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ABSTRACT

Subband coding schemes have been widely used to encode signals from speech,
high quality audio, and image sources. The theory of perfect reconstruction filter
banks has also been studied extensively. The purpose of this thesis is to study the
properties of the so-called paraunitary systems, and issues pertaining to their appli-
cations and implementations.

We will begin by proving several properties of paraunitary filter banks. For exam-
ple, we will prove that all orthonormal discrete-time wavelets can be generated using
paraunitary binary trees. We will also extend this result to arbitrary tree-structures
and wavelet packets. Next, we will address the two issues involved in the design of a
paraunitary subband coding system. 1) the problem of optimal bit allocation among
various channels given a fixed bit-rate, and 2) the problem of finding the optimal filter
bank (by optimization) to encode a given signal. We will prove several interesting
results in this regard. We will then show how generalized polyphase representations
can be used to enhance the coding gain of transform coding systems.

In practical applications, one often imposes several other conditions on the indi-
vidual filters in a filter bank. For example, the linear phase property is found to be
important for encoding image signals, whereas the ‘pairwise mirror-image’ property
generally yields filters with better responses and, therefore, better frequency selectiv-
ity. The final part of the thesis deals with the implementions of paraunitary systems
having such additional properties. We will obtain factorizations for such systems
which will be proved to be minimal as well as complete. These factorizations yield
structures which are robust, i.e., all the desired properties are retained in spite of

coefficient quantization.
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Chapter 1

INTRODUCTION

Transform coding and subband coding are well-known techniques for efficiently
encoding data [1}-[5]. They are used in compressing data from speech, high quality
audio, image, and other sources. Consider the subband coding scheme shown in
Fig. 1.1(a). In this scheme, the input signal x(n) is split into M subbands in the
frequency domain by a bank of filters called the analysis filters. The filters typically
have responses as shown in Fig. 1.1(b). The outputs of these filters are therefore
bandlimited, and hence we can sub-sample them. This is indicated by boxes with | M.
The signals in each of the subbands are then processed according to the particular
application at hand. At the receiving end, the sampling rates in each of the subbands
are increased to their original value by the expanders (indicated by T M), which
introduce M — 1 zero valued samples between each non-zero sample at their input.
The signals are then passed through the synthesis filters, whose magnitude responses
typically resemble those of the analysis filters. The outputs of the synthesis filters are
combined to give the reconstructed signal y(n).

The problem of perfect reconstruction is to choose the analysis and synthesis filters
in such a way that (in the absence of subband processing,) y(n) = z(n) for all n.
The problem of perfect reconstruction is considerably simplified by the polyphase
matrix representation of the system which is shown in Fig. 1.2. In this figure, E(z)
and R(z) are the polyphase matrices [5] corresponding to the analysis and synthesis

filters respectively. This scheme works as follows: The sequence x(n) is divided into
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non-overlapping blocks of data by grouping together M successive samples from the
input stream. These samples form the components of the vector x(n) which is termed
the M-fold blocked version of z(n). Each of these blocks or vectors is encoded by
the linear transformation E(z). The M outputs, i.e., the components of the vector
v(n) are the subband signals which are processed. At the receiver, the received vector
u(n) is passed through the transformation R(z). The output y(n) is ‘unblocked’ to
give the reconstructed sequence y(n). Any filter bank in Fig. 1.1(a) can be redrawn
as in Fig. 1.2, and vice-versa. It is now possible to ensure perfect reconstruction by
choosing R(z) = E~Y(2), and then choosing the matrix E(z) so that its inverse exists.

While the above approach solves the problem of perfect reconstruction per se, there
are some drawbacks to the method. Firstly, R(z) could be IIR even if E(z) is FIR.
In fact, R(z) could be unstable. Another problem is that the analysis and synthesis
banks could have different complexities as far as implementation is concerned. These
problems are overcome by choosing E(z) to be a paraunitary matrix. A matrix is

said to be paraunitary if it satisfies [5]
E(2)B(z) = T,

where E(z) = Ef(1/2*). The system can be guaranteed to have the perfect recon-
struction property by having R(z) = E(z). This paraunitary property can be traced
back to classical network synthesis [6]. Notice that if E(z) is chosen to be a FIR
paraunitary matrix (such matrices have been shown to exist), we get perfect recon-

struction with FIR analysis and synthesis filters.

Organization of the thesis

This thesis is a collection of five papers which address different aspects of the
Paraunitary Filter Bank system described above. Four of them (chapters 2,3,4,5)
have been accepted for Journal Publication, and one (chapter 6) is under review.

Hence each of the chapters is self contained, though they do refer to each other.



Therefore, there is also a slight overlap between the introduction section of these
papers.

Consider Fig. 1.3, which shows a tree-structured synthesis filter bank. (There is
a corresponding tree-structured analysis filter bank. Also, notice that the uniform
subband coding system described in the previous section is in fact a ‘One-level’ tree.)

One can express the sequence z(n) in terms of the sequences yx(n) as

Z Zyk m)Nem ().

k=0 m

The mem(n) are called the basis functions, whereas the y,(m) are the wavelet co-
efficients. Clearly, the basis functions are related to the synthesis filters in the
tree-structure. The relation between paraunitariness of filters and orthonormality
of wavelets is known to some extent |[7]. In chapter 2, we will further explore this
relationship. We will prove several properties of paraunitary systems. The first the-
orem we will prove states that a binary tree structure with paraunitary matrices
on all levels (possibily different) generates orthonormal discrete time wavelets. Fur-
thermore, all orthonormal discrete-time wavelets can be generated using paraunitary
binary trees. The other results in this chapter extend these theorems to arbitrary
(non-binary) trees, and the resulting basis functions. The bases resulting from such
arbitrary tree structures have been referred to as ‘wavelet packets’ in literature [8].
In chapter 3, we consider one particular application of paraunitary filter banks,
namely, subband coding of signals. In this application, we quantize and transmit
(or store) each of the subbands. Real life signals often have an unequal distribution
of energy across different subbands. Tn particular, some subbands have most of the
energy. This in fact makes data-compression possible. Non-paraunitary subband
coding systems have been studied in literature [2],[3],[4], and they have also been
used to compress data. The first problem we consider is that of allocating bits to the
different subbands from a fixed budget so as to minimize the mean-square error. This

problem has been solved by other authors [1], [4] for the two special cases of transform



coding and ideal brick-wall filtering. In chapter 3, have obtained bit-allocation results
for the general case of non-uniform paraunitary filter banks. Our results also give us
bounds on the overall reconstruction error in terms of the quantization errors in each
subband, no matter what the frequency responses of the filters are. Furthermore, our
results do not assume that the quantization errors are white or uncorrelated. The
next problem we address is that of choosing the optimal filter bank to encode a given
signal. For the case of transform coding, it is well-known that the optimal transform
to encode a signal is the Karhunen-Loeve Transform (KLT) [4]. We will show how
one can choose (by optimization) a filter bank to minimize the mean-square error
i.e., maximize the “coding gain” given the statistics of the input signal. We will also
present simulation results based on the statistics of low-pass and band-pass speech.

In chapter 4, we will discuss the ‘generalized polyphase representation’ (GPP).
The traditional M-fold polyphase representation of a transfer function H(z) is given
by

M-1
H(z) = 3 hi(z")27,
i=0

where the h;(z) are referred to as the M polyphase components of H(z). The right
hand side of the above equation is a linear combination of functions z7¢, i =
0,...,M — 1, with the weighting factors being functions of z*. A natural question
which arises is whether an arbitrary transfer function H(z) may be written as a linear
combination of functions other than z~* and, furthermore, are there any advantages
to be gained by using a different set of functions? In this chapter, we first provide
a complete characterization of valid polyphase representations. We will then study
an application of the GPP, namely in enhancing the coding gain of transform coding
systems. We will prove several interesting properties in this regard.

In chapter 5, we will discuss the linear phase filter bank. In applications to

image processing, linear phase property of the filters in the filter bank is found to be

important. We begin by answering several theoretical questions pertaining to linear



phase paraunitary systems. Next, we develop a minimal and comlete factorization
for such systems. Further, we structurally impose the additional condition that the
filters satisfy pairwise mirror-image symmetry in the frequency domain. Imposing this
condition significantly reduces the number of parameters to be optimized in the design
process. Our factorizations give robust structures for implementing filter banks, i.e.,
all the desired properties are retained in spite of coefficient quantization. We then
demonstrate the use of these filter banks in the generation of M-band orthonormal
wavelets. Finally, we use the linear phase paraunitary system to encode sigﬁals and
provide a comparison with traditional techniques. Several design examples are also
given to validate the theory.

In chapter 6, we will discuss minimal and complete factorizations of paraunitary
filter banks with filters whose responses have pairwise mirror-image symmetry about
7/2 in the frequency domain. Imposition of this condition has been found to result

in filters with better responses, and hence better frequency selectivity.
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Chapter 2

ON ORTHONORMAL WAVELETS AND PARAUNITARY FILTER
BANKS
Abstract!

Binary tree-structured filter banks have been employed in the past to generate wavelet
bases. It 1s known that a binary tree-structured filter bank with the same paraunitary
polyphase matriz on all levels generates an orthonormal basis. First, we generalize
the result to binary trees having different paraunitary matrices on each level. Next,
we prove a converse result; that every orthonormal wavelet basis can be generated by
a tree-structured filter bank having paraunitary polyphase matrices.

We then extend the concept of orthonormal bases to generalized (i.e., non-binary)
tree-structures, and see that a close relationship exists between orthonormality and
paraunitariness in this case too. We prove that a generalized tree-structure with pa-
raunitary polyphase matrices produces a orthonormal basis. Since not all bases can be
generated by tree-structured filter banks, we prove that if an orthonormal basis can be

generated using a tree structure, it can be generated specifically by a paraunitary tree.

I INTRODUCTION

Recently, wavelet transforms have evoked considerable interest in the signal-processing
community. They have found applications in several areas such as speech coding,

edge-detection, data-compression, extraction of parameters for recognition and di-

! Appeared, IEEE Trans. on Signal Processing, March, 1993.
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agonostics, etc. [1]-[3]. Since wavelets provide a way to represent a signal on various
degrees of resolution, they are a convenient tool for analysis and manipulation of
data. In [4], Mallat describes a mutiresolution algorithm for decomposing and re-
constructing images. In [2], Mallat and Hwang have shown that the local maxima
of the wavelet transform detect the location of irregular structures. They have also
shown that it is possible to reconstruct one and two dimensional signals from the lo-
cal maxima of their wavelet transform. Applications of wavelets to sub-band speech
and image coding techniques can be found in [5]-[7]. Wavelets can also be used in
the detection of transient signals [6]. Orthonormality is a very desirable property
in several of these applications and, indeed, the problem of generating orthonormal
wavelets is of considerable interest.

The theory of wavelets was originally developed in the context of continuous time
functions [8], [9]. It has since been related to the familiar idea of Quadrature Mirror
Filter (QMF) banks. Continuous time wavelets can be obtained from infinite-level
binary tree-structured QMF banks, with the same filters on each level [10]. This
infinite recursion gives rise to two continuous time functions 9 (¢) and ¢(¢) which are
termed as the wavelet function and the scaling function respectively. The wavelet
basis is then obtained by dyadic scaling and shifting of the wavelet functon #(¢). It
has been shown [10] that if this basis of continuous time functions is orthonormal,
then the single QMF pair used to generate them is paraunitary [11].

Subsequently, the notion of wavelets has been extended to discrete time. This is
more suitable in a number of signal processing applications. However, there appears to
be no universal definition of wavelets in discrete time. Some authors have referred to
a one-level paraunitary filter bank as wavelet transforms. This definition is, however,
too restrictive. Probably the definition which best captures the notion of wavelets

in discrete-time is the idea of having a binary tree with a finite number of levels,

simultaneously allowing different filters on each level This definition ig fairly general
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and is also useful from a practical viewpoint. We shall subscribe to this definition in
this paper. The idea of wavelets in discrete time therefore reduces to that of a filter
bank with dyadically increasing decimation ratios. This idea of a filter bank with
dyadic decimation ratios can be generalized to filter banks with non-uniform, non-
dyadic decimation ratios. The basis functions corresponding to such non-uniform
filter banks have been referred to as wavelet packets [1], [12]. One of the ways to
realize such non-uniform filter banks is by using general tree structures.

Given the importance of orthonormal wavelets and wavelet packets in several
applications, it becomes natural to seek necessary and sufficient conditions under
which these discrete time basis functions are orthonormal. While the relation between
orthonormal bases and paraunitary filter banks is known to some extent, there are
some extensions which are either not known or not published so far. There also
appears to be no published work which can serve as a comprehensive reference for
the generalized orthonormal wavelet bases (wavelet packets) and paraunitary filter
banks. The aim here is to present a complete study of this relation. The following

are the main points of this paper:

1. Paraunitariness implies wavelet orthonormality: It is known that if a binary tree
is constructed using the same paraunitary block on each level, the resulting
discrete time basis is orthonormal. A straightforward extension is that the
discrete time basis continues to be orthonormal even if different paraunitary

blocks are used on each level (Theorem 1).

2. Orthonormality implies paraunitariness: We prove that every orthonormal wavelet
basis can be generated using binary tree structured filter banks with parauni-
tary building blocks (Theorem 2). The proof also shows how we can synthesize
the tree, i.e., we can identify the filter pair on each level of the tree, starting
from the given orthonormal basis. Furthermore, if a orthonormal wavelet basis

is generated using a binary tree, the filters on each level have to be generalised
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paraunitary (i.e., parauitary, except for constant scaling) (Corollary 1). These
results allow us to generate all orthonormal wavelet bases simply by manipu-

lating the coefficients of a set of lattice structures.

3. Orthonormality of wavelet packets: We develop the concept of orthonormality for
non-uniform filter banks. In particular, we show that if fi(n) and fi(n) are two
of the basis functions, then the orthonormality condition can be written as

nwak(n)fz*(n — guet) = 6(k — 1)6(3).
Here, g is the ged of (I, I;), the decimation factors corresponding to the two
filters. The fact that the gcd is involved in the definition has not been brought to
attention before. We also prove that if a set of wavelet packets is realized using
a general tree structure with paraunitary matrices on each level, the resulting
basis is orthonormal (Theorem 3). Since not all bases can be generated using
tree structures, the exact converse of this result is not true, unlike the binary
case. However, if an orthonormal basis can be generated using a tree structure,
we show that it can be generated specifically by a tree having paraunitary filters
on each level (Theorem 4). This establishes the relation between paraunitariness

and orthonormality in the case of wavelet packets.

Notations Bold-faced quantities denote matrices and vectors, as in A and x. AT
denotes the transpose of the matrix A. A superscript asterisk as in f*(n) denotes
conjugation. The tilde-notation as in ﬁ(z) stands for conjugation of coefficients
followed by transposition followed by replacing z by z=!. Consider a transfer function

A(z). It can be written in terms of its M polyphase components [11] as follows:
A(2) = ao(zM) + 27 a1 (M) + .. 4 (27 a1 (2M). (1.1)

This is known as Type I polyphase. Let Hi(z), ¢ =0,...,M —1, be a set of analysis
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filters. They can be written as
M-1
Hi(z) = > By k=0,...,M 1.
1=0

The matrix E(z) = [Ey,] is called the polyphase matrix of the analysis filters. There

is also a Type 1I polyphase representation which is as follows:
A(z) = 27 Mgl (M)  27MP20 M) + L+ ahy_ (2M). (1.2)
Let Fi(z), i=0,...,M — 1, be a set of synthesis filters. They can be written as
M-1
Fk(z) = Z Z_M+1+lle(ZM) k= 0, . ,M - 1.
=0
The matrix R(z) = [Ryx] is called the polyphase matrix of the synthesis filters.
If a(n) is the inverse transform of A(z), then a(Mn) is called the M-fold decimated
version of a(n). In the z-domain, we use a downward arrow to denote the decimation

operator; for example, (A(2))| s is the z-transform of the M-fold decimated version

of a(n). A matrix E(2) is said to be paraunitary if it satisfies [11]
E(z)E(z) =1 for dall 2. (1.3)

Given a set of M filters Hg(z), k=0,...,M—1, we can define an M by M polyphase
matrix for these filters as in [11]. We say that the set of filters forms a paraunitary
set (abbreviated PU-set) if their polyphase matrix is paraunitary. In particular, two
filters with a paraunitary polyphase matrix are said to form a PU-pair.

The abbreviation ‘ged’ stands for the greatest common divisor. The abbreviation

FIR stands for finite impulse response.

II PRELIMINARIES
In this section we shall develop the background useful for dealing with the remain-
der of the paper. Most of what is presented in this section can be inferred from the

work of Daubechies [10]. The filter-bank approach to wavelets has also been presented



14

by Vetterli [12], [15] and by Vaidyanathan [16]. Our notation in this paper will be
similar to that in [16].

The wavelet transform provides a time-scale representation of a signal which makes
it possible to analyze signals on various degrees of resolution. It is a representation
of a signal in terms of a peculiar set of orthonormal functions. The peculiarity of this
orthonormal family is that it is obtained by shifting and dilating a single function,
often termed as the ‘mother wavelet.” Let x(t) be the signal under consideration.

Mathematically, we can write its wavelet transform as
Xowr(p,0) = / ot (=t (2.1

Xeowr(p,q) is referred to as the ‘Continuous Wavelet Transform’ (CWT) of the
signal z(t). It is called thus because the variables p and ¢ are continuous variables.
Note that the family of functions f (%—q-) is generated from a single function f(t) by
translations and dilations. ‘p’ is the dilation parameter, whereas ‘¢’ is the translation
parameter. This is a mapping from a one dimensional continuous variable ¢, to a two
dimensional continuous variable (p, q). If we restrict p and ¢ to take discrete values,
we obtain a mapping from a one dimensional continuous variable to a two dimensional
discrete variable. This is called the Discrete Wavelet Transform (DWT).

In signal processing literature [15],[16], there has been defined a similar operation

as the above for discrete time signals. We say,
ye(n) = th z(em—m), 0<k<L (2.2)

is the ‘Discrete Time Wavelet Transform’ (DTWT) of the signal z(n). It is common
to choose I, = 281 k=0,...,L~1, and Iy = 2F. This is the binary DTWT, often
referred to simply as the DTWT [15],[16]. The quantities yx(n), k =0,...,L are
called the ‘ Wavelet Coefficients’ of the signal z(n). Eq. (2.2) is a convolution followed
by decimation by a factor [. The wavelet coefficients can hence be visualized as being
obtained by passing the signal through a bank of L + 1 filters /z(n), and decimating
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the filter outputs by factor Ix. The condition that the filter bank be a maximally
decimated system implies that >5(1/I;) = 1. This viewpoint has been explained in
[16]. Specifically, the binary DTWT (which we shall henceforth refer to as DTWT)
can be obtained by passing the signal x(n) through a binary tree-structured analysis
bank (as shown in Fig. 2.1(a) for the case L = 3). Consider the corresponding
binary tree-structured synthesis bank shown in Fig. 2.1(b). It is well-known [13] that
it is possible to design such perfect-reconstruction tree-structured filter-banks. For
the perfect reconstruction system, the signal x(n) can be recovered from its wavelet

coefficients as

L
() =D > yr(m)mem(n). (2.3)

k==0 m

This is the ‘Inverse’ DTW'T operation. The ngm(n) are termed the ‘Wavelet Basis
Functions.” The perfect reconstruction binary tree-structured analysis-synthesis sys-
tem can be redrawn as a traditional filter bank as in Fig. 2.2 (a). Fig. 2.2(b) shows
the typical frequency responses of the analysis filters. Note that the amplitudes of
the filters increase as the bandwidth decreases, keeping the energy in each of them
equal. With reference to Fig. 2.2(a), it can be shown [15], [16] that the synthesis

filters are related to the functions ngm(n) as

Mem(m) = fuln—2"m), k=0,...,L—1 (2.4)

Mm(n) = fr(n—20m). (2.5)

For perfect reconstruction systems, therefore, every signal can be represented in terms
of a wavelet transform, and every signal can be recovered from its wavelet coefficients.
Note that this is not the case with ordinary Fourier transform. In fact, not all
sequences have a Fourier transform!

Orthonormality

The wavelet basis functions in eq. (2.3) are said to be orthonormal if they satisfy
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the relation [10]
> _tkm ()i () = 6(k — 1)6(m — i). (2.6)

In terms of the filter responses in a binary tree-structured filter bank, this is equivalent
to the condition

> fiuln — 26 m) fi(n — 27 = 6(k—D)6(m —1), k,1=0,...,L—1, (2.7)

S filn=2"m)ff(n -2 = 0, 1=0,...,L—1, (2.8)

S fr(n—2tm) fi(n —2%) = &§(m—i). (2.9)
With a change of variables, this becomes

Sl ffn=271) = §(k-16(@), 1<k, L,k=0,...,L—1, (2.10)
S fm)fin -2 = 0, 1=0,...,L—1, (2.11)

St fi(n —2%) = §(). (2.12)

In the transform domain this is equivalent to

(Fe(2)Fy(2)) o2 = 8(k—=1), 1<k, kil=0,...,L—1, (2.13)
(FL(2)Fy(2))lgn = 0, 1=0,...,L—1, (2.14)
(FL() ()l = L (2.15)

First, consider the case of a one-level ‘tree’ shown in Fig. 2.3(a), redrawn as in Fig.
2.3(b), where R(z) is the polyphase matrix of the filters Fy(z) and Fi(z). It has
been shown [16] that if the matrix R(z) is paraunitary, then the filters satisfy the

orthonormality condition
> feln —2m) ff(n — 20) = 6(k — )6(m — i), k,1=0,1. (2.16)
In the z-domain, this becomes
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which can be rewritten as,
F(2)Fy(2) + Fy(—2)Fy(—2) = 26(k — 1). (2.18)

This can be shown [11] to be exactly equivalent to the condition that the filters F5(z)
and Fy(z) form a PU-pair. When k = [, we refer to eq. (2.13) as the ‘unit-energy
condition.” Now consider a general L-level tree, drawn in terms of the polyphase
matrix of the filters on all levels. Fig. 2.4 shows the case L = 3. Let the polyphase
matrix be paraunitary, i.e., it satisfies eq. (1.3). Then, it has been shown in [16] that
the wavelet basis generated by that tree is orthonormal.

Orthonormality of basis functions is often a very desirable property in several ap-

plications.

