THEORY AND APPLICATIONS
OF
MODULAR RECONFIGURABLE ROBOTIC SYSTEMS

Thesis by

I-MING CHEN

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology
Pasadena, California
1994
(Submitted March 14, 1994)

©1994
I-Ming Chen
All rights Reserved

ii

Acknowledgements

First, I would like to express my deepest gratitude to my advisor, Joel Burdick, for his
constant support and encouragement over the past five years. Joel’s broad knowledge
and enthusiasm for everything we have worked on have been an inspiration for me,
and I hope I can follow his example as I start my own professional career. I have also
learned from him to be patient and open-minded toward everything. These are the

things that cannot be found in any textbook.

I am grateful to the members of my examining committee, Professors Richard Murray,
Erik Antonsson, Fred Culick, and Dr. Guillermo Rodriguez, for taking their valuable
time to familiarize themselves with my thesis, and for constructive comments. In addi-
tion, I would like to thank Dr. Rodriguez for motivating this work. Richard Murray’s
helpful advice and comments provided me more insight in this research work. I also
enjoyed discussing and receiving comments from Dr. Elon Rimon, now a professor of
Technion University in Israel, and Dr. Greg Chirikjian, my long time colleague and

friend.

Many thanks to members of the robotics laboratory at Caltech. The computation
assistance from Howie Choset and Jim Ostrowski were excellent. Endless conversations,
questions, and answers from Brett Slatkin and Andrew Lewis will be memorable. I also
want to thank my fellow graduate students, Chih-Yung Wen, Chung-Yu Mou, Wen-
Jean Hsueh, Angela Shih, Eugene Lipovetsky, Petr Pich, and Jung-Chih Chiao, and
the resourceful staffs, Cecilia Lin, Jackie Beé.rd, Dana Young, and Charmaine Boyd of

Thomas Lab. Their friendship and help maintained my sanity and vigor.

I am greatly in debt to all my family members. My dearest parents are the strongest
supporters for my graduate student life emotionally and intellectually. Without their
open minds and constant discipline, I could not have been what I am now. I also want
to express my gratitude to my uncle and aunt, Joe and Lyn, for their constant care
and love during my stay in Caltech. I owe a lot to my sisters, Marina and Margaret,

for giving advice to their youngest brother in every aspect of my life ranging from

iv
academic research to making a girlfriend. Finally, I would like to dedicate this thesis
to my beloved grandmother, who passed away in March 1993. She watched me growing
up since I was first born. It will always be a sorrow for me that she was unable to see

her grandson finish his Ph.D.

I would also like to acknowledge the financial support that I received during my stay
here. My research has been funded in part by Caltech’s President’s Fund and the
National Science Foundation, under grant MSS-9157843.

Abstract

A modular reconfigurable robotic system consists of various link and joint
units with standardized connecting interfaces that can be easily separated and
reassembled into different configurations. Compared to a fixed configuration
robot, which is usually a compromised design for a limited set of tasks, a
modular robot can accomplish a large class of tasks through reconfiguration
of a small inventory of modules. This thesis studies how to find an optimal
module assembly configuration constructed from a given inventory of mod-
ule components for a specific task. A set of generalized module models that
bear features found in many real implementations is introduced. The modu-
lar robot assembly configuration is represented by a novel Assembly Incidence
Matriz (AIM). Equivalence relations based on module geometry symmetries
and graph isomorphisms are defined on the AIMs. An enumeration algorithm
to generate non-isomorphic assembly configurations based on this equivalence
relation is proposed. Examples demonstrate that this method is a significant
improvement over a brute force enumeration process. Configuration inde-
pendent kinematic models for modular robots are developed, and they are
essential for solving the task-optimal configuration problem. A task-oriented
objective function is defined on the set of non-isomorphic module assembly
configurations. Task requirements and kinematic constraints on the robot as-
sembly are treated as parameters to this objective function. The task-optimal
configuration problem is formulated as a combinatorial optimization problem
to which genetic algorithms are employed for solutions. Examples of finding
task-optimal serial revolute-jointed robot configurations are demonstrated. In
addition, the applications of modular robots to planning multifinger grasping
and manipulation are developed. Planning two-finger grasps is done through
finding antipodal point grasps on smooth shaped objects. Planning n-finger
grasps is achieved by defining a qualitative force-closure test function on the

n-finger grasps on an object. Applications of this test function to manipulation

task and finger gaiting are illustrated.

vi

Table of Contents

Acknowledgements, iii
Abstract v
1. Introduction and Motivation............................ 1
1.1. Past Design Efforts...... o i 3

1.2. Module Assembly Issues il 6

1.3. Organization of This Work 8

2. Conceptual Modelof Modules 12
2.1. Joint Modules 13

22. LinkModules. 14

2.3. Module Dimensionsc.iiiiiiin i 17

2.4, DiSCUSSION. . o\ ottt ittt e e e 18

3. Mathematics for Modular Robotics 19
3.1. Equivalence, Groups, and Permutations 20

3.2. Symmetric Rotations 22

3.3. Pélya’s Counting Theorem i ... 24

3.4, Graphs ... 28

3.5. Kinematic Graphs...... ... 32

3.6, DISCUSSION.ttt 35

4. Enumeration of Assembly Configurations............... .. 36
4.1. Enumerating Joint Assemblies on Links 37
4.1.1. Assembly Patterns 38

4.1.2. Algorithms for Listing Distinct Assembly Patterns 41

4.1.3. A Note on Incorporating R-Joints with Joint Limit 43

4.2. Assembly Incidence Matrices i, 45

Table of Contents vii

4.2.1. Equivalence of AIMs e 47
4.2.2. Hashed Assembly Incidence Matrix 52
4.3. Enumerating Robot Assembly Configurations...................... 54
4.3.1. The Enumeration Algorithm 55
4.3.2. Examples ... 59
4.3.3. Computational Complexity Issues 63
4.4. Closed-Loop Construction Enumeration........................... 67
4.5, DISCUSSIOIL. « vttt ettt e e e e e 67
Modular Robot Kinematics 69
5.1. Forward Kinematics i, 71
5.1.1. Single Link Kinematics 73
5.1.2. Dyad Kinematics i, 76
5.1.3. Tree Robot Forward Kinematics Algorithm 82
5.1.4. Forward Kinematics Examples 88
5.2. Kinematic Equivalence......... i 89
5.2.1. Equivalence of R-joint Serial Modular Robots 91
5.2.2. Equivalence Test Procedure 95
5.3. Inverse Kinematics 98
5.3.1. Derivation of the End Link Jacobian 102
5.4, DISCUSSION. . ..ottt e 104
Task-Oriented Optimal Configurations.................... 105
6.1. General Framework 106
6.2. Task Specifications 109
6.2.1. Definition of Robot Tasks 109
6.2.2. Task Evaluation Criteria 110
6.3. Structure Specifications 112

6.3.1. DOF Selection

Table of Contents viii

6.3.2. Topology Selectionc.. i 113
6.3.3. Module Assembly Preference 114

6.4. Assembly Configuration Evaluation Function of Serial Robots........ 118
6.4.1. Workspace Check Procedure 120

6.5. Genetic Algorithms for Modular Robots........................... 121
6.5.1. Coding Schemes for AIMs iviin... 123
6.5.2. GA for Task-Optimal Configuration Problem 125

6.6. BExamples 127
6.7. Discussion........ ... e e 131
Planning Multifinger Hand Grasps e 132
7.1. Contact Configuration Space i, 134
7.2. Force-Closure GIaspsttt it e 136
7.2.1. Two-Finger Force-Closure Grasps on Planar Objects 137
7.2.2. N-Finger Force-Closure Grasps on Planar Objects 139
7.2.3. Force-Closure Grasps on Spatial Objects 142

7.3. Two-Finger Grasp Planning 142
7.3.1. Planar Objectso i 143
7.3.1.1. Force-Closure Regions in Contact C-Space 143

7.3.1.2. A Grasping Energy Function 143

7.3.1.3. Planning Antipodal Point Grasps 145

7.3.1.4. Representations of Planar Objects 147

7.3.2. Spatial Objects 149
7.3.2.1. Representation of Spatial Objects 150

7.4. N-Finger Grasp Planning 154
7.4.1. A Qualitative Force-Closure Test Function 154
7.4.2. Properties and Symmetries of the FC-Surfaces 157

7.42.1. TypeIFC-Surfaces 157

Table of Contents ix

7.4.2.2. Typell FC-Surfaces 158

7.4.3. Force-Closure Contact Modes 159
7.4.3.1. Definition 159

7.4.3.2. Identifying FC-Contact Modes in a Grasp 161

7.4.4. Characterization of the n-finger Force-Closure Sets 162
7.4.5. Application to Complex Multifinger Manipulation 166
7.4.5.1. Multifinger Manipulation 166

7.4.5.2. Finger Gaits i, 169

7.4.5.3. Dextrous Manipulation Example 169

7.4.5.4. Dextrous Manipulation with Sliding 170

7.4.6. Issues Regarding N-Finger Grasps on 3-D Objects 172

7.5, DisCuSSIOn...ot 173
8. Conclusions 175

References

List of Figures

1.1. Revolute and prismatic joint modules (after [17]))
1.2. Two configurations of UT’s modular robots (after [17]) 5
1.3. Schematic diagram for module assembly problem 9
2.1, Typesof Joints . ..ot 14
2.2. Link modules—a cubic box and aprism, 16
2.3. Real implementation of UT’s connectorsot ennen... 16
2.4. Module models of the connectors 17
2.5. Joint dimension 18
2.6. Link dimensions e 18
3.1. Symmetric rotation about z-axis by 90° 23
3.2. A labeled graph and a specialized graph 29
3.3. Isomorphism and automorphism of graphs 31
3.4. The Watt’s linkage and its kinematic graph.............. 33
3.5. A homogeneous modular robot and its graph 34
3.6. A hybrid modular robot and its graph 35
4.1. Three assembly patternson a prism i, 37
4.2. Distinct patterns for a prism with 1 R-and 1 H-joint. 41
4.3. Forbidden sector of an R-joint with joint limit 43
4.4. Forbidden sectors in different orientations 43
4.5. Assembly pattern with an R-joint and an Rj-joint 45
4.6. Relative orientations of two prisms with a P-joint......................... 47
4.7. Three physically identical configurations 48
4.8. The flow chart of RobotEnumerate 57
4.9. 'Two non-isomorphic specialized graphs 60
4.10. Distinct configurations of a 3-link 2-DOF hybrid robot 61

List of Figures xi

4.11.

4.12.

4.13.

4.14.

4.15.

4.16.

5.1.

5.2.

5.3.

5.4.

5.5.

5.6.

5.7.

5.8.

5.9.

5.10.

5.11.

5.12.

5.13.

5.14.

5.15.

6.1.
6.2.
6.3.
6.4.
6.5.

6.6.

The graph of a 3-DOF serial modularrobot 63
Distinct assembly configurations of the 3-DOF robot 63
3-DOF fixed base robot example (continued)................. 64
3-DOF fixed base robot example (continued)............ 65
3-DOF fixed base robot example (continued).............. ..., ... 66
Eight non-isomorphic closed-loop configurations 68
A rigid body displacement g i e 71
The connecting line associated with port 7......... 74
A schematic kinematic graph 76
Part of the module assembly i i i 77
Situation for indeterminate Ryl 80
Kinematic graph of a quadruped Goueurseana . 89
Forward kinematics examples e 89
Kinematically equivalent robots i ... 90
Symmetric rotation on theend link L. 92
Two kinematically equivalent planar robots...................... 94
Joint axes parameters e e 95
3-DOF kinematically equivalent robots (A) 96
3-DOF kinematically equivalent robots (B) 97
Block diagram of the NIK (after [47])t 99
Relations among frames w, w’,and € 103
Framework for task-optimal configuration problem 107
Definition of a Robot Task, 110
Assembly patterns with joint redundancy 115
MAP for assembly patterns on a prismand acube........................ 117
Structure of ACEF for serial modular robots............................. 119
An assembly string representation of an AIM 124

List of Figures xii

6.7.
6.8.
6.9.

6.10.
6.11.
6.12.
6.13.
6.14.
6.15.

6.16.

7.1.
7.2
7.3.
7.4.
7.5.
7.6.
7.7.
7.8.

7.9.

7.10.
7.11.
7.12.
7.13.
7.14.
7.15.
7.17.
7.16.

7.18.

GA for task-optimal configurations.......... 126
Initial configurations (6.6) i 128
Final configurations (6.6) it e 128
Average and maximum fitness in every generation (6.6) 128
Initial configurations (6.7)ttt i e 129
Final configurations (6.7) ittt i i . 129
Average and maximum fitness in every generation (6.7) 129
Initial configurations (6.8) 130
Final configurations (6.8) i . 130
Average and maximum fitness in every generation (6.8) 130
Friction comne at Combact Us. . oot vin sttt ettt e e 138
SQUEEZING BTaSD . v vttt e e e 139
Expanding grasp.ttt e e 139
Supporting plane of CO(W(Q)) « . v v vvvenii ettt e 142
A planar object e 148
FCeregion (1 =0.3) ...t e et 148
Grasping energy function E. 149
A spatial object parameterized by spherical product....................... 153
From different viewpointttt i 153
FC-curves and FC-regions of an ellipse. 156
FC-surfaces for disk example i 164
Constant 3 slices of Cg .. oottt e e 164
03 = 0 slices of C3 with variable p...... 166
A planar three-finger system 167
FC-2 contact regions and the trajectories of the contact points on the ellipse .. 171
Finger 1 slides while Fingers 2 and 3 are force-closure 171
Snapshots of a dextrous manipulation motion sequence 172

Polygonal approximation of a 3-D friction cone

xiii

List of Tables

3.1.

3.2.

4.1.

4.2.

4.3.

5.1.

5.2.

5.3.

5.4.

5.5.

5.6.

6.1.

6.2.

6.3.

7.1.

7.2,

Symmetric rotation group Ry ofaprism L i, 24
Symmetric rotation group Rpofacube B, 25
Assembly patternsin Fig. 4.1 38
Assembly patterns for R;-joints in Fig. 4.4 44
Comparison between two algorithms. 62
PCT for prism module (L) i 75
PCT for cubic box module (B) i 75
IPT for Cube — Cube i e et 82
IPT for Prism — Prism i i i 83
IPT for Cube — Prism i e 84
IPT for Prism — Cube i 85
The manipulability of task points 112
Task point set (6.6)ottt e 127
Task point set (6.7) . ..ottt e 128
Extrema and antipodal points on the planar object 148

Extrema and antipodal points on the spatial object 152

Chapter 1

Introduction and Motivation

The notion of modularity in design has long existed in many engineering disciplines,
such as VLSI design [63], computer circuit board design, and software design. The main
philosophy behind these approaches is to divide a complicated system into different

functional modules with high portability, ease of maintenance, and logical clarity.

From mechanical perspective, a robotic system is a collection of connected joints and
links which is to be employed for a particular set of tasks. The performance of a conven-
tional robotic mechanism, e.g., workspace, dexterity, and loading condition, etc., are
determined by its kinematic parameters, such as link lengths, joint positions, and types
of joints, and its structural topology. In industrial robot design, the designer chooses
these factors during the initial design phase so as to satisfy the given requirements
of a set of tasks. The design process often becomes a time consuming and expensive
process, and the outcome is a compromised device for the task requirements. From the
task point of view, the versatility of such system is only for a limited class of tasks and
sometimes becomes an over-design for a subset of less complex tasks. For example, a
6-DOF Puma manipulator with a relatively long reach in all directions in the opera-
tion space is suitable for painting, welding, and parts handling. On the other hand,
a horizontal 4-DOF SCARA type manipulator, connected with relatively short links,

is suitable for delicate table-top assembly operations requiring accuracy and selective

Chapter 1: Introduction and Motivation 2

stiffness. Using the Puma robot to perform an IC assembly task becomes a trade-off
between versatility and cost-efficiency. In some situations, using robots with different
parameters for a variety of task is possible when the task requirements are specified in
advance. However, in many unstructured and less predictable environments, such as a
nuclear waste retrieval site, aboard a space station, or a lunar base construction site,
it is very difficult or impossible to design a single robotic system that can meet a wide

range of task requirements.

In these circumstances, it might be advantageous to deploy a modular reconfigurable
robotic system which can be reconfigured itself into robots with different parameters
which are individually well suited to the diverse task requirements. By a modular
reconfigurable robotic system, we mean one in which various sub-assemblies with stan-
dardized connecting interface design, at the level of joints and links, can be easily
separated and reassembled into different configurations. Such a robotic system has
several advantages over conventional fixed-parameter design. First of all, it is very
flexible and adaptable to different tasks requirements and working environments. The
standardized design is easy for maintenance, modification, and transportation, and
economical for manufacturing. Furthermore, it allows the re-use of the same part for
different purposes, and thus reduces the total inventory of modules and the cost of

redesign and repair.

There are several challenging technological and theoretical research issues that need
to be addressed before putting such modular reconfigurable robotic systems into work.
In order to achieve configuration independence, a modular robotic system must ex-
tend the notion of modularity to include mechanical design, electronics design, control
algorithms, software, and communications. The most fundamental issue is the hard-
ware design, which includes module design, mechanical and electronic interface design.
Standard module component design is necessary for the maintenance of the integrated
system. Standard interface design allows modules to be interchanged without incom-
patibility. Researchers at University of Stuttgart, Carnegie Mellon University, Univer-

sity of Toronto, Nagoya University, and University of Texas [17,32,87,91,103] have built

Chapter 1: Introduction and Motivation 3

modular robotic systems to address this issue. Configuration independent software and
control architectures [34,90] and communication methods [94] are also very important
in controlling the system to carry out a task. Another important area is the module
assembly planning problem which is the main theme of this thesis. As will be shown
in the following chapters, with a set of standard components in hand, a methodology
to enumerate all possible arrangements of the modules and to find an optimal module
assembly for a specific task is definitely necessary. The methodology developed here

is a completely general approach and can be applied to all existing modular robot

systems.

The remainder of this chapter is organized as follows. Section 1.1 reviews previous
efforts in the design and implementation of modular reconfigurable robotic systems.
Section 1.2 discusses the module assembly issues and problem solving framework. Sec-

tion 1.3 outlines the organization of the remaining chapters in this thesis.

1.1. Past Design Efforts

Several prototype modular robotic systems have actually been built and demonstrated,
including the “Reconfigurable Modular Manipulator System” (RMMS) developed by
Khosla and co-workers at CMU [87], the several generations of the “Cellular robotic
system” (CEBOT) developed by Fukuda and co-workers at Nagoya University [32],
and modular manipulator systems developed by Cohen et al. at University of Toronto

[17], by Wurst at University of Stuttgart [103], and by Tesar and Butler in University
of Texas at Austin [91]. '

’The RMMS in [87] consists of two types of 1-DOF revolute joints: “rotate” and “pivot”
joints, actuated by DC motors in conjunction with harmonic drive mechanism, and
links of circular cross-section.The mechanical coupling is accomplished using V-band
flanges which are an integral part of the link and joint modules. A multiplexed commu-
nication link, similar to Local Area Network (LAN), is employed for bidirectional data

transmission between modules. Real-time control programs execute on a dedicated

Chapter 1: Introduction and Motivation 4

controller CPU, a single-board computer based on Motorola 68020 and VME bus.
This controller CPU performs the necessary real time control of the robot and receives
commands from a second master CPU which executes the event-driven application
program. An algorithm to automatically generate the Denavit-Hartenberg parameters
of the RMMS is proposed by Kelmar and Khosla [46]. The inverse kinematics of the

RMMS is obtained by a numerical inverse kinematics scheme.

The modular robotic system in [17] employs both revolute and prismatic joints which
are actuated by DC motors. The revolute joints use harmonic-drive transmissions
and the prismatic joints use ball-screw transmission. The schematic drawing of these
joints are shown in Fig. 1.1. The links have a circular cross-section. The connection
between modules uses a 45° connecting scheme relative to the module’s main axes.
Two modules can be connected either in a straight line or in perpendicular direction.
Rotating the 45° connector by 90 deg. increments can reconfigure the link into an
in-plane or out-of-plane link as shown in Fig. 2.3. A SCARA-conﬁgura,tion‘ and an
articulated-configuration robot are demonstrated in Fig. 1.2. A kinematic modeling

scheme which maps a set of input/output frame relationship into Denavit-Hartenberg

parameters is reported in [5].

The modular robots in [103] consist of a variety of rotational joints driven by AC
motors in conjunction with differential gears, and links of square cross-section. The
compact joint design allows complicated 2-DOF or 3-DOF rotary motions. A simple
male-female fastening device is designed to connect modules in any order quickly and
exactly. A data file stores all of the important specification of all available elements.

A program which selects modules to be assembled according to the task description is

proposed.

The CEBOT conceived in [32] employs a different aspect of modular robots. There are
three types of modules in the CEBOT: joint cells, branching cells, and working cells.
All cells are identical in dimension. The connection between cells are carried out by

a hook type coupling mechanism. A cone-shaped mechanism guides the cells during

Chapter 1: Introduction and Motivation

ENCODER

HARMONIC DRIVE

1 111714717
A7
/)

¥

ENCODER R

RRLCLLRERR

&
PR rerzeizzeze

S
N
N
N

YAW JOINT
YAYW JOINT
YAW JOINT

ADAPTER

LINK

]

_. SMALL ROTARY JOINT

IN~PLANE CONNECTOE.

LARGE ROTARY JOINT

. LARGE ROTARY JOINT

BASE
,‘/—

SCARA | PUMA

Figure 1.2: Two configurations of UT’s modular robots (after [17])

Chapter 1: Introduction and Motivation 6

coupling [33]. The cells in the CEBOT possess certain intelligence and communication
capability so that they can reconfigure themselves autonomously. With a large number
of autonomous cells, the CEBOT becomes a distributed intelligence system. To perform
a task collectively, a master cell is selected by using a “network energy,” in which an
energy function is calculated based on the information flow in the CEBOT [34]. The
master cell becomes the centralized control and communication unit for planning and

decomposition of tasks.

1.2. Module Assembly Issues

In the deployment phase of a modular robotic system, a human operator faces the
problem of selecting the module assembling sequences and arrangement. Because the
modules are designed as standard components that can be assembled in different ways
and re-used for different purposes, the operator may want to know how to find an
optimal module arrangement for a prescribed robot task from a inventory of system
modules. For clarity, the arrangement and assembly of modules in a modular robot
is termed an assembly configuration. A set of modules can build a number of unique
assembly configurations. The module assembly planning problem is to find an optimal
one that satisfies the task requirement. Compared to a fixed configuration robot which
is usually a compromised design for a set of tasks, a modular robot can accomplish a

large class of tasks through reconfiguration of a small inventory of modules.

This module assembly problem has not received sufficient attention in the modular
robot literatures. It is treated as an iterative kinematic synthesis problem in [17] and
an exhaustive search problem with a predetermined robot topology in [32]. A design
grammar approach of enumerating assembly configurations is discussed in [98]. For
simple module design, these approaches may apply. As the module design become more
complicated, i.e., with more versatile connecting schemes and symmetric geometry,
more complicated modular robot structure can be built. Hence, modular robot systems
can handle more diversified tasks. The complexity of the module assembly problem

increases exponentially. For instance, in the system described in [103], there is no

Chapter 1: Introduction and Motivation 7

symmetry in the link modules and only very limited configurations can be constructed.
But in the University of Toronto’s modular robot system, the links are designed as
circular cylinders with symmetry that can be connected to other modules at either

end. This symmetry increases the number of possible robot configurations.

In this thesis, the module assembly problem is solved in a systematic way by decom-
posing it into two separate sub-problems: 1) how to find all possible unique assembly
configurations from an inventory of modules; 2) how to determine a sufficient or optimal

one among the set of assembly configurations that satisfies a task requirement.

The first sub-problem is termed module assembly enumeration, which is basically an
algebraic problem involving representation of modular robot assembly configurations,
equivalence relations, and counting theorems. The solution to this problem was first
reported in Chen and Burdick [14]. An explicit expression of the robot assembly con-
figuration using a graph matrix representation termed an assembly incidence matriz
(AIM) is defined. This representation was not conceived in any system mentioned in
the previous section. For link modules with symmetry, joints can be attached to it in
many ways but with identical kinematic properties. Equivalence relation and count-
ing theorem are applied to classify and list distinct assembly patterns. Enumerating
distinct robot assembly configuration from an inventory of modules can be done by
using the AIM representation and distinct joint assembly patterns. It will be shown in
Chapter 3 that this enumeration procedure reduces the complexity and eliminates the

generation of a large number of identical assembly configurations by the brute force

enumeration scheme mentioned in [32].

The second sub-problem is termed the task-oriented optimal configurations which is
a combinatorial optimization problem. Kinematic models of a modular robot is de-
veloped. It is the basis for robot task evaluation. Because modular robots have no
predetermined assembly configuration, in order to retain the modularity of the system,
an algorithm to automatically generate robot kinematics from an AIM is introduced

in advance. Task requirements and kinematic constraints that affect task execution

Chapter 1: Introduction and Motivation 8
are explicitly formulated in a task-oriented objective function. The domain of this
objective function is the set of distinct assembly configurations generated from the
enumeration procedure. Since the domain is a finite set, combinatorial optimization

techniques are employed.

A schematic diagram that depicts the process to solve this module assembly problem
is shown in Fig. 1.3. Three blocks show the core of this thesis: module assembly

enumerations, modular robot kinematics, and task-oriented optimal configurations.

Lastly, we discuss the application of modular robots to multifinger grasping and ma-
nipulation. In order to obtain a stable grasp on an object, a force-closure grasp is
necessary. A force-closure grasp is a set of finger contacts on the object surface such
that any disturbance force/moment exerted on the object can be balanced by the finger
contact forces. For two-finger grasps, antipodal point grasps guarantee force-closure.
For n-finger grasps, a force-closure test function is defined on a planar object to check

the force-closure condition of a grasp.

1.3. Organization of This Work

The remaining chapters of this thesis are partitioned into three parts: Module models
and mathematics pertaining to module assembly problems—Chapters 2-3; Assembly
configuration enumeration and task-optimal configuration—Chapters 4-6; Application

to multifinger grasping and manipulation—Chapter 7.

Chapter 2 introduces a set of conceptual module models. Two types of modules (joint
and link modules) which are related to the regional structure of the robot are consid-
ered. A set of basic requirements are defined on joint and link modules. Several types
of joints and link are introduced. An example is demonstrated for the transformation

between a real module assembly and the modeled one.

Chapter 3 reviews a set of mathematical tools for the module assembly problem includ-
ing combinatorics and graph theory. Link modules are modeled as symmetric polyhe-

dral objects with multiple connecting ports. The rotations of a symmetric link module

Chapter 1: Introduction and Motivation

SNOLLVANDIINOD

TVIWLLIO
AQAINAIHO-NSVL
J
SWHLIHODTV
i NOLLVZIWILdO
SNoisaa
3INAONW
e NOILVDIAIDAdS ANLINULS TYNAIAIGNI
< NOLLVOIIDEdS NSVL
suoyvandyfuo) Ajquiossy umdQ paustig-ysvy
‘
SNOILVINIIANGD [oq\qqvAinoa SOILYWINI | | WHLIHODY L3S
IONLISIAd —~—— < : IR S
: OILVININD auvmiod |i NOILVHIWNNI i @1naow
ATIVOLLVWANIN | i ;
P SWIV !
i | DIHJIOWOSI
P NON ;
soyvwiaury 1040y IDINPOpy suoyvMNUg KQUIISSy ampow

Schematic diagram for module assembly problem

Figure 1.4

Chapter 1: Introduction and Motivation 10

are related to permutations on its connecting ports. Kinematic graph techniques are

introduced to represent the underlying topology of the modular robot structure.

Chapter 4 presents a methodology to enumerate modular robot assembly configura-
tion. An assembly incidence matriz (AIM) is defined for every robot assembly configu-
ration. Equivalence relations based on symmetric rotations of link modules and graph
isomorphisms are defined on assembly incidence matrices to classify distinct module
assembly. An algorithm based on this equivalence relation to systematically enumer-
ate tree-structured modular robot assembly configurations from a given inventory of
modules is proposed. The computation complexity of this algorithm is also discussed.

Issues regarding closed-loop module assembly are briefly mentioned.

Chapter 5 studies kinematics issues in modular robots. A product-of-exponentials
based kinematic modeling technique is proposed to generate tree-structure robot for-
ward kinematics from a given AIM automatically. A numerical inverse kinematics
technique based on Newton-Ralphson method is employed for calculating the inverse
kinematic solution. Kinematic equivalence relation is defined on distinct AIMs that
possess identical kinematic properties. Modular robots with kinematic equivalent AIMs

can perform identical tasks.

Chapter 6 discusses task-optimal assembly configuration problem. The problem is
formulated as a combinatorial optimization problem by introducing a task-related ob-
jective function. Task and module assembly specifications are explained in detail. They
are taken as input parameters to this objective function. The function then evaluates
the task performance of an AIM of a modular robot. Genetic algorithms (GA) are pro-
posed for this combinatorial optimization problem. Examples of finding task-optimal

serial R-joint robot configurations utilizing GAs are demonstrated.

Chapter 7 develops the application of modular robots to planning multifinger grasps
and manipulations. Force-closure conditions are identified on planar and spatial objects
with friction contact models. Planning two-finger grasps is done through a set of

antipodal point grasps on a smooth shaped object. The antipodal points are found

Chapter 1: Introduction and Motivation 11
by solving a constraint global optimization problem on a “grasping energy function”
defined at two finger contacts on the object. Planning n-finger grasps, where n is
greater than two, is achieved by defining a qualitative force-closure test function on

all the n-finger grasps on an object. The application of this test to dextrous finger

manipulation and finger gaiting are demonstrated.

Chapter 8 is the conclusion. This contains a discussion of further problems which must

be resolved in modular robots and their future development.

12

Chapter 2

Conceptual Model of Modules

This chapter introduces a conceptual model of modular robot regional structures. The
regional structure, which is crucial to the performance of the entire robot system,
consists of link and joint modules. By rearranging the assembly sequence of the same
set of the modules, one can obtain a set of robot configurations with various parameters
which have different kinematic and dynamic behavior. The types of joints determine
the final motion of the end-effector. The lengths of the links affect the shape and size

of workspaces and singular positions.

The mechanical design of modules varies from system to system. This work is focused
on the combinatorial nature of the module assembly problem and on the task per-
formance problem besides modular mechanical constructions. Thus, no specific set of
modules will be designed. Instead, a conceptual and abstract module model set based
on the features found in many real implementations will be introduced. The modular
systems developed or proposed to date have several common mechanical and structural
features: (1) simple joint designs: only 1-DOF revolute and 1-DOF prismatic joints
are considered [17,32,87]; (2) symmetric link geometries for interchangeability [17,32,
87]; and (3) multiple connection method on a link [17].

The joint modules are assumed to be self-actuated 1- or 2-DOF joints. These joints

can create rotary or translational motions. The link modules are polyhedral objects

Chapter 2: Conceptual Model of Modules 13

with geometric symmetry, and multiple connection of joint modules are allowed.

This chapter is organized as follows. Section 2.1 discusses the requirement on joint
modules. Section 2.2 introduces the features of link modules. An example is shown to
explain the transformation between a real link assembly and the abstract one. Section

2.3 defines several crucial module dimensions to be used in modular robot kinematics.

2.1. Joint Modules

For many robot designs the joint actuators are located close to the base and gear
trains or tendons are used to transmit actuator forces. This design strategy reduces
the inertia of the entire robot arm. In modular robots, joints have to be self-actuated.
It is very inconvenient to put the joint and its actuator in a different location while
maintaining the modularity of the entire system. Therefore, a modular robot joint
module is not only a “kinematic” joint that connects two rigid bodies, but is also an

actuator which generates motion between two adjacent links.

The actual design of the joint modules involves a motor (actuator) and connecting
interfaces (control, communication, and mechanical), which is not the topic here; in-
stead, we concentrate our attention on the types of joints creating different motions.
There are six types of joints commonly used, termed “lower pair” joints: Revolute joint
(1 DOF), Prismatic joint (1 DOF), Screw joint (1 DOF), Cylindrical joint (2 DOF),
Planar joint (2 DOF), and Spherical joint (3 DOF) [43]. Combining several 1 DOF
joints can create joint motion equivalent to that of a multi-DOF joint. Hence, there is

no need to employ complex multi-DOF joints in a modular robot.

The following types of joint modules are assumed to be incorporated in our model

modular robotic system: (The notations for joint module types are shown in the paren-

theses.)

e Revolute joint (R): unlimited 1 degree-of-freedom (DOF) rotary motion between

two link modules.

Chapter 2: Conceptual Model of Modules 14

¢ Prismatic joint (P): limited 1 DOF translational motion between two links.
¢ Helical joint (H): 1 DOF twisting motion between two links.

e Cylindrical joint (C): 2-DOF motion between connected links: one is rotation,

the other is translation along the rotation axis.

All joints are connected to link modules through standardized connecting interfaces.

A schematic diagram of these joint modules is shown in Fig. 2.1

e i R e e .
REVOLUTE PRISMATIC CYLINDRICAL HELICAL

Figure 2.1: Types of joints

2.2. Link Modules

In contrast to joint modules, a link module has no moving parts. It serves solely to
connect and support joints. The length of the link between connected joints and the
orientations of the joint axes determine the size and shape of the working space of the
robot. For versatility, we require that the link modules has two features: (1) multiple

joint connections, and (2) symmetfy in geometric shape.

Joint modules are connected to the link through connecting ports. Changing the num-
ber of connected joints alters the function of the link module. For example, with two
Jjoints, the link module serves as an ordinary link for the serial manipulator, while
with three joints, the link module becomes a branching unit, such as those used in
the CEBOT system [32]. Furthermore, changing the location of the joint alters the

link parameters such as link lengths, twist angles, and link offsets commonly used in

Chapter 2: Conceptual Model of Modules 15

D-H parameterization of robot kinematics [19]. With multiple choices of connecting
ports, the link parameters of the link module has a number of different combinations;

therefore, the kinematics of the modular robot changes as well.

Since joints can be attached to a link module in multiple ways, we further assume that
the connecting ports are located symmetrically on a link module. The symmetry design
allows link modules to be interchanged without any orientation problem and to be re-
used easily in different purposes. Although link designs in some real systems do not
have symmetry [103], it will be shown later in this thesis that the process of finding joint
assembly patterns on a symmetric link module can be useful for unsymmetric links as
well. For convenience, a body coordinate system, termed the module coordinate frame,
is defined on every module whose origin is located at the link’s center of symmetry.

The connecting ports are labeled accordingly.

For illustration purpose, we assume only two types of link modules are available: square

prisms and cubic box units. Other symmetrically shaped objects can be similarly

treated.

¢ Square prism (L): This is a prism with a square longitudinal cross section.
The ten connecting ports are located symmetrically on each face and are marked
from one to ten, as shown in Fig. 2.2. At most, ten different joints can be
simultaneously attached to the link. The origin of the module frame is located at
the prism’s center of symmetry. The z-axis is directed along the prism’s primary

axis, while the x-axis is perpendicular to one of the faces.

e Cubic box (B): This link module has one connector on each of its six faces. The
origin of module frame is located at the center of the cube. Its x, y, and z-axes
and the port numbering are shown in Fig. 2.2. If six R-joints are attached to the
cube simutaneously, their joint axes will be intersected at one point—the centroid

of the cube.

Chapter 2: Conceptual Model of Modules 16

In-Plane Out-of-Plane

Figure 2.3: Real implementation of UT’s connectors

Modelling a link module in a real system is demonstrated in the following example.
The in-plane and out-of-plane connectors developed in [17] are shown in Fig. 2.3. Both
connectors have circular cross sections. The connecting interfaces between joint mod-
ules and the connector are both 45° cross section relative to the longitudinal direction.
When two revolute joints are connected to an in-plane connector, their joint axes are
in a plane. This corresponds to attaching two R-joints to ports on opposite faces of
the prismatic link as shown in Fig. 2.4. When joints are attached to the out-of-plane
connector, their joint axes lie in two perpendicular planes, which can be realized by

connecting two R-joints on two adjacent faces of the prism shown in the figure.

Chapter 2: Conceptual Model of Modules 17

In-Plane Out-of-Plane

Figure 2.4: Module models of the connectors

2.3. Module Dimensions

Module dimensions will be needed in the discussion of robot kinematics and related
task-optimal configuration problem. Without knowing those dimensions kinematic
equations cannot be derived. Several crucial module dimensions are defined as follows.
Modules of the same type with different dimension are treated like different types of

modules.

e Joint modules (Figure 2.5)

— JointLength: This quantity is defined to be the length of the joint exposed
after it is attached to the links, i.e., the distance between the faces of the two
links. JointLength of P, H, C-joints whose longitudinal length may vary are

defined at their zero positions.
¢ Square prisms (Figure 2.6)

— LinkLength: The longitudinal length of the prism. This quantity will be
useful when joints are attached to the end face of the prism.

— LinkWidth: The side length of the end-square.

— PortSeperation: The distance between the centers of the two connecting
ports on the same side-face. If two joints are connected to the ports on the

same side, this quantity becomes the actual link length.

e Cubic boxes (Figure 2.6)

— LinkHeight: The length of the edge of the cube.

Chapter 2: Conceptual Model of Modules 18

JointLength

LinkLength

PortSeperation @

LinkWidth LinkHeight

Figure 2.6: Link dimensions

2.4. Discussion

This chapter introduced a set of conceptual link and joint module models which have
the characteristics found in existing or foreseeable implementations. The joints and
links comprise the regional structure of a modular robot. The regional structure de-
termines the kinematic and dynamic performance of the robot. The joint modules
are modeled as self-actuated joints with 1 or 2 DOF. The link modules are modeled
as symmetric objects with multiple connecting ports. This modeling technique was
demonstrated by an example converting the in-plane and out-of-plane connectors de-

veloped by University of Toronto to our module models.

