = | sinf@ cosf -z

0 0 1
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Also shown above, the infinitesimal generator for { = £if;cgis
fQ(Q) = (fl - £3y7§2 + §3$7€370)'

Let J = J; f* € g*, and then compute the momentum map as

(J(vg); ) = Ji fz = «'Uqan(Q)»
m 0 0 0\ [¢&-ye
0Om 0 0||&+z
= (’Ug;,'Uy,’Ug,’Ud))
0 0 J+Jy Jy ¢
00 Jy Jy 0

= £ (muy) + 52(mvy) + 53(mmvy — myvg + (J + Jy)vg + Jyvy),

where vy = (vg, Uy, Vg, vy). We find, then, that

J(vg) = mugf1 + muy 2 + (mavy, — myvg + (J + Jy)ve + Jwvw)fg’.

The body momentum map is given by

3 (vg) = Ad}y I (vg) = Te L (muvg, muy, (J + Jy)ve + Jyvy).

Next, to determine the mechanical connection for this system, we calculate an ex-

pression for the locked inertia tensor:

m 0 —my
I[= 0 m me

—my mz J+J¢+ma:2+my2

Then the mechanical connection is easily computed to be

Alvg) = H—I(Q) J(vg)
Jy

= (vg + y(vg + Jd)v)v—x(v-{— V), Vg +
=\ YT G, T TE I, T TR,
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while in the body representation this becomes:

Ab(vg) = Ady-1 A

= (vg cos 0 + vy sinf, —v; sin @ + v, cos 6, vy + 7 :*]‘qup vy)
J.
= TeLg-10g + (0,0, j’_ﬁﬁﬁvw),

where vy = (vg,vy,v) and TeLy-1v4 € g. Thus, the local form of the connection is

just

0
A=1| 0

v
J+Jy

Note that while this is a very simple expression, it is enough information to com-
pletely encode the connection for this problem. In order to give some interpretation
of how this information is encoded, let us look at the connection evaluated on tra-
jectories with initial momentum equal to zero. For this case, the fiber equations

become

J+Jy

Thus, the internal constraints given by the connection imply that a rotation of
the rotor (given by a nonzero value for z,[)) yields an opposite motion in the body
representation of the 6 direction (scaled by 7—;%;) This implies that the velocity
of the rotor (body #2) and the central body (body #1) are directly coupled via
6 = ﬁ{—‘éj;'gb In more general locomotion problems, the connection will be used to

encode more complex interactions with the shape variables and with the momentum

of the system.
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3.3 Reduction Using the Routhian

The reduction procedure for an Abelian group can be traced back to Routh (1860),
but the full method for the non-Abelian case was not developed until much more
recently [10, 60, 63]. The purpose of reduction will be to drop the dynamical equa-
tions to the quotient space, here just the base space, M = Q/G. By doing this,
the total dynamics for the system will be encoded in a set of differential equations
evolving solely on the base space. Let us examine how this will be done.

First, we express the Lagrangian in terms of kinetic and potential parts:

Lla,v5) = 5{{o0,v0) — V(@) (32)

Next, recall that we can decompose any vector into horizontal and vertical compo-
nents: v = horv+verv = horv+ (A(v))g, where (A(v))q is vertical by definition.
Using the definition for J, we can rewrite this as v, = horvg + (I71J(vg))q. Sub-

stituting into Eq. 3.2 and expanding gives

L(q,v5) = 1 (horug, horug) + (I I(vg))s (17 3(op))a) = V().

Noether’s equation for the unconstrained case implies that J = p = const along
trajectories, so we will restrict orbits to those which lie in the level set given by
J=p € gt If p =0, then we see that the Lagrangian can be written solely in
terms of horizontal vectors, since A = [7!J = 0 when evaluated along trajectories.
As such, the variational principle will drop directly through the quotient, to give
dynamical equations on M.

In the case where p # 0, we must perform a momentum shift in order to allow
us to drop the variational principle down to the base space. As such, we expect
some correction factors to enter into the variational principle.

Again, we restrict to a level set, J = u, where now p can be any element in g*.
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Define the Routhian, R*, to be

R¥ = L(g,vq) — (15 A(vg))-

The momentum map associated with the Routhian is identically zero:

ORH OL  8{u; A(v))

(Grife) = (5, ——5, %)
= (Z250) ~ (s A 0)
= (FL(v); §@) — (1; Al¢Q))
= (J(@);€) — (1 8)

= (u—p;€) =0,

for all £ € g. Furthermore, by performing the same substitution done above for the
general Lagrangian, with vq = hor vy + A(v,)q, and restricting to a level set where

p = const, we find that
1
RH = —2—((hor v,horv)) — V¥,
where V# = V(q) — 3(u; 17 ). A straightforward calculation shows that
2
d (OR*\ OR* d (8L\ OL , (0AF oAF\
4B o =2 (o) - o+ (G- 5o |
dt \ O¢* dqt  dt \9¢ g dqgt  Og’ '

Since dit (g—(f;) - -g(—f; = 0, the reduced variational principle can be written as

d (ORF\ OR* . .
di ( agt ) "o Bijued’ (3.3)
where
g OA7 0AF
i T Bg | g

The ﬁfj’s are directly related to the components of the curvature (exterior derivative)
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of the connection one-form, and appear naturally in the reduced equations for the

base space as correction terms.

Example 3.9 The Rigid Body

Let us recall the classical example of the rigid body, free to rotate in space
(SO(3)). This example will serve to illustrate various concepts to follow, particu-
larly in contrast to constrained systems. This is merely provided as an illustrative
example, and so the full details are not provided here. For these details, the reader
is referred to [60, 64].

Let R € SO(3) denote the configuration of the rigid body with respect to some
reference frame. As alluded to above, for motion on a non-Abelian Lie group, we can
naturally write the velocity in terms of the Lie algebra in two different ways. The
spatial angular velocity of the body, w € so(3), can be written as a skew symmetric

matrix,
~ _ pp-1
@w=RR™".

The spatial angular velocity is the instantaneous angular velocity of the body as
viewed from an inertial reference frame. We can also write this velocity as an
element of R® using the relationship &v = w x v, for v € R3. The spatial angular
velocity corresponds to the velocity of the rigid body measured in the coordinates
of an external frame.

The body angular velocity, () = R™!R, is related to the spatial velocity by the

adjoint action, which for Q,w € R3 can be written as
Q=Adp-1w=Rw.

The body angular velocity basically corresponds to the angular velocity of a reference
frame attached to the rigid body with respect to some inertial reference frame, but
written in coordinates of the body frame. Using the locked inertia tensor I, we can

write the Lagrangian for the rigid body as L = 1(IR™!w; R™'w) = (IQ; Q). Similar
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to above, we define the body angular momentum, II = I, and the spatial angular
momentum, 7 = AdR II = RII. From these, we have two means of expressing the
equations of motion for the rigid body.

The first of these describes the well known conservation law for a spinning body

in the absence of external forces:
7 = 0.

The second form is simply the Euler equations written in terms of the body angular

momentum:
IT=1I x I7L (3.4)

For unforced systems, the first set of equations will obviously be most useful, and
will define the reduction and reconstruction process. Namely, reduction will consist
of restricting to the level set, 7 = const. Reconstruction, then, will require solving

for the motion of the rigid body using the first order ODE’s given by

The reason for highlighting the alternative formulation in terms of the body mo-
mentum is that it will be the form which is most convenient to use in the presence
of invariant constraints. Also, we see that the body form of the momentum equa-
tion is independent of the group variables and so provides an alternative means of
studying the dynamics in the presence of body forces, e.g., a satellite with thrusters
instead of internal rotors. Thus, both forms will play an important role in reduction,

depending on the type of problem being solved.
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3.4 Reduction Using the Constrained Lagrangian

3.4.1 The Reduced Lagrangian

In order to do reduction using body coordinates, we begin by reducing to the space
induced by modding out the group, i.e., the space TQ/G = gx T M. As coordinates
on this space, we will use (§,r,7), where £ = ¢% = g~1g. Given the invariance of the
Lagrangian, it is easy to see that we can immediately rewrite it in terms of these

partially reduced coordinates.

Definition 3.10 The reduced Lagrangian is the function ! : TQ/G — R induced by

a G-invariant Lagrangian function, given by

&, 7) = L(g 7 g,r, 7,971 9).

In the case of mechanical systems, where L(v,) = T(vq) — V(q) = 1{vg, vg)) —
V(q), Murray [72] describes a splitting of [ that enables one to write down the
local forms of the locked inertia tensor and connection directly by looking at the
reduced mass-inertia matrix. We use body coordinates to write down the reduced
Lagrangian, although we will see that this can also be done easily using spatial coor-
dinates. In doing so, we present a splitting of the bundle structure that diagonalizes
the reduced mass-inertia matrix. The aim here is to present several options, with
the thought that each one may be an important representation, dependent on the

problem at hand.

Proposition 3.11 Given L to be G-invariant, the reduced Lagrangian can be writ-

ten as

. 1 . I ITA &Y.
l(T,’r‘,é) = ‘(gTver) 1T V(T) (35)
2 ATI m(r)) \r

We will call this decomposition of the reduced Lagrangian the (left) invariant de-

composition of I.
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Proof: We begin by writing L using a matrix representation of the metric on Q:

1, .. ) Gu G2} (9

L(Q,T,Q,f‘) = 5(9 ) T (GQ G.2 1T V(g,?"),
1 2 r

With G’lQ = Gg]_ .
Recalling that J = 1A and A(g,7) = £° + Ady A(r)7, we have

§"Gi1g = ((9,0), (g,0)) = (3(4,0); ") = (LA(g,0);£*) = (I£%£°).
Similarly for Gy1,
#Gorg = ((0,7),(9,0)) = (J(0,7);€°) = (LA(0,7);£") = (T Adg A(r)7*; £°).
Then, setting
m(r) = Gaz(e,r), and V(r) = V(e,r),

we have

I TAd,A) (e

5 (r, 7€) = S ((€°)7,77) ,
2 ATAGT m o

- V(T)’
since Adj = Ady for matrix manipulations.
We can then convert to a body representation using the adjoint relation § = &b =

Ad -1 £* and the local form of the locked inertia tensor, I(r) = I(e,r) = Adg I Ady:

I TIA
=teng =g | () <o
m T
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Finally, we remark that by defining 2 = £ + A7, the invariant decomposition of
I takes on a block diagonal form:
1 I 0 Q

@7, 77) - V(r).

Q - _
Finn =g 0 m—ATIA) \ 7

The term m — ATIA will appear again below as the reduced mass-inertia matrix

that naturally arises when writing Lagrange’s equations on the base space.

3.4.2 The Reduced Nonholonomic Variational Principle

In formulating the reduced equations for a system with nonholonomic constraints,
we will find it convenient to employ a reduced version of the equations found using
the nonholonomic variational principle. Since the equations defining the momenta
can also be considered to be a nonholonomic constraint, we find that this variational
principle can then be used to perform reduction for unconstrained mechanical sys-

tems with symmetries.

Given a set of constraint one-forms, w!,...,wF, we can split these one-forms
using the trivial bundle structure, as
w® = widg® +widr', b=1,...,l,i=1,...,m.

Similarly, we can divide the forcing function into 7 = Tpdg® + Tidrt.

Recall the nonholonomic constrained variational principle defined above,

i(_f_’.é)_?_l;_,\wa”
dt \ 8¢t ogt ~ T T

We can use the invariance of the Lagrangian to write these equations on the partially

reduced space of g x TM.

Proposition 3.12 The reduced nonholonomic constrained variational prin-
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ciple on g x TM is given by

4O gy
dt \ o¢a £ g

4oy ot
dt \ Ort Ori

— c
= )\cwi -+ Tis

Awsgh + Togl (3.6)

(3.7)

where g0 denotes the coordinate version of the lifted left action T.Ly on T.G = g,

and adg is the dual of the adjoint action of g on g such that ad¢n = [£,1] and

adgp = (p;[£,°])-

Proof: We show this in coordinates, using the following calculations:

(o) _4(aoe
dt \0ge/)  dt \ 9¢b §ge

d 81 d ol
— 1y & —-1yb Y
_1p d Ol a(g he . ol
— N 2 YUY a-c Vb
=0 )egoe o 9 ae
1 d ol d(gT1)e ol
—_ IRV d
= Dagrae t o 94 g
oL _ oo
aga - aéb aga
9 ((g7")%°) al
N dg® agb
6(9— ) cgd ol
= ag < 5 gb’ and
&, = (67" logé?, 9In°
B dgen® agagd )
— 1\b e ced _ YIdS e e
(g )a( agc gd§ agc Gell

_1vp (092 ¢
= (g 1)2(5%%%—

~1)b represents the lifted action of G on T,G such that &> = (g~

where (g

89(1 c d e
3 cge)é

hege € g.

We see from these calculations that the Euler-Lagrange equations in the group
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directions can be rewritten as

wd OO g Ol A(g 40
W =2 M a ced c cgd
O Negrpe + “age 9 5~ —agr 94 g

- (a3
= AWy + To.

If we multiply through by g% and use the identity

0=

dg2(9™")5 _ gaa(g‘l)i L 99

g8 dge
dg° Top Tag e = S Tae T

-1
agc - agc (g )(u
then Eq. 3.8 becomes

d 0Ol bage ¢

oL a9 11,6993 cpa @
Zﬁ@fe (g )aa c dé- 861) ( ) é

aace

3§b AaWg ge + Tage-

Finally, we recognize the second and third terms on the left-hand side of this equa-

tion as the dual of the adjoint action acting on agv since

(v 3¢), = (5ei01), =g 7% (oo 528)

Using this, the result follows directly, since the equations on the base space remain
unchanged when using the reduced Lagrangian. (As a brief aside, note that these

lengthy expressions give the structure constants for the Lie algebra, as

8gs . 0g°
Ch = (7%, (et — 5ks)

where [£,7]" = C§.£%°) u

Given the constraints as a principal connection on Q(M, G) (for example, as the
mechanical connection or derived from Chaplygin constraints), we can eliminate the
Lagrange multipliers in order to write the base equations explicitly. We will use the

body coordinate form of the connection:

w® = (g~ Hdg® + Afdri.
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Notice here that we have written the local form of the connection as A to represent
a connection based on external constraints. In the sequel it will be important to
distinguish between the local form of the mechanical connection and the local form
of the connection that arises due to external constraints, and so we will use the
symbols A and A, respectively.

Also, we assume that the forces are written as one-forms, which are also G-

invariant. Given this, we can divide 7 as
7 =78(g7")5dg" + mdr?, (3.9)

where 7¢ is just 7, pulled back to the group identity.

Proposition 3.13 Given a system (L, D) with a connection on @ and G-invariant

forces, T, the reduced equations on TM can be written as

d (ol ol d (0l . Ol e
E(éﬁ)—%: [Zi—i (W)—adg—ag}&—i-ﬂ’%&g- (3.10)

Proof: This proof follows almost directly, given the structure of Egs. 3.6 and 3.7

above. First, we can use the form of w® = (g71)2dg® to solve for Ay:

d (ol ol
M=—|%=]|—adi z5 —75-
T (agb) M T
Then, substituting into Eq. 3.7 for A, and w? = A? gives the desired result. n

3.4.3 The Constrained Lagrangian Approach

In a similar fashion to the Routhian approach, we can develop a reduction method
using the body representation of velocities. The advantage of this method for our
purposes will be that it extends to constrained systems in a very straightforward
manner and is a more natural context for including left-invariant, or body, forces.

In contrast to the above where we use J; = ia%;, we will use here a body momentum
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map based on the reduced Lagrangian,

_a
p_a§7

and write the constraints defined by the connection as
£ =—A(r)r+ I 'p. (3.11)

Obviously the major drawback about using this representation for unconstrained
systems is that the momentum is no longer constant, but now is governed by a

momentum equation:

p=adip+7° (3.12)

derived using Egs. 3.6 and 3.9 with p = g%. This equation demonstrates that

for unconstrained systems without forcing, if the momentum in spatial or body
coordinates is initially zero, then it remains fixed in both representations. The
systems of interest here, however, are those in which the constraints partially (or
fully) break the symmetries, and so we do not expect the momenta to be conserved,
even if it is initially zero.

Egs. 3.11 and 3.12 fully define the motion along the fiber. Additionally, ¢ in
Eq. 3.12 can be substituted for using Eq. 3.11 in order to rewrite Eq. 3.12 in terms

of base and momentum variables only. This leads us to define the following:

Definition 3.14 The eztended base space is the momentum space g* appended to

the tangent bundle to the base space, T M.

While reduction for unconstrained systems implies reducing the dynamics directly
to the base space, we will see that for systems with nonholonomic constraints the
best that can be done is to reduce the dynamics to the extended base space.

To do this, we make use of what we will call the (reduced) constrained Lagrangian.
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This is just the reduced Lagrangian with the constraints substituted in:

le(r,7,p) = l(’"’f’f)L:—A*“"l”.

Performing straightforward calculations on I.:

dl. _ oL oL ogr
ort — Ort Qe Ort
e A,
X Ay
d (ol d (ol dfayN ,, a .,
i (o) = & () -~ () 45— et oo
ol ol ol BE”
ari ot oge or'

ol ol [ 0AYI I 'p
=t — | -+ =1,
oart g8 or? ort

lead us to the following equations for the base dynamics:

i(%),%_i@i)-ﬁ_i(ﬂ)A.
dt \ Or¢ ort — dt \ort ort  dt \o¢) "

31 i BAJ’I"J af—lp . e b
_.-aE(Al_ ot Tom )+n_ b
LoL o, al oy, O e 4b
= adg —a-gA((ST' ) - 5‘5 (dA(’I’,5T ) + Bri ) + 71— Ty Ai’
(3.13)
where
Ry 04; .. O(A;7)
iy = Pz AT
dA(r,or") 57" 5

represents the local curvature form corresponding to the mechanical connection.
This formula is really nothing more than a restatement of the reduced nonholonomic
constrained variational principle given above in Eq. 3.10. The utility of presenting
the equations in this manner comes when we more closely examine the structure of
the constrained Lagrangian. This structure allows us to define the base dynamics

in an easily computable form which is familiar to most engineers.