III SOME RESULTS ON PARAUNITARY SYSTEMS

In this section we present a few basic results pertaining to paraunitary systems.
Some of them are straightforward, but many are fundamental. All are included here
for the sake of completeness.
Lemma 1: Let A(z) be a FIR transfer function such that (A(z))lx = 1, and let A(2)
have a factor of the form c(2M). Then c¢(z) = k2!, for some constant k and integer I.
In other words, the M polyphase components of A(z) cannot have a common factor
other than of the form k2.
Proof: Let

A(z) = c(zM)a(z). (3.1)

Hence, (c(2™)a(z))|m = 1. Using the noble identity [11], we get,
c(2) [(a(z))dad] = 1. (3.2)

Since this is a product of two FIR functions, matching zeros on both sides of the
above equation, we get o(z) = k2.

Now, A(z) can be written in terms of its polyphase components as in eq. (1.1). If
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the a;(z) i =0,...,M — 1 had a common factor, A(z) could be written as in eq.
(8.1), which we have shown is not possible unless the common factor is of the form
kz'. Hence the M polyphase components of a function A(z) satisfying (A(2))[y =1
cannot have a common factor other than of the restricted form.

Lemma 2: Given a FIR transfer-function A(z) satisfying
(A(2)A(2)]2 =1, (3.3)

we can always find a function B(z) such that A(z) and B(z) form a PU-pair.

Proof: Since A(z) is FIR, it can be multiplied by z™ (for some m positive or negative),
so that C(z) = 2™A(z) is causal with ¢(0) # 0. Since A(z) satisfies eq. (3.3), C(z)
also satisfies eq. (3.3). Hence from [11], we know that the degree N of C(z) is

constrained to be odd. Choose
D(z2) = 27 NC(-2), (3.4)

and let B(z) = z27™D(2). If A(2) = ao(2?) + 27 1a1(2?) and B(z) = bo(2?) + 27101 (2?),
it can be verified that the above choice of B(z) implies the relations
bo(2) = 2~N%a,(2) (3.5)

bi(z) = —z~WN"Y2G,(2). (3.6)

It can be shown by direct substitution that with this choice, the filters A(z) and B(z)
form a PU-pair.
NOTE: Condition (3.3) means that (A(z)A(2)) is a ‘halfband’ filter [11]. Equivalently,
A(z) is a spectral factor of a halfband filter.
Lemma 3: Given a FIR transfer-function A(z) satisfying eq. (3.3), and a function
P(z) satisfying

(A(z)P(2))]2 =0, (3.7)

P(z) can always be written as

P(z) = p(z*)B(2), (3.8)
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where B(z) is as defined in Lemma 2.

Proof: The functions can be written in terms of their polyphase components as

Alz) = ao(2®) + 27 (2%) (3.9)

P(z) = po(2%) + 27 p(2?) (3.10)
Eq. (3.7) can be written in terms of the polyphase components as,
ao(2)po(z) + a1(2)p1(z) = 0. (3.11)

Note that by Lemma 1, if ao(z) and a;(z) have a common factor, it is of the form

k2. Thus in order that eq. (3.11) be satisfied, we need

po(2) p(2)aq ()27 (3.12)

p(z) = —p(2)de(2)z7" (3.13)

il

which means P(z) can be written as in eq. (3.8).

Lemma 4: If A;(2), i=0,...,M — 1 form a PU-set, then they cannot have a

common factor except of the form kz'.

Proof: Since A;(z), i=0,...,M —1 form a PU-set, they satisfy [11]
M—1 N
> Ai(z)Ai(z) =M for all 2. (3.14)
i=0

If Ai(z), 1=0,...,M — 1 have a common factor (z — zp) with zy # 0, the left-hand
side would vanish at z = z, violating eq. (3.14).

Lemma 5: Let the filters Gk(z), k=0,1,2,...,M — 1 form a PU-set. Then,
(A(2)Gre(2))lm =0, fork=0,1,2,...,.M —1 (3.15)

implies A(z)=0.

Proof: Consider Fig. 2.5(a) redrawn as Fig. 2.5(b). E(z) is the Type I polyphase
matrix of the filters Gr(2), k=0,1,2,..., M —1. Apply an impulse §(n) as an input
to the system. Eq. (3.15) means that the output of the system y(z) = 0. Since the
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matrix E(z) is paraunitary, this means that v(z) = 0. Hence the output of the filter
A(z) in response to the impulse §(n) is zero, i.e., A(z) = 0.
Lemma 6: Let the filters G(z), £ =0,1,2,...,M — 1 form a PU-set. Let a and

b be relatively prime integers, and let b be a factor of M. If
(A2)Gr(z*NW s =0, £=0,1,2,... . M — 1, (3.16)

then A(z) = 0.

Proof: In Fig. 2.5(a), imagine that each Gg(z) is replaced with Gi(2*), and the
decimation factor is made b. This can be redrawn in terms of the polyphase matrix
as in Fig. 2.6. Again, apply an impulse §(n) as an input to the system. Eq. (3.16)
means that the output of the system y(2)=0. Since the matrix E(z), which is the
polyphase matrix of the filters Gx(z) is paraunitary, the matrix E(z*M/%) is also
paraunitary. This means that v(z)=0. Now, since a and b are relatively prime, it can
be shown that the output of the filter A(z) is zero, hence proving the Lemma.
Lemma 7: Let A(z) be some rational transfer function, and let L be any integer.

Then, there exists a C(z) such that
(A(2)A(2))l = C(2)C(2). (3.17)

Furthermore, if A(z) is FIR, C(z) is also FIR.

Proof: Observe that A(e?*)A*(e’) > 0, and so is its any L-fold decimated version.
Hence we can rewrite it as C(e’*)C*(e’*). By analytic continuation, we have eq.

(3.17).
If A(2) is FIR, its L-fold decimated version is FIR, and so C(z) is also FIR.

IV ORTHONORMAL WAVELETS AND BINARY TREE-STRUCTURED
FILTER BANKS

In this section, we study further the connection between orthonormality of wavelet

bases and paraunitariness of matrices in a binary tree-structured filter bank. All
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wavelet bases we consider are of finite duration, or FIR, unless stated otherwise. Finite
duration wavelets have been referred to as ‘compactly supported wavelets’ in [10].
Consider an L-level binary tree-structured synthesis filter bank used traditionally for
generating a wavelet basis, drawn in terms of the polyphase matrices of the filters. Fig.
2.4is an example for L = 3. It is known [16] that if the matrix R(z) is paraunitary, i.e.,
it satisfies eq. (1.3), the wavelet basis generated by this tree-structure is orthonormal.
First, we shall consider a simple generalization of Fig. 2.4. Consider Fig. 2.7.
This is also a binary tree-structured synthesis filter bank, but the filters (and hence
their polyphase matrix) on each level are different. We now prove:
Theorem 1: Consider an L-level binary tree-structured filter bank. Let the polyphase
matrices on each level, R;(z) ¢ = 0,...,L — 1 be paraunitary. Then, the wavelet
basis generated by this tree is orthonormal.
Proof: The proof of this result is a straightforward generalization of the one given
in [16], for tree structures having the same paraunitary matrix on each level. We
present it here for the sake of completeness.
We prove this result by induction. Consider an L-level tree (Fig. 2.8(a)) drawn
as a traditional synthesis filter bank (Fig. 2.8(b)). The filters F;(z) are given by the

relations
Fo(z) = Hg(z) (4.1)
Fe(z) = Hsk(z2k)ﬁlei(z2i) k=1,...,L—1 (4.2)
- L2 ,
FLz) = Gou () [ Gule?) (43)

The tree has L + 1 branches. Fig. 2.9(a) shows two of these branches, with & > [.
Suppose we add another level to the tree. This adds a new branch and modifies the
existing branches as shown in Fig. 2.9(b). Assuming that

a) the wavelet basis is orthonormal for the L-level tree, and that

b) the new set of filters (G, (2), Hs, (2)) has a polyphase matrix which is parau-
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nitary,
we prove that the wavelet-basis generated by the (L+1)-level tree is also orthonormal.

From the paraunitariness of their polyphase matrix, we know that

(GSL(z)éSL (Ne=1 (Hs,(2)Hsp(2))]2 =1 (GSL(Z)ESL (2))l2= 0. (4.4)
Orthonormality of the L-level tree implies
(Fi(2)Ei(2))lgmn = 6(k—1), 0<I<k<L-1. (4.5)

The three branches of the L + 1-level tree shown in Fig. 2.9(b) can be redrawn as in

Fig. 2.9(c), where
Sk(2) = Fe(2")Gy (), Si(2) = Fi(2*) Gy (2). (4.6)

Thus,

(Se()Si(2)) o = (Fu(2?)Fi(2%)Gs,, (2) Gy (2)) Late (4.7)
= (F(2)F(2) (G (2)Gop () L2) ortr = 8(k —1).  (4.8)

We have used eqgs. (4.4) and (4.5) to arrive at the final answer. Also,

(Sk(2)Hey (D)2 = Fiul2)(Gsp(2)Hey (2)) 12 (4.9)
= 0, (4.10)

using eq. (4.4). This is sufficient to prove that the wavelet basis generated by the

L + 1-level tree is orthonormal.
[ )

We shall now consider the converse of the above question, namely, is it possible
to generate all orthonormal wavelet bases using binary tree-structured filter banks?
It turns out that this is true in the case of finite duration discrete-time orthonormal

wavelets.
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Theorem 2: Every finite duration discrete-time orthonormal wavelet basis can be
generated by a binary tree-structured filter bank having paraunitary matrices on all
levels.

Proof: Let yi(m) denote the wavelet coefficients at resolution k, and let 7mkm(n)
denote the wavelet basis functions. We recall that the original signal x(n) can be
reconstructed from its wavelet coefficients as in eq. (2.3). We also recall that in
a tree-structured filter bank, the synthesis filters are related to the wavelet basis
functions as in egs. (2.4) and (2.5). Consider a binary tree-structured synthesis bank,
drawn as a conventional filter bank in Fig. 2.8(b). Notice the increasing interpolation
ratios. Since we are dealing with compactly supported bases, the filters F(z) are FIR.
We shall also assume that they are causal with fx(0) # 0. This assumption is not
restrictive, since we are dealing with FIR functions, and any FIR function can be
brought into this form by a suitable advance/delay operation. Orthonormality of the
wavelet basis implies egs. (2.7) to (2.15). For the sake of convenience, we reproduce

below the orthonormality condition in the z-domain,

(F(2)Ej(2)) g = 8(k—1), 0<k<I<L-1
(Fr(z)Fy(2))gn = 0 1=0,...,L—1,

(FL(2)FL() ez = 1.

Our task is to show that a set of functions F;(z) satisfying the above condition can
always be generated using a tree-structured filter-bank having paraunitary matrices
on all levels. In other words, given the filters Fi(z) in Fig. 2.8(b), we want to obtain
filters (Gs,(2), He;(2)) in Fig. 2.8(a) such that they form PU-pairs for all i. We now
give a constructive proof showing that this is always possible.

Choose
Hg,(2) = Fo(2). (4.11)
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Hence from eq. (2.13),
(Hoo(2)Hoo(2)) 12 = 1. (4.12)

Choose
Gso(z) = z—Noﬁso(_z)7 (4'13)

where Ny is the degree of H,,(z). Note that G (z) and Hy,(z) are both FIR, and
9s0(0) # 0, hso(0) # 0. Lemma 2 assures us that G, (z) and Hy,(2) form a PU-pair.
Now from egs. (2.13) and (2.14),

(Fi(2)Fo(2))la=0 forj=1,2,..,L. (4.14)
Hence by Lemma 3, the F;(z) are expressible as
F](z) — f;(ZZ)GSo(z)> (4'15)

where the f}(z) are FIR and do not have a zero at infinity.

Now in particular, Fy(z) is expressible as

Fi(2) = fi(2*)Gao(2). (4.16)
Choose
Hy, (2) = f1(2). (4.17)
From eq. (2.13) we know that,
(Fi(z)Fi(2)a=1, (4.18)
therefore,
(HS1(zz)GSO(z)Eﬂ(Zz)éso(z))iti =L (4.19)

Using noble identity, this becomes

[Hy (2) Hoy (2) (Goo (2)G (D) 2] 12 = 1, (4.20)
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and hence, from the fact that G,,(z) belongs to a PU-pair,
(Hh(z)ﬁa(z))lz = 1. (4.21)

Choose
GSl (Z) = Z—leﬁsn(_z)v (422)

where N, is the degree of H,, (2). Hence G, (2) and H,, (2) form a PU-pair, and both
are FIR with g,, (0) # 0 and hs, (0) # 0.
Now from eq. (2.13),

(Fi(2)Fi(2)la=0 forj=2,...,L. (4.23)
Using egs. (4.15) and (4.17) this becomes
[£1(2%)Gao(2) ey ()G (2)] L4 = O, (4.24)

which simplifies to

(fi(2)He(2)le=0 j=2,3,...,L. (4.25)

Hence by Lemma 3, the fi(z) are expressible as
() = £)Ga(z) §=23,...,L, (4.26)

where the filters fj(z) are FIR and do not have a zero at infinity. Hence using eq.

(4.15), we get,

Fj(z) = ()G, (2°)Go(2) j=2,...,L. (4.27)

Y

Now in particular, F5(z) is expressible as
F2(z) = é,(z4)051 (z2)Gso (Z), (428)
with f{(z) being FIR. Hence choose

Hy,(2) = f3(2). (4.29)
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Therefore,

Fy(2) = Hy,y (2")G, (2%)Goo (2)- (4.30)

In general, since Fj(z) is orthogonal to Fj(z), fori=20,1,2,...,k—1, it can be

expressed as

Fi(2) = Hy (22) G (2%71) ... Gu(2), (4.31)

and from the unit-energy property (eq. (2.13)) we have

(Hoo(2)Hy, (2)) ]2 = 1. (4.32)
At every stage, the filters G, (z) are chosen such that

Gy, (2) = 2Nk H,, (—2), (4.33)

where Ny is the degree of Hs, (z). Hence the filters (Gs,(2), Hs;(2)) form PU-sets on
all levels. They are all FIR, causal, and do not have a zero at infinity.

In particular, on the final level we have,
Fpo1(2) = Hyy o (227 )Gy (227 . Guo2) (4.34)

with

(HSL_l(z)HsL_l(z))lQ =1. (435)

Since the function Fr(z) is orthogonal to Fj(z), fori=0,1,2,...,L — 2, following

the general procedure, it can be expressed as
Fi(2) = 9(* )Gy s (277) . G 2), (4.36)

where g(z) is FIR. Let G,_,(z) = z"NL~1E8L_1(—z). Since Fp(z) is also orthonormal
to Fr_1(z), by Lemma 3, g(z) = ¢'(2*)Gs,_, (2). Tt can be verified that the unit-energy
condition (eq. (2.16)) applied to FL(z) implies ¢’(z) = 1. Thus,

Fr(2) = Gy, (227)Gey 1 (2777) ... Gy (2), (4.37)
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with G, ,(z) and H,,_,(z) forming a PU-pair.

Thus, we have shown that given any finite duration discrete-time orthonormal
basis Fi(z), fori=0,1,2,...,L, it is always possible to generate it using a tree-
structured filter bank having paraunitary matrices on all levels; i.e., Fig. 2.8(b) can

always be redrawn as Fig. 2.8(a), with the filters (G, (2), Hy;(2)) forming PU-pairs.
e

Now consider Fig. 2.8(a). We know that G, (2) belongs to a PU-pair, is causal,
and g,,(0) # 0. Hence it cannot have a factor of the form ¢(z?), other than a constant.
Thus no factor (except a constant) of G, (z) can be moved left across the interpolators.
Also, since the filters (G, (2), Hs;(2)) on each level form a PU-pair, are causal, FIR,
and without a zero at infinity, by Lemma 4, they cannot have a common factor other
than a constant. Hence no factor (except a constant) comon to these two can be
moved right across the interpolators. This gives the following corollary to the above
Theorem.

Corollary 1: If a finite duration orthonormal wavelet basis is generated using a

tree-structured filter bank, the polyphase matrices of the filters on each level have to

satisfy the condition
E,2)E;(z)=¢l forallz i=0....,L—1. (4.38)

From the above theorem, we have another corollary regarding the linearity of
phase of the wavelet basis.
Corollary 2: If an orthonormal wavelet basis has filters with linear phase, the filters
Gs,(z) and H,,(z) on each level have the form c;z7% + 27" for some constants ¢;
and ¢y and integers l; and I5.

To see this, note that orthonormality of the wavelet basis implies that the polyphase

matrices on each level have to satisfy eq. (4.38). In particular, since Fy(z2) has linear

phase, we know from [14] that H,,(2) = ¢z + 272, Since G4, (2) and H,(2) form
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a PU-set, G,(z) can also be written in such a form. Now, since Fi(z) and Gs,(2)
both have linear phase, Hj, (2) also has linear phase, and it is therefore restricted
to the form stated above. Therefore, G,,(z) also has this form. Continuing such an
argument down the tree, we see that each of the filters G, (z) and H,,(2) have the

form clz‘ll -+ CQZ—lz.

V  ORTHONORMALITY OF WAVELET PACKETS
The basis functions of a filter bank with non-uniform decimation ratios are called
wavelet packets [1], [17]. Fig. 2.10 shows a schematic of such a filter bank. If yx(n) are

the inputs to the synthesis filters, then (assuming that this is perfect reconstruction

system) we can write

z(n) = 3> ye(m)fi(n — Im) (5.1)

k=0 m
where I}, is the interpolator preceeding F(z), and M +1 is the total number of filters.

From the similarity of the above equation with eq. (2.3), we refer to the quantities
yr(n) as the generalized wavelet coefficients. The set of functions fx(n — Ixm) is the
generalized wavelet basis, or wavelet packets. Analogous to eq. (2.6), we say the basis
functions are orthonormal if they satisfy the relation
> feln— Im) ff(n — Li) = 6(k — 1)6(m — 1). (5.2)
Frzzz - OO

With a change of variables this can be rewritten as (see Appendix A)

S feln) i (n — gued) = 80k — D5(3), (5.3)

Nz OO

where gy is the ged of (Ix, I;). In the z-domain, this becomes,

(Fe(2)Ei(2)) )i = 8(k = 1) (5.4)
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VI GENERALIZED TREE-STRUCTURES AND ORTHONORMAL
BASES

In section III we saw that wavelet bases could be generated using a binary tree-
structured QMF filter bank. The wavelet basis functions were seen to be orthonormal
if the filters on each level of the tree had a polyphase matrix which was paraunitary,
and conversely. Fig. 2.1(b) shows a binary tree-structured filter bank traditionally
used for generating wavelet bases. Now consider a general tree-structured filter bank.
Fig. 2.11(a) shows one such example of the synthesis bank. This is associated with a
corresponding analysis bank not shown in the figure.

Consider the binary tree-structured synthesis bank (Fig. 2.1 (b)), and a general
tree-structured synthesis bank (Fig. 2.11(a)). Comparing the two, we note two
important differences. Firstly, (going right to left) we see that in a general tree, any
branch on a certain level can divide further, whereas in a binary tree, only one of
the two branches on any level branches out further. Secondly, for a generalized tree,
each level may have different number of filters, in contrast to a binary tree in which
each level has exactly two filters. Thus, a maximally decimated filter bank in which
one or more branches on any level split further into branches is called an “arbitrary
tree structured” filter bank. In the context of generalized tree-structures, we need to
rigorously define what we mean by a ‘level.” In a tree-structured filter bank, filters
whose outputs go into a single adder are said to be on the same level. Consider for
example, Fig. 2.11(a). This tree has four levels, namely i) (Do(2), D1(2), Da(2)) ii)
(Ao(2), A1(2)) iii) (Bo(z), Bi(z)) iv) (Co(z), Ci(2),C2(2)). To see this, note that,
for example, the outputs of the filters Dy(z), D1(z) and Ds(z) go into a single adder
(denoted by a heavy dot), and hence they are on the same level. On the other hand,
the ouputs of the filters Dy(z) and By(z) do not go into the same adder, and thus they
are said to be on different levels. The word ‘level’ used in the case of arbitrary trees

does not have the strict connotation of ‘depth’ as it does in the English language, or



42

as in the case of binary trees (Fig. 2.1). Consequently, for generalized trees the levels
are not numbered as they are in the case of binary trees. We do define something
called the ‘input level,” however. If none of the branches in a certain level further
divide into branches (while going right to left in a synthesis core tree), such a level
is called an ‘input level.” Note that there can exist more than one input level for
a general tree, whereas a binary tree has a distinct input level. For example, Fig.
2.11(a) has three input levels, namely i) (Do(z), D1(2), D2(2)) ii) (Ao(z), A1(2)) iii)
(By(z), B1(2)). Note that (Cy(z), C1(2), C2(z)) is not an input level.

We can guarantee perfect reconstruction property for such filter banks by appro-
priately choosing filters on each level. The tree-structure therefore gives rise to a set
of wavelet packets. The generalized tree-structure can be redrawn as a traditional
filter bank as in Fig. 2.11(b). Fig. 2.11(c) shows typical appearances of frequency
responses of such a tree-structure. Taking a cue from traditional wavelet theory, we
now ask the question: Is there a relationship between the paraunitariness of filters
on each level of the generalized tree and orthonormality of the resulting basis? The
answer to this is provided by the two theorems in this section.

In this section, too, we are dealing with finite duration discrete functions.
Theorem 3: If an arbitrary tree-structured FIR filter bank, such as one in Fig.
2.11(a), has filters on each level forming PU-sets, then the functions fi(n — Ixm)
generated by that tree form an orthonormal basis.

Proof: We prove this result by induction. We know from [16] that the result is true
for a 1-level tree, i.e., we know that if a set of filters has a polyphase matrix which
is paraunitary, the filters form an orthonormal basis. We now assume that the result
holds for an L-level tree, and adding levels to the tree, we show that the functions
generated by the new tree also form an orthonormal basis. Consider Fig. 2.12(a).

The functions in both filter banks are assumed to be orthonormal, i.e., they satisfy

(Pe(2) B(2) gy = 6(k = 1), g1 = ged(L, 1) (6.1)
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Fig. 2.11(c). Typical responses of
filters produced by a generalized tree
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(6.2)

We now combine these two by a common level to obtain the tree structure shown

in Fig. 2.12(b). The M filters on the new level added are paraunitary, i.e., they

satisfy,
(Ti(2)T5(2) = 6(i— 5) 1,57=0,...,M—1.

(6.3)

This new tree can be redrawn again as in Fig. 2.12(c), where the filters are given as,

Sk(2) = Po(z")Ti(2)
Si(z) = R(z")T(2)
Sm(2) = Qm(zM)T;(2)
Sn(2) = Qu(z")T;(2).
To prove orthogonality of the new basis, it is sufficient to show that
(Sk(2)Sk(2))Lrm = 1,

and that
(Se(2)Si(2)) g =0, g3 = ged(IM, M),

(Sk(2)Sm(2)) g =0,  ga = ged(IeM, JnM).