19

Chapter 3

Mathematics for Modular Robotics

In this chapter, we review and extend a set of basic terminologies in algebra, combi-
natorics, and graph theory for module robot assembly problem. Owing to geometric
symmetry in link modules, group theory and combinatorics will play an important role
in counting the distinct assemblies on a single link module, which are the basic building
blocks for a large robot structure. The large structure of a modular robot, i.e., the
connections between link and joint modules, can be described by a graph, especially, by
a kinematic graph. It will be shown in the next chapter that by adding more features

to this graph representation, the entire robot assembly can be fully represented.

The organization of this chapter is as follows. Section 3.1 reviews several useful concepts
in algebra: equivalence classes, groups, and permutations. Section 3.2 describes a class
of rotations exhibited in an object due to their symmetry geometry and shows their
relation with permutations. Section 3.3 discusses how to count distinct patterns on a
symmetric object using Pdélya’s theorem. Section 3.4 reviews several frequently used
definitions in graph theory. Section 3.5 introduces the concept of kinematic graphs for

modular robot assemblies.

Chapter 3: Mathematics for Modular Robotics 20

3.1. Equivalence, Groups, and Permutations

Some of the basic notations and terminologies in algebra that are used throughout this

thesis are introduced in this section. For more detail, please refer to [30,39,64].

Let X = {a,b,c,-- } be a set with a finite number of elements.

Definition 3.1: The binary relation ~ on X is an eguivalence relation on X such

that for all a,b,c € X,

1. a ~ a ; (reflexivity)
2. if a ~ b, then b ~ a; (symmetry)

3.if a ~band b ~ ¢, then a ~ c. (transitivity)

Definition 3.2: If ~ is an equivalence relation on X, the equivalence class of a € X
is the set defined by
[a] = {z € X|z ~ a} (3.1)

Note that X is the disjoint union of its equivalence classes. The set of equivalence

classes is denoted by X'/ ~.

Definition 3.3: A group is a non-empty set G, along with a binary operation, *, such

that for a,b,c € G,

1. axb € G; (closure)
2. (axb)*c=ax*(bxc); (associativity)

3. there exists a unique element e € G such that axe = e* a = a for every a € G;

(identity)

4. for every a € G, there exists a unique a™! € G such that axa ' =g ' xa = e.

(inverse)

Definition 3.4: [30] Let X be a set and § a group. An action of G on X is a map,
*x: X XG— X,such that forallz € X

Chapter 3: Mathematics for Modular Robotics 21

1. £ xe = z, where e is the identity element of G;

2. 2% (g1 0 g2) = (T *g1) * g, where g1,92 € G.
X is called a G-set.

Theorem 3.5: [30] Let X be a G-set. 21,z € X are said to be equivalent, i.e.,

x1 ~ I iff there exists a g € G such that z; xg = z».

Definition 3.6: The equivalence class of z € &X' induced by ~ is defined by
[z] ={y e Xly=xxg,3g € G} =z xg. (3.2)

It is called an orbit of X under the action of G.

Definition 3.7: Let X = {z;,--- ,z,} be a finite set with n elements. A permutation

m on X is a 1-to-1 mapping of X onto itself written as follows.

1 Lo T3 - LTn
w = , (3.3)

Tiy Tip Tiy - Ty,

where z;, is the image of z; under 7 and i, € T = {1, ,n}. T is called the index

set. In short, we write m as the permutation of the index set.

1 2 3 -+ n
= - (3-4)
21 19 13 .- in

Example 3.8: A permutation 7 on a set of 4 elements can be written as

1 2 3 4
= , (3.5)
4 2 1 3

where ¢ represents the first element z; and i € 7 = {1,2, 3,4}.

Suppose m; and 7y are permutations on & and m; # 7. The composition of the two,
71 O My, is also a permutation on &X'. If 73 is also a permutation on X, one can show

that (m; o m2) o w3 = 7y 0 (73 0 73). The identity permutation, e, will look like

1 2 3 --- n
T = , 3.6
1 2 3 -~ =n (26)

Chapter 3: Mathematics for Modular Robotics 22
and we can always find an inverse permutation of m; such that 77’ o7 = e. Therefore,
a set of permutations on X with the associated operator, o, is called a permutation

group on X and is denoted by Sy if it satisfies Definition 3.3.

3.2. Symmetric Rotations

Objects with geometric symmetry like square prisms and cubes exhibit a class of body
rotations which preserve the orientations and positions of their shape. Such rotations
are termed symmetric rotations, since one cannot distinguish between the rotated and
unrotated states of the object. For example, an unmarked square prism which is rotated

about its longitudinal axis by 90°, 180°, or 270° looks exactly the same.

Definition 3.9: Let a symmetric object, £, be a collection of points in R® and let the
center of symmetry coincide with the origin of R®. A symmetric rotation, ¢ : R® — R?,

of £ is an element of SO(3) that maps £ to itself, i.e., (L) = L.

On can show that the symmetric rotations of an object form a group called the sym-

metric rotation group R [30,64], where

R ={p € SOQ3)lp(L) = L}. (3.7)

Note that the number of elements in R of a symmetric polyhedron is finite. Objects of
revolution, such as a sphere or cylinder, have infinite, or continuous, rotation groups.

Here we only consider finite symmetric rotation groups.

Recall that link modules are assumed to be symmetric objects like cubes and square
prisms which have symmetric rotations. In order to identify these rotations, one has to

put features on these objects. The following theorem allows us to categorize symmetric

rotations in an object.

Theorem 3.10: Cayley’s Theorem [39]

Every group with finite elements is isomorphic to a subgroup of a permutation group

on a set of n elements for some integer n.

Chapter 3: Mathematics for Modular Robotics 23

Also recall that every link module connecting port is assigned a unique index and these
ports are located symmetrically on the link. While a symmetric rotation ¢ € R does
not alter the final appearance of the link, it does change the connecting port locations.
One can imagine that the port locations after the rotation are a permutation of the
indices before the rotation operation. As shown in Fig. 3.1, the rotation of the prism
link module about its z-axis by 90° causes port 1 to move to where port 3 was, port 2
to port 4, port 7 to port 1, etc. Port 9 and 10 remain the same. This action can be

written as a permutation

1 2 3 45 6 7 8 9 10
T = , (3.8)
3 4 5 6 7 81 2 9 10

or in short, 7 = (3,4,5,6,7,8,1,2,9,10).

Figure 3.1: Symmetric rotation about z-axis by 90°

Suppose there are n ports on a link and they are labeled from 1 to n. Let PORT =
{1,--- ,n} be a set of indices containing all port numbers on a link module. A sym-
metric rotation ¢ € R corresponds to a permutation on PORT. It can be shown that all
permutations which correspond to symmetric rotations on a link form a permutation
group on PORT denoted by &. By Theorem 3.10, the symmetric rotation group R is
isomorphic to the permutation group & on PORT. Hereafter, we use either 7 € § or

¢ € R to represent a symmetric rotation on the link module.

Let PORT(L) = {1,2,---,10} and PORT(B) = {1,2,--- ,6} be the sets of port indices
on a square prism and a cube respectively. Denoting Ry and Rp as the symmetric

rotation groups on prismatic and cubic links, and Sz, and Sp as the permutation groups

Chapter 3: Mathematics for Modular Robotics 24

on PORT(L) and PORT(B), Theorem 3.10 says R (R) is isomorphic to Sy (Sp). Tables
3.1 and 3.2 list all symmetric rotations and corresponding permutations of the prism

and the cube.

Rotations Permutations on I,

Axis | Angle [1123 |4[5]6|7[8] 9]10 Type
identity 1(2(|3|4|5(6|7{8}| 910/ {10,0,0,0,0,0,0,0,0,0}
k 90° |3|4|5)6|7|8|1}|2| 9|10 {2,0,0,2,0,0,0,0,0,0}
k 180° {56 |7|8|1|2|3 4| 9,10/ {2,0,0,4,0,0,0,0,0,0}
k 270° | 7|8|1}2|3|4|5(6] 9|10} {2,0,0,2,0,0,0,0,0,0}
i 180° {2(1|87|6|5|4(3|10} 9] {0,5,0,0,0,0,0,0,0,0}
J 180° {654 (3|2|1|8|7|10] 9] {0,5,0,0,0,0,0,0,0,0}

i+j| 180° (4{3}2(1{8}7}615{10} 9 {0,5,0,0,0,0,0,0,0,0}

i-j| 180° |8|7|6|5|4:3(2|1|10| 9] {0,5,0,0,0,0,0,0,0,0}

Table 3.1: Symmetric rotation group Ry of a prism L

Note that the representation of a symmetric rotation group depends on the features on
the object; therefore, is not unique. Here a permutation of the indices on the connecting
ports is chosen to represent a rotation. The same symmetric rotation group can be
expressed by different permutation groups by adding more features to the symmetric
object. Only the number of elements in these groups remains identical. If an object

has no symmetry, its symmetric rotation group contains only one element—the identity

rotation.

For module assembly problem, the locations of connecting ports are directly related
to the kinematics of the robot; hence, they are more important than the shape of the
link. The assumption on symmetry of link shapes can be relaxed. However, locations

of the connecting ports must remain symmetrical.

3.3. Pélya’s Counting Theorem

First let us consider a cube coloring problem. Suppose the six faces of a cube are

to be painted with two different colors, say black and white. Each face is allowed to

Chapter 3: Mathematics for Modular Robotics 25

Rotations Permutations on Ig

Axis |Angle [1]2]3[4[5]6 Type
identity 112|345/ 6] {6,0,0,0,0,0}
k 90° {213|4)1|5]|6]{200,1,0,0}
k 180° |3 41125 6]|{2200,0,0}
k 270° (4123 |5]| 6] {2,0,0,1,0,0}
i 90° |1(5(3/6|4]| 2] {2,0,0,1,0,0}
i 180° |1(4,3|2|6] 5]{22,0,0,0,0}
i 270° 116|352 4] {2,0,0,1,0,0}
] 90° |5(2|6|4]3]|1]|{200,1,0,0}
j 180° |3 |2|1|4|6]| 5]{22,0,0,0,0}
j 270° |6 (2|5|4]1| 3} {20,0,1,0,0}
i+] 180° |2|1|4|3|6]| 5]{0,3,0,0,0,0}
i—j 180° {413|2|1|6| 5] {0,83,0,0,0,0}
j+k 180° |3|5|16|2} 4] {0,3,0,0,0,0}
i—-k 180° (3161154 2/ {0,3,0,0,0,0}
i+k 180° | 5416|211} 3]{0,3,0,0,0,0}
i—-k 180° |6 141523} 1}4{0,3,0,0,0,0}
i+j+k| 120° |2|51416|1] 3]4{0,0,2,0,0,0}
i+j+k| 240° |5(1(6|3{2| 4] {0,0,2,0,0,0}
i+j-k| 120° |6|1|5|3|4]| 2]{0,0,2,0,0,0}
i+j—k| 240° |2]64|5(3]| 1] {0,0,2,0,0,0}
j+k—-i| 120° | 635 |12 4] {0,0,2,0,0,0}
jt+k—i}| 240° 1415/216(3]1]{0,0,2,0,0,0}
j—k-—-i} 120° {4]6]2|5|1] 3|{0,0,2,0,0,0}
j—k—i) 240° |5|3|6|1][4}| 2}{0,0,2,0,0,0}

Table 3.2: Symmetric rotation group Rp of a cube B

be painted either black or white, and the six faces can be all black or all white. We
would like to find a method to count all possible ways of painting this cube. A brute
force approach to do that is to mark the six faces and find different color combinations
among them. The result is 2° = 64 ways of painting. Since the cube is a symmetric
object, a lot of these patterns look identical after a symmetric rotation. The actual

number of distinct patterns will be less than 64.

For this particular problem, the number of distinct patterns can still be found by hand.
When the number of colors increases or the object becomes a polyhedron, the number

of distinct painting patterns increases exponentially. Thus, Pélya’s counting theorem

Chapter 3: Mathematics for Modular Robotics 26

provides us a closed form solution to find these distinct patterns in an efficient way.

Before the introduction of this theorem, one more definition is introduced.

A permutation, 7, on index set, Z, splits the index set uniquely into disjoint subsets
called cycles, which contain elements of Z cyclically permuted by 7. A cycle is of
length m if 7™(s) = s € 7 and s,7(s), - , 7™ 1(s) are all contained in this cycle. Let
n = |Z|, the total number of elements. We say = is of type {b1, bz, ,b,} if it splits Z
into by cycles of length 1, b, cycles of length 2, and so on. Note that b; = 0 for i > n
and by +2by+- - - +nb, = n. For example, consider a permutation 7; on PORT(L) which
corresponds to the rotation of +90° about z(k) axis in Table 3.1. It splits PORT(L) into
4 cycles: {1,3,5,7}, {2,4,6,8}, {9}, and {10}, and one can verify that {1,3,5,7} =
{1,m1(1),72(1),73(1)}, etc. Therefore, m; is of type {2,0,0,2,0,0,0,0,0,0}.

Definition 3.11: Cycle Index [4,59,100]

Let S be a permutation group on Z. The cycle indezx of S is defined to be a polynomial
in n dummy variables z1,--- ,z, as follows. For each 7 € S of type {b;,--- ,b,} forms

by
2

a product z%z z’» termed the cycle structure of 7. The cycle index, Ps, is the

sum of these terms divided by the number of elements in S, i.e.,

PS(a"lv"' 'n lsl Z‘Tl 272 t (39)

TES

For example, the cycle index of the permutation groups on PORT(L) and PORT(B) are

1

P, (21,2, ,210) = g(mio + 2225 + 2xiz2 + 423) (3.10)
1

Psy(z1, 22, ,26) = 24(:1:1 + 3323 + 62214 + 623 + 822). (3.11)

Let T = {1,--- ,n} and X = {ay, -+ ,a,} be two sets, and let S be a permutation
group of Z. Suppose f is an injection mapping from Z to X called a pattern. The set of
patterns is denoted by XZ. From Definition 3.4, S induces an action on the pattern set
X7, and thus defines an equivalence relation on it, since for=ge X% and foe=f,
where 7, e € S and o is the composition operator. Let [f] denote the equivalence class

containing the pattern f. Equivalent patterns are in the same equivalence class; distinct

Chapter 3: Mathematics for Modular Robotics 27

patterns belong to different equivalence classes. The inventory of the equivalence class

of the patterns (or pattern inventory) can be found by Pélya’s theorem as follows.

Theorem 3.12: Pdlya’s Counting Theorem [4,59]

Let Ps be the cycle index of S. Assign a dummy variable y; to every element in X,
e.g., y1 to aj, Ya to as, etc. The inventory of equivalence classes, Ip [59], in X% can be

found by substituting zj in Ps with ¥ y¥ i.e.,

Ip=PsX v, > %, 2 ub), (3.12)

where n = |Z|. The coefficient of term yfy$... in (3.12) indicates the number of

distinct patterns (or equivalence classes) with d; copies of a;’s, ds copies of ay’s, etc.

Example 3.13: Now let’s solve the cube painting problem using Pélya’s theorem. Let
Z = {1,--- ,6} represent the six cube faces and X = {B,W}, the types of colors. A
painted pattern is a function f : Z — X. Two example patterns are

1 2 3 45 6 1 23 45 6
f=() g=() (3.13)

B W B B B B B B B B W B
Face 2 of Pattern f and Face 5 of Pattern g are painted white; other faces are all painted

black. f and g are similar patterns because a symmetric rotation can be employed on
f to match g. As mentioned earlier, a symmetric rotation on the cube can be expressed
as a permutation on the number of faces, 7 : Z — Z, such that the composition, f o,
becomes another pattern. We can therefore use an equivalence relation induced by the
symmetric rotation group of the cube Rp (or the corresponding permutation group
Sg) to classify these patterns. Two color patterns f; and f, are said to be equivalent
(or look alike) if any only if f; o ™ = fo, where 7 € Sp. Similar patterns are in the
same equivalence class; distinct patterns are in different equivalence classes. In other
words, finding the number of distinct color patterns on a cube is the same as finding
the number of equivalence classes in the pattern set X7 (or all orbits of X under the
action of Rp). Let [f1] be the equivalence class containing the color pattern f;, then
XT/Rp represents the set of equivalence classes under the action of Ry, i.e., the set

of distinct color patterns.

Chapter 3: Mathematics for Modular Robotics 28
Now assign y; to B and y, to W; the inventory pattern is found by substituting 3" y;,
Y42, T2, and ¥yt into (3.11):

Ip=Ps, (3w Y92, > 43,3 vh)

=y e 20 Y 2 s +2Y1 Y5 + Y1 vs + U (3.14)

The coefficient of 3 y, is 1, which means there is one way to paint one face black and
five others white. There are two distinct ways to paint three faces white and three faces
black as indicated by the coefficient of 32 y3. The total number of distinct patterns

using only black and white colors is the summation of all coefficients in Ip, which is

10, far less than 64 .

3.4. Graphs

This section reviews some graph terminologies used in the sequel. For a more complete

exposition of graph theory and graph algorithms, please refer to [26,44,73,89).

Basic Graph Definitions

A graph G = (V, E) consists of a vertex set, V, and an edge set, E, such that every edge
in F is associated with a pair of vertices. A labeled graph is a graph whose vertices are
labeled vy, v2, etc., and whose edges are labeled ey, e, etc., such that V = {v;, - , v}
and E = {e1, -+ ,e,}. In a labeled graph, we usually do not differentiate among the
types of vertices (edges). If vertices (edges) are assumed to be different, a more complex
graph structure can be defined. Let V' (E) be the set of types of vertices (edges) on
G,and f, : V= Voand f.: E = E be injection mappings. The mapping f, and
fe are called verter and edge assignments respectively. The pair (f,, f) is called an

assignment of G.

Definition 3.14: A specialized graph G is a labeled graph G with an assignment,
(fo, fe), on its vertices and edges. It can be written as G = (G,V, E, fos fe)-

The graph coloring problem, i.e., the minimum number of colors required to paint

vertices of a graph, is a well-studied subject in graph theory. The colored graph can

Chapter 3: Mathematics for Modular Robotics 29

be considered as a specialized graph in which the set of vertex type V contains colors
on the vertices and the set of edge type, E, contains only one element because the
edges are not required to be painted and are treated as identical. A specialized graph

example is shown in Fig. 3.2(B), where V = {R,G, W} and E = {a,b,c}.

151 &) vy (R) vy (G)

(A)

Figure 3.2: A labeled graph and a specialized graph

Incidence Matrices

The topology of a graph can be shown pictorially or in matrix forms. Pictorial rep-
resentation is good for visualization only; matrix representations are convenient and
useful for computer processing. A variety of graph matrix representations have been
developed for labeled graphs for different purposes, such as the adjacency matrix or
cycle matrix [22,37]. In order to fully describe the incidence relationship among all

vertices and edges, a vertez-edge incidence matriz representation is chosen.

The incidence matrix, M(G), of a graph G with m vertices and n edges is an m x n
matrix whose entries contains 0’s and 1’s only. Entry m;; is equal to 1 if edge e; is
incident on vertex v;; equal to 0, otherwise. For example, the labeled graph of Fig.

3.2(A) can be written as

Chapter 3: Mathematics for Modular Robotics 30

€1 €2 €3 €4 €5 ¢€g €7
vi/1 1 0 0 0 0 0
wl1 0 1 0 0 0 o0
vs]0 1 1 1 0 0 0
MG =4ul0 0 0 1 1 1 0 (3.15)
|0 0 0 0 1 0 1
wl0 0 0 0 0 1 1

A specialized graph can be described in an incidence-matrix-like structure as well. An
additional row (column) is required for the assignment of types of vertices (edges).

Let G be a specialized graph with m vertices and n edges. The following matrix

representation is defined for G.

Definition 3.15: The extended incidence matriz (eIM) of the specialized graph G

denoted by M(G) is an (m + 1) X (n + 1) matrix such that

1. my; = 1, if e; is incident on v;, and m;; = 0, otherwise, ¢ =1,--- ;m,j=1,--- ,n.
2. My i1 = folv) € \7, which is v;’s vertex assignment, i =1,--- ,m.
3. Mmy1; = fe(e;) € E, which is e,’s edge assignment, j = 1,--- ,n.

4, Mm+1ip+1 = 0.

The upper-left m x n submatrix of M(G) is identical to the incidence matrix of its
underlying labeled graph G because they have identical graph topology. The vertex

and edge assignments are kept in the last column and the last row of M(G) respectively.

The eIM of the specialized graph in Fig. 3.2(B) is

€1 €2 €3 e4 e3
v1 /1 0 O 0 0 R
vt 0 1 0 0 0 G
v3| 1 1 1 0 0 R
M(@G=wv|0 0 1 1 0 W (3.16)
vs] 0 0 0 1 1 W
vsi{ 0 0 0 0 1 G
a a b b ¢ 0

Chapter 3: Mathematics for Modular Robotics 31

Graph Isomorphisms

Definition 3.16: Two labeled graphs G; = (W4, E1) and G2 = (Va, E,) are isomorphic
iff there exists two bijective mapping 7,,, : V1 = V2 and 7., : E; = E,. That is, there
exists a 1-to-1 correspondence between their vertex and edge sets that conserves the

incidence relations. We call 12 = (74,,,%e;,) an isomorphism from G; to Gs.

Note that y51 = vi5. If Vi = Vz and E; = E,, Yogs (Yer») Can be thought as permutations

on V; (E,), or equivalently, row (column) permutations on M(Gy).

Theorem 3.17: [22] Two graphs are isomorphic iff their incidence matrices differ

only by permutations of rows and columns.

Let M,,,(G1) denote the incidence matrix of G; after the permutation vi2 = (Vays, Vers)-
By the above theorem, we have M,,,(G1) = M(G,). Fig. 3.3 shows three isomorphic
graphs. The isomorphism from (a) to (b) is ys = ((2,1,4,3),(¢, b, a)); the one from
(a) to (c) is Yae = ((1, 2,4, 3), (a, ¢, b)).

(b) (©

Figure 3.3: Isomorphism and automorphism of graphs

Definition 3.18: Let GG; = (Gl,vl,El,fvl,fel) and G = (Gg,V'g,Ez,f,,z,fez) be two
specialized graphs. G; and G, are isomorphic iff the following conditions are satisfied:
1. G, is isomorphic to Gy.
2. Vi =V, and E; = B,
3. Let y12 = (Vosz) Ver,) be the isomorphism from G; to Gs, then f,, o Your = fo, and
feo 0757 = fe

Chapter 3: Mathematics for Modular Robotics 32

The third condition requires that the vertex (edge) assignments differ only by a per-
mutation for isomorphic specialized graphs. Similar to the labeled graph case, the
isomorphism ;2 can still be thought of as column and row permutations on its eIM
M(G4). The row with vertex assignment and the column of edge assignment also follow
the permutation actions. Let M.m(él) denote the extended incidence matrix of G4

after the permutation 7;3, then M, ,(Gy) = M(G,).

Graph Automorphisms

If a labeled graph, G, exhibits geometric symmetry, there exists isomorphisms of G
to itself, i.e., there exists v such that M,(G) = M(G). We call such isomorphism
an automorphism. For example, 7, is an automorphism of the graph in Fig. 3.3(a).
M,..(G,) = M(G,). One can think of v,. as a 180° rotation about the edge a of G,
which transforms G, into G. and M(G,) = M(G.).

These automorphisms form a group called the automorphism group of G, denoted by
H(G). The automorphism group of the graph in Fig. 3.3(a) contains six elements

which can be written in permutation group form:
((1,2,3,4),(a,b,c)) ((1,3,4,2),(b,c,a)) ((1,4,2,3),(c,a,b))
((1,2,4,3),(a,c,b)) ((1,4,3,2),(c,b,a)) ((1,3,2,4),(b,a,c))

where ((1,2,3,4),(a,b,c)) is the identity element. Note that the automorphism group

of an asymmetric graph contains the identity element only.

Similarly, an automorphism, 7, of a specialized graph G, is an isomorphism of G to
itself which will render M,(G) = M(G). G also has an automorphism group H(G) if it
exhibits symmetry. Because G has the same underlying graph topology with its labeled
graph G, this group is a subgroup of the automorphism group of G, i.e., H(G) C H(G).

3.5. Kinematic Graphs

In mechanism design, kinematic chains of links and joints are often represented by

graphs. The topology of an underlying graph strongly influences the features and

Chapter 3: Mathematics for Modular Robotics 33

functions of a mechanism. A logical way to convert a kinematic chain to a graph is to
replace the joints by edges and links by vertices, since a joint can be connected to two
links only and a link may attach many joints. Such graph representations have been
called kinematic graphs by Freudenstein and Dobrjansky [24], and have been used in
mechanism designs for many years. With many well-developed graph tools on hand,
e.g., graph enumeration algorithms, graph isomorphism, etc., kinematic graphs can be
applied to linkage type synthesis [24,101], structural classification and enumeration
of mechanisms [1,31], automatic mechanism design [105], and more graph theoretical
approaches to kinematic chains [38]. Earl and Rooney applied kinematic graph methods
to robot manipulator design. In [25], they discussed the mobility and topology of a
robot manipulator from the view point of graph theory. A simplified diagram of 6-bar
Watt’s linkage and its kinematic graph is shown in Fig. 3.4. Note that the ground is
treated as a fixed link here.

Figure 3.4: The Watt’s linkage and its kinematic graph

The regional structure of a modular robot is essentially a kinematic chain of link and

joint modules. We therefore apply the same concept of kinematic graphs to represent

it. This graph technique has the following advantages:

1. It provides a framework for the study of underlying geometric and kinematic

properties of a robot, for example, the functional difference between a star-shaped

Chapter 3: Mathematics for Modular Robotics 34

graph topology (a multifinger robot hand) and a serial topology (an industrial
manipulator). The next chapter will show that the entire modular robot assembly
can be fully described by adding more structure and features to the incidence

matrix of a graph.

2. Graph theory and numerous graph algorithms can be directly applied to the enu-
meration and classification of modular robot assembly configuration, and kine-

matics of modular robots.

In modular robot applications, we are concerned with two types of robot: homogeneous
modular robots consist of links and joints of a single type; hybrid modular robots
consist of different types of joints and links. A labeled graph is sufficient to represent a
homogeneous robot, while a specialized graph is required to represent a hybrid robot.
In the specialized graph, the set of vertex types, 17, contains the types of link modules
whereas the set of edge types, E, contains the types of joint modules. A homogeneous
robot example is shown in Fig. 3.5. A hybrid robot is shown in Fig. 3.6. Their

incidence matrices are

Figure 3.5: A homogeneous modular robot and its graph

Chapter 3: Mathematics for Modular Robotics 35

v, (B
v, (8)
Va(B)

€(C)

Vi(l) () Vs (L)

.

e;(R)

Vs(B)

Figure 3.6: A hybrid modular robot and its graph

e e e €1 €2 €3
1 2 3
VU1 1 1 1 L
v (1) i (1) wlo0o 1 0 B
MG)= " MG)=v|1 0 0 LI, (3.17)
vs| 100 w0 0 1 B
ve\0 0 1 C C R 0

3.6. Discussion

In this chapter, several basic mathematical concepts for modular robot assembly prob-
lems has been reviewed. The rotations of a symmetric link module has been related to
permutations on its set of connecting ports. A method to count distinct patterns on a
symmetric object was introduced as well. These methods pave the way for enumerating
joint assembly patterns on a single link in the next chapter. The single link assembly is
a building block for the large regional structure of a modular robot. Kinematic graphs
are then applied to describe this large structure. In the next chapter we will show, by
adding more features to the graph incidence matrix representation, the entire robot

assembly can be fully described.

36

Chapter 4

Enumeration of Assembly Configurations

In this chapter, a methodology to enumerate non-isomorphic modular robot assembly
configurations from a given set of modules is proposed. A formal definition of modular
robot assembly configurations in terms of assembly incidence matrices (AIM) is intro-

duced. This matrix representation is based on the underlying kinematic graph of the

robot.

We start the enumeration procedure by finding distinct joint assembly patterns on a
single link. Due to geometric symmetry, many joint patterns are alike. An equivalence
relation based on the symmetric rotation group of the link is introduced to classify
distinct patterns. Pdlya’s theorem provides a closed form formula on the number of
distinct patterns. A two-stage equivalence relation built on graph isomorphisms and
symmetric rotation groups of link modules is proposed to classify distinct AIMs. Dis-
tinct AIMs are in different equivalence classes with different kinematic performances.
An algorithm is proposed to find all distinct assembly configurations of an n-link tree-

structured modular robot. This algorithm has been implemented in Mathematica, and

examples are given.

Section 4.1 discusses the enumeration of joint assembly patterns. An algorithm is given
for listing distinct patterns. The effect of joint limits are also discussed. Section 4.2

defines the AIM and propose a two-stage equivalence relation on AIMs for classification.

Chapter 4: Enumeration of Assembly Configurations 37
Section 4.3 introduces the total algorithm for the enumeration of non-isomorphic n-
link tree robot assembly configurations. Examples and comparison between brute
force enumeration and our enumeration algorithm are given. Complexity issues of this
algorithm are also discussed. Section 4.4 addresses issues regarding closed-loop module

constructions.

4.1. Enumerating Joint Assemblies on Links

Since a link module possesses multiple connecting ports, joints can be attached to it
in many different ways. The way joints are attached to the link is called an assembly
pattern. The symmetry in link geometry and connecting port locations causes some
assembly patterns to look alike after a symmetric rotation. Although the ports are
marked with different numbers, the symmetry allows a link to be reoriented in such a

way that these similar patterns function identically in a large robot structure.

For instance, Fig. 4.1 shows three possible ways to connect an R-joint and an H-joint
to a prism link. Although the R-joint of (A) is in Port 1, that of (B) is in Port 3,
and the H-joint of (A) is in Port 2; that of (B) is in Port 4, patterns (A) and (B)
are actually functioning identically in a large robot assembly. Rotating (A) about its
longitudinal axis by 90° matches the pattern of (B). However, (A) and (C) are entirely

different because it is impossible to rotate (A) to match the pattern in (C).

(A) (B) (C)

= =

Figure 4.1: Three assembly patterns on a prism

In constructing and enumerating modular robot assemblies, we are only interested in
the physically distinct patterns of link assemblies, because they will result in different

robot kinematics. The link assembly problem resembles the cube coloring problem of

Chapter 4: Enumeration of Assembly Configurations 38
Section 3.3. In this case, the colors to be painted on the cube are replaced by joints
attached to the connecting ports on the link. Counting distinct assembly patterns on
a link can then be done by Pélya’s theorem. With the number of patterns in hand,

listing these patterns can be done by a computer algorithm stated in Section 4.1.2.

4.1.1. Assembly Patterns

Let PORT be the set of port numbers on a link and ATT be the set of connecting status on
a port. ATT contains types of joints that are available in the modular robot system and a

zero indicating an empty port. For our modular robotic system, ATT = {0, R, H, C, P}.

Definition 4.1: The assembly pattern on a link module is an injection mapping

f : PORT — ATT. (4.1)

The assembly pattern, f, fully describes the connecting status of the connecting ports
on the link module. If a port is connected to a joint, f will assign the type of that
joint to it. If the port is an empty one, a zero will be assigned. Table 4.1 shows the

three assembly patterns in Fig. 4.1.

Patterns Ports
1]2[3]4[5]6]7][8]9]10
fo |R|HJO[O]O|O|0]O[O] O
fo OJO|R[H|O|OJOJO]O] O
fe 0O/R| O

Table 4.1: Assembly patterns in Fig. 4.1

010j010|0|H]| O

Let X = ATT, T = PORT and » = |PORT|, m = |ATT|. Since a port can be assigned
with any element in ATT, for a link module with connecting ports numbered by PORT,
there are m™ possible assembly patterns. The set of these assembly patterns is denoted
by F = XZ. The port index set, PORT, is analogous to the set of face, and the set of
connecting status, ATT, to the set of colors respectively in the cube coloring problem.

A lot of patterns in F are physically identical due to symmetry in the link geometry.

Chapter 4: Enumeration of Assembly Configurations 39

The following equivalence relation is defined in order to classify distinct joint assembly

patterns.

Definition 4.2: Two assembly patterns f;, f; : PORT — ATT, are equivalent iff there

exists a symmetric rotation, 7 € § & R, on the link module such that
fi=fjom (4.2)

Let 7 be a rotation of the prism about its z-axis by 90°. For assembly patterns f, and

#» in Table 4.1, we have
fo(l) = foom(l) = fo(3) = R
fu(2)=foom(2)=f1(4) = H
falk) = from(k)=0, k=3,4,-,10

Hence, f, = fyon, f, and f, are equivalent.

This equivalence relation divides the set of assembly patterns F into disjoint subsets,
the equivalence classes. Let [f] denote the equivalence class containing f; then [f]
represents a distinct joint assembly pattern. The set, /S (or F/R), represents the

set of distinct assembly patterns (or the set of equivalence classes under the symmetric

rotation group R).

F contains joint assembly patterns of all types given in ATT regardless of the number
of joints in each type. In most cases, one just wants to know the number of distinct
assembly patterns, assuming the number of joints in each type is specified. Suppose
there are k types of joints in ATT and there are d; Type-: joints. Let d, = le d;
where d, < n and (n — d,) represents the number of empty ports on the link. We use

a (k + 1)-vector: (n — d,,d;,ds, -+ ,dg) to represent the number of joints in each type

and the number of empty ports on a link module.

The number of distinct assembly patterns with a given number of joints in each type

(n —d,,dy,da,- - ,di) can be found by the following procedure:

1. Based on the features on the link, find its symmetric rotation group, R, and the

corresponding permutation group, S.

Chapter 4: Enumeration of Assembly Configurations 40

2. Obtain the cycle index formula for S from Definition 3.11.

3. Assign dummy variables y; to every element in ATT, i.e., Yo to 0, y; to Type-i joint,

etc.

4. Apply Pélya’s theorem to find the pattern inventory, Ip. The coefficient of the

term y((,n_d") yfl y§2 e y,‘f’c is the number of distinct patterns.

From combinatorics, we know there are m possible assembly patterns for
(n — ds,dy,ds, -+, di) joints attached to a link. This is known as the permutations of
a multiset problem in [89]. Using the backirack algorithm [89], one can exhaustively
construct those assembly patterns without considering link symmetry. However, this

number is far greater than the number of distinct ones.

Example 4.3: For the example in Fig. 4.1, the connecting status set ATT = {0, R, H},
because only R and H-joints are considered. An assembly pattern can be written as

f 1 PORT(L) — ATT. Now assign yo to 0, y; to R-joints, and y, to H-joints. According

to Pélya’s theorem, the pattern inventory is

Ip = Ps, (%1, 22, - ,,) = Ps, (21, %2, T4)
= Ps; (Yo +y1+ 92, % +9; + 95, % + 41 +95)
= 40" + 290°y1 + 9y v’ + - + ™" + 290°ye
+ 1290° Y192 + 4690 y1°y2 + 10690°y: Y2 + 160ye°yitys + - -- (4.3)

The number of distinct assembly patterns with 1 R-joint and 1 H-joint is 12, which
is the coefficient of the y§ y; y2 term in (4.3). These 12 distinct patterns are shown in
Fig. 4.2. A brute force enumeration of the pbssible assembly patterns which does not
account for these symmetry effects results in 10 - 9 = 90 assembly patterns. Similarly,
the coefficient of term y§yS y, indicates that there are 106 unique ways to attach
3 R-joints and 1 H-joint to a prism link. Brute force enumeration would result in

———-6!13?!1! = 840 different, but not unique, assembly patterns. g

Chapter 4: Enumeration of Assembly Configurations 41

D

oF

S~

Figure 4.2: Distinct patterns for a prism with 1 R- and 1 H-joint

4.1.2. Algorithms for Listing Distinct Assembly Patterns

While the number of distinct assembly pattern can be easily obtained from Pélya’s
counting theorem, a listing algorithm is necessary for real applications. Distinct as-
sembly patterns represent different equivalence classes. Since an equivalence class
usually contains more than one element, listing the distinct patterns is equivalent
to finding one element in each equivalence class as a representative. There has been
much research on finding the minimal representative system under group actions [99,
100]. Our algorithm OrbitEnumerate stated below in pseudo code is a simple one
which will list distinct joint assembly patterns under the action of a symmetry rota-
tion group. OrbitEnumerate accepts two arguments: a set of assembly patterns, F,
and a symmetry rotation group, R, written in permutation group form. The output
of OrbitEnumerate is a list of distinct assembly patterns. Each pattern represents an
equivalence class in F. Let F = {fi,---, firy} and R = {my,-- , 7}, where |F| is

the total number of assembly patterns. The algorithm works as follows.
0 Procedure OrbitEnumerate(R, F)

1 Queue = {1,2,--- ,|F|};

Chapter 4: Enumeration of Assembly Configurations 42

2 NewOrbit = 0;

3 While Length(Queue) > 1 do

4

5 v = First(Queue);

6 Queue = Rest(Queue);

7 VOrbit = f;

8 Forall m; R do

9 { Append(f, o m;, VOrbit) };
10 tmp = Queue;

11 For all i€ tmp do

12 {If f; € VOrbit then Queue = Delete(:,Quene) };
13 Append(f,, NewOrbit);

14 ;

15 If Queue = {k} then Append(k,NewOrbit);
16 Return(NewOrbit);

Queue is the index set of assembly patterns. NewOrbit stores distinct assembly pat-
terns. Line 1 and 2 initialize Queue and NewOrbit. Line 5 takes out the first element,
v, in Queue. f, is the assembly pattern of v. Line 6 stores the remaining elements
as Queue. Line 8-9 generate an equivalence class containing f,, which consists of all
patterns equivalent to f, in F under the action of R. These equivalent patterns are
collected as a set VOrbit. Line 11-12 test the remaining patterns in F to determine
if they are in VOrbit. If they are, then delete the indices of those patterns in Queue
and update Queue. If not, then skip. After this step, the updated Queue contains no

indices of patterns that are equivalent to f,. Line 13 stores f, in NewOrbit to represent

its equivalence class.

