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Abstract

The ability to crystallize and structurally characterize ion channels has made it possible to

consider the molecular motions involved in gating these channels.  The crystal structure

of the mechanosensitive channel of large conductance from M. tuberculosis (Tb-MscL)

has provided new opportunities to explore mechanosensitive channel function, by

providing a high resolution image of the closed state of the channel.  The first section of

this work describes progress towards the functional characterization of the molecular

motions involved in channel gating.  A general background to the approaches employed

here is given in Chapter 1.

In Chapter 2, sequence analysis of 35 putative MscL homologues was used to develop an

optimal alignment for E. coli and M. tuberculosis MscL and to place these homologues

into sequence subfamilies.  Using this alignment, previously identified E. coli MscL

mutants, which displayed severe and very severe gain of function phenotypes, were

mapped onto the M. tuberculosis MscL sequence. Not all of the resulting M. tuberculosis

mutants displayed a gain of function phenotype; for instance, normal phenotypes were

noted for mutations at A20, the analogue of the highly sensitive G22 site in E. coli.  A

previously unnoticed intersubunit hydrogen bond in the extracellular loop region of the

M. tuberculosis MscL crystal structure has been analyzed.  Cross-linkable residues were

substituted for the residues involved in the hydrogen bond, and cross-linking studies

indicated that these sites are spatially close under physiological conditions.  In general,

mutation at these positions results in a gain of function phenotype, which provides strong
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evidence for the importance of the loop region in MscL channel function.  No analogue to

this interesting interaction could be found in E. coli MscL by sequence alignment.  Taken

together, these results indicate that caution should be exercised in using the M.

tuberculosis MscL crystal structure to analyze previous functional studies of E. coli

MscL.

A novel fluorescence-based screen for bacterial mechanosensitive ion-channel activity is

developed in Chapter 2.  This assay is capable of clearly distinguishing the previously

observed gain of function and loss of function phenotypes for the E. coli

mechanosensitive channel of large conductance (Ec-MscL).  The method modifies

Molecular Probes’ Live/Dead® BacLightTM bacterial viability assay to monitor MscL

channel activity as a function of bacterial survival from osmotic downshock.

Chapter 3 describes the random mutagenesis of the mechanosensitive channel of large

conductance from E. coli coupled with the high-throughput functional screen developed

in Chapter 2.  This mutagenesis and screening has provided new insights into channel

structure and function.  Complementary interactions of conserved residues proposed in a

computational model for gating have been evaluated, and important functional regions of

the channel have been identified.  Mutational analysis shows that the proposed S1 helix,

despite having several highly conserved residues, can be heavily mutated without

significantly altering channel function. The pattern of mutations that make MscL more

difficult to gate suggests that MscL senses tension with residues located near the lipid
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headgroups of the bilayer.  The range of phenotypical changes seen has implications for a

proposed model for the evolutionary origin of mechanosensitive channels.

Chapter 5 further investigates structure-function relationships in the mechanosensitve

channel of large conductance from M. tuberculosis.  Intracellular domains are a common

regulatory motif among eukaryotic ion channels.  Here, we show that the carboxyl

terminal domain of the mechanosensitive channel of large conductance from M.

tuberculosis is such a regulatory domain.  A combination of structural stability, measured

by circular dichroism thermal denautration, and channel function, measured by in vivo

channel assays, were used to characterize multiple single point mutations in both the E.

coli MscL and Tb-MscL carboxyl terminal regions.  As seen previously for other regions

of the channel, this work clearly highlights differences between the two channel

homologues, as the carboxyl terminal domain plays no functional role in Ec-MscL.

Recent Tb-MscL gating models have ignored this region of the channel, however these

studies clearly indicate that the carboxyl terminus plays a central role in channel gating

and therefore should be incorporated into gating models.

The second section of this work describes attempts to develop novel molecular magnetic

materials using a variety of approaches.  These approaches and a background to

molecular magnetism are described in Chapter 6.

In chapter 7, a new class of magnetic materials that was prepared using the guanidinium

sulfonate motif and 5,5’-salendisulfonic acid is described.  These materials exhibit
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massive magnetic frustration.  The copper-manganese material has been extensively

characterized using dc magnetic analysis and displays the classic signs of magnetic

frustration.  Although it is difficult to quantitate the extent of frustration in this system,

the copper-manganese complex seems to display significant long-range frustration.  The

generality of the guanidinium sulfonate motif, using 5,5’-salen disulfonic acid as a

bridging sulfonate, for the formation of magnetically frustrated materials was verified by

the creation of family of six different magnetically frustrated bimetallic complexes.
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