Consider,

(Sk(2)Sk(2) Lo = (Pe(z")T3(2) Pe(z*) To(2)) Loas-

Using the noble identity, this becomes

(Pe(2)Pe(2) (T2 TN )i = (Pe(2)Pe(2))

(6.4)

(6.5)

(6.9)

(6.10)

(6.11)

(6.12)

(6.13)
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This proves eq. (6.8). The unit-energy property for the other transfer functions can

be verified likewise.

Now, since g3 = ged(I[i M, M) and g, = gcd(Iy, I;), we have g3 = Mg;. Hence,

(Se(2)S(2es = (Pe(z")Ti(2) Bi(z")Ti(2)) Loy (6.14)
= (P(2) R)(Ti(2)T:(2)daa)L s (6.15)
= (Pu(2) (=), (6.16)
= 0, (6.17)

using eq. (6.1). This proves eq. (6.9).
Now, g4 = ged(Jn M, I M), so it is a multiple of M; let g4 = aM. Hence,

(Sk(2)8m(Nles = (Pe(2")Ti(2)@m(z")T5(2)) Lama (6.18)
= (P(2)Qm(NT(2)T3(2)) I m) e (6.19)
= (Pe(2)@m(2)(0))a (6.20)
= 0, (6.21)

which proves eq. (6.10). Orthogonality of other pairs can similarly be verified.
Hence we have shown that the functions generated by the new tree also form an
orthonormal basis. Since any tree-structured filter bank can be synthesized by this

process of adding new levels, it proves our theorem.

We now turn our attention to the converse of this result. Unfortunately, the exact
converse of the result in the previous theorem is not true. To see this, one only needs
to consider a simple example of a tree-structured filter bank drawn in Fig. 2.11(a).
This can be redrawn as in Fig. 2.11(b). Let the polyphase matrices of the filters
in Fig. 2.11(a) be paraunitary. By the previous theorem, we know that the wavelet

basis generated by this tree is orthonormal. Now consider the filter bank shown in



—4 1, 1P (Z)] -—+Jm-—>om<z>j
—1, =P @ bunl=Q, (2

—+Jm—"’Qm(Z)]——-‘>+M (T, (2)
4 =1Qn (@)
: (b)

Fig. 2.12. (a). Two different filter banks

(b). The two filter banks in (a)
combined by adding one more
level of filters
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Fig. 2.12 (¢). Tree structure of Fig. 11(b) redrawn

x(n)

— 6" A(#) Co(2)

— b6 —* Po (2)

—=d9— D,(#)C,(2)

—=bo—= D, () C4(2)

—=h9—= D, (%) C4(2)

—=d6—= P (2

—=d6—" B (B)C(2)
Py (2) =(A 1(z%)Gy (2)+B, (2°)C2 (2))/ /2
P (2)=(A1(z%)Co (2)-Bo(2°)C2(2)) /. /2

Fig. 2.13. A filter bank which cannot be generated using
a tree structure
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Fig. 2.14 (a). A filter bank showing only one final level
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Fig. 2.14 (b). The filter bank in Fig. 2.13(a) redrawn as a
traditional filter bank
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Fig. 2.14 (c). A filter bank showing only one final level with
modified filters
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Fig. 2.15. Lattice structure for implementing a two channel
synthesis bank with paraunitary polyphase matrix
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Fig. 2.13. Py(z) and Pi(z) are the sum and difference of two filters in Fig. 2.11(b),
as defined in the Fig. 2.13. Note that these filters form an orthonormal basis, too
however, these cannot be generated using a tree-structure. The reason is as follows.
For this filter bank to be represented as a tree, we need that Fp(z) be expressible
as A1(2%)Cy(2) or as By(2®)Cy(z) (compare with Fig. 2.11(b)). Neither is possible
if Co(2) # Ca2(z). But since Co(z) and Cz(z) came from a PU-set to start with, the
condition Cy(z) # Ca(z) is guaranteed (by orthonormality). Thus, this filter bank
cannot be generated using a tree structure.

We can, however, prove the following weaker result.
Theorem 4: Let Fi(z) be a set of FIR transfer functions satisfying eq. (5.4). If they
can be generated using a tree-structured filter bank, they can be generated specifically
by a tree having PU-sets on all levels.

Before proving this theorem we will prove the following two lemmas.
Lemma 8 : Let Fi(z) be a set of FIR basis functions which can be generated using
a tree-structured filter bank, and let them satisfy the orthonormality condition (eq.
(5.4)). Then, the filters on an input level of the tree can be made to form a PU-set.
Proof: Given the FIR nature of the transfer functions involved, we shall assume
without loss of generality that they are all causal. Consider the filter bank shown in
Fig. 2.14(a). The filters Q;(z), i = 0,...,M — 1 are the filters on an input level
of the tree. This can be redrawn as in Fig. 2.14(b). We are told that the functions
F,.(z) form an orthonormal basis, i.e., they satisfy eq. (5.4). We are to show that it
is possible to choose a set of filters @} (z) in Fig. 2.14(c) for the input level such they
form a PU-set.

Now, by orthonormality,

(Fi(2)Fi(2)) g = 6(k = 1), ge=bM k,1=0,...,M—1, (6.22)

where,
Fi(2) = Q2" Ti(2), k=0,...,.M —1. (6.23)



Hence eq. (6.22) means,
(Qk(zb)j—;(z)él(zb)i(z))ibM = 5(k - l)7 k7l - 07 e 7M - 1;

ie.,

Qe (T (2)Ti(2)) o) b = 6(k — 1).

But by Lemma 7,
(Ti(2)Ti(2)) s = B(2)B(2),

for some FIR B(z). Substituting in eq. (6.25) we have,
(Q(2)Qu(=) (B(2) B(2)) L = 8(k — ).
Define a new set of transfer functions
Qi(z) =Qi(z)B(2) i=0,...,M—1.

Hence,

QL)) =6k —1) k1=0,...,M—1.
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(6.24)

(6.25)

(6.26)

(6.27)

(6.28)

(6.29)

This means that the functions @,(z) £=0,...,M —1 form a PU-set. By Lemma 4,

they cannot have a common factor, except a constant. Eq. (6.25) now becomes

QL)@ ()T ()T (2) o) Las = 6(k = 1)

with
(T/(2)T(2)) ) = 1.

Note that now
Fi(z) = Qu()T(2), k=0,....M -1

(6.30)

(6.31)

(6.32)

This proves, that the filters on an input level can be made to form a PU-set. In other

words, Fig 2.14(a) can be redrawn as Fig. 2.14(c) where the Q,.(z), k=0,...,M —1

form a PU-set.
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Lemma 9: Consider Fig. 2.14(c), drawn alternatively as in Fig. 2.14(b). Let
F,,(2) be a set of orthonormal FIR functions satisfying eq. (5.4). Remove an in-
put level of the tree on which the filters formed a PU-set, i.e., remove the filters
Q.(z), k=0,...,M — 1 and the interpolators (| M) in Fig. 2.14(c). Then the
remaining part of the tree also gives an orthonormal basis.

Proof: We showed in the previous Lemma that the filters Qi(z) ¢=10,...,M —1
constitute a PU-set on one input level of the tree. Removing these filters gives rise
to a modified filter bank. We have to prove that the filters in this modified bank give

an orthonormal basis, i.e., we have to show that
(LT E =1, (6.33)

and that
(T/(2)Fyp(2)))ge =0, g5 = ged(b, I,). (6.34)

We have proved eq. (6.33) while proving Lemma 8. Hence we only need to prove eq.

(6.34). From the orthonormality of the original basis (Fig. 2.14(b)), we have,
(Fo(2)Ep(2)) gy =0 k=0,...,M—1. (6.35)
where g7 = ged(Mb, I,). Using eq. (6.32), this becomes,
QLT () Fp(2)) g, =0 k=0,...,M — 1L (6.36)

Now, gs is a factor of gr; let gr = c.gs, where ¢ has to be a factor of M. Hence from

the above equation we have,
(@) Ep(2))gse =0 k=0,...,M—1. (6.37)
By using the noble identity, this becomes

(@1 (%) (TI(2) Fp(2))Lge)le =0 k=10,...,M —1. (6-38)
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It can be verified that b/gs is indeed an integer, enabling us to write eq. (6.38). Let
b/gs = d. Then it can also be verified that d and c are relatively prime. Hence using

Lemma 6, we get,

(T3 (2) Fp(2))dgs = 0 (6.39)
which completes the proof.

Using the above two Lemmas, Theorem 4 is easy to prove.

Proof of Theorem 4: Consider the given filter bank which is known to have been
generated by using a tree-structure. The functions generated by this tree are given
to form an orthonormal basis. Every tree has at least one input level. Using Lemma
8 we know that the filters on this input level can be made to form a paraunitary
set. Remove these filters. By Lemma 9, the remaining tree also gives an orthonormal
basis. Hence we can repeatedly apply Lemma 8 and Lemma 9 to finally reduce the
given tree to a one-level tree. But we know from [16], that for a one-level tree, if the
functions form an orthonormal basis, the filters have a paraunitary polyphase matrix.

This proves Theorem 4.

o

NOTE: A corollary similar to Corollary 1 can be proved in this case too. Namely, if
an orthonormal basis is generated by a generalized tree-structured filter bank, then
the polyphase matrices on all levels have to satisfy eq. (4.38). The proof involves

mainly bookkeeping of constants while going over Lemma 8 and Lemma 9, and we

do not reproduce it here.

VII IMPLEMENTATION OF PARAUNITARY FILTER BANKS
Perfect-reconstruction QMF filter banks have been studied before [11], [13]. The

problem of design and implementation of such filter banks has been addressed by

Vaidyanathan and Hoang in [18]. In this paper the authors have described a lattice

structure for realizing QMF banks. The resulting filters have a paraunitary polyphase
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matrix. Fig. 2.15 shows this lattice structure. This lattice is robust in the sense that
the paraunitariness of polyphase matrices is preserved in spite of coefficient quanti-
zation. Moreover, the lattice has a hierarchical property, i.e., higher order PU-pairs
can be obtained from lower order PU-pairs simply by adding more lattice sections.
Another important property of the lattice is that by changing the lattice coefficients
we can generate all PU-sets. This property makes the lattice particularly important
with reference to orthonormal wavelets. We showed in section IV that all possible or-
thonormal wavelet bases could be generated using a tree-structured filter bank which
had paraunitary matrices on all levels. Thus, if we constructed the tree-structure
using the above mentioned lattice, we could generate all orthonormal wavelet bases
simply by manipulating the lattice coefficients. Moreover, orthonormality would be
preserved under coefficient quantization.

Extensions of this structure to M-channel filter banks can be found in [11]. Re-
sults of section VI indicate that the M-channel lattice could be used to realize the

‘generalized wavelet bases’ mentioned therein.

VIII CONCLUSIONS

In this paper we have investigated the relationship between orthonormality of
wavelet basis and paraunitariness of matrices in a tree-structured filter bank. We
started by proving a few interesting results on multirate paraunitary systems in sec-
tion III. Using these, in section IV, we showed that a binary tree with paraunitary
matrices on all levels (possibly different) generates an orthonormal wavelet basis.
More importantly, we proved that all orthonormal bases could be generated by a
tree-structured filter bank having paraunitary polyphase matrices on all levels and
that the polyphase matrices in fact have to be generalized paraunitary. Knowing the
connection between paraunitariness and a special lattice structure, we concluded that

all orthonormal wavelet bases could be generated by manipulating the coefficients of
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the lattice. Hence paraunitariness of polyphase matrices is a necessary and sufficient
condition for wavelet orthonormality.

In section V, we have developed the equations governing orthonormality for general
discrete time bases. The relation derived in this section showed that the ged of the
two decimation factors plays a role in the orthonormality equation for two functions.

Using these relations, in section VII, we studied the concept of orthonormality with
respect to arbitrary tree structured filter banks. We showed that a tree with parauni-
tary polyphase matrices gives an orthonormal basis; conversely, a set of orthonormal
functions which can be generated using a tree can be generated specifically by a pa-
raunitary tree. This proves the equivalence of paraunitariness and orthonormality
in the context of arbitrary tree structures. The generalized tree structure would be
convenient in the analysis of waveforms in which the frequency characteristics are not

monotonic, as Fig. 2.11(c) suggests.

APPENDIX A

Consider the orthonormality relation for genereralized wavelets (eq.(5.2)) reproduced
below for the sake of convenience.

i f(n — Im) ff(n — Ii) = 6(k — 1)6(m — i)  for all integers m,i.

Put (n — Ixym) = p. Hence n = Iym + p. Therefore, the above equation becomes

S o) fr (o — (i — Tam)) = 6(k — D(m — ).

p=—00

(A.1)

Let g = ged(Iy, I;). Hence there exists a j such that (Iji — Irm) = g5 for all m, 1.
Also, by Euclid’s identity, there exist integers I; and Iy such that (I], — I 1) = g.

Using these two facts, it can be shown that the condition (A.1) is identical to the
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condition

S Fe) (o — gi) = 80k — 1)5(0),

p=—00

(A.2)

where g is the ged of (Ii, I;). A change of dummy variables results in eq. (5.3).
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Chapter 3

CODING GAIN IN PARAUNITARY ANALYSIS /SYNTHESIS
SYSTEMS
Abstract!

Subband coders have been used in the past to decompose a signal into subbands. The
signals in each subband are quantized before transmission. The problem of optimal
bit allocation involves allocating bits to the individual quantizers from a fized budget
so as to munimize the overall reconstruction error variance. The problem has been
addressed in the past for two cases, namely orthogonal transform coding, and ideal
brick-wall filtering. Both of these are special cases of the so-called ‘paraunitary’ filter
banks. The results which were proved for these special cases have been used without
proof for other non-paraunitary subband coding schemes. We present here a formal
proof that these bit-allocation results hold for the entire class of paraunitary subband
coders. Next, we address the problem of finding an optimal paraunitary subband coder,
s0 as to maxzimize the coding gain of the system.

We then analyze the bit-allocation problem for the case of paraunitary tree-structured
filter banks, such as those used for generating orthonormal wavelets. The even more
general case of non-uniform filter banks is next considered. In all cases we show that
under optimal bit allocation, the variance of the errors introduced by each of the quan-

tizers have to be equal. Ezpressions for coding gains for these systems have also been

derwed.
1To appear, IEEE Trans. on Signal Processing, June 1993.
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I INTRODUCTION

Transform coding and subband coding are well-known techniques for efficiently
encoding data [1]-[5]. They are used in data compression of speech, image, and other
random signals. Consider the subband coding scheme shown in Fig. 3.1. In this
scheme, the input signal z(n) is split into M subbands in the frequency domain by a
bank of filters called the analysis filters. The outputs of these filters are bandlimited,
and hence we can sub-sample them. This is indicated by boxes with | M. The signals
in each of the subbands are then independently quantized and transmitted. At the
receiving end, the sampling rates in each of the subbands are increased once again to
their original value by the interpolaters (indicated by T M). They are then passed
through the synthesis filters. The outputs of the synthesis filters are combined to give
the reconstructed signal y(n).

Another way of representing the same scheme is shown in Fig. 3.2. In this
figure, E(z) and R(z) are the polyphase matrices [6] corresponding to the analysis
and synthesis filters respectively. The sequence z(n) is divided into non-overlapping
blocks of data by grouping together M successive samples. These samples form the
components of the vector x(n) which is termed the M-fold blocked version of z(n).

Formally, we write
xF(n) = [z(nM) z(nM — 1) ... z(nM — M + 1)). (1.1)

Each of these blocks or vectors is encoded by the linear transformation E(z). The
M outputs, i.e., the components of the vector v(n) are the subband signals which
are quantized and transmitted. At the receiver, the received vector u(n) is passed
through the transformation R(z). The output y(n) is ‘unblocked’ to give the recon-
structed sequence y(n). A special case of this scheme is the transform coding scheme

[1], [2] which we shall now review.



61

Transform coding

In a traditional transform coding scheme, the polyphase matrices E(z) and R(z2)
mentioned earlier are chosen to be constant matrices. The matrix at the transmitting
end is often chosen to be an orthogonal matrix (A say), so that if the matrix AT
is used at the receiver, the system becomes a perfect reconstruction system (i.e.,
y(n) = x(n)) in the absence of quantizers. In the presence of quantizers, a natural
objective in such a coding system is to minimize the reconstruction error between the
input and the output. The variance of the reconstruction error is chosen as a suitable
criterion for minimization [2]. Define the error vector to be the difference between

the input vector and the output vector, i.e.,
r(n) = y(n) — x(n). (1.2)

Assuming this error to be a zero-mean, Wide Sense Stationary (abbreviated WSS)

vector-process, the reconstruction error variance is,

JE[x" (n)r(n)]. (1.3)

1
0 = (—

M
In a conventional Pulse Code Modulation (PCM) scheme, the input samples are
independently quantized and transmitted over the channel. This is equivalent to
making the transform matrix in Fig. 3.2 an identity matrix. The coding gain [2] of
the transform coding system is defined as the ratio of the error variance in a PCM

system to the error variance in the transform coding system, i.e.,

_ Irpom (1.4)

Now let us turn to the individual quantizers. Let R; be the number of bits allocated
to the quantizer Q; and let o2, be the variance of the input to that quantizer. The
range of values that the input to the quantizer can take is divided into 2% intervals.

The weight of the most significant bit is taken to be proportional to o,,, so that the
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probability of overflow is the same for each ¢. The variance of the error introduced

by the ith quantizer is then given as [2],

2 _ 20-2R; 2
o; = €27 oy,

) (1.5)

where ¢ is a constant. Now, suppose the total number of bits available for quantizing

all the M subband signals is fixed, i.e.,
R=(Ro+ Ry + Ro+ ...+ Ry-1)/M = constant. (1.6)

The design issues in the transform coding scheme then are as follows:

1) How does one allocate bits to the individual quantizers under the constraint
imposed by eq. (1.6), and

2) How does one choose the orthogonal transformation A so as to maximize the
coding gain of the system?

In the case of the transform coding schemes, it has been shown [1], [2] that the
optimal allocation of bits is that which makes all the individual quantizer error vari-
ances equal. Under optimal bit allocation, it has also been shown [2] that the coding

gain of the system becomes

/M) (5 03,)
GTC: (/Hf\,/f__glaﬁ:;l/gM s (17)

which is the ratio of the arithmetic mean to the geometric mean of the o2 . This is
maximized if the transform matrix A is the Karhunen-Loeve Transform (KLT).
Paraunitary Filter Banks

A linear transformation E(z) is said to be paraunitary if it satisfies [6]
E(z)E(z) =1, (1.8)

where E(2) is obtained from E(z) by conjugating the coefficients, transposing, and
replacing z by z~1. The paraunitary property is essentially an extension of the unitary

property to linear, time-invariant systems with memory. Paraunitary transformations
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are important in subband coding because the subband coding system shown in Fig.
3.2 can be made to have perfect reconstruction property (in the absence of quantizers)
by choosing the matrix E(z) to be paraunitary, and choosing R(z) to be E(2) [7]. The
analysis and synthesis filters are then related as F,gs) (2) = ﬁ’,ﬁ“’(z). Secondly, it has
been shown [6] that paraunitary transformations can be realized using lattice/cascade
structures. In the case of the paraunitary subband coding system, we define the coding

gain in a likewise manner, i.e.,

. Uf,PCM
Gpu = —5 . (1.9)

One can ask questions similar to those asked before, namely,

1) How does one allocate bits to the quantizers, and

2) How does one choose the paraunitary transformation E(z) so as to maximize
the coding gain?

The transform coding scheme discussed previously is one special case of parauni-
tary subband coders. Now consider ideal subband coders (using brickwall filters as
shown in Fig. 7.46 in [4]). This can also be shown (by invoking eq. (36) in [7]) to
be a special case of paraunitary subband coders. In this case, too, under optimal
bit allocation, eq. (1.7) holds [2]. Eq. (1.7) has been used without proof in the
context of Lapped Orthogonal Transform (LOT) in [8] also, which are a special case
of paraunitary systems.

The problem of optimal bit allocation itself has been mentioned in [3], [9]-[11] for
non-paraunitary subband coders. In this paper, we derive conditions for bit-allocation
optimality of general paraunitary subband coders and formally prove that a result
similar to eq. (1.7) holds for this entire class. We also address the problem of finding
the optimal paraunitary transformation so as to maximize the coding gain. Next we
consider the bit-allocation problem in the context of paraunitary tree-structured filter
banks such as those used for generating wavelets [12], [13]. Our final extension of this

analysis is to the case of general non-uniform filter banks.
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Notations and Definitions

The notations used in this paper are as follows: Bold-faced quantities denote
matrices and vectors, as in E or x. AT denotes the transpose of the matrix A.
Tr(A) denotes the trace of the matrix A, i.e., it is the sum of the diagonal terms of
the matrix. det(A) denotes the determinant of the matrix A. The tilde-notation, as
in E(z), stands for conjugation of coefficients followed by transposition, followed by
replacing z by z7!. As defined earlier, a matrix E(z) is said to be paraunitary if it

satifies eq. (1.8). Note that if E(z) is a square paraunitary matrix, it also satisfies
E(2)BE(z) =L (1.10)

We shall deal with FIR matrices with real coefficients. The FIR nature is required
if we constrain both the analysis and synthesis filters to be stable [6]. Let N be the
order of E(z);

E(z) =e(0) +e(1)z7 +e(2)z72 +... +e(N)zV. (1.11)

Therefore,

E(z) = eT(0) + 7 (1)z +eT(2)22 4 ... + eT(N)2". (1.12)
Expressed in time-domain the square paraunitary relations (1.8) and (1.10) imply
S ET(m - )E(m) = s, (1.13)

ZE —~ DET(m) = §(DL (1.14)

All signals considered are real. A vector random process x(n) is said to be WSS

if E[x(n)] = mx, independent of n, and
E[x(n)xT(n—k)]=R(k) for all n,k. (1.15)

A random process x(n) is Cyclo Wide Sense Stationary with a period M, abbreviated

as (CWSS)y, if its M-fold blocked version x(n) as defined in eq. (1.1) is a WSS
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vector process. Conversely, if x(n) is a WSS vector process, then the sequence x(n)
obtained by unblocking it is (CW SS). A vector process p(n) of size ML is said
to be an M-fold blocked version of another vector process s(n) of size L if they are

related as

p (n) = [sT(nM) sT(nM —1)...sT(nM — M + 1)]. (1.16)

We say a vector process s(n) is (CWSS)y if its M-fold blocked version p(n) as
defined above is a WSS vector process. Let R(z) be a multi-input multi-output

system. The matrix B(z) is called the M-fold blocked version of the matrix R(z) if

[ R,o(z) R1(Z) Rg(z) - RM__l(Z) ]
Z—IRM_l(Z) R{)(Z) Rl(z) e RM__2(Z)
B(z) = 2 Ry_o(2) 27 Ry-1(z) Ro(z) ... Ruy-3(2)
R . R

(1.17)

where R;(z) are the polyphase components [6] of the original matrix R(z), given by
R(z) = Ro(z™) + 27 'R1(zM) + 27 Re (™) + ... 4+ 27 M YRy 1 (zM). (1.18)

The reason for calling B(z) the blocked version of R(z) is as follows. Let s(n) be
an input to the system R(z), and let y(n) be the corresponding output. Let p(n)
be the M-fold blocked version of s(n) as in eq. (1.16), and let yz(n) be the M-fold
blocked version of y(n). Then it can be verified that the input p(n) to the system
B(2) produces the output yz(n). The proof of this when R(z) is a scalar can be
found in [14], and the case where R(2) is a matrix is a straightforward generalization
of this proof.