The program then returns to Line 3 in order to extract the first element in the updated
Queue and subsequently find the next distinct pattern. The loop from Line 3 to Line 14
ends when Queue has only one element left or becomes empty after removing patterns
equivalent to f,. If there is one element k left in Queue, then f; must represent a

distinct pattern, and it is stored in NewOrbit.

From experiment, we observed that OrbitEnumerate lists equivalence classes of F
under R in O(NZ) time for a fixed R, where N,, is the number of equivalence classes.
Ngq can be determined from the coefficients of the pattern inventory Ip from Theorem

3.12 when the number of joints in each type is specified.

Chapter 4: Enumeration of Assembly Configurations 43
Note that in a large robot assembly problem, the number of joints in each type on
every link will be given, so the enumeration of distinct assembly patterns will be done
in advance. Those distinct joint assembly patterns can be stored in a “look-up” table

for the enumeration of modular robot assemblies.

4.1.3. A Note on Incorporating R-Joints with Joint Limit

In practice, a revolute joint often cannot rotate freely throughout its 360° range. The
angles that cannot be accessed form a forbidden sector (Fig. 4.3). When such a joint is
incorporated into a modular robot, the locations of the forbidden sector with respect

to the link module introduce more assembly patterns as shown in Fig. 4.4.

+0
Forbidden 3
Sector P @

-0

-

Figure 4.3: Forbidden sector of an R-joint with joint limit

6 6 I
1 %} 3 s{:} 7 1 {% 3 5{:} 7
4 8 4 8
PORT 1 PORT 2 PORT 1 PORT 2

Figure 4.4: Forbidden sectors in different orientations

As mentioned in Section 3.2, by adding more features to a symmetric object, the
symmetric rotation group of the object can be expressed by different permutation
groups. If an R-joint with limited motion is allowed to be connected to a port in several
different symmetric crientations, one can use the permutations of these orientations to

represent symmetric rotations on the link module.

Chapter 4: Enumeration of Assembly Configurations 44

For instance, four symmetric orientations of the forbidden sector are defined on each of
the ten ports of a prism as shown in Fig. 4.4. Totally there are 40 different orientations.
The orientations on Port n are marked with 4n — 3, 4n — 2, 4n — 1, and 4n respectively.
A joint can be connected to the link in any one of these 40 orientations. A symmetric

rotation can be represented by a permutation on the index set Z = {1,2,--- ,40}.

Denote the set of orientations of the forbidden sector by ORIENT and the R-joint with
limited motion by the R;-joint. When only R;-joints are considered, the assembly
pattern can be expressed as an injection mapping, f : ORIENT — {0, R;}. A symmetric
rotation can be expressed as a permutation, 7 : ORIENT — ORIENT. The definition of
an equivalence relation on assembly patterns under the action of this new permutation

group is similar to Definition 4.2. For example, the assembly patterns in Fig. 4.4 are

shown in Table 4.2.

Patterns Orientations
1/2] 3]4]5]--- |40
fi R |0 0]0|0O}---] O
fo 0/0| R |O({O}|---] O

Table 4.2: Assembly patterns for R;-joints in Fig. 4.4

However, in the non-homogeneous cases where joints with and without joint limits are
considered, for example, R-joints and R;-joints, the assembly pattern must be defined
in a different fashion. In the case of an R-joint, all orientations on the connected port
should be marked occupied since an R-joint can freely access these orientations and
it is impossible to put another R;-joint in any of these orientations. These occupied
orientations represent only one R-joint whereas one orientation is needed for an R;-joint.
The same situation applies when other joints not using this feature are employed, such
as C and H-joints. Therefore, it is possible that a mapping from ORIENT to a combined

joint type set is not a physically realizable assembly pattern.

Follow the above example with four different orientations on a port. If we put an

Chapter 4: Enumeration of Assembly Configurations 45

4 8
PORT 1 PORT 2

Figure 4.5: Assembly pattern with an R-joint and an R;-joint

R-joint in Port 2 and an R;-joint in Port 1 as shown in Fig. 4.5, the assembly pattern
will be

1 2 3 4 5 6 7 8 9 10 --- 40
f: (4.4)

kR 000 R RRRGOO - 0
Note that although Orientations 5, 6, 7, and 8 are all associated with R, they actually

represent one R-joint on Port 2. The following mapping from ORIENT to {0, R;, R} is
not an assembly pattern because Orientation 6 is empty and no physically realizable

joint patterns can match it.

(4.5)

; 1 2 3 4 5 6 7 8 9 10 --- 40
"\R, 000 RORURUDO 0 .0

Let ATT be the set of joint types including R;-joint. Denote X = ATT and Z = ORIENT.
From the above discussion, we conclude that only a subset of X7 is the set of assembly
patterns with the extended feature ORIENT. Thus, Pélya’s theorem cannot be applied
in this case to find the number of distinct assembly patterns. However, the algorithm

OrbitEnumerate can still be applied for listing the distinct patterns.

4.2. Assembly Incidence Matrices

The topology of a modular robot can be described by a labeled graph or a specialized
graph which, in turn, can be expressed by an incidence matrix (IM) or an extended
incidence matrix (eIM). The entire robot assembly problem concerns not only the
topology but also the joint assembly patterns on every link. Hence, by substituting
the connected port numbers into the non-zero entries of the incidence matrix, the joint

patterns on all link modules can be fully described. The resulting matrix is similar to an

Chapter 4: Enumeration of Assembly Configurations 46
incidence matrix in structure but contains joint assembly patterns as well. This matrix

fully describes a robot assembly configuration, and is termed an assembly incidence

matrix.

Definition 4.4: Let G be the graph of a homogeneous modular robot. The assembly
configuration of this robot is defined to be an assembly incidence matrix, A(G), ob-
tained by replacing every entry of 1 in M(G) with a non-zero integer, k € PORT. The
zero entries remain unchanged. a;; = k indicates that joint e; is attached to port &k of

link v;; a;; = 0, otherwise.

Similar to homogeneous robot case, the assembly configuration of a hybrid robot can
be defined as an eIM-like matrix with information on connected ports. We call this

matrix an extended assembly incidence matriz (eAIM).

Definition 4.5: Let G be the specialized graph of a hybrid robot. The assembly
configuration of this robot is defined to be an extended assembly incidence matrix,
A(G), obtained by replacing every entry of 1 in M (G) with a non-zero integer, k € PORT.
The zero entries remain unchanged. a;; = k indicates that joint e; is attached to port
k of link v;. Note that a;; must belong to the port index set on link v; because the

type of links in a hybrid robot may be different. a;; = 0, otherwise.

Example 4.6: The AIMs of the modular robots shown in Fig. 3.5 and 3.6 are

€1 €3 €3

€1 €2 € w10 5 1 L
V1 10 5 1
v 0 2 0 vl 0O 1 0 B

AG) =’ AG)=vs| 9 0 0 L, (4.6)

v3| 9 0 O
wlo o 4 w| 0 0 2 B
4 C C R 0

Note that row vectors in an AIM are closely related to the joint assembly patterns
defined in Section 4.1.1. The i** row vector shows connection information of all joints
on link v;. If joint e; is connected to this link, the j** entry tells which port it is

connected to. Therefore, the joint assembly pattern on link v; is implied.

Chapter 4: Enumeration of Assembly Configurations 47
Remark: When prismatic joints are incorporated in a modular robot system, the
relative orientation of two links connected by a P-joint is always stationary during the
translational motion. The number of connected port information in an AIM is not
sufficient to express this orientation. The concept of using extended features on a link
module for Rj-joints can be applied here. By marking a P-joint and allowing it to
be attached to the connecting port in several symmetrical orientations, we are able to
describe a finite number of the relative link orientations. For example, if a P-joint is
allowed to be attached to a port in four different orientations as shown in Fig. 4.4,
there will be four different connection methods for the two links shown in Fig. 4.6.

The extended feature can be stored in the AIM as part of the assembly configuration.

Figure 4.6: Relative orientations of two prisms with a P-joint

4.2.1. Equivalence of AIMs

The AIM is an ‘algebraic representation of a modular robot assembly configuration.
When the physical construction of a modular robot is considered, isomorphisms of
the underlying graph and link symmetries will make different AIMs having identical
kinematic properties, such as the size and shape of the workspace and joint singularities.
The graph isomorphism induces permutations on columns and rows of AIMs which
will alter the locations of non-zero entries. Link symmetry allows link modules to be
reoriented in such a way that the physical connection pattern of the joints remain
unchanged. We show here an example of three different AIMs which lead to physically

identical robot construction.

Chapter 4: Enumeration of Assembly Configurations 48

Figure 4.7: Three physically identical configurations

Example 4.7: The three robots shown in Fig. 4.7 are constructed from the three
different AIMs. Removing all the labels and numbers of the connected ports, they are
identical to the robot shown in Fig. 3.5.

®
ey

(3]
[V

(3]
w

€] ez €3 €1 €2 €3
v1 2 0 0 v1 10 5 1 v1 10 1 5
wl 5 10 1 wl0 2 0 wlo0o 4 0
AG= ;10 o o AGd= |10 0 o] AGD= |9 0o o
s \0 0 4 v \0 0 4 v \0 0 2

(4.7)

Denote the graph in Fig. 3.5 by G,. From Definition 3.16, G, G, G, and G, are
isomorphic graphs. We can see that A(G,) and A(G,) are different by the permutation
Yoo = ((v2,v1,v3,v4), (€2, €1,€3)). All entries of A(G.) and A(G,) are equal except entry
(3,1). This entry indicates the number of the connected port on Link wv;. Since this

link is a symmetric square prism, using either Port 9 or Port 10 represents a physically

identical pattern. g

Chapter 4: Enumeration of Assembly Configurations 49
We now define an equivalence relation on AIMs for the purpose of classification. Be-
cause an AIM describes both topology and joint assembly pattern information, the
equivalence relation will be established in two stages: robot topology equivalence and
pattern equivalence on corresponding link modules. Topology equivalence insures that
the graphs of robot assemblies are isomorphic. AIMs with non-isomorphic graphs are
definitely distinct. Pattern equivalence will be checked on every link module. AIMs
with topology equivalence will look identical only when all joint patterns are matched

on corresponding links.

We state the equivalence on AIMs of homogeneous modular robot in detail. The

equivalence on eAIMs of hybrid robots follows.

Homogeneous Robots

Let G; and G, be the graphs of two robots, and A(G;) and A(G,) their respective
AIMs.

1. Topology Equivalence

Definition 4.8: Two AIMs A(G;), ¢ = 1,2, are topologically equivalent, iff G; and G5

are isomorphic.

Graph isomorphism induces permutations on columns and rows of AIMs. These per-
mutations represent the relabeling process on links and joints which does not alter the

physical connections of links and joints. Therefore, the number of connected ports

remain unchanged during permutation action.

2. Pattern Equivalence

Suppose A(G1) and A(G3) are topologically equivalent and 7,5 is the isomorphism from
G1 to G,. After the permutations of columns and rows according to 732, the locations
of non-zero entries in both A,,(G;) and A(G:) are identical. Then we are able to
compare the assembly patterns on the links. Denote @; and @? the i** row vector of

A, (G1) and A(G>) respectively.

Chapter 4: Enumeration of Assembly Configurations 50

Definition 4.9: Two row vectors @} = (ak, - ,al), and @ = (a2, -+ ,d2), are
pattern equivalent, iff there is a symmetric rotation (written in a permutation of port
index set), 7w : PORT — PORT, on Link v; such that

1. for non-zero entry, aj; € PORT, 7(aj;) = aZ;

4] i3

1 _ .2
2. for zero entry, a;; = a; = 0.

If these two rows are equivalent, they represent physically identical joint assembly
patterns on link v;. In Example 4.7, rows 1,2, and 4 of A(G,) and A(G,) are the
same so they are equivalent. For A(G.), rotating prism v; about its x-axis by 180°
transforms the 3™ row, (10,0,0), into (9,0,0), which is identical to the 3" row of

A(G,), so (10,0,0) and (9,0,0) are pattern equivalent.
3. A Note on Graph Automorphisms

When a robot has topological symmetry, i.e., its kinematic graph has symmetry and
possesses automorphisms, the automorphism will induce a row and column permutation
which renders its AIM similar to itself. That means the locations of non-zero entries will
not be altered after an automorphism action. Hence, one must check all automorphisms

when comparing for the pattern equivalence on rows of topologically equivalent AIMs.

Let A(G;) and A(G3) be topologically equivalent AIMs and ;5 is the isomorphism
from G, to Ga. If there exists an 7 € H(G2) which makes all corresponding rows of

A,,,(G1) and A,(G2) equivalent in pattern, then A(G;) and A(G,) are equivalent.
Definition 4.10: (Equivalence of AIM)

Two AIMs A(G;) and A(Gs) are equivalent if and only if they are topologically equiva-
lent, i.e., G and G are isomorphic, and there exist an automorphism of G, n € H(G>),
such that all corresponding row vectors in A,,,(G1) and A,(G2) are equivalent in pat-

tern, where <35 is an isomorphism from G; to G,. We write it as

A(Gy) ~ A(G). (4.8)

Chapter 4: Enumeration of Assembly Configurations 51

Note that 7 may be the identity automorphism if the underlying graph G has no

symmetry.

In Example 4.7, the automorphism n = ((vy,v4,v3,v2), (€1, €3, €2)) of G4 makes AIMs

A,(Gq) = A(G,), so A(G,) and A(Gy) are equivalent.

Hybrid Robots

The equivalence of eAIMs of hybrid robots are established in a similar way. Let G; and

G, be the specialized kinematic graphs of two hybrid robots, and A(C~¥1) and A(ég) be
the eAIMs.

1. Topology Equivalence

Definition 4.11: Two eAIMs A(G,), i = 1,2, are topologically equivalent, iff Gy and

G, are isomorphic.
2. Pattern Equivalence

Let @} and @2 be the i* row vectors of the upper-left m x n submatrix of A,,(Gy)
and A(G,) respectively. The definition of pattern equivalence on @} and @2 is similar
to Definition 4.9 only that the symmetric rotation action is determined according to

the type of link v;.
- 3. A Note on Graph Automorphisms

A specialized graph may have automorphisms if its topology is symmetric. Likewise,
when checking for pattern equivalence on rows of topologically equivalent eAIMs, one

has to consider all automorphisms of G, and éz.
Definition 4.12: (Equivalence of eAIM)

Two eAIMs A(G;) and A(G») are equivalent iff they are topologically equivalent, and
there exists an automorphism of Go, RS ’H(G’g), such that all corresponding rows in

Ay, (G;) and A,(G>) are equivalent in pattern, where 712 is the isomorphism from G,

to éz.

Chapter 4: Enumeration of Assembly Configurations 52

Similar AIMs (or eAIMs) are in the same equivalence class; distinct ones are in different

~

equivalence classes. Let [A(G)] (or [A(G)]) denote the equivalence class containing the
assembly configuration A(G) (or A(G)), then [A(G)] (or [A(G)]) represents a distinct
robot assembly configuration. Equivalent AIMs look alike and have identical robot
kinematics, but the converse is not true. It will be shown in the next chapter that some
inequivalent AIMs may have identical kinematics when kinematic models of modular

robots are introduced.

4.2.2. Hashed Assembly Incidence Matrix

This section discusses an alternative expression of the assembly configurations of a
hybrid robot. The eAIM of a robot with m link and n joints requires an (m+1) X (n -+
1) matrix to store topology and module type assignments. Another way to express
this assembly configuration is to combine the assignments on links and joints and
the connected ports into non-zero integers, replace the entries with port number in
the eAIM by those integers, and remove the last row and column of the eAIM. The

result is a compact m x n IM-like matrix with integer data entries easy for computer

processing.

The coding scheme employs a hash function which can transform the keys, a;; (port
number on link v;), @; (n41) (type of link v;), and a(m+41),; (type of joint e;), into a positive
integer termed an assembly hash function. This matrix, using a hashing function to

represent a hybrid robot assembly configuration, is termed a hashed assembly incidence

matriz.

Prior to using a hashing function, we have to transform the keys—the types of links
and joints, into integers so that mathematical operations can perform. Let V (E’) be
the set of link (joint) types and N, (N.), the total number of elements in V (E). We
assign a unique integer from 0 to N, —1 (N, —1) to every element of V (E). Thereafter,
we call the types of modules by integers instead of alphabets. For example, Type-0
link, Type-2 joint, etc.

Chapter 4: Enumeration of Assembly Configurations o3
Definition 4.13: Let p({) be the number on the connected port of link v; where joint
ey is attached. [represents the type of link v;, and j, the type of joint e;. Note that
p(l) # 0and 0 < I < N, —1and 0 < j < N, — 1. An assembly hash function,

(1,4, p(1)), which maps the connection of link v; and joint e;, is defined as

h(l,5,p(1)) = (p(1) - Ne +j) - Ny +1 (4.9)

h(l,7,p(l)) # 0 because N;, N; # 0. The following proposition shows that & is uniquely
determined by module types, ! and j, and the connecting port p(l). This uniqueness
provides an alternative way to represent the eAIM without additional row and column

to represent the link and joint module assignments.
Proposition 4.14: The assembly hash function, h(l, 7, p(1)), is unique.
Proof: Suppose there are two connections: {l,, ja, Pa(ls)] and [l, jb, Ps(l)]-

Let h(lmja,,pa(la)) = h(lb,jb,Pb(lb))> where 0 S laylb S N'u —land0 _<.. ja.ajb S Ne - L

By definition, we have

(Palla) - Ne+ja) - No + Lo = (ps(ls) - Ne + 5b) - Ny + 1. (4.10)
After rearrangement, we obtain
. lh—1,
[lPala) = po(B)] - Ne + (o — o)) = = T (4.11)

Because 0 < |£"1;—:"| < [—NJAL,—:—I{ < 1 and the left hand side of (4.11) is an integer, the only

way to satisfy the equality condition is to let [y — [, = 0. Therefore, I, = ;.

Rearrange the left hand side of (4.11), and we have

pale) = ull) = 222 (4.12)

Similarly, 0 < I&ﬁlﬂ < 1 and p,(la) — ps(l) is an integer, so j, = j, and p.(l,) = pe(l3)-

COHVGISG].y, if la = lb, ja. = jbv and pa(la) = pb(lb)> then h(laajmpa(la)) = h(lb)jbapb(lb))'

Therefore, we prove the uniqueness of the assembly hash function k. g

Definition 4.15: An m x n hashed AIM A*(G) is derived from an (m + 1) X (n + 1)
eAIM A(G) using an assembly hashing function such that

Chapter 4: Enumeration of Assembly Configurations 54
1. If a;; =0, then a;-*]- = 0.

2. If a5 75 0, then a;fj = h(ai,n+1,am+1,j, aij), 1= 1, e, M andj = 1, e M.

Because of the uniqueness of h(l, 7, p(l)), one can reconstruct an eAIM from a given

hashed AIM. There is a 1-to-1 correspondence between eAIMs and hashed AIMs.

Example 4.16: Suppose we have module type sets: V = {L, B} and E= {R,C,P,H}.

Assign them with integers as follows.
L B R C P H
, and (4.13)
0 1 0o 1 2 3

Applying Definition 4.15 to A(G) in (4.6), we obtain a hashed AIM

ey €y €3

vy [42 22 4

~ 6 7 O
AG) = . (4.14)

Vs 38 0 0

Vg 0 0 9

4.3. Enumerating Robot Assembly Configurations

In this section, an algorithm to enumerate all of the distinct n-link tree-structured
modular robot configurations from a given set of modules is proposed. An n-link tree

robot has n — 1 joints and contains no closed-loop structures.

We consider only tree-like topologies, and not topologies with closed loops, for the
following reason. In general, a closed loop kinematic chain must have at least seven
internal degrees of freedom in order to have finite mobility [62]. A closed kinematic
chain with fewer than seven degrees of freedom will have finite mobility only if the
links have a special, or nongeneric, geometry. In fact, a kinematic chain with fewer
than seven DOF built from a given set of modules may not even be able to close
on itself. Thus, if we generate a kinematic graph with a closed loop as a subgraph,

there is no guarantee that the physical structure corresponding to the subgraph can

Chapter 4: Enumeration of Assembly Configurations 55
even be constructed, or that it will be mobile. The procedure outlined below could
be extended to systems with loops if an additional procedure which checks for loop
closure and mobility is added. If a generated graph has a sub-loop which is physically

constructible and mobile, then it is accepted, or else it is rejected.

The tree-like robots are divided into two classes: free flying and fized base. A free-flying
robot does not have an identified base link, while a fixed base robot does. The robot’s
base can be considered as a different link type. Fixed base robots are thus treated as
hybrid robots, with the base link location in the kinematic chain determined during
the hybrid robot specialization process. Homogeneous robots are necessarily free-flying

robots. Conversely, a free-flying robot may be either a homogeneous or hybrid robot.

4.3.1. The Enumeration Algorithm

Analogous to the enumeration of joint assembly patterns on a single link, the enu-
meration of distinct modular robot assemblies is equivalent to counting the number
of equivalence classes in the set of assembly configurations generated from a set of
link and joint modules. But this equivalence relation requires graph isomorphisms and
symmetric rotation groups on link modules so that it does not offer a single and closed
form formula for the number of configurations, as in the application of Pélya’s theorem

to joint assembly pattern enumeration.

Based on the equivalence relations of Definitions 4.10 and 4.12, the robot enumera-
tion procedure is divided in two parts in order to reduce the complexity of the entire

algorithm: robot topology enumeration and pattern enumeration on individual link

modules.

The procedure begins with a link set, LINK, of n elements and a joint set, JOINT, of n—1
elements. First, candidate robot topologies are enumerated. The algorithm will find
all non-isomorphic trees (graphs) with a given number of vertices. For homogeneous
robots, finding non-isomorphic labeled graphs will be enough, but for hybrid robots,

one more step is required—finding distinct link and joint assignments for the specialized

Chapter 4: Enumeration of Assembly Configurations 56

graphs. In this step, the automorphism groups of the underlying graphs are required.

After all non-isomorphic (specialized) graphs are found, pattern enumeration is per-
formed on each of these graphs. Distinct assembly patterns on every link can be found
first by the OrbitEnumerate algorithm. From a combination of distinct assembly pat-
terns on every link in the robot, all possible robot assembly configurations can be
generated. An automorphism check will be performed among these AIMs to ensure
they are inequivalent. The details of this procedure follows. The flow chart of this

algorithm is shown in fig. 4.8.

Step 1: Generate non-isomorphic trees {G;} and write them as n X m incidence ma-

trices { M (G;)}.

Several computer algorithms have been proposed to generate non-isomorphic rooted
and free trees for a given number of vertices [7,23,52,86,102]. A rooted tree corresponds
to a fixed base robot with the root vertex representing the fixed base. A free tree has
no root and corresponds to a free-flying robot. Beyer and Hedetniemi [7] introduced
a constant time algorithm to generate all rooted trees of a given size (the number of
vertices). Based on this work, Wright et al. [102] propose a constant time algorithm

to generate all free trees of a given size. We need only free trees in this step.
Step 2: Find the automorphism group, H(G;), using the backtrack algorithm [89].

Step 3: If the module sets contain different types of modules, find distinct assignments
from LINK and JOINT to the vertices and edges of G;. From those distinct assignments,
construct non-isomorphic specialized trees {élk} based on G, and represent them in

eIMs, M(Gy). If not, go to Step 5.

An assignment, f, : V — LINK and f. : E — JOINT, on a graph G; is similar to
an assembly pattern, f : PORT — ATT, on a link module in form. The vertices and
edges correspond to port numbers; the LINK and JOINT module type sets correspond
to ATT. The automorphism group #(G;) is a permutation group corresponding to the

symmetric rotation group on the link. Hence, we employ OrbitEnumerate to find

Yes

Chapter 4: Enumeration of Assembly Configurations

LINK, JOINT

¢

Non-isomorphic
Tree Generation

(G}

Automorphism

Group of {Gi 1

Distinct Assignment
on {G ; }

Automorphism
Groupof {G ; }

Hybrid Robot ?

No

\

Joint Assembly
Pattern Generation

\

Joint Assembly
Pattern Combination

AlIMs

\

Automorphism
Check

!

Distinct AIMs

Topology
Enumeration

Pattern
Enumeyation

Figure 4.8: The flow chart of RobotEnumerate

7

Chapter 4: Enumeration of Assembly Configurations 58

distinct module assignments on G;. The input permutation group is H(G;) and the
input pattern set becomes the set of vertex and edge assignments from LINK and
JOINT. The graph G, along with an assignment (f,, f) becomes a specialized graph.
Another way to find a distinct assignment is based on the chain group proposed by
Yan and Hwang [105]. In their work, a heuristic algorithm based on the chain group
of a kinematic chain is employed to enumerate non-isomorphic specialized mechanism.

This chain group is similar to the automorphism group of a labeled graph.

A fixed base robot can be obtained by putting a base link in the LINK set. The location

of this base link in the kinematic graph is determined by this specialization procedure.

Step 4: For every non-isomorphic specialized tree G;, find H(G;) from H(G), the
automorphism group of its underlying graph G;.

Since H(Gi) C H(G;), we select all automorphisms 7 € H(G;) such that M,(G;) =
M(G;) to form H(G;).

Step 5: For every non-isomorphic graph G; (or G;),

a. Generate distinct assembly patterns for every link, based on the row vectors of

M(G;) (or M(G;)).

The number of joints in each type on a link is indicated in the row vectors of
M(G;) (or M(G;)); hence, OrbitEnumerate is employed to generate distinct
assembly patterns on every link. All labeled joints are treated as different types
of joints here. For example, the first row of M(G) of Fig. 3.6 is (1,1,1,L),
which indicates that C-joints e; and e; and R-joint ez are attached to prism link
v;. Assuming these three labeled joints are different, we obtain 46 distinct joint
assembly patterns on a prism. Replacing 1’s in (1,1,1, L) with port numbers
from the distinct patterns, we get 46 inequivalent 1** row vector representations

for an eAIM. Repeat this process for every row of M(G;).

b. Combine all pattern inequivalent row vectors for every row of M(G;) (or M(G}))
to construct inequivalent AIMs A(G;) (or eAIMs, A(G;)).

Chapter 4: Enumeration of Assembly Configurations 59

c. If the graph has no symmetry, then go to the next step. Otherwise, use H(G;)

(or H(G;)) to eliminate equivalent AIMs (or eAIMs) due to graph symmetry.

Step 6: Repeat Step 5 for all trees.

Step 7: Stop.

Remark 1: Steps 1 to 4 focus on topology enumeration. Steps 3 and 4 are for
specialized graphs only. Steps 5 and 6 are pattern enumeration part. In chapter 6, we
will show that in order to find all candidate assembly configurations with a given set
of link and joint modules and robot topology for task-optimal configuration problem,

we can skip steps 1 and 2 and start directly from the specialization procedure in steps

3 and 4.

Remark 2: This procedure can be transformed into a task-oriented enumeration
scheme by putting constraints on generating distinct joint assemblies on every link in
step 5-(a) thus reducing the number of subsequent applicable robot assembly configu-
rations. For example, the non-redundant joint requirement eliminates joint assembly
patterns where two joint axes on a link are collinear. The constraint that two joints
are not allowed to be simultaneously attached to one end of the prism results in only

seven distinct two-joint assemblies on a prism.

Remark 3: Brute force enumeration procedure follows the same topology enumeration
part (step 1-4) stated above. The difference is in the pattern enumeration part. The
symmetries on link geometry are not taken into consideration when finding assembly

patterns on individual links by the brute force approach.

4.3.2. Examples

Some examples will illustrate the advantages of using this method over the straight-
forward approach of brute force enumeration of all possible modular robot assembly

configurations.

Chapter 4: Enumeration of Assembly Configurations 60
Example 4.17: Suppose we construct a 3-link hybrid robot from module sets: LINK =
{B,L,L} and JOINT = {R,R}. The first step is to construct its non-isomorphic
kinematic graphs. In this case, there is only one possible tree structure—a serially
connected tree. From step 3, we find two non-isomorphic module assignments. Their

specialized trees are shown in Fig. 4.9 and denoted by Gy and Gs,.

B L L
G, ® 2 ° b -
1 R 2 R 3

-
)
r

G,

- @
ne
N J

Figure 4.9: Two non-isomorphic specialized graphs

Now go to step 4 and take GG for example. Link 1 is a cube with one R-joint; there is
only one distinct assembly pattern under this condition. There are 12 distinct assembly
patterns on link 2, for a prism with two labeled joints. There are two assembly patterns
on link 3 with one R-joint. Altogether at most Ng, = 1 X 12 X 2 = 24 configurations
can be found from G;. Similar for G, there are at most Ng, =2 X 2 X 2 = 8 possible
configurations. However, G, is symmetric about the center vertex. H(G:) contains
two nontrivial elements: the identity, ((1,2,3), (a,b)), and ((3,2,1),(b,a)). Using this
automorphism, we further reduce the number of distinct configurations of G5 to 6.
From two non-isomorphic graphs G; and G, there are totally 24 + 6 = 30 distinct

assembly configurations for a 3-link hybrid tree robot which are shown in Fig. 4.10.

If we do not pay attention to equivalent patterns and enumerate them in a brute force
fashion, for Gy, there are 6 patterns on link 1, 51-!%!—! = 45 on link 2, and 10 on link 3.
Altogether there will be 6 x 45 x 10 = 1800 configurations. For G, there are 10 patterns
on link 1, 15 on link 2, and 10 on link 3. In total, there will be 10 x 15 x 10 = 1500

configurations. There are 3300 configurations altogether. Thus, our method provides

a significant improvement over brute force enumeration. g

Chapter 4: Enumeration of Assembly Configurations

Figure 4.10: Distinct configurations of a 3-link 2-DOF hybrid robot

61

Chapter 4: Enumeration of Assembly Configurations 62

Example 4.18: Suppose we want to construct a 4-link serially connected fixed-base
robot from LINK = {FB,L,L,L} and JOINT = {R, R, R} with a given kinematic graph
G5 shown in Fig.4.11, where F'B stands for a fixed base. We assume that there is only
one way to attach a revolute joint to the base. Furthermore, we restrict each joint to
be located at each end of the prism. Without this constraint, there will be 12 distinct
patterns as shown in Fig. 4.2. But we see there are only 7 distinct assembly patterns
satisfying this condition. Hence, the number of possible patterns on link 2 and 3 are 7,
while there are 2 patterns on link 4. Totally, there are at most Ng, = 1 X7x7x2 =98
distinct configurations. They are shown in Fig. 4.12 to 4.13. Since G3 has no symmetry,
the automorphism group of G contains only the identity element. The actual number
of distinct configurations achieves the upper bound Ng,. If we do not pay attention
to equivalent assembly patterns caused by the link symmetry, there are 25 patterns on
link 2 and 3 each. (Each of the two joints can be attached to either one of the 5 ports
at the end of a prism, so there are 25 patterns for each link.) Totally, there will be

1 x 252 x 5 = 3125 constructions. g

In general, for an »-DOF fixed base robot using n R-joints and » prisms with a fixed
base with above constraint, there are Ng = 2 x 7*~! distinct assembly configurations.
Table 4.3 shows the comparison between our algorithm and brute force enumeration

of the total number of assembly configurations of this n-DOF fixed base serial robot.

DOF | RobotEnumerate | Brute Force

2 14 125
3 98 3125
4 686 78125
5 4802 1953125

Table 4.3: Comparison between two algorithms

Chapter 4: Enumeration of Assembly Configurations 63

FB L L L
G; ® . - ®
i R 2 R 3 R 4

Figure 4.12: Distinct assembly configurations of the 3-DOF robot

4.3.3. Computational Complexity Issues

Let us briefly consider the computational complexity of this algorithm. The tree gen-
eration algorithm in step 1 is constant time for a given number of vertices. To find
the automorphism group of a graph in step 2 requires an exhaustive search on iso-
morphisms of the graphs. Backtrack is basically an exponential time search algorithm
[89]. In step 3, the time to compute distinct assignments on a graph G; under #(G;)
is O(K?), where K is the number of distinct assignments, since we are using the
OrbitEnumerate algorithm. In step 4, we perform at most [#(G)| checks to generate

the automorphism group, H(G), of the specialized graph G.

In step 5-(a), the time to generate distinct assembly pattern on every link v; is O(N2),
where N,, is the number of distinct assembly patterns. Since some links in a robot will
be the same, these patterns can be calculated in advance and stored in a look-up table
to save computation time. It is unnecessary to compute distinct assemblies for links

having identical joint patterns repeatedly.

Step 5-(b) gives an upper bound, Ng,, on the number of distinct configurations for a

given graph G;. Ng, equals the product of the number of distinct joint patterns on

Chapter 4: Enumeration of Assembly Configurations 64

Figure 4.13: 3-DOF fixed base robot example (continued)

every link of G;. Owing to graph symmetry, the actual distinct configurations is always
less than or equal to Ng,. The upper bound will be achieved only if the graph has no
symmetry, i.e., the automorphism group defining the graph symmetry contains only the
identity element. The sum of Ng,’s for all non-isomorphic graphs gives the upper bound

on the total number of distinct n-link tree modular robot assembly configurations.

Chapter 4: Enumeration of Assembly Configurations 65

Figure 4.14: 3-DOF fixed base robot example (continued)

Step 5-(c) checks the automorphisms of robot assembly configurations generated by
the previous step in a pairwise fashion if the graph exhibits symmetry. Since step
5-(b) generates Ng, AIMs, we have to check (Ngi) pairs of AIMs. Generally speaking,
O(Ng,?) time is needed to perform checks on graph G;.

Note that computationally costly graph isomorphism checks on labeled and specialized

Chapter 4: Enumeration of Assembly Configurations 66

Figure 4.15: 3-DOF fixed base robot example (continued)

graphs are unnecessary in the enumeration process because we separate the generation
of non-isomorphic graphs procedure at the beginning. There is no known polynomial
time algorithm to check graph isomorphisms [89]. Only when two AIMs are given

without any previous knowledge of the underlying kinematic graphs, an isomorphism

test is needed.

Chapter 4: Enumeration of Assembly Configurations 67
This discussion points out several features of the algorithm. First, its computational
complexity depends on the properties of the link symmetry groups and the class of
tree-like structures one is considering. It is thus difficult to give a precise bound on
the computational complexity of the entire algorithm. Second, the computations are
structured so as to avoid computationally expensive steps, such as graph isomorphism
checking. Third, the reasonable computational complexity of the algorithm (and the
examples of Section 4.3.2) implies that for almost any conceivable application, it is

much more efficient to enumerate the non-isomorphic geometries with this algorithm,

rather than using a brute enumeration process.

4.4. Closed-Loop Construction Enumeration

From the analysis of linkage mechanism, we know the kinematic constraints and number
constraints on closed-loop mechanisms. The number and type of close-loop construc-
tion depends on the actual module designs, and are not appropriate to be determined
by any graph enumeration schemes. One feasible way to incorporate closed-loop mod-
ule constructions in a modular robot system is to treat each one as an individual link.
Because the module geometry is designed in advance, the number of non-isomorphic
close-loop configurations are limited and can be found manually. The symmetric rota-
tion group for each configuration can be defined. Each configuration is then expressed

as a single vertex in the kinematic graph of the modular robot.

Example 4.19: Consider using four revolute joints and four square prisms to con-
struct a closed-loop module robot subassembly. The eight non-isomorphic closed-loop
constructions are shown in Fig. 4.16. Because of the additional constraint on closing

the kinematic chain, these closed-loop assemblies are found manually. g

4.5. Discussion

One of our basic assumptions on our module models is its symmetric shape. In an

extreme case, the link module has no symmetry and its symmetric rotation group has

Chapter 4: Enumeration of Assembly Configurations 68

Figure 4.16: Eight non-isomorphic closed-loop configurations

only one element—the identity element. The enumeration problem still folléws the
same procedure outlined in Section 7.4.3.2. Without symmetry, the process of finding
distinct joint assemblies becomes equivalent to permuting the joints on the link ports.
In this case, there is no need to use the orbit enumeration algorithm. However, if a
link module has no symmetry, the interchangeability of this module will be greatly

reduced.

In summary, this chapter demonstrated a method to enumerate distinct assembly con-
figurations of a tree-like modular robot from a set of specified modules. Distinct mod-
ular robots have distinct kinematic properties and, hence, different functionalities. An
algorithm is proposed to enumerate joint assembly patterns on a link. Then a novel
class of assembly incidence matrices (AIMs) is defined to represent robot assembly
configurations. A two-stage equivalence relation based on graph isomorphism and link
symmetry is introduced for AIMs. Inequivalent AIMs are distinct assembly config-
urations having different robot kinematics. These representations and equivalences
form the basis for our algorithm. As demonstrated in the examples, this algorithm

greatly improves the efficiency of the enumeration process as compared to brute force

enumeration.