64

First, a straightforward calculation shows that

Le(ry,p) = 3 (hor  hor ) + 53 I™'p) = V(r)

— o] =

~ 1
= oA+ 55 170 = V),

[

where M (r) = m— ATIA is the reduced mass-inertia matriz. Using this information,

we can write down the base dynamics as
~ A OV
M7 +7 Cr—%-?a—;-}—N:B(r)'r, (3.14)

where

~ ; 1 (0M;; oMy, OMy;) .
(VIR = 2 ij ik _ G7kI N pipk
Cgi(r)P77" = 2 ( ork T o ort )T "
Bir=7,—71,A}, and

. al ! I
N =adg 5o A() + g—g <dA(7‘, )+ 2 arp (-)) .

It is interesting to note that the formula for the Routhian in terms of body

coordinates is just
1 ) ) 1 -1
RP = Z{hor ¢, hor ¢)) — 5(p; I""p),

so that I, — RP = (p; I"'p), as expected. Obviously, though, formulating the reduc-
tion in terms of either the Routhian or the constrained Lagrangian must yield the

same reduced dynamics, but with different motivating intuition.
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Chapter 4

The Generalized Momentum

Much of the progress on locomotion presented here has depended on the develop-
ment of the theory of reduction and reconstruction for nonholonomically constrained
systems with symmetries by Bloch, Krishnaprasad, Marsden, and Murray [10]. In
particular, their use of connections has motivated our thinking concerning how theo-
retically to address the concept of cyclical shape changes that generate locomotion.
Also, the development of the generalized momentum equation has allowed us to
capture an important aspect of locomotion— the generation of forward velocities

described in terms of generalized momenta.

4.1 Assumptions

Recall the constrained dynamical system (L,D) developed in Section 2.6 above.
This information alone allows us to construct a generalized momentum equation
(see Section 4.3 below), which loosely corresponds to describing momenta along the
allowable directions defined by D (dimD = n — k). However, in order to use the
additional structure provided by the existence of Lie group symmetries, it will be
important to assume that D, as well as L, is G-invariant. This invariance can be

written as Ty®,Dq = Dy.q, but we will require a slightly stronger type of invariance.

Assumption 1 The constraint distribution D can be ezpressed in terms of a local

basis, X1,...,Xn—k, that is G-invariant. That is, the relationship T,®,X;(q) =
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Xi(®yq) is satisfied fori=1,...,n—k.

Alternatively, we will find it convenient to express D as the kernel of a set of left-
invariant differential one-forms, w',...,w®. Recall that invariance for a one-form
will imply that w?(hg) = T,‘{q@h-lwi(q). The following proposition shows that for
systems with a metric, the equivalence between these two representations is quite

natural.

Proposition 4.1 Given a G-invariant basis, X1,...,Xn_, for D, there exist G-

invariant one-forms, w',... ,wk such that
D={veTQ|{wsv)=0,i=1,...,k}.

Proof: Let Xi(e,r),...,Xn—r(e,r) denote the vector fields Xy, ..., X, evaluated
at the identity of G. Next, choose k vector fields, X,_x1(e,7),..., Xn(e,r) orthog-
onal to Xi(e,r),...,Xu_k(e,7), and push them forward using the action of G on
Q. The invariance of the metric assures that these vector fields remain orthogonal

to X1,...,Xn_k over all of Q. Finally, define k one-forms by
w' =FL(Xp—g4i), fori=1,...,k.
These one-forms are left-invariant, since

Tj, @p-10'(q) = Ty ®p-1FL(Xp—k14(q))
=FL(T; @y Xn_r+i(q))
= FL(Xp—k+i(hq))

= w'(hq),

and their kernel is the constraint distribution, D. [ |

We should mention here that Assumption 1 is a very natural assumption to
make when dealing with problems of locomotion. In all of the locomotion problems

studied to date, the constraints have been group invariant. Consider for example,
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the mobile robot with wheel constraints. If we designate a frame that we attach to
the body of the robot, then the constraint forces generated by the wheel will act in
the same directions, relative to the body frame, no matter where we place the robot
in the plane. Similarly with other forms of locomotion, we find that the shape of
the system determines how the constraints act in relation to the body frame, and
that the resulting, or net, motion of the body due to the constraints is the same
regardless of the initial position of the system.

We are interested in the invariance of the constraints because it makes it easier to
integrate them into the natural symmetries of the system implied by the invariance
of the Lagrangian. Thus, it is natural to restrict our attention to those constraints

that act in the group direction.

Definition 4.2 The intersection of the constraints with the fiber distribution, & =

DNVQ, is called the constrained fiber distribution.

Recall from Section 3.1 that for a given fiber vector vy € S, there corresponds a
unique Lie algebra element, ¢, which generates vg, i.e., vy = {@(q). Let X be a vector
field in S. Then at each point ¢ € @, we can determine a Lie algebra element for
which X is the infinitesimal generator. We do this for all points ¢ € @ to define the
map £79: Q — g that generates X, such that X(q) = (£9(q))q(q) for all ¢ € Q. The
development of the generalized momentum equation (to be used for reduction and
reconstruction) will depend on these Lie algebra elements, and hence will depend on
S being non-empty. For unconstrained systems, there are no restrictions placed on
the Lie algebra and so we can choose fixed elements in g to form a basis for § = VQ.
This is not true, however, for general systems with nonholonomic constraints, since
the Lie algebra element necessary to generate S, will vary over Q. This is a subtle
point which is crucial to understanding why the generalized momentum varies with
time.

A few additional assumptions are made here regarding the rank of S. These are

necessary for the analysis, but do not appear to be restrictive in practical examples.
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Assumption 2 In addition to Assumption 1 (that the constraint distribution be
of constant dimension (n — k) over Q), it is assumed that the dimension of the

constrained fiber distribution, S, is constant, with s = dimS =n —m — k.

Assumption 3 The constraint distribution contains all of the allowable base direc-

tions, i.e., D+VQ =TQ.

Finally, we add a condition that will be invoked only at certain points in order to

make additional simplifications to the analysis.

Condition 4 The constraint forces do not act in the base directions. Alternatively,

this condition may be ezpressed as TM + S = D.

Remarks:

1. Let us briefly comment on the effect of each of these assumptions. Assump-
tion 2 implies that the allowable degrees of freedom along the group orbit
does not vary over Q. This should not be confused with the existence of a Lie
algebra element which generates the motion along this direction. As will be
shown later, the presence of nonholonomic constraints will tend to violate the

existence of any such element in the Lie algebra.

2. Assumption 3 guarantees that there are no constraints acting only between the
base variables. This allows us to build a meaningful connection relating the
unconstrained base (shape) velocities to fiber velocities. Condition 4 will be
invoked as a much more restrictive condition than Assumption 3 as it provides
further structure to be used in the process of reduction. For a trivial bundle,
this condition can be understood as saying that the constraints do not generate
any forces in the base direction, and so is more restrictive than Assumption 3.
It implies that the reaction forces used in the method of Lagrange multipliers

will not appear in the equations for the base variables.

Finally we note that although we represent the problem here on a ¢rivial principal

fiber bundle, the general case (for which Q(M, @) is a principal fiber bundle) can
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always be locally represented as the trivial product bundle, @ = G x M. This is
called a local trivialization of Q(M,G), and loosely corresponds to a choice of gauge
in gauge field theory. Various problems in locomotion (e.g., the falling cat and the
paramecium), have been originally formulated in the language of gauge fields, and
so it is important to recognize this parallel in the nomenclature from the physics

literature.

4.2 The Constrained Lie Algebra

The three assumptions above lead us to conclude that the constrained fiber distri-
bution, S, is a subspace of T'Q consisting of vertical, left-invariant vector fields. As
such, they are pointwise isomorphic to a subspace of the Lie algebra. Similar to
Bloch et al. [10], we denote by g? the subspace of g which generates Sg, and by g°
the fiber bundle over @ with fibers g7. We call g® the constrained Lie algebra. Note
that g ~ S/G. This bundle will play an important role in the process of reduction.
As in [10], we can construct a basis for g° in the following manner. First, pick a ba-
sis, f1(r), ..., fs(r), for g7 at the group identity, i.e., at ¢ = (e,r). The infinitesimal

generators for these basis elements satisfy the constraints at g = e:
(Wie,r); (fa(m))ole,r)) =0, i=1,...,k, a=1,...,5s (s=n—k—m).

We can then extend this to a basis for g|g= by choosing k elements orthogonal to
fi,..., fs relative to the local form of the locked inertia tensor, I. This basis is
independent of the group variables. We can establish a basis for g by pushing these

basis elements forward using the adjoint action:

fa(g,7) = Ady fo(r), a=1,...,L (4.1)

We show in the following proposition that the first s elements of this basis for g are

aligned to form a basis of g°.
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Proposition 4.3 The basis for g° given in Eq. 4.1 is such that the infinitesimal

generators satisfy the constraints and are left-invariant, i.e.,

(W (q); (fal@)@) =0 and T,@4(fa(9))q = (fo(ha))q;

fori=1,...,kanda=1,...,s.

Proof: For a fixed Lie algebra element, £ € g, there is a well known Lie algebra

identity given by

(Adr &)q(q) = Th-1,Pré(R"q).

On the surface, it is not clear that this law will hold in general for Lie algebra

elements which vary over Q. We give this result in a technical lemma.

Lemma 4.4 Given a left-invariant vector field, 532, on Q, the following relationship

must hold:

(Adg-1€%(9-9))g = Tyq®y-1(€%(9- )0 (9 - 9)

where £9 € g7 is the curve in the constrained Lie algebra whose infinitesimal gener-
ator is the section of S denoted by 522 (note that the configuration dependence of £9

is written functionally as £9(q)).

Proof: First, we need to establish a relationship between the adjoint operator and

the exponential mapping (c.f., [1], pp. 256-7 and 269).

Sublemma 4.5 For every g € G and &9 € g¢,

exp(t Adg &%) = g(exp t£%)g ™",

Proof: As above, let Z, denote the adjoint action of G on G given by 7, : G = G :
h +— ghg~1'q. Then, given t£? € g4, for t € R, define the mapping ¢ : R = G : s

Zgexp(st€9). This map defines a one-parameter subgroup of G, which can also be
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represented as ¢(s) = exp(sn), with n = d%qﬁ(s)lszo =1-TZ, - &9. Because of this,

we can write the following relationship when ¢(s) is evaluated at s = 1:

g(expte9)g™! = T exp(t&?) = ¢(1) = exp(n) = exp(t - ToZ, - £7) = exp(tAdy¢7).

We now complete the proof of Lemma 4.4. For g € Q,

d
(Adg-1¢%g-9))q = E¢>(e>q:>tAdg—1 £9-9),9)

- %(b(g'l(exp %9 - 2))g,9)

t=0

t=0

d
= 70100 (exp t£%g-q),9-q)

d
=Tgq®4-1 a;@(exp t€%g-9),9-q)

t=0

t=0
=Tg.q®,-1(€%(9 - 9))q-

Lemma 4.4 can then be used to show invariance:

(fa(hQ))Q = fa(hgaT)Q = (Adhg fa('r))Q
= (Adp falg,7))q

= qu)h.(fa(gvr))Q'

Having shown the G-invariance of the vector fields (fo)g, we must still show

that they lie in the constraint distribution defined by the w*'s. We do so by showing
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that (w(q); folq)) =0forge @,i=1,...,k,anda=1,...,s.

(w'(); (fa(@)Q) = (W (g,7); (Adg fa(r))Q)
i(ga ’I‘); T(e,r)q)g(fa(r))Q(e’ T)>
Tr 840 (g,7); (falr))a)

= (w'(e,1); fale, 7))
=0,

= (w
= (w
=

fori=1,...,k,a=1,...,s and ¢ € Q. Finally, realize that because the first s
basis elements were chosen tangent to the group orbit, they will remain tangent to
the group orbit when pushed forward through the group action. In other words,

falg,r) €DNVQ, for a=1,...,s. |

This result implies that on a product bundle there is a natural way to con-
struct an invariant basis for the distribution, if it is defined by one-forms which are

themselves invariant.

Remark: In the case that the constraints do not act in the base directions (i.e.,
Condition 4 is satisfied), we can directly generate a basis for g°. Using the fact
that we are working with a trivial bundle, we can pull back the constraints to the
identity by simply setting the group variables to the identity, g = e. If Condition 4
is satisfied, then we can identify the invariant one-forms with elements of the dual
of the Lie algebra, g*. Next, pick a basis for the constrained Lie algebra at the
identity, g?, where ¢ = (e, r), such that (w'(e,r); fo(r)) = 0. As above, denote this
basis by f1(r),-.., fs(r). Having done this, we continue as above by extending the
basis to g and pushing these basis elements forward using the adjoint mapping by

setting fo(g,7) = Adg fo(r), a=1,...,1L
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4.3 An Alternative Derivation of the Generalized Mo-

mentum Equation

In this section we present an alternative derivation (to [10]) of the generalized
momentum equation, which allows for the inclusion of general forcing functions.
One thing to note is that Assumption 1 (that the constraint distribution D be G-
invariant) can be relaxed for this proposition. However, the work in the following
sections will use this assumption in order to establish new invariance results con-

cerning the generalized momentum.

Proposition 4.6 Let (L, D) be a constrained system on Q(M,G) and assume L to
be G-invariant. For all curves c: [a,b] — Q satisfying the nonholonomic constrained
variational principle, the following generalized momentum equation holds for

all elements, €1 € g9:

where

is the generalized momentum.

Proof: We begin by restricting the velocities to lie in the constrained fiber distri-
bution, S = DN VQ. Recall from Chapter 2 this implies that each vy € & is
infinitesimally generated by some Lie algebra element. The map which takes a Lie
algebra element to its infinitesimal generator at ¢ (a vector in 7,Q) is an isomor-
phism when restricted to fibers (e.g., S C VQ). As above, given X € S define the
map £9: Q — g° by requiring that at each point g the infinitesimal generator of £?
is Xg4. Thus, for all ¢ € Q we have X; = (£9(q))q(q). We will assume from now
on that this identification is always made, so that we can write a vector field in

S simply as 55 with the implication that it is generated by the map £? described
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above.

Note that since £7 is a Lie algebra-valued function it will make sense to take
the time-derivative of £9 along solution curves. The reader should be aware of
this when terms of the form %5‘1 are encountered. The time derivative of £9 can
be interpreted as an element in the tangent space of the Lie algebra, T¢eg, which
itself has a canonical identification with the Lie algebra, i.e., Tg ~ g x g. The
identification of T'g with g X g is a canonical isomorphism for all vector spaces.
With this identification we can associate the quantity Edzfq with a vector field on @
by taking its infinitesimal generator.

Choose a section of S. Taking the derivative of the generalized momentum, p,

and applying the chain rule yields

d d /0L oL oL Cod
=5 (556) = 5 (57) €)' + 5 (Th - d+ (GEM%).
(4.3)

Next, recall that the invariance of the Lagrangian implies L(®4q,T,P4v,) =

L(q,vq). In particular, if we let g = exp(s€9), then invariance implies that

L(®exp(s§‘1)qy qu)exp(sfq)vq) = L(q, 'Uq)'

By differentiating this expression and evaluating it at s = 0 we get

EL€N(e) + FH(TEh - ) =0, (4.4

Finally, recall the formula for B given in Section 2.6 (Eq. 2.5) to see that along

solution curves to the system (L, D), the natural pairing of 81, with {% is:

d 0L 0L

0={(Br;¢5) = (212547‘ “a T Aaw — 1) (€)"

(4.5)
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Substituting Eq. 4.4 into Eq. 4.5 yields

d 0L . 0L . ~
dtog (€% + EE(T% q) = Ti(fgg)z- (4.6)

Then, subtracting Eq. 4.6 from Eq. 4.3 gives the generalized momentum equation:
d (0L ~ oL, d ., :
% (5 (€8)) = 570500 + (e (7)

Remarks:

1) Note that the generalized momentum defined in this proposition is similar
to the momentum defined in the unconstrained case as p = g%. In fact, we will
see below that for invariant constraints the generalized momentum has a natural
interpretation as the unconstrained momentum projected onto the unconstrained
directions. In the limiting case where there are no constraints, then, the momentum
defined by p = gé— is returned. For this reason, we will make a slight abuse of
notation and denote the generalized momentum also by p, with the realization that
it is equally valid for unconstrained systems.

2) An important implication of Proposition 4.6 is that the time derivative of the
momentum is no longer zero (even if p is initially zero), but is instead governed by
a differential equation reflecting the time evolution of the Lie algebra elements that
define the constrained fiber distribution. For systems in which the constraints are
invariant, there are additional properties described in the next section that can be
derived. Recall, however, that the proof of the current proposition does not require
this assumption.

3) Equation 4.7 can also be applied to unconstrained systems. This could prove
to be useful in the case that the external torques, 7, are applied in the fiber di-
rections. In such cases, Eq. 4.7 implies that the momentum associated with the
unconstrained system would no longer be conserved. Instead, it is governed by a

differential equation which depends on the interaction between the forcing function

and the section chosen to define the momentum. The reduction scheme presented in
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the sections to follow, then, may be important for analyzing the effect of forcing in
the group directions for unconstrained systems. Of course, if the forcing is applied
only to the base space, then more standard techniques for Lagrangian reduction
apply (see [63] for more details).

4) Although the generalized momentum law is written here in coordinates, it can
also be expressed in a more intrinsic manner, which is independent of the choice of
a particular coordinate system for Q. Having made the identification, T'g ~ g x g,

Eq. 4.7 can be written as

d el — (4 q) (¢4
FELC)iEY) = FLEw); (7€) )+ €0
where FL is the Legendre transformation, defined to be the fiber derivative of the

Lagrangian (for more information on this, see [1]).

Corollary 4.7 Given the above basis for the constrained Lie algebra,
filg,7),. .., fs(g,r) € g5, the generalized momentum equation along trajecto-

ries becomes

d oL  d ; i
E(p“) - a_qi(a'if“)z@(t) + 7i(fa) g

where pa = 3k (fall-

4.4 Invariance of the Generalized Momentum

Obviously, the generalized momentum defined above is no longer a constant. The
question arises as to whether there are any other properties of the generalized mo-
mentum which will prove useful to our analysis. The first property which we would
expect is for the momentum to be G-invariant. Assuming the constraint distribution

to be G-invariant, this property is shown in the following proposition.

Proposition 4.8 Given a constrained system (L,D) for which there exist G-

invariant sections, X1,...,Xs C S, the generalized momentum given by pa(vg) =
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(FL(vq); Xo(vq)) is G-invariant, i.e., po(Ty®qvq) = palvy), for a =1,...,s.