In the figures, the acronym MIMO stands for multi-input, multi-output. LT[
stands for linear, time-invariant. Boxes with | M and T L stand for decimation by a

factor M and interpolation by a factor L respectively, as defined in [6].

II PARAUNITARY SUBBAND CODERS
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The two design issues can be considered seperately. First, we present a strategy
for optimal bit-allocation so as to minimize the reconstruction error variance. This
bit-allocation will hold irrespective of the paraunitary transformation used. We will
then deal with the problem of finding an optimal FIR paraunitary transformation
Bit allocation result

First we prove the following lemma:

Lemma 1 : Consider a paraunitary multi-input, multi-output system E(z). Let x(n),

the input to this system, be a zero-mean vector WSS process, and let y(n) be the
output vector. T heﬁ,

E[x"(n)x(n)] = Ely" (n)y(n)]. (2.1)

Proof: Let Sxx(e’) and Syy(e?) be the power spectra of the vector sequences

x(n) and y(n). Then,
Syy(€") = B(e")Sxx(¢’)EN (™). (2.2)

Since T [B(e™)Sxx(€7)Bl (7)) = Tr [EH(e)E(e’)Sxx ()], we have,
Tr [Syy ()] = Tr [Sxx(e™)] (2.3)

Integrating the diagonal terms on both sides of the above equation gives us the re-

quired result.

)

Now consider the system shown in Fig. 3.2. x(n) and y(n), both vectors of size
M, are the blocked versions of x(n) and y(n) respectively. Let the quantizers be
modeled as zero-mean, WSS noise sources, uncorrelated with the input. Not that we

do not assume the noise sources to be white or mutually uncorrelated. Let the total

number of bits allocated to all the quantizers be fixed (eq. 1.6).
Theorem 1: Let E(z) be a FIR paraunitary matrix and let R(z) = E(z). Then
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the reconstruction error variance of the system in Fig. 3.2 is minimized when the
variances o} of the errors introduced by each of the quantizers are equal, i.e., 62 = o2
for all 3.

Proof : Let q(n) = u(n) — v(n) and r(n) = y(n) — x(n). Here, q(n) is the vector
whose individual components are the quantizer errors, and r(n) is the reconstruction

error vector. So r(n) is the output of E(z) in response to q(n), or equivalently, q(n)

is the output of the system E(z) in response to the input r(n). Hence using eq. (1.11)

we have
N
a(n) = Y e(m)r(n - m). (2.4)
m=0
Therefore, applying Lemma 1,
Elq" (n)a(n)] = E[t" (n)r(n)]. (2.5)
From the definition of q(n), we have
M-1
Elq"(n)a(n)] = 3_o?. (2.6)
i=0
so that E[rT(n)r(n)] = SM5'02. Our problem is therefore to minimize $Mg'02.

Since the o2 depend only on the input statistics and the paraunitary transforma-

tion E(z), we can show (using eq. 1.5) that eq. (1.6) is equivalent to the condi-

tion (JTM5'0? VM constant. We know [15] that the arithmetic mean of a set of

’L

non-negative numbers is always greater than or equal to their geometric mean, i.e.,
TM-152 > M([TMG! f)l/ M = Mc'M | with equality if and only if the o2 are the
same for all 5. Thus the above Y. ¢? in eq. (2.6) is minimized if and only if all the o2

are equal, i.e.,

=03 = 03 = .. = Oay_y- (2.7)

We can therefore show that the following is the optimal bit allocation:

02
R; = R+ (1/2)log, [(HM T o2 )VM} (2.8)
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In [2], [3], it was shown that the above equation holds for two special cases of parau-
nitary transformations. One must remember that it assumes high bit rates.
Optimal Paraunitary Transforms

This problem has been mentioned in literature for a few special types of parauni-
tary transformations. In [8], the author has dealt with the problem in context of the
LOT, which are degree one paraunitary transformations with a particular form. A
more recent work [16] deals with the Extended Lapped Transform (ELT) which are
paraunitary transformations of higher degrees, but again constrained to take a spe-
cial form. By optimizing the filter responses, the author demonstrates coding gains
approaching those of filter banks with ideal (brick-wall) filters. However, optimizing
the filter responses is not necessarily the appropriate strategy, because ideal filters
need not necessarily maximize the coding gain. To see this consider by way of an
example a power spectral density which is as shown in Fig. 3.3. A two-channel filter
bank with brick-wall filters gives a coding gain of unity, whereas a filter bank with
filters F{®(2) = 1 + 2~! and F{”(2) = 1 — 2~! gives a coding gain of 1.0238.

In [8], the problem of finding the optimal basis functions for the LOT so as to
maximize the coding gain has been formulated as a constrained optimization problem,
to be solved by the method of Lagrange multipliers. The optimum basis functions
are found in a sequential manner. However, it is not clear that such a sequential opti-
mization would yield a global minimum. Another open problem therein is whether or
not the optimal basis functions are the eigenvectors of the so-called ‘extended auto-
correlation matrix,” as they are in the case of the KLT. The extended autocorrelation
matrix is the autocorrelation matrix of size M L, corresponding to the input sequence,
where L — 1 is the order of the paraunitary transformation. We have the following
proposition:

Proposition 2.1: The optimal basis functions are not necessarily the eigenvectors

of the extended autocorrelation matrix.
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Proof: Consider a two-channel paraunitary subband coding system. We know that
the extended autocorrelation matrix is positive-definite and Toeplitz. It is easy to
construct a positive-definite Toeplitz matrix with distinct eigenvalues. Hence it is a
valid autocorrelation matrix of some process. Its eigenvectors are either symmetric
or antisymmetric, i.e, the resulting filters have to be linear phase. However, we know
that [6] a two-channel linear phase paraunitary subband coding system can only have

trivial filters.

We suggest the following scheme for directly finding an optimal paraunitary trans-
form so as to maximize the coding gain.

13

We have o2, = (1/M)XMils? which under optimal bit-allocation becomes
r PU =0

(MM5te? 1M . Therefore, using eq. (1.5) we get
- M-1
o2 py = 2R ([ 102 2 YUM, (2.9)

Now, 02 poy = €2(1/M)272EY M5 162 | and hence the coding gain of the paraunitary

system becomes

iy = M o2)
PU — ( M 1 )1/M >

(2.10)

where o2, is the variance of the input to the kth quantizer. Note that this is true
only for paraunitary transform matrices, and not for arbitrary subband coders. Both
the brickwall subband coder and the orthogonal transform coder satisfy this because
both are special paraunitary subband coders.

Using Lemma 1, we have that 3502 = Y ¥5'62 | where o2,

is the variance
of kth element if x(n). Hence the numerator in eq. (2.10) is completely determined
by the input statistics. The problem therefore is to minimize ([TM5'02 )M in the
denominator of eq. (2.10). For a two-channel system, this is equivalent to minimizing

a?,l. For the general case, let Rxx(7) and Ry (i) denote the autocorrelation matrices

of the vector random sequences x(n) and v(n) respectively. From matrix theory we



72

know that det(Ryv(0))<(TTX5'02, ), with equality if and only if the matrix Ryv(0)
is diagonal. In transform coding case, det(Ryv(0)) = det(Rxx(0)), and is hence
determined by the input statistics. The coding gain Gr¢ is maximized by making
det(Ryv(0)) = (ITM5'02), i.e., by chosing the transform to diagonalize Rxx(0). This
is done by the KLT. In paraunitary subband coding however, det(Ryv(0)) is not
invariant and can in fact be made less than det(Rxx(0)). Thus the problem is to
choose the paraunitary transformation E(z) (of a fixed degree) so as to minimize
det(Ryv(0)).

From [17], we know that every FIR paraunitary matrix E(z) of degree J can be

written as

E(z) = HyV ;(2)Vy_1(2)... Vi(2). (2.11)

Here, Hy is a constant unitary matrix, and the V;(z) are degree-one paraunitary

systems of the form

Vi(z) =1 —vv] +vviz™! (2.12)

where v; are unit norm vectors (Fig. 3.4). Thus the unit norm vectors v; and the
constant orthogonal matrix Hy completely specify the paraunitary system.

The proposed optimization of the coding gain proceeds as follows. With reference
to Fig. 3.4, for given input statistics, it is possible to evaluate the det(Rww(0)) in
terms of the system parameters (vectors v;). Minimization of this determinant can
then be carried out using an iterative minimization scheme such as the one based
on the quasi-Newton techniques. We used a standard subroutine EO4JAF from the
NAG FORTRAN library [18].

After having carried out the minimization of the said determinant, the final block
in Fig. 3.4, which is the constant unitary matrix Hy, is chosen to be the KLT matrix
whose columns are the eigenvectors of the matrix Ryww(0). Hop cannot alter the value
of det(Rww(0)), and hence the choice of Hy does not enter into the optimization

process directly.
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Experimental results: Figs. 3.5 and 3.6 show the maximum possible coding gain
of paraunitary subband coders for different number of channels M. The abscissa
indicates the degree of the paraunitary transformation, J. Hence the length of the
filters in each case is less than or equal to M (J +1). A paraunitary transformation of
order zero implies the usual KLT. The input in Fig. 3.5 was bandpass speech, whereas
in Fig. 3.6 it was lowpass speech. Fig. 3.7 shows the responses of the resulting filters
after optimizing for the coding gain. They correspond to the case in which the input
was lowpass speech.

From the plots, we find that it is possible to achieve significant improvements in
the coding gain by using paraunitary transformations. Moreover, the optimal coding
gain seems to saturate quickly with increasing degree of the paraunitary transforma-

tion, so that it is sufficient to use transformations of small degrees.

IIT1 THE DISCRETE-TIME WAVELET TRANSFORM

Now consider a further extension of the subband coding idea described above,
namely, tree-structured filter banks [19], [20]. Fig. 3.8 shows a special case of a 3-
level, binary tree-structured filter bank, drawn in terms of the polyphase matrices of
the filters on each level; but the following discussion holds for a general L-level binary
tree-structured filter bank.

The input signal x(n) is coded (or ‘transformed’) by passing it through the analysis
bank (Fig. 3.8(a)). The synthesis bank (Fig. 3.8(b)) performs the inverse transfor-
mation on the quantized versions of yx(n). There are several ways to ensure that this
system has the perfect-reconstruction property. One of these is to choose the analysis
filters Gq,(2), H,,(z) such that their polyphase matrix E;(z) is paraunitary and then

choose the synthesis filters as
Gsi(2) = Goi(2), Hylz)=H,(2) i=0,...,L—1. (3.1)

Choosing the synthesis filters in this manner means that the polyphase matrices
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R;(z) corresponding to the synthesis filters are also paraunitary. It also means that
the synthesis filters are non-causal, but since they are FIR, non-causality does not
matter. .

The relation between the above filter bank system and wavelet transforms has been
known for quite some time [12], [21]-[24]. With reference to Fig. 3.8(a), the quantities
yk(n) are called the wavelet transform coefficients of the signal z(n). Assuming that
perfect-reconstruction property holds, (in the absence of quantizers) we have y(n) =
z(n), and we can express

L-~1 oo
) =3 3 wm)fPm-2m 3 pm)Om-2tm),  (32)

k=0m=—c0 m=—oo
with f )(n) being the impulse response of the filter F(s) (z). In other words, we have
obtained an expansion for the signal z(n) in terms of the wavelet coefficients yx(n)
and the wavelet basis functions f* (n — 26+1m).

In the above perfect-reconstruction system, if the polyphase matrices at each
level of the analysis bank are paraunitary, then the wavelet basis can be shown to be
orthonormal [23], which is often a desirable property. The basis functions then satisfy
the relations [23]

> K= 2 m) [ (= 2y = 6(k — DS(m— i), k,1=0,...,L—1

N=—00

> SO~ m) [ (- 2M) =0, k=0,...,L-1

N==—-00

Z £ (n = 25m) ££7% (n — 2%0) = 6(m — 4). (3.3)

Here fl(s) *(n) is obtained from fl(s) (n) by conjugation of coefficients.

For an L-level binary tree, let x(n) be the 2-fold blocked version of the input
z(n), and y(n) be the 2 -fold blocked version of the output y(n). Let r(n) be the
error vector as defined in eq. (1.2). We now repeat our question on optimal bit

allocation: assuming that the polyphase matrices on each level of the binary tree
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are paraunitary, and with proper statistical assumptions, what is the optimal way
to allocate the bits among the quantizers (with their total number being fixed) so
that the reconstruction error variance is minimized? We will answer this question
in Theorem 2. Our result can be extended to any perfect-reconstruction sub-band

coding system with paraunitary polyphase matrices.

Bit allocation result

We first state two lemmas which shall be used in the proof of our main result of

this section.

Lemma 2: Let R(z) be an N by N paraunitary matrix. Then its M-fold blocked
version B(z) as defined in eq. (1.17) is also paraunitary.

Proof : Consider the system shown in Fig. 3.9(a). s(n) and y(n) are vectors of size

N. Since the matrix R(z) is paraunitary, we have,

>y (n)y(n) =3 s" (n)s(n). (3.4)

Now consider the system in Fig. 3.9(b). B(z) is the M-fold blocked version of R(z).
Let p(n) be the M-fold blocked version of s(n), i.e.,

pl'(n) = [sT(nM) sT(nM — 1) ... sT(nM — M + 1)], (3.5)
and let t(n) be the M-fold blocked form of the corresponding output y(n), i.e.,
tT(n) = [yT(nM) y"(nM —1) ... y'(nM — M + 1)]. (3.6)

p(n) and t(n) are both vectors of length NM. For an arbitrary vector sequence of
length M input to the system R(z) in Fig. 3.9(a), the total energy at the output
equals the total input energy. Thus for the system in Fig. 3.9(b), the output energy

equals the input energy for any input p(n), and so B(z) is paraunitary [25].



78

Lemma 3: Consider the system in Fig. 3.10(&) :

(a) Let sT(n) = [so(n) s1(n)]. Then, if s(r) is a (CW SS),m vector process, y(n)
is (CWSS)amy1.

(b) Further, let so(n) and s;(n) denote vectors of length 2M formed by blocking
so(n) and s;(n) respectively, and y z(n) denote the vector of length 2¥*! formed by

blocking y(n). Then, if R(z) is paraunitary,
Elyg(n)ys(n)] = Elso” (n)so(n)] + Els:” (n)sz(n)] (3.7)

Proof: Note that yz(n) can alternatively be defined as the 2M-fold blocked version
of the vector process y(n) shown in Fig. 3.10(a). We can redraw the system in Fig.
3.10(a) as in Fig. 3.10(b), where p(n) and yg(n) are vectors of length 2M+!, Also,
notice that p(n), the 2-fold blocked version of s(n) is a WSS vector process.

The matrix B(z) is as follows:

[ Ry (2) R.(z) Ro(z) ... Rou_1(2) ]
27 Rom_1(2) Ro(2) Ri(2) ... Rom_y(2)
B(z) = 77 'Rom_(2z) z7'Rom_1(2) Ro(z) ... Rom_3(z)

Riz) L R

where R;(z) are the polyphase components of the original matrix R, given by
R(z) = Ro(22") + 27 'Ry (22") 4+ 27 2Ra(22") + ... + 27" "VRpu_,(z*"). (3.8)

Since yg(n) is obtained by passing p(n) through a linear system, yz(n) is also

WSS. Hence, y(n), which is formed by unblocking yz(n), is (CW S8S)am+1, proving

part (a).

Note that since B(z) is a blocked version of a paraunitary matrix, it is also pa-

raunitary (Lemma 2). Therefore, using Lemma 1, we get
Elyp(n)ys(n)] = E[p" (n)p(n)]. (3.9)

But from the definition of these quantites,

Elp*(n)p(n)] = Elsg (n)so(n)] + Elsi”" (n)s1(n)]. (3.10)
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Therefore,

Elyg(n)y p(n)] = Elsg (n)so(n)] + Elsi" (n)si(n)), (3.11)
proving part (b).
)

We now present the main result of this section. Consider a general L-level tree struc-
tured FIR-filter bank such as one used for generating wavelet basis functions (Fig. 3.8
shows a special case of a three-level binary tree). Let the polyphase matrices E;(z)
be paraunitary, and let R;(z) = E;(z), so that y(n) = z(n) in the absence of quantiz-
ers. Let the quantizers be modelled as zero-mean, WSS, mutually uncorrelated noise
sources. Let the total bit rate be constant.

Theorem 2: The reconstruction error variance of the binary tree-structured filter
bank is minimized when the variances ¢? of the errors introduced by each of the
quantizers are equal, i.e., 02 = o2 for all i.

Proof: Consider a general tree-structured analysis-synthesis system. The polyphase
matrices E;(z) and R;(z) on each level are assumed paraunitary. The bits allocated to
each quantizer R; are related to the variance of the error introduced by that quantizer
o2 asin eq. (1.5).

Since the system in the absence of quantizers performs perfect-reconstruction,
and since we have assumed that noise and signal are uncorrelated, it is sufficient to
consider only the synthesis bank to study the effect of noise on the final reconstruction
error. Consider the system in Fig. 3.11. The error-signals e;(n) are all W.SS. Hence,
in particular, they are (CW S8)u for any integer M.

By Lemma 3, we know that s;—;(n) is (CWSS)a. Now, eg—s(n) is also (CWSS),
and er_s(n) and s;_q1(n) are uncorrelated and, hence, they are jointly (CWSS),.
Applying Lemma 3 again, we have that sp_2(n) is (CW SS),. In general, ex(n) and
sk+1(n) are jointly (CWSS)ar-+-1; hence, sg(n) is (CWSS)sr-k.
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Let Ex(n) and sj41(n) denote the 2°-*~1-fold blocked versions of ex(n) and sg.41(n)
respectively for k = 0,..., L — 2; for example, sq(n) is a 2L-fold blocked version of
so(n), whereas Eo(n) and s,(n) are 2! fold blocked versions of eyg(n) and s,(n)
respectively, and so on. The tree can be redrawn in terms of the polyphase matrices

on all levels, similar to Fig. 3.8.
By applying Lemma 3 to each level of the tree, we get the following set of equalities:
Ely (n)y(n)] = (E[E] (n)Eo(n)] + Elsi” (m)s1(n)])
Els)"(m)s:(m)] = (E[E] ()Ea(n)] + Els" (n)sa(n)])
Els2T(n)s2(n)] = ( [E7 (n)Ey(n)] + E[s} (n)sg(n)D , in general,

Elsf(n)se(n)] = (E[Ef (W)Ex(n)] + Elsf()ska(n)]), k=0,.,L—2, (3.12)
and finally,
Bls]_y(n)sp-1(n)) = (Elel_i(n)] + Ble},(n))) (3.13)
Hence from the above equations, one can write,
Ely"(n)y(n)] = E[E;(n)Eo(n)] + E[E] (n)E:i(n)] + E[E; (n)Ez(n)] +

..+ Eler_1(n)er-1(n)] + Eler(n)er(n)]) (3.14)
i.e., the variance of the overall reconstruction error 51 E[y” (n)y(n)] = o? is given as

N
o? = (57) (2 op + 270} 2" 4 ko] s+ o), (3.15)

r

where o2 are the individual quantizer variances. Our constraint is that the total

bit-rate is constant. This means that
(2F 'Ry + 257%Ry - 2Ry + ...+ Ry + Rp) /2% = constant = R.  (3.16)

To obtain the optimal bit allocation, we minimize the reconstruction error variance
o2 in eq. (3.15) under the above constraint on the bit-rate. This can be done by the

method of Lagrange multipliers, and it gives the following optimal bit allocation:

2
R; = R+ (1/2)logs [3;’] 1=0,...,L, (3.17)
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where D = (02)V QLHJI-;‘OI oz )Y 2™ and o2 are the variances of the inputs to the
quantizers. It can be verified that under optimal bit allocation the variances of the
errors introduced by each of the quantizers are equal.

As in the case of Theorem 1, the above result is valid only for high bit rates.

The total reconstruction error variance under optimal bit allocation becomes
02 = ¢e2D27%8, (3.18)
The coding gain of the system is, therefore,
Gpy = 02/D, (3.19)

where o2 is the variance of the input.

To obtain a physical insight into this result, consider the typical appearances of
the filter responses in a tree-structured bank (Fig. 3.12, for a 3-level tree). If the
polyphase matrices on each level of the tree are paraunitary, these filters have equal
energy irrespective of their frequency characteristics. This can be proved as follows.
Putting k = and m = ¢ = 0 in eq. (3.3) we get

0

S P m) =1, k=0,...,L (3.20)

n=—o0
This means that all filters have unit energy. Hence it is indeed appealing intuitively
to equalize the variance of the error in each subband.

Notice that in the proof of the above result, the assumption that the noise sources
are mutually uncorrelated is a slightly stronger assumption than we actually need. It

would have been enough to assume that the vectors sp(n), k=0,...,L—1are WSS.

IV  BIT ALLOCATION IN ORTHONORMAL NON-UNIFORM FIL-
TER BANKS
Consider the filter bank shown in Fig. 3.13. This is an example of a general

non-uniform filter bank. The numbers n; need not necessarily be powers of 2, as they
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were in the case of the discrete-time wavelet transforms. Non-uniform filter banks
with perfect reconstruction property have been shown to exist. The filter bank is said

to be orthogonal, if the synthesis filters satisfy the following condition [26]

o0

S FEW P~ gi) = 6k — 1)5(), (4.1)

n=—o0

where g is the greatest common divisor of (nk,n:). One way to realize perfect recon-
struction non-uniform filter banks is to generate them via tree-structures. Orthonor-
mality of the resulting non-uniform system can be ensured by choosing the polyphase
matrices on each level to be paraunitary [26]. Hence, the analysis of the previous
section can be extended in a straightforward manner to orthogonal non-uniform fil-
ter banks which arise from tree-structures. However, it must be noted that not all
orthonormal non-uniform filter banks can be generated using tree-structures [26]. In
this case, a different approach needs to be taken to arrive at the bit-allocation results.
This is the topic of the present section.