69

Chapter 5

Modular Robot Kinematics

This chapter studies three issues in modular robot kinematics: forward kinematics,
inverse kinematics, and the kinematic equivalence of distinct (or non-isomorphic) robot
assembly configurations. The terms forward and inverse kinematics assume their usual
meaning. In the context of modular robots, the notion of kinematic equivalence regards
modular robots having distinct AIMs but possessing identical kinematic properties,

such as workspace shapes and volumes, and joint singularies.

Several kinematic modeling techniques for traditional fixed configuration robot manip-
ulators have been developed: the Denavit-Hartenburg (D-H) parameterization method
[21]; the Product-of-Exponential Formulas (POE) [9,75,78,79,80], and the Sheth-Uicker
notations [88]. However, for modular robots, these kinematic modeling methods are not
so useful. Furthermore, the generic topology of a modular robot has a tree-structure

instead of a serial chain, which is implied in the above modeling methods.

Researchers in CMU [46] and University of Toronto [5] have proposed methods, based
on the D-H kinematic modeling scheme, to automatically generate modular robot for-
ward kinematics. The method of [46] used two sets of coordinate frames to describe a
modular robot: modular frames for individual modules showing kinematic parameters
of links and joints of RMMS, and D-H frames defined with D-H notations. With a

given sequence of modules, a conversion algorithm from the modular frames to D-H

Chapter 5: Modular Robot Kinematics 70

frames was employed to automatically obtain the D-H parameters of an entire robot.
However, only revolute joints were considered in the kinematic conversion scheme. The
work of [5] generalized this modeling technique to include prismatic joints and consid-
ered the possibility of multiple attachment of joints on one link module by defining

input/output frames on every link.

In this chapter, we propose a scheme, based on the product-of-exponentials, to gener-
ate tree-structure robot forward kinematics from a given AIM automatically. In this
scheme, a robot assembly is represented by its intrinsic properties, i.e., the location
and the type of the joint axes, which are conveniently derived from an AIM by a set
of port conversion tables and initial position tables. Furthermore, these intrinsic prop-
erties facilitate the analysis on the kinematic performance of a robot. Most important
of all, this scheme is completely general for tree-structured robot topologies that are

not considered in previous work.

Because a modular robot has no fixed assembly configuration and the number of DOF
in the robot varies, it is very difficult to find closed form inverse kinematic solutions.
Therefore, we adopt a numerical inverse kinematics technique proposed by Khosla,
Neuman, and Prinz [47] for the reconfigurable robotic system. This numerical method

is based on Newton-Ralphson iteration.

From task point of view, the robot’s kinematic performance is a major concern. In
practice, there is a small subset of distinct AIMs that possess identical kinematic
properties and are therefore functionally equivalent. A kinematic equivalence relation

based on the twist of the joints will be defined on AIMs for classification.

This chapter is organized as follows. Section 5.1 studies the forward kinematics of
modular robots. An algorithm to automatically generate tree-structured robot forward
kinematics from an AIM is proposed. Section 5.2 defines kinematic equivalence on
AIMs. Section 5.3 discusses the numerical inverse kinematic scheme used by modular

robots.

Chapter 5: Modular Robot Kinematics 71

5.1. Forward Kinematics

Traditionally, the displacement of a rigid body can be expressed as the position and
orientation of a body fixed coordinate frame relative to a world fixed reference frame.
In order to distinguish this displacement, which is often termed a “configuration,” g,
from the assembly configuration of a modular robot, we call g a “position/orientation”
instead. For spatial motion, g can be written as a pair (R, p) € SO(3) x R®, where R is
the orientation of the body frame and p is the displacement from the origin of the world
frame to the origin of the body frame. We also use the notation SE(3) = SO(3) x R®.

g can also be written as a 4 X 4 homogeneous matrix:

R p
g=(0 1) (5.1)

Body Frame

k
World Frame

Figure 5.1: A rigid body displacement g

Suppose q € R® is a point on the body relative to the world frame as shown in Fig.

5.1. The action of g on the point q in the body defines the new location of q as

g9(a) = Rq+p. (5.2)

This action can also be written in the 4 X 4 matrix form by representing the point q

L) e

as a 4-vector, q = (q, 1):

=
2l
I
—
&
TR
~——
I

Chapter 5: Modular Robot Kinematics 72

The motion of the body is a time parameterized curve, g(¢). The generalized velocity
of the rigid body motion written in the world reference frame can be expressed as

. RRT p- RRTp
=99 = . . . (5.4)

This generalized velocity, ¢, is called a twist [69]. It can also be written as
. S(w) v
&= , (5.5)
0 0

where W = (w,, wy,w,;) € R® and v € R®. S is the skew symmetric matrix associated

with w, and

0 —W, Wy
Sw)y=1{ w, 0 —w,|. (5.6)
~wW, W, 0

The vector

£ = (;) (5.7)

is called the twist coordinate of é and represents the rotational and translational ve-
locity of an object viewed in the world frame. The forward kinematics of an n-DOF

robot written in POE can be expressed as follows [9].
F(B1,- -+ ,6,) = e B et () (5.8)

where 6; is the i* joint displacement, & is the twist of the ith joint axis, 9(0) is the
initial position/orientation of the end-effector frame, and f(64,--- ,8,) € SE(3). The
map, f, is called a forward kinematic map. It defines the position/orientation of the

end-effector frame with respect to the world reference frame.

The twist coordinate £ of a joint axis is expressed relative to the world reference frame.
For an R-joint, & = (v, w), where w is a unit vector in the direction of the joint axis
and v = —w x q. The point q is located on the joint axis. For a P-joint, £ = (v,0),

where v is a unit vector pointing in the direction of translation.

Note that in this formulation, the initial position/orientation of the end-effector frame,

g(0), can be chosen arbitrarily. If the world reference frame is chosen to be coincident

Chapter 5: Modular Robot Kinematics 73

with the initial end-effector frame, then g(0) = I. The location of the joint axes, i.e.,
the twist coordinates, are all relative to the world frame. The order of the joints are

expressed in the order of the matrix operation.

To overcome the problem of no previous knowledge of the module arrangement and
robot topology in assembling a modular robot, the forward kinematics of a modular
robot is defined in a modular fashion. First, a set of table, termed the port conversion
tables, relating the number on the connecting ports and their actual locations on the
link is introduced. Using this table, a joint twist can be found according to the joint
assembly pattern or a row vector of the AIM (or eAIM). Secondly, from another set of
tables, termed the initial position tables, relating elements in the AIM and the initial
position of two connected links (or a dyad), the forward transformation between the
two links can be derived. Finally, applying graph search techniques along with this
forward transformation on a dyad, the forward kinematics of a general tree-structured

robot can be obtained.

5.1.1. Single Link Kinematics

The twist coordinate of the joint axes relative to the link frame can be obtained from
the joint assembly patterns by a mapping between the actual location and the number
on the connecting ports. Suppose that the dimensions of all connecting interfaces are
the same. The actual location of a connecting port can be associated with an imaginary
line, termed a connecting line. Any joint attached to or detached from the port will
follow along this imaginary line. This line becomes the axis of rotation when a R, C,

or H-joint is attached; it describes the direction of translation as a P-joint is attached

to the link.

A line in R® has a 6-vector representation called Plicker coordinates, L = (w,q x w),
where w is a unit 3-vector in the direction of the line and q € R? is any point on the

line. Let an R-joint be connected to Port i, where 1 € PORT. The connecting line is

defined as follows.

Chapter 5: Modular Robot Kinematics 74

Definition 5.1: A connecting line associated with Port 7 on a link is defined to be a line
coincident with the joint axis of the R-joint when it is attached to Port 7 as shown in
Fig. 5.2. The Pliicker coordinate of the connecting line is denoted by L; = (w;, q; x w;).

The direction of L; is pointing away from the link module.

Figure 5.2: The connecting line associated with port 7

Note that w, the direction of L, defines the normal direction of the connecting port;
q X w, the location of L, defines the location of the port relative to the module frame.
Although ports on the opposite faces of the link share the same line, their connecting

lines are written in the two different representations of the same line, i.e., (£w, g xw).

The index ¢ associated with the connecting line L; actually defines a mapping from the

numbers on the ports to their associated connecting lines.

Definition 5.2: Let PORT be a port index set on a link. A port conversion table (PCT),

Tpc, is a 1-to-1 mapping such that it assigns a connecting line to a port, i.e.,

Tpe : PORT — R® : 4 L. (5.9)

Different types of links have different port locations and, hence, different PCTs. Be-

cause the number on the ports can be arbitrarily defined, a PCT is not unique even

on the same type of links.

For prism link modules, the link dimension related to the PCT is the distance between
connecting lines of the two side ports, as shown in Fig. 2.6. Let | = PortSeperation,

which is defined in Section 2.3. The connecting lines associated with the ports of a

Chapter 5: Modular Robot Kinematics 75
cube module intersect at the center of symmetry (or the origin of the module frame)
so the normal directions of the port become the major concern. Tables 5.1 and 5.2

demonstrate a set of port conversion tables for the prism link and the cube modules.

Ports || Line Coordinates
(1,0,0,0,1/2,0)
(1,0,0,0,-1/2,0)
(0,1,0,-1/2,0,0)
(0,1,0,1/2,0,0)
(-1,0,0,0,—1/2,0)
(-1,0,0,0,1/2,0)
(0,-1,0,1/2,0,0)
(0,-1,0,-1/2,0,0)
(0,0,1,0,0,0)
(0,0,1,0,0,0)

ot

Ol oo | O U x| WO

f—y
o

Table 5.1: PCT for prism module (L)

Ports || Line Coordinates
1 (1,0,0,0,0,0)
(0,1,0,0,0,0)
(-1,0,0,0,0,0)
(0,-1,0,0,0,0)
(0,0,1,0,0,0)
(0,0,-1,0,0,0)

| O] x| W N

Table 5.2: PCT for cubic box module (B)

To find the local representation of a joint axis twist in a modular robot or in a joint

assembly pattern of a single link module, we perform the following procedure:

1. Apply a PCT, T, to the port numbers described in a row vector of an AIM, or

in an assembly pattern, f, and find the corresponding connecting line.
2. Convert the Pliicker coordinates to twist according to the type of joints. Let L; =
(W, v;) be the line associated with Port 7. For an R-joint, the twist, & = (v;, w;).

For a P-joint, & = (w;,0).

Chapter 5: Modular Robot Kinematics 76

Example 5.3: Suppose an assembly pattern on a prism module is
; 1 2 3 ... 10
“\R PO - 0)
L, =(1,0,0,0,1/2,0) — & =(0,1/2,0,1,0,0)

L,=(1,0,0,0,—1/2,0) = & =(1,0,0,0,0,0) (5.10)

From Table 5.2, we get

Example 5.4: The fourth row of A(G’) in (4.6) is (0,0, 2, B), which says that joint e3

is connected to link vy via Port 2. From the last row of A(G): (C,C, R,0), one knows
that joint e3 is an R-joint. Using Table 5.1, we obtain

L, = (0,1,0,0,0,0) & = (0,0,0,0,1,0). (5.11)

5.1.2. Dyad Kinematics

Suppose an AIM, A(G), of an n-link tree-structured robot is given. Also assume that
link v; and link v; are connected by joint e as shown in Fig. 5.3 and Fig. 5.4. Denoting
the module frame on v; by frame ¢ and the position/orientation of frame j relative to
frame ¢ by T;;, then by (5.8), the position of frame j under a joint displacement, 6;;,
can be written as

Ty;(6:;) = 5% T;(0), (5.12)

where &;; is the twist coordinate of joint e relative to frame %, and T;;(0) € SE(3) is

the zero (or initial) position of frame j relative to frame 1.

V;

i
\\
\\

<

;\

3
/
’w.

Y

\
\

®

Figure 5.3: A schematic kinematic graph

Chapter 5: Modular Robot Kinematics 77

e
:(.*
-
=

A

aZ
f
=

[PRSNUINEIRURPIAEE (SRR 19
F

=

-
-

Figure 5.4: Part of the module assembly
Equation (5.12) defines the forward transformation of the dyad from link ¢ to 5. If
the robot is serially connected and the links are marked from 1 to n consecutively,
where the base link is denoted link 1 and the end link denoted link n, then the forward

transformation from link 1 to n is

Tin = T2 o3+ Tin-1)n- (5.13)

If the robot has a tree structure, the forward transformation (5.12) can be applied
recursively to find the position/orientation of all pendant links with respect to the base
root link. Link v; is the predecessor of link v; because the direction of transformation is

from link 4 to 7. Section 5.1.3 will present an algorithm to compute the tree-structured

robot kinematics.

o~

There are five elements in the eAIM, A(G), related to the dyad of link ¢ and j:
(aik,ain,ajk,a,-n,a(n+1)k), termed the dyad vector, where a(,+1)r represents the type
of joint e; a;, and a;, represent the type of link v; and v;. Joint e; is connected to

Port a;; and aj; of link v; and v; respectively. Their locations in the eAIM is shown

below:

ik HR 27}

AG) = | | (5.14)

a'jk o e a]n

Qnsye "- O

Chapter 5: Modular Robot Kinematics 78

If a hashed AIM, A*(G), is employed instead of the eAIM, A(G), then two elements,
(a:x, ajx), suffice to express the dyad vector because the types of joints and links have

been coded in these elements already.

In order to generate robot kinematics automatically, a relation between the invariant
quantities, e.g., f}-,- and T;;(0), of the forward transformation (5.12) and the dyad vector

of link 7 and 7 must be established. §;; is a variable to be determined by the input.

Determination of &;;

Just as we did in Example 5.4, applying the PCT of link 7 to the element a;. of A(G),
the connecting line L;; can be determined. The twist &;; of joint e; can be obtained by

the procedure mentioned in the last section.

Determination of T;;(0)

Instead of setting up a table that assigns dyad vectors to T;;(0) directly, a table called
the initial position table (IPT) which assigns dyad vectors to the initial z-axis of frame

J relative to frame 7 is used. The derivation of T;;(0) from the IPT is discussed in the

following.

Definition 5.5: The initial position table (IPT) for a dyad of link v; and v; of Type
a;n and a;, connected by a joint of Type a(ni1)k, Where ain, ajn € V and Qnt1)k € E‘,

is a 1-to-1 mapping,
Ti» : PORT(a;) X PORT(aj,) x E — R®: (a, ajz) — L., (5.15)

where L, is the Pliicker coordinate of the z-axis of frame j relative to frame 7.

As shown in Fig. 5.4, the dyad of link ¢ and j share the same connecting line having
different expressions in frame ¢ and j respectively. The Pliicker coordinate of the
connecting line L;; with respect to frame ¢ is obtained by using a PCT as mentioned
above. Similarly, applying the PCT of link j to ajz, we get Lj;, the same connecting

line, but written in frame j.

Chapter 5: Modular Robot Kinematics 79

Fig. 5.4 also shows the spatial relation of module frames 7 and j and the joint axis

of ex. Let T(0) = T;;(0), Ly; = (Wi, v;), and Lj; = (w;,v;). The following condition

- (") = Adr) (v) (5.16)

where 7(0) is a 4 X 4 homogeneous matrix:

Toy= [% (5.17)
01

must be satisfied:

R;; € SO(3) and d;; € R®. Adr(o) is 6 x 6 adjoint transformation matrix for 7(0) €
SE(3) [69] of the form:

Ry S(dsij)Ri) (5.18)

AdT(o) -
0 R;;
The minus sign is added on the left hand side of (5.16) because the port connecting

lines are pointing outward of the link and L;; and L;; are in opposite directions.

In equation (5.16), Li; and Lj; are known quantities; T(0) or Adg(o) remains to be

determined. Equation (5.16) can be written as two sets of three equations:

—W,; = Rz'jo (519)
-V; = RijVj + S(dz])Rz]W] (520)

Because w; and w; are unit vectors and R;; € SO(3), (5.19) and (5.20) have an infinity
solution. That is, the initial position 7°(0) cannot be determined directly by (5.16). In
order to find a unique solution to (5.16) for a given pair of L;; and L;;, an additional

constraint equation is required.

With a predetermined initial L, = (W;;,v;;) (the z-axis of frame j relative to frame

i), we have the following:
0

wi;=Ri; | 0 (5.21)
1

Using (5.19) and (5.21), one can solve for R;;. Substituting R;; into (5.20), d;; can be

solved. Then the initial position T(0) can be obtained.

Chapter 5: Modular Robot Kinematics 80

Note that if the rotational displacement R;; is in the direction of the joint axis, w;, R;
cannot be solved from (5.19). In this case, we solve for R;; by first solving for T};(0),
the initial position of link j relative to link z. Let T'(0) = T;;(0) and use equations
(5.16) to (5.21) by switching the indices i and j, then T;;(0) = T;;*(0). If T3;(0) cannot
be found in this way, the joint axis must be coincident with the z-axis of both links as
shown in Fig. 5.5. In this situation, R;; is set to I and d;; is determined by the type
of the two connected links.

X X

AN
<z < @@% - '/
Y
Figure 5.5: Situation for indeterminate R;;

For an R-joint, the orientation of L, of link j can be chosen arbitrarily. Usually the
initial L, is kept parallel or perpendicular to any one of the axes of Frame ¢. For a P-
joint, L, is determined by the extended feature ORIENT because the relative orientation

of the two links is fixed.

The complete procedure to determine the forward transformation of the dyad of link ¢

and j is as follows.

1. Locate elements in the AIM related to the dyad of link ¢ and 7, i.e., the dyad
vector (ask, Gin, Ajk, Qjns An+1)k)-
2. Find corresponding PCTs on link ¢ and j and apply them to a;; and aj; to find

the coordinate of the connecting lines, L;; and L;; respectively.

3. Apply IPT on the dyad vector, (@i, @in, @jk; Gjn, Gnt+1)k), to find the initial posi-

tion, L,, of the z-axis of frame j.
4. Use equations (5.19), (5.20), and (5.21) to solve for T;;(0).

5. If T;;(0) is indeterminate, switch the indices of ¢ and j from (5.16) to (5.21), go
back to Step 3, and solve for Tj;(0). Then T;;(0) = T;;*(0).

Chapter 5: Modular Robot Kinematics 81
6. If T;;(0) cannot be found either way, then set its rotation matrix R;; = I. d;; is

the distance between the origin of frame 7 and j, which is determined by the types

of the two connected links and the joint.

Since there are two different types of link modules in our module set, there are four
possible combinations for their connection. For demonstration purpose, Tables 5.3 to
5.6 list all IPTs, where 7 = JointLength, w = LinkWidth for prism modules, and
h = LinkHeight for cube modules.

Example 5.6: Consider the AIM of 3-DOF robot using three identical prism link

modules and three R-joints:

1 0 0 FB

_ 1 6 0 L
AG)=|0 1 8 L (5.22)

00 4 L

R R R O

Now we use the above procedure to find the forward transformation from link 2 to
link 3, i.e., Tb3. The dyad vector for link 2 and 3 is: (a2, 24, @32, @34, a52). From
Table 5.1, the connecting line of port 6 on link 2 is Ls3 = (—1,0,0,0,1/2,0). Similarly,
L3> = (1,0,0,0,1/2,0). Since the forward transform is from port 6 on link 2 to port
1 on link 3 and both links are prism modules, from Table 5.4, the z-axis of frame j is
L, =(0,0,1,0,7 + w,0). Substitute Las, L3s, and L, into (5.19), (5.20), and (5.21),

and the initial position of frame j is

1 00 —j—w
01 0 0

Tx3(0) = 0 0 1 - i (5.23)
0 0 O 1

The joint twist &23 = (0,1/2,0,—1,0,0). The forward transformation becomes

To3(fa3) = gfastes T53(0). 1

Chapter 5: Modular Robot Kinematics 82

Cube — Cube

Port 1 t Port 2 I P,

1 1,2,3,4 | (0,0,1,0,—(h +5),0)
5 (-1,0,0,0,0,0)
& |(1,0,0,0,0,0)
3 11,234 (0,0,1,0,h+7,0)
5 | (0,-1,0,0,0,0)
6 (0,1,0,0,0,0)
3 1,2,3,4 | (0,0,1,0,h + 7,0)
5 1(1,0,0,0,0,0)
6 (-1,0,0,0,0,0)
4 | 123.4](0,0,1,—~(h+7),0,0)
5 11(0,1,0,0,0,0)
6 |(0,-1,0,0,0,0)
5 | 1.2,3.4] (1,0,0,0,h +7,0)
5 11(0,0,-1,0,0,0)
6]1(0,0,1,0,0,0)
6 | 1,234 (L0,0,0,—(k+7),0)
5 (0,0,1,0,0,0)
& |(0,0,-1,0,0,0)

Table 5.3: IPT for Cube — Cube

5.1.3. Tree Robot Forward Kinematics Algorithm

Based on the dyad kinematics defined by (5.12), we propose an algorithm which can
generate forward kinematics of a tree-structured robot from a given assembly config-
uration automatically. It is termed TreeRobotKinematics. The forward kinematics
of a tree robot is defined to be the transformations from the base link to all pendant
links. A serial robot is a tree structure without any branches. The links and joints
are arranged in sequential order from the base to the end-effector or vise versa, so the
transformation matrices of all intermediate links are obtained in order. However, the
links and joints in a tree-structure robot do not have such ordering scheme; the order
of the links is determined by tree-traversing algorithms. There are two frequently used
traversing algorithms for graphs: Breath-First-Search (BFS) and Depth-First-Search
(DFS) methods [89]. Either one can be employed for tree robot kinematics. Here we

use the BFS approach because of its ease of implementation.

Chapter 5: Modular Robot Kinematics

Prism — Prism
Port 1] Port 2 l P,
1 1,3,5,7 (0,0,-1,0,7 +w,0)
2,4,6,8 (0,0,1,0,—(j + w),0)
9 (-1,0,0,0,-1/2,0)
10 {1,0,0,0,1/2,0)
2 1,3,5,7 (0,0,1,0, (7 +w),0)
2,4.6,8 (0,0,-1,0,7 +w,0)
9 (-1,0,0,0,1/2,0)
10 (1,0,0,0,-1/2,0)
3 1,3,5,7 (0,0,-1,—(j + v),0,0)
2,4,6,8 (0,0,1,7 + w,0,0)
9 (0,-1,0,1/2,0,0)
10 (0,1,0,-1/2,0,0)
4 1,3,5,7 (0,0,1,7 +w,0,0)
2,4,6,8 (0,0,-1, —(j+w) 0,0)
9 (0, ,—1/2,0,0)
10 (0 1, O l/2 0,0)
5 1.3,5,7 (0, —(7 +w),0)
2,4,6,8 (0, O 1, 0,] + w,0)
9 (1,0,0,0,1/2,0)
10 (-1,0,0,0,-1/2,0)
6 1,3,5,7 (0,0,1,0,7 + w,0)
2,4,6,8 (0,0,-1,0,—(j + w),0)
9 (1,0,0,0,-1/2,0)
10 (-1,0,0,0,1/2,0)
7 1,3,5,7 (0,0,-1,5 + w,0,0)
2,4,6.8 (0,0,1,—(5 + w),0,0)
9 (0,1,0,-1/2,0,0)
10 (0,-1,0,1/2,0,0)
8 1,3,5,7 (0,0,1,~(j + w),0,0)
2,4,6,8 (0,0,-1,5 + w,0,0)
9 (0 1 O l/2 0,0)
10 (0, -1/2,0,0)
9 1,2,3,4,5,6,7,8 (1 0, O 0 /24 37+ (w+h)/2,0)
9 (0,0,-1,0,0,0)
10 0,0,1,0,0,0)
10 1,2,3,4,5,6,7,8 | (—1,0,0,0,1/2 + j+ (w+ h)/2,0)
9 (0,0,1,0,0,0)
10 (0,0,-1,0,0,0)

Table 5.4: IPT for Prism — Prism

83

Chapter 5: Modular Robot Kinematics

Cube — Prism
Port 1 [Port 2 l P,
1 1,3,5,7 (0,0,—1,0,7 + (w+ h)/2,0)
2,4,6,8 (0,0,1,0,—(j + (w+ h)/2),0)
9 (-1,0,0,0,0,0)
10 (1,0,0,0,0,0)
2 1,3,5,7 (0,0,-1,—(j + (w + h)/2),0,0)
2,4,6,8 (0, O 1,7+ (w+h)/2,0,0)
9 (0,-1,0,0,0,0)
10 (0,1,0,0,0,0)
3 1,3,5,7 (0,0,—-1,0,—(5 + (w + h)/2),0)
2,4.6,8 (0,0,1,0,7 + (w + h)/2,0)
9 (1,0,0,0,0,0)
10 (—1,0,0,0,0,0)
4 1,3,5,7 (0,0,—-1,7 + (w+h)/2,0,0)
2,4.6,8 (0,0,1,—(5 + (w + h)/2),0,0)
9 (0,1,0,0,0,0)
10 (0,-1,0,0,0,0)
5 1,2,3,4,5,6,7,8 | (1,0,0,0,7 + (w+ h)/2,0)
9 (0,0,—1,0,0,0)
10 (0,0,1,0,0,0)
6 1,2,3,4,5,6,7,8 | (—=1,0,0,0,7 + (w + kh)/2,0)
9 (0,0,1,0,0,0)
10 (0,0,-1,0,0,0)

Table 5.5: IPT for Cube — Prism

84

This algorithm takes three inputs: a hashed AIM of a hybrid robot A*(G), the base

link (the root vertex) vy, and a set of joint angles {#}. The output will be the forward

transformation of all links relative to the base link frame under the joint displacements.

Note that in ordinary BFS or DFS search algorithm, a graph is represented by an

adjacency-list [18]. An adjacency-list of a graph G consists of an array of lists. The

number of lists is equal to the number of vertices in G. The i** list contains all the

vertices adjacent to vertex ¢ in G. In a modular robot application, the adjacency

informations of the edges and vertices in the kinematic graph are required. Therefore,

a hashed AIM is chosen as the input assembly configuration because of its compactness.

A modified adjacency-list called an edge-vertex adjacency-list (EV-list) is introduced

Chapter 5: Modular Robot Kinematics 85

Prism — Cube
Port 1 t Port 2 l P,
1 1,2,3,4 | (0,0,-1,0,7 + (w+ h)/2,0)
5 (-1,0,0,0,-1/2,0)
6 (1,0,0,0,1/2,0)
2 1,2,3,4 | (0,0,1,0,—(j + (w + h)/2),0)
5 (-1,0,0,0,1/2,0)
6 (1,0,0,0,-1/2,0)
3 1,2,3,4 | (0,0,-1,—(5 + (w+ h)/2),0,0)
5 (0,-1,0,1/2,0,0)
6 (0,1,0,-1/2,0,0)
4 1,234 | (0,0,1,5 + (w+ h)/2,0,0)
5 (0,-1,0,-1/2,0,0)
6 (0,1,0,1/2,0,0)
5 1,2,3,4 | (0,0,-1,0,—(j + (w+ h)/2),0)
5 (1,0,0,0,1/2,0)
6 (-1,0,0,0,-1/2,0)
6 1,2,3,4 | (0,0,1,0,7 + (w+ h)/2,0)
5 (1,0,0,0,-1/2,0)
6 (-1,0,0,0,1/2,0)
7 1,2,3,4{ (0,0,-1,7 + (w+ h)/2,0,0)
5 (0,1,0,-1/2,0,0)
6 (0,-1,0,1/2,0,0)
8 1,2,3,4 | (0,0,1,—(7 + (w + h)/2),0,0)
5 (0,1,0,1/2,0,0)
6 (0,-1,0,-1/2,0,0)
9 1,2,3,4 | (1,0,0,0,1/2 +j + (w + h)/2,0)
5 (0,0,-1,0,0,0)
6 (0,0,1,0,0,0)
9 1,2,3,4 | (-1,0,0,0,1/2+j + (w+ h)/2,0)
5 (0,0,1,0,0,0)
6 (0,0,-1,0,0,0)

Table 5.6: IPT for Prism — Cube
as an internal representation of the hashed AIM.
Definition 5.7: An edge-vertex adjacency-list of a graph G = (V, E) is an array of |V|

lists. Entries in the ¢** list are ordered pairs of the form: (, j), which are the indices of

non-zero entries in the ¢** row of the incidence matrix of the graph, M(G), the AIM,

Chapter 5: Modular Robot Kinematics 86
A(@), or the hashed AIM, A*(G). The ordered pair (4, j) is called an adjacency-index.

~

Example 5.8: The EV list of the hashed AIM A*(G) in (4.14) is

adjList = { {(1,1),(1,2),(1,3)}
{(2,21{G 1D} {(4:3)}} (5.24)

Instead of manipulating the vertices, the BFS algorithm used by TreeRobotKinematics
is modified to manipulate the adjacency indices, i.e., to traverse the non-zero entries

in the hashed AIM. The algorithm, written in pseudo code, works as follows.

o~

0 Procedure TreeRobotKinematics(A*(G), b, {6})

1 Queue = {b};

2 None = NonzeroEntry(4*(G));

3 AdjList = AIMtoEVList(4*(G));

4 Unvisit = None;

5 Ty = Id;

6 TransList = {T}};

7 ‘While Queue # § do

8 {

9 v = First(Queue);

10 Queue = Rest(Queue);

11 For all z € AdjList[v] do

12 {

13 If z € Unvisit then child = MatchEdge(None,z);
143 [= First(child);

15 m = Last(child);

16 17 = ForwardTransform(az, achiid, Iv, Om);
17 TransList = Append(7}, TransList);
18 Append(l, Queue);

19 Unvisit = Delete(z,Unvisit);

20 Unvisit = Delete(child,Unvisit);

21 ¥

22 b

23 Return(TransList);

The base link (the root of the tree) is chosen arbitrarily. The integer b fepresents

the label on the base link. Queue is the set of visited links (vertices). None stores

the adjacency indices of A*(G). AdjList contains the EV-list of A*(G). Unvisit
keeps the unvisited adjacency indices. AIMtoEVList is a function that transforms

IM-like matrices into an EV-list representation. The reference frame is chosen at the

Chapter 5: Modular Robot Kinematics 87

base frame, so that the 4 X 4 matrix T} is the identity matrix. Line 9 takes out the
first element, v, from Queue. For all adjacency indices z in list v of EVList, we do
the following: If z is not visited, Line 13 finds its descendent adjacency index called
child. The Match-Edge function performs the descendent finding routine. The first
element of child contains the label of the descendent link. Line 16 determines the
position/orientation of the descendent link frame relative to the base reference frame
using Forward-Transform. The descendent link is then stored in Queue in Line 18.
Lines 19 and 20 delete the visited adjacency indices = and child from Unvisit. Line
23 returns a list, TransList, of the position/orientations of all link modules relative

to the world frame.

The function ForwardTransform calculates the kinematics for adjacent links. It takes
the dyad vector, (a;, a;;), the current location of frame ¢ relative to the world frame,
Ty;, and a joint displacement, §;;. The output is the current location of frame 7 relative

to the world frame, T3;. This procedure works as follows.

0 Procedure ForwardTransform(ak, ¢k, Tti, 0;;)

T3(0) = Tip(air, ajk);
&ij = Tpe(air);

T3 (6:5) = %9%i T5(0);
To; = Tis T3;(6s5);
Return(Ty;);

CU B W B =

Line 1 determines the initial position T;;(0) by applying IPT, T, to the dyad vector
(@ik, ajx). Note that a;; and aj, are coded integers containing the port and types of the
links and the joint in the dyad. Line 2 converts a; to &y by using a PCT, 7,.. Line
3 calculates the forward kinematics from frame 7 to j, using (5.12). Line 4 transforms

the local representation of frame j back to the world reference frame. Line 5 returns

Ty,.

Since TreeRobotKinematics provides locations of all links relative to the world frame,

Ty, the twist of joint e; on any one of the robot links with respect to the world frame,

Chapter 5: Modular Robot Kinematics 88
¢k, can be written as

& = Adr, &;. (5.25)

The spatial Jacobian, J*, of a serial manipulator is a matrix whose columns are the

twist coordinates of the joint axes relative to the world reference frame [69]. Therefore,

=0 & - &) (5.26)

This Jacobian relates the joint rate 6 with the generalized velocity (or the twist) of the

end-effector, &, by

oo = J°0, (5.27)

where €. = (v,w). Vv is the velocity of a point in the end-effector frame passing
through the origin of the world frame as viewed in the world frame, and w is the
angular velocity of the end-effector viewed in the world frame. With a given AIM and
a set of joint angles, the Jacobian of a serial-connected modular robot can be obtained

automatically by using (5.25) and (5.27).

Other functional procedures that must traverse the tree structure of a modular robot
will also possess the basic feature of TreeRobotKinematics. Additional functions, such
as the module drawing routine used for simulation purposes, can be added right after

Line 16 of TreeRobotKinematics, where the adjacent link kinematics is calculated.

5.1.4. Forward Kinematics Examples

Example 5.9: Suppose five prisms and four revolute joints are provided to build a

quadruped like robot. Its kinematic graph G is shown in fig. 5.6. The hashed AIM

-~

A*(B) is

8 0 0 0

_ 20 8 4 24
A(G=]0 200 0 (5.28)

0 0 8 0

0 0 0 4

The base module is Link v;. The joint angles relative to the base are {6;,6,, 03,0, }=

{—7/4,—=/4,7/4,7/4}. The quadruped is shown in Fig. 5.7(a).

Chapter 5: Modular Robot Kinematics 89

v, (L) V3 (L)
L
& V2 e
e €
V4 (L) Vs (L)

Figure 5.6: Kinematic graph of a quadruped G

Example 5.10: Three prisms and three revolute joint modules are given to build a
fixed base 3-DOF serial manipulator arm. The eAIM is shown in (5.22). The hashed
AIM is

21 0 O

. 4 24 O
a@=ys % w (5.29)

0 0 4

The world reference frame is located at the fixed base module frame. The joint inputs

are {61,6,,03} = {0,—n/6,0}. The robot is shown in Fig. 5.7(b). §

Figure 5.7: Forward kinematics examples

5.2. Kinematic Equivalence

As mentioned in the last chapter, equivalent AIMs have identical robot kinematics.

Ignoring all labels on the modules and port numbers, these AIMs represent identical

Chapter 5: Modular Robot Kinematics 90

robot constructions. However, the converse is not true. Because of the standardization
on module component design and finite number of module assemblies, there exists a
small subset of distinct AIMs which possess identical kinematic properties such as the

shape and the size of the workspace and singularities.

Cousider two distinct eAIMs of a fixed-base 3-DOF modular robot shown in Fig. 5.8.
The robot has three identical prism modules and three R-joint modules. The eAIMs

of the two assembly configurations are

A (5.30)

O Moo
Moo

hry
Ob‘b‘b‘m

i
HOo O

1
1
Ax=10
0
R

o= o

Figure 5.8: Kinematically equivalent robots

In Fig. 5.8, the robot base is drawn as a cube. According to Definition 4.12, A;
and A, are inequivalent. Assembly configuration A; can be characterized by the twist
coordinate of its joint axes, (£1,&2,&s). Similarly, A is characterized by (&}, &, &5). At
the initial positions, & = &), & = —&, and & = —¢€. However, & and &, & and
&5 respectively represent identical joint axes with their directions reversed. From a

kinematic performance point of view, these two assembly configurations can perform

the same tasks.

Here we will establish a kinematic equivalence relation between two assembly config-

urations based on their joint twists. Because an AIM merely provides an algebraic

Chapter 5: Modular Robot Kinematics 91

description of the robot assembly, the joint twists can be identified only after a kine-

matic model is imposed on the AIM.

Equivalence of 6R Manipulators

The equivalence of 6R robot kinematics using an intrinsic property, i.e., the joint
axes, was first studied by Paden and Sastry [75]. The joint axes of a 6R manipulator
are all assigned zero-pitched unit amplitude twist coordinate ¢, ¢ = 1,---,6. Then
the ordered set of twists (from base to the end-effector), £ = (&1, ,&), is called a
representative of the manipulator. Because a manipulator may have many different
representatives corresponding to different “zero” postures and different senses of posi-

tive Totation of the joint axes, an equivalence relation is defined on the representatives

of the same manipulator.

Definition 5.11: [75] Two representatives { and £ are equivalent, i.e., { ~ &, if there
exist joint offsets, ¢ € T3, such that
b==G

éi — i(e¢lél e¢2fz L e¢i-1é~:~1)€i(e¢1fle¢zfz .. e¢1’~1fi~1)—1’ i=2,---,5 (5_3]_)

This gives the physical interpretation of “~” as { ~ ¢ if the axis of each (; can be rotated

successively about the previous axes (;_1,--- , ({1 such that its axis is coincident with

that of &;.

5.2.1. Equivalence of R-joint Serial Modular Robots

From now on, we restrict our attention to the kinematic equivalence of the regional
structure of fixed-base serially connected R-joint modular robots. Once this is solved,
it can be extended for a more general tree-structure modular robot. The twist coor-
dinates of all joint axes of a serial modular robot can be obtained from an AIM using
the TreeRobotKinematics algorithm along with a set of joint displacements. Thus,
Definition 5.11 can be directly applied to determine the equivalence of modular robot

joint twists. However, the AIM considered here is the regional structure of a robot; the

Chapter 5: Modular Robot Kinematics 92

position /orientation of the end link affects the position/orientation of the end-effector
attached to it. The geometric symmetry of the end-link allows a non-unique represen-
tation of the end-link orientation relative to the world reference frame. An extension
of Definition 5.11 by considering the symmetric rotations of the end-link is proposed

here for kinematic equivalence of AIMs.

Let £ be the ordered set of joint twists obtained from an AIM of a k-DOF serial modular

robot along with a set of joint angles 8. We write
£=(4,9). (5.32)

The forward kinematic map of the modular robot indicating the location of the end-link

with respect to the base frame is then
fe(Or,--- ,6k) = %6 . 6 Ty (0), (5.33)

where T3 (0) is the initial position/orientation of the end-link frame.