Proof: The proof of this proposition is a direct result of the invariance properties
of the Legendre transformation and the section chosen for the constrained fiber
distribution. To see that the Legendre transformation is indeed invariant, first
recall the invariance equation for the Lagrangian, L = LoT®,. Taking the fiber

derivative of this expression yields
FL(v) - w =FL(T®4(v)) - T®y(w) Vv,w € TQ,
which can alternately be expressed as

T ®,-1FL(vg) = FL(T, ®yv,). (4.8)

In other words, the following diagram commutes:
TQ _FL T*Q
T®, T2,

_,T*
TQ 7~ T7Q
Recall that the invariance assumption for the constraint distribution D is

T,9,X0(q) = Xa(®yq), for @ = 1,...,s. Invariance of the generalized momen-

tum is then a trivial statement:

pa(Tq(I)qu) = (IFL(TqCI’qu)5Xa((I)g‘I))
= (T;,q@g_llFL(vq);Tq@gXa(q))
= (FL(vq); Xa(q))

= Pa (vq)a

fora=1,...,s. n
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4.5 The Nonholonomic Connection

Given that the trajectories for the dynamical system are constrained to lie in the
subspace, D, the natural question is to ask if it is possible to use the information
encoded in D, along with the metric, to define a meaningful connection on Q(M, G).
As mentioned earlier, given a trivial principal fiber bundle with a metric, there are
natural ways to build a connection. For example, the metric can be used to define a
mechanical connection as in the unconstrained case. This however, does not make
use of the constraints, and so the information encoded in the connection will have
no relevance to the actual dynamics of the system. Recall also that in the principal
kinematic case, the constraints are sufficient by themselves to define a connection.
In general for the mixed case, though, we will need to use the constraints to build
part of the connection, and then complete the construction by using the metric. To

do so, we begin by defining a particular choice of horizontal.

Proposition 4.9 The horizontal subbundle,
H(IQ = {Uq € TQQ ‘ Uq € D and «'Uqawq» = 0’ v Wq € 8}1

defines a connection on Q(M,G).

Proof: We verify this directly by showing that each of the defining conditions for a
connection is satisfied (Definition 3.2). First, we must show that T,Q = V,Q & H,Q.
Let U, be the subspace of ToQ such that T;Q = Dy ® U,. Since vectors in HyQ) are
defined to be orthogonal to S;, we also have the splitting D, = H,Q & Sg. This
implies that T5Q = V5Q @ HyQ, since V,Q = S, @ U,.

Next, we must show that Ty®,H,Q = Hy.¢Q. First, notice that Assumption 1

requires that wy € D implies Th.q®p-1wh.q = wg. We use this to show that for all
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vg in HyQ, Ty®pvq € HpoQ:

«wh.-qa Tq‘I)h'Uq» L(wp,. q) T @th)

(F
= (T; ©pFL(wh.q); vq)

= (FL(Th.q®p-1wh.q); vg)
= (FL(wq);vq) = 0.

Finally, we remark that condition 3 of the definition is satisfied, since we have

assumed the constraint distribution to be smooth and of constant rank over . W

Using the constraints and the induced metric on g?, we can synthesize a connec-
tion one-form for the mixed constraint problem. First, we define a version of the

momentum map for systems with nonholonomic constraints.

Definition 4.10 The nonholonomic momentum map is the map, J°F¢ : TQ —

(g5)*, defined by

(I3 €9) = (vg, €5,

where €7 € g9.

Similar to above, define the locked inertia tensor for the constrained Lie algebra

as
(0% €% = (nd: €60,
where £7,n7 € g?. Then define AY™ : TQ — g° to be
Asym (HC)—-I Jnhc .

The one-form A™ possesses the special property that the mapping Agm 1 TqQ —
T,Q is the identity on all vectors in S.
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Next, recall the basis for g5 given in Section 4.2 as fi(g,7),..., fs(g,r). We
can extend this basis using the locked inertia tensor to a basis for g by defining &
additional basis elements, fsi1,- .., fs+k- If we denote the complementary subspace
to D by U (i.e., TQ = D®U), then we can use the left-invariant constraint one-forms
to define a one-form, AX®, such that Agn is the identity on U. Given this, then we

define the nonholonomic connection one-form to be the one-form on @ given by
Anhc — Akin + Asym

That this is actually a connection one-form follows from the invariance of the
constraints and the requirement that AX" and A%™ act appropriately on their re-
spective subspaces. In the next section we give a constructive method for generating
the connection which helps to clarify this procedure.

One thing to note about the nonholonomic momentum map is that along trajec-
tories its components evaluate to the generalized momenta. Let f 1 .., 5t denote
the dual basis to fi(g,7),..., fs+x (recall that s + k = [). Then, if we write the

nonholonomic momentum map as
e = gibe fo(g,),
we see that
e = (3™ falg, 7)) = Pas

where pg is the generalized momentum defined above. Thus, along trajectories we

can use the connection to define the following constraint equations:
A(g) = g7'g + A7 = (I)p, (4.9)

where (I°)~1p € g5 is naturally embedded in g at each ¢ € Q.
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4.6 Synthesizing the Connection

Before deriving further relationships regarding the generalized momentum, we
briefly consider a practical, alternative method for constructing the nonholonomic
connection. As necessary, we will make the additional assumption that there exists
a metric on T'Q. This will be used to provide the additional structure needed to
identify the dual of the constrained Lie algebra, (g5)*, with a subspace of g*. For
mechanical systems there is a natural metric associated with the kinetic energy.
This metric is used to define the generalized momentum, which is equivalent to the
momentum of the system in the directions that satisfy the constraints. Being able
to define the momentum in this manner allows us to retain some of the physical
intuition we would normally have in unconstrained systems and is an important
part of the synthesized connection.

Denote the coordinate representation of the metric, {(,)) on TQ by G;;, so that
{(v,w)) = Gj;v*w’. For mechanical systems the metric is G;; = a%%%. As above, let
the synthesized connection be defined by those vectors in D which are orthogonal
to all vectors in S, with respect to the given metric.

More concretely, recall the dual notation for the constraint distribution which is
described by the kernel of a set of one-forms, wl,...wF. Also, recall that for S there
is assumed to exist a G-invariant basis of vector fields, X1, ..., X, (related to these
one-forms via Proposition 4.1). Vectors in T'Q orthogonal to these basis vectors can
alternatively be expressed as the kernel of a different set of one-forms with the aid
of the isomorphism known as the flat operation. The flat operator, b.TQ — T*Q,
is defined by the relationship (u’;w) = {(u,w), for all w € T'Q. In coordinates this
is given by (u'); = Gyju?, where u = uja—?ﬁ. Construct from this map s =1 —k

one-forms, w*tl, ... w*+, called the synthesized one-forms:

(recall that I = dim G). A quick calculation shows that these synthesized one-forms
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satisfy an important property:

pa('”q) = (IFL(UQ);Xa>
= (Xg?vq)

= (W (q);vy), a=1,...,s. (4.10)

The importance of this statement is two-fold. First, notice that there are now !

independent one-forms on @, given by wl, ... Wb

The kernel of these one-forms
define ! constraints— the same number as the dimension of the Lie group G. This is
suggestive of the Chaplygin case in which constraints are used to build an Ehresmann
connection over a fiber bundle. Additionally, Eq. 4.10 relates these one-forms to the
generalized momenta, which we have just shown to be invariant with respect to

the group action. The invariance of the generalized momenta thus implies the G-

invariance of the synthesized one-forms, since

pa(vq) = pa(Tq@qu)
T
(Wt (q); vg) = (WHQ(‘I)_QQ); Tg®4vq)

= (T;@gwk+°‘(®gq);vq), a=1,...,s.

The horizontal subspace defined by H,Q = {vq € T,Q | (w*(q);v4) =0, a =1,...,1}
has already been shown in the previous section to define a connection on Q(M, G).
Recall that there are two important assumptions underlying this statement. First,
Assumption 1 implies that the invariant distribution can be written using a basis of
G-invariant one-forms, w!,...,w*. And second, Assumption 3 (that D+VQ = TQ)
ensures that the horizontal subspace H,Q is isomorphic to the tangent space of the
base, Tr(q)M. As was mentioned earlier, these assumptions are mostly of a technical
nature, and do not seem to be restrictive in light of the examples studied to date.
We can treat the synthesized one-forms as a set of affine constraints and write

the entire set of constraints (nonholonomic and synthesized) as a linear operator
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acting on T'Q:

w(q)g =, (4.11)

where n = (0,...,0,p1,...,ps). The fact that the constraints define a connection

implies that in a local trivialization we can rewrite Eq. 4.11 in the following manner,
97'g + A(r)r = ~(r,p). (4.12)

This equation deserves some comment. First, realize that it is actually a set of
equations describing motion along the fiber (the g variables). In the first term, gt
action of TyLg-1 on G. In the second term of Eq. 4.12, the base-dependent matrix
A :TM — VQ is the local form of the nonholonomic connection, and describes the
vertical components which would result from horizontally lifting a base vector 7 to
TQ. Finally, v is a vector-valued function of r and the generalized momenta (p is
written in vector form as p = (p1,...,ps)), which relates the dynamic component of
the motion (via the momentum) to the fiber velocities. If we compare Eq. 4.12 to
the form specified by the connection one-form in Eq. 4.9, then we see that it must

be that v = I71p, so that
E=glg=—Alr)r + 1 p. (4.13)

Notice that in the above equation we have written I~ instead of (I°)~!. We do
this to distinguish the constrained locked inertia tensor, (1)~ : (g5)* = ¢, from
its natural embedding in the Lie algebra as I~ : (g5)* — g. This is a subtle, yet
important, point for which we will briefly digress in order to clarify. As above, let
fi,--.,fs denote a basis for gS. Then, if we let I, denote the coordinates of the

local form of the locked inertia tensor, then

(Iap = Lanfafs-

If we let B8 = ((I¢)~1)®# represent the inverse of I (an admittedly cumbersome
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notation), then
(I”—l)aa — Baﬂfg.
Using this, it is easy to derive an identity that will come up later:

B=11T"1.

4.7 Invariance of the Generalized Momentum Equation

The invariance of the generalized momentum will be used to establish a connection
on the bundle Q(M, G) (recall that the horizontal subbundle required by condition
(2) for a connection must be G-invariant). In carrying out the reduction process for
constrained systems, it will also be useful to show that the generalized momentum
equation given in Proposition 4.6 satisfies a similar invariance condition. Invariance
of the momentum equation will allow us to decouple the dynamics of the generalized
momentum from the fiber velocities. As in Section 3.4.3, it will then be possible to
reduce to an extended base space formed by appending the generalized momentum
terms to the base space. These issues will be discussed further in Section 4.8.
That the generalized momentum would decouple from the fiber dynamics makes
good sense for mechanical systems in which the intrinsic dynamics are invariant
with respect to some global position and orientation. Further studies are needed to
examine the implications of invariance of the momentum equation for other types
of invariances which do not have such straightforward physical interpretations as

position and orientation.

Proposition 4.11 Given a constrained mechanical system, (L, D), let P5(q,q) =
%(%({g(q))a) = d%—pa, a=1,...,s, where {4 is a Lie algebra-valued function over
Q that generates the G-invariant vector field (£1)g € S. As a function on T'Q, Py

is G-invariant, or, for allge G and x =1,...,s,

Pg(@gQaTq@g‘j) = Pocz(q, Q)
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Proof: The time derivative of a Lie algebra-valued function £7 can alternatively be

written as
9 ea(g) = Tye(q) - .
dt q

G-invariance implies invariance with respect to each fixed element g € G (that is,

the element g is constant), so that

d d
2 (g q)) = Ug-a) - ~(q-q).
7 (€09 0) = Tyt*(9-0) - (97 0)
This yields a transformation law for the infinitesimal generator of l—i‘%fq:

((%ﬁq)Q)(‘Pg(Q),Tq‘I’gd) = (Ty€"(g- @) - T4®gd)q(9 - @)
= (Ty€(9-q) - %(‘1’9 “9)o(g-9)

= (2600 0)a(®,(0)).

Next recall the general transformation property of Lie algebra elements shown in

Lemma 4.4:

(Adg-1£%(g- 9))q = Tygq®,-1(%(9 - 0))a(9 - @)-
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Finally, by making the canonical vector space identification, Trg ~ g X g, the

term adgfq(g - q) can be written as an element of g and we find that

PE(2,0,Ty240) = (FL(g 0, Ty2d)s (63)  (@l0), Ty
Q
= (T3, %, FL(g - 0 Tyyi); (62)  (90(0) 200)
= (FL(g,0)5Ty oy (56400 0) (@)
Q
=<FLM,),<Ad_v*§Ag @) (9))
Q
= (FL(q,d); & (Ady18805 - 0)) , (@)

Q
= (FL(g, ) & (€4(a)) g (a)

= P;(q,9),

and the result is achieved. | |

This proposition implies that we will always be able to write the generalized
momentum equation in a reduced form that is independent of the group variables.
Bloch et al. [10] show this implicitly when they reduce the generalized momentum
equation to

d 15} o i
apa (8§ [f fa] f

) + 70, a=1,. (4.14)

where ¢ = g7'¢ and [ is the reduced Lagrangian (we have included G-invariant
forcing functions by adding the term 7¢f,).

The following proposition shows the explicit construction of Eq. 4.14 using sim-
ilar methods to the ones given in the proof of the generalized momentum equation
(Proposition 4.6). It also establishes that the generalized momentum equation can

be written in terms of a base-dependent quadratic form of the extended base vari-

ables, (p,7).

Proposition 4.12 Given the invariance of the Lagrangian and the constraints, the

generalized momentum equation is independent of the group variables, and can be
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written as

. 1. . .1 -
p= §TTUT'7*(7")T + pTUpf(T)T + é‘PTUpp(T)P + 7(r), (4.15)

which, when unforced, is a quadratic function of p and 7.

Proof: Given the setup of the problem, it is a straightforward calculation to show

that the equations of motion governing flow along the fiber can be written

% (3"9 = adg (gé) + (e, ) + 7% (4.16)

where the w'(e,r)’s are the constraints evaluated at g = e as above. Recall the basis
for the constrained fiber distribution, f1,...,fs. Noting that any element of this
distribution is in the kernel of the w'’s, and interpreting Eq. 4.16 as elements of g*

acting on g, we have

d d ol d
%(pa) (8{) fat §dt(fa)

) ol d .
=ad§( 5) o agdt(fa)%—ffa

<Bf [é fa] t(fa)) + 7 fa;

where we have used the definition of the generalized momentum, p, = g—é - fa-
Next, we define structure constants for the constrained Lie algebra. Let £9,n7 €

g9, and define the structure constants, Efj by
[6%,m%] = &€ fi

As above, we write the local forms of the mechanical connection and the locked

inertia tensor as A and I, respectively. Then, using the equation for the body form

of the connection:
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we find that the reduced momentum equation can be rewritten solely in terms of
these local forms and the structure constants. First, we note that the following

simplification follows directly from the structure of the reduced Lagrangian given in

Eq. 3.5:

ol ST AT T
gg = 1A+
= ("(A- 8T +T'p) I.
Then,
d _ afa X3 e
Spo = Ggi 6. 1a) + F2) + 771,

=<Iab((A$—A3>f~i+u YTy )5 S (—8577 + (T Pps) f+ 5 f"‘ >+%
= Lp(T N2 (I7)% fopspy

Iy ((A A (Y () (el f 4 fb)) #p,

+ Iy (A2 A;‘)(—cchcfa fa) Pl 4 F

1 .. ) -
= (ipTappp + pTopit + 70T ) + T,

as desired. [ |

It is interesting to note how the terms of Egs. 4.14 and 4.15 simplify in partic-
ular examples. Consider first the example of the snakeboard (explicit details are
contained in Chapter 5), where the generalized momentum equation does not in-
clude terms quadratic in the momentum. These terms would normally arise due to
the Lie bracket, [£, f,], in Eq. 4.14. However, since the constrained Lie algebra is
one-dimensional (and hence Abelian), we find that [€, fo] = 0. On the other hand,

for the example of the rigid body, the generalized momentum equation is given by

Eq. 3.4:

II=1Ix I,
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and we see that only terms quadratic in the momentum are present. This is related
to the aforementioned fact that for unconstrained systems one can always choose a
basis for g° which is fixed and which generates all of V'Q). In this situation, %TL‘; = 0.

4.8 Reduction

For an unconstrained system with symmetries, the reduction process involves re-
stating the equations of motion in terms involving only base variables. In other
words, the symmetries effectively place constraints on the system which allow for
the dynamics given by Lagrange’s equations to be dropped to the quotient space,
M = Q/G. Analysis can then be performed on a lower dimensional space, without
losing any of the information of the system. The additional dynamics necessary to
describe the motion of the system on the total configuration space are then recovered
during the reconstruction procedure.

For systems with constraints, however, it is not necessarily possible to reduce
down to a system involving only the base variables. The process presented here
makes use of the generalized momentum developed in [10] and the synthesized con-
nection defined above to perform reduction on general systems with constraints
and symmetries. In doing so, the dynamics are reduced to an eztended base space
formed by appending the generalized momentum terms onto the original base space.
For systems in which the constraint distribution is invariant, it will be possible to
reduce to the extended base space. As such we can write the dynamics in terms
of the extended base variables only. This section serves two purposes: first, we
demonstrate that this type of reduction can always be done for systems in which
the constraint distribution is G-invariant, and second, we give explicit matrix calcu-
lations which can be used to determine the reduced dynamics in a manner similar to
the unconstrained case above. The details given below for reduction are primarily
intended to demonstrate the result with some intuition of why it is correct. For
additional remarks and a more detailed analysis of reduction in the case of general

affine constraints, the reader is referred to [10].
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Invariance of the Lagrangian implies that we can continue to define a reduced

Lagrangian on g X TM by
1€ 7) = Lig™ g, 9719, 7),
where ¢ = g71g € g. Next, recall the affine constraint given above in Eq. 4.12,
E=g7tg=T"1p— Alr)r. (4.17)

(Note that we continue to denote the nonholonomic connection by A and the me-
chanical connection by A.) With the connection and the momentum equation, we
have the same data as was used in the reduction for unconstrained systems above.
Following this, we again define the constrained Lagrangian, l., to be the reduced

Lagrangian with the constraints substituted in from Eq. 4.17:

le(r,7,p) = 1(&, T)l (4.18)

e=I1p—A(r)i’

The constrained Lagrangian has a very simple intrinsic interpretation which is al-

most identical to the one found in the unconstrained case.