The trick is to reduce the orthogonal non-uniform filter bank shown in Fig. 3.13
to a uniform paraunitary filter bank. This idea has found mention in [27]. This will
then enable us to directly use the results developed in section II.

Let L be the least common multiplier of the decimation ratios n;, and let L =
nik;, i=20,...,M. It can be verified that L = Zf‘ioki. Now consider one branch
of the non-uniform bank, as shown in Fig. 3.14(a). This can be redrawn as in
Fig. 3.14(b). The unblocking mechanism shown only interleaves the samples (i.e., no
addition of two non-zero samples takes place). Hence, the quantizer can be moved
across the unblocking mechanism into each of the branches. Finally, the individual
branch we started with can be redrawn as in Fig. 3.14(c). If we use the preceding
technique to represent all branches of the non-uniform filter bank, the resulting system
is an L-channel uniform filter bank. It can been shown [28] that if the original non-
uniform filter bank is orthogonal, the polyphase matrix corresponding to the new -

channel uniform filter bank is paraunitary. Hence, applying Lemma 1 to the uniform
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system, we get
o? = (L)L ko?, (4.2)

where ¢? is the variance of the error introduced by the ith quantizer in Fig. 3.13.
The problem is to minimize this reconstruction error variance under the constraint

of constant bit rate, namely,
(ZZOk’R") /L = constant = R. (4.3)

The optimal bit allocation is again found by the Lagrange multiplier method. For

optimality, the number of bits allocated to the ith quantizer is given by

2
R; = R+ (1/2)log, {%’—’] i=0,...,M, (4.4)
where Dy, = [1}Lo(07,)/™. The o2, are, as usual, the variances of the inputs to the

quantizers. Once again, it can be verified that under this condition the variance of
the errors at the location of each of the quantizers are equal.

The total reconstruction error variance under optimal bit allocation is given by
02 =eD,27%k, (4.5)
The coding gain of the system is, therefore,
Gpy = 02/ Dy, (4.6)

where o2 is the variance of the input.

IV CONCLUSIONS

In this paper we have proved results for bit-allocation in sub-band coding schemes
using paraunitary matrices. To start with, we proved some basic results for simple
paraunitary LT1 systems. Using these we have then derived bit-allocation results for
a more complex system, namely the tree-structured filter bank. For a binary tree-

structured filter bank, we showed that under the constraint that the total bit-rate



90

is fixed, the individual quantizer error variances have to be equal under optimal bit
allocation. These theorems can be extended readily to general tree-structures. We
finally performed this analysis for non-uniform orthogonal filter banks which cannot
be derived from tree-structures. It would also be possible to parametrize wavelet
filter banks in terms of the polyphase matrices on each level of the tree-structure and
optimize the overall coding gain, though this has not been done in this paper. This
procedure would result in an optimized wavelet for the given signal statistics.

In the case of uniform paraunitary subband coders, we presented a scheme to
directly optimize the coding gain. Experimental results were presented.

In speech and image coding applications, one might use other criterion for mini-
mizing the reconstruction error, rather than minimizing its variance. For instance, we
could attach different (non-negative) weights wy to each of the subbands, and then
try to minimize the weighted sum of the variances, i.e., 3 wroz. The fact that the
arithmetic mean of a set of non-negative numbers is always greater than or equal to
their geometric mean can still be used. It is easy to see that in order to minimize the
weighted sum, each of the w02 would have to be equal. In other words, the variances
o2 would have to be inversely proportional to the weights wy, again an intuitively ap-

pealing result.
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Chapter 4

GENERALIZED POLYPHASE REPRESENTATION AND
APPLICATION TO CODING GAIN ENHANCEMENT
Abstract!

Generalized polyphase representations (GPP) have been mentioned in literature
in the context of several applications. In this paper, we provide a characterization
for what constitutes d valid GPP. Then, we study an application of GPP, namely
in improving the coding gains of transform coding systems. We also prove several

properties of the GPP.
I INTRODUCTION

The polyphase representation is a useful tool in multirate applications [1]-[3],[11].
It has been extensively used in the design of digital filter banks. The M-fold polyphase

representation of a transfer function H(z) is given by
M—1 .
H(z) = Y ha(cM)2, (L.1)
=0

where the h;(z) are referred to as the M polyphase components of H(z). The right
hand side of eq. (1.1) is a linear combination of functions z7*, 4 =0,...,M — 1,
with the weighting factors being functions of z™. Such a representation holds for
both finite and infinite impulse response (FIR and ITR) transfer functions. Moreover,

H(z) is FIR if and only if all its polyphase components are FIR. A natural question

1To appear, IEEE Trans. on Circuits and Systems.
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which arises is whether an arbitrary transfer function H(z) may be written as a linear
combination of functions other than 2z, while retaining the desirable properties [1]-[3]
of the traditional polyphase representation. Furthermore, are there any advantages
to be gained by using a different set of functions?

In [3], the author has mentioned the so-called ‘generalized polyphase representa-
tion’ (GPP). It has been shown that using a GPP, it is possible to efficiently quantize
the coefficients of a digital filter. It has also been shown therein that the GPP gives a
second derivation of the so-called Interpolated FIR (IFIR) filter technique [8]. In [4],
further applications of GPP have been studied. However, neither of these references
addresses the issue of what constitutes a valid generalized polyphase representation.
In this paper we first provide a complete characterization of valid polyphase represen-
tations (section I1). In section III, we study another application of the GPP, namely in
enhancing the coding gain of transform coding systems. We prove several interesting
properties in this regard.

The notation used in this paper closely follows that used in [3]. Bold faced
quantities denote vectors and matrices. Let z(n) be a real, wide sense stationary
(WSS) random process. The correlation function p(k) of this process is defined as
p(k) = Elz(n)z(n — k). If x(n) is a WSS vector random process, its M by M
autocorrelation matrix is defined as Rxx(k) = Ex(n)xT(n — k)]. AR(N) refers to
an autoregressive process of order N [6]. The abbreviation ged stands for ‘greatest
common divisor.” In the figures, the boxes with TM and | M stand for interpolators

and decimators respectively, as defined in [2],[3].

II GENERALIZED POLYPHASE REPRESENTATIONS
In this section we first define a ‘valid polyphase representation’ (VPP) and then

provide a characterization of all such representations.

Definition: Let u(z) = [uo(2) ui(z) ... upr—1(2)]T. This is said to be a valid
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polyphase representation (VPP) if
(a) every rational function B(z) can be represented as B(z) = Y M55 (zM)u;(2),
where the b;(z) are rational
(b) bi(z) are FIR if and only if B(z) is FIR.

It can be shown that with this definition, u(z) is guaranteed to be FIR.

We now characterize all such VPPs. Let e(z) = [1 27! 272 ... z~M*T, This
is, therefore, the basis for the usual polyphase representation. Let the vector u(z)
defined above be given the usual polyphase representation u(z) = V(2M)e(z). This
means that V(z) is the conventional polyphase matrix [3] of the elements of the vector
u(z). Note that V(z) is FIR. We have the following result:
Lemma 2.1: u(z) is a valid polyphase basis if and only if det|V(z)] = cz* for ¢ # 0
and integer & .
Proof: First assume that u(z) is a VPP. Then every transfer function can be repre-
sented in terms of the elements of u(z). In particular, e(z) can be written in terms
of u(z) as

e(z) = E(z")u(z). (2.1)
But, u(z) = V(zM)e(z). Hence
e(z) = EM)V(z")e(2). (2.2)

Now, E(2)V(z) is the traditional polyphase matrix of e(z) with respect to e(z).
Therefore, E(z)V(z) = 1. Since, E(z) and V(z) are both FIR, we have the result
that det[V(z)] is a power of z.

Conversely, let det[V(z)] be a power of z. We know that any transfer func-
tion H(z) can be represented as H(z) = hT(zM)e(z). Using eq. (2.1) this be-
comes H(z) = hT(zM)E(2M)u(z). Hence H(z) can be represented in terms of u(z).
Since V(z) is FIR and det[V(2)] is a power of z, E(z") should be FIR (using
E(zM)V(zM) = I). Hence h' (2M)E(2M) is also FIR for FIR H(z). This proves
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the converse. o

IIT CODING GAIN ENHANCEMENT USING GPP

In this section, we shall study a specific application of the generalized polyphase
representation.

Consider Fig. 4.1 with J; =1, i=1,..., M —1. Thisis therefore the familiar case
of Transform coding. Such schemes are used in data compression of speech, images
and other signals. In such a scheme, the input string is divided into non-overlapping
blocks x(n) of length M by grouping together M successive samples. Each block
is encoded by multiplying it with a transform matrix A. The transform coefficients
s(n) are independently quantized. At the receiver, the inverse transformation A~! is
applied to the received vector t(n) to produce the output vector, which is ‘unblocked’
to obtain the output sequence. The case where the transform matrix is orthogonal
(AT = A1) is called Orthogonal Transform Coding [6], and is the one most com-
monly used in practice. The scheme can also be drawn as a filter bank as in Fig.
4.2.

There are two issues involved in the design of transform coding systems; namely,
allocating the bits to the individual quantizers, and choosing the ‘optimal’ transform
matrix A so as to maximize the coding gain. The optimal bit allocation result [6]
says that the distribution of bits which minimizes the reconstruction error variance
is the one that makes the individual quantizer error variances equal. Also, it is well
known that the transform matrix A which maximizes the coding gain of the system is
the Karhunen-Loeve Transform (KLT'), whose rows are the eigenvectors of the input

autocorrelation matrix [6]. The coding gain then becomes

2

10 = et R O 31

An aspect of the transform coding scheme which has not received attention so

far are the variations of the blocking/unblocking mechanisms (Fig. 4.1). Notice that
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in a traditional transform coding system, this mechanism is responsible for blocking
M successive samples of the input data. However, it is possible in case of certain
inputs to exploit the correlations between non-adjacent samples of the input data
so as to enhance the coding gain. This would be particularly important when data
from several sources is multiplexed into one bit-stream. Specifically, it is possible in
several cases to design the blocking mechanism such that the value of (det[Rxx(0)])
in eq. (3.1) is reduced. The question now is what are the constraints which the new
blocking /unblocking mechanism has to satisfy?

Consider the system shown in Fig. 4.1 with J; = J, i=1,...,M — 1 . Hence,
we have used a generalized polyphase basis comprising of the functions 27/, i =
0,...,M — 1. The matrix A is the polyphase matrix of the filters in a generalized
sense. Since the basis can be implemented using only delay elements, this scheme is
equivalent to a transform coding scheme in terms of complexity.

Fact 3.1: Consider the system shown in Fig. 4.1 with Ji =J, ¢=1,... M — 1.
This is a perfect reconstruction system if and only if ged(J, M) = 1.

Proof: One proof of this fact appears in [9]. We present here a proof based on
GPP for the sake of completeness. Let u(z) be the vector with elements w;(z) =
27 §=0,...,M —1. Let u(z) = V(2M)e(z), where e(z) is as defined above. If
ged(J, M) = 1, then it can be verified that the matrix V(z) has only one entry per
column, and this entry is a delay. Hence det[V(z)] is a delay, implying that this is a
valid GPP. Furthermore, V(z) is paraunitary [3], i.e., it satisfies V(2)V(2) = I, where
V(z) is obtained from V(z) by transposition, followed by conjugation of coefficients
followed by 'replacing z by z7!. The polyphase matrix of the unblocking mechanism
is V(z), and hence the system is a perfect-reconstruction system. Conversely, if
ged(J, M) # 1, it can be verified that at least one of the columns of V(z) will have

all zeros, and hence the system cannot have perfect reconstruction property. &

Comment: Suppose M is fixed. There are several choices of J which satisfy Fact
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3.1. In practice, we choose J such that the correlation between samples distance J
apart is high. If the selection of both J and M is up to the designer, J is first chosen
as above, and then M is chosen so as to satisfy Fact 3.1. However, we have not proved
theoretically the optimality of such an approach.

Coding gain example: As an example of a process where the coding gain of the
new system is better than the transform coding system, consider a process with the

autocorrelation function
plk) = pi(k)+ p2(k) where
pi(k) = (0.0)* and

pa(k) = (0.9)™/% if k| is @ multiple of 4, and 0 otherwise. (3.2)

Such an autocorrelation could arise where, for example, the correlation between
non-adjacent samples is high. If we used a traditional transform coding scheme on
such an input, the coding gain would only be 0.029 db, whereas using J = 4 gives a
gain of 1.63 db (in both cases, M = 3).

Transform coding is often used to encode images. Data from images normally
shows high correlation between adjacent samples and is often modelled as an AR(1)
process. For such data, the choice of J and M is simplified by the following lemma.
Lemma 3.2: For an AR(1) process, the value of J which maximizes the coding gain
of the system is J = 1 (i.e., traditional transform coding) for all M.

Proof: Consider running the Linear Predictive Algorithm (LPC) [6] on the AR(1)
input. Let ¢; denote the prediction error variances for the ith order optimal predictor.
Then it can be shown that ¢c = 1, and ¢; = (1 — p%),  for all i > 1. Here, p is
the correlation coefficient of the AR(1) process. Now consider the autocorrelation
matrix Rxx of size M x M corresponding to the vector input sequence x(n). It can
be shown [6] that the determinant of this matrix is given by det[Rxx] = [T e =

(1 — p?)M-1. If we use J # 1, it can be verified that the autocorrelation matrix of
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the new vector process is similar to Rxx, but with correlation coefficient equal to p”.
The determinant of the new autocorrelation matrix is detRxx'] = (1 — p?/)M=1. If
lp] < 1, det[Rxx'] > det[Rxx]. Hence, from eq. (3.1), the coding gain of the new
system can be no better than the traditional transform coding system. <

Monotonicity: In the case of traditional transform coders, the optimal coding gain
can be shown (Appendix C of [10]) to be a monotonic function of the number of
channels M for arbitrary inputs. In systems such as in Fig. 4.1, however, the optimal
coding gain is a function of M as well as J. For a given input, and a certain number
of channels, there exists an optimal J satisfying Fact 3.1, which maximizes the coding
gain of the system. Let Gopt(Jopt, M) denote the maximum gain after having chosen
the optimal J for a particular input. It can be shown that Gu(Jop, M) is not a

monotonic function of M. To see this, consider the following autocorrelation function
R(k) = (o) if kis a multiple of 6, and 0 otherwise. (3.3)

If M = 5, and if we use J = 6, we get a coding gain of —log(1 — p*)*/5db . If p = 0.95,
for example, this value is 8.08db. However, if M = 6, it is not possible to get a coding
gain greater than 0 db.
Fact 3.3: Consider the system in Fig. 4.1. Let B, = Zik:lJi, with Fy = 0. Then the
system is a perfect-reconstruction system if and only if the numbers (FPy) mod M are
distinct.
Proof: As in the proof of fact 3.1, let u(z) be the vector with elements u;(z) =
2P i=0,...,M—1,andlet u(z) = V(2™)e(z). It can again be verified that under
the condition that the numbers (P;) mod M are distinct, det[V(z)] is a delay, implying
that this is a valid GPP. Furthermore, V(z) is also paraunitary, thereby implying
perfect reconstruction. Conversely, if the Py, do not satisfy the stated property, V(z)
will be singular, implying that perfect-reconstruction is not possible. <

The important point to note in this new scheme is that the autocorrelation matrix

of the vector x(n), i.e., Rxx is no longer Toeplitz. Hence it is in general difficult
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to find the J; which maximize the coding gain for a given process. This would
involve minimization of the determinant of a general positive definite matrix under
the constraints imposed by Fact 3.3.
One can, however, construct examples to demonstrate an improvement in the
coding gain by using systems such as those in Fig. 4.1.
Example 1. Let M = 3, and consider an AR(5) process at the input whose first
six autocorrelation coefficients are py = 1.0, py = 0.2, p; = —0.45, p3 = 0.38, py =
0.7, ps = —0.4. Traditional transform coding would give a gain of 0.5 db, whereas
using J; = 4 and J; = 1 in Fig. 4.1 would give a coding gain of 2.3 db.
Example 2. Let M = 4, and consider an AR(6) process at the input whose first
seven autocorrelation coefficients are po = 1.0, p; = —0.2, p = —0.2, p3 = 0.5, py =
—0.46, ps = 0.39 pg = 0.76. Traditional transform coding would give a gain of 0.512
db, whereas using J; = 1, Jo =2 and J; = 3 in Fig. 4.1 would give a coding gain of
3.19 db.
NOTE: One can verify that the above two examples present valid autocorrelation
sequences. This can be done by verifying that the relevant Toeplitz autocorrelation
matrices (of size 6x6 in example 1, and of size 7x 7 in example 2) are positive definite.
In the denominator of coding gain expressions, det(Rxx) plays a crucial role. So
it is important to explore the meaning of det(Rxx) = 0. In the traditional case, we
know that the M x M matrix Rxx(0) is singular if the input process z(n) is harmonic
with atmost M frequencies. In the case of the system shown in Fig. 4.1, the following
result holds:
Lemma 3.4: Consider the system in Fig. 3, and let P, = ZleJi with Py = 0. Let
the M x M autocorrelation matrix Rxx be singular. Then, the input process z(n) is
harmonic with atmost Pu—y frequencies.
Proof: Let Rp be the autocorrelation matrix of size (Py—1 + 1) X (Py—1 + 1) cor-

responding to the input sequence x(n), i.e., Rp,; = [p(i — 7)]. We know (7] that
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if Rp is singular, the input process is harmonic with atmost Pjs_; frequencies. We
now show that det[Rp] < det[Rxx|. Since both autocorrelation matrices are positive
semi-definite, singularity of Rxx would guarantee the singularity of Rp.

For a suitable choice of permutation matrix P, we have

PRBP:Q:(I)‘(’;E‘ ?) (3.4)
Hence (pg. 404 of [12]),
det[Rp] = det|Q] < det[Rxx]. < (3.5)

IV. COMMENTS

In this paper, we have developed a characterization of generalized polyphase rep-
resentations (GPP). The GPP allows us a greater freedom in designing multirate sys-
tems. We studied a particular application of GPP, namely in enhancing the coding
gain of transform coding systems. The advantage of using GPP was demonstrated for
several inputs. Moreover the additional complexity of the new system is only slightly
greater than the transform coding system, the difference being the higher number of

delay elements used. We also proved several properties of the new system.
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Chapter 5

LINEAR PHASE PARAUNITARY FILTER BANKS: THEORY,
FACTORIZATIONS AND APPLICATIONS

Abstract!

M channel mazimally decimated filter banks have been used in the past to decompose
signals into subbands. The theory of perfect-reconstruction filter banks has also been
studied extensively. Non-paraunitary systems with linear phase filters have also been
designed. In this paper, we study paraunitary systems in which each individual filter
in the analysis and synthesis banks has linear phase. Specific instances of this problem
have been addressed by other authors, and linear phase paraunitary systems have been
shown to exist. This property is often desirable for several applications, particularly
in image processing.

We begin by answering several theoretical questions pertaining to linear phase pa-
raunitary systems. Next, we develop a minimal factorization for a large class of such
systems. This factorization will be proved to be complete for even M. Further, we
structurally impose the additional condition that the filters satisfy pairwise mirror-
image symmetry in the frequency domain. This significantly reduces the number of
parameters to be optimized in the design process. We then demonstrate the use of
these filter banks in the generation of M-band orthonormal wavelets. Finally, we use

the lincar phase paraunitary system to encode signals and provide a comparison with

1To appear, Special Issue on Wavelets, IEEE Trans. on Signal Processing, Sept. 1993.
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traditional techniques. Several design examples are also given to validate the theory.

I INTRODUCTION

Digital filter banks have been used in the past to decompose a signal into frequency
subbands [1]-[12]. The signals in different subbands are then coded and transmitted.
Such schemes are popular for encoding data from speech and image signals. The
process of decomposition and eventual reconstruction are done by what is termed as
the ‘analysis-synthesis’ filter bank system shown in Fig. 5.1. In this scheme, the H;(z)
are the analysis filters and F;(z) are the synthesis filters. The boxes with | M denote
the decimators, or the subsampling devices, whereas the boxes with T M denote the
expanders, which increase the sampling rate. Their definitions are as in [1], [3].

Fig. 5.2 is a representation of the subband coding scheme in terms of the polyphase
matrices [3]. E(z) is the polyphase matrix corresponding to the analysis filters, and
R(z) is the polyphase matrix corresponding to the synthesis filters. The decimators
and expanders have been moved across the polyphase matrices using the noble iden-
tities [3]. It has been shown that it is indeed possible to perfectly reconstruct the
original signal using such analysis-synthesis systems [5]-[12]. In particular, this can
be done by filters that have finite impulse response (FIR), and are hence guaranteed
to be stable. One way to do this is to let R(z) = E~!(z), and then choose the matrix
E(z) so that both matrices are FIR. Such a system is called a biorthonormal system
[13].

I.(a) Preliminaries

Paraunitary systems: Another approach to design a perfect reconstruction

system is to choose the matrix E(z) to be a FIR ‘paraunitary’ matrix. A matrix is

said to be paraunitary [8] if it satisfies the equation
E(z)E(z) =1, (1.1)

where E(z) = E'(1/2*). The system can be guaranteed to have the perfect recon-
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x(n)

al Ho(Z)——"VMM4M——>Fo(Z)
I::*'H (2)—= *Mw’ AM—=F, (2)
i

Fig. 5.1. An M-channel uniform filter bank

x(n) y(n)
- -
Blocking Mechanism Unblocking Mechanism

Fig. 5.2. A filter bank drawn in terms of
polyphase matrices
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H :n 0 (Z)_—_—> Hn:.n,o(z)
—— -
Hm, L1 (@) m+1, L-1(Z)
’ Km+1 ’
Hoo (2) - M > H (2
Z'_
Hm, M-1 (Z) Z-M _>Hm+1, M-1( )

Fig. 5.3. One stage of the filter bank
developed in section I
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struction property by having R(z) = E(z). This paraunitary property can be traced
back to classical network synthesis [14].
Consider the synthesis bank of Fig. 5.1. The original signal can be written in

terms of the subband signals as
M-1

z(n) = > > _uk(m)fe(n — Mm). (1.2)

k=0 m

This can be viewed as a representation of the original signal in terms of a doubly
indexed set of basis functions 7em(n) = fr(n — Mm). 1t is known [10], [13], [15] that
this set of basis functions is orthonormal if and only if the polyphase matrix R(z)
corresponding to these filters is paraunitary.