‘.
Figure 5.9: Symmetric rotation on the end link

Because of geometric symmetry, the last joint can be attached to a different port of
the end-link without changing the physical appearance and function of the robot. This
means that the end-link still occupies the same space but in a different orientation by
a symmetry rotation as show in Fig. 5.9. An eztended forward kinematic map, fg,

that includes the symmetric rotation of the end-link is defined as

fg(@b e O, 9e§e) = 69151 e eekékegefe Tbk(o), (5_34)

Chapter 5: Modular Robot Kinematics 93
where £, is the axis of symmetry rotation with respect to the world reference frame
and 6, is the angle of rotation. One can imagine that the symmetry rotation operation
is performed by a virtual joint axis expressed by &, after the rotation about the last
joint axis, &k.

: R. p.
Note that et =) is a 4 x4 homogeneous matrix corresponding to a symme-
0 1
try rotation about the origin of the end-link frame. The rotation matrix, R, belongs
to the symmetry rotation group of the end-link. The displacement p. is the location

of the origin of the end-link frame relative to the world frame.
Definition 5.12: (Kinematic Equivalence)

Let £ and { be the twist sets obtained from AIMs A; and A, of a k-DOF robot
along with joint angles 6; and 5, i.e., € = (A1,0;) and { = (4y,0,). A; and A, are

kinematically equivalent if and only if the following conditions are satisfied

1. £ ~ (, by Definition 5.11.
2. There exists a set of joint offsets, ¢ € T*, and a symmetry rotation of the end-link,
¢ele, such that
fg(ela e)eky 0) = fg(iel + ¢1> e 7i9k + ¢k> ¢e€e)7 (535)

where (, represents the twist coordinate of the symmetric rotation.

Example 5.13: Consider two planar 2-revolute-joint robots shown in Fig. 5.10. Their
bases are coincident. The twist representation of a robot is given directly. Robot
A and B are represented by & = {£,&} and ¢ = {(1,(;} respectively. The initial

position/orientation of the end-link of robot A and B are T4(0) and T'5(0) respectively.
We have

f£(0,0,0) = T4(0) (5.36)
3 (1, 62, 9eCe) = €8 eP28 6T (). (5.37)

¢ is equivalent to {, because 51 = 51 and éz = el (::26_47151, where the offset angle,

¢1 = —x /2. If the second link of robot B is rotated about the z-axis, §,, of its own

Chapter 5: Modular Robot Kinematics 94

jﬂ:/Z ?

e Te] =X 1 A
— Z Ty0)
£ &2

Figure 5.10: Two kinematically equivalent planar robots

module frame by angle 7 and then the entire robot is rotated about the {; axis by
angle 7/2, the end link of robot B will be coincident with that of robot A at its initial

position, i.e.,
fg(07070) = fg(¢17¢2)¢ece)7 (538)

where the offset angles, ¢» = 0, ¢ = 7, and {, = (,. The end-links of both robots will

enerate identical workspace and joint singularities. From (5.38), we have
8
Ts(0) = e—¢ef= e‘¢252e—¢151TA(0). (5.39)
For other joint angles,
£5(61,02,0) = ef181e58 T, (0)

= 0l gty (ef1h1 e i) T4(0)

— eielﬁ (e¢1(f1 eiezfze—duﬁ) TA(O)

- e(i91+¢1)4:1 eﬂrezfz e—¢1(,:1 TA(O)

= e(iel +¢'1)él eie2é‘2 e¢2§2 eﬁbeée e“ﬁbeée e‘¢’2£2 e‘d’l ‘s;l TA(O)

= e(E0+1) (F02+¢2)Cs ebele T5(0)

= S (£01 + 1, 202 + 63, ¢eCe)

So robot A and B are kinematically equivalent. g

Chapter 5: Modular Robot Kinematics 95

5.2.2. Equivalence Test Procedure

From a computational point of view, the implementation of the recursive definition of
the equivalence of manipulator twists in (5.31) is time consuming. The equivalence
of & and (; involves two pairs of successive joint twists, &-1,& and (—1,¢. The
relative orientation between two twists of revolute joints can be characterized by two
parameters: d, the shortest distance between two joint axes, and «, the skew angle

between the direction of the joint axes as shown in Fig. 5.11.

FH &

g o o n e e o D

Figure 5.11: Joint axes parameters

Let &1 = (Vi—1,W;—1) and & = (v;, w;); the skew angle and the shortest distance
between £;,_; and & can be obtained by
1 [Wioa X W]

Wi.1W;
Vie1 "W +V; - Wi

a = tan (5.40)

d=— (5.41)

sin o
A pair of successive twists can be characterized by the pair (d,). Two pairs of twists
are considered to have identical relative orientation if d; = dy and a; = ay. However,
the twists may point in the opposite direction of the line. Two pairs of successive twists
are still considered having identical relative orientation if the skew angles differ by =,
i.e., |a; — as| = . If the relative orientation cannot match, & and (; are definitely

inequivalent.

Chapter 5: Modular Robot Kinematics 96

If the relative orientations are identical, the offset angle ¢; can be found as follows.

Let (-1 = (vi,,w; ;) and {; = (v},w}). For parallel joint axes, let v = w’ —
(wi,wiD)wf and v = w; — (w}_,w} ,T)w;, then

Wi - (v X)

¢; = tan = (5.42)
For non-parallel joint axes, we have
w; X (v; —v]) = tan % (2vi_y — (wi_y - Wi)(vs + V). (5.43)

Substitute ¢; back to equation (5.31); the equivalence of successive twists can be de-
termined. The procedure to check the equivalence of two twists ¢ and {; can be

summarized as follows.

1. Start with two pairs of twists, §_1, &, and ({;_1, ¢.

2. Compute the pairs (dy, ;) for &_; and &, and (ds, @) for ¢;_; and ¢ from equa-
tions (5.40) and (5.41).

3. If d; = dy and oy = a3, or di = ds and |o; — ap| = 7, then
(a) Find the offset angle ¢; from (5.42) and (5.43).
(b) Substitute ¢; into (5.35) to check the equivalence of & and ¢;.
If not, then & and (; are inequivalent.

Example 5.14: Consider the 3-DOF fixed base robots in Example 4.18. There are 98

distinct AIMs, but by Definition 5.12, there are two pairs of AIMs which are kinemat-

ically equivalent as shown in Fig. 5.12 and 5.13.

Figure 5.12: 3-DOF kinematically equivalent robots (A)

Chapter 5: Modular Robot Kinematics | 97

Figure 5.13: 3-DOF kinematically equivalent robots (B)

The AIMs of Pair (A) are

5 0 0 FB 5 0 0 FB
4 7T 0 L 7 8 0 L
Aipy=1}10 7 8 L Ape=10 7 8 L (5.44)
0 0 8 L 0 0 8 L
R R R O R R R 0
The joint twists are
0 0 0 0 0 0
0 -3 6 0 3 -6
5 0 0 0 z 0 0 O
él = 0 0 ol Cl - 0 0 0 (5.45)
0 0 O 0 0 0
-1 -1 1 -1 1 -1
Therefore, & = (1, §& = —(2, and & = —(3. The offset angles, ¢; = ¢ = 0. The

position of the end links are

0 0 -1 —-75 0 0 -1 -75
-1 0 0 0 1 0 0 0

Te = 0 1 0 =2 Te = 0 -1 0 -2 (5.46)
0 0 O 1 0 0 0 1

Let the z-axis of the end link frame be the symmetric rotation’s axis. The twist of this

axis is & = (0,2,0,—1,0,0)7. The symmetric rotation about &, by angle m becomes

1 0 0 0
£ 10 -1 0 o0
*"=lo 0o -1 -4 (5.47)
00 0 1
We have
f£(0,0,7€,) = ™ Ty, = Ty, = £2(0,0,0). (5.48)

Similarly, the AIMs of Pair (B) are

Chapter 5: Modular Robot Kinematics 98

5 0 0 FB 5 0 0 FB
5 8 0 L 6 7 0 L
An=]0 7 8 L Ap=|0 7 8 L (5.49)
0 0 8 L 0 0 8 L
R R R 0 R R R O
The joint twists are
0o 2 -2 0o -2 2
0O 0 0O 0 0 0O
- 0 3 —6 - |l o -3 6
52 - 0 D O Y <2 e O 0 O (5.50)
0 1 -1 0 -1 1
-1 0 O -1 06 0

Therefore, {1 = (1, §&2 = —(2, and & = —(3. The offset angles, ¢; = ¢ = 0. The

position of the end links are

0 0 1 75 0 01 75
0 -1 0 0 0 10 0

Te=11 0 o -2 To=|_1 0 0 -2 (5.51)
0 0 0 1 0 00 1

Let the z-axis of the end link frame be the symmetric rotation’s axis. The twist of this
axis is & = (0,-2,0,1,0,0)7. The symmetric rotation about ¢, by angle « is identical

to (5.47). We have

F£(0,0,7¢,) = €™ Ty, = Ty, = £3(0,0,0). (5.52)

So Aj; is kinematically equivalent to A;» and A, is kinematically equivalent to Ass. g

5.3. Inverse Kinematics

The robot inverse kinematics problem is concerned with finding the joint angles that
cause a mechanism to reach a desired position/orientation of the end-effector. This
is especially important when we want to control the robot motion or to evaluate the

kinematic performance at a task point.

To find a closed form solution to the inverse kinematics problem of a general serial
manipulator attracted the attention of many researchers. The inverse kinematics of a

general 6R robot contain a set of highly nonlinear trigonometric equations in terms of

Chapter 5: Modular Robot Kinematics 99

the joint angles. By using the substitution for every joint angle 6;,

0;
u; = tan 3 (5.53)
For sin 8; and cos#;, one obtains
sin§; = T+ and cosb; = T2 (5.54)

The trigonometric equations are transformed into a set of multivariate polynomial equa-
tions, which can be solved by numerical continuation technique proposed by Wampler,
Morgan and Sommese [97],Tsai and Morgan [92,92], or by elimination method proposed
by Raghavan and Roth [84,85].

These methods can deal with manipulators with five or six revolute joint whose joint
axes are in either general or special geometries such as intersecting axes. However, in
a modular robot, there is no fixed assembly configuration; hence, the geometry of joint
axes varies. Furthermore, the number of a robot’s degree of freedom can be changed.

Thus, it is generally not possible to find a close form solution for inverse kinematics.

In order to provide for generality, we employ a numerical inverse kinematics (NIK)
scheme proposed by Khosla, Neuman, and Prinz [47] to solve the inverse kinematics
of modular robots. This algorithm is also used in solving the inverse kinematics of

RMMS [46]. The block diagram of this scheme is shown in Fig. 5.14.

Desired
X

q
INVERSE .4 k+l —~ "k+1 | pgLay k FORWARD k
JACOBIAN Y + D KINEMATICS

Figure 5.14: Block diagram of the NIK (after [47])

Chapter 5: Modular Robot Kinematics 100

This is a close-loop scheme using Newton-Ralphson iteration. The iteration deter-
mines the necessary change in the joint angles to achieve a differential change in the

position /orientation of the end-effector. The forward kinematics is described by

X= f(q)7 (555)

where x is the Cartesian position and orientation (in Euler angles usually) of the
end-effector and q is a vector of joint angles. The manipulator Jacobian relates the
differential change dx and dq :

dx = J(q) dq. (5.56)

For non-redundant manipulators, the change in dq can be written as
dq = J7(q) dx. (5.57)

This equation can be written in an iteration form as

dQrs1 = J_l(CIk) dXp, (5.58)
where k is the number of iteration. Then the joint displacement can be updated as

Qr+1 = Gk + dQkt1- (5.59)

We then solve equation (5.58) and (5.59) iteratively until z; is within the required

error tolerance € of the desired xg, i.e., |Xg — Xi| < €.

This NIK scheme will be employed in solving inverse kinematics of a modular robot
for the following two conditions: (1) for serial type modular robot only; (2) the inverse
kinematics solution will be a set of joint angles that achieves a desired position in the

end link, which is described by the location of the origin of the end link frame.

The technique to solve the inverse kinematics of a serial robot can be also applied to
robots with star-like topologies, such as a multifinger robot hand where each finger is
considered as a serial manipulator. Because each finger can be actuated independently,
a hand Jacobian can be formulated by stacking the Jacobian of all fingers in block

diagonal form.

Chapter 5: Modular Robot Kinematics 101

Because the kinematics and reach of a modular robot regional structure is the major
concern here, it is feasible to to find the inverse kinematics solution for a given end
link position. Under these circumstances, the robot Jacobian is a 3 X » matrix, termed
the end link Jacobian J¢, which relates the change in joint angles and the Cartesian
location of the origin of the end link frame. n is the number of DOF in the regional
structure. Substituting J¢ to equations (5.56) to (5.58), the NIK of a modular robot
can be established. Note that J¢ is very different from the spatial Jacobian composed
by the twist coordinate of the joint axes defined in (5.26). The derivation of J¢ is
described in Section 5.3.1.

A regional structure with 3 DOF is a non-redundant modular robot since the Jacobian
is an invertible 3 x 3 matrix. For a regional structure with DOF more than 3, the robot
introduces redundancy which will complicate the computation of inverse kinematics
solution. The Jacobian J¢ is no longer invertible and a generalized inverse must be

provided for the inverse operation in (5.58).

A singularity robust inverse, J*, is a generalized inverse suitable for this operation and

is employed in RMMS [46]. It is given by [71]
J*=JE(JT T+ A7 (5.60)

where A is the scale factor which will be adjusted automatically according to the ma-
nipulator’s distance from a singular point. This singularity robust inverse will generate

feasible solutions in the neighborhood of singular points.

Note that by the non-uniqueness of the solution of inverse kinematics, the solution
of NIK is initial condition dependent, i.e., given different initial joint angles and the
position of the end effector, one may find different solution to the same desired task
point. In most of the application, one solution is enough. However, choosing random

initial robot postures may provide us with a set of inverse kinematics solutions.

Chapter 5: Modular Robot Kinematics 102
5.3.1. Derivation of the End Link Jacobian

The end link Jacobian, J¢, is defined to be the matrix relating the changes in joint
angles with the changes in the Cartesian coordinate of the origin of the end link frame.

Let gye € SE(3) be the position/orientation of the end link frame relative to the world

Rwe pwe
Gue = . (5.61)
0 1

Let J° be the spatial Jacobian composed of the joint twists written in the world frame

reference frame, where

defined by (5.26) and J®, the body Jacobian written in the end link frame. They are
related by [69]
J* = Ad,,, J°. (5.62)

Both J* and J® are 6 x n matrices, where n is the DOF of the regional structure of the
robot. The general velocity of the end link written in its own module (body) frame is

given by

b
b b4 Ve
V,=J0= , (5.63)
we
where v? is the velocity of the origin of the end link frame relative to the world frame
as viewed in the current module frame, and w? is the angular velocity of the end link
frame as viewed in the current module frame. Now assume a coordinate frame w’

whose origin is coincident with the end link frame, e, and axes are parallel to the world

frame, w, is defined as shown in Fig. 5.15.

The linear velocity v and the angular velocity w® relative to frame w' is thus
b Rye 0 b b
Uy = V. =Ry V.. (5.64)
0 Rye
Note that v}, is a composite velocity describing both the linear and angular velocity
of frame e. Because frame w' is parallel to the world frame w, Ry = I and Ry. =
Ryw Rye = Ry.. The composite velocity relative to w is given by

wa’ 0
0P = w2, = Ry, V2. (5.65)
0 wa’

Chapter 5: Modular Robot Kinematics 103

(end link frame)

RN
\w (world reference frame)

Figure 5.15: Relations among frames w, w', and e

Substituting (5.63) into (5.65) and from (5.62) we have

v}, = Rye '8 = Ry Ad] L J°6. (5.66)
Because (
R'we S p'we Rwe
Adg,. =) , (5.67)
0 Roye
R;{;‘e —'Rze S Puwe
Adg’w1 = (Bue) . (5.68)
‘ 0 RT.
Hence,

Rye O REZ, —RZT, S(Pue .
vfu = (Pue) J°0
0 Ruye 0 RT,

= JE§. (5.69)

Note that JZ is a 6 x n matrix. Since only the velocity of the origin of the end link

frame, v¢, is concerned, denoting JZ by two 3 x n submatrices, JZ and JE, we have

\ JEY .
b = = 9. (5.70)
W 7

Chapter 5: Modular Robot Kinematics 104
Finally,
vt = JEFg, (5.71)

where J¥ defines the end link Jacobian, J¢, i.e., JZ = Je.

5.4. Discussion

This chapter formulated the modular robot forward kinematics based on the Product-
of-Exponential model in two stages. First, the local representation of a joint twist is in-
troduced by applying port conversion functions. The forward transformation of a dyad
is derived from a set of initial position functions defined according to the connection of
the dyad. The tree-structured robot forward kinematics can be derived from this dyad
kinematics along with a tree-traversing algorithm. Equipped with a kinematic model,
the kinematic equivalence of AIMs can be defined. Kinematic equivalent AIMs have
identical kinematic properties. Finally, a numerical inverse kinematics scheme based
on Newton-Ralphson method is introduced for solving the joint angles for a desired
end link position. The next chapter will show that both the kinematic equivalence of

AIMs and the inverse kinematics solutions are crucial to the task-optimal configuration

problem.

105

Chapter 6

Task-Oriented Optimal Configurations

This chapter discusses issues pertaining to the optimal assembly configuration of a
modular robot for a given task. Owing to the standardized module design and multiple
connection methods on link modules, a modular robot can be reconfigured freely using
the same set of modules. One can generate all possible assembly configurations and test
each one against the task requirements to find the best one for a particular robot task.
However, a reconfiguration may result in the change of robot topology which will, in
turn, alter the basic function of the robot. As mentioned before, robots with different
topologies are functionally different. Thus, how to define a robot task conformed with
its associated topology and an objective criteria to evaluate the task performance of a
robot become imperative subjects. Furthermore, the existence of multiple connections
on a link module may create joint patterns with undesirable kinematics, such as joint
redundancy and link interference. From a task point of view, these issues affect the

performance of a modular robot and should be considered.

Paredis and Khosla [76] have considered task-based robot design for fixed configuration
robots. In their work, tasks are defined as a set of working points in the task space.
A kinematic space, which is the Cartesian product of D-H configuration space of links,
the joint space, and the task space, is introduced. A manipulator in a certain pos-

ture at a certain working point can be represented as a point in the kinematic space.

Chapter 6: Task-Oriented Optimal Configurations 106
By formulating robot inverse kinematics in a closed form, all task specifications can be
transformed into equalities and inequalities in the kinematic space. The design of a ma-
nipulator becomes an optimization problem in the kinematic space, where the objective
function is defined according to the task specification. Because all design parameters
are continuous, conventional optimization techniques, such as gradient descent meth-
ods, can be employed. However, in a modular reconfigurable robot, all of the design
parameters, such as link lengths and connecting port locations, are pre-determined in
the module level. The kinematic space that corresponds to all assembly configurations

is a discrete set, so these continuous optimization techniques cannot apply.

Here the task-oriented optimal assembly configuration problem is formulated as an opti-
mization problem by defining a task related objective function. This function evaluates
a modular robot assembly configuration for a given task while maintaining desirable
joint patterns in the robot construction. The descriptions of a task is taken as parame-
ters to the objective function. The search space is the set of assembly configurations, a
discrete set instead of a continuous parameter set. A combinatorial optimization tech-

nique termed genetic algorithms is employed for this problem because of the discrete

nature of the assembly configuration set.

This chapter is organized as follows. Section 6.1 discusses the general framework in
solving this task-optimal configuration problem. Section 6.2 and 6.3 discuss the task
and structure specifications required in a task description respectively. Section 6.4 for-
mulates the optimization function of serial type modular robots based on the task and
structure specifications. Section 6.5 introduces the genetic algorithm and the coding

scheme for AIMs employed in this optimization problem. Examples that demonstrate

this problem solving strategy are given in Section 6.6.

6.1. General Framework

To develop a solution to the task-optimal configuration problem, we pose it as an

optimization problem. A task-oriented optimization function, termed an assembly

Chapter 6: Task-Oriented Optimal Configurations 107

...

MODULE _; ENUMERATION > FORWARD
""") N g]
SET { ALGORITHM | i KINEMATICS | AIMs
with
DOF Forward Kinematics
Topology TEC
TPs
TASK SPECIFICATION ——3 ASSEMBLY
CONFIGURATION
MAD EVALUATION
STRUCTURE SPECIFICATION o3} FUNCTION
OPTIMIZATION
ALGORITHMS
\
TASK-ORIENTED
OPTIMAL
CONFIGURATIONS

Figure 6.1: Framework for task-optimal configuration problem

configuration evaluation function (ACEF), which evaluates the task performance of
an AIM, is formulated. The description of a robot task becomes parameters of the

ACEF. The general framework solving this problem is shown in Fig. 6.1.

Because of the high complexity in finding a robot assembly which is not only task-
optimal but also satisfies kinematic constraints, the task requirement is divided into
task and structure specifications. Task specifications directly define and evaluate a
robot task, and structure specifications contain the kinematic constraints that must be

satisfied by the robot while executing the task.

The task specification gives a robot task at executable level and an objective criteria to
judge the robot performance. An executable robot task means a sequence of motions
and positions of the robot mechanism. Using this task definition, one can immediately

decide the capability of the robot to achieve the task. A task evaluation criterion (TEC)

Chapter 6: Task-Oriented Optimal Configurations 108
is necessary for judging the performance of different robot configurations executing an
identical task. The criterion should also reflect the objective of a task requirement. For
example, the TEC for tasks emphasizing positioning accuracy will be very different from
that emphasizing force transmission ratio even if the sequence of motion and positions

of the tasks are identical.

The structure specification describes the robot topology, the number of robot degree-of-
freedom (DOF), and a function termed the module assembly preference (MAP). Robot
topology is directly related to the function of the robot mechanism. It must match the
class of the robot task given in the task specification. Different numbers of DOFs and
different robot topologies alter the kinematics and dynamics of the assembled robot,
and there is no common ground to compare robot with different number of DOFs and
topologies. Hence, this information is specified prior to the enumeration algorithm.
As mentioned in Chapter 4, the proposed enumeration method can handle robots with
predetermined robot topology, so the input to the ACEF is a set of AIMs with a
predefined number of DOFs and robot topology. |

In order to satisfy the kinematic constraint on the joint assembly patterns in an opti-
mal robot configuration, an auxiliary function, module assembly preference (MAP), is
defined on all of the distinct joint patterns. The MAP is a binary function whose value
is either a zero or a one. A zero is assigned to an unwanted joint pattern; a one, to an
acceptable pattern. Multiplying the MAPs of all joint patterns, a preference value of
the entire AIM, which is also a zero or a one, can be obtained. A zero shows the AIM

possesses inappropriate joint patterns.

The overall ACEF that evaluates a robot executing a task while rejecting undesirable
kinematic constraints is defined to be the product of the TEC and the preference value

of the robot. The optimization problem is then stated as:

GIVEN: a robot task, a TEC, a MAP, and prescribed robot topology

FIND: an AIM in the assembly configuration set whose ACEF value achieves

maximum

Chapter 6: Task-Oriented Optimal Configurations 109
Because the robot task is closely related to its topology, the actual form of ACEF varies.
In the following sections, we focus on finding task-optimal assembly configurations of a
serial type fixed base modular arm with R-joints to demonstrate this problem solving

strategy.

6.2. Task Specifications

6.2.1. Definition of Robot Tasks

A robot task can be defined at an abstract and descriptive level such that only the
motion of the robot and the environment it is interacted with are given. As an example,
consider the robot task: “grasp a cup and move it from A to B.” From this kind of task
description, a task planner would construct robot trajectories and motion sequences at

the executable level for task execution.

The execution level motion sequence and robot trajectory are adopted as the definition
of a robot task for two reasons. First, with a prescribed robot motion and trajectory,
one can immediately determine the capability of a modular robot configuration to carry
out the task. If the robot is unable to carry out the motion, it is unnecessary to proceed
any further with the task evaluation procedure. Secondly, it is very difficult to define
a measure to quantify the goodness of a robot task with a very vague definition. An

objective measure can be defined on this task specification for evaluation.

In this chapter, a robot task is defined to be a collection of working points, W, in
the operation space R® [33,48] or a collection of the end-effector positions/orientations
w, = (2,9, 2,0, 9,v), where 6, ¢, and ¢ are Euler angles representing the orientation of
the end-effector frame. If the robot is to follow a trajectory, say a spray painting robot
or an arc welding robot following a prescribed path, this task can be approximated by
a set of points along the path. (Fig. 6.2) For more specific purposes, the force /moment

at the end-effector and position accuracy at the working points can be also included

Chapter 6: Task-Oriented Optimal Configurations 110

WP,

Z /\
wP
\-— TRAJECTORY

wP

7

oy

X 0

Figure 6.2: Definition of a Robot Task

as part of the definition of a task [33].

6.2.2. Task Evaluation Criteria

A task evaluation criteria (TEC) should be defined on a robot assembly configuration
while taking the task description as the input parameter. Thus, one can use a TEC to
compare the performance of different robot configurations executing an identical task.

To achieve this goal, a TEC should satisfy the following requirements:

1. It should reflect the essence of the task definition. In the serial robot case, the
TEC is defined on each working point because a single working point alone can
be defined as a task. A method to extend it to a collection of working points is

described in the following context.

2. It is a monotonic increasing positive real valued function so that an AIM with

large TEC value represents a better configuration.

3. It should meet the requirement of the robot’s task objective. For instance, a

certain positioning accuracy or maximum force transmission ratio at the working

points might be useful TECs.

Since a robot task is a set of discrete working points, many design criteria or kinematic

performance measures of a robot manipulator can be employed for task evaluation 2,16,

Chapter 6: Task-Oriented Optimal Configurations 111

50,51,107]. These performance measures evaluate the performance of a manipulator at

a particular working point with a specified posture, and hence are called local measures.

These local measures often utilize the Jacobian matrix, J, of the manipulator struc-
ture. For example, the product of all singular values of a Jacobian, det(JJT)2, is
called the manipulability measure by Yoshikawa [107,108]. This manipulability mea-
sure represents the volume of the manipulability ellipsoid in the configuration space
of the manipulator. The condition number of a Jacobian, Cond(J) = 0mas/Omin, is
used by Klein and Blaho [50,51] to measure the dexterity of a manipulator posture.
The condition number indicates the uniformity of the Jacobian transformation with
respect to the direction of joint rates. The minimum singular value of the Jacobian,
min o(J), is also proposed by Klein and Blaho [50] as a measure of the closeness of the
manipulator postures to singularities. The reciprocal of the condition number, termed
the conditioning indez (CI), has been proposed by Angeles [2] to measure the closeness
of a configuration to a singularity. The range of CI is from 0 to 1. CI becomes zero if

the manipulator is in singular position. A robot is called isotropic if its CI attains 1.

A local task-oriented performance measure has been explored by Chiu [16]. The tasks
were defined to be a set of force and velocity vectors of interest. A task compatibility
indexr based on the summation of the distances from the center to the boundary of the

manipulability ellipsoid in the direction of interest is then defined.

The manipulability, the minimum singular value, and the conditioning index of a ma-
nipulator Jacobian satisfy all three requirements, therefore, any one of them can be
chosen as a TEC for modular robots. The manipulability is a more favorable TEC
because it is translational invariant properties [56]. That means its value is not altered

as the base reference frame changes.

Let u; be the value of the TEC of a modular robot at a task point i. y; is obtained by
substituting the solution of the inverse kinematics for task point. ¢ to the TEC. Distinct
AIMs possess different robot kinematics; hence, the solution of the inverse kinematics

for identical task differs. For a single task point, u; suffices to represent the performance

Chapter 6: Task-Oriented Optimal Configurations 112

of a robot. However, for a collection of n task points, the total performance u of the
task is defined to be the smallest y; among the task points, i.e,

= in _p; . 6.1

B &)

o represents the worst case among the collection of task points. Since p; > 0, by

definition, g > 0. Taking the minimum of y; as the total performance of a robot

ensures that one robot assembly will be better than the other in the worst case.

Example 6.1: Let’s consider using the 3-DOF serial robot of Example 5.10 to execute
a task in the operation space. The manipulability is chosen to be the TEC. We require
that the origin of the end link frame pass through three task points. The points and
the corresponding manipulabilities are listed in Table 6.1. Since the task is a set of

task points, by definition, the total performance p is the smallest manipulability, i.e.,

1= 16.0997. y

] Task Point lManipulabﬂity
11(-3.5,3.5,3.) | 16.0997

(-3.5,4.0,3.5) | 21.3534
3 | (-2.5,5.0,4.0) | 23.1894

Table 6.1: The manipulability of task points

6.3. Structure Specifications

6.3.1. DOF Selection

It is assumed that the number of DOF's required by a task will be provided prior to the
assembly enumeration process for the generation of candidate assémbly configurations.
In general, six DOFs are necessary for spatial positioning and orienting. However,
not all tasks require six DOFs. For example, when an IC is inserted to a printed
circuit board (PCB), one DOF is required to orient the IC in the plane of the PCB

and three DOFs are necessary to locate the position, so four DOFs are the minimum

Chapter 6: Task-Oriented Optimal Configurations 113

requirement. When a tool at the end-effector has an orientational symmetry as in arc
welding task, the minimum number of DOFs becomes five. On the other hand, when
there are obstacles in the task space or the working environment is highly constrained

[15] and more dexterity is required to perform the task, the minimum number of DOFs

may be more than six.

In this thesis, we consider the kinematics of the regional structure of a modular robot
without the end-effector (or wrist). A 3-DOF spherical wrist or 2-DOF wrist is consid-
ered as a separate module unit to be attached to the connecting port on the end link.
To position a regional structure in the task space, 3 DOF is the minimum requirement.
A 3-DOF regional structure with a 3-DOF wrist will compose a 6-DOF robot whose
end-effector can point to any direction and position in any location in its workspace.
More DOFs in the regional structure with the same wrist will create a redundant ma-
nipulator. Therefore, we begin with 3 DOF for the regional structure of a modular

robot in the task specification.

Note that the number of DOFs sent to the enumeration procedure is the minimum
DOF required for a task. A larger number of DOFs may increase the dexterity at
the end link, but control and planning issues become more complicated. The number
of DOFs specified in the structure description does not necessarily satisfy the task
specifications. The reachability of the task points constrains the minimum number of
DOFs. When all of the candidate assembly configurations for a given number of DOFs
fail to satisfy the task specifications, the number of DOFs is increased by one and the
enumeration procedure is started again. This process is repeated until all task points

are within the reach of the robot.

6.3.2. Topology Selection

The topology of a robot is directly related to the fundamental function of the robot.
Robots with different topologies perform different classes of tasks. For instance, a
serial manipulator typically has a large workspace, which makes it suitable for pick-

and-place work, while serial/parallel hybrid robots have limited workspace, which make

Chapter 6: Task-Oriented Optimal Configurations 114

them suitable for fine motion manipulation. The control and planning issues in those
systems are also different. Motion planning in a manipulator generally is planning the
trajectory of the end-effector. For a robot hand, the planning of the fingertip locations

on the grasped object becomes an important issue [12,13].

During the process of finding task-optimal configurations, the topology of the robots
and the corresponding class of tasks are described in the structure and task specifica-
tions respectively. The robot topology is provided prior to the enumeration procedure

in generating candidate assembly configurations with identical topology.

Because serial-type manipulators are widely used in industrial application, they are
chosen as a template topology for the task-optimal configuration problem. The task
defined in Section 6.2.1 is a set of working points in the operation space, which is a

class of tasks serial manipulators can execute.

6.3.3. Module Assembly Preference

Due to the possibility of multiple connections, some joint assembly patterns will create
kinematic constraint, such as link interference and joint redundancy, in a modular robot
assembly. Link interference means collisions among different links in a robot due to
undesirable joint motions. The inverse kinematics solution may not be realized because
of the link interference. Joint redundancy occurs when the axes of two revolute joints
attached to the same link are collinear as shown in Fig. 6.3. When a redundant joint
assembly pattern is included in a robot assembly, the two joints create only one type of
rotary motion along the joint axes; hence, the effective degree of freedom of the robot is
decreased by one. Indeed, generically a robot will lose DOF at singular positions where
the Jacobian matrix loses rank. Joint redundancy will always cause loss of Jacobian
rank. This will cause difficulties in controlling the robot motion and finding inverse
kinematics of the end-effector. However, redundant joints extend the dimension of the
robot arm, and thus enlarge the workspace. Besides, pairs of redundant joints are fault

tolerant [77]: when one of the two joints fails, the other joint can still drive that degree

Chapter 6: Task-Oriented Optimal Configurations 115

Figure 6.3: Assembly patterns with joint redundancy

of freedom. The decision to retain or to remove these conditions depends on the user’s

intention, which is described in the structure specifications.

In order to retain or filter out a joint assembly pattern in a modular robot, a binary-
valued function called the module assembly preference (MAP), ¢, will be defined on
every distinct assembly pattern. Let F/R represent the set of distinct assembly pat-
terns, where F is the set of joint patterns and R is the symmetry rotation group of

that type of links.

Definition 6.2: A module assembly preference, ¢ : F/R — {0,1}, is a surjective

function such that
¢:[flmw, w=0,1, (6.2)

where [f] € F/R represents a distinct joint pattern.

#([f]) = O represents an undesirable joint pattern. The MAP will be stated in the

structure specifications.

The preference of an entire robot assembly configuration can be defined based on the
MAP for individual assembly patterns. This preference value will indicate the existence
of undesirable joint patterns in the robot structure. Since a row vector in an AIM
represents the assembly state on a link in the robot, the preference value on every link
assembly can be obtained by applying a MAP to every row of the AIM. Suppose the
robot has n links and the values of the MAP on Link ¢ is w;. The structural preference

of an entire robot assembly configuration, ®, is defined as follows.

Chapter 6: Task-Oriented Optimal Configurations 116

Definition 6.3: The structural preference, ®, of a modular robot assembly configu-

ration A is the product of the individual MAPs of the robot’s joint assembly patterns,

B(A) = f_[l wi (6.3)

where A is the AIM of a robot assembly configuration.

Since w; is equal to 0 or 1, ®(A) is equal to 0 or 1 as well. ®(A4) = 0 indicates the
assembly configuration contains undesirable link assembly states which may cause link
interference or link redundancy defined in the structure specifications. The choice of a

MAP, ¢, is illustrated in the following example.
Example 6.4: The structure specification of a modular robot assembly are given by:

¢ DOF: 3

e Topology: fixed base serial type with R-joints and prismatic links

¢ Kinematic Constraints: minimum link interference and no joint redundancy

The DOF and topology requirement will be sent to the enumeration procedure to
generate all candidate configurations. In this serial manipulator, all links except the
base and the end link are connected by two joints. From the joint assembly enumeration
algorithm described in Section 4.1, we obtain nine distinct assembly patterns for an
intermediate prism link. The choice of no joint redundancy implies that the MAP will
be zero for all joint patterns in which two joint axes are collinear. The requirement
on minimum link interference can be implemented if we set to zero the MAP of the

patterns in which two joints are attached to the same end of the prism. The MAP of

the rest of the patterns are all set to one.

For the end prism link, there are only two distinct assembly patterns. The requirements
on the robot structure have little influence on the end link patterns because there is only
one joint connected to the end link. Table 6.4 shows the MAP. for assembly patterns
on a prismatic link and a cubic link modules according to the kinematic constraints

described above. Suppose

Chapter 6: Task-Oriented Optimal Configurations 117
ASSEMBLY PATTERNS MAP ASSEMBLY PATTERNS MAP
1 1
0 0
1 1
0 1
1 1
1 0
0 1
Figure 6.4: MAP for assembly patterns on a prism and a cube
1 0 0 FB 1 0 0 FB
1 2 0 L 1 2 0 L
Ai=]|0 5 2 I Ay=|0 1 9 I (6.4)
0 0 2 L 0 0 2 L
R R R O R R R 0

are the AIMs of a 3-DOF fixed base robot. The structural preference of A; is calculated

starting from the base module. Since there is only one assembly state on the fixed base,

its MAP is set to 1. There are two R-joints connected to port 1 and 2 of link 2, so

wy = 1. R-joints are connected to port 2 and 5 of link 3, so wz = 1. For the end link,

Chapter 6: Task-Oriented Optimal Configurations 118

wy = 1. Therefore, ®(A;) = ws - w3 - wy = 1. Similarly, in Ay, ws = 1, wz = 0, and

wy =1, s0 ®(A;) = 0. y

The above example shows that kinematic constraints described in the robot structure
specifications can be translated into a set of rules called module assembly preferences.
The product of individual link MAPs forms the structural preference, which provides

a convenient way to evaluate the robot assembly over the kinematic constraints.

6.4. Assembly Configuration Evaluation Function
of Serial Robots

The structure of an ACEF for a serial modular robot is shown in Fig. 6.5. This
function evaluates the “goodness” of a robot assembly configuration for a required
task and structure specification. The “goodness” is represented by a non-negative
real number. An AIM with large real value represents a good assembly configuration

according to the requirements.

The input to the ACEF is an AIM with a predefined number of DOF and topology. The
structure of an ACEF is divided into two parts: task and structure evaluations. The
parameters related to robot structure is the MAP, ¢, which is a direct interpretation of
the kinematic constraints on the robot configuration. Given ¢, the structural preference
® of the AIM can be found according to (6.3). The part on task evaluation contains
two sets of parameters: task points and TEC. Task points define the robot task and
TEC is chosen from the available local performance measures mentioned in Section

6.2.2 depending on the objective of the task.