Proposition 4.13 The constrained Lagrangian can be written as

lo = 5 (hor 4, hor d) + 555 (19 'p) ~ V(r)

1 ~ 1
= 5 Mi + o (3 (I 7'p) = V (1), (4.19)
where

M(r) =m—ATIA

for all but principal kinematic constraints, in which case the reduced mass-inertia
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matriz becomes
M(r)y=m—ATIA+ (A— A)"I(A - A).

Proof: We begin by commenting on an interesting point— the reduced mass-inertia
maftrix, M, for the principal kinematic case actually involves more terms than for
the case of mixed constraints. This is shown below, and is due to the fact that the
symmetries are completely annihilated in the principal kinematic case. Thus, they
do not help to simplify the reduced mass-inertia matrix.

First, we prove a lemma regarding the relationship between the local forms of
the mechanical connection and the synthesized connection for systems in which the

constraints by themselves do not define a connection.

Lemma 4.14 In the case of mized constraints (and trivially for the unconstrained

case), the following relationships hold for all 7 € T, M:
(I(A— A)F; A7) =0 and (I(A - A7 I7'p) =0,

where I is the local form of the locked inertia tensor.

Proof: The content of these statements is that the space defined by A — A lies in a
space orthogonal (with respect to the locked inertia tensor) to the constrained Lie
algebra. To show this, recall the basis for g developed above. Denote by f1,..., fs
the basis for g4, and by fsi1,...,/ft the orthogonal completion of this basis to g,
such that

(Ifa;fz)=0, a=1,...,s, z=5+1,...,1L

Thus, we can write the mechanical connection, A(r) : T,M — g, in terms of this

basis as

A(r)i = AXF fo + AZFEf,
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where we have divided A according to this orthogonal splitting of g. We prove
the lemma by showing that A® = A} and I71p € g9 (the latter statement can be
assumed by definition). In coordinates, we write the formula for the generalized

momentum as

I .
ps = <§—£;fﬂ> = Ly(A%# + ) fb,

If we break up £2 as £% = £2f2 + £#f2, then we can use the orthogonality of the
basis for g to show that

pg = Lp€® fofh + T A 3

= (Ic)aﬂga + IabA?".'ifg»

where, as above, (I¢) s = Iapfd fg is the constrained locked inertia tensor. For
convenience, we will denote the inverse of I¢ by B = ((I C)aﬂ)“l. Then we can

solve for £* as

£ = B*¥ps — B I, A% f}
= B*Pps — BOP I, (AF f2 + AF f2)
= B*py — B* (I f3 f}) A7

= B%pg — A% (4.20)

Eq. 4.20 explicitly shows the construction of the local form of the connection as the

restriction of the mechanical connection to g?. Thus,
. s 7 ~._ a
(Ar)® = A3 o and (I 1p) = Bo‘ﬁpﬁfg.

Then we can easily see that (4 — A)f = A%#f,, z = s+1,...,l, which is orthogonal
to both A7 and I~p with respect to the local form of the locked inertia tensor, I. ¥

Using this lemma, we can now prove the statement regarding form of the con-
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strained Lagrangian. The inner product of horizontal vectors is given by

T
—Ar I TA)\ (-Ar

7 AT m 7

{(hor ¢, hor ¢)) =

= (A7)TI(AF) — 2(AT)TT A7 + #Tmr
= #Tmr — (A7)TI(AF) + 7T (A — A)TI(A — A)F
= +T M (r)r.

We compare this with the constrained Lagrangian:

le(r,#,p) = 1(r,#, 17 'p — A(r)#) = V()

= %mer' + (AF)TI(=Ar + I 1p)

+ -;—(—Af + I ) TI(—AF + T 1p) = V(r)

(FTmi — (AF)TI(AF) + 77 (A — A)TI(A — A)F)

[ R

+ (A?'“)TIf"lp — (A?'")TIf'lp + —;—(f"lp)TIf_lp —V(r)

1 1, .

= 5(hor ¢;hor ¢) + -2-(I"1p)TII"1p - V(r)
Lo~ . 1 _

= §TTM (r)r + §pT(I )p = V().

Notice that the term
(AR)TIT'p — (AF)TIT 'p = 7T (A~ A)TIT 'p

in the above equation disappears in the principal kinematic case (since p = 0)
and is equal to zero otherwise (by Lemma 4.14). Finally, we note that in the

mixed /unconstrained cases, 7(A — A)TJA7 = 0, so that the reduced mass-inertia

matrix becomes

M(r) =m — ATTA.
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Using Eq. 3.10 for the reduced equations in the presence of constraints, we can
again write down the base equations in terms of the constrained Lagrangian (c.f,
Eq. 3.13), but this time using the nonholonomic connection to define the constraints:
aI-1p

; ol A
A(or') - 55 (dA(f',5TZ) + 5 ) + 7 — 'r,fAf

48y D a2
dt \ o7t ori € a¢

In order to write down the equations in matrix form, we substitute for [, using

Eq. 4.19. This gives the following form:

it 4 #C + O4 W = B, (4.21)
where
;. ol . Al 'p 1, oI

and € and B are as defined in the unconstrained case with the mechanical con-
nection replaced by the nonholonomic connection, A —+ A. Notice that a very
interesting thing has happened in the case of mixed constraints— the mechanical
connection is no longer present in the reduced equations. This is understandable
since the nonholonomic connection A encodes the information carried by the me-
chanical connection, and at the same time incorporates the external constraints.
Thus, for a system with symmetries and nonholonomic constraints in which the
constraint distribution is group invariant, it is possible to reduce completely to an
extended base space. The equations on this extended base space take the form of
second order equations on M and first order equations describing the time evolution

of p.

Remarks: The process of reduction presented here consists of three steps, each

with a meaningful component in relation to understanding locomotion:

1. Establish a connection using external constraints and internal symmetries—

this describes the effect of shape changes and momenta on net position changes,
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2. Develop the generalized momentum equation— this governs the flow of the
generalized momenta and describes how the velocity of the system in the di-

rection of the constraints changes with variations in shape, and

3. Solve for the reduced base equations, which can be written in terms of the base
and momenta variables only— these will describe the internal shape changes
which the locomotive system must undergo in order to move. Control of these
variables is very often assumed, and this set of equations may be useful in

justifying this assumption.

4.9 Reconstruction

Having reduced the dynamics to the base space, we would next like to reconstruct the
full dynamics of the constrained system. The reconstruction process basically con-
sists of taking the same steps described in the previous section, but in reverse. Thus,
given input forces on the base space, we first solve for the extended base variables,
including the generalized momenta. Then, using the connection, we can determine

the motion along the fiber by integrating the constraint equation (Eq. 4.17):
-1 _ . F—1
g g=—-A(r)r +1 "p.

In some cases, for example kinematic constraints with a solvable Lie algebra [48],
this integration can be done explicitly via quadratures. In general, though, this will
need to be done using numerical integration.

The reduction procedure can be very important in a controls context, where
it is assumed that the base space is fully actuated (particularly in the context of
locomotion, where this is the internal shape space). The goal is to control the
dynamics of the remaining variables. In this context, it may often be assumed that
the base variables are directly controlled, and so the process of reduction is not
necessary. However, it will still be important to reduce the generalized momentum

equation in order to decouple the momentum dynamics from the fiber variables.
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Thus, given the trajectories that the base dynamics are prescribed to follow, we
solve for the fiber variables by integrating up through the generalized momentum
equations. In a control theoretic context, though, we may be able to reach various
conclusions about the motions of the system without having to solve for explicit

trajectories. These issues are taken up in Chapter 6.
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Chapter 5

Applications of the Theory

back wheels

Figure 5.1 The Snakeboard, along with a simplified model

5.1 The Snakeboard

Now let us turn to a formulation of the snakeboard problem in terms of the rela-
tionships derived above. We briefly recall the description of the snakeboard as given
in [57].

The Snakeboard (we use italics and capitals to denote the commercially avail-
able product licensed by Snakeboard USA, Inc.) is a wheeled vehicle similar to a
skateboard, the popular toy/mode of transportation in use by teenagers everywhere.
The primary difference between these two products it that the Snakeboard has two
sets of independently rotating wheel trucks connected by a rigid cross-brace. The

unique and attractive feature of the Snakeboard is the ability to generate forward
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motion— even to move up a hill— without kicking off the ground. This is done by
performing cyclical twisting motions of the torso, synchronized with a pivoting of
the feet. Through a coupling of angular momentum changes and ground contact
forces, a snake-like pattern of forward motion is generated.

For our purposes, we use a simplified model of the Snakeboard, which we call the
snakeboard (Figure 5.1), and in which the human torso is replaced by a mechanical
rotor. The configuration manifold for the snakeboard is Q@ = SE(2) X S x S x S.
SE(2) is the group of rigid motions in the plane, and describes the position of the
board with respect to some inertial reference frame. S denotes the group of rotations
on R2. As coordinates for Q we shall use (x,y,0,v, ¢, ¢5) where (z,y,0) describes
the position of the board with respect to a reference frame, 9 is the angle of the
rotor with respect to the board, and ¢, and ¢; are, respectively, the angles of the
back and front wheels with respect to the board.

Notice that the snakeboard can be considered an extension of Elroy’s beanie
(Example 2.14), with the addition of a pair of wheel constraints. The configuration
space easily splits into a trivial principal fiber bundle structure, with ¢ = (g,r) given
by ¢ = (z,y,0) € G = SE(2) and r = (¥, ¢p,¢5) € M =S xS x S. The group

action for h = (al,a?, @) € G is given by the map:

O (z,y,0,9, ¢y, ¢p) = (xcosa —ysina + a',zsina +ycosa + a?,
9+C¥,¢, ¢b7 ¢f)7

and the lifted action takes the form:
qu)h(iv :l), éa ’J)a éb? ¢f) = (.’E cosa — y Sinaa Zsina + y Cos &, 07 "b’ (z)ba ¢f)

Notice that @), and T;®, act only on the group variables. The projection 7 is the
canonical projection on the first three coordinates, and m is the projection on the
last three coordinates.

The snakeboard is a dynamic system and so we must include the effects of

masses and inertias of the rotor, body, and wheels. The parameters we will use for
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this problem are:

m : the mass of the board,

J : the inertia of the board,

Jr : the inertia of the rotor,

Jw . the inertia of the wheels (assumed to be the same), and
l : the length from the board’s center of mass to the wheels.

For the snakeboard, the unconstrained Lagrangian is comprised only of kinetic en-

ergy terms:

1

L= %m(:&Q +17) + %Jéz + 5T (1 +0)" + ';’Jw((d’b +0) + (7 +6)°).

Tt is assumed that the control torques will be applied to the rotor and the front and
rear wheel axes. Hence, there is no forcing in the fiber directions. The wheels of the
snakeboard are assumed to roll without lateral sliding. As such, the back wheels

provide a nonholonomic constraint of the form

— sin(¢p + ) + cos(¢p + 0)y — Lcos(¢)0 = 0. (5.1)
Similarly at the front wheels the constraint is

— sin(¢s + 0)@ + cos(¢y + 0)y + Leos(¢7)0 = 0. (5.2)

For our formulation, we will write the constraints as the kernel of a set of one-forms

on Q. To be specific, all velocities must lie in ker{w!,w?}, where

w' = —sin(¢p + 0)dz + cos(¢p + 0)dy — I cos(¢p)dO (5.3)
w? = —sin(¢s + 0)dz + cos(¢s + 0)dy + L cos(¢y)do (5.4)

A quick set of calculations shows that both the Lagrangian and the constraint one-
forms are invariant with respect to the lifted group action. Thus, we can write

down the constraint distribution, Dy = {vg € TyQ | v, € ker{w',w?}}, in terms of
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left-invariant vector fields:

0 0 0 9 0 0
Dq = Span{aéz + bé‘z; + C—“é, —6—1’[;’ T’Sb, 5&}‘},

where

a = —l[cos ¢y cos(pf + 0) + cos ¢y cos(¢p + 0)]
b= —I[cos ¢psin(¢s + 6) + cos ¢y sin(¢p + 6)]
¢ = sin(ds — 7).

We remark that there is an isolated singularity for this distributionat ¢ = ¢y = 5.
This corresponds to the wheels turned perpendicular to the length of the board. It is
easy to picture the singularity as allowing two independent motions— pure rotation
about the center of mass at the same time as pure translation perpendicular to the
board. In the case of the commercial Snakeboard, physical limitations do not allow
the wheels to reach these angles (they are restricted to approximately +%rad of
rotation). For this reason, we restrict our analysis to regions in the configuration

space that do not include the points ¢ = ¢y = £7.

5.1.1 The Generalized Momentum Equation

The snakeboard has a non-trivial interaction between the constraints and the sym-
metries that admits a generalized momentum. Thus, it provides a fairly simple
example of a system with mixed constraints (the reader is also referred to a sim-
ilar example of the Roller Racer discussed in [95]). Tt is exactly the evolution of
the momentum described in the generalized momentum equation that leads to the
generation of net forward velocities for the snakeboard.

The initial step in deriving the conservation law will be to choose a left-invariant
section of S (note that for the snakeboard S is one-dimensional). This can easily
be done based on the form of D, given above, but we choose here to illustrate the

method discussed in Section 4.2. As described in that section, the fact that the
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constraints given by Egs. 5.3 and 5.4 are left-invariant and satisfy Condition 4 leads
to a natural way of choosing the section. First, use the lifted action to pull back
these one-forms to g*. This is easily done by evaluating w! and w? at the identity,

which yields

wl = —sin(dy)dz + cos(¢p)dy — [ cos(¢p)db

w? = —sin(¢y)dz + cos(¢s)dy + L cos(¢y)db.

Note that we have identified elements of the cotangent bundle at the group identity
with elements of g*. The kernel of these dual elements defines a subspace of g given

by

0 0 0
_ e e Y e’
filr)=a Bx+b 6y+c 50

where

a® = —2l cos ¢ cos(¢y)
b = —Isin(dp + ¢f)

¢® = sin(¢y — ¢).

From this we are able to define a basis for g° using the adjoint mapping:

fi(g,7) = Ady fi(r)
53] 15}

3}
= (a+yc)5; + (b—:cc)—é; +c§§,

where a, b, ¢ are as above. The infinitesimal generator of fi(g,r) on @,

0 0 0
(filg,m))q = a% +ba_y +c_8_0
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gives a basis for the constrained fiber distribution,

S, = span{fi(g,7)q}

Next, we calculate the nonholonomic momentum. Let f 1 denote the dual basis

element for (g°)* (dual to fi(g,7)), and let

M (ug) = p(vg) 1.

Then the nonholonomic momentum map is defined by the relation

(377 (vg); € f1(g, 7)) = (FL(vg); §(£1(9,7))q(a))

- <(mvw,mvy, Jug + Jrvy + Ju(vs + v5), Jrvy, Juwvs, Juwvy);
£(a,b,¢,0,0,0)) (5.5)

= ¢(mavy + mbuy + Jevg + Jrevy + Juc(vp + vg)),

where J = J+J.+2J,, is the sum of the moments of inertia. Thus, along trajectories

(where vg = q),
p = mad +mby + Jef + Jrctb + Jyc(dy + ¢y).

This choice of momentum corresponds to choosing the momentum of the snakeboard

along the constrained fiber distribution, or instantaneously around the center of
rotation defined by the wheel constraints. This is shown in Figure 5.2, although the
actual momentum chosen differs by a scaling factor of sin(¢p — ¢y).

Before continuing with the derivation of the generalized momentum equation,
we first would like to make two simplifying assumptions which will greatly reduce
the complexity of the derivations to follow. First, we make the assumption that
the wheels are controlled to move out of phase with each other. In other words,
let ¢ = ¢ = —¢s. Second, along the lines of Bloch et al., we assume that J=

J + J, + 2J, = ml? The first assumption is motivated by research experience
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Figure 5.2 Defining the instantaneous center of rotation

suggesting that this type of phasing can give all of the basic locomotive gaits. The
second assumption is used mainly to simplify the equations.

Given this, the Lagrangian takes the form:

1

i gj,zp(z/; +20) + Jud?.

1
We can also then rewrite the nonholonomic momentum map as
J*he(q, ¢) = (—2ml cos? ¢ cos 03 — 2ml cos? ¢ sin 07 + mi? sin 2¢6 + J, sin 2¢p) f 1.

Next, we use the locked inertia tensor in order to define the connection. Using the

formula,
(In%;€%) = {nd, €40
with 7,77 € g5, we have
I¢ = 4ml? cos? ¢.

Then, the group symmetry part of the nonholonomic connection one-form is defined
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to be

1 1 J;
sym ¢y—1 ynhe : T
A =(I9""J —(—-——2l(cost9d:v—sm0dy)+——2 tan ¢ df + Sl tan ¢ dip) f1.

This defines a horizontal subspace for the constraint distribution, D, as a bundle

over M. Further, we can use the relationship,
Avm = (191,

along with the constraint one-forms, w! and w?, to synthesize a connection on the
full state space, TQ. To do so, write these one-forms in matrix form as constraint

equations evaluated along trajectories, (g, ¢):

0 0 0

W(r)g'g+ 0 0r= 0 , (5.6)
J.
sz tang 0 T d

where

sing cos¢ lcos¢
W(r) = | —sing cos¢p —lcos¢

—%l- 0 %tanqﬁ

Notice that det[W (r)] = 1 and that multiplying by W (r) ™! yields the local form for
the body one-form, A%, on TQ given by

APg = g9+ Ar,
with

—5ksin2¢ 0
A= 0 0]- (5.7)
?{{TgsiﬁqS 0
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Furthermore, if the momentum is given by p, then the allowable trajectories for this

system must satisfy

Aq)-¢=T(r)p = 0 p. (5.8)

1
57z tan ¢

Eq. 5.8 fully specifies the trajectories along the fiber in terms of base and mo-
mentum variables. Next, we examine the flow of the momentum p governed by the

generalized momentum equation, Eq. 4.2. For the snakeboard, this equation is

5= (),

= mad + mby + &(mi%0 + Jyap)
= 2ml(cos 6 sin 26 ¢ + sin 0 cos® ¢ 6)& + 2ml(sin 6 sin 2¢ ¢ — cos 0 cos® ¢ 0)y

+ 2mi? cos 2¢ ¢>0 + 2J, cos2¢ ¢¢

However, as we saw in Section 4.7, it is possible to rewrite this equation in terms of
the base and momentum variables only, i.e., to eliminate the dependence of the fiber
coordinates. Substituting for (&,7,6) from Eq. 5.8 gives the generalized momentum

equation in a reduced form:

p = 2J, cos? gbqbz/) — tan ¢</3p.