Another feature of the paraunitary analysis-synthesis system is that the analysis
and synthesis filters are simply time-reversed conjugate versions of each other and, in
particular, therefore, they are of the same length.

Quantization: In a practical subband coding system, both the filter coefficients,
as well as the subband signals, are quantized. It has been shown [3], [16] that there
exist structures which retain the paraunitary property in spite of coefficient quanti-
zation. The perfect-reconstruction property is, however, lost when the signals in each
subband are quantized. A paraunitary system still has some important features in
the presence of subband quantization:

1) We can obtain bounds on the overall reconstruction error in terms of the quanti-
zation errors in each subband, no matter what the frequency responses of the filters
are [17].

2) We are assured that the only error is due to signal quantization.

The coding gain [18] is often used as a criterion for judging the performance of
these practical subband coding schemes.

M-band orthogonal wavelets: The relation between the M-channel parauni-
tary system and M-band orthogonal wavelets has been shown recently in [19], [20].

M-band wavelets have also been shown to provide a more compact representation of
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signals than the traditional binary wavelets [21]. The M-band wavelet is obtained
by cascading the M-channel paraunitary system in an infinite tree-structure. Using
a linear phase paraunitary system therefore gives us an orthonormal basis of linear
phase wavelets. This will be demonstrated later in this paper.

I.(b) Previous work on linear phase perfect reconstruction systems:

In several applications, and particularly in image coding, it is desirable to have
each filter in the system be a linear phase filter. This would not be necessary if there
were no subband quantization, which is not a case of practical interest. The problem of
designing two-channel linear phase, non-paraunitary, perfect reconstruction systems
has been discussed in the past [22], [23]. However, for the two-channel case, it can
be shown that if a paraunitary system has linear phase filters, it is degenerate, i.e.,
the filters can be no better than a sum of two delays [3]. For M-channel paraunitary
systems, linear phase property has been demonstrated in certain special cases, by
Princen and Bradley in [24] and by Malvar in [25]. In [25], the author gives examples
of linear phase Lapped Orthogonal Transforms (LOT), which have been shown to be
order one paraunitary systems of a specific form. In [24], too, the filters mentioned
correspond to a special type of paraunitary systems of order one. The more general
case of linear phase paraunitary systems of larger degrees was addressed for the first
time by Vetterli and Le Gall in [26]. The authors derive systems of higher degree from
those of smaller degree by multiplication with certain types of paraunitary matrices,
when the number of channels is even. For the four-channel case, the authors give
judicious examples of such building blocks.

A structure is said to be minimal [10] if it uses the minimum number of delay
elements to implement the particular transfer function. Completeness of a structure,
on the other hand, implies being able to factorize a given linear phase paraunitary
system in terms of the proposed structure. Another important consideration while

designing filters by optimization is being able to characterize the building blocks in
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terms of a minimal number of free parameters. None of the earlier works addresses
any of the above three issues. We shall address them in this paper. We will also
present, for the first time, design examples of linear phase paraunitary systems of
higher degrees.

In [12], Nayebi, et al. have proposed a time-domain approach in which filter
banks are designed by formulating a system of equations. In this formalism, one can
incorporate time-domain constraints, and it should also be possible to impose the
linear phase property therein. The purpose of our paper is, however, different, as
outlined below.

I.(c) Aim of the paper
This paper attempts a thorough study of linear phase paraunitary filter banks. In

particular, the following is the new contribution of this work:

e Section II: We develop the theory of linear-phase paraunitary systems, and prove

several new results.

e Section III: For the case where the number of channels M is even, we present
a factorization of the linear-phase paraunitary filter bank that it is minimal

as well as complete for a large class of filter banks important from a practical

standpoint.

e Section IV: We further structurally impose the constraint that the filters be pair-
wise symmetric around 7 /2 in the frequency domain. This significantly reduces

the number of variables to be optimized in the design.

e Section V: We provide a cascade structure for linear-phase paraunitary systems

when M is odd, and prove that it is minimal.

e Section VI: We apply the above ideas to generate symmetric, orthonormal, M-band

wavelets. The issue of regularity [18], [12] is addressed.
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e Section VII: We study the performance of linear phase paraunitary systems in
subband coding. In particular, we provide comparison for coding gains obtained
using linear phase systems with those obtained using general paraunitary coding

schemes.

We also present several design examples to validate the above theory.
I.(d) Notations

Bold-faced quantities denote matrices and vectors, as in A and x. AT, A~ and
Tr(A) denote the transpose, the inverse, and the trace of the matrix A, respectively.
A subscript on a matrix indicates its size, when the size is not clear from the context.
Reserved symbols for special matrices are as follows: I is the identity matrix. The
matrix Jy is the anti-diagonal matrix of size N x N. For example, the anti-diagonal

matrix of size 4 is

-0 O O
O = OO
OO - D
OO O =

0 will denote the null matrix, whose size will be clear from the context. Vg will
denote a special diagonal matrix of size K x K, with alternating +1’s on the diagonal,

starting with +1.
A superscript asterisk as in f*(n) denotes conjugation. Consider a transfer func-

tion A(z). It can be written in terms of its M polyphase components [27] as follows:
A(z) = ao(ZM) + 27 a1 (ZM) + .. 4 2 M Vg, (2M). (1.4)

This is known as Type I polyphase. Let H;(z), i =0,...,M —1, be a set of analysis

filters. They can be written as
M-1
Hi(z) = ZZ_ZEM(ZM) k=0,...,M—1.
=0

The matrix E(z) = [Eg(%)] is called the polyphase matrix of the analysis filters. A set

of filters Hy(z) whose polyphase matrix is paraunitary are said to form a paraunitary
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system (eq. (1.1)). Throughout this paper, we will deal with real, causal, FIR

systems. Given such a system E(z) of order N, we can write it explicitly as

E(z) =e(0) +e(l)z ' +e(2z2+... +e(N)z7V, e(N) #0. (1.5)

II THEORY OF LINEAR PHASE PARAUNITARY SYSTEMS

In order to obtain factorizations of linear phase paraunitary systems, we first need
to obtain a characterization of their polyphase matrix which reflects the linear phase
property of the individual filters. Consider a set of M paraunitary transfer functions

whose polyphase matrix E(z) satisfies the property [26]
Dz VE(z"H)Jy = E(2), (2.1)

where N is the order of the paraunitary matrix E(z). Such a polyphase matrix
corresponds to a set of filters which have linear phase. The matrix D is a diagonal
matrix whose entries are 1's, the +1's in those rows which correspond to symmetric
filters and —1’s in those that correspond to antisymmetric filters. The filters described
by this equation have the same center of symmetry ((N + 1)M — 1)/2.

It is conceivable that there are linear phase paraunitary systems which cannot be
characterized as in eq. (2.1). One example is that of the ‘delay chain,” wherein the
analysis filters are simply H;(z) = z™%, i=0,...,M — 1. However, as said earlier,
obtaining factorizations requires us to impose constraints on the polyphase matrix
of the filters, and eq. (2.1) represents a large class of filter banks important from a
practical standpoint. In this paper, we will consider only those systems that can be
described by eq. (2.1). We will also show several good design examples based on such
systems.

The linear phase constraint in conjunction with the paraunitary property imposes
interesting conditions on the filters. The paraunitary property implies orthonormality

of the impulse response to its own shifted versions [10],[15], and the linear phase
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property implies that the filters are time-reversed versions of themselves (up to a
factor of 1). This, for example, imposes a restriction on the length of the filters.
Fact 2.1: Let F;(2) be a set of M linear phase paraunitary filters of length L each
with f;(0) # 0. Then, L # IM + 1 for any integer [ > 1.
Proof: The orthonormality condition on the filters [10] in particular implies,
)

n:@oofj(n)ff(n — M) = §(3). (2.2)
If the length of the filters is L = IM + 1, in view of linear phase property this means
that

£0)£;0) =0, (2.3)

implying that f;(0) = 0. Hence the length L # IM + 1 for any integer [ > 1. 00O

The perfect reconstruction condition also imposes a constraint on the number
of symmetric and antisymmetric functions in the filter bank. This is stated in the
following theorem:

Theorem 1: Consider an M-channel linear phase perfect reconstruction system.
i) If M is even, there are M /2 symmetric, and M/2 antisymmetric filters.
ii) If M is odd, there are (M +1)/2 symmetric and (M — 1)/2 antisymmetric filters.

This result has been proved in [28] for the special case where the order of the
paraunitary matrix E(z) is one. The proof therein is based on subspace techniques
and, moreover, does not extend to the case where E(z) has an arbitrary order. The
result has been stated explicitly as an assumption in [26]. We provide below a formal
proof that this is indeed true. Note that the result is not restricted to paraunitary
filter banks.

Proof: Consider eq. (2.1). The trace of the matrix D holds the key to the number

of symmetric and antisymmetric filters in the system. Using the fact that the matrix
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E(z) is invertible, we have,

Tr(D) = TrENEQR)IWE (™) (2.4)

= Tr(z"E'Y(z"HE(2)Iy). (2.5)

We have used the fact that Tr(AB) = Tr(BA). The left hand side of this equation
is constant. Hence its value can be found by evaluating the right hand side for one

value of the variable z. Putting z = 1 in the above equation we get,
Tr(D) = Tr(E"YDEM0)Iy) = Tr(JTu), (2.6)

with the anti-diagonal matrix Js as in eq. (1.3). Therefore, it can be verified that
Tr(D) = 0 if M is even, and Tr(D) = 1 if M is odd. Hence there are an equal
number of symmetric and antisymmetric functions if M is even, whereas if M is odd,
there is one extra symmetric function. <C&

In particular, the above theorem implies that all the filters cannot be zero phase.
The proof of the above theorem also implies an interesting constraint on the order of
the linear phase polyphase matrix E(z) when the number of filters M is odd.
Corollary 1: If the number of channels M is odd, the order N of the polyphase
matrix E(z) cannot be odd.

Proof: Consider eq. (2.5), and let N be odd. If one evaluates the right hand side of

this equation at z = —1 instead of z = 1, we get
Tr(D) = Tr((-1)NE Y (=DE(=1DJy) = =Tr(In). (2.7)

This, along with eq. (2.6), would imply that T'r(Ja) = 0, but this is not possible
since M is odd. Hence we get a contradiction, proving that N cannot be odd. OO

An interesting consequence of imposing the paraunitary constraint on an M -
channel filter bank is that it guarantees that if the first M — 1 filters are linear
phase, the lagt filter is also linear phase. This is formally stated as follows:

Theorem 2: Let a set of filters Fj(z), i=0,..., M — 1 be paraunitary, and let the
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first M — 1 of them have linear phase. Then the last one is guaranteed to have linear
phase.

Before we prove the theorem, we will prove a lemma which will help us in the
proof.
Lemma 1: If M — 1 functions of an FIR paraunitary system are known, the last one
is uniquely determined (up to a factor of the form (e#0)2!M).
Proof: Let Fi(z), i =0,...,M — 1 form an FIR paraunitary system. Let, if
possible, u(z) be another FIR function, which along with Fi(z), i=0,... M —2
forms a paraunitary system. Let E'(z), the polyphase matrix corresponding to this

modified set of paraunitary functions, be partitioned as

E(z) [ E:f((;)) } . (2.8)

This means that the row vector u(z) has as its elements the polyphase compo-
nents of the filter u(z). Since E/(z) is unitary on the unit circle, u(e’*) is uniquely
determined up to a scale factor of the form e’®®). Hence, by analytic continua-
tion, u(z) = A(zM)Fy_1(z), where A(z) is all pass. It can be verified that the
condition det(E/(z)) = delay, which is necessary for paraunitariness, implies that
A(z) = (e%)2'™. Hence, given M — 1 functions of an FIR paraunitary system, the
last function is determined up to a factor of the form (e/9)z!M. OO0
Using this lemma, we can now prove Theorem 2.

Proof of Theorem 2: Let E(z) be a paraunitary polyphase matrix corresponding
to a set of filters that have linear phase. Let E;(z) be the polyphase matrix of size
(M —1) x M corresponding to the first M — 1 filters in the system, and let u(z) be
the row vector whose elements are the polyphase components corresponding to the

last filter u(z) of the system. Now, eq. (2.1) can be rewritten as

Dz l: E1<Z~1) ] Ju = { El(z) J . (29)

u@z™) v(?)

This means that the row vector v(z) has as its elements the polyphase components
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of the filter v(z), which is the time-reversed version of u(z) (up to £1). Now, since
all matrices on the left hand side of this equation are paraunitary, the matrix on the
right hand side of this equation is also paraunitary. But the first block of this matrix
is E1(2). This means by lemma 1, that v(z) = £2"Mu(z). But since v(2) is also the

time-reversed version of the filter u(z), it implies that u(z) has linear phase. OO

IIT FACTORIZATION OF LINEAR PHASE PARAUNITARY SYSTEMS
FOR EVEN M

In this section, we will first derive a cascade-form structure for synthesizing linear
phase paraunitary systems. Our theory will provide an interpretation for the condition
mentioned in [26]. We will then prove the main result of this section, namely, every
linear phase paraunitary system described by eq. (2.1) can be factored in terms of the
proposed structure.

The synthesis procedure consists of two steps. In the first step, we propagate the
property that the set of filters generated be pairwise time-reversed versions of one
another. This means that they are related as hj,(n) = h}yy_,_,(n), k=0,... M—1.

Notice that the sum ofA two sequences related as above is symmetric, and their
difference is antisymmetric. Furthermore, any linear combination of symmetric (an-
tisymmetric) sequences is symmetric (antisymmetric). In the second step, we add
an orthogonal block which performs these operations on the pairwise symmetric se-
quences to obtain filters that have linear phase.

The reason for this two step approach is that it can be shown that it is not possible
to propagate the linear-phase property itself by addition of further building blocks.

Consider fig. 5.3. The pairwise time-reversed property implies the following rela-

tion between the filters:

H, yop(z) =27 CM=DE (271, k=0,..., L-1, (3.1)
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Fig. 5.4. An equivalent structure for the linear
phase paraunitary system
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Fig. 5.5. Eight-channel linear phase paraunitary system

Hy(2) H(z) H,(z) H,(2)
2.7063633740569D-02 . |-1.6091969205871D-02 | -2.8456950643002D-02 | 1.4960492098433D-02
-1.2136967794206D-04 | 4.5104219698022D-02 | 1.9019503506337D-03]  4.4678162875469D-02
1.2169911500658D-04 | 5.7067555274487D-03 | 4.0561845270800D-02| -4.0347878743950D-03
-1.0939438116179D-02| 1.1596091494340D-02 | 2.9503201934660D-03 | -1.2928325761109D-02
-3.9006836245961D-02 | 1.4102613035988D-02 | -2.2991473562361D-02|  -1.5109881590786D-02
-1.7129046826691D-02 | -1.1144644575007D-02 | 3.4018237002281D-03| -4.9444834516179D-02
-6.2580468711733D-02| 4.0975324850524D-02 | 9.2311984186006D-02{ -3.7266345907583D-02
-1.5970643737541D-02 | 0.12106010509825 8.6349676608556D-03|  8.4900080405164D-02
-8.0085817350597D-02 | 0.12469607197029 -7.7589420570820D-02|  0.11866646696795
1.7124808276196D-02 | 0.15395817207336 -0.22772066314211 -0.10980819448873
1.0067593331610D-01 | 1.6326854841075D-02 | -0.19287393785391 -0.26124185969832
0.17114723136171 -0.14257162890702 0.10867205234840 -1.3044768601487D-03
0.24072321382144 -0.34043725682195 0.34879540903907 0.37437930463834
0.32076121985196 -0.41375436862609 0.30145304416569 0.12094472643289
0.35502595590299 -0.33699605405521 -3.4833482443945D-02| -0.38952044617052
0.40018576621481 -0.14275844384806 -0.40959004960062 -0.29227460355523

Table 5.1. Coefficients of an eight-channel filter bank. Only the coefficients h ;(0)
through h;(15) are tabulated for the first four filters. Linear phase implies h (n)=h;
(31-n), and mirror image symmetry implies H, (z)=H;; (-2).
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where L = M /2. If F,,(2) is the polyphase matrix corresponding to these filters, then
2Ty F o (27 = Fo(2). (3.2)

Consider Fig. 6.3, and let
Fri1(2) = Kn1A(2)Fr(2), (3.3)

where A(z) = ( Iﬂé/ 2 Z"l(I)M/z

ing to the filters at the next stage. If K,,,; is an orthogonal matrix, we have

) , and F,,,1(2) is the polyphase matrix correspond-

Fu(2) = Alz")KG 1 Froga (2)- (3.4)
For the filters at the next stage to retain the pairwise time-reversed property, we need
2y F 1 (7Y = Frga (2). (3.5)
Using eq. (3.4) in eq. (3.2), we obtain the following equation
Z_mJMA(Z)KZ;LHFmH(Z_I)JM = A(z‘l)Kfn+1Fm+1(z).

By imposing (3.5), and using the identity A(2)JyA(z) = 271Jy, we see that the

necessary and sufficient condition on K, is, Ky 1 JyKZ, 11 = Ju. By partitioning
! !

K1 as ( g, g, ), we can verify that the necessary and sufficient condition for

eq. (3.5) to hold is that the matrix K,,;; be of the form

A/ C’
K, = - . 3.6
+ ( N YT O FYOPIN FYP2Y- SN FYP ) (36)

Thus K;,+1 can be rewritten as

IM/2 0 Am+1 Cm-l—l IM/2 0
K, = , 3.7
+ ( 0 Jup ) ( Crni1 Anmn 0 Jup (37)
where A, 11 = A’, and Cpyy = C'J 0.

It can be verified that a matrix Ky with a form similar to that described above

can be used to initialize the process.
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Given a paraunitary polyphase matrix F(z) of order IV, corresponding to a set of

filters that are pair-wise time-reversed versions of one another, i.e.,
T NIF(HIy = F(2), (3.8)

we are interested in obtaining a paraunitary polyphase matrix E(z) of order NV cor-
responding to a set of linear phase paraunitary filters, i.e., satisfying eq. (2.1). Let
E(z) = SF(z), where S is an orthogonal matrix. Under the constraint (3.8), it can
be shown (by substitution and simplification) that E(z) satisfies eq. (2.1) if and only
if STDS = J.

Hence the following product gives linear phase paraunitary polyphase matrix

E(z) = SPTyPA(2)PTN_1PA(2)P...PA(z)PT,P, (3.9)
where
[ TImpe O [ A G
(U 0 ) war-(4S) o

Noting that PA(z)P = A(z), we obtain,
E(z) = SPTyA(2) Ty 1A(2) ... A(2) TP, (3.11)

which is shown in Fig. 5.4.

Minimal Characterization: The matrix K,,; is parametrized completely. by

parametrizing all orthogonal matrices of the form Ty, 1 = ( émﬂ §m+1 ) Now,
m-1 m+1

such a matrix can always be factored as

Ayt Copr \ _ ( Tupz Lupe W 0 Ty Inpo (3.12)
Cmpi Apmu Inge —Inype 0 U Lyvyg —Iupe )7 '
where W = (A, 11 +Cput1)/2 and U = (A1 — Cny1)/2. Thus T,y is orthogonal

if and only if the two matrices W and U are orthogonal. The orthogonal matrices

W and U can be completely characterized by ( ]\42/ 2 ) rotations each [29].
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On the other hand, it can be shown that a unitary matrix S satisfies the condition

STDS = Jy if and only if it can be written as

S = (1/4/2) ( SOO 801 ) ( im *Jﬁzg ) , (3.13)

where Sg and S; are orthogonal matrices of size M/2 x M/2, (Partition S into four

blocks, sustitute in STDS = Ju; and simplify.) S can hence be parametrized by

2 ( ]\42/ 2 ) rotations.

We now come to the main result of this section, which is the converse of the pre-
vious result.
Theorem 3: Let E(z) be an FIR linear phase paraunitary matrix (satisfying eq.
(2.1)). Then it can always be factored as in eq. (3.11), where A(z) = ( I%/ 2 z‘l(I)M/g ) ,
and T; and P are as in eq. (3.10).
Proof of Theorem 3: The rest of this section deals with the proof of the above
theorem. The reader may skip over to the next section without loss of continuity.

The proof of the theorem will use the definition of ‘balanced vectors’ which we
now propose:

Definition: A vector y is said to be ‘halanced’ if it is orthogonal to its own flipped

version, i.e., it saisfies the equation
y Imy = 0.

The significance of balanced vectors has been explained in Appendix A.

Proof of the Theorem: In this case we are given a matrix E(z) satisfying eq. (2.1).
The first step is to show that from this linear phase paraunitary matrix, we can always
get a polyphase matrix F(z) whose filters are pairwise time-reversed versions of one
another (satisfying eq. (3.8)). For this, let S be any matrix of the form given in eq.
(3.13), where Sy and S; are arbitrary orthogonal matrices. Then it can be shown by
substitution that the product F(z) = S"E(z) satisfies eq. (3.8).

Now we need to show that the matrix F(z) can always be factored into the required
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form. This is achieved by performing the ‘order-reduction’ process as outlined below.

Let

Fm+1(Z) = m+1(0)+fm+1(1)z.—l+fm+1(2)»2“2"*’- . .+fm+1(m + l)z“(m'“), fm+1(m + 1) # 0.
(3.14)

We will show that there exists F,,(z) of the form
Fiu(2) = £ (0) + £ (D27 4+ £(2) 272 + .. 4 F(m)2™™, fn(m) #0, (3.15)

and satisfying the required properties. Let F,,1(z) satisfy eq. (3.5). Specifically, we

will now show that it can always be written as
Fii1(2) = PT, 1 PA(2)F,.(2), (3.16)

where F,(2) satisfies eq. (3.2), and the matrices P, Ty, 11, and A(z) have the form

described earlier. Paraunitariness of Fy,(z) follows by noting that
Foo(2) = Az"H)PTEL  PFri1(2), (3.17)

where all matrices on the right hand side of this equation are paraunitary.
Linear phase property: We want to show that F,,(z) satisfies eq. (3.2). Substi-

tuting eq. (3.16) into eq. (3.5), we get

2D PT o PAGZ D F (2" )y = PTr i PA(2)Frn(2). (3.18)
Since P~! = P and F,,(z) is paraunitary, we get,

2MOA YR, (Y IyFm(2) = PTE PIP T, 1 PA(2). (3.19)

If T,,1 is an orthogonal matrix of the form described in eq. (3.10), and P has the
form described in eq. (3.10), then it can be verified that PT,TI P PIyPTh P = Ju.