In the first part of task evaluation, the workspace check procedure checks a given AIM
among all task points. This test determines the capability of an assembly configuration
carrying out the specified task. The next section will explain the workspace check
procedure in detail. If any one of the task points is outside of the robot’s workspace,
there is no need to proceed with the evaluation of task performance, and the total task

performance measure p will be set to zero. If all task points are reachable, the TEC is

Chapter 6: Task-Oriented Optimal Configurations 119

AIM (with DOF & Topology)

|

STRUCTURE TASK Task
MAP EVALUATION EVALUATION Points

WORKSPACE
¢ =Ilw ; CHECK

No

Yes

TASK POINT

e TEC
EVALUATION
pu=20 >0
ACEF

Y=0qdu

Figure 6.5: Structure of ACEF for serial modular robots

employed to calculate the total performance u. The ACEF is defined to be the product

of the structure preference ® and the total performance p.

Definition 6.5: The ACEF, ¥, for the performance of a robot assembly, A, is

U(A4) = &(A) - p(4). (6.5)

Chapter 6: Task-Oriented Optimal Configurations 120
Since ®(A) is equal to zero or one, and pu(A) > 0, by definition, ¥(A) > 0 as well.
Note that the structure preference ® functions as a filter for the ACEF. For assembly
configurations satisfying the kinematic constraints, ® is always equal to 1. There-
fore, ¥(A) = p(A). Comparing the total performance of AIMs is equivalent to the
comparison of the TECs of the task points only.

6.4.1. Workspace Check Procedure

An intuitive way to check whether a task point is in the workspace is to derive a set of
close form algebraic expressions describing the boundary of workspace in terms of the
robot parameters. Based on these expressions, a system of inequalities can be set up to
define areas in the reach of the manipulator. However, the highly nonlinear geometry of
a robot workspace [36,55,93,96,106] renders the formulation of this algebraic expression

almost impossible.

A feasible way is to solve the inverse kinematics for the task point. The inverse kinemat-
ics of a general 6 DOF robot contains a set of highly nonlinear trigonometric equations
which can be transformed into a set of multivariate polynomial equations. The solu-
tion to this set of polynomial equations contains real and complex roots. Real roots
correspond to realizable robot postures for the task points, while complex roots are
not realizable. If all roots from an inverse kinematics solution are complex, this task

point is out of the manipulator’s reach.

Here we adopt a similar concept, but use a numerical inverse kinematics technique
during the workspace check. Using a numerical inverse to check the workspace can
be very efficient and adaptable to robots with different DOFs. The solution of the
numerical inverse kinematics is found if the calculated task point is within a preset
tolerance ¢ in the neighborhood of the true task point. If the true task point is outside
of the workspace, the calculated point will never converge to the true task point.
The numerical inverse kinematics (NIK) mentioned in Section 5.3 is a very robust
and efficient algorithm which will converge to a solution within a few iterations if the

solution exists. Therefore, the workspace check is performed by setting a maximum

Chapter 6: Task-Oriented Optimal Configurations 121

number of iterations for NIK initially. If the actual number of iteration exceeds the
upper bound and no converging solution is found, this task point is considered out of

reach by the robot.

Note that the speed of convergence of the NIK solution depends on the selection of
the tolerance e. When the task point is within the workspace but very close to its
boundary, the solution of the NIK method will converge to the true point very slowly
and the number of iterations may exceed the preset upper bound. However, the posture
of the manipulator is usually very close to a singularity. Hence, the task point will be

marked infeasible for this robot assembly.

6.5. Genetic Algorithms for Modular Robots

A “Genetic algorithm” (GA) is a search and/or optimization method based on the
model of the ecological system in which the mechanics of natural selection and natural
genetics are primary factors for improving the performance of a population of creatures.
It was first developed by Holland and colleagues at the University of Michigan [40].
In this algorithm, candidate solutions are coded into string structures similar to the
natural genetic code. A fitness function will assign a fitness value to every string. The
surviving candidates, which are selected by the principle of survival of the fittest, are
combined among themselves with a structured, yet randomized, information change
to form a new generation of candidate solutions. The string structures of the new
generation are created by using bits and pieces of the fittest in the previous generation.
It is argued that these bits and pieces of the string, or schemata, are contributed to

the overall performance of the string, and hence create offsprings with higher fitness

values.

The most prominent feature of GAs is the use of a coded parameter set. A point in the
search space is represented by a coded string. Furthermore, the algorithm starts from
a set of points instead of one. A generic GA uses three operators to mimic the adaptive

process of natural systems: (1) the reproduction operator, (2) the crossover operator,

Chapter 6: Task-Oriented Optimal Configurations 122
and (3) the mutation operator. The reproduction operator is a process to select the
survival in a set of candidate strings according to their fitness function values. The
fitness function depends on the goal for the search/optimization problem. The fitness
value determines the probability of a string contributing to the offspring in the next

generation.

The crossover operator is a reform operation for the survival candidates. The survivors
of the reproduction process will enter a mating pool to create a set of new strings. The
mates are chosen randomly among strings in the pool. In natural systems, the mated
creatures create a new generation by exchanging information between the two. In the
same way, the crossover process is performed by exchanging bits or pieces of strings
among the old surviving strings. The bits or pieces are crossed in couples by random

selection.

In a natural system, mutation may drastically change the characteristics of a creature.
In the artificial genetic approach, the mutation process result in escapes from the local
minimum in search space. In the GA, the mutation operator randomly alternates the

value of a string position during the crossover process with a very small probability.

Note that a GA uses an objective function (the fitness function) only; no auxiliary
information, such as the gradient of the objective function, is required. And it uses
probabilistic transition rules instead of deterministic ones. These features make the GA
a robust search algorithm for a wide range of applications including both continuous

and combinatorial optimization problems [35].

Several researchers have been applying GAs to modular or distributed robotic systems.
A distributed GA is proposed by Ueyama, Fukuda, and Arai [95] for the structure
configuration of CEBOT. The objective of this work is to plan paths between cells so
that they can be connected together in a prescribed assembly sequence. Different paths
that achieve the same goal are coded into string structure. The fitness function is the
sum of the distance between any two cells. In the task-based robot design proposed by

Kim and Khosla [48], a multiple-population GA (MGA) is employed to find an optimal

Chapter 6: Task-Oriented Optimal Configurations 123

serial manipulator design that satisfies all design constraints.

The task-optimal configuration problem is a combinatorial optimization problem. This
kind of problem also can be solved by using exhaustive search method. In the exhaus-
tive search method, a search tree on AIMs is built. Applying standard Breath-First-
Search or Depth-First-Search algorithms, a globally optimal solution can be found.
For a small number of assembly configurations, this technique can find the solution
in a reasonable amount of time. However, as the number of robot DOFs increases,
the set of assembly configurations becomes factorially large and the exhaustive search
becomes almost impossible. Furthermore, one can imagine that there is an analogy
between the structure of gene and the structure of a serial-connected modular robot.
The structure of a gene consists of a string of alleles. The characteristics of the entire
gene is determined by arrangement of alleles, the building block. The performance of
a modular robot is determined by the module assemblies that compose the entire kine-
matic chain. Every link-joint assembly contributes to the final characteristics of the

robot. Therefore, GAs are a feasible approach for solving the task-optimal problem.

6.5.1. Coding Schemes for AIMs

In the task-optimal modular robot configuration problem, the parameter set is the set
of AIMs. Therefore, a coding scheme is necessary to transform an AIM into a coded

string for the application of GAs.

A binary string of 0 or 1 is chosen to represent an AIM because it can offer the maximum
number of schemata per bit of any coding [35]. We call this binary string an assembly
string. This string contains numerous substrings representing the types of every joint
and link and joint patterns in an AIM. The lengths of the substrings are determined
by the numbers in the type of joints and links and distinct joint patterns. Since joints
and links are arranged in alternating sequence in a serial type robot, the substrings

representing the types of joints and links are arranged in the same alternating sequence

as in the AIM shown in Fig. 6.6.

Chapter 6: Task-Oriented Optimal Configurations 124

1|10{1|1|0|1{0{0|0|1|1|1] euuuuuuas [1]O0|O1|1|1]|0|1]|1]|0

A AA AA AA AA A A AA AA AA A
Joint1 i Joint2 ! Joint n
Type Link1 Type Link?2 i Type Link n
Type Link 1 Type Link n-1 Type Link n
Pattern Pattern Pattern
Joint 1 Joint 2 Joint n-1 Joint n
® o @ oo ® ® ®
BASE LINK 1 LINK 2 LINK n-1 LINK n

Figure 6.6: An assembly string representation of an AIM

Suppose the substring for the joint type is of length [;. This substring can represent
2L types of joints. Each type of joints is assigned a unique bit string pattern of length
l,. Similarly, a substring of the link type of length I, can represent up to 2’ types of
links. In order to reduce the size of the search space, only a distinct joint pattern is
assigned a bit string pattern; in other words, equivalent joint patterns have only one
binary substring representation. If this joint pattern substring is of length I3, it can
represent up to 2 distinct joint patterns. Note that the number of joints connected to
intermediate links in the serial robot, i.e., link 1 to n — 1 (Fig. 6.6), is different from
that to the end link, i.e, link n. Therefore, the length of the joint pattern substring for
the end link is different from that of the intermediate links, and we assume the length
of this substring to be l;. Since there is only one method to attach a joint to the base of
the robot, the joint pattern on the base is unnecessary to be specified in the assembly
string. Hence, an n-DOF serial type robot can be expressed by an assembly string of
length nly +nly+ (n—1) I3+, If all joints (or all links) are the same, the joint (link)

type substrings can be removed from the assembly string, i.e, {; = 0 (or I = 0).

Chapter 6: Task-Oriented Optimal Configurations 125
Because the number of distinct joint patterns is determined by the link module type,
the joint pattern substring must be sufficiently long to represent the entire set of joint
patterns. For some link module type, the number of distinct joint patterns which this
substring can represnt is much larger than that of the actual distinct joint patterns.
Hence, it is always possible to map an AIM into an assembly string, but the converse
does not hold every time. In other words, the mapping from the set of AIMs to the set
of assembly strings is injective. For consistency, the fitness values of those assembly

strings that cannot be mapped back to AIMs will be set to zero.

6.5.2. GA for Task-Optimal Configuration Problem

Fig. 6.7 depicts the application of GA in solving the task-optimal configuration prob-
lem. The input is a set of randomly chosen assembly strings, PopInitial. The number
of elements in the set is specified by the user. The fitness function becomes the ACEF.
The ACEF is a task dependent function, in which the task and structure specifications
are the parameters. The fitness value of every AIM in PopInitial is obtained through
an ACEF. If the fitness values of the initial set of strings are all equal to zero, the ini-

tial assembly string generation procedure will be repeated until a string with non-zero

fitness value is found.

A new generation of AIMS are created by the three GA operators. In the reproduction
process, the fitness values of all assembly strings in the population set are summed up.
The portion of the fitness value of a string in the sum of fitness defines the probability
of that string contributing to the next generation, i.e., the number of copies of the same
string pattern appearing in the next generation. At the crossover stage, the pieces of
the string for exchange are chosen randomly between each pair of assembly strings.
The mutation operator is implemented as a process that alternates the values of the

string position with a very small probability during the reproduction and crossover

stages.

The new generation of assembly strings are presented to the ACEF for fitness evalua-

tion, and the whole process will repeat until a predetermined generation, i.e., PopFinal

Chapter 6: Task-Oriented Optimal Configurations 126

Popilnitial
(AIMs) i=1

e AP
<«————— Task Points

s—— TEC

Assembly Contiguration
Evaluation Function

Pop, FitVec

GA

i Reproduction
Crossover
Mutation

PopNext

no

PopFinal
(AlMs)

Figure 6.7: GA for task-optimal configurations

in the figure, is reached. After the destination generation is reached, we choose the
assembly string in this generation that has the largest fitness value as the optimal

assembly configuration satisfying the required task and structure specifications.

Chapter 6: Task-Oriented Optimal Configurations 127
6.6. Examples

In this section, we demonstrate the use of genetic algorithms in solving a task-optimal

configuration problem.

Example 6.6: We wish to find a 3-DOF fixed base serial robot with R-joints that
passes through a set of task points listed in Table 6.2. We also require that there
is no redundant joints and minimum link interference. The TEC is chosen to be the
manipulator’s manipulability measure. With those task and structure specifications on
the robot configuration, the ACEF can be formulated using the MAP defined in Fig.
6.4 and the TEC of (6.1).

Task Point Task Point
11(3.0,0.5,0.5) | 4| (2.0,2.0,0.5)
(3.0,0.5,1.5) | 5 | (0.5,3.0,0.5)
31(2.0,2.0,1.5) | 6 | (0.5,3.0,1.5)

Table 6.2: Task point set (6.6)

The initial set of AIMs is shown in Fig. 6.8. The empty boxes represent assembly
strings that do not correspond to any AIM. Their fitness values are set to zero. The
fitness values of these AIMs obtained from the ACEF are (5.7963,0.,0.,5.7963,0.,0.).
The parameters used in the GA are P,,s; = 0.6, the probability of crossover operation,
and Ppytqte = 0.1, the probability of mutation. The destination generation is chosen to
be the 10* generation. After evolving ten generations, the AIMs in the final generation
are shown in Fig. 6.9. Their fitness values are (5.7963,0.,5.7963,5.7963,0.,0.). Fig.
6.10 shows the average and maximum fitness value in every generation. Assembly
configurations 1, 3, and 4 are identical and have the highest fitness value of 5.7963 so

they are chosen as the optimal one. g

Example 6.7: Now we construct a robot with a new set of task points listed in
Table 6.3. The task points are on an 135° arc of r = 5.656. The task and structure

specifications are identical to Example 6.6.

Chapter 6: Task-Oriented Optimal Configurations 128

Figure 6.9: Final configurations (6.6)

Fitness

5
4
? / N\ \ /r
/
/
/ AN ,’ AN ,’
24 dd » / b /
\ / \ /
\ \ /
AV AN 4 Gen
2 3 4 5 6 7 & 9 10 11 :

Figure 6.10: Average and maximum fitness in every generation (6.6)

Task Point Task Point
1| (—5.657,0.0,4.0) 41(0.0,5.657,4.0)
2| (—4.899,2.828,4.0) | 5 | (2.828,4.899,4.0)
3 1(—2.828,4.899,4.0) | 6 | (4.0,4.0,4.0)

Table 6.3: Task point set (6.7)

The initial set of AIMs is shown in Fig. 6.11. Their fitness values obtained from the
ACEF are (0.,0.,0.,0.,0.,25.45). The parameters used in the GA are P.,.,s = 0.6 and
Prutate = 0.1. The destination generation is chosen to be the 20** generation. After

evolving 20 generations, the AIMs in the final generation are shown in Fig. 6.12. Their

Chapter 6: Task-Oriented Optimal Configurations 129

fitness values are (0.,0.,0.,25.45,0.,0.). Fig. 6.13 shows the average and maximum

fitness value in every generation. Assembly configuration 4 has the highest fitness

value of 25.45 so it is chosen as the optimal one.

Figure 6.12: Final configurations (6.7)

Fitness

25

20

15

10

Figure 6.13:

2 5 4 5 6 7 8 9 1011 1z 13 17 15 15 o™

Average and maximum fitness in every generation (6.7)

Example 6.8: Now we use the same set of task points and the same task and structure

specifications. The parameters used in the GA are P..,,, = 0.6 and Ppyige = 0.25,

which is differnt from the above example. The destination generation is chosen to be

the 3% generation. The initial set of AIMs is shown in Fig. 6.14. Their fitness values

Chapter 6: Task-Oriented Optimal Configurations 130
obtained from the ACEF are (0.,0.,0.,25.45,0.,0.). After evolving three generations,
the AIMs in the final generation are shown in Fig. 6.15. Their fitness values are
(0.,0.,0.,25.45,0.,0.). Fig. 6.16 shows the average and maximum fitness value in
every generation. Assembly configuration 4 has the highest fitness value of 25.45 so it
is chosen as the optimal one. This example shows that with a high mutation probability,

an optimal assembly configuration can be obtained with fewer generation of evolution.

Figure 6.15: Final configurations (6.8)

Fitness

2 > - &

20

15

10

Figure 6.16: Average and maximum fitness in every generation (6.8)

Chapter 6: Task-Oriented Optimal Configurations 131
6.7. Discussion

In this chapter, the task-oriented optimal configuration problem in modular robots is
formulated as a combinatorial optimization problem. It is also shown that by catego-
rizing the description of a robot task into task and structure specifications, one is able
to construct an assembly configuration evaluation function that can evaluate the task
performance of a robot while rejecting assembly patterns that lead to undesirable kine-
matics. Examples are demonstrated using genetic algorithms to solve this optimization
problem. The genetic algorithm is a search algorithm that follows probabilistic rules
based on the mechanics of natural selection and natural genetics. Using genetic algo-
rithms, the optimal solution is not guaranteed, but suboptimal solutions can always

be attained. This becomes a trade-off between efficiency and optimality.

132

Chapter 7

Planning Multifinger Hand Grasps

This chapter considers planning force-closure grasps on planar and spatial objects by
a multifinger robot hand. A grasp is a set of finger contacts on the object surface. A
force-closure grasp is a set of finger contacts such that any external force and moment
exerted on the object can be balanced by the force and moment generated by fingers at
the contact locations. When the object is grasped by a robot hand, it is necessary to
maintain the stability of the object subject to external disturbance force and moment
in order to prevent it from slippage. Furthermore, the stability of the object is required
when dextrous finger manipulation involving “finger relocation” [58] and “finger gaits”
[41] are considered. Due to finger joint limits and/or finger surface area limits, manip-
ulation based on rolling or sliding of the finger tips can generate only relatively small
changes in object orientation or displacement with respect to the base of fingers. To
generate large displacements, it is often necessary to lift some fingers, relocate them
on the object surface, and manipulate the object again using rolling or sliding contact,
like the baton twirling example given by Fearing [29]. To reject disturbances in either
relocating or gaiting phases, the fingers that remain in contact with the object must
maintain force-closure. Further, in planning a complex finger gait, it is required that

force closure is maintained during all gait transitions.

Only smooth curved shaped objects are considered here. The problem is divided into

Chapter 7: Planning Multifinger Hand Grasps 133

two categories: two-finger grasps and n-finger grasps, where n is greater than 2. For
two-finger grasps, a subset of force-closure grasps called antipodal point grasps is dis-
cussed. Antipodal points are a pair of points on an object whose normal vectors are
collinear and in opposite direction. With appropriate types of finger contact (point
contact with friction for planar objects or soft finger contact for spatial objects [61]),
antipodal point grasps guarantee force-closure [65]. For more than two finger contacts,

a general force-closure test on grasping planar objects is considered.

The analysis and planning of multifinger grasps has received considerable attention in
the literature. Force-closure grasps on polygonal objects has been studied by many
authors [60,74,81]. Nguyen [72] developed a geometric test for two-finger force-closure
grasps on polygonal and polyhedral objects depending upon the relative locations of the
two friction cones. Both Chen and Burdick [11] and Faverjon and Ponce [28] extend
Nguyen’s idea and developed a two-finger force-closure grasp test for planar curved
shaped objects. Hong, et al [41]. first introduced the concept of antipodal point grasps
on a smooth object. Their work was motivated by a heuristic approach to planning
“finger gaits” in which fingers are placed on or in the neighborhood of antipodal points
during the finger repositioning phases of a finger gait. Using a “distance function” on
the distance between two contact points, they showed the existence of at least a pair

of antipodal points on any smoothly shaped object.

This chapter introduces an extension of their result to nonconversmooth objects. Some
practical issues in implementing antipodal point finding algorithms, including opti-
mization techniques and object modeling methods, are considered as well. A grasping
energy function which is proportional to the square of distance between the two finger
contacts is defined. It will be shown that critical points of this energy function which
lie in the force-closure region in the contact configuration space correspond to pairs of
antipodal points on the object surface. For the case of convex bodies considered in
[41], the critical points always lie in the force closure regions. . However, for the case
of nonconvex bodies studied here, the critical points of this function may not lie in

the force closure region. Thus, the search for antipodal points can be reduced to a

Chapter 7: Planning Multifinger Hand Grasps 134

constrained optimization procedure.

Nevertheless, these methods cannot be generalized to three or more finger contacts.
It is intuitively clear that finger gaiting operations will require more than the mini-
mum number of contacts, or fingers, which are normally required for force-closure. For
point contact with friction, two finger contacts are necessary for planar force closure.
However, at least three fingers are required for gaiting around planar objects. A quan-
titative test for n-finger force closure grasp of a polygon, based on linear programming,

has been recently proposed by [14].

A “qualitative” force-closure test for n (n > 3) finger contacts on a planar object is
defined here. This test is based on the convex hull formed by the friction cone edge
wrenches produced by every contact. This force closure test is termed “qualitative”
because the test is binary. That is, it returns a true value if a grasp is force closure.
Otherwise it returns a false value. It does not determine the optimality of a given grasp

configuration with respect to given measure. Such a test would be called “quantitative.”

The structure of this chapter is as follows. Section 7.1 introduces the contact configura-
tion space that represents all grasps on an object. Section 7.2 discusses the conditions
for force-closure grasps on planar and spatial objects. Section 7.3 investigates two-
finger antipodal point grasps on planar and spatial objects. By using a grasping energy
function, finding antipodal point grasps on an object becomes a constraint global op-
timization problem. A newly developed global optimization scheme termed TRUST is
employed. Examples are demonstrated for both planar and spatial objects. Section 7.4
formulates the force-closure test for n-finger grasps. Characteristics of force-closure re-
gions in the contact configuration space are discussed. Applications of this force-closure

test to multifinger manipulation and finger gait planning are demonstrated.

7.1. Contact Configuration Space

In robot motion planning, the position and orientation of a robot relative to a fixed

reference frame is called a configuration [54]. The space of all configurations of the robot

Chapter 7: Planning Multifinger Hand Grasps 135

is called a configuration space (C-space). Any finite and continuous robot motion will
trace out a curve segment in the C-space. Thus, motion planning is equivalent to
planning paths in the C-space of a robot. Applying this C-space concept to multifinger
hand grasp planning, the locations of the finger contact on the grasped object can be
called a contact configuration, or a grasp. The space of all grasps is called a contact
configuration space (contact C-space). A grasp is represented by a point in the contact
C-space. A continuous manipulation task performed by the fingers will trace out a
trajectory in the contact C-space. Because a contact involves the interaction of two
rigid bodies (a finger and a grasped object), the dimension of the contact C-space

depends on both the number of finger contacts and the dimension of the object surface.

The case of 2-D objects is considered first. Assume that the boundary of a grasped
object is a smooth and closed curve. Attach a coordinate frame, O, to the object. The

object boundary can be described by a 1-to-1 parametric function:
p(u) = [e(u), y(u)]", u €S (7.1)

where u is called a contact variable and S is a a unit circle. p(uo) = [z(uo), y(uo)]¥
represents a contact location, in frame O, on the object at ug. Since the object function
is 1-to-1, uo can represent a contact, instead of p(up). We assume p(u) is at least once
differentiable. Therefore, a unit tangent vector t(ug), and a unit outward pointing

normal vector n*(ug), exist at uo. The tangent vector is

p'(uo) _ . sl T
t{ug) = ——— = |Z{uo), Y(uo)|™, 7.2
(0) ”p’(’do)” [(0) y(0)] ()
where p'(uo) = 2|,,. The outward normal vector n*(uo) = [~§(u0), Z(uo)]” if the pa-
rameter u is defined counter clockwise. The inward normal vector n™(up) = —n™(uo).

Definition 7.1: Contact Configuration

The n-tuple q = (uy,...,u,), which represents the location of n finger contacts on
a planar object, with u; # u;, ¢ # j, for u; € S',¢ = 1,...,n, is called a contact
configuration of an n-finger (or n-contact) grasp on a planar object. We call q an

n-finger grasp for abbreviation.

Chapter 7: Planning Multifinger Hand Grasps 136

Note that contacts between the object and the robot hand may occur at other locations

besides the fingertips, such as on the limb of a finger or on the palm of the hand.

Definition 7.2: Contact Configuration Space for Planar Objects

n times
Let T* =§"x -+ x §* and Ay; = {(u1, - ,)| = uj,1 # j,u; € S'}. The set
C.=T\(U Ay) (7.3)
1,5=1
itsi<i

is called the n-contact configuration space (or n-contact ,C—space). A;; represents all
physically unrealizable contact configurations in which two fingers occupy the same

location on the object. C, represents all possible n-finger grasps on the object.

For a 3-D object that is devoid of holes and homeomorphic to a sphere, the object

surface can be described by a 1-to-1 function:

s(u) = [z(u), y(u), z(w)]", (7.4)

where u € §2 is a contact variable. Since the function is also 1-to-1, we can use ug
instead of s(ug) to represent a contact point on the object. Analogous to Definition
7.1, a contact configuration of an n-finger grasp on a 3-D object is defined to be
q = (ug,up, -+ ,u,). Let Ty = {(w1, - ,us)|w; = w;,7 # j,u; € §?} represents the
set of unrealizable contacts on a 3-D object. The contact configuration space for 3-D

objects becomes

n times

P n

D,=8x---xS\(U Ty (7.5)
7,7=1
i#;,iq’

7.2. Force-Closure Grasps

A force-closure (FC) grasp is a set of finger contact locations, i.e, a contact configu-
ration, on an object such that any external force and moment exerted on the grasped
object can be balanced by the force and moment exerted by fingers at the contact lo-

cations. In a sense, it is a stable grasp since it can reject disturbance forces applied to

Chapter 7: Planning Multifinger Hand Grasps 137

the object during a grasping or manipulation task. Because the local geometry of the
contact point influences the possible directions of the applied finger contact force, the

contact configuration of a force-closure grasp is closely related to the object geometry.

Typically, a finger cannot exert force in any direction on the contact surface. The
types of contact determine the range of the finger force direction and the minimum
number of fingers required for a force-closure grasp [61]. The simplest type of contact
is frictionless point contact in which no friction exists between the fingertip and the

object. The finger can apply forces normal to the object surface only.

In order to incorporate friction in a finger contact, Coulomb friction model is used.
Coulomb friction model asserts that the allowed tangential force is proportional to the
applied normal force. The constant of proportionality, which is termed the friction
coefficient, is a function of the material that are in contact. Let f, and f; denote the
magnitude of the applied normal force and tangential force respectively. Coulomb’s
law says that slippage occurs when |f;| > uf,, where p is the friction coefficient. This
mode] defines a conical region, termed a friction cone, at a contact location such that
the allowable finger contact force must lie within the cone to prevent slipping. The

range of the friction cone is determined by the friction coefficient p.

A point contact with friction model is employed when friction exists between fingertips

and the object. The fingertip can apply force within the friction cone without slipping.

A soft finger contact is a more realistic one in which not only friction forces but also
torques about the normal are allowed on the contact surface. For simplicity, the torque

is limited by a torsional friction coefficient.

7.2.1. Two-Finger Force-Closure Grasps on Planar Objects

For 2-D object grasping, we assume: (1) a point contact with friction model, and (2)
a constant friction coefficient, u, everywhere on the object. The friction cone at a
contact point becomes a sector for planar objects. Sliding between the finger and the

object will not occur as long as the finger force lies in the friction sector.

Chapter 7: Planning Multifinger Hand Grasps 138
Denote the friction sector at a finger contact p(u;) by S(w;). The friction sector consists
of two parts: one pointing outside of the object termed the positive friction sector,
S*(u;), and the other pointing inward termed the negative friction sector, S~ (u;), as

shown in Fig. 7.1.

P(u x)/" t(u%

[

FyN
¥ xf(ui') %

S.'iui)

Figure 7.1: Friction cone at contact u;

A force exerted by the finger contact at u; is called feasible if it lies in the negative
friction cone S~(u;). A two-finger grasp is said to be force-closure if any external force
and moment can be balanced by a positive linear combination of two feasible contact
forces exerted by the fingers [61]. A simple geometric statement proposed by Nguyen
[72] says that a two-finger force-closure grasp, q = (1, us), can be achieved if and only
if the line connecting contact points, p(u;) and p(usz), lies inside both S(u;) and S(ug).
Since a friction sector contains a positive and a negative sector, there are two possible

conditions satisfying this statement:

Definition 7.3: Squeezing and Expanding Force-Closure Grasps

Denote the line connecting contact points %; and uy by @i%s. If Tu; falls inside both
8~ (u1) and S~ (uq), the grasp q is called a squeezing grasp (Fig. 7.2). If wyw; falls
inside both S*(u;) and 8T (uz), the grasp q is called an ezpanding grasp (Fig. 7.3).

Chapter 7: Planning Multifinger Hand Grasps 139

Convex objects can be grasped by squeezing grasps only. Non-convex objects can be

grasped by squeezing and possibly expanding grasps as well.

P(uy

P(uy

Figure 7.2: Squeezing grasp Figure 7.3: Expanding grasp

A squeezing force-closure grasp satisfies:

(. Pla) —plue)
() llpéulg—p§u2§l|> & (0
(u P\u2) — pluy c i
") fip(uz) — plan)l ~ 77
while an expanding grasp satisfies:
e)) _
() e ot ;n< & %)
nt(uy) - Pt ko —c .
) Tip(az) — plaa)] <7 9

where ¢y = cos(tan™'p).

7.2.2. N-Finger Force-Closure Grasps on Planar Objects

The geometric statement of a two-finger force-closure grasp mentioned in previous
section cannot be generalized to three or more finger contacts. A general approach
based on the convex hull of the friction sector edge wrenches produced at n finger

contacts is adopted here.

The contact force exerted by the fingers on a planar object, along with its associated

moment about the origin of O, is called a contact wrench, and can be represented as

Chapter 7: Planning Multifinger Hand Grasps 140

a 3 x 1 vector w. The space of all contact wrenches is termed the wrench space. It is

isomorphic to R3.

Let f; be the contact force exerted by the i** finger at contact point u; within the
negative friction sector. Let f;” and f;” be edge vectors of S~(u;) as shown in Fig. 7.1.
The edge vectors can be written as a linear combination of the unit tangent and unit
inward normal vector: f& = n~(u;) & ut(w;), where p is the friction coefficient and is
always greater than zero. Then f; can be expressed as a positive linear combination of
the edge force vectors: f; = of £ + o f;, where af > 0. Let the wrenches generated
by the edge vectors of the friction cone be termed edge wrenches. By linearity, the
contact wrench w; generated by f; can be expressed as a positive linear combination

of the edge wrenches. It is also called a feasible contact wrench.

Let f., 7. be an external force and moment (also called an external wrench, w, =
[£7 7.]7) exerted on the object with respect to O. The force-closure condition requires
that any external wrench can be counter-balanced by a positive linear combination of
a set of feasible contact wrenches. Equivalently, it can be expressed as a positive linear

combination of the edge wrenches:

£,.=3fi=Y offf +oif" (7.10)
=1 =1

=Y. pi®hi=) olp®f +aipi®f (7.11)
1=1 i=1

where a® b = a1by — azby, for a,b € R%. Combining (7.10) and (7.11), we obtain

w, = W, (7.12)
where
We = [feTvTe]T
W f fI - fr f-
Pi@ff Pi®ff ... P.®ff P.®f (7.13)
= [Wl(ul) W2<u1) Wz(uz) W4(u2) . e W2n—1(Un) W2n(un)}
c=laf,af,...,af, a;]%.

Chapter 7: Planning Multifinger Hand Grasps 141

The 3 X 2n matrix, W, is termed a grasp map in [69]. Its column vectors are edge
wrenches of the contacts, and ¢ is a 2n-vector representing the magnitudes of those
edge wrenches. Note that W is a function of the contact configuration: W = W(q).
An n-finger force-closure grasp requires that the 2n column vectors of W(q) positively

span the wrench space R

Convex Hull

Let X = {z1, - ,zn} C R be a finite set; the convex hull of X, denoted by CO(X),
is a set of all convex combination of all elements in X, i.e.,
COX)={aiz1+ - +amzm | a; > O,Zai =1,z; € X}
=1
A hyperplane in R” divides R™ into two half spaces. A hyperplane is said to be a

supporting hyperplane of CO(X) if it contains a boundary point of CO(X) and CO(X)

is contained in one of the two closed half spaces determined by it.

Conditions on N-Finger FC Grasps

Denoting the column vectors of the grasp map W by w;, ¢ =1,--- ,2n, and, CO(W),
the convex hull in wrench space R® formed by the edge wrenches {w;}, we have the

following proposition [69]:

Proposition 7.4: For planar object grasping that assumes a point contact with friction

model, the following are equivalent:

1. An n-finger grasp q = (us,- -+ ,u,) is force-closure.
2. w;, 1=1,---,2n, of W(q) positively span the wrench space R3.

3. Let Ej; be the plane passing through the origin of the wrench space and containing
w; and w;, where ¢ # jand¢,j = 1,--- ,2n. None of the planes E;; is a supporting

plane of CO(W(q)).

4. CO(W(q)) contains a neighborhood of the origin of R3.

Chapter 7: Planning Multifinger Hand Grasps 142

Figure 7.4: Supporting plane of CO(W(q))

Fig. 7.4 shows the relationship of the convex hull, CO(W(q)), and a plane E passing
through the origin. If E becomes a supporting plane of CO(W(q)), edge wrenches w;

all lay in the same side of plane E. w; cannot positively span the wrench space.

7.2.3. Force-Closure Grasps on Spatial Objects

For 3-D object grasping, we assume: (1) a soft-finger contact model; (2) a constant
friction coefficient y; (3) a constant torsional friction coefficient v. We call the friction
cone extending outside of the object ST(uy) and the one inside the object S~ (uy).
Nguyen [72] also showed that for 3-D object, a two-finger grasp, q = (uy,up), with
soft-finger contact model will be force-closure if and only if the line connecting the
p(u;) and p(uz) lies strictly inside both friction cones S~ (u;) and S (uy) (or ST (uy)
and ST (uy)).

7.3. Two-Finger Grasp Planning

This section considers two-finger antipodal point grasps on planar and spatial smooth

objects. Antipodal points are a pair of points on an object whose normal vectors

Chapter T: Planning Multifinger Hand Grasps 143

are collinear and in opposite direction. With appropriate finger contact conditions,

antipodal point grasps guarantee force-closure [65,72].

Definition 7.5: Antipodal Points for Planar Objects [53]

Two contact points, u; and us, on an object satisfying the following conditions are

called antipodal points:

[p(u1) — p(u2)] - t(u1) = 0 (7.14)
[P(uz) = p(u1)] - t(uz) =0 (7.15)
nt(u;) + 0 (uz) = 0. (7.16)

The definition of antipodal points on a 3-D object is similar to (7.14) to (7.16), except
the fangent vectors t(u;) and t(up) can be any vectors on the tangent planes at u;

and us.
7.3.1. Planar Objects

7.3.1.1. Force-Closure Regions in Contact C-Space

The inequalities (7.6), (7.7), (7.8), and (7.9) define regions in the contact C-space, Cs,
called force-closure regions (FC-regions), or feasible grasping regions [11], in which the
grasps are force-closure. Let 7~ denote all grasps in C; satisfying (7.6) and (7.7) and
F+ the grasps satisfying (7.8) and (7.9). F = F~UF™* (where F~NF* = @) is the set
of all force-closure grasps. The force-closure curves (FC-curves) that bound the FC-
regions in C, are the zero sets of the functions obtained by replacing the inequalities
(7.6) to (7.9) by equalities. Note that this method of finding FC-regions extends to
3-D case, whereas the method of Faverjon and Ponce [28], which relies upon the cross
product of the friction cone normal and edge vectors, cannot. A 3-D object friction

cone cannot be described by a linear combination of finite vectors; hence, the cross

product method is no longer valid.

7.3.1.2. A Grasping Energy Function

Chapter 7T: Planning Multifinger Hand Grasps 144

A “grasping energy function” E: C; — R is defined as:

B(us,w) = 5 & [p() - p(wa)] (7.17)

E can be interpreted as the energy of a spring, with spring constant s, connecting u;

and ug. F is continuous and once differentiable.

Proposition 7.6: Antipodal points, u; and us, correspond to a critical point of E.

Conversely, only critical points of E lying in F correspond to antipodal points.

Proof: Let (u;,us) be antipodal points and substitute (7.2) into (7.14) and (7.15).

/

— plu (“1)
/(u2
[p(u2) — P(u1)] - To ()] =0 (7.19)

Since ||p’(w)|| # 0, by smoothness of the boundary curve,

0F

&[p(w) — pu)] - p'(w) = Bur 0 (7.20)
, OF
% [P(u2) — p(w)] - P'(u2) = ol (7.21)

Thus, q = (u3,us) is a critical point of E. Conversely, for nonconvex objects, a
critical point of E does not necessarily satisfy (7.16) and is therefore not necessarily an
antipodal point. Any grasp, q, lying in F, satisfies either (7.6) and (7.7) or (7.8) and
(7.9). Note that for any (ug,uy) € F, the angle between two outward normal vectors
n*(u;) and n*(uy) is between (7 — 2tan™! p) and 7. If ¢* = (uf, u}) is a critical point
of E and q* € F, then n*(u}), n™(u}) will be collinear and in opposite directions.

Hence, (7.14), (7.15), and (7.16) are all satisfied. g* represents an antipodal point
grasp on the object. g

Since E is differentiable over Cs (which is compact), E must achieve both a maximum,
at Qumaz, and a minimum, at Qmin, 0 C2. Qmer 30d Qi are respectively termed the
“maximal” and “minimal” grasps. Nonconvex objects can have critical points which

are local minima and maxima of E. The properties of these critical points depend

Chapter 7: Planning Multifinger Hand Grasps 145
upon the local object geometry near the antipodal points. Let @* = (u},u}) denote an
antipodal point pair. If the object is convex (concave) at u} and u3, E(u},u}) will be a
local maximum (minimum). If the object is convex at one antipodal point and concave
at the other, the critical point may be a saddle point, local minimum, or local maxima,

depending on the relative object curvature at u] and u3. E is necessarily convex (resp.

concave) at the maximal (minimal) antipodal points.