The dynamic equations governing the base variables can then be determined
using Eq. 4.21 as described in Section 4.8. For convenience, we recall the general

form of this equation here:

Mi +#7Cr + %‘;- + N = B(r)r.

The local form of the nonholonomic connection is given in Eq. 5.7 above, and we

remark that we can write down the local form of the locked inertia tensor directly
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from the reduced Lagrangian,

m 0 0 0 O
0 m 0 0 O ¢
L= 10 0 m? J, 0 BB
K
0o 0 J J 0
0 0 0 0 2Jy
as
m 0 0
I=10 m O
0 0 mi?
Similarly, we see that the mechanical connection is just
L0 o0 00 0 0
A=I""TA=|0 L o ||0 0|=]0 o0
0 0 =/ \J O 0

Thus, the constrained Lagrangian is just

lo = L6774 L s (1)) - V()
2 2
1 . . J 0
0 2J,

-ll’;sinqbcosd) 0

3 -v;{{?sinqﬁcosqb 0 ;I{-gsinzqﬁ 0 0

0 0 0
Jsin? ¢ 0

1 p?
2 4ml? cos? ¢

p2

_ JE o P2 12
= (Jr sin gb) e+ 20" + Ty

- mi2
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Having calculated the reduced mass-inertia matrix, M, we then calculate

. . OM;;  OMy,  OMy; )\ ..
B ek o o 1] tk ki \ -i -k
Cij(r)rr 5 ( 5k + 577 5 )r 7

mlz 22 sin2e)d
"n:"‘i“g sin ¢ cos ¢ 1,b2

and

~ 7—1 cy—1
7 =ad; SA0) + ¢ (dA\( )+ agfm)-lm” )

2, .. .
%ltgsmgbcos oo + #ﬁ;qﬁp
-;’%sin¢cos¢¢2

Plugging this into Eq. 4.21 gives the base equations:

)¢—2 sin26 90 = o zdp+ Ty (59)

1

One additional remark— the snakeboard satisfies Condition 4, and so we notice
that the base equations do not involve the Lagrange multipliers. For problems that
satisfy this condition, it can sometimes be easier to write down the base equations
directly by substituting the constraint equations from Eq. 5.6 into the full set of
dynamical equations. This will not always be the case, as there are some situations
in which it is easier to work with the variables on the reduced space. One example
of this is the ball rolling on a rotating plate [10], in which reduction allows one to
bypass finding an amenable parameterization for SO(3), and instead work with just
the Lie algebra, so(3), and the reduced space of the plane (R?).

To demonstrate this procedure, we will perform the calculations for the snake-
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board. First, we write down the Euler-Lagrange equations for the base variables:

Jr('lﬁ + 0) = Ty
2qu£ = T¢

Notice that the Lagrange multipliers do not enter into these equations. Then we

can substitute for 0 using the fiber equations, Eq. 5.6:

0=-—

B tan ¢ p.

Differentiating with respect to time gives:

6= Tr{ (sin2¢ ¢ + sin? p ) + (sec ¢ ¢p + tan ¢ p)
= —TZIQ (sin 2¢ ¢p + sin® p o) + 5 1l2 (sec® ¢ ¢p)
2 112 tan ¢(2J cos? ¢ g — tanqbqﬁp)

sm 1 — s1n2gb¢¢ + o l2 ——dp,

where we have used the generalized momentum equation,

p = 2J; cos® ¢ gop — tan ¢ dp,

to substitute for p. Thus, we can write the dynamics on the base space as above:

Jr o . . 1 - 1
(1= @S @)Y = 5 sin2¢ ¢ — somdp + 77

. 1
¢ = Eﬂp

Notice the natural appearance of the reduced mass-inertia matrix in these equations:

N J. — 27 sin? 0
() = (Jr iz S ¢)
0 2T,
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5.1.2 Reconstruction

To recapitulate the ideas presented so far for the snakeboard, we have used the
generalized momentum equation and the tools associated with it in order to simplify

the dynamics to the following form:

g——lg = “A(T)T -+ f—lp, (511)

1 . ! )
p= 57'"T0r'r‘(7")7" + pTapi(r)F + ipTapp(r)p +7(r), and (5.12)
M7 +77CF + %‘;- + N = B(r)r. (5.13)

Thus we have reduced the equations from 6 second order equations with 3 first
order constraint equations (equivalently, 15 first order equations) to 3 second order
equations and 4 first order equations (10 first order equations). A few words of
what this implies for both reduction and reconstruction are in order. Suppose that
we are given a base integral curve (a curve, cy(t) on M) which we would like to
follow, along with some initial point v, € TQ such that m3(vg) = ¢(0). The initial
velocity v, defines a starting value for the momentum, p(0), and Eq. 5.12 defines the
time evolution of the generalized momentum, p(¢). Assuming that this is solved for
and that we have complete actuation of the base variables, then we can determine
explicitly the control torques necessary to follow the specified base curve. This
can always be done, provided that the constraints plus the generalized momentum
equation can be used to build a connection. This will be true as long as there are
no constraints acting purely to constrain the base variables, which has been true in
all of the examples studied to date. The process of reconstruction is then completed
by lifting the base curve up through the Lie algebra via the connection (Eq. 5.11)
in order to solve for the dynamics on the fiber.

Most importantly, however, we have brought out some of the intuitively illu-
minating intrinsic structure of the problem’s dynamics. This was done by writing
the connection in a manner that directly relates shape changes to momentum and
position changes. The next step will be to examine controllability results which use

the specialized structure of the connection. This topic is taken up in Chapter 6.
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Figure 5.3 The kinematic snake

5.2 The Kinematic Snake of Hirose

In this section, we present an example of a principal kinematic system in which
there are sufficient constraints to define a connection. The system presented here
is based on the ACM III snake robot built by Hirose [35] (a model is shown in
Figure 5.3), where certain assumptions are made regarding the actuation of the
individual segments. The basic principles relating the ACM III to a real snake are
based on the assumption that the body of a real snake has a small coefficient of
friction along the length of its belly and a high coefficient of friction transverse to
its length. In this approximation, the snake is prevented by friction from slipping
laterally, while at the same time able to move each point on its body forward without
impedance. Hirose used this differential friction as the basis for choosing wheeled
segments to guide the snake in its motion. Discretization of the snake’s backbone
curve allows us to model the snake as a finite number of such wheeled segments.
The reader is referred to [33] for more detail.

We present here an analysis of Hirose’s snake from the standpoint of the material
presented above on nonholonomic constraints and symmetries. Obviously, there may
be different perspectives from which to view this system. For instance, Hirose has
studied the generation of locomotion for these systems by using force balances on
each pair of segments [33, 35]. The advantage in the current presentation will be

that we seek to divide out the dynamics according to the pieces that are important
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to locomotion, and to put the equations in a form amenable to treatment by existing
control and stabilization theory.

Any model of the Hirose snake must be able to describe a many-segmented
body which locomotes using only internal torques. We begin by examining the
three segment model shown in Figure 5.3, since it will define a Chaplygin system.
In this model, we assume that there are control inputs at each of the two segment
joints and each of the three wheel pivot joints. As in the snakeboard, the wheels
themselves are assumed to rotate freely, i.e., they are unactuated. The reason for
initially looking at this particular model is that the three wheel constraints define
a connection for this problem. Thus, away from singularities, the positioning and
motion of the snake in the plane is fully determined by the shape variables shown
in Figure 5.3.

By recognizing that the three wheel constraints define a connection, we are
naturally led to a method for handling additional body segments. The technique
will consist of using the first three segments to define the motion in SE(2), and
then using the wheel constraints of the additional bays as the governing equations
for these segments. Thus, we develop a system that has a “following” behavior, in
which the lead segments define the path to be traced, and the additional segments
are constrained to follow this lead. In a real snake, the additional segments serve
a useful purpose in providing greater stability for the snake, and can be used to
perform more complicated maneuvers, such as crossing over gaps in the floor or
pushing off objects to move along a slippery surface.

For the three segment snake drawn in Figure 5.3, we label the center point of the
middle segment (and hence the center of mass when the snake is fully extended) by
(z,y,8) € SE(2), the wheel angles of segments 1, 2, and 3 by (¢1, ¢2, #3) € SXSXS,
respectively, and the relative orientation of segment 1 with respect to segment 2 and
segment 2 with respect to segment 3 by (11,%3) € S X S, respectively. We will treat
the Hirose snake as a purely kinematic system, and so we do not consider the

dynamics that arise due to masses and inertias of the wheels and body segments.
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Each no-slip wheel constraint takes the following general form:

(” siani,cos qu) : ,l = Oa

Y;

where ¢; is the absolute angle (measured with respect to horizontal) of the it" wheel,
and (Z;,7;) is the Cartesian positioning of the center of rotation for the ith wheel.

Using this notation, we find that

Ti=z+1cos@+1lcos(@—11), §1=y+Isiné+Isin(f — 1),
Ta=1z, Y2,

3=z —lcos@® —lcos(f+13), §s=1y—Ilsin€—Isin(6 + v3),

and

¢ = b1 — 1 + 0,
&2=¢2+07
¢3 = ¢3 + b3 + 6.

Thus, the constraint equations can be written as

—sin q7>1 Z + cos <Z>1 7 — 1(cos ¢p1 + cos(¢p1 — 7,01))9 = —lcos ¢ ¢1,
—sings & + cos gp iy = 0, (5.14)

— sin g3 & + cos ¢ § — I(cos Pz + cos(¢ps + 13))0 = L cos 3 s,

which can be written in a form similar to the snakeboard, but without a generalized

momentum term:
W(T)Tng_lg =I'(r)r.

This supplies three constraints on the three dimensional Lie group, G = SE(2).
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Straightforward calculations similar to the two-wheeled mobile robot above show
that the constraints are G-invariant. Therefore, the kernel of these constraints
defines a connection on the trivial principal fiber bundle Q = G x M = SE(2) x
SxSxSxSxS. We can invert the constraint equations directly to write the local

form of the connection one-form as

This gives the following:

2 _ .

&= _ld:’zsﬂis? [4h1 cos 1 (cos(ps — 1b3) + cos ) + 13 cos @s (cos(¢n + 1) + cos é1) ]
(5.15)

o I’singp . .

vy [4h1 cos ¢1 (cos(¢p3 — 3) + cos ¢3) + 3 cos ¢3 (cos(¢y + 41) + cos $1) |

(5.16)
= ¢! tan ¢y
£ = deth [4h1 cos 1 sin(ds + b3 — ¢2) — 13 cos pasin(¢y — 1 — d2)], (5.17)
where

det W = I[sin(¢1 — 11 — ¢2)(cos(¢ps + 3) + cos ¢3)
+ sin(¢s + 13 — ¢2)(cos(d1 — 1) + cos ¢1)].

Next, we examine a possible method for extending the snake to an arbitrary
number of segments. Suppose that we add a fourth segment. Let ¢4 and 14 denote
the angles of the wheels and the body segment, respectively. Then, following the

above notation,

bs = pa + 3+ s + 0,
Zy =1 —lcosO — 2l cos(0 + 1b3) — L cos(8 + 3 + 4),

s =y —lsin@ — 2lsin(0 + 13) — I sin(f + 93 + ¥4),
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and the constraint becomes

—sin gy & + cos ba 7 — 1(cos(pa + 13 + 14) + 2 cos(¢ps + 1pa) + cos $4)0

~ (2 cos(¢pg + 1h4) + cos ¢4)¢3 = [cos ¢y %4. (5.18)

Observe that we have added two additional degrees of freedom—— one wheel
angle, ¢4, and one inter-segment angle, 14— and added one kinematic constraint
given by Eq. 5.18. As with the first three body segments, we will control both ¢4
and 14, but now are forced to satisfy the constraint as well. This is easily done,
however, by choosing to control the wheel angle, while inverting Eq. 5.18 to establish

a governing equation for 4. Doing this, we find that

1

COS ¢4

Py = (%( — sin @ €1 + cos @ £2) — (cos ¢§ + 2 cos(pa + 1ba) + cos ¢y)E>

— (2cos(¢hs + 1ha) + cos pa)ils )

where ¢§ = ¢q + 3 + 14, e, g&;{gze = ¢4 s—o- Notice that the process of solving
for 1ﬁ4 yields a term with cos ¢4 in the denominator, which is nonzero for all values
of ¢4 that we will consider here (we continue the assumption, as in the snakeboard,
that the wheels cannot pivot to an angle of £7).

Repeating this process, we can add as many additional segments as we desire,
with the guarantee that each of the following segments properly satisfy all of the

constraints. To illustrate, we will do this for a fifth constraint, of the form

1(2 cos(¢s + 15)+ cos $s5)1ha + 1 cos ¢s s
= —singg &' + cos g5 €7
— 1(cos ¢g + 2 cos(ds + s + P5) + 2 cos(¢s + 9P5) + cos ¢5)€°

— 1(2 cos(¢ps + 4 + 15) + 2 cos(¢s + P5) + cos ¢5)¢3,
(5.19)

where again, qu = &5{ = ¢5 + 13 + P4 + 5. For a five link snake, we can thus

g=€
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invert Egs. 5.18 and 5.19 to determine governing equations for 14 and 5.
One point to notice is that as we continue to add constraints, it will always be

possible to arrange the equations in the following form:

¢4

B(¢47"'a¢k) =C(¢47"'7¢kv,l/}3a"'a'¢)k) "/f )
. 3
Pk

where k is the total number of body segments for the snake. Also, the matrix B is

lower triangular, with determinant

k
det(B) = H [ cos ¢,
=4
and so is always invertible.
To this point, we have not touched on a very important aspect of this problem,
namely the generation of actual locomotion patterns for the snake. This topic is the

subject of the next chapter on controllability and gaits.
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Chapter 6

Controllability and Gaits

6.1 Background and Formulation

For systems of the form we are discussing, the Lagrangian and the constraints are

left-invariant, i.e.,
L(®rq, T,®1d) = L(g,¢) and  w'(hg) = T}, @p-10(q).

In such cases, it was shown in Chapter 4 (Eq. 4.15) that the equations of motion
can be transformed into the following form (we assume forcing only in the base

directions):

97l = —A(r)r + 17 (r)p, (6.1)
o1, . 1
p= ETTUTW‘ (r)7 + pTopi(r)r + §pTUpp(T)p, (6.2)
7 = u. (6.3)

For the terms, o+, opi, and opp of the generalized momentum equation, we
note that the proof of invariance given in Section 4.7 implies that they are strictly
functions of the base variables, r. Therefore, the generalized momentum equation
can be written as a function of the base and momentum variables only. In the case
that o = 0, the system can be written in standard form for a nonlinear control

system with affine inputs (where the inputs appear linearly with an affine drift
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term):
2= f(2) + hi(2)0", (6.4)

where z = (¢,p,7) E N =G x (gs)* x M. While this can be done for the principal
kinematic and unconstrained cases, it will not be true in general. In order to write
the system in the standard control form of Eq. 6.4, we must first dynamically extend
the control inputs by redefining them as higher derivatives of the input variables.
Equivalently, this can be thought of as specifying the accelerations to be the control
inputs (this is done implicitly in Eq. 6.3). This makes sense for analyzing a fully
dynamic, mechanical system, where the inputs enter as control torques acting at
the level of accelerations. Let u = 0, and define the manifold N for our problem as
N =G x (gs)* x TM. Then, using z = (g,p,7,7) € N, we see that Egs. 6.1-6.3

can be written in the standard control form of Eq. 6.4 with

g(—Ar +f'1p) 0
LiTo. b L pTo g+ LpTy 0
foy= [T g = | |, (65)
T 0
0 €;

where e; is the m-vector (m = dim M) with a “1” in the 4** row and “0” otherwise.

Example 6.1 Snakeboard (cont.)
Returning to the snakeboard example of Chapter 5, recall the equations for the

base dynamics given by Eqgs. 5.9 and 5.10:

AN s 1 . 1
(1 " sin® @)y = D sin 2¢ ¢p1p 2ml2¢p+ JTT¢
. 1
¢ = m'qu,

One of the results proved in [57] is that the base dynamics are controllable. This is
easily seen from the equations above— we can directly invert for any desired base

dynamics, given the flow of the momentum as a state. Therefore, we can feedback
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transform these equations into control form as

2/)=U¢ and g.b‘=U¢.

Letting z = (z,v,0,p,v, qb,vj),q.ﬁ) € N, we can then write the snakeboard equa-
tions in the form of Eqgs. 6.5:

cos 6(——p+1,b.]r sin 2¢)
2ml

sin 9(—1)-{—1&.], sin 2(;5)
2ml

—24pJ, sin® ¢+ptan ¢
2ml?

f= Zd')d}Jrcos?({ﬁ_qbptanqb , hy=
(]

, and hg=

O = O O O o O O

- o O O O O O O

¢
0
0
6.1.1 Free Lie Algebras

In order to investigate controllability properties for these types of nonlinear control
systems with drift, we will use the strongest conditions of which we are currently
aware, given by Sussman in [92]. To use this theory, we will need to develop a
rigorous notion of the degree of a Lie bracket. This is given in terms of free Lie
algebras. We refer to Serre [86] for the relevant notation. The notation defined
in this section can be a bit cumbersome, and so the reader not interested in these
details is encouraged to glance briefly at Proposition 6.5 before moving on to the
next section. It will certainly suffice to have an intuitive idea of the degree of a Lie

bracket in order to understand the sections that follow.

Definition 6.2 A magma is a set M with a product map from M x M into M and

denoted (my,mg) — my - mo.

Given another set X (assumed here to be finite), we can construct a magma in the

following manner. Let X; = X, and inductively define X, = [] Xy x Xy,

p+g=n
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where [] represents the disjoint union of these product operations.

Definition 6.3 The free magma on X is the set

with magma map taking Mx x Mx to Mx given by the canonical inclusion of
Xp X Xg = Xpiq C Mx resulting from the definition of X, above. The length of

an element w € Mx is the unique integer n such that w € X,,.

Next we define the free algebra Ax to be the R-algebra generated by Mx. An
element a € Ax is then a finite sum a = 3, ¢\, Cmm, with ¢, € R. The product
in Ax derives naturally from the magma map on Mx. Let Z denote the two-sided
ideal of Ax generated by elements of the form a-a and a- (b-¢) +c-(a-b)+b-(c-a)
(recall the definition of a two-sided ideal given in Chapter 2). Note that this is quite

suggestive of the defining identities of a Lie algebra.