Hence we get
ZT AT () I Fn(2) = JuA(2), (3:20)
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ie.,

2™ A A Fn () Iy Fon(2) = L (3.21)
It can be verified that [z71A(z71)JyA(271)] = Jp. Sustituting this into eq. (3.21),
and rearranging the terms, we get eq. (3.2).
Causality: It only remains to show that there exists a matrix T,,,; such that F,,(2)
obtained from eq. (3.17) is causal. Both the linear phase property, and the parauni-
tary property continue to hold for the reduced system as long as the matrix Ty, is
any orthogonal matrix of the required form (eq. (3.10)). Indeed, it is the causality
condition on the reduced system which determines the particular choice of the matrix
Tt

From eq. (3.17) we get,

0O O

0 Ly )PTg+1PFm+l(z). (3.22)

Iz O
Fou(2) = ( up 9 )pT”;’“n 1 PFri(2) + (

The second term on the right hand side of this equation is responsible for the non-

causality. In particular, the noncausal part of the second term is given by

0 o0 r
(o M )PTmHmeH(O). (3.23)

We have to show that there exists a matrix T,y of the form in eq. (3.10) which

makes this term equal to zero. Let

~ Am+1 Cm+1
Trmt1 = ( Crnnn Amp ) (3.24)

Simplifying eq. (3.23), we find that T,,4; should be such that

m f..1(0) =0. 3.25
( 0 Juyp ) ( C%;H A«,qv;Jrl']Mﬂ +1(0) ( )

Hence, it is sufficient to find A,,4; and C,,41 such that

(CLi AL, Jup ) Ean(0)=0. (5.26)
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Now, eq. (3.5) in particular means that
JMfm+1(O)JM == fm+1(m + 1). (3.27)

The paraunitary condition in the time domain implies f1, (m+ 1)f,1(0) = 0.

Hence we have

£2 11(0) T arEmt1 (0) = 0. (3.28)

By Sylvester’s rank inequality [30], therefore, we get rank(f,1(0)) =r < M/2.
Equation (3.28) implies that the columns of the matrix f,,1(0) are balanced.

Hence it can be shown (Appendix B) that there exists a set of orthonormal balanced

vectors x;, @ = 1,...,M/2 such that if X7 is the matrix of size M/2 x M whose

rows are these vectors, this matrix satisfies the following properties:

1) XTX =1y, (from the fact that x; are orthogonal).

2) XTIy X =0 (from the fact that xZ are balanced).

3) XTI pfm11(0) = 0 (by the construction outlined in Appendix B).

It can be verified that the matrix

. xXT SV 0
Tm-H - ( XTJM ) ( 0 JM/2 (329)

can be written in the form as in eq. (3.24). Moreover, with this choice of the matrix
Tint1, €q. (3.25) is satisfied. This proves that F,,(z) is causal.
Order reduction: Given the fact that F,,,(z) is causal, and that it satisfies eq. (3.2),
we can see that the order of F,.(z) is m. Thus there is a reduction in order by 1
Hence for a system of order IV, the factorization process is guaranteed to terminats
in N steps.

This concludes the proof of theorem 3. <©O<¢

The above theorem guarantees the factorization of all linear phase paraunitary

systems satisfying eq. (2.1). Such a linear phase paraunitary filter bank of order N

M2

9 ) rotation angles.

can hence be characterized by 2(V) (
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The degree of a causal rational system is defined as (sec.13.8 [10]) the minimum
number of delays required for its implementation. A structure is said to be minimal
if the number of delays used is equal to the degree of the transfer function. For a

paraunitary system, we know that (Thm. 14.7.1 [10])
degldet[E(2)]] = deg[E(2)]. (3.30)
Tn our case,
degldet[E(2)]] = degldet{SPTyA(z)Ty_1A(2)... A(2)ToP]| = NM/2,  (3.31)

which is equal to the number of delays used. Hence the factorization is minimal.

IV LINEAR PHASE PARAUNITARY FILTERS WITH PAIRWISE
MIRROR-IMAGE FREQUENCY RESPONSES FOR EVEN M

In the previous section, we factorized a linear phase paraunitary system into
a product of orthogonal building blocks each of which can be implemented with
2 ( ]\/[2/ 2 ) rotation angles. These angles can be made the variables in the design
process. The number of angles can become fairly large when the number of channels
M increases. It would be useful to cut down the number of optimization variables
by structurally imposing some other additional constraints on the filters. One of the
constraints that can be imposed is that of pairwise mirror image symmetry in the
frequency domain around 7/2. Such a condition had been imposed on general parau-
nitary systems in [31]. One way to impose the condition that the filters satisfy the
pairwise mirror image condition in the frequency domain is to ensure that the filters

are related as

HM-l—k(z) = Hk(—~2), k 0,..., L — 1, (41)
where L = M/2. If M is even, in terms of the polyphase matrix of the filters, this

becomes

IyE(2) = B(2)Var. (4.2)
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As mentioned earlier, the matrix V), is a diagonal matrix of size M x M with alternate
+1's on the diagonal, starting with +1. This symmetry condition is in addition to
the conditions of linear phase (eq. (2.1)) and paraunitariness (eq. (1.1)).

To develop a cascade structure which generates such filters, we will assume that
we have a paraunitary matrix E,,_1(z) of order m — 1 satisfying the conditions of
paraunitariness (eq. (1.1)), linear phase (eq. (2.1)), and pairwise mirror-image sym-
metry of frequency responses (eq. (4.2)). From it, we will show how a paraunitary
matrix E,,(z) of order m can be obtained satisfying the above three properties. We
will do this by post multiplying the given matrix E,,—1(z) by a paraunitary matrix
R(z) of order one. !

Let
En(2) = En_1(2)R(2). (4.3)

Clearly, E,,(z) is paraunitary. Also,
Em-1(2) = En(2)R(2). (4.4)

Propagating the Linear Phase Property: From the fact that E,,_;(z) satisfies

the linear phase property, we have
z"™DE,,(z YRz = En(2)R(2), (4.5)

i.e.,

2 ™DE,.(z" YRz V)IyR(2) = Ep(2). (4.6)

Hence for E,,(z) to satisfy the linear phase property, R(z) should satisfy

R("D)IyR() = 27Ty (4.7)

IThis derivation could also be made by pre-multiplying an existing matrix by an extra block.
This was the approach followed in section III, because it simplifies the proof of theorem 3 to some
extent. In proving the results of this section, the post-multiplication strategy will lead to slightly
simpler derivations. The reader must note that preference for one strategy over the other has been

dictated purely by simplicity of presentation.
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It can be verified that if R(z) = A(z)PTP with the matrices A(2), P and T as in
the previous section, R(z) satisfies eq. (4.7).
Propagating the Pairwise Mirror-Image Property in the Frequency Do-

main: Assuming that eq. (4.2) holds for E,,—1(z), and using eq. (4.4) we get
JuEn(2)R(z) = En(z)R(2)Vu, (4.8)

ie.,

J1En(2) = B (2)R(2)VuR(2). (4.9)

Hence, R(z) should satisfy the property

We now have two cases:
V2 0

0 Vi ) . Substituting this, and

Case 1: M/2 is even: In this case, Vs = (

the fact that R(z) = A(z)PTP with T = ( A C ), in eq. (4.10) and simplifying,

C A

we get
AT CT \ 0 A CY\ [ Vuyp 0 (4.11)
CT AT 0 —Vumy C A/ 0 ~Vuye ) )
Using a factorization for T similar to eq. (3.12) and simplifying, we get

WTV .U 0 Vup 0 ) '

The above equation is satisfied if U is taken to be an arbitrary orthogonal matrix of

size M /2 x M/2, and the matrix W is chosen as

. . M/2 o
Hence, in this case, we have 9 degrees of freedom to optimize per stage.

Vi 0

0 Vi ) , unlike the case where

Case 2: M/2 is odd: In this case, Vs = (

M /2 is even. However, if we use the relation R(z) = A(z)PTP with T = ( jé g ),
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and perform the simplifications as before, we get eq. (4.12) once again, proving that
there are ( A/;/ 2 ) degrees of freedom to be optimized in this case also.

Thus all three properties have been satisfied.
Initialization: It only remains to find a degree zero paraunitary matrix Eo(z) (i.e.,
a constant orthogonal matrix S), which will initialize the above process. From the

discussion in section III, it can be verified that the matrix S satisfies the linear phase

property (DSJy, = S), if it is of the form

s—ava (5 g ) (e 2 e (414

where Q is a symmetric permutation matrix. This is because QJQ = Jj for
any such permutation matrix. Let Q be so chosen that QVQ = D, where D =
( I%/ 2 —I(Z/I/Z ) Now, let 8’ = SQ. For the matrix S to satisfy the pairwise mirror-
image property (JuS = SVy), it can be verified that the matrix S’ should satisfy

S'DST = Jy,. Substituting the forms of various matrices and simplifying, we get

0 SOS{ . 0 Jup
(slsg‘ 0 )“(JM,z o ) (4.15)

This equation can be satisfied by letting So be an arbitrary orthogonal matrix, and
choosing S; = Jp1/5S0. Thus the matrix S can be realized with ( ]VIZ/ 2 ) rotations
[29].

The foregoing discussion can be summarized in the following theorem:
Theorem 4: A linear phase paraunitary matrix satisfying eq. (2.1) whose filters
satisfy the additional pairwise mirror-image property in the frequency domain (eq.

(4.2)) can be realized as
E(z) = SA(z)PToA(z)... TP, (4.16)

where

S =(1/4/2) ( SO" JM(/)QSO ) ( i _‘]ﬂz )Q, (4.17)
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Iz Iupe VUiV 0 | SYIP R VY7
Ti - , .
( vz ~Imye 0 U; | SV R SV (4.18)

and the matrix P is as in eq. (3.10). OO0

The fact that the structure continues to be minimal is easily verified, though we
have not shown it to be complete.

Fig. 5.5 shows an example of an eight-channel system where a four stage lattice
was used. The filters are linear phase, paraunitary, and satisfy the pairwise mirror-
image symmetry in the frequency domain. The impulse response coefficients of the

eight-channel system have been tabulated in Table 5.1.

V LINEAR PHASE PARAUNITARY FILTERS FOR ODD M

While the existence of linear phase paraunitary filter banks had been indicated in
[26] for an even number of channels M, for an odd number of channels, the existence
of non-degenerate filter banks has not been shown so far. In this section we shall
synthesize linear phase paraunitary filter banks for an odd number of channels. There
are two ways to design such systems. One way is to develop a cascade structure as
we did in the previous sections. The second way is to obtain linear phase systems
for a certain odd M by suitably combining linear phase systems of size (M — 1)/2
and (M + 1)/2, while maintaining the paraunitary property. We will consider both
of these approaches in this section.
A cascade based approach: In this sub-section we proceed as we did in section 111,
i.e., first design a set of filters which satisfy the property that the filters are pairwise
flipped versions of each other in the time domain, and then suitably combine these
to get a linear phase system.

Fact 4.1 Consider a polyphase matrix of size M x M, M odd, which is obtained as
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the following product:

F(2) = PTyA(2)Ty_1A(2)... A(2)T,P, (5.1)
where,
| 0
P = MDA : 5.2
( 0 J(m-1)/2 (5:2)
T; are orthogonal matrices of the form
A, 0 G
T,=| 0o 1 oF |, (5.3)
C, 0 A
and
I 0
A(z) = | "M/ : 5.4
@= (T 0 5.4

Then this structure generates a paraunitary filter bank in which Hg(2) is the time-
reversed version of Hys_1-x(2).

Proof: Since all matrices in the product are individually paraunitary, the product
F(z) is also paraunitary. Now to prove that the filters are pairwise flipped versions

of one another, we need to show that the matrix F(z) satisfies the condition

z-NI(M_]_)/Q 0 0
or 1 oT JuF(" DIy = F(z), (5.5)
0 0 2 M1y

where NV is the order of the polyphase matrix F(z). In particular, by our construction,
the middle filter Will be just H{p,yy(2) = 2~ M*/2 Hence it is the flipped version
of itself. Substituting the forms of various matrices, we can verify that eq. (5.5)
indeed holds. OO

Now suppose we are given a paraunitary matrix F(z) satisfying eq. (5.5) and whose
order N is even (as required by Lemma 1); we can obtain a matrix E(z) from it
which corresponds to a set of linear phase paraunitary filters. Since the middle filter
is just H{yryp)/(2) = 2= (M+D/2 e first multiply this filter by an appropriate delay

z~N/2. This can be done by premultiplying the matrix F(z) by the diagonal matrix
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Fig. 5.6. Obtaining linear phase paraunitary
filters by interleaving smaller systems
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A(z) = diag[l 1 ... z27N2% ... 1 1] to get F'(2) = A'(2)F(2). The matrix F'(z)

hence satisfies the equation
2 NIuF (2 = F'(2). (5.6)

Now let E(z) = SF/(z) where S is an orthogonal matrix. Clearly, with this
construction, the matrix E(z) is also paraunitary. For the matrix E(z) to satisfy
the linear phase property (eq. (2.1)), it can be verified that it is both necessary and
sufficient that S be of the form

S = (1/v2) ( U(Mo+ v W(z\?-n/z ) ( ;%:TW Zlc Ji%;Tl)/Q ) , (57
w-172 Y —Yar-1y/2
where Ups41)/2 and W -1)/2 are arbitrary orthogonal matrices of the sizes indicated.

The above discussions can be summarized in the following theorem:

Theorem 5: A linear phase paraunitary matrix with an odd number of channels can

be realized as

E(z) = SA(2)PTNA(2)Ty_1A(2) ... TP, (5.8)

where P is as in eq. (5.2), T is as in eq. (5.3) and A(z) is asin eq. (5.4). <OOO
The fact that the structure is minimal can be verified as at the end of section III.
Matrix interleaving and linear phase filters: In this subsection, we will consider
the problem of obtaining a larger linear phase paraunitary system given smaller linear
phase paraunitary systems. Let M, the number of channels be odd. Let L = (M —
1)/2. Let G(z) and F(z) be two linear phase paraunitary matrices of sizes (L + 1) x

(L+ 1) and L x L respectively, and of order N each. In particular, let us write them

as

. gg(z) gl(z) gL-—l(z) gL(Z)
G(“)‘“<ga<z> A . a2 gz<z>)’ (5:9)

and

Piz) = ( Hz) fi() ... fial®) fii2) ). (5.10)
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In eq. (5.9) the vectors g;(z) are of size L and represent the columns of the matrix
G(z), except for the last element in each column, which has been written seperately
as 9;(z). In eq. (5.10) the vectors f;(z) are also of size L and are simply the columns
of the matrix F(z). Hence note that vectors g;(z) and f;(z2) are all of size L each.

Now, construct the matrix E(z) of size M x M, which is as follows:

go(z) folz) gilz)  filz) fr._2(2) gr—2(%) fr1(z) grlz)
V2 V) V2 vz o 72 V2 V2 V2
Ez)=| & _he @@ _he) o) gro(z _fii2) gL(z)
V2 /2 2 vz 72 72 72 2
g%z 0 gi(z) 0 ... 0 g, 0  gi(2)
(5.11)

Note that the filters corresponding to this polyphase matrix are formed simply by
interleaving in a particular manner the impulse response coefficients of the filters in
the smaller systems G(z) and F(z).

Lemma 2: The matrix E(z) of size M x M in eq. (5.11) is a linear phase paraunitary

matrix of order N.

Proof: The fact that E(z) is paraunitary is clear from the construction. It only
remains to prove the linear phase property. Because the matrices G(z) and F(z) are

linear phase, we have the following relations

gi(z) =z VgL (27", (5.12)

£i(2) = £27 N _1(27Y), (5.13)
and

gi(z) = £27Ng;_i(z7h). (5.14)

Let e;(z) denote the columns of the matrix E(z). Then, it can be seen from the

construction of the matrix E(z) that the columns satisfy the condition
ei(2) = +zNey_1i(z71). (5.15)

This is sufficient to prove that E(z) has linear phase filters. OO
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Lemma 2 gives us a way to synthesize larger paraunitary systems from smaller
ones. Thus, one can obtain an M channel linear phase paraunitary filter bank by us-
ing a schematic as shown in Fig. 5.6. Here, Lemma 2 is repeatedly used to synthesize

the odd component on each level.

VI M-BAND ORTHONORMAL WAVELETS

The wavelet transform [32]-[34], [13] is a representation of a signal in terms of a set
of basis functions which are obtained by dyadic dilations and shifts of a single function
called the wavelet function. It provides a description of a signal on various levels of
resolution or scale. The wavelet transform has of late found several applications in
signal and image processing [34], [35]. One way of constructing the wavelet transform
[32] is by using a two-channel quadrature-mirror filter bank in an infinite tree. This
idea of wavelets (henceforth referred to as dyadic wavelets) has recently been extended
to the more general case of M-band wavelets [19],[20],[36]. It has been shown therein
that a square integrable function f(t) can be represented in terms of the dilates and
translates of M — 1 functions ¥; (t), which are called the M-band wavelets. Asin the
case of dyadic wavelets, it has been shown [20] that M-band wavelets can be obtained
by using an M-channel filter bank system in an infinite recursive tree-structure as
shown in fig. 5.7. M-band wavelets often provide a more compact representation of
signals, and are therefore useful in several applications [21].

It can be shown [20] that for the wavelet basis to be orthonormal, a necessary
condition is that the M-channel filter bank used in fig. 5.7 should be paraunitary.
The theory developed in the previous sections allows us to design symmetric and
antisymmetric wavelets that are also orthonormal. This can be done simply by using
the structure developed in section III to generate the M-channel system on each level

of the tree. Consider the Fourier transform of an M-band wavelet function

K
Wi (w) = (1/VM)H;(e?™) dim T](1 [V M)Hy(e?D 7). (6.1)
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For the linear phase paraunitary system developed in section III, the filters can be
written as H;(e?*) = e~/ (N-V/2 ], (W), where H;p(w) is the real part of H;(e’), and

we have,

Wi(w) = e AN TDBTHNT2() /M) Hig(w) Jim 10/ Honluo(M1)"™),
k=2
(6.2)

which becomes
() = € INIP00D S (1)) Hinoo) [[ (VD Hor(0(M) ). (69
*° k=2

Hence assuming ¥;(w) exists, it has linear phase.

Fig. 5.8 shows an example of 4-band orthonormal, linear phase wavelets and their
associated scaling function. The length of the filters was 80, and they had one zero
at w = . As can be seen, all of the functions are symmetric or antisymmetric.

In many signal processing applications it is desirable that the wavelets be ‘smooth’
or regular. This can be done by ensuring that the wavelets have sufficient number
of vanishing moments. It has been shown [20] that the M-band wavelets have N
vanishing moments if and only if the function H;(e’), i # 0 have zeros of order N
at w = 0. In particular, the condition that there be one vanishing moment simply
implies that H;(e’*), i # 0 have one zero at w = 0. In the case of linear phase
paraunitary systems, we know from Theorem 1 that half the number of filters are
antisymmetric and therefore guaranteed to have a zero at w = 0. The condition that
the remaining filters (all except Hy(e’)) have a zero at w = 0 can be written in terms
of the lattice developed in section III, as was done for the general lattice in [20]. Now,

the filters can be written in terms of the polyphase matrix E(z) as

Ho(z) 1

H(z 271
AL T G (6.4)

Hy1(2) M
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At w=20,i.e., 2 =1, we need

1 vM
E(1) 1 = 0 . (6.5)
1 0

Substituting the form of the linear phase paraunitary lattice from section III and

noting that A(1) = I, we have

1 VM

1 0
SPTNTy-;... ToP | . [ = . . (6.6)
1 0
Now, with T; having the form as in eq. (3.10), the product T = []* ,T; also has the
form
A C
o (49) o

Similarly, after substituting for the form of S from eq. (3.13), condition (6.6) simplifies

to 1 JiF
(v2) ( SOO 5(3)1 ) ( A:;C ) 1 = O . (6.8)
1 0

As expected, this reduces to the set of M/2 conditions
1 vM
1 0
V25(A+CY | =] . |, (6.9)
1 0
where the column vectors are now of size (M/2).
Recall that Sy can be choosen to be an arbitrary orthogonal matrix for the fac-
torization in section III. If we further wish to impose regularity, then we can exploit

this freedom in the choice of Sy, and choose it so as to satisfy eqn. (6.9). Given

any vector, there exists a Houesholder matrix I — 2uu~! which turns the vector into
M/2

0 [30], [pp.751, 10]. So there always exists an Sy satisfying eq. (6.9).
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VII SUBBAND CODING USING LINEAR PHASE FILTER BANKS

Subband coding is a technique often used for encoding speech and image signals.
In a typical subband coding scheme, the input signal is divided into different fre-
quency regions using a bank of filters called the analysis filters. The signals in each
subband are quantized and then transmitted. At the receiver, the signals in individ-
ual subbands are combined by the bank of synthesis filters. In Fig. 5.9, the scheme
has been drawn in terms of the polyphase matrices of the analysis and synthesis fil-
ters. As described earlier in this paper, the perfect reconstruction property is lost in
the presence of quantizers, and so is the linear phase property of the overall transfer
function. In such cases, it is sometimes important to use filters that individually have
linear phase. The requirements in many image processing applications are that the
filters have linear phase, and short lengths, typically less than about 20.

The coding gain [18] is often used as a figure of merit to judge the performance
of various subband coding schemes. It is defined as the ratio of the reconstruction
error variance of a PCM system to the reconstruction error variance of the subband

coding system, i.e.,

_ Ug,PC’M
Gpy = —4—. (7.1)

Under optimal bit allocation it can be shown [17] that the coding gain of any parau-

nitary subband coding system becomes

M), ’
G = (</n£alozk(3w ’ 72)

which is the ratio of the arithmetic mean to the geometric mean of o2 , the variances

of the inputs sx(n) to the quantizers.
It is of interest to compare the coding gains obtained using linear phase parauni-

tary systems designed in this paper with the optimum coding gain results presented

in [17]. Fig. 5.10 shows this comparison for the case of a four-channel filter bank. The
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coefficients of Hy(z) coefficients of H{(z)
h(0)=h(7)=-0.091584806958951 h1(0)=-h{(7)=-0.13357390156568
ho(1)=h(6)=0.13357390156568 h(1)=-h1(6)=0.091584806958951
h(2)=h(5)=0.38923341521735 h{(2)=-h, (5)=0.56768614376856
hy(3)=h 0(4)=0.56768614376856 h1(3)=-h1(4)=0.38923341521735

Table 5.2. Filter coefficients of a Four-channel linear phase
paraunitary system with pairwise mirror-image symmetry in the
frequency domain. Note that H;(z) = HO(—Z) and H,(z) = H; (-2).
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Fig. 5.12 a). "Lena" Image coded at 0.125 bpp with linear phase filters
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Fig. 5.12 b). "Lena" Image coded at 0.125 bpp with nonlinear phase filters.
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Fig. 5.13 a). "Peppers" Image coded at 0.125 bpp with linear phase filters
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Fig. 5.13 b). "Peppers” Image coded at 0.125 bpp with nonlinear phase filters
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input was low-pass speech modelled as AR process. The horizontal axis is the length
of the filters, and the vertical axis is the corresponding coding gain. The length of
the filters therefore is 4x (order of E(z) +1). The higher curve corresponds to the
maximum coding gain possible (data taken from [17]), and the lower curve shows
the coding gain obtained using linear phase paraunitary systems. Note that the linear
phase paraunitary systems were not designed to mazximize the coding gain. The lattice
developed in section IV was used. Fig. 5.11 shows the typical frequency responses
of a four-channel system where a ﬁwo—stage lattice was used. This means that there
are only two variables to optimize! The length of the filters is eight. The impulse
response coefficients have been tabulated in Table 5.2. Notice the relation between
the coefficients of the filters. Given the coefficients of one of the filters, it is possible
to write the coefficients of all the filters.