These local properties can be used to differentiate between different antipodal grasp
choices. The previous and ensuing discussion neglects the three dimensional volumetric
properties of the fingertips. An automated grasp planner should check for interference
between the finger and the object. If the grasping fingertips are convex, the maximal
grasp does not require additional calculations which check for geometric interference.
In principle, simple parallel jaw grippers could be used to grasp at the maximal grasp
without complex calculations. However, it is known that the maximal two-finger grasp
may be less “stable” [67] than other antipodal point grasps. Conversely, the minimal
grasp is a more stable or immobile grasp. It may be more desirable, even if additional
computations are required to check for interference between the object and fingers. The
choice between locally maximal or minimal antipodal point grasps is thus a function

of other task requirements.

7.3.1.3. Planning Antipodal Point Grasps

Proposition 7.6 suggests that antipodal points can be found by searching for the critical
points of F in the FC regions. For many practical applications, we are more interested
in finding the subset of critical points which are either minima or maxima of E. In
these cases, we can the formulate antipodal point search problem as a constrained

optimization problem:

maximize E*(uy,u) = 2 6 |lp(ur) — p(u2)|12 :
subject to (ur,u2) € F C Cy

(7.22)

Chapter 7: Planning Multifinger Hand Grasps 146

where E(uy,uz) = E*(u1,us), if one is interested in locally maximal grasps. The
grasping energy E(ui, us) = —E*(uy, up) if locally minimal grasps are of interest. Any
suitable constrained optimization method, such as the method of Lagrange multipliers,
constrained Newton or quasi-Newton methods, or successive quadratic programming
[6], can be used to solve (7.22). In most cases, the constraints arise only from force
closure. However, in some practical cases, portions of the object surface may be oc-
cluded by nearby objects, or not visible to a robot vision system which generates object
models. In such cases, additional constraints can be added to exclude these regions in

the optimization process.

The aforementioned optimization methods have only local convergence properties.
Thus, the antipodal points found by these methods will depend on the procedure’s
initial conditions. Multiple random start methods [8] can be used to find all of the
local critical points. Alternatively, constrained global optimization techniques, such
as simulated annealing [49] or interval analysis methods [68] can be used to find the
globally minimal or maximal grasp. In this work, the global maximum of E is found
using a recently developed global optimization algorithm, termed TRUST (see [10] for
details). This method is simple to implement and has been found to be substantially
faster than other global optimization methods in benchmark tests. TRUST uses a
novel “tunneling” method which finds the global extrema by repeatedly escaping local
extrema. Thus, on the way to finding the global solution, many local critical points,
which correspond to feasible antipodal grasping points, are identified. However, all

critical points are not found on the way to the global optimum.

These methods suggested above are most useful if the antipodal points are isolated
in C;. However, when the object contains parallel edges or faces, for example, the
antipodal points will not be isolated point sets. In these cases, the critical points

of E can be found using continuation techniques developed for numerical bifurcation

analysis [45].

From a set of antipodal points, which are found using a multiple random start or as

Chapter 7: Planning Multifinger Hand Grasps 147
intermediate steps of a tunneling global optimization, one can select an antipodal point
pair based on additional considerations. For example, interference between fingertips,
or a distance between antipodal points (which might exceed the greatest dimension of

the hand workspace) can be used to cull antipodal points from the feasible set.

7.3.1.4. Representations of Planar Objects

Here we parameterize the boundary of a curved planar object by cubic B-spline curves
that are frequently used in computer graphics applications. This method is compu-
tationally efficient, produces surface with satisfactory smoothness, and can be used
to approximate nearly any smooth object with arbitrary precision. For more detailed

treatment of B-spline curves, please refer to [104].

A cubic B-spline curve is a collection of piecewise continuous parametric cubic poly-
nomial curve segments whose derivatives are continuous at “knot points.” If the para-
metric intervals in all segments are equal, the curve is called a uniform cubic B-spline

curve. Every segment ¢ in the uniform cubic B-spline curve has the following form:
pi(t:) = ait! + bit? + cit; + d, (7.23)

where a;, b;, ¢;, d; € R? are coefficients of the polynomial p; and ¢, € I = [0,1] is
the local curve parameter. Non-uniform cubic B-spline curves can also be applied to
model the object boundary. However, for simplicity, uniform cubic B-spline curves are
employed here. Non-uniform splines can be converted to uniform splines through a re-

sampling process. A process for computing the b-spline parameters from experimental

data can be found in [104].

Suppose that an object is described by a uniform B-spline curve of n segments. If
the local parameter intervals are normalized to [0, 1], then a single global parameter
u, defined on the interval I, = [0, n], can be defined to accumulate the values of local
curve parameters {f;}. The object boundary is usually a closed curve; hence, the two

end points of the B-spline curve coincide.

Chapter 7: Planning Multifinger Hand Grasps 148
Example 7.7: Fig. 7.5 shows an object modeled by a cubic B-spline curve of eight
segments. The global parameter interval is I = [0, 8]. The FC-regions in C, are shown
in Fig. 7.6. Since the boundary curve is a cubic polynomial, the grasping energy
function E is a polynomial of degree 6, as shown in Fig. 7.7 (where x = 1). Table
7.1 lists the global maximum and local éxtrema of E found by TRUST. Since E is
symmetric with respect to the line u; = u,, only extrema with u; > u, are listed. The

corresponding maximal and antipodal point grasp locations are shown in Fig. 7.5. g

Extrema Contact Config. Antipodal Points

Global Max (A) | (3.999, 0.071) (-0.100,-0.900) | (0.020, 0.801)
Local Max (O) | (6.070, 2.003) | (-0.704, 0.023) | (0.700, 0.098)
Local Min (%) (5.245, 1.027) | (-0.407, -0.272) | (0.312, 0.488)
Local Min (LJ) | (7.005, 2.875) | (-0.398, 0.403) | (0.370, -0.322)

Table 7.1: Extrema and antipodal points on the planar object

8
0.75
0.5 =
0.25
N\
0 X 4 m ol
-0.25
u; ’
~0.5
-0.75
0 e
~0.60.40.2 0 0.20.40.6
0 4 8
u
Figure 7.5: A planar object - Figure 7.6: FC-region (1 = 0.3)

When part of the object is occluded by nearby obstacles or unviewable by vision sensors,
the object boundary can be modeled by one or more open cubic B-spline curves. We

can still use the accumulated-value global parameter method for each B-spine curve

Chapter 7: Planning Multifinger Hand Grasps 149

Figure 7.7: Grasping energy function F

and consider all possible combinations of fingertip locations on any of the open curves.

The constrained optimization formulation for finding antipodal points still holds.

7.3.2. Spatial Objects

Force-Closure Regions in Contact C-space

One can derive inequalities analogous to (7.6)—(7.9) which define FC-regions in the
contact C-space of a 3-D object: g7 (ug,uz) > 0, g5 (w3, uz) > 0, g (u;,u2) < 0, and
g5 (ug,up) < 0. Let

G~ = {(w,up)|g; >0,9; >0; (uy,u) € Do}

G* = {(u,u)lg < 0,95 < 0; (u,uz) € Dy},
G~ and G represent all squeezing and expanding force closure grasps in Dy. The

two-finger FC-region is the set G =G~ UG C Ds.

Grasping Energy Function

A 3-D grasping energy function, E5: Dy — R, can be defined as

Ea(uy, u) = %H ls(tr) — s(u)||2. (7.24)

Chapter 7: Planning Multifinger Hand Grasps 150
Proposition 7.8: A pair of antipodal points, u; and uy, on a 3-D object correspond to
a critical point of E;. Conversely, critical points of Es in the FC-region G, correspond

to antipodal point pairs.

The proof of this proposition is completely analogous to that of Proposition 7.6. How-
ever, the optimization of Fj is difficult to implement because the D, does not admit a

global parameterization.

7.3.2.1. Representation of Spatial Objects

Local models for 3-D object surfaces can be developed using techniques, such as B-
spline surfaces, Bezier surfaces, etc. [27,104]. The entire object surface is described
by a collection of surface patches. Here spherical product surfaces are used to globally
represent artificial and natural objects. The spherical product was first introduced
by Barr [3] to represent a family of parameterized trigonometric 3-D surfaces called

superquadric surfaces. The basic form of a spherical product surface is defined as [3]

s(u,v) = £(u) ® g(v) = [f1(u)g1(v), fr(w)g2(v), fo(u)] (7.25)

where f(u) and g(u) are 2-D curves:

f(u) = [fi(w), f2(u)], u € I, = [ug, uq] (7.26)

g(v) = [91(v), 92(v)], v € I, = [vg,v:] (7.27)

f(u) and g(v) are parametric trigonometric curves in [3]. To represent a richer set of
objects, we extend this definition to use B-spline curves instead: let £ : I, = I,, — R?
be an open cubic B-spline curve of m segments and g : I, = I, — R? a closed cubic
B-spline curve of n segments. To guarantee object surface smoothness, f(u) and g(v)

must satisfy the following conditions:

(R-1) f(u) and g(v) must be regular curves.

(R-2) The curve f(u) intersects the y-axis at f(0) and f(m) only. The tangents f'(0)

and f'(m) must have zero slope.

Chapter 7: Planning Multifinger Hand Grasps 151
(R-3) The tangent vector and the position vector of a point on g(v) are not parallel,

ie., g(v) # ag'(v) for some a # 0, or g195 — 9192 # 0.

With the above restrictions, the generalized spherical product surfaces can be used as
primitive computer models of real object surfaces [82]. By comparing with range data
of real objects, primitive models can be deformed approximately into the shape of real
objects via a series of linear and nonlinear transformations such as linear stretching,
tapering, or quadratic bending [83]. This is a very versatile object modeling system for
real time implementation of object grasping. For simplicity, we investigate grasping on

the primitive object form, i.e., spherical product surfaces without distortion, here.

The spherical product, which maps I,, x I, onto a surface diffeomorphic to §2, is not
a 1-to-1 mapping because the two polar points, p, = s(0,v) and p, = s(m,v), v € I, ,
are actually degenerate curves. However, it can be shown [27] that the normal vectors

at the polar points are well defined and continuous in the neighborhoods of p, and p;.

The domain of the spherical product surface is I, X I,, so the contact C-space becomes
D = I, x I, x I, X I,,, which is topologically different from D,. A grasp configuration
is thus denoted by g = (u1,v1,%2,v2). Let sy = 8|y 00) and s, = 2,0, denote
surface tangent vectors at pg = s(ug, vg) along u and v direction respectively. The unit

outward normal vector at pg is

Sy X Sy

n+ Ug, Vg) = L
(wo,w0) = £

(7.28)

except at p, and p,. The sign of n™ depends on the directions of parameterization

of curves f(u) and g(v). The unit outward normal vectors at polar points are nf, =

5 =
[0,0,1] and nj = [0,0,—1].

We divide the finger contact space D} = {(u1,v1,%2,02) |0 < u; <m, 0<v; < m, ¢ =

Chapter 7: Planning Multifinger Hand Grasps 152
1,2} into six subsets to determine the FC-regions in Dj:

Dy ={ul0<uy;<m, 0<y <0, i=1,2},

Dyp={ulu =0, 0<uy<m, 0<v, <n, i=1,2},

Dis={ujuy=m, 0<uy<m, 0<v;<n, i=12}

Dy ={ulu=00<u <m, 0<v; <n, i=1,2},

Dys={u]uy=m, 0<uyy<m, 0Ly <n, i=12}

D = {(0,v1,0,v5), (0,v1,m, v2), (M, v1,0,v2), (M, v1,m,v3) | 0 <v; <m, i =1,2}.
D3, represents all two-finger grasps which do not include a polar point. D3, and D3
represent grasp configurations where finger 1 is located at p, or p, while finger 2 is
located anywhere except at the polar points. D3, and D3y are similar to D3, and D3,
with finger 1 and finger 2 switching roles. D3 represents the four possible contacts of
fingers 1 and 2 at p, and p,. The FC-regions, G}, in each subset Dj; are derived by
substituting (7.28), np,, and np, into (7.6) to (7.9). The entire force-closure set in D3
is the union of FC-regions in every subset, i.e., G* = US_; Gf. Antipodal points can be
found by finding all critical points of (7.24) lying in G*. The constrained critical point

finding methods discussed in section 7.3.1.3 are applied to each subset D3, separately.

Contact Configuration J Antipodal Points
Global Max (A)

(1.39, 0.07, 2.95, 4.00) | (0.01,0.48,0.21) [(-0.07, -0.64, -0.48)
Local Max (Q)

(1.44, 4.00, 2.98, 0.07) | (-0.06, -0.55, 0.20) | (0.01,0.56, -0.49)
Local Max (0)

(1.10, 2.01, 3.16, 6.07) | (0.37, -0.05, -0.27) | (-0.44, -0.01, -0.56)
Local Max (+)

(1.10, 6.07, 3.16, 2.00) | (-0.38, 0.01, 0.28) | (0.44, 0.06, -0.59)
Local Max (%)

(0.0, 0.0,4.0,2.0) | (0.0,0.0,0.4) [(0.00.0-0.7)

Table 7.2: Extrema and antipodal points on the spatial object

Example 7.9: Fig. 7.8 shows a spherical product surface f(u) ® g(v). The result of
using TRUST in every subset of Dj is listed in Table 7.2. The corresponding antipodal

Chapter 7: Planning Multifinger Hand Grasps 153
point grasps are shown in Fig. 7.8 and 7.9 from different view points. Because of
symmetry, we list grasps with u; < uy only. Note that all these grasps correspond to
grasping energy minima or maxima. Antipodal point grasps corresponding to saddles
of E5 are not listed here because TRUST will “escape” those saddle points during the

optimizing process.
ViewPoint=(1.3, -2.4 2)

0.
Y
0
*
-0,
0.25
0
Z
-0.25
-0.5
X
*
~-0.5
-0.25
0
X 0.25
0.5

Figure 7.8: A spatial object parameterized by spherical product

ViewPoint=(1.8, 0.3, 0.1)

-0.5 0
0.25
®
e EEEmmmmmet)
0
1 717 11
Z
| -0.25
o T e R DO T o
s .25 -0.5
25,

Figure 7.9: From different viewpoint

Chapter 7: Planning Multifinger Hand Grasps 154
7.4. N-Finger Grasp Planning

7.4.1. A Qualitative Force-Closure Test Function

From a computational point of view, the third statement of Proposition 7.4 gives us a
plausible way to determine if an n-finger planar grasp q is force-closure. Let n;; be the
vector normal to the plane E;; defined above: n;; = w; X w;. If the inner product of n;;
with all other column vectors of W(q) are of the same sign or equal to zero, that means
all these vectors are lying on the closed half space defined by E;;. Thus, E;; becomes
a supporting plane of CO(W), and force closure is not obtained. For n-finger grasps,
the grasp map W has 2n column vectors w;. Each plane Ej; is formed by any two of
the w;’s, and there are (22") = n(2n — 1) such planes which must be checked for the
supporting hyperplane. If none of the plane E;; is a supporting plane, a force-closure

grasp is achieved. According to this statement, we first define a test function which

will be TRUE if all of its arguments are of the same sign or equal to zero.

Let SameSignQ[zy,- - - ,Z,] be a test function of n real arguments z1,--- ,z, such that

TRUE, if either Vi,2; > 0, or Vi, z; < 0;
SameSignQ[z;, - ,z,] = { (7.29)
FALSE, if z;’s are not of the same sign.

Based on this test function, we define another test function to determine if the plane

E;; is a supporting plane of CO(W):
FACE”((]_) = SameSignQ[nij-Wl, n;;-Wa,... ,Il,;j'Wk], k= 1, e ,277,, k # Z,] (730)
If FACE;; = TRUE then the E;; is a supporting plane.

Definition 7.10: The test

2n
ForceClosure(q) = =(\/ FACE;(q)) (7.31)

BI=1
1F5,1<]

tells us the force-closure condition of an n-finger grasp q. ForceClosure(q)=TRUE if

and only if q is force-closure.

Chapter 7: Planning Multifinger Hand Grasps 155

The number of arguments in SameSignQ of FACE;; test depends on the number of finger
contacts. For n-finger contacts, SameSignQ has 2n — 2 arguments and there are (22”)

FACE;; test functions in ForceClosure.

The situation that an argument in FACE;;, the triple scalar product n;; - wy = (W; X
w;) Wi, © # j # k, is equal to zero defines an (n — 1) dimensional hyper surface in the
n-contact C-space, C,, called a force-closure surface (FC-surface) and divides C, into

two disjoint regions which have different signs of the triple scalar product (w; X w;)-wy.

The number of the IFC-surfaces in C, is at most (22") - (2n — 2). However, from the
cyclic property of the triple scalar product: (axb)-c = (b xc)-a = (c x a)-b,
for a,b,c € R3, the three FC-surfaces (w; X w;) - wy = 0, (w; X wi) - w; = 0, and

(Wi X w;)-w; = 0 will be identical. Since there are (2?:‘) ways of picking any three w;’s

from the 2n column vectors of W, the number of the FC-surfaces is reduced to (23")

For 2-D objects with symmetry, e.g., a circle, this number may be further reduced.

The FC-surfaces divide the entire C, into subregions. Those regions whose contact
configurations satisfy ForceClosure(q) = TRUE are FC-regions. While the number of
FC-surfaces can be well characterized, the number of feasible grasping regions cannot.

Their number depends on the characteristics of the object boundary curve.

Example 7.11: The above idea will be illustrated with a two-finger grasp. Let fF i =

7 ?

1,2 denote the edge vectors of the friction cones; the grasp map W becomes

£ f fy fy
W = . _ + = [Wl Wo W3 W4] (732)
P1®f pP1®ff pP:Qf p2®f;

Four column vectors of W will form (;) = 6 planes E;; passing through the origin of

the wrench space; hence there are 6 FACE;;(q) test functions:

Chapter 7: Planning Multifinger Hand Grasps 156

FACE;»(q) = SameSignQ| - Wy

(

FACE3(q) = SameSignQ[(w; X Ws
FACE14(q) (
(

) .
) .
= SameSignQ[(w; X Wy) - Wa,
)- - Wy (7.33)
FACEy4(q) = SameSignQ[(wy X W) -

) .

FACE34(q) = SameSignQ[(ws X Wy
The force-closure test is

ForceClosure(q) = —(\4/ FACE;;(q)) (7.34)
By the cyclic property, there are only four different FC-surfaces (FC-curves in Cy):
(w1 x w2) - ws(q) =0, (W1 x w2) - wy(q) =0,
(w1 x w3) - ws(q) =0, (w2 x w3) - wy(q) =0,
Figure 7.10 illustrates the FC-curves and the FC-regions in C; of an ellipse defined by
u+> (4cosu,2.5sinu), 0 <u < 27 The friction coefficient 4 = 0.3. C; can be realized

by a rectangle Iox X lox, (l2r = [0,27]), with opposite edges connected.

6

ul

Figure 7.10: FC-curves and FC-regions of an ellipse

Chapter 7: Planning Multifinger Hand Grasps 157
It can be shown that this method of computing the force-closure regions based on
the qualitative test of equation (7.31) is equivalent to the computation of the force-
closure regions using the methods proposed by Nguyen [72] and Chen and Burdick
[12]. However, this approach has the advantage that it simply generalizes to n fingers,

whereas the method in [72] is specialized for two fingers.

7.4.2. Properties and Symmetries of the FC-Surfaces

FC-surfaces in the contact C-space have similar algebraic structures due to their sym-
metry with respect to interchange or permutation of the fingers. This section demon-
strates that by permuting contact variables u, - ,u, in a grasp q, the actual compu-

tation of FC-surfaces can be simplified for the n finger case.

The FC-surfaces are formed by equating the triple scalar product of any three of the
2n column vectors in W(q) to zero. The three vectors in the triple scalar product
may come from either: (1) any two of the n contacts: e.g., (W; X W3) - w3 is formed
by two wrenches from u; and one from up, or (2) any three of the n contacts: e.g.,
(w1 X w3) - wg is formed by one wrench from wu;, us, and uz. We call the FC-surfaces
formed by (1) the Type I FC-surfaces, and those by (2), the Type II FC-surfaces. Their

algebraic structures are described as follows.

7.4.2.1. Type I FC-Surfaces

For two contacts, %; and u;, the four edge wrenches can form four different triple scalar

products, hence four FC-surfaces. The implicit representation of these surfaces are:
[Wai1(u:) X Waiws)] - waj—1(u;) =0 (
[Waim1(ui) X Wai(us)] - wo;(u;) =0 (
[Waima(us) X Waj_1(u;)] - Wa;(u;) = [Waj—1(uy) X Waj(us)] - waiy(u;) = 0 (7.37
[Waiui) x Waj—1(u;)] - wa;(u;) = [Waj—1(u;) X wa;(uy)] - wai(wi) = 0. (

Denote these surfaces by H; since they relate only two contacts, u; and u;. The other

n — 2 contacts are not involved. In (7.13), the edge wrenches Wor_1(ux) and wor(uz)

Chapter 7: Planning Multifinger Hand Grasps 158
are functions of the k-th contact variable u;, only, and w1, -+ , Wag_1, (0T Wo, -+ , Way),
k=1,---,n, represent positive and negative edge wrenches respectively, so (7.35) and
(7.37) (or (7.36) and (7.38)) have similar algebraic structure when they are expanded
out, and the variables u; and u; are swapped. Hence, we need only to compute (7.35)
and (7.36). FC-surfaces (7.37) and (7.38) are obtained by substituting the variables:
{u; = uj,u; = w;} into (7.35) and (7.36). There are (’;’) ways of selecting any two of
the n contacts. Every pair of contacts v; and u,, generate four FC-surfaces H}, similar
to (7.35) to (7.38) by substituting the variables: {u; — w;,u; — un} into (7.35) to
(7.38). In total, there are 4 - (’2‘) Type I FC-surfaces in C,.

7.4.2.2. Type 11 FC-Surfaces

For three contacts u;, u;, and ug, the eight edge wrenches can form eight different triple

scalar products, hence eight FC-surfaces, denoted by H7;:
[Waim1(us) X Waj_1(u;)] - Wap-1(up) = 0 (7.39)
[Wai-1(u;) X Waj_1(u;)] - War(ug) = 0 (7.40)
[Waia(u:) X Waj(u;)] - Wok-1(uk) = [War—1(ur) X Wai—1{u;)] - Waj(u;) = 0 (7.41)
[Waima(u:) X Wa;(u;)] - war(uz) = 0 (7.42)
[Wai(wi) X Waj—1(2;)] - War—1(wr) = [Waj-1(u;) X Wae—1(we)] - Wailw;) = 0 (7.43)
[Wai(ui) X Woj—1(u;)] - War(ur) = [Waj—1(u;) X War(ug)] - wai(u;) =0 (7.44)
[Wailui) X Wa;(u;)] - War—(ur) = [War—1(ur) X Wai(w;)] - woju;) =0 (7.45)
[Wai(us) X Waj(u;)] - war(ur) = 0 (7.46)

Observe that the similarity between (7.40), (7.41), and (7.43) (or (7.42), (7.44), and
(7.45)). In this case, we need only compute (7.39), (7.40), (7.42), and (7.46). By
substituting the variables: {u; — Uk, Uj — Us, U, — uj} and {u; — Ujy Ui~ U, U —
u; } in (7.40) and (7.42), we can obtain (7.41) and (7.45), (7.43) and (7.44) respectively.
There are (g) ways of selecting any three of the n contacts. The three contacts u,, u,,
and u, generate eight FC-surfaces Hp,, by substituting the variables: {u; = up,u; —

Ug, Uk — U, } into (7.39) to (7.46). Consequently, there are 8- (’;) Type II FC-surfaces.

Chapter 7: Planning Multifinger Hand Grasps 159

Note that the total number of Type I and Type 11 FC-surfaces is:

4(7;) +8<§) = (2;) n>3. (7.47)

This number is equal to the number of FC-surfaces mentioned in Section 7.4.1. This
implies that all FC-surfaces in an n-contact C-space are either Type I or II FC-surfaces.
The number of the FC-surfaces equations which must actually be computed is siz, i.e.,
equation (7.35), (7.36), (7.39), (7.40), (7.42), and (7.46). The rest of the equations can
be found by substituting different variables into the above six equations. Thus, the

computation of FC-surfaces can be highly simplified.

7.4.3. Force-Closure Contact Modes

This section considers a characterization of the force-closure sets in terms of the number
of fingers necessary to effect force-closure. This characterization and decomposition of

the sets is essential to the implementation of finger gaits.

7.4.3.1. Definition

Assuming point contact with friction, at least two fingers are required to implement a
force-closure grasp on a planar object. These two contacts are called an FC-2 contact, as
the contacts are arranged in such a way that only two fingers are required to guarantee

closure.

However, a three-finger grasp can be force-closure in one of two ways: 1) any two of the
three finger contacts form force-closure, or 2) three of the contacts satisfy the closure
condition but no two contacts satisfy force-closure. The latter type of force-closure
contact configuration is called an FC-3 contact. In general, an FC-n contact is formed
by n contacts whose 2n edge wrenches positively span the wrench space R® and no

subset of k (2 < k < n — 1) fingers forms a force-closure grasp.

Definition 7.12: An n-finger grasp q is called an FC-m contact grasp (m < n)if m

of the n finger contacts form an FC-m contact.

Chapter 7: Planning Multifinger Hand Grasps 160
Hence, only FC-2 and FC-3 contact modes are available for three-finger FC-grasps.
But in a four-finger FC-grasp, FC-2, FC-3, FC-4, or the combination of FC-2 and
FC-3 contact modes are all possible. (In the last case, FC-2 and FC-3 contacts share
a common finger contact.) However, the number of FC-contact modes has an upper

bound due to the following theorem from convex analysis.

Theorem: (Steinitz)[20,65]

Let X C R”® be a finite set, i.e., X = {21, ,Zn}, & € R*, ¢ =1,--- ,m and
0 € Interior(CO(X)); then there exists a ¥ C X such that 0 € Interior(CO(Y)) with
Y] < 2n.

Proposition 7.13: Assuming point contact with friction, there exists at most FC-6

contact modes in an n-finger FC-grasp on a planar object for n > 6.

Proof: From Proposition 7.4, we know that in an n-finger force-closure grasp q, the 2n
column vectors (or edge wrenches) of the grasp map W(q) positively span the wrench
space R3 or, equivalently, 0 € Interior(CO(W)). But from Steinitz theorem, in this
case, n = 3; at most six of the 2n edge wrenches, called {wi1,--- ,we}, are needed
to positively span R®, or 0 € Interior(CO({wg1,-- ,wks})). Since each finger contact
generates two edge wrenches and the number of finger contacts is equal to or greater
than six, in the worst case, the six wrenches {wy1,- - , wge} come from one of the two
edge wrenches of each of the six contacts. Under this circumstance, six finger contacts

are required for force-closure. Any five or less of the n finger contacts may not form

force-closure. g

This proposition has the following physical interpretation. If a p-finger (p > 7) planar
grasp is force-closure, then there must exist a subset of six fingers which is also force-
closure. This does not imply that any subset of six fingers will be force-closure, but
only that at least one choice of six fingers will be force-closure. Consequently, it is
always possible to lift (p— 6) fingers from the object surface such that the force-closure

condition on the object is not disturbed. Thus, in some respects, it is relatively easy to

Chapter 7: Planning Multifinger Hand Grasps 161

plan finger gaits for planar grasps with seven or greater fingers. From a practical point
of view, it is not desirable to build seven-fingered grippers solely to simplify finger gait

planning.

The same is not true for less than seven-fingered planar grasps. In these cases, for a
given n-fingered (n < 6) force-closure grasp, it may not be possible to lift a finger so
that force-closure is maintained. If n > 3, then there do exist force-closure grasps in
which d (1 < d < n — 2) fingers can be lifted while maintaining force-closure. These
force-closure grasps are a subset of all force-closure grasps. Hence, we need an effective
procedure for identifying the FC-m subsets of closure-grasps in order to implement

finger gaiting.

7.4.3.2. Identifying FC-Contact Modes in a Grasp

In this section, we introduce an algorithm to determine what FC-contact modes and
the corresponding ones a force-closure grasp q may have. The set notation q, =
{uy,- ,u,} and the index set of contacts I = {1,--- ,n} are used instead of the
ordered n-tuple q = (uy, -+ ,u,) € C, as an n-finger grasp in this section. All m-

contact (2 < m < n — 1) ForceClosure test functions are employed in this algorithm.

And let FC,,(qx) = ForceClosure(q), q € Cy.

The algorithm is stated as follow:
0 Procedure FCGRASPID(q,)

1 FCList = {;

2 while FC,,(q,) = TRUE do

3 {

4 k=2

5 while k < n do

6 {

7 let Qr = {ar = {up,, -~ yup}» pi €I, pi # 95 | Afc € Ak, Vqsc € FCList};
8 for all q; € Qi do

9 {

10 if FCi(qx) = TRUE then add q; to FCList
11 }

12 E=k+1;

13

14 if FCList = () then add q, to FCList;

Chapter 7: Planning Multifinger Hand Grasps 162
15 }

16 return FClList;

The input to FCGRASPID is the contact configuration of an n-finger grasp q,. The
output is a set F'CList, which stores all contacts in q, that form FC-contacts. A
member of FCList is of the form: qf. = {up,, - ,up}, i € I, pi # pj, k < n,
which indicates that the k contacts up,,--- ,u,, in g, form an FC-k contact. The
procedure first initializes F'CList. If q, is force-closure, then it starts to search for
the FC-k contacts in q,. Line 7 generates all possible & contacts from q, denoted
by qr = {Upy, - ,Up, }, Where p; € I, excludes those who contain lower FC-contact
modes, i.e., FC-2, ..., FC-(n — 1) contacts, and stores them in Q. Lines 8-11 check
the force-closure condition of all qi’s in Q. If a qi is force-closure, then store it in
FCList. After checking all qi’s, the process then goes back to line 5 and repeats line
5 to line 13 to search for FC-(k + 1) contact modes in q, until % is equal to n — 1.
If FCList is still empty after checking all FC-(n — 1), ..., FC-2 contacts, qy is then
added to FC List. The grasp is an FC-n contact grasp. Line 16 returns FC List. If q,
is not force-closure, FCList = 0. If it is, F'C List gives all FC-contacts in it.

7.4.4. Characterization of the n-finger Force-Closure Sets

A force-closure set (FC-set) is defined to be a set of points which satisfy closure. An
FC-region is a connected subset of an FC-set. The characteristics of FC-sets in C; have
previously been studied in [11,28]. In this case, there is only a single FC-contact mode:
the FC-2 mode. For grasps with more than two contacts, there exists more than one
FC-contact mode. The characteristics of the FC-sets and FC-regions in C, (n > 3) will
be different from those in C;. A three-finger grasp example is used to illustrate the

characteristics of the FC-sets in the higher dimensional contact C-space.

The notation 7. .., , (p; € I), is employed to represent the FC-sets in C, in which the
D1, ,Pr contacts of all n-finger grasps form FC-k contacts. (Note that k& < n when
n < 6, and k < 6 for n > 6.) For instance, all two-finger force-closure grasps belong to

FZ in Cy. As shown in Example 7.11, all shaded areas are F2,.

Chapter 7: Planning Multifinger Hand Grasps 163

Generically, the FC-regions in Cj are divided into the following: 1) FC-2 contact sets:
Fi, Fas, F3y, and 2) FC-3 contact sets: Fiy,;. In general, forn < 6and 2 <m <n
there will be (1’;) FC-m contact sets, each arising from a given choice of m fingers. For

n > 6, there are at most (Z) FC-6 sets.

Example 7.14: Consider a three-finger grasp of a circular disk with radius 7. The
boundary of the disk is described by 6 — (rcosf,rsinf), 0 < 6 < 2w. The friction
coefficient is assumed to be x = 0.3. A contact configuration is a triplet q = (61, 62, 3),
9; € S',i = 1,2,3, and 6; # 6, # 65. By Definition 7.2, the three-contact C-space is
Cs = T3\(A12 U Agz U Agy); it can be realized by a cube oy X Ior X I € R3, (where
L. = [0,27)), with their opposite faces identified. The grasp map is:

—CL— ps1y —C1+ Usy —Cp— Usy —Cz-+usy —c3— fS3 —C3 -+ Us3
W(q)=r| per—s1 —pci—s1 pCx— Sz —juCy— Sz HC3 — 83 —[C3 — S3
T —-TU TH ~TH T -7l
(7.48)

where ¢; = cosf; and s; = sinf;, ¢ = 1,2,3. Owing to the circular symmetry of the

disk, there are only six FC-surfaces in C3 and they are all of Type I:

H3,: 6, — 6y = 2tan”l(:i:%) (7.49)
1

H; by — 03 = 2tan'1(i;) (7.50)
3 ~1 1

H; - 63 — 6, = 2tan (ip) (7.51)

The Type II FC-surfaces degenerate to the Type I surfaces. When C3 is identified with
I3, those FC-surfaces become planes in I3 as shown in Figure 7.11. Figure 7.12 shows
slices of C; for fixed values of 63. Strips (1), (2), and (3) belong to FC-2 sets, F5,, F3s,
and F3; respectively. Regions (4) and (5) belong to the FC-3 set, Fi,. g

From the above example, we can see some features of the FC-regions:

1. All FC-2 regions F2 _ are bounded by Type I FC-surfaces H3

P1P2 pips- 10 those regions,

only two contacts p; and p, are needed to maintain force-closure. The third finger

contact can be placed anywhere on the object.

Chapter 7: Planning Multifinger Hand Grasps 164

2Pi

Theta 3

Theta 2
Theta 1

2pPi 0

Figure 7.11: FC-surfaces for disk example

Theta3 =0 Theta 3 = 0.33 Pi Theta 3 = 0.67 Pi
6 6 6
5 5 5
~ 4 ~ 4 N 4/
33 33 g3
o= o= =
&2 &2 &2
1 1 1
0 0 d 0
1 2 3 456 1 23456 1 2 3 456
Theta 1 Theta 1 Theta 1

Figure 7.12: Constant 83 slices of C;

2. The FC-3 contact regions F3,; are bounded by both Type I and II FC-surfaces,
which is also true for higher dimensional contact C-space. Those FC-surface
patches that bound the FC-3 regions have to be found by computation. In those

regions, all three contacts are required for maintaining force-closure grasp.

3. As seen in the 83-slices of C3, there are overlapping regions for FC-2 contact

Chapter 7: Planning Multifinger Hand Grasps 165

regions F2_ and F3 . ie., Fl, NF}, # 0. For a three-finger force-closure
grasp q € F2_, N7, both contact p;,p; and contact ps, p; are FC-2 contacts;
thus either contact p; or ps can break contact with the object without disturbing

the force-closure condition.

Definition: The intersection of different FC-m (m < n) contact regions are

termed m-finger gait transition regions.

In this example, the two overlapping FC-2 regions implies that two different pairs
of fingers in a 3-finger grasp are by themselves force-closure. In such a region, it
is possible to put down one finger (e.g., p1) and subsequently lift another (e.g.,
p3) while maintaining force-closure in all states of the finger repositioning. These

regions are essential to the implementation of finger gaits.

Note that .7:31?2 N Fis; = 0. For a four-finger contact, any two FC-2 contact
regions .7-'1‘}1?2 and .7-'1‘,*,“,4 intersect, where p; € I and p; # p2,ps # ps. One FC-

2 region F2_ may intersect with one FC-3 region Fj

P1p2 pepsps- 11 the intersecting

region, the FC-2 contacts and FC-3 contacts share one common contact point
py. It is impossible for FC-2 contacts and FC-3 contacts to share two contact
points in one grasp. Two FC-3 regions 7., and F, . also intersect. In their
intersecting region, the two FC-3 contacts share contacts p; and ps. By definition,
FiosaNFp oy = 0 and Fiop, N F2 = 0. In contact C-space of dimension greater

than 4, the intersection of FC-regions becomes more complicated.

4. The size of the FC-regions depends on the friction coefficient . As one can see in
the circle example, as p increase, the FC-2 contact regions grow while the FC-3
contact regions shrink. The total size of the feasible three-finger grasp regions,
i.e., both FC-2 sets and FC-3 sets, increases with increasing p. But the subset
which is exclusively two-finger force-closure increases at a faster rate. For contact
friction sufficiently large, FC-3 regions disappear (Figure 7.13). This coincides
with real world experience that fewer finger contacts are.sufficient to maintain
a force-closure grasp on an object with large friction contact. For more finger

contacts, i.e., in higher dimensional contact C-space, this phenomena also exists.

Chapter 7: Planning Multifinger Hand Grasps 166

Theta3 =0 mu=03 Theta3 =0 mu=05 Theta3 =0 mu=0.7
6 VAR 6
5 s 5
4 4
3t 3
2 2
, !
5 6 0 I 2 3 4 5 6 0 1 2 3 4 5 6
Theta 1 Theta 1 Theta 1

Figure 7.13: 65 = 0 slices of C3 with variable y
7.4.5. Application to Complex Multifinger Manipulation

This section discusses how to apply the results of the previous sections to planning
complex manipulation tasks. Consider the planar multifinger system shown in Fig.
7.14. Each finger has three revolute joints, and all fingers are assumed to be identical.
The fingertips are modeled as 2-D objects instead of points. Let F; be a coordinate
frame which is rigidly attached to the i** finger. The boundary curve of each finger tip
is described by the curve ¢y : I, — R? with respect to F;. As before, we assume that

the object to be manipulated is described by a parametric curve, p(u).