Definition 6.4 The free Lie algebra Lx is the quotient algebra given by Ax/Z.

We write the inherited product on Lx as [+, ].

If we denote by Br(X) the subset of Lx containing purely products of elements
in X, then we see that Br(X) generates Lx as a vector space over R. In order to
write down a linearly independent generating set for Lx we could use a Philip Hall

basis [74, 86], but instead we will rely on a result of Lewis [53]:

Proposition 6.5 FEvery element of the free Lie algebra Lx can be written as a

linear combination of repeated brackets of the form

[Xka [Xk—lv [ vy [XQ,Xl} . ]]]a

where X; € X,i=1,...,k.

It should be clear now that we can use this free Lie algebra to define a notion

of degree for a Lie bracket. Let the set X = (Xo,...,X;;) be a finite sequence of
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indeterminates. Then we inherit a sense of length from the magma Mx.

Definition 6.6 Let the degree of B relative to X,, denoted 6%(B), be the integer
number of times that X, appears in the bracket B. The degree of B € Br(X) is
then given by

m
§(B) =Y _ §*(B). (6.6)
a=0
To illustrate this, suppose that m = 2. Then the degrees for
Y = [X())[XhXQ]?[XOaXlH and Z = [XlaXQ]

are 80(Y) = 2,81(Y) = 2,8%(Y) = 1 and §°(2) = 0,6%(2) = 1,6%*(2) = 1,
respectively.
Finally, in order to make use of the controllability results given by Sussman

in [92], we must also define the §-degree of a bracket.

Definition 6.7 For each § € [1,00), the §-degree of Y € Br(X), denoted dg(Y'), is
given by

5o(Y) = %50(1/) £ 35, (6.7)
j=1

The interesting point to notice about the 6-degree of a bracket is that it holds in the
limit as 8 — co. Thus, in contrast to the regular notion of the degree of a bracket,

we see for the example brackets above that
5(Y)=5>00(Y) =3, but 6(2Z) =2 = 6(Z).

Thus, depending on the number of times the drift vector field, X, appears, the two
measures of brackets can be quite different. It will always be true, however, that

§(Y) > §p(Y), for Y € Br(X).
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Remark: To recap, then, we have used the magma Mx to capture the notion of iter-
ated brackets. The free Lie algebra Lx was then defined to be the R-algebra formed
from Mx, with certain elements being modded out (as determined by the defining
relations for a Lie algebra). Then we can use indeterminate elements Xo, ..., Xn,
to give a precise description of the degree of a bracket.

Lastly, we need a means of evaluating elements in Lx in terms of vector fields
for a given control problem. Let g = (go,91,...,9m) be a set of vector fields on
a manifold N, so that each g; is an element of the set of all partial differential
operators on C®(N). Then if we write an element B € Ax as B = a’ X7, where
I = (41,...,i), we can define the evaluation map by substituting in the vector fields

for the indeterminates, i.e., by “plugging in the g;’s for the X;’s”:
Ev,(g): Ax = D(N): o' X1 algr,

where g; = i, i, - - - 9i, and z € N. The evaluation map can be restricted to Lx
(and hence Br(X)) to give a surjective homomorphism from Lx onto Lg, where Lg

is the Lie algebra of vector fields generated by g.

6.1.2 Accessibility and Controllability

In order to discuss control theoretic issues regarding a particular system, we must
start by precisely defining the types of control goals we seek. In nonlinear control
theory, there are two commonly used notions of control— accessibility and control-
lability. Putting aside technical definitions for a moment, we would like our control
goal to be something like the following: a system will be said to be controllable
if, given any initial point ¢; and final point gy, there exists an admissible control
law v which drives the system from g¢; to gf. For general nonlinear systems, the
notion of small-time local controllability, in which controllability is shown for local
neighborhoods of g;, will be the closest we can come to our goal of controllability.
Note that it is still very much a local condition, and, while it is a much stronger

condition than accessibility, it is also much more difficult to satisfy. Here we give
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definitions for these terms and present an example of how they differ.
Let RV (29, T) denote the set of reachable points in N from z at time T >
0, using admissible controls, u(t), and such that the trajectories remain in the

neighborhood V of zj for all ¢ < T'. Furthermore, let
R¥(Z()) = UtSTRV(Zo, t)

be the set of all reachable points from zy within time T'. These two definitions lead

us naturally to define the following:

Definition 6.8 [77] The system given by Eq. 6.4 is locally accessible if for all z € N,
RY(2) contains a non-empty open set of N for all neighborhoods V' of z and all

T>0.

Definition 6.9 [92] The system given by Eq. 6.4 is called small-time locally con-
trollable (STLC) if for any neighborhood V, time T' > 0 and 2z € N, z is an interior
point of RY.(2) for all T > 0.

For driftless systems, local accessibility and local controllability are equivalent.
Notice, however, that the general types of systems in which we are interested will
require the presence of a drift vector field, since this is how the momenta enter into
the dynamic equations (notice the I~'p term in Eq. 6.3). To give a motivating ex-
ample of how these definitions differ, consider the problem of controlling an airplane
in flight. The airplane can in a coarse sense be thought of as a system that is locally
accessible, since it can basically reach an open set of points relative to its forward
trajectory. It is, however, obviously not STLC, since the open neighborhood that
it can reach after flying for some small time T does not contain the point at which
it started. Notice that here we emphasize that this only holds for small time, or in
a local neighborhood. If our requirement for a system to be controllable were only
that it be able to move between two points, then the airplane would satisfy this
condition, since it could perform a circle in order to return to the starting point. It

is unclear as to what sense of controllability will be most important for the purposes



123

of locomotion. To date, however, there are no strong theoretical results concern-
ing questions of global nonlinear controllability, and so we must be satisfied with

investigating small-time local controllability.

6.1.3 The Lie Algebra Rank Condition

For general systems of the form:
5= f(2) + hi(2)u!, z €N,

a standard method for determining accessibility is to compute the accessibility dis-

tribution. To do so, we define a sequence of distributions. Let
Ag = span{f,h1,...,hm}
(the span taken over C* functions on N), and iteratively define
Ap = Ag_1 +span{[X,Y]| X, Y € Ap_1}.

This is a nondecreasing sequence of distributions on N, and so terminates at some
k¢, under certain regularity conditions. We will call Ay, the accessibility distribution,

and denote it by C:
C=A, =0

A standard result from nonlinear control theory (based on Frobenius’ Theorem),
known as the Lie algebra rank condition (LARC), equates accessibility with the
condition C' = TN.

Theorem 6.10 (LARC) If dimC(z) = dimT,N for all z € N, then the system
given by Eq. 6.4 is locally accessible.

As a means of illustrating the calculations necessary to compute the accessibility

distribution, we include the following example from Nijmeijer and van der Schaft [77]



124
(Example 3.14).

Example 6.11 Let N = R? with coordinates (z1,22). Consider the system

%9 22 0

0 0
— 2 —
f=ag, "o
0 0
[h>f] ’”2215;2‘ [h’) [haf]] “‘255'

Thus, dim C(z) = dimR? = 2 for all (21,22) € N and so Theorem 6.10 implies that
this system is locally accessible. Notice, however, that this system possesses a drift
term so that 3 > 0 everywhere. Given a starting point, (29, 29), the reachable sets
will consist only of points with z; > 23 and hence will not contain (27, 23) in their

interior. Therefore, this system is not STLC.

6.1.4 The Principal Kinematic Case

Kelly and Murray [43] have deri%/ed controllability results for the principal kine-
matic case. The kinematic case implies a driftless system where accessibility and
controllability are equivalent. However, the conditions they give for controllability
will be useful in the present context for checking accessibility and controllability in
systems where momentum terms drive the system. In the kinematic case, however,
momenta, arising from symmetries are annihilated by the nonholonomic constraints.

Therefore, p = 0, and the equations of motion reduce to

T =u. (6.8)

Given specified control inputs, the local form of the connection, A(r), thus deter-

mines the motion in the full configuration space.
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Notice also that for the purposes of establishing controllability, Eq. 6.8 can be
viewed as a special case of the general result for nonholonomic mechanical systems
given by Bloch, Reyhanoglu, and McClamroch (Theorem 5 in [12]). This result,
however, does not make use of the special structure found in these types of prob-
lems. By using this structure, Kelly and Murray were able to derive straightforward
computational conditions for controllability and suggest methods for generating de-
sired trajectories. In their paper, they establish two important results that will
be useful later. First, they observe that by taking the appropriate derivatives, the
controllability analysis can be performed on the Lie algebra, i.e., at g = e. Further-
more, they show that the controllability of a kinematic system can be determined
solely from the local form of the connection, A, its curvature, and higher covariant
derivatives. The reader unfamiliar with exterior derivatives of differential forms is

referred to [2].

Definition 6.12 Given a connection form A on @, the curvature form is the 2-form
DA determined by evaluating the exterior derivative of A on horizontal vectors. In

other words,

DA(X,Y) = dA(hor X,horY),

for X,Y € X(Q).

Noting that the connection form evaluates to zero on horizontal vectors, we can

rewrite the curvature form as

DA(X,Y) = dA(X,Y) + [A(X), AY)],

where [A(X), A(Y)] is the Lie bracket on g.

The result is then developed using the local curvature form given by

DA(X,Y) =dA(X,Y) + [AX), A(Y)],
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where now X,Y € X(M) are base vector fields.

If we rewrite Eq. 6.8 as
¢ = X[,

with

(recall that e; is the vector in T.M with a 1 in the it" row), then it is shown
in [43] that each of the brackets in the accessibility distribution C' can be expressed
in terms of derivatives of the connection. For example, the first order brackets

between control vector fields can be expressed in terms of the curvature:

—gDA(ei,ej)

[th7X]h] =
0

and the next higher order bracket in similar fashion:

—g(Lek DA(@, y ej) - {A(ek)v DA(ei’ ej)])

[[XP XM, X0 = .

Noting this, they construct a series of subspaces of g given by repeatedly taking

higher derivatives of the connection:

b1 = span{A(X) : X € T,M}

b = span{DA(X,Y): X,Y € T, M}

b3 = span{LzDA(X,Y) — [A(Z), DA(X,Y)], (6.9)
[DA(X,Y), DA(W, 2)] : W, X,Y, Z € T,M}

b = span{Lx¢ — [A(Z),€],[n,€] : X e .M, £ € br_1,n €2 @ -+ ® b1}
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Notice that in the above equations, the connection has been placed in the ap-
propriate mathematical context as a Lie algebra valued one-form on M. Thus,
derivatives of A will take their values in g when evaluated along the appropriate
vector fields on M. We point out that the curvature of the connection is defined

with respect to the structure equations as

DAX,Y) = dA(X,Y) + [A(X), A(Y)],

where [A(X), A(Y)] is the Lie bracket on g and d represents exterior differentiation.

Next recall that for driftless systems local controllability and local accessibility
are equivalent, so that the results given below in terms of the accessibility distri-
bution will apply to controllability for systems with purely kinematic constraints.
Kelly and Murray define two types of local controllability, adapted for problems of
locomotion. Fiber controllability implies that we can use control inputs to move to
any position in the fiber, but without regards to the intermediate or final condi-
tions of the controlled variables. On the other hand, total controllability is a slightly
stronger condition, basically equivalent to STLC, which includes the ability to fully

specify the motion of the controlled variables.

Proposition 6.13 [/3] The system given by Eqgs. 6.8 is locally fiber controllable at
q € Q if and only if

g=h1®@hDh3®---,

and is locally totally controllable if and only if

g=ha®h3d---.

The subspaces, hr C g, will be used below to give sufficient conditions for local
accessibility (and later controllability) of the general mixed case given by Egs. 6.5.
In order to illustrate the above definitions (and to make clearer the distinction

between fiber and total controllability), we include the example of the two-wheeled
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mobile robot, presented by Kelly and Murray in [43].

Example 6.14 Two-wheeled Mobile Robot (cont.)

Recall the two-wheeled planar mobile robot described in Chapter 2. The config-
uration space is Q = G x M = SE(2) x (S x S), with coordinates ¢ = (z,y,0, ¢1, $2)-
The constraints defining the no-slip condition can be written as in Eq. 6.8 so as to

highlight their Lie group structure:

cosf sinf 0\ [z £ £ )
é1
—sinf cosf@ 0O gl =—120 ;
] £ o P2
0 0 1 ) T3

From this, it is clear that the local form of the connection is given by

4 4
2 2
Ar)=0 0 (6.10)
L L
2w 2w

Also, we note that it is easy to show that the base directions are controllable using
Egs. 2.9 and 2.10.

The connection is used to define §; for the controllability calculations, and so

1 1
= 1,0, )", (1,0,——)"}.
bl Spa'n{( 3 7’[1]) )( s Yy ’LU) }
In order to compute the curvature, DA, we use the formula DA = dA + [A, A}, for

which we will need the structure constants of the Lie algebra. A straightforward

calculation shows that for £,n € g,

52,”3 _ 53,”2
[67 77] = 51773 - 63771 ’
0
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using the standard basis for se(2). If we write A using differential forms as

£dpy + Sddo
A= 0 3

f=dp1 — F-doo

then it is easy to see that dA = 0. Calculating the bracket, we get

0
DA =[AA =~ | £d¢; Adds
0

Clearly, the Lie algebra element
(07 17 O)T € bZ

is in the span of DA, when applied to the appropriate tangent vectors. Thus, the
two-wheeled mobile robot is fiber controllable, since h; + ha = g. However, Kelly
and Murray show in [43] that the higher order derivatives of A(r) will never lead to
terms with nonzero elements in the third slot (i.e., terms like (x,*,1)), and so the
mobile robot in this example is not totally controllable (since ha+h3+--- # g). This
surprising result is related to the geometric relationship between the two wheels, and

the paths which they must follow.

6.1.5 Unconstrained Systems with Symmetries

In the same manner as for the principal kinematic case above, Montgomery [71]
showed that similar tests can be used to show controllability for an unconstrained
dynamical system with Lie group symmetries. His result applies to the case where
the spatial momentum y is zero (and hence the body momentum p = Ady p = 0),
so that all motion is horizontal. For this situation, we see that, since the momen-

tum is zero and constant (recall Noether’s theorem for unconstrained systems), the
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equations reduce to those of the principal kinematic case (Eq. 6.8),

where A is again the mechanical connection. Using the same construction above,

his result states that if

g=hadbhs® -,

then any two configurations gy and ¢; can be connected by a horizontal path, i.e.,
one which satisfies the p = 0 constraint. In other words, even though we have a
fully dynamical system, it is possible to give simple controllability conditions based
on the connection. Notice, however, that for u # 0 this presents a drift term which
implies that controllability and accessibility are no longer equivalent, and so Chow’s
theorem (LARC) implies only accessibility. One of our goals in the following sections
is to derive tests for general systems with symmetries and constraints in order to

establish basic controllability results.

6.2 Local Accessibility

We begin this section by examining a few of the lower order brackets in the ac-
cessibility distribution, C, which play an important role in the accessibility and
controllability analyses to follow. Notice that we have chosen the control vector

fields in such a manner that they are mutually orthogonal, and such that

The remaining first order brackets (those in A;) will be of the form of a control
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vector field bracketed with the drift vector field. A quick calculation shows that

—Ai(r)
(034)557 + (opi)lp;
e;

0

Qg = [hzvf] =

At this point we direct the reader’s attention to the similarity between this set of
vector fields and those for the kinematic case. If one disregards the variables which
are eliminated in the kinematic case, i.e., the momentum and acceleration variables,
then the two sets of equations are identical. A loose mathematical interpretation
of this similarity is that the bracket operation pairing the drift and torque controls
(given by «; = [h, f]) yields a vector field that is “equivalent” to having integrated
the input control torques, converting them to something approximating velocity
controls. Hence they take on a form reminiscent of the kinematic case, where the
control inputs are velocities. This, of course, is just a naive way of describing the
similarities between the brackets o; and the inputs in the principal kinematic case.

Moving to the second order brackets, an interesting thing happens when we

bracket h; with o;:

0

Bij = [hi, o] = [ha, [hy, 1] = (o2:)i

Thus, the o term, which is a cross-coupling term for the base variables, directly
affects the momentum variables via the 3;; brackets. Viewing this coupling as a map,
o : TM x TM — RP, then oy being surjective implies that all of the momentum
directions can be generated via this second order bracket. This mapping will be

quite useful for a variety of reasons, as detailed below.
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Proposition 6.15 Assume that oi; is onto and that

g=hatbg+--,

where the by ’s are defined as above (Egs. 6.9) using the local form of the connection

given in Eqs. 6.5. Then the system given by Eqgs. 6.5 is locally accessible.

Proof: To show accessibility, we need to show that the distribution Ay spans TN
at each point z. The assumption on o;; implies that the bracket given by [h;, [h;, f]]
will span the momentum directions, so it remains only to show that A, contains
the fiber and base directions. To do this, we begin with A;. It will contain vectors

of the form,

0 —A;(r)

B — 0 and o = (0:1)i57 + (0pi )1p;
0 €;
&; 0

Thus, the base directions (velocity and acceleration vectors on M) will be contained
in A;. Next, we examine Ag. It will contain the vectors, «;, and also vectors of the

form,

(08)ij

Bij =

Thus, for each z € N we can cancel off the terms in «; which act in the momentum
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direction, and so define a new set of vector fields to operate on:

—Aq(r)
0

0

Using these vector fields, we define

Ay := span{f, hi, Bij, &i}.

and the subsequent distributions, Ay, similar to before. Then As C Ago. As in
the kinematic case, higher order bracketing of &; and &; will lead to higher order
derivatives of the connection, A(r). By the assumption that h =go+ g3+ ..., we
have it that A = T, N, for each z € N. The result follows since Ay D Ay =T, N.

|

The criterion given in Proposition 6.15 will be used in the following sections
as a basis for checking local controllability and for demonstrating accessibility and

controllability properties for the snakeboard example.

6.3 Local Controllability

Unfortunately, for nonlinear systems with drift we have seen above that local acces-
sibility may be quite different from local controllability. In order to provide a result
for controllability, we will need to show that certain of the higher order brackets
either vanish or can be written as a linear combination of lower order brackets. This
result is due to Sussman [92], and is the strongest statement of local controllability
for nonlinear control systems with drift of which we are currently aware. For further
details on this construction, please refer to [12, 92].