The same filters were also used to encode images at low bit-rates. Figs. 5.12 (a)
and 5.13 (a) show images encoded with non-linear phase filters. The artifacts are
clearly visible in the form of a ”brickwall” in the background. Figs. 5.12 (b) and

5.13 (b) show the same images encoded with linear phase filters. The artifacts are no

longer visible.

VIII CONCLUSIONS

In this paper we studied in detail the theory, factorizations and designs of linear
phase paraunitary systems. In section II we proved several results on linear phase
paraunitary systems, which we used subsequently. Next we addressed the problem
of designing linear phase paraunitary systems for an even number of channels M.
We showed that such systems could be designed by a cascade structure which was
proved to be minimal. The resulting filters are structurally linear phase paraunitary,

i.e., these properties are preserved in spite of coefficient quantization. Moreover, we

showed the completeness of this structure, i.e., all linear phase paraunitary systems
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satisfying eq. (2.1) can be generated simply by manipulating the coefficients of this
cascade structure. Next we imposed the further condition on the filters that they
satisfy the pairwise mirror-image property in the frequency domain. The resulting
structure has much fewer multipliers, which is useful for optimization. To summarize,
for these filter banks the following properties are guaranteed structurally, i.e., in spite

of quantization of the multipliers (angles):

e The filter bank is paraunitary, and therefore gives perfect reconstruction.
¢ The analysis and synthesis filters are time-reversed versions of each other.
o The analysis and synthesis filters are all linear phase.

o The filters in the analysis and synthesis banks both satisfy the pairwise mirror-

image property in the frequency domain.

Next, we extended this analysis to the case of filter banks with an odd number
of channels M. In particular, we showed two ways by which such systems could be
realized. One was based on a factorization approach, and the other involved designing
larger systems by successively combining smaller systems in a certain manner.

It is interesting to note that the linear phase property along with the paraunitary
condition implies that the analysis and synthesis banks are identical, up to a multiplier
of £1 on some of the filters, i.e., F;(z) = £ H;(z).

We then considered two applications of the theory. The first was in designing
symmetric and antisymmetric M-band wavelets which are also orthonormal. We also
discussed the regularity condition in this context and derived conditions on the fac-
torization proposed so that the resulting wavelets had at least one vanishing moment.
The second application we considered was in subband coding. From the data pre-
sented for lowpass speech, we conclude that the linear phase paraunitary systems
with filters of small length give good coding gains. With the other special features of

the filters mentioned before, we conclude that this structure is a good candidate for
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use in practical subband coding systems.

APPENDIX A

Consider the matrix Jyp; where M is even. The eigenvalues of this matrix are +1,
and the corresponding eigenvectors are the symmetric and antisymmetric vectors of
size M. We will refer to the two eigenspaces of the matrix Jy; as the symmetric
and antisymmetric eigenspaces & and &, respectively. The basis for £, could be the
set of vectors s;, i = 0,...(M/2) — 1, where all elements of the vectors s; are
zero, except s;(i) = s;(M — 1 — 4) = 1. Similarly, a basis for £, could be the set of
vectors a;, i=20,...(M/2)— 1, where all elements of the vectors a; are zero, except
2;(i) = —a;(M —1—14) = 1. Also, since the matrix Jjs is symmetric, the eigenvectors
span the whole space, and & and &, form a direct sum for the whole space. Now,
consider any vector y. It can always be written as y = u + v, where u € &, and

v € &,. Let y be orthogonal to its own flipped version, i.e.,
yTJMy =0. (Al)
Hence we get

(u+v)T Iy (u+v) = 0. (A.2)

Noting that u?Jyu = uTu, vIJyv = —vIv and uTJyv = 0, the above equation
reduces to uTu = vTv. Hence the norm of the projections in the two eigenspaces has
to be equal. We say, therefore, that the vector y which satisfies eq. (A.1) is ‘balanced’
over the two eigenspaces (or simply ‘balanced’).

As noted above, the eigenvectors of the matrix J are symmetric and antisymmetric
vectors (have linear phase). Furthermore, these eigenvectors are orthonormal. Hence,

one would expect the eigenstructure of the J matrix to play a role in the synthesis of

linear phase orthonormal systems.
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APPENDIX B

From eq. (3.28) we have WTfL  (0)Jpfn1(0)W = 0, for any matrix W. This
means that the columns of f,,1(0)W are balanced. Let the matrix W be so chosen
that the first r columns of the matrix f,,,(0)W form an orthonormal basis for the
columns of matrix f,,1(0). Denote these r vectors as x;, i =1,...,7. Hence, the
vectors x; are balanced and orthonormal, i.e., xx; = 0. Let x; = u} + v}, where

u, € & and v} € &,. Therefore, (uj + v{)T(u} + v}) = 0, which simplifies to

u'Tu; + v’z-Tv;. = 0. (B.1)

i

Since the vectors x; are balanced, i.e., x¥ Jyx; = 0, we have (u+v{)T Iy (uj+v}) = 0,

simplifying which we get
ulul =v7v. (B.2)

Egs. (B.1) and (B.2) together imply that u’fu;- = 0, and v'T v; = 0. The vec-
tors uj, 4¢=1,...,r and vj, ¢ =1,...,r therefore form orthonormal bases for
r-dimensional subspaces of & and &, respectively. In &, there exist p = M/2 —r
orthogonal vectors u}, ¢ = r 4+ 1,...,M/2 which are also orthogonal to the pre-
viously mentioned set of r vectors u}, ¢ = 1,...,r. Similarly, in &,, there exist
p = M/2 — r orthogonal vectors v, ¢=r+1,...,M/2 which are also orthogonal
to the previously mentioned set of r vectors vi, ¢ = 1,...,7. Now using these
additional p orthonormal vectors from & and &,, we can form p orthonormal, bal-
anced vectors. With this construction, it can be verified that the set of M/2 vectors
x; =u,+vi, i=1,...,M/2 satisfies the following properties:

1) They are orthonormal and balanced.

2) They are also orthonormal to the flipped versions of each other. Hence, if X7 is

the matrix of size M/2 x M which has these vectors as its rows, this matrix satisfies

the property XTJpfm11(0) = 0.
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Chapter 6

A COMPLETE FACTORIZATION OF PARAUNITARY MATRICES
WITH PAIRWISE MIRROR-IMAGE SYMMETRY IN THE
FREQUENCY DOMAIN

Abstract !

The problem of designing orthonormal (paraunitary) filter banks has been addressed in
the past. Several structures have been reported for implementing such systems. One
of the structures reported [6] imposes a pairwise mirror-image symmetry constraint
on the frequency responses of the analysis (and synthesis) filters around w/2. This
structure requires fewer multipliers, and the design time is correspondingly less than
most other structures. The filters designed also have much better attenuation.

In this paper, we characterize the polyphase matriz of the above filters in terms
of a matriz equation. We then prove that the structure reported in [6], with mi-
nor modifications, is complete. This means that every polyphase matriz whose filters

satisfy the mirror-image property can be factorized in terms of the proposed structure.

I INTRODUCTION
Digital filter banks have been used in the past to decompose a signal into frequency

subbands [1]. The theory of perfect reconstruction filter banks has also been studied

1Under review, IEEE Trans. on Signal Processing.
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extensively [2]-[5]. Fig. 6.1 shows an M-channel maximally decimated filter bank. In
this scheme, the H;(z) are the analysis filters and Fj(z) are the synthesis filters. Fig.
6.2 is a representation of the scheme in terms of the polyphase matrices [3],[4]. E(z) is
the polyphase matrix corresponding to the analysis filters, and R(z) is the polyphase
matrix corresponding to the synthesis filters. The decimators and expanders have
been moved across the polyphase matrices using the noble identities [5]. In this
system, one can achieve perfect reconstruction by letting R(z) = E~1(z), and then
choosing the matrix E(z) so that R(z) exists. Such a system is called a biorthonormal
system. Another approach to design a perfect reconstruction system is to choose the
matrix E(z) to be a ‘paraunitary’ matrix. A matrix is said to be paraunitary [3] if it

satisfies the equation

E(z)E(z) =1, (1.1)

where E(z) = E!(1/2*). The dagger superscript ‘1’ denotes conjugation followed
by transposition, whereas the asterisk ‘*’ denotes conjugation only. The system can
be guaranteed to have the perfect reconstruction property by having R(z) = E(2).
An important feature of the paraunitary system is the orthonormality property [5].
Another feature of the system is that the analysis and synthesis filters are simply
time-reversed conjugate versions of each other for perfect reconstruction, and in par-
ticular, therefore, they are of the same length. Moreover, in the presence of subband
quantization in such systems, one can obtain bounds on the final reconstruction error
in terms of the errors introduced in each subband [10].

Several structures have been developed for implementing paraunitary systems [5].
These structures are robust to quantization, i.e., the perfect reconstruction property
is retained in spite of coefficient quantization.

In [6], the authors have imposed the additional condition that the analysis (and

synthesis) filters satisfy the pairwise mirror-image symmetry constraint in the fre-

quency domain around 7/2. The advantage of the resulting structure is that it
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requires fewer parameters . The design time is correspondingly lower than other
structures. The filter responses obtained using this structure are also better and have
been widely used.

A natural question which arises is whether the structure suggested in [6] is complete
as the structures for general paraunitary matrices have been shown to be [5]. Com-
pleteness of the structure would imply that every polyphase matrix whose filters
satisfy the pairwise mirror-image symmtery property can be factorized in terms of
this structure. This question has not been addressed in [6]. The purpose of this work
is to prove that the factorization suggested in [6] is indeed complete. We will also
show how each of the building blocks can be parametrized by a minimum number of
free variables.

Another point worth mentioning is the minimality of the structure. A structure
is said to be minimal if it uses the minimum number of delay elements necessary [3].
The minimality of our structure can be easily verified using Theorem 14.7.2 in [3].

Most of our notation will be identical to that used in [5]. The number of channels

M is even. The other notation will be defined as and when required.

II FACTORIZATION OF PARAUNITARY MATRICES HAVING PAIR-
WISE MIRROR-IMAGE SYMMETRY

In this section we first obtain a factorization of paraunitary matrices whose filters
satisfy the pairwise mirror-image symmetry. The filters have real coefficients, and
hence the polyphase matrices are also real. The approach we take is based on directly
manipulating the polyphase matrices, and yields a more compact derivation than [6].
Next, we prove the completeness of this structure, which is the main result of this

paper.
Consider Fig. 6.3. The filters at the mth stage are denoted as H,,;(z). If these

!Subsequent to [6], the cosine modulated filter bank was reported {7]-[9], which requires even
fewer parameters.
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filters satisfy pairwise mirror-image symmetry, they can be related to each other as
(eq. 33, [6])

Hppo1-p(z) = 27 DM-Dpg (7Y, k=0,..., M—1. (2.1)

The order of each filter is (m + 1)M — 1. It can be verified that in this case, the

polyphase matrix E,,(2) of the filters satisfies the matrix equation
Z_mQJMVMEm(Z_l)VMJM = Em(z) (2.2)

In the above equation, the matrix Jjs is the anti-diagonal matrix of size M x M. For

example,
0 0 01
0010
Je=10 1 0 0
1000

The matrix Vs is a diagonal matrix of size M x M with alternating 1's on the diag-

onal starting with +1. Hence if M/2 is even, we can write V; = ( Vi 0 )
0 Ve

whereas if M/2 is odd, Vy; = Vi 0 . The matrix Q is by definition,
0 ~V iy
Q= ( Vg/‘? ——VOM/2 ) for even M /2, whereas Q = ( Vﬂod/z V](\)/[/2 ) for odd M/2.
In either case, eq. (2.2) may be simplified to
Z"WE, (2" YVuIy = En(2), (2.3)
where
0 —Jup
W =QIJyVy = . 2.4
QInVy ( P ) (2.4)

Suppose we add another stage to the cascade as shown in Fig. 6.3. Then, the

polyphase matrix corresponding to the filters on the next stage is given by
Eni1(2) = KnpA(2)En(2), (2.5)
where

A(z):<IM/2 0 ) (2.6)

0 Z_llM/g
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Iy is the identity matrix of size N x N in the above. If K,,; is an orthogonal matrix,

we have

En(2) = A(Z_I)Kz;ﬂEmﬂ(z)' (2.7)
For the filters at the next stage to retain the pairwise mirror-image property, we need
2 OWE, 1 (2" Vud iy = By (2). (2.8)
Using eq. (2.7) in eq. (2.3), we obtain the following equation
Z"WARK 1B (77 Vdy = AGTHKL B (2).

Using the identity A(2)WA(z) = z27'W, we see that the necessary and sufficient

condition on K,,4+; for eq. (2.8) to hold is K, n WKL, = W. By partitioning
! !

K41 as ( j];' g, ), we can verify that the necessary and sufficient condition for

eq. (2.8) to hold is that the matrix K,,;1 be of the form

A’ C’
K1 = | . 2.9
H ( —JIn2C'Insz AT a2 ) (2:9)
Thus K,,;; can be rewritten as
Ly O Anii Cop Inyo O
K, = 2.10
H ( 0 Jup ) ( ~Crmi1 Amn 0 Jup (2.10)

v v~

P Tt P
where A1 = A/, and Cpyy1 = C'J /2. The result of [6] is equivalent to this result.
The conditions on the matrix Ky which initializes the process can be worked out
similarly, as has been done in [6].

We now address the converse.

Theorem: Let E,,1(2) be a FIR paraunitary matrix whose filters have pairwise
mirror-image symmetry in the frequency domain (i.e., E,,.1(2) satisfies eq. (2.8)).

Then it can always be factored as

Eni1(2) = Kt A2)KLA(2) ... A(2)K,, (2.11)
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where A(z) is as in eq. (2.6), and K; are as in eq. (2.10).
Proof: We prove the theorem by performing the ‘order-reduction’ process as outlined

below. Let

Eni1(2) = €ny1(0) + em1 (12" + enp1(2)27 + ... + empr(m + 1)z~ (M) (2.12)
with en1(m + 1) # 0 and

En(z) =en(0) + en()z7! + en(2)272 4 ... +en(m)z™™, en(m) # 0. (2.13)

Let E,,11(2) satisfy eq. (2.8). Specifically, we will now show that it can always be

written as

Em+1 (Z) = PTm+1P A(Z)Em(Z), (214)
e, s’
Km+1
where En,(z) satisfies eq. (2.3), and the matrices P, T, .1, and A(z) have the form

described in eq. (2.10).

Paraunitariness of E,,(z) follows by noting that
En(z) = AT )PTL  PE;1(2), (2.15)

where all matrices on the right hand side of this equation are paraunitary.
Pairwise Mirror-image property: We want to show that E,,(z) satisfies eq. (2.3).

Substituting eq. (2.14) into eq. (2.8), we get
2" MOWPT,, PAGDEL(z" ) VuIy = PTny i PAGZ)EL(2). (2.16)
Since P! = P and E,,(2) is paraunitary, and noting that W—! = — W, we get
A ER () VuIuEn(2) = —PTL , PWPT,, . PA(z). (2.17)

If Tpyq1 is an orthogonal matrix of the form described in eq. (2.10), and P has the
form described in eq. (2.10), then it can be verified that PT7,  ,PWPT,, ;P = W.

Hence we get

2 MDA YE,L (2 VI yEn(z) = “WA(2). | (2.18)
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It follows that
z‘m[z‘1A(z”l)WA(z_l)]Em(z‘l)VMJMEm(z) =Iy. (2.19)

It can be verified that [z7'A(z")WA(271)] = W. Sustituting this into eq. (2.19),
and rearranging the terms, we get eq. (2.3).

Causality: It only remains to show that there exists a matrix Tpq1 such that Ep,(2)
obtained from eq. (2.15) is causal. Both the pairwise mirror image property and the
paraunitary property continue to hold for the reduced system as long as the matrix
Tyny1 is any orthogonal matrix of the required form (eq. (2.10)). Indeed, it is the
causality condition on the reduced system which determines the particular choice of
the matrix Tp41.

From eq. (2.15) we get

0 O

0 ZIM/2>PT’Q+1PEm+1(z). (2.20)

I
E,(2) = ( urs g )pT;Q APEn(2) + (

The second term on the right hand side of this equation is responsible for the non-

causality. In particular, the noncausal part of the second term is given by

0 O -
(0 o )PTmHPemH(O). (2.21)

We have to show that there exists a matrix Tpyy of the form

_ Am+1 Cm+1

which makes the above non-causal term equal to zero. Simplifying eq. (2.21), we find

that Tpe1 should be such that

T " mi1(0) = 0. 2.23
( 0 JM/Z ) ( CZ;H‘I Ajr;z-i—lJM/? e +1( ) ( )

Hence, it is sufficient to find Ami1 and Cyny1 such that

( Chii Anudup ) emt1(0) = 0. (2.24)



165

Consider the matrix W (in eq. (2.4)). The eigenvalues of this matrix are +j,

where j = v/—1. The eigenvectors corresponding to the eigenvalue j are

J :
0 0

so=| |, .. Smpe1 = { (2.25)
0 0

\ 1

We will denote the space spanned by these vectors as £;. Similarly, the eigenvectors

corresponding to the eigenvalue —j are

0 0

ao=| " |, . ampa= “17 . (2.26)
o 0
X :

We will denote the space spanned by these vectors as E.

Since the matrix W is skew-symmetric, these eigenvectors together span the entire

space.

Now, consider any vector y. It can always be written as y = u+ v, where u € &;
and v € &. Moreover, if y is real, we have u = v* where the asterisk superscript

denotes conjugation (See Appendix A). This therefore implies that
ulu=vlv, (2.27)

where the 1 superscript denotes conjugate transpose.
Eqn. (2.8) implies in particular that We,,11(0)V Iy = emp1(m + 1). Parauni-

tariness of E(z) on the other hand implies that €7, ,(m + 1)ey11(0) = 0. Hence,
I Virern1(0)W'er1(0) = 0. (2.28)

Using the facts that W7 = —W and e,,,1(0) is real, we get €/, +1(0)We,,11(0) = 0.

We therefore have
U'e],,1(0)Wep,41(0)U =0, (2.29)
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for any matrix U. Let the matrix U be so chosen that the first » columns of the matrix
em+1(0)U form an orthonormal basis of real vectors x; for the columns of the matrix
€,4+1(0). (This is possible, since the matrix e,,;(0) is itself real. Hence 7 is the rank
of the matrix e,11(0)). These vectors x; being orthonormal satisfy x{x; = 0, (i # j).
Let x; = uj+vj, where u] € & and v] € &. Therefore, (u}+v;])T(u}+ v}) = 0, which
simplifies to

u'}u;- + V’}v; =0. (2.30)
The real vectors x; satisfy xj Wx; = 0, since W is antisymmetric. Hence

(u; + Vg)TW(u;- +v}) =0, (2.31)

ie.,
ungu; + VQTWu; + ungv’]- + vgJ(Wv;. =0. (2.32)
Noting that the vectors u; and v} are orthogonal, for all 4,7, and the fact that

Wv| = —jv], Wu, = ju}, we get

K3

u';-fu;. = v’;-rv'.. (2.33)

Eqs. (2.30) and (2.33) together imply that u’! u; = 0, and v’gv;- = 0. The vectors
u! i=1,...,rand v, i = 1,...,r therefore form orthonormal bases for r-
dimensional subspaces of £ and &; respectively. Moreover, since the x;, i=1,...,r

are real, we have (again referring to Appendix A)

u, = v, (2.34)

2

In &, there exist p = M /2—r orthogonal vectors ul, ¢=r+1,..., M /2 which are also
orthogonal to the previously mentioned set of r vectors u;, i=1,...,r. Similarly,
in &, there exist p = M/2 — r orthogonal vectors v}, i =r+1,...,M/2 which
are also orthogonal to the previously mentioned set of r vectors v{, ¢ =1,...,r.
Clearly, a particular choice of these p vectors in & could be the conjugates of the p

vectors chosen in &;.
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Now using these additional p orthonormal vectors from & and adding them to
their conjugates from &, we can form p orthonormal real vectors x;.

Let XT be the matrix of size (M/2) x M whose rows are the vectors x; i =
1,...,M/2 — 1. This matrix satisfies the following properties:

1) XTX =12 (from the fact that x; are orthonormal).
2) XTWe,,,+1(0) = 0 (by the construction outlined above).

Partition X7 = [YT Z]. Then with CL,, = Z7Jy, and AL, = —Y7, the

matrix T,,,; defined in eq. (2.22) is orthogonal and satisfies eq. (2.23). This proves
that En,(z) is causal.
Order reduction: Given the fact that E,,,(z) is causal, and that it satisfies eq. (2.3),
we can see that the order of E,,(z) is m. Thus there is a reduction in order by one.
Hence for a system of order N, the factorization process is guaranteed to terminate
in N steps.

This concludes the proof of the theorem. 00O

IIT CONCLUSION

In this correspondence we gave a proof of completeness of the structure presented
in [6]. The resulting filters have pairwise mirror-image symmetry around /2 in the

frequency domain, which leads to a greater efficiency in the design process.

Appendix A

As in Section II, we denote the two eigenspaces of the matrix W by &; and &,
corresponding to the eigenvalues j and —j respectively. Let y = u+ v, where u € &;
and v € &. Let

u=a8 +...+ ap/2-15M/2-1
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and

v = +...+ Bup-1ama-1,

where the s; and the a; are the basis vectors for the two subspaces as in section 1L
From their definition it is clear that if y is real, a;s;+;a; isrealfori = 1,..., M/2—~1.

Since s; = af, it follows that a; = §;. Hence u = v*.
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