Complex multi-finger manipulation can reposition the grasped object using rolling,
sliding, finger repositioning, or any combination of these. The following subsections
show how the contact configuration space concept and its decomposition into force
closure sets with different order contact modes can be used as a tool for complex ma-
nipulation planning. These concepts are demonstrated by a three-finger manipulation

of an elliptical object which employs both rolling and gaiting sequences.

7.4.5.1. Multifinger Manipulation

During the manipulating process, the contact locations are moving both on the finger
and object surfaces. The evolution of contact points on the finger and object surfaces
during the relative motion of these objects is governed by a set of equations called

the contact equations [57,66,70]. Let u,; denote the contact location on the object by

Chapter 7: Planning Multifinger Hand Grasps 167

FINGER 2

FINGER 1
FINGER 3

Py World P,

Figure 7.14: A planar three-finger system

ith finger and wuy;, the corresponding contact location on the i* fingertip. The planar

contact equations are [66]:

Ui = (ko + kfz‘)_lMo_l(éi + kg Vgi) (7.52)
dgi = (ko + kps) M7 (—6; + ko vai) (7.53)

where k, and ky; are the curvatures of the object and the finger ¢ at the contact point
respectively. M, = Hg—%” and My; = H%ﬁ—” are the magnitudes of the tangent vectors
at the contact point. If the objects are arclength parameterized, then M, = My, = 1.
9; is the relative angular velocity of the object frame O with respect to the finger frame
F;. v is the relative linear velocity of O with respect to F; along the tangent direction

at the contact point respectively, e.g., the sliding velocity.

Obviously, the contact configuration, q() = (w1 (%), 2e2(?), us3(t)), and the grasp map,
W(q(t)), are no longer fixed during a roll/slide manipulation. The evolution of the
contact configuration on the object traces out a connected curve segment in the contact
C-space during a continuous rolling and sliding sequence. In order to accommodate
disturbance forces which arise during the execution of manipulation, force-closure must

be maintained at points along the trajectory, q(t). Equivalently, the entire contact

Chapter 7: Planning Multifinger Hand Grasps 168

configuration curve segment, q(t) ¢ € [to,t;], must lie in an FC-region in the contact

C-space.

This constraint can be accommodated in two ways. In a real time situation, this can
be accomplished by setting up the ForceClosure test function and checking at every
instance t if ForceClosure(q(t)) = TRUE. The ForceClosure test depends on the
object geometry and friction coefficient. If these are known in advance, then for a

particular object this test function needs to be set up only once.

Alternatively, if the object geometry and friction coefficient are known in advance, then
the approach described in this paper can be used off line to plan roll slide motions.
Assume an initial contact configuration, qg, is given. Also assume that a final desired
contact configuration, qy, is also specified. Presumably, both qq and gy lie in force-
closure regions. To plan a roll/slide manipulation, one must then find a trajectory,
7(t) € Cn, such that y(Zy) = qo and 7(tf) = q;. There may be no feasible trajectory
if g5 does not lie in a force-closure region which is connected to qo. If no trajectory
exists, then a finger repositioning event must be used, possibly along with a roll/slide

motion, to achieve qy.

Let us assume that qy is in the same connected component of the FC-set as qg, or
that qy is the final configuration in a continuous motion before a finger repositioning
event. If a trajectory q(t) is chosen, then the {4,;} are known in (7.52). If we assume
that there is no sliding, (7.52) can be uniquely solved for the {6;} at each instant of
time along the trajectory. Otherwise, some combination of rolling and sliding can be
chosen to satisfy (7.52). Then, 6; and v from (7.52) can be substituted into (7.53) to
determine the iz;. The {iy;}, {6:}, and {v,} can then be used, in conjunction with the
kinematics of each finger, to determine the finger joint trajectories which implement
the desired motion. One must ensure that the proper internal forces are applied as

well. This problem has been considered in [42].

The existence of a continuous trajectory in C, which connects a starting and final

configuration is not sufficient to guarantee that such a manipulation is possible. Large

Chapter 7: Planning Multifinger Hand Grasps 169
object displacements can typically not be generated purely by roll/slide manipulations
because of finger joint limits, finger surface area limits, and interference between the
fingers or fingers and object. Thus, in a most realistic case, finger gaiting will be

required in addition to roll/slide motions.

7.4.5.2. Finger Gaits

Here we loosely interpret a finger gait as a sequence of force-closure grasps on the
object which maintains a stationary configuration relative to the world frame while
also maintaining the force-closure condition during all instances of finger relocation.
Finger gaits are employed to lift those fingers that have reached their joint angle or
surface area limits, or are about to lose force-closure. By readjusting their postures
and relocating them on the object, the next phase of manipulation can be continued.
Since a gait usually involves relocating at least two different fingers in sequence, the
gait grasps must incorporate at least two different FC-contact modes. Only grasps in
the gait transition regions (i.e., the intersection of different FC-contact regions), have
more than one FC-contact mode. Thus, complex object manipulations which include
finger gaits must pass through a transitory state in a gait transition region. Below we

give an example which combines finger gaits with rolling manipulation.

7.4.5.3. Dextrous Manipulation Example

Consider using the system in Fig. 7.14 to rotate the ellipse of Example 7.11 by 120°
relative to its initial orientation. All fingertips are assumed to be circles of radius
r = 0.7, and there are no joint limits on the finger joints. All links can rotate 360
degree relative to their neighboring links. However, we do wish to avoid interference
between the fingers and the object during the manipulation. This particular task can
be accomplished by a sequence of five finger rolling and four finger gaiting motions.
Fig. 7.16 shows snapshots from a computer simulation of this complex manipulation
employing the contact equations and the FC-test algorithms of the previous sections.

Initially, finger 1 and 2 form an FC-2 contact in frame 1. Frames 3 and 6 show the first

Chapter 7: Planning Multifinger Hand Grasps 170

rolling stage, in which finger 1, 2 remain FC-2 contact. The rolling motion is stopped
at frame 6 because of the impending interference of finger 1 and 2 with the object.
The grasp is now in F3,. To reposition finger 1, finger 3 is repositioned in the grasp
transition region FJ, N F3, so that finger 2 and 3 also form force-closure in frame 7.
After adjusting the posture of finger 1 and putting it in F3,N F3; (frame 8), finger 3 is
relocated in F3,NF3, to permit release of finger 2 (frame 9). Finger 2 is then readjusted
and put in F3, N F3; (frame 10). Again we relocate finger 3 to an appropriate place
in F3, to start manipulating the object in frame 11. By alternating the manipulating
and gaiting sequence, we can obtain the desired change in object orientation shown in

frame 40.

In this example, all grasps are located in FC-2 contact regions so that one finger can
be lifted and put down in another location. Fig. 7.15 shows part of the FC-2 contact
regions and the evolution of the contact points in C3 of the ellipse. The rolling motions
trace out curve segments which lie in FC-2 contact regions F3, and F3;. The gaits are
represented by discrete points lying in the gait transition regions F3, N F3y, Fip N Fas,
and F3;NF3;. Note that the available force-closure grasps in the gait transition regions
are restricted by the interference between fingertips. In our example, the placement of

fingertips in a finger gait is chosen manually.

7.4.5.4. Dextrous Manipulation with Sliding

Note that only rolling motion is considered in the above manipulation. Sliding ma-
nipulation can be difficult to implement in practice, as it requires explicit knowledge
of the object and finger friction coefficient. Also, the friction between two objects be-
comes dynamic friction during sliding, which is usually different from static friction.
Our basic assumption on the static friction contact between fingers and the object is
no longer valid. Nevertheless, the methods outlined in this section can be useful for
planning sliding motion as well. Consider a three-finger planar.grasp. One could plan
a robust sliding motion in an FC-2 contact region so that the two non-sliding fingers

form a force-closure grasp. The object surface is used to “guide” the motion of the

Chapter 7: Planning Multifinger Hand Grasps | 171

Uz 5 p U2 5 p;
0
u3
0
ul
2 Pi

Figure 7.15: FC-2 contact regions and the trajectories of the contact

points on the ellipse

sliding finger. The force and moment caused by sliding motion can be treated like dis-
turbance on the object and can be balanced by fingers that form force-closure (Figure
7.17). This appears to be the strategy used by humans during such manipulations as

twirling a pencil with three fingers.

FINGER 2

Sliding

Force-Closure \

FINGER 3 FINGER 1

Figure 7.17: Finger 1 slides while Fingers 2 and 3 are force-closure

Chapter 7: Planning Multifinger Hand Grasps 172

FRAME 1 FRAME 3 FRAME 6 FRAME 7

ROLLING 1 ROLLING 1 ROLLING 1 GAITING 1
FRAME 8 FRAME 9 FRAME 10 FRAME 11
GAITING 1 GAITING 1 GAITING 1 ROLLING 2
FRAME 15 FRAME 16 FRAME 20 FRAME 23
ROLLING 2 GAITING 2 ROLLING 3 GAITING 3
FRAME 29 FRAME 31 FRAME 36 FRAME 40
ROLLING 4 GAITING 4 ROLLING 5 ROLLING 5

Figure 7.16: Snapshots of a dextrous manipulation motion sequence

7.4.6. Issues Regarding N-Finger Grasps on 3-D Objects

Extending the above method to spatial object grasping is a challenging problem. As
shown in Fig. 7.18, 3-D friction cones cannot be expressed as a sum of a finite set
of vectors. Therefore, the convex hull condition of a finite set of wrenches cannot be
extended in a trivial way to determine if a 3-D grasp is force-closure. Because of this,
the proposition saying that the highest FC-contact mode is six also cannot be directly
extended to 3-D case. If we assume a point contact model whieh does not support a
torque about the contact normal, the friction cone can be approximated by a polygonal

cone. Hence, the method proposed here could be extended in an approximate way to

Chapter 7: Planning Multifinger Hand Grasps 173

this case. However, the soft finger contact which supports torque cannot even be

handled in this approximate way.

Figure 7.18: Polygonal approximation of a 3-D friction cone

7.5. Discussion

This chapter has presented a generalized approach to planning force-closure grasps on
planar and spatial objects in the contact configuration space. The finger contacts are

assumed to be point contact with friction (or soft finger contact in spatial object case).

For two-finger grasps, some practical issues in the implementation of antipodal point
grasp finding algorithms on 2-D and 3-D smooth nonconvex objects were considered.
A simple grasping energy function was introduced, and it has shown that all antipodal
points on the object correspond to the critical points of the energy function in the
force-closure regions in contact configuration space. Thus, finding the antipodal points
is equivalent to a constrained optimization procedure. For the example, a particular
global optimization scheme termed TRUST was employed. The analysis included both
squeezing and expanding grasps, which occur for non-convex object. This approach

can be used with any object whose boundary can be described by continuous functions.

For n-finger grasps, a force-closure test for planar objects was presented. This test

is based on the convex hull of the wrenches generated by the point contact friction

Chapter 7: Planning Multifinger Hand Grasps 174

cone edge vectors. The critical conditions of this test function were used to define
and enumerate the force closure surfaces in an n-dimensional contact C-space. These
surfaces enclose regions containing contact configurations which are force-closure. It
was also shown that the force-closure sets decompose into regions which correspond to
closure of m finger subsets of the n fingers. Certain of these sub-regions, termed gait
transition regions, are essential to the implementation of finger gaiting. An algorithm
was presented to find these m finger closure subsets. The general methodology is a
useful tool for planning roll/slide motions as well. This was demonstrated by a com-
puter simulation. Nevertheless, as mentioned in Section 7.4.6, extending this approach
to 3-D objects grasping is still a challenging problem and we hope to consider these

problem in future work.

175

Chapter 8

Conclusions

Fixed configuration robots have already proved their efficiency and accuracy in fac-
tory applications. However, as robots are applied to increasingly sophisticated and
unstructured tasks, the complexity of robot design grows. The modular reconfigurable
robot design provides a feasible solution to increase performance of a robotic system
undertaking sophisticated tasks, while limiting the design complexity of the machine
through reconfiguration. This thesis addressed a number of modular robot issues that
are crucial to modular robotic performance and complexity. The framework developed
here provided methodologies to enumerate all possible assembly configurations from

an inventory of modules and to determine an optimal one for a task requirement.

The simple set of conceptual module models introduced in this thesis can model existing
modular robot implementations. However, the square prism and cube link models are
for demonstration purposes. Other symmetric shaped objects, such as triangle prisms
and hexagon prisms, can be taken as link modules with their symmetric rotation groups
identified. The symmetric link model can be applied to practical link modules without

symmetry as well. In this case, the symmetric group of this link contains one element

— the identity.

The kinematic graph based representation of modular robots built the foundation for

modular robot construction enumeration and synthesis. The basic function of a mod-

Chapter 8: Conclusions 176

ular robot is determined by its graph. The assembly incidence matrix (AIM) fully
represents a modular robot assembly configuration, i.e., the port informations and the
robot topology. This AIM is best suitable for representing a kinematic chain in which

link units have multiple connection methods.

Algebraic and kinematic equivalence relations were defined on the AIMs for classifying
physically and kinematically identical modular robot assemblies respectively. Algebraic
equivalent AIMs built robot assembly with the same appearance. This equivalence is
based on the graph isomorphisms and symmetric rotation groups of the link modules.
It is the basis for solving the module assembly enumeration problem. A tree-structured
modular robot assembly enumeration algorithm was proposed according to this equiv-
alence relation. This algorithm accepts a prescribed set of link and joint modules.
Its output is a set of distinct (non-isomorphic) robot assembly configurations. This
algorithm provided modular robot designer a systematic and efficient way to evaluate
the assembly capability of an entire set of modules during the initial design phase.
Kinematic equivalent AIMs have identical kinematic properties, such as the workspace
shape and volume, and joint singularities. This equivalence is based on the equivalence
of twist coordinates of the joint axes of the robots. Identifying the kinematic equiva-
lence is crucial for the task-oriented optimal configuration problem when the modular
robot kinematics is the main concern. Algebraically equivalent AIMs are kinematically

equivalent. The converse does not always hold.

Formulating the task optimal configuration problem as a combinatorial optimization
problem presented a feasible way to solve this re-combination problem. Because all the
design parameters are pre-determined at the module level, the freedom left in a modular
robotic system is through module reconfiguration. A task-related objective function
was formed to evaluate the performance of a robot assembly for a task. The domain
of the objective function is the set of distinct robot assembly configurations that can
be obtained from the assembly configuration enumeration algorithm. This approach
can be applied to finding task-related configurations of other mechanical systems with

modular design with a properly defined objective function.

Chapter 8: Conclusions 177

Finally, a generalized approach to planning force-closure grasps on planar and spa-
tial objects was presented. The finger contacts are assumed to be point contact with
friction (or soft finger contact in spatial object case). For two-finger grasps, we have
investigated a set of fast and efficient antipodal point grasps on 2-D and 3-D objects.
For n-finger grasps, we introduced a qualitative force-closure test function for planar
objects. Applications of this test function to dextrous manipulation tasks were demon-
strated. However, extending this test function to spatial objects is still a challenging

problem.

Following the context of this thesis, one extension can be made in incorporating closed-
loop module constructions in the assembly configuration enumeration algorithm dis-
cussed in Chapter 4. An extra procedure to detect a closed-loop topology of the
kinematic graph for the algorithm is needed. Mobility analysis of the closed chain and

kinematic constraints on closing the loop can be formulated using screw theory.

There are still a number of unexplored topics in the area of task-oriented optimal con-
figurations. A more rigorous rule can be defined for translating kinematic requirements
on individual joint assembly patterns into module assembly preferences. Other com-
binatorial optimization techniques, such as simulated annealing, can be investigated
under the same framework. In Chapter 6, the objective function is formulated as a
single-valued function. A multi-objective function approach can be explored instead.
The objective function thus becomes a vector-valued function which evaluates not only
the task performance of the robot but also other goals to be achieved by the robot. A

multi-objective genetic algorithm can be employed in this case.

Based on the graph representation, one can explore the autonomous reconfiguration of
modular robots, i.e., the determination of the assembling and disassembling sequence
of modules from one configuration to the other. Configuration independent dynamical
models of the modular robots and control strategy using recursive approach similar to
the tree-structured robot forward kinematics derived in Chapter 5 is also necessary for

more practical purposes. A more challenging problem is the autonomous determination

Chapter 8: Conclusions 178
of an optimal robot topology for a set of tasks. Robots with distinct topologies function
differently. In this thesis, the robot task is assumed to be consistent with the robot
topology. To define a robot topology independent task criterion for a task-oriented

optimal robot topology problem remains a challenging issue.

The actual design and construction of link modules that are capable of multiple con-
nections is also an important practical issue as well. Most of the currently existing
modular robot systems allow only one way to connect joints to a link module. A
multi-port design or a universal joint like design is a plausible approach to manifest

the multiple connection nature of a link module.

Designing modules with mobility enables a modular robot system to mobile itself or to
perform automatic disassembling and reassembling of modules without manual assis-
tance. Many interesting issues arise when mobile modules are introduced in a modular
robot system. A modular robotic arm with a mobile base unit has a free choice of
the base location. Thus, a robot assembly configuration can perform a variety of tasks
just by changing the base location. Coordination between several mobile modules in a

modular robot is necessary for self-locomotion. This becomes a robot locomotion and

coordination problem.

Our ultimate goal is to provide “intelligence” for every module, i.e., to furnish every
module sufficient computation and communication capability such that once these
modules are connected together, they can autonomously determine the entire robot
assembly configuration and the control scheme for this configuration. Furthermore,
they can determine how to reconfigure themselves into one large robot or several smaller
robots to perform a task in coordination. This goal will move a modular reconfigurable
robotic system toward a distributed intelligent mechanical system. In the long run, we
would like to see such a modular reconfigurable robotic system fully integrated into
an intelligent work cell in a flexible manufacturing system. In such a system, there is
no distinction between CNC machine tools and robot manipulators. Machining tasks

are performed by tool modules. Material transporting or welding tasks are done by

Chapter 8: Conclusions 179
automatic reconfiguration of standard modules connected by standardized interfaces.
Modules used in different work cells can be exchanged for maintenance and economical
reasons. Another place to employ such a system is on a space station. With the
standard interface design, ome can build a large intelligent reconfigurable structure
combining moving parts—the modular robots, and the fixed parts—the truss structure
in space. This reconfigurable structure can serve a great many purposes required by a
space station, such as repair and maintenance, experimental works in space, or satellite

retrieval, in order to reduced the extraterrestrial vehicular activities.

References 180

References

[1] L. Al-Hakim and A. Shrivastava, “Application of Graph Theory for Structural Enu-
meration and Presentation of Mechanisms,” in Proc. 8th World Congress on the

Theory of Machines and Mechanisms. Prague: pp. 25-28, 1991.

[2] J. Angeles, “The Design of Isotropic Manipulator Architectures in the Presence of
Redundancies,” Int. J. Robotics Research, 11, no. 3, pp. 196-201, 1992.

[3] A. H. Barr, “Superquadrics and Angle-Preserving Transformations,” IJEEE Com-
puter Graphics and Applications, 1, pp. 11-23, 1981.

[4] E. Beckenbach, Applied Combinatorial Mathematics. New York, NY, John Wiley
& Sons, 1964.

[5] B. Benhabib, G. Zak and M. G. Lipton, “A Generalized Kinematic Modeling Method
for Modular Robots,” J. Robotics Systems, 6, no. 5, pp. 545-571, 1989.

[6] D. P. Bertsekas, in Constrained Optimization and Lagrange Multiplier Methods.
New York, NY: Academic Press, 1982.

[7] T. Beyer and S. M. Hedetniemi, “Constant Time Generation of Rooted Trees,” SIAM
J. Computing, 9, no. 4, pp. 706-712, 1980.

[8] H. A. Bremermann, “A method of unconstrained global optimization,” Mathematical

Biosciences, 9, pp. 1-15, 1970.

[9] R. Brockett, “Robotic Manipulators and the Product of Exponential Formula,” in
Proc. MTNS-83 In. Sym. Beer Sheba, Israel: pp. 120-129, 1983.

[10] B. Cetin, J. Barhen and J. Burdick, “Terminal Repeller Sub-Energy Tunneling

(TRUST) for Fast Global Optimization,” Journal of Optimization Theory and Ap-
plications, 77, no. 1, April, 1993.

References 181

[11] I. -M. Chen and J. W. Burdick, “Finding Antipodal Point Grasps on Irregularly
Shaped Objects,” in Proc. IEEE Int. Conf. Robotics and Automation. Nice, France:
pp. 2278-2283, 1992.

, “Finding Antipodal Point Grasps on Irregularly Shaped Objects,” IEEE

Trans. Robotics and Automation, 9, no. 4, pp. 507-512, 1993.

, “A Qualitative Test for N-Finger Force-Closure Grasps on Planar Objects
with Application to Manipulation and Finger Gaits,” in Proc. IEEE Int. Conf.
Robotics and Automation. Atlanta, GA: pp. 814-820, 1993.

, “Enumerating Non-Isomorphic Assembly Configurations of Modular Robotic

Systems,” in Proc. IEEE/RSJ Int. Workshop Intell. Robots and Systems. Yoko-
hama, Japan: pp. 1985-1992, 1993.

[15] G. Chirikjian, “Theory and Applications of Hyper-Redundant Robotic Manipula-
tors,” California Institute of Technology, Ph.D. Dissertation, 1992.

[16] S. L. Chiu, “Task Compatibility of Manipulator Postures,” Int. J. Robotics Research,
7, no. 5, pp- 13-21, 1988.

[17] R. Cohen, M. G. Lipton, M. Q. Dai and B. Benhabib, “Conceptual Design of a
Modular Robot,” ASME J. Mechanical Design, 114, pp. 117-125, March, 1992.

[18] T. Cormen, C. Leiserson and R. Rivest, Introduction to Algorithms. Cambridge,
MA, MIT Press, 1990.

[19] J. J. Craig, Introduction to Robotics: Mechanics and Control. Reading, MA, Ad-
dison Wesley, 1986.

[20] L. Danzer, B. Griinbaum and V. Klee, “Helly’s Theorem and Its Relatives,” in
Convexity, Proceedings of Symposia in Pure Mathematics, vol. 7. Providence, RI:

American Mathematical Society, pp. 101-180, 1962.

References 182

[21] J. Denavit and R. S. Hartenburg, “A Kinematic Notation for Lower-Pair Mechanisms

Based on Matrices,” ASME J. Applied Mechanics, 2, pp. 215221, 1955.

[22] N. Deo, Graph Theory with Applications to Engineering and Computer Science.
Englewood Cliffs, NJ, Prentice-Hall, 1974.

[23] E. A. Dinits and M. A. Zaitsev, “Algorithm for the generation of nonisomorphic
trees,” Automatic and Remote Control, 38, pp. 554-558, 1977.

[24] L. Dobrjanskyj and F. Freudenstein, “Some Applications of Graph Theory to the
Structural Analysis of Mechanisms,” ASME J. Engineering for Industry, 89, pp. 153—
158, Feb., 1967.

[25] C. Earl and J. Rooney, “Some Kinematic Structures for Robot Manipulator De-
signs,” ASME J. Mech., Trans., and Auto. in Design, 105, March, 1983.

[26] S. Even, Algorithmic Combinatorics. New York, NY, Macmillian, 1973.

[27] D. Faux and M. J. Pratt, Computational Geometry for Design and Manufacturing.
Ellis Horwood, 1979.

[28] B. Faverjon and J. Ponce, “On Computing Two-Finger Force-Closure Grasps of
Curved 2D Objects,” in Proc. IEEE Int. Conf. Robotics and Automation. Sacra-
mento, CA: pp. 424-429, 1991.

[29] R. Fearing, “Simplified Grasping and Manipulation with Dextrous Robot Hands,”
IEEE J. Robotics and Automation, 2, no. 4, 1986.

[30] J. B. Fraleigh, A First Course in Abstract Algebra 3ed. Reading, MA, Addison
Wesley, 1982.

References 183

[31] F. Freudenstein, “The Basic Concepts of Pélya Theory of Enumeration, with Appli-
cation to the Structural Classification of Mechanisms,” J. Mechanisms, 3, pp. 275—

290, 1967.

[32] T. Fukuda and S. Nakagawa, “Dynamically Reconfigurable Robotic System,” in
Proc. IEEE Int. Conf. Robotics and Automation. pp. 1581-1586, 1988.

[33] T. Fukuda, S. Nakagawa, Y. Kawauchi and M. Buss, “Structure Decision Method
for Self Organizing Robots Based on Cell Structures-CEBOT,” in Proc. IEEE Int.
Conf. Robotics and Automation. pp. 695-700, 1989.

[34] T. Fukuda, T. Ueyama and F. Arai, “Control Strategy for a Network of Cellular
Robots,” in Proc. IEEFE Int. Conf. Robotics and Automation. pp. 16161621, 1991.

[35] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning.
Reading, MA, Addison Wesley, 1989.

[36] K. C. Gupta, “On the Nature of Robot Workspace,” Int. J. Robotics Research, 5,
no. 2, pp. 112-121, 1986.

[37] F. Harary, Graph Theory. Reading, MA, Addison-Wesley, 1972.

[38] F. Harary and H. Yan, “Logical Foundations of Kinematic Chains: Graphs, Line

Graphs, and Hypergraphs,” ASME J. Mechanical Design, 112, pp. 79-83, March,
1990.

[39] 1. N. Herstein, Topics in Algebra 2ed. New York, NY, John Wiley & Sons, 1975.

[40] J. H. Holland, Adaptation in Natural and Artificial Systems. University of Michigan
Press, 1975.

References 184

[41] J. Hong, G. Lafferriere, B. Mishra and X. Tan, “Fine Manipulation with Multifin-
ger Hands,” in Proc. IEEE Int. Conf. Robotics and Automation. Cincinatti, OH:
pp. 1568-1573, 1990.

[42] P. Hsu, Z. Li and S. Sastry, “On Grasping and Coordinated Manipulation by a
Multifingered Robot Hand,” Int. J. Robotics Research, 8, no. 4, 1989.

[43] K. H. Hunt, Kinematic Geometry of Mechanisms. New York, NY, Oxford Univ.
Press, 1978.

[44] R. Johnsonbaugh, Discrete Mathematics. New York, NY, Macmillian, 1984.

[45] H. B. Keller, in Lectures on Numerical Methods in Bifurcation Problems. New

York, NY: Springer-Verlag, 1987.

[46] L. Kelmar and P. Khosla, “Automatic Generation of Kinematics for a Reconfig-

urable Modular Manipulator System,” in Proc. Int. Conf. Robotics and Automation.

pp. 663-668, 1988.

[47] P. K. Khosla, C. P. Neuman and F. B. Prinz, “An Algorithm for Seam Tracking
Applications,” Int. J. Robotics Research, 4, no. 1, pp. 27-41, 1985.

[48] J. O. Kim and P. Khosla, “Design of Space Shuttle Tile Servicing Robot: An Appli-
cation of Task Based Kinematic Design,” in Proc. IEEE Int. Conf. on Robotics and
Automation. pp. 867-874, 1993.

[49] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, “Optimization by Simulated Anneal-
ing,” Science, 220, pp. 671-680, 1983.

[50] C. A. Klein and B. E. Blaho, “Dexterity Measures for the Design and Control of

Kinematically Redundant manipulators,” Int. J. Robotics Research, 6, no. 2, pp. 72—
83, 1987.

References 185

[51] C. A. Klein and T. A. Miklos, “Spatial Robotic Isotropy,” Int. J. Robotics Research,
10, no. 4, pp. 426-437, 1991.

[52] A. V. Kozina, “Coding and generation of nonisomorphic trees,” Cybernetics, 15,

pp. 645-651, 1975.

[53] N. H. Kuiper, “Double Normals of a Convex Body,” Israel J. of Mathematics, 2,
pp. 71-80, 1964.

[54] J. -C. Latombe, Robot Motion Planning. Boston, MA, Kluwer Academic Publish-
ers, 1991.

[55] T. W. Lee and D. C. H. Yang, “On the Evaluation of Manipulator Workspace,”
ASME J. Mech. Trans. Automation, 105, pp. 70-77, March, 1983.

[56] Z. Li, “Geometrical Considerations of Robot Kinematics,” Int. J. Robotics and Au-

tomation, 5, no. 3, pp. 139-145, 1990.

[67] Z. Li and J. Canny, “Motion of T'wo Rigid Bodies with Rolling Constraint,” IEEE
Trans. Robotics and Automation, 6, no. 1, 1990.

[58] Z. Li, J. Canny and S. Sastry, “On Motion Planning for Dexterous Manipulation,
Part I: The Problem Formulation,” in Proc. IEEFE Int. Conf. on Robotics and Au-
tomation. pp. 775~780, 1989.

[59] C. L. Liu, Introduction to Combinatorial Mathematics. New York, NY, McGraw-
Hill, 1968.

[60] X. Markenscoff and C. H. Papadimitriou, “Optimum grip of a polygon,” Int. J.
Robotics Research, 8, no. 2, pp. 17-29, 1989.

[61] M. Mason and J. K. Salisbury, Robot Hands and the Mechanics of Manipulation.
Cambridge, MA, MIT Press, 1985.

References | 186

[62] J. M. McCarthy, Introduction to Theoretical Kinematics. Cambridge, MA, MIT
Press, 1990.

[63] C. Mead, Introduction to VLSI systems. Reading, MA, Addison Wesley, 1980.

[64] W. Miller, Symmetry Groups and Their Applications. New York, NY, Academic
Press, 1972.

[65] B. Mishra, J. Schwartz and M. Sharir, “On the Existence and Synthesis of Multifinger
Positive Grips,” Algorithmica, 2, pp. 541-558, 1987.

[66] D. J. Montana, “The Kinematics of Contact and Grasp,” Int. J. Robotics Research,
7, no. 3, pp. 17-32, 1988.

[67] , “Contact Stability for Two-Fingered Grasps,” IEEE Trans. Robotics and

Automation, 8, no. 4, pp. 421-430, 1992.

[68] R. E. Moore, in Interval Analysis. Englewood Cliffs, NJ: Prentice Hall, 1966.

[69] R. Murray, Z. Li and S. Sastry, A Mathematical Introduction to Robotic Manipu-
lation. CRC Press, 1994.

[70] R. Murray and S. Sastry, “Grasping and Manipulation Using Multifingered Robot
Hands,” in Robotics, Proc. Symposia in Applied Mathematics, vol. 41. Providence,
RI: American Mathematical Society, pp. 91-127, 1990.

[71] Y. Nakamura and H. Hanafusa, “Inverse Kinematic Solutions with Singularity Ro-
bustness for Robot Manipulator Control,” J. Dynamic System, Measurement, and

Control, 108, pp. 163-171, Sep., 1986.

[72] V. Nguyen, “Constructing Force-Closure Grasps,” Int. J. Robotic Research, 7, no.
3, pp- 3-16, 1988.

References 187

[73] A. Nijjenhuis and H. Wilf, Combinatorial Algorithms. New York, NY, Academic
Press, 1975.

[74] T. Omata, “Fingertip Positions of a Multifingered Hand,” in Proc. IEEE Int. Conf.
on Robotics and Automation. Cincinatti, OH: pp. 1562-1567, 1990.

[75] B. Paden and S. Sastry, “Optimal Kinematic Design of 6R Manipulators,” Int. J.
Robotics Research, 7, no. 2, pp. 43-61, 1988.

[76] C. Paredis and P. Khosla, “Kinematic Design of Serial Link Manipulators From Task
Specifications,” Int. J. Robotics Research, 12, no. 3, pp. 274-287, 1993.

[77] C. J. Paredis and P. K. Khosla, “Mapping Tasks into Fault Tolerant Manipulators,”
presented at IEEE Int. Conf. Robotics and Automation, San Diego, CA, 1994.

[78] F. Park, “On the Optimal Kinematic Design of Spherical and Spatial Mechanisms,”
in Proc. IEEE Int. Conf. Robotics Automation. Sacramento, CA: pp. 1530-1535,
1991.

[79] , “The Optimal Kinematic Design of Mechanisms,” Harvard Univ., Ph.D.

Dissertation, 1991.

[80] F. Park, A. Murray and J. McCarthy, Designing Mechanisms for Workspace Fit,
1993, preprint.

[81] Y. C. Park and G. P. Starr, “Grasp Synthesis of Polygonal Objects,” in Proc. IEEE
Int. Conf. Robotics and Automation. Cincinatti, OH: pp. 1574-1580, 1990.

[82] A. Pentland, “Perceptual Organization and the Representation of Natural Form,”
Artificial Intelligence, 28, pp. 293-331, 1986.

[83] A. Pentland and R. Bolles, “Learning and Recognition in Natural Environments,” in

Robotics Science, M. Brady, Ed. Cambridge, MA: MIT Press, pp. 164-207, 1989.

References 188

[84] M. Raghavan, “Manipulator Kinematics,” in Robotics, Proc. Symposia in Applied
Mathematics, vol. 41. Providence, RI: American Mathematical Society, 1990.

[85] M. Raghavan and B. Roth, “Inverse Kinematics of the General 6R Manipulator and
Related Linkages,” ASME J. Mechanical Design, 115, pp. 502-508, Sep., 1993.

[86] R. C. Read, “How to grow trees,” in Combinatorial Structures and Their Applica-
tions. New York, NY: Gordon and Breach, 1970.

[87] D. Schmitz, P. Khosla and T. Kanade, “The CMU Reconfigurable Modular Manip-
ulator System,” Carnegie Mellon Univ., CMU-RI-TR-88-7, 1988.

[88] P. Sheth and J. Uicker, “A Generalized Symbolic Notation for Mechanisms,” ASME
J. Engineering for Industry, 93, no. 1, pp. 102-112, Feb., 1971.

[89] S. Skiena, Implementing Discrete Mathematics. Redwood City, CA, Addison-Wesley, -
1990.

[90] D. Stewart, R. Volpe and P. Khosla, “Integration of Real-Time Software Control
Modules for Reconfigurable Sensor-based Systems,” in Proc. IEEE/RSJ Int. Work-
shop Intell. Robots and Systems . 1992.

[91) D. Tesar and M. S. Butler, “A Generalized Modular Architecture for Robot Struc-
tures,” ASME J. of Manufacturing Review, 2, no. 2, pp. 91-117, 1989.

[92] L. -W. Tsai and A. P. Morgan, “Solving the Kinematics of the Most General 6 and 5
DOF Manipulators by Continuation Methods,” ASME J. Mech. Trans. Automation,
107, pp. 189-200, June, 1985.

[93] Y. C. Tsai and A. H. Soni, “The Effect of Link Parameter on the Working Space

of General 3R Robot Arms.,” Mechanism and Machine Theory, 19, no. 1, pp. 9-16,
1984,

References 189

[94]

o8]
199]
[100]
| [101]
[102]

[103]

T. Ueyama, T. Fukuda and F. Arai, “Configuration of Communication Structure
for Distributed Intelligent Robotic System,” in Proc. IEEE Int. Conf. Robotics and
Automation. pp. 807-812, 1992.

, “Structure Configuration Using Genetic Algorithm for Cellular Robotic Sys-
tem,” in Proc. of IEEE/RSJ Int. Workshop Intell. Robots and Systems. Raleigh,
NC: pp. 1542-1549, 1992.

R. Vijaykumar, K. Waldron and M. Tsai, “Geometric Optimization of Serial Chain
Manipulator Structures for Working Volume and Dexterity,” Int. J. Robotics Re-
search, 5, no. 2, pp. 91-103, 1986.

C. W. Wampler, A. P. Morgan and A. J. Sommese, “Numerical Continuation Meth-
ods for Solving Polynomial Systems Arising in Kinematics,” ASME J. Design, 112,
pp. 59-68, March, 1990.

A. B. Wells, “Grammars for Engineering Design,” California Institute of Technology,

Ph.D. Dissertation, 1994.

D. E. White and S. G. Williamson, “Construction of Minimal Representative Sys-
tems,” Linear and Multilinear Algebra, 9, pp. 167-180, 1980.

S. Williamson, Combinatorics for Computer Science. Rockville, MD, Computer

Science Press, 1985.

L. S. Woo, “Type Synthesis of Plane Linkages,” ASME J. Engineering for Industry,
89, pp. 159-172, Feb., 1967.

R. A. Wright, B. Richmond, A. Odlyzko and B. D. McKay, “Constant Time Gener-
ation of Free Trees,” SIAM J. Computing, 15, no. 2, pp. 540-548, 1986.

K. H. Warst, “The Conception and Construction of a Modular Robot System,” in
Proc. 16th Int. Sym. Industrial Robotics (ISIR). pp. 37-44, 1986.

References 190

[104] F. Yamaguchi, Curves and Surfaces in Computer Aided Geometry Design. New
York, NY, Springer-Verlag, 1988.

[105] H. -S. Yan and Y. -W. Hwang, “The specialization of Mechanisms,” Mechanism and
Machine Theory, 26, no. 6, pp. 541-551, 1991.

[106] D. C. H. Yang and T. W. Lee, “On the Workspace of Mechanical Manipulators,”
ASME J. Mech. Trans. Automation, 105, pp. 62-69, March, 1983.

[107] T. Yoshikawa, “Analysis and Control of Robot Manipulators with Redundancy,” in
Robotics Research: The First Int. Sym., M. Brady and R. Paul, Eds. MIT Press,
pp. 735-747, 1984.

[108]

, “Manipulability of Robotic Mechanisms,” Int. J. Robotics Research, 4, no.
2, pp. 3-9, 1985.