Let hg := f so that Ay = span{hg = f,h1,...,hm}. As above, we will rep-

resent brackets of these vector fields using a finite sequence of indeterminates,



134

{Xo,...,Xm}. We have already defined the degree of X € Br(X) and the 6-degree
of X to be the sum and scaled sum of the §*’s, respectively.

We also need to define a symmetrizer operation, 8(X), as

BX)= ) #(X),
TESm
where S, is the group of permutations on {1,...,m}, and  is the operator on L(X)

that fixes Xy and permutes Xi,..., X, sending X; to X,(;y. Thus, (X) is the
sum of all permutations of the bracket X that leaves Xy fixed. This is a technical
definition used by Sussman, but which we will not actually need to compute in
practice.

Then, we have the following theorem due to Sussman:

Theorem 6.16 [92] Given the system of Eq. 6.4, with ho(20) = f(z0) = 0 at an
equilibrium point zy € N, assume that g = (ho,...,hm) satisfies the LARC at z.
Further, assume that there is a 0 € [1,00) such that whenever X € Br(X) is a
bracket for which 6°(X) is odd and 6*(X),...,6™(X) are all even, then there exist
brackets Yi,...,Yy such that

Evs,(8)(B(X)) = 'Evz, (8)(Yi),

for some o,...,c* € R, and
0(Y;) < 6p(X), 1=1,...,m.

Then the system defined by Eq. 6.4 is STLC from zp.

For ease of use, we restate this in a slightly weaker corollary that will help to

simplify the necessary calculations.

Corollary 6.17 Given the system of Eq. 6.4, with ho(z0) = f(20) = 0 at an equi-
librium point zg € N, assume that g = (ho,...,hn) satisfies the LARC at 2.
Further, assume that whenever X € Br(X) is a bracket for which 6°(X) is odd and
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61(X),...,0™(X) are all even, then there exist brackets Y1,...,Yy such that

Eveo(8)(X) = By () (Y:),

for some al,...,of €R, and

§(Y;) < 8(X), i=1,...,m.

Then the system defined by Eq. 6.4 is STLC from zp.

Proof: The two things to show here are that §(Y;) < 6(X) implies 6p(Y;) < dp(X)
and that we can remove the symmetrization operation, 3. The first statement is ob-
vious, since §(X) = dp(X)|g=1. To prove the statement regarding the symmetrizer,
B, notice that if X is a bracket for which 6°(X) is odd and §'(X),...,0™(X) are

all even, then

BX)= ) 7(X)
TESm
will also have 6°(X) odd and each §'(X),...,6™(X) even, since it is just a permu-
tation of the order of the elements. Thus, it is covered by the assumption that any
bracket having these relative degrees must be expressible by a linear combination

of lower order brackets. |

With this corollary in mind, we define a “bad” bracket to be those brackets for
which the drift term appears an odd number of times and for which the control
vector fields each appear an even number of times (including zero times). The
sufficient conditions for small-time local controllability, then, can be simply restated
as requiring that all “bad” brackets be expressible in terms of brackets of lower

degree.

Proposition 6.18 Assume that the system defined by Eqs. 6.5 is locally accessible,

that the map oy¢ is onto, and that (0++)ii =0 for i =1,...,m (no summation over
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i). Then this system is small-time locally controllable (STLC) from all equilibrium
points, zg € N.

Proof: In order to show controllability, we begin by demonstrating that all “bad”
brackets as defined by Sussman will either be zero or be expressible in terms of
lower order “good” brackets (in fact, of order 3). This, along with the assumption
that the LARC is satisfied (using the results from the kinematic case), will give the
result via Corollary 6.17.
First, we restrict our attention to the point zp = (0,0,0,0) € G xR x M xT,. M.
It is easy to show that the result will hold for all equilibrium points, z € N (of
the form z = (g,0,7,0)), by translating Eqgs. 6.5 appropriately. Also notice that
f(z0) = 0, satisfying the first requirement of Theorem 6.16.
Next, recall the definition of the degree of a bracket and notice two important
facts that must be true of any bad bracket X: 1) 6(X) must be odd, and 2) §9(X) #
™ 1 %(X). These are both made true by virtue of there being exactly one odd term
in the summation of Eq. 6.7. The first condition implies that all even order brackets
are necessarily “good” brackets, while the second condition implies that for bad

brackets the quantity
m .
7(X) = 6%(X) = D & (X)
=1

is always odd, and thus never zero.

More specific to the system of Egs. 6.5, let O(k) denote a function in (z, 2) which
is a homogeneous polynomial of order % in (7,p). Thus, f(z) = (O(1),0(2), 0(1),0).
A straightforward set of calculations shows that for any bracket involving the drift
vector field, f, bracketing by f will increase the order of these functions by 1,
and that bracketing by any of the h;’s will decrease the order of the bracket by 1.
Thus, we will find that for any bad bracket, X, (which by definition must contain
at least one Xp in the bracket), it will evaluate to a vector field with the form
Ev,, (g8)(X) = (0(y(X)),0((X) + 1),0(y(X)),0)!, or will be identically zero,

We have allowed v(X) to be negative, and so define O(k) =0 for all k < 0.
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e.g., any bracket involving [h1, he] = 0. Viewed this way, it is easy to see that all
bad brackets for which v(X) # —1 must have Ev, (g)(X) = 0.

Thus, the only bad brackets that we need worry about are those with y(X) =
—1, for which Ev,,(g)(X) = (0,0(0),0,0). These are brackets which lie in the
momentum direction. But we have already assumed that the map oy is onto,

which means that these directions are captured by a bracket of degree 3:

0

~ (074 )i
0
0

ﬁij = Evzo (g)([X,, [Xj’ XOH) =

Unfortunately, brackets of the form [X;,[X;, Xo]] (¢ = j) are also bad brackets,
which explains the necessity of assuming that (o47);; = 0. Given this, however, we

see that any bad bracket which is not zero at zp can be rewritten in terms of brackets

of the form [h;, [h;, f]], where i # j. |

6.4 Locomotive Gaits

Let us briefly consider an important aspect of locomotion that is intricately related
to the study of control for these types of systems. A very common observation of
locomotion is that it is most often generated by cyclical shape changes [24, 32]. The

motion takes on a characteristic form, called a gait.

Definition 6.19 A locomotive gait is a specified cyclic pattern of internal shape

changes (inputs) which couple to produce a net motion.

One very interesting phenomenon that arises in the study of locomotion is the
presence of a very limited set of basic motion patterns. For each species, there
usually exist at most a handful of gaits, often tailored for specific needs or environ-
ments. For instance, a human will walk or run, depending on the desired speed, but

may also hop or skip (though these two gaits do not seem to serve any evolutionary
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function). On the other hand, snakes will generally move in a serpentine fashion,
but can adapt to other environments. For instance, on a slippery surface, a snake
may push off the walls of its environment and move in a concertina (inch-worm)
gait. Also, snakes in the desert are known to use a sidewinding gait in order to min-
imize the amount of time that body surfaces spend in contact with the hot sand,
and maximize the time that surfaces are off the ground and hence cooled by the air.
What is interesting about all of this is that there is a small set of gaits that are used,
and almost universally these gaits are based on a single frequency of oscillation. In
studying locomotion, and in particular when examining related control issues, it will
be important to ask the question of how our models and control laws reflect these

naturally occurring patterns of motion.

6.5 Examples

We provide here a brief discussion of the gaits that have been found for our two
examples, the snakeboard and the Hirose snake. Obviously, the analysis of gaits is

intricately related to issues of controllability for locomotion systems.

6.5.1 The Snakeboard

We return to the snakeboard example to investigate controllability and gait patterns.
Obviously, the bracket of the control inputs, [hy, hg), is identically zero. The only

other first order brackets are those mixing the drift vector field with the control

inputs:
Jrsin2¢ Jrsin2¢ | —J, sin? ¢
ay = [hy, 1= ( r2ml 0s 8, T2ml sin @, :nl2 ,
. T
2, cos? ¢, 1,0, 0, 0)
and

T
a¢=[h¢,f]=(0, 0, 0, 2pJcos?d—ptang, 0, 1, 0, 0) :
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Notice that these vector fields have “1’s” in the appropriate velocity directions.
As mentioned above, this loosely corresponds to integrating the control torques to
velocity controls. Notice that this will also encode the information given by the
local form of the connection, A(r), since the connection relates input velocities to
fiber velocities.

The vector fields above imply control of the base (assumed to be controllable).
In order to show accessibility and controllability (STLC), the first criteria to be
satisfied are the conditions on oy, given by the following third order brackets.
First, we need the diagonal elements of o;; to be zero. This is seen to be true via a

direct calculation:

B = Byy = 0.

Then we look at off diagonal terms to show that o is onto (and hence that the
momentum direction is contained in the accessibility distribution). To see this, we

simply write down the necessary bracket:

T
ﬁ¢¢=[h¢,0&¢]=(0, 0, 0, 2JTC082¢, 0, 0, 0, 0) ;

which is nonzero for all ¢ # 7.
Finally, to demonstrate that the snakeboard is controllable, we need show that
g = by + b3 + ..., using the connection, A(r). We begin by computing [, oy},

which gives us the curvature of the connection, DA. This yields terms of the form:
T
(Jnﬁ cos2¢, 0, —ijg sin2¢) € ho.
Then, (g, [ag, 0p]] yields

T
(—%’f—sin2¢, 0, ~;2—n“—€’§—c032¢> € b3,
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and [ay, [ay, [ay, [0, ag]]]] gives

m2l

T
(0, 27, cos 2¢, 0) € bs.

Thus, g = b + b3 + b5, and the conditions for Proposition 6.18 are satisfied.

The reader should note that while the condition that (o;#);; = 0 in Proposi-
tion 6.18 may appear slightly artificial, it is required for satisfying Sussman’s crite-
rion for controllability. This is due to the fact that there are no other brackets of
lesser degree (or for that matter, lesser #-degree) that are nonzero and with elements
in the momentum directions. In fact, research by Lewis and Murray [56] suggests
that similar conditions may be needed for general mechanical systems. They study
accessibility and controllability for unconstrained mechanical systems (not necessar-
ily with symmetries), and report similar conditions on third order brackets of the
type [hs, [f, hi]]- In their case, these brackets are allowed to be nonzero if they are
contained in the control input vector field; however, it is not difficult to show that
for our purposes these brackets must be identically zero.

Finally, having shown that the snakeboard is controllable, we return to the
question of how these calculations relate to the gait patterns demonstrated by the
snakeboard. A major part of this issue, then, is asking the question, “what role
do the connection and its derivatives really play in describing the actual motion
of the system?” In particular, “what is the relationship between the connection
and its derivatives and locomotive gaits?” Although the results at present are only
qualitative, they certainly suggest that we are on the right track. Along with this,
they provide some hints as to what directions to follow in future research.

Extensive simulations of the snakeboard gaits can be found in [57], some of
which are included here to provide a new perspective on how these results fit into
the present context. To date, there have been three basic gait patterns studied
for the snakeboard: the “drive” (or “serpentine”) gait, the “rotate” gait, and the

“parallel parking” gait. In each of these, we assume complete control of the base
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variables, ¢ and 1), and specify their trajectories as sinusoidal inputs of the form:

¢ = agsin(wgt) and 1P = ay sin(wyt).

A gait will be referenced by an integer ratio of the form wy : wy, corresponding to the
ratio between wy and wy. For instance, a 3:2 gait (the parallel parking gait) would

correspond to wg = 3 and wy = 2. For the simulations, the following parameters

were used:
m : 6 kg
J : 0.06 kg:m?
Jy : 0.167 kg-m?
Ju : 0.00167 kg-m?
l :0.3m

These values roughly reflect the physical parameters used to build a working proto-

type snakeboard (shown in Figure 6.1).

Figure 6.1 A working demo version based on the snakeboard model

The “drive” gait
The drive gait is characterized by a 1:1 frequency ratio, and demonstrates a forward,
serpentine motion resembling that of a snake. A simulation of this gait is shown in

Figure 6.2, using the parameters: ag = 0.7 rad, ay = —1 rad, and wy = wy =1
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Figure 6.2 Position of the center of mass for the 1:1 (drive) gait

rad/sec. We remark that the scaling of the axes given in this figure and those to
follow is chosen so as to maximize the visibility and spread of the data presented in
these figures, and so this must be taken into account when interpreting the results in
terms of physical quantities. Notice that in Figure 6.2 the amplitude of the motion
in the transverse or y-direction steadily increases. This is due to the fact that
momentum is continually being built up by this gait. Human riders use feedback to
control this effect, and are visibly seen modifying their input patterns once a desired
speed is reached.

In relationship to the Lie bracket calculations, we notice that the 1:1 frequency
ratio has a direct correspondence to the 1:1 bracket, [ay, ). In fact, evaluated at

¢ = 0 (the center of the wheels’ rotation), the bracket gives a Lie algebra element

of

T
J,
0 )

This is written in the body frame of the board, and so corresponds to forward

motion, along the length of the board.
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The “rotate” gait

The rotate gait uses a 2:1 frequency ratio, and generates a rotational motion (in
6) that leaves the (z,y) position relatively unchanged in the mean. The input
parameters for the simulation shown in Figure 6.3 were ay = 0.7 rad, ay = 1
rad, wy = 2 rad/sec, and wy =1 rad/sec. The snakeboard moves steadily around
a central point, while undergoing large rotations— moving 7 radians, or one half
rotation, in approximately four cycles.

0.25 y : y
02t 0.2s intervals —— |

0.15

0.05

y {m)

-0.05
-0.1
-0.15 +
02+
-0.25
-0.3

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1
x (m)

Figure 6.3 Position of the center of mass for the 2:1 (rotate) gait

Again, we return to examine the correspondence of this motion with the Lie
bracket. We see that the necessary bracket direction, the #-direction, is given by a

2:1 Lie bracket. Namely, [, [ag, ay] ]| =0 Produces the element

T
(0. 0. -3)

The “parking” gait

The final gait studied is the parallel parking gait, so called because its motion
resembles that of a car performing a parallel parking maneuver (see Figure 6.4). It
is based on a 3:2 frequency ratio and generates a net lateral motion, transverse to

the length of the board. The parameters used in the simulation were a4 = 0.7 rad,
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ay = 1 rad, wy = 3 rad/sec, and wy = 2 rad/sec.
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Figure 6.4 Position of the center of mass for the 3:2 (parking) gait

The 3:2 bracket, [y, [cy, [0, [0, 0] ]]], in which ay, appears 3 times and oy

appears twice, gives

T
2
(0 . o)
Other permutations of the fifth order, 3:2 bracket give Lie algebra elements that
are either in the same direction or are identically zero. The nonzero entry in the

second position of the Lie algebra element above corresponds directly to the direction

transverse to the board, namely the y-direction when the board is at 6 = 0.

6.5.2 The Kinematic Snake

With the kinematic snake of Hirose, there is obviously a principal gait pattern in
which we are most interested— the gait found in common snakes as they slide along
the ground. This gait was described by Hirose as being closest to a “serpenoid”
curve, and we show below that the serpentine gait generated by our theoretical
model is strikingly similar to the pattern of the serpenoid curve. We also present

two other gaits not normally seen in nature, but which arise for the particular



145

model we are using. These could be implemented in a snake robot based on Hirose’s
ACM III

At this point, we do not have useful results regarding controllability of the
kinematic snake, but this is the goal of work in progress. One of the factors hindering
this effort is the presence of singularities in this type of model. These will occur
any time the axes of the three wheels of the kinematic snake intersect at a point,
which occurs frequently for the gaits we are examining. These singularities force
us to choose carefully the form of the inputs. Further work is obviously necessary,
perhaps with extensions to include in the model slipping of the wheels and friction
forces acting internally and externally.

The gaits presented below are only a selection of the more interesting gaits
that have been explored. As with the snakeboard, they are all based on integrally
related frequencies of the shape inputs. The ratios we give will relate the frequency
of bending of the inter-segment angle, 1;, versus the frequency of the rotation of the
wheels, measured in ¢;. Thus, a 2:1 gait represents the segments bending at twice
the speed as the turning of the wheels. Unlike the snakeboard, however, the relative
phasing of each of these angles will play a critical role in generating locomotion, as
well as in avoiding the kinematic singularities (while phasing is important for the

snakeboard, it is not nearly as crucial as it is for the kinematic snake).

The “serpentine” gait
We begin the analysis by examining the serpentine gait, which arises when using a
1:1 frequency ratio. For this, we use sinusoids of the form:

¢; = af sin(wf t+p?),
where similar values for ¢; will be superscripted with a 3. The serpentine gait is

demonstrated using common values for the amplitude and frequencies, so that
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Figure 6.5 A plot of (z,y) for the kinematic snake in serpentine mode

and with the length from the wheel base to inter-segment pivot point set to 0.1m
(hence a full segment would measure 0.2m).

For the phasing, we send a traveling wave down the length of the snake (done
by using an increasing value for the phase of the wheels), while forcing the inter-
segment angle to move 90° out of phase with their corresponding wheels. Thus, for

the simulation shown in Figure 6.5, the phases are given by

Notice that each of the wheel angles differs by {;, while the joint angles are 5
out of phase of their respective wheel angles. To give an idea of how this resembles
the motion of a snake, we include a trace of the serpentine motion in Figure 6.6.
By varying the magnitudes of the wheel angles (or the inter-segment joint an-
gles), slightly different patterns of locomotion are found to occur. Figure 6.7 shows

the resultant gaits for three different values of af = agb = a¥. Each of these simu-

lated gaits is run for the same length of time, which indicates that certain parameter
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Figure 6.6 A trace of the kinematic snake in serpentine mode

values will result in a greater distance being traveled. This information can be very
useful in designing an actual snake robot by helping to optimize the parameters
chosen for locomotion. We present in Figure 6.8 two parameter sweeps (one on ¢
and on ) which show obvious peaks indicating possible optimal parameter choices,
given the phasing between segments (Zrad) and segment length (0.2m).

One point of interest is to examine how this motion compares with the ser-
penoid curve proposed by Hirose [33]. We generate this curve using the following

parameterization:

% = cos (asin(fs)) (6.11)

7 = — sin (asin(8s)) . (6.12)

We have observed that the parameters o and 3 can be chosen such that the serpenoid
curve defined by Egs. 6.11 and 6.12 can be made to match arbitrarily closely any of
the serpentine patterns generated using the 1:1 gait. An example of this is given in
Figure 6.9, with o = 0.85 and 8 = 2T ~ 4.52rad.

As a final note on the serpentine gait, we mention that it seems to work well
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Figure 6.7 Three different shapes for the serpentine gait
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Figure 6.8 Joint angle parameter sweeps versus “forward” distance
traveled

when additional segments are added using the methods described in Chapter 5
above. At this point we measure this only qualitatively, and refer to Figure 6.10 in
which the trace of a 5-segment snake robot is given. Notice that the additional two
segments seem to follow the leading three segments quite well. Further analysis of
these extensions is still required to explore the possibility of adding segments when

following other gaits and patterns of motion.

The “rotate” gait
Finally, there are two other types of gaits, both producing a net rotation, though by

very different types of motion. The first gait uses a more “natural” type of gait for
y P yb g



149

0.05

snake model ~e—
0 seppynoid curve

-0.05 ¢
0.1 F

-0.15 ¢ ; ! 4
02} ; E

y position {m)

-0.25
03}

) E i
P o 4

-0.35 | v

0.4 . . . . . L
0 0.5 1 15 2 2.5 3 3.5
X position (m)

Figure 6.9 A comparison of the kinematic snake model versus the ser-
penoid curve

a snake, characterized by forward and backward motions similar to the snakeboard
rotate gait (and reminiscent of how humans turn a car in tight situations, e.g., a
“three-point turn”). The other gait does not seem practical for a real snake, but
might be employed by a mobile robot. The frequency ratios for these two gaits are
the inverses of each other. For the more “natural” gait, shown in Figure 6.11, the
frequency ratio is 2:1, with the parameters used being the same as above, except
that w}b = wg’ = 2 and all joint magnitudes, a‘f, . ,a”zb being set to 0.4 and 0.5,
respectively.

Finally, the 1:2 rotate gait, with the parameters set so that af = T and a? = %’r—,
is shown in Figure 6.12. Notice that we have plotted the variation of 8, the angle
of the central body segment, with respect to time. This is because the actual (z,y)
position of this segment moves only very insignificantly during the motion of this

gait.
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Figure 6.10 Traces of the 5-link kinematic snake
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Figure 6.11 A central body segment trace of the 2:1 gait
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Figure 6.12 A trace of the angle 8 for the 1:2 gait
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

The primary goal of this work has been to develop and explore new results in
the theory of nonholonomic mechanical systems with symmetries, emphasizing in
particular how these results can be used as a unifying framework for analyzing
locomotion. Obviously, the theory presented here is not restricted to just locomotion
systems. In fact, it can be applied to general principal fiber bundles with G-invariant
Lagrangian functions [10]. From an engineering perspective, however, we have found
the theory to be quite revealing when restricted to mechanical systems on trivial
principal fiber bundles, which covers a large spectrum of locomotion systems. The
intent of this thesis has been to present these ideas with enough mathematical rigor
to justify the results, but at a level that is approachable by engineers interested in
studying problems of locomotion.

In Chapter 2 we have provided a brief introduction to the tools needed to un-
derstand the processes involved in Lagrangian reduction and, in particular, for the
setting of constrained systems. The important symbols and notation are first high-
lighted, followed by a development of the theory of Lie groups, including the con-
cepts of Lie algebras, principal fiber bundles, and symmetries for functions, vector
fields, and one-forms. The second half of Chapter 2 was devoted to developing the
equations of motion for dynamical systems with constraints, and theorems that are

standard to the literature, including Noether’s theorem for unconstrained systems
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and Frobenius’ theorems for distributions. The theory in Chapter 2 is illustrated
through the use of two examples: Elroy’s beanie and the two-wheeled mobile robot.
These examples were chosen to give some intuition into unconstrained systems and
systems with principal kinematic constraints, respectively.

Having established the notation and basic theoretical foundations, we returned
in Chapter 3 to discuss the process of Lagrangian reduction in the absence of con-
straints. Basic to this theory is the use of a connection on a principal fiber bundle.
Along with this, we described the momentum map and connection one-form. In
Chapter 3, we have attempted to give some motivation as to why the connection
is a very important concept that can be used to help understand the generation of
net locomotion from basic shape changes. We also presented two methods for La-
grangian reduction in unconstrained systems: the more traditional Routhian method
and an alternative formulation in terms of the constrained Lagrangian. The utility
of the constrained Lagrangian method lies in the fact that it is quite straightforward
for unconstrained systems, and generalizes easily to the case in which nonholonomic
constraints are present. It also allows us to write down the reduced base equations
using simple matrix operations.

In Chapter 4, we have given a complete exposition of the reduction and recon-
struction procedure for mechanical systems with symmetries and constraints. This
chapter starts with explicit statements of the main assumptions used in developing
the generalized momentum, and includes a constructive method for generating a
basis for the constrained Lie algebra. The remainder of Chapter 4 was centered
around the generalized momentum developed by Bloch et al. [10]. The generalized
momentum describes the momentum of the system along the constrained symmetry
directions. An alternative derivation using the nonholonomic variational principle
was used to develop the generalized momentum equation, which includes forcing
functions in the directions of symmetry. The generalized momentum (and its gov-
erning equation) is very important for locomotion systems since the momenta (and
hence, velocities) along the unconstrained directions effectively describe the net mo-

tion of the system. Thus, the generalized momentum equation plays an important
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role in determining how the internal shape changes can be used to build a net
velocity for a locomotive body. We also showed that the momentum and momen-
tum equation can always be chosen to be invariant, given that the constraints are
themselves G-invariant. These facts were then used to synthesize a nonholonomic
connection for this system (along the lines of [10]). Using this connection, it was
demonstrated how to reduce the equations of motion to an extended base space,
using basic matrix manipulations. Using these formulas, the reduced dynamics on
the base space can easily be computed using standard symbolic manipulation pack-
ages such as Mathematica or Maple. Finally, we briefly discussed the process of
reconstruction, using the connection and generalized momentum equation.

The theory presented herein has been applied to many different examples in
locomotion and beyond. In Chapter 5, we have presented two new examples which
illustrate various facets of the theory. The treatment of the snakeboard is the more
comprehensive of these two examples, both in the analysis performed and in the
ways in which it illustrates the theory. The model we use for the snakeboard clearly
falls in the category of “mixed” constraints, so that there is a non-trivial generalized
momentum term. By reducing to the base space, it was easily shown that the base
dynamics are controllable. This fact was used later in Chapter 6 to discuss issues
of controllability for the snakeboard. The kinematic snake of Hirose, on the other
hand, demonstrates the theory as applied to the principal kinematic or Chaplygin
case. Thus, there is no generalized momentum equation, but the same principles of
building a connection on a trivial principal fiber bundle apply. We have used the
decomposition into base and fiber variables to gain an insight into how to extend
our model to include many more segments in the body of the snake.

Finally, in Chapter 6 we have established initial results concerning accessibility
and controllability tests for nonholonomically constrained systems with symmetries.
After reviewing some concepts on free Lie algebras, we presented a summary of the
relevant results from the principal kinematic and unconstrained cases (both of which
can be considered as driftless problems). These results were then used as a basis for

establishing sufficiency tests for accessibility and controllability in the general case
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in which the generalized momentum enters as a drift term. We concluded Chapter 6
with a discussion of gaits and a summary of the many gaits found in the examples

presented in Chapter 5.

7.2 Future Work

We have presented in this thesis a comprehensive theory that can be used as a
basis for further study of locomotion problems. This theory, however, has opened
up as many questions for future research as it has answered regarding our basic
understanding of locomotion. This section is divided into a series of subsections,

each of which is devoted to a separate area of possible future research.

7.2.1 Averaging Theory for Lie Groups

One of the more obvious goals in studying locomotion is to begin to develop methods
for generating and tracking trajectories. Until basic steps toward this goal are taken,
the feasibility of actual robotic implementations of alternative modes of locomotion
is severely limited. In Section 6.4, we have presented a first cut at this goal, by
providing basic gaits that generate certain directions of motion. However, due to
the nonlinearities of the problem, the concept of using superposition to blend two
gaits into other hybrid gaits is not possible.

In this section, we discuss in some detail results on averaging theory for Lie
groups developed by Leonard and Krishnaprasad [51]. The structure that they use
most closely resembles the structure found in the principal kinematic case, and so
these would be the first types of problems to examine in attempting to extend their
theory. As a basic synopsis of what they have done, the theory allows one to give
explicit results for (locally) equating Lie bracket directions with the motion that is
generated by small-amplitude periodic controls. They also develop a constructive
control algorithm designed to exploit the averaging results [52]. While the results
are only valid for drift-free systems in which the local form of the connection is

constant, it is hoped that future research will reveal how their techniques can be
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applied to control systems on fiber bundles and to systems with drift.

First, we write the control system as

gTlg=eU(t),  Ut) = fiu'(t), (7.1)

where f1,..., fi form a basis for g, u’(t) € R are the control inputs, and € > 0 is a
scaling parameter which reflects the use of small-amplitude inputs, such that eut is
small. Although we have defined Eq. 7.1 using a full set of inputs, in general it is
assumed that some of the u® are identically zero. In fact, from the perspective of
control theory, the really interesting cases occur when there are fewer controls than
states.

For the purposes of averaging, certain terms will arise repeatedly. We use peri-

odic inputs of common period T', and so let

and

Also, let U = @f;. They make the additional assumption that ut, = 0 for each 1,
which implies that each @ also has common period T

Along with demonstrating that the Lie brackets specify the directions of mo-
tion, Leonard and Krishnaprasad also show that the magnitude of that motion is
proportional to certain areas bounded by the inputs. With this in mind, define the

quantities

and
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to be, respectively, the areas and the moments defined by the simply connected,
closed curves ii‘, @/, and 4*. As might be expected, Area will give the contribution
given by the second order brackets, while m¥* will do the same for third order
brackets.

In representing the solution to Eq. 7.1, they use the single ezponential repre-
sentation given by Magnus [59]. Under certain conditions (discussed in [51]), the

solution to Eq. 7.1 with g(0) = e (the group identity) can be written as
g(t) = ”0,

where

63 t

12 Jo [O(r),[U(r),U(r)]ldr + ...

t 2 It
Z(t) = e /O Ur)dr+5 /0 [0(r), U(r)dr +

In a local region, we will denote a norm on g by | - | and from this construct a
metric on G, denoted d(-,-). Using these definitions, we are ready to state their

main theorem.

Theorem 7.1 (Area-Moment Rule) In the appropriate local neighborhoods, let Zg
be an initial condition such that g(0) = eZ° and | Zy|= O(€?), and define

3) - €t ij et iin (3)
ZVN(te) = eU + ﬁArea Ui f3] — 7™ [fas b fR) + 247,

g(3) (t) = 62(3)(t)’
where | Zy — Zés) |= O(e®). Then
i G)(4)) = O(e3
d(g(t)ag (t)) - O(E )9 Vie [O,b/E],

where b is chosen such that convergence requirements from [59] are satisfied.

Thus, we have an approximation to the fiber trajectory, g®(t) = exp ZB) (1),
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which has first order brackets scaled by Area” and €2, and second order brackets
(degree 3 brackets) scaled by m** and €3. The result implies that this approximation
will be within O(€®) of the actual trajectory, g(t), for a time of order %

As was mentioned above, a natural extension to this framework would be to
derive results in the case that the connection is a function of the base variables, i.e.,

A = A(r). In this case, Eq. 7.1 would become

g lg=eU(t),  U) = filr)u' ().

Other future work includes extending these results to the unconstrained case with
nonzero momentum (where some type of momentum shift might be possible) and to
some specific classes of systems with drift, for example, systems in which the drift
has a zero average over one period. We note here, however, that for unconstrained
systems in which the reduced Lagrangian is a function only of { and 7 (i.e., it is
independent of the shape variables, r), then the above theorem on averaging applies

directly.

7.2.2 Optimal Control and Optimality of Gaits

In discussing the control of robotic systems, a natural question that arises is whether
there are some controls which are “optimal.” How we define optimal is very much
left up to us, but most often optimal controls are chosen so as to minimize some
cost function, very often a norm of the control inputs. For the purposes of studying
locomotion, issues of optimal control can play a significant role in two ways.

First, since we are really interested in having a locomotive system move from
point A to point B, we would certainly like to be able to say that the robot is using
controls that optimize (minimize) the amount of energy required to move along this
path. This will be particularly true for fully autonomous systems which may have
only a finite power reserve, so that energy expenditures for moving the robot play a
critical role in the duration of the experiment (and hence to some extent the utility

of the robot).
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Additionally, the study of optimal control may provide us with the answers to
more fundamental (and philosophical) questions regarding the optimality of gaits
chosen by animals in nature. For instance, does the serpentine motion of the snake
somehow optimize its use of energy in generating locomotion? A similar question
could also then be asked for animals which use various gaits for different operating
regimes, e.g., horses changing gaits at different speeds. While there are obviously
many other factors entering into the evolutionary choice of particular gaits that
would hinder us from rigorously showing that a specific gait is chosen for the reason
of optimality, it would at least provide us with some evidence to support these
claims.

There is extensive literature on optimal control, including work done specifically
for reduced systems, mostly using the Pontryagin maximum principle combined with
Poisson reduction. We highlight here one result of a slightly different nature which
applies directly to nonholonomic mechanical systems with symmetries. In [46], Koon
and Marsden describe a method that uses Lagrangian reduction directly to establish
necessary conditions for the existence of optimal controls for these types of systems.
Given a cost function on the shape velocities, C(7), they use Lagrange multipliers to
relax the constraints and in the process define a new Lagrangian, £, for the optimal

control problem:
L= CF) + (ML) € + Ar)F —T7'p) + (p — 7T opr — 70y — T oppp; £(1)),

where A(t) € g* and k(t) € g5. Then the main result is given by the following

theorem.

Theorem 7.2 If q(t) = (g(¢),7(t)) is a (regular) optimal trajectory for the above
stated optimal control problem, then there exist A € g* and k € g° such that the
reduced curve, (£(t),7(t),7(t)) € TQ/G satisfies the reduced Euler-Lagrange equa-
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tions:

doL_oL_
dt o7  or

d oL *8[,_

%-a—é—adg-ég—o
doc oL _
dtdp Op

along with the fiber and momentum equations given by

£=—Ar)yr+1"p

._.T “. » T . T
p=7 047+ 1" Gip + P OppP.

With this general formulation (for mechanical systems with symmetries), they
also provide detailed coordinate calculations in bundle coordinates. Finally, they
apply the theory to examples, including the snakeboard, to give necessary conditions
for optimal controls using a cost function of C (4, ¢) = —%—(w2 + ¢?). The equations
they obtain are fairly simple in form, but further work is still necessary to interpret

these results in terms of basic gait patterns and locomotion.

7.2.3 Other Control Issues

The accessibility and controllability tests presented in Chapter 6 are just the be-
ginning of the research needed to fully address the question of controllability for
locomotion systems. As such, they offer easily computable tests that work well for
some initial examples, but which may not be strong enough in more general appli-
cations. Along with a desire to extend these results, there are obviously many other
related control issues that should be considered.

For example, Bloch and Crouch implicitly show in [8] that Brockett’s sufficiency
test for exponential stabilizability does not hold for mechanical systems with non-
holonomic constraints. This implies that we cannot use smooth state feedback to
exponentially stabilize a locomotion system about an equilibrium point. In order to

achieve this, we would need to explore other types of control laws, such as discon-
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tinuous or time-varying feedback. It would be interesting to see how these types of
controllers might be synthesized using the knowledge of gait patterns and connec-

tions.

7.2.4 Extensions to Other Systems

In this dissertation, we have discussed three particular examples of locomotion sys-
tems, as well as several problems in mechanics to which this theory applies. A
very important topic to consider when discussing future work is the possibility of
extending the theory to further examples. To this extent, we consider a few areas
of interest.

The class of undulatory locomotion systems is quite large, with many more forms
of locomotion than have been discussed here. One subset of undulatory systems that
has not been directly addressed consists of examples such as swimming and flying,
where the motion is not generated by pushing off the ground (or some rigid sur-
face), but instead comes from a complex interaction of the body with the ambient
environment (i.e., water, air, etc.). In some limiting cases, models have been de-
veloped which make use of the same structure of connections and trivial principal
fiber bundles, including the paramecia studied by Shapere and Wilczek [87, 88] and
the viscous models of snakes and inchworms developed by Kelly and Murray [43].
However, these models do not include the full fluid dynamics which occur for swim-
ming in moderate to high Reynolds number. It is not clear, even, if the theory of
reduction and connections can be used in these cases, though there is some rea-
son to believe that the presence of symmetries (common to basically all locomotion
systems) can be incorporated into the analysis. Having an understanding of these
other locomotion regimes can be quite useful from a robotics perspective. The topic
of underwater research has been widely discussed recently, and it would be very
interesting to explore fish-like methods of propulsion, as this appears to be a very
efficient form of locomotion in a fluid environment. Similarly, the construction of
micro-robots will most certainly require a better understanding of the mechanics of

swimming (as motivation, we include in Figure 7.1 a picture of a micro-robot built
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by Fukuda et al. [29] which uses a propulsion mechanism similar to a water-bug).

ERerT

Figure 7.1 Underwater micro-mobile robot and schematic drawing

Also suggested by the title, there are certain problems of locomotion which ob-
viously lie outside the theory presented in this dissertation. Namely, it is fairly clear
how this theory can be used for general problems of undulatory locomotion, such
as snakes, inchworms, and wheeled robots, but it is not nearly as clear how these
ideas can be extended to legged robots. The reason for this is that the kinematic
constraints for legged systems (which manifest themselves as no-slip constraints be-
tween the legs and the ground) are not continuous. While the fundamental concept
of internal shape changes leading to locomotion may still be important to consider,
it is no longer possible to model the interaction in a straightforward and continuous
manner. In order to make use of the results from nonholonomic mechanical systems
with symmetries, one possibility may be to recognize the symmetries which occur
in the interchangeability of the legs. This would involve a reduction by a discrete
group, e.g., the group of permutations on the configuration variables. Using reduc-
tion for a legged system could then allow us to study the dynamics of a smaller set of
legs, and make inferences about how they drive the locomotion patterns of the total
system. This would be very much like Raibert’s use of a “virtual” leg in analyzing
quadrupeds [82]. Use of discrete symmetries could then lead to analysis of different
gait patterns being generated by different symmetries, similar to the discussions by

Collins and Stewart [24, 26] of coupled nonlinear oscillators.
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