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ABSTRACT

Organizational forms such as task-oriented teams have often been proposed as a method
to enhance the efficiency of a firm. Under asymmetric information, however, the costs of
acquiring the information needed to improve efficiency may outweigh the efficiency gain and
lead to lower profits. This dissertation analyzes profitability-efficiency trade-offs faced by a
profit-maximizing principal who wants to select teams from a given group of heterogeneous
agents to work on a number of projects, given that the principal has incomplete information
about the agents’ abilities.

The dissertation consists of two main chapters. In chapter one, we take a theoretical
mechanism design approach to analyze the problem of the formation of multiple teams under
different information structures and behavioral assumptions. We study feasible incentive-
compatible (truth-revealing) individually rational mechanisms under both the dominant
strategy and Bayesian Nash behavioral assumptions. Some attention is also paid to Nash
equilibrium mechanisms. The chapter covers derivation of optimal mechanisms, efficiency
analysis, and analysis of the principal’s expected profit as a function of different types of
environment and information structures. We find that if the principal has little or no infor-
mation about the agents’ private characteristics and the agents follow dominant strategy
behavior, the principal may often run into losses in an attempt to discover the hidden infor-
mation. Paradoxically, the loss occurs when the efficiency gains from team production are
high and the competition among the agents is low. If the hidden information about each
agent can be summarized as a one-dimensional type parameter, and if a prior distribution
function of the agents’ types is common knowledge among the agents and the principal, an

expected-profit maximizing Bayesian equilibrium mechanism exists and is of the optimal
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auction form (Myerson, 1981). Moreover, the mechanism can be equivalently implemented
in dominant strategies with no expected profit loss for the principal. Yet, the principal’s
profit often decreases with an increase in the number of projects. The findings suggest that,
in profit-maximizing firms with low competition among the employees, efficient organiza-
tional forms may often be foregone in favor of profits.

In chapter 2 we consider, theoretically and experimentally, one specific type of the team-
formation mechanisms, a wage-demand mechanism, first suggested by Bolle (1991). Under
these mechanisms, potential team members submit their wage demands to the principal
and the principal chooses a team which gives her the highest profit — defined as the output
of the team net of wages demanded by the team-members, and then pays all the employed
agents their demanded wages. Bolle found that the principal’s ability to detect and choose
efficient teams among the profit-maximizing teams is essential for the existence of pure
strategy Nash equilibria of the wage-demand games. We consider wage-demand mechanisms
in a framework when the principal might have incomplete information about the agents’
characteristics. In this case, the pure strategy Nash equilibria of the wage-demand game do
not exist. However, there are e-Nash equilibria, which are close in efficiency and profitability
to the Nash equilibria of the complete information game.

We present the results of experimental tests of the Nash and e-Nash behavioral hypoth-
esis for the team-selection wage-demand games corresponding to complete and incomplete
information cases. If the agents do follow the Nash equilibrium behavior, then the princi-
pal’s information should not significantly affect the outcomes of the games regarding team’s
profitabilities and efficiencies. In his experimental investigation of the wage-demand games,

Bolle found that the subjects often do not follow the competitive Nash equilibrium behavior,
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but engage in “tacit collusion.” We test the robustness of Bolle’s findings by introducing
asymmetry into agent’s productivity characteristics. We find that although some collusive
tendencies are present in the subjects behavior, they are not sustainable; with repetition, the
outcomes of the wage-demand games converge to the Nash equilibrium outcomes. However,
we find that the two experimental treatments corresponding to the corﬂplete and incomplete
information on the principal’s part are not equivalent in the degrees of agents’ competition
and cooperation. In our experiments the agents were significantly more collusive when the
principal had incomplete information, and the outcomes were less profitable for the princi-

pal. Thus, we once again confirm that information does matter for the profit-maximizing

principal.
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A Mechanism Desgign Perspective 1

Chapter 1

A Mechanism Design Perspective

on the Formation of Teams

1.1 Introduction

The notion of a good organization as a robustly structured hierarchical unity has been
recently changing in favor of the idea of more flexible organizational forms. With the growing
diversity and complexity of tasks faced by a firm, one may expect high efficiency gains from
the more flexible and responsive organizational structures. In particular, the notion of
a “virtual corporation,” which can be thought of as a flexible task-oriented partnership,
has become quite popular in the literature (Byrne, Brandt, Port (1993)). One might ask
whether flexible organizations should necessarily take the form of parterships, or whether
owners of private firms can also gain from internal organizational flexibility. To answer
this, one needs to consider the possible implications of flexible organizational forms, both

for production efficiency and for owners’ profit, as well as the informational requirements
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imposed on the management by the organization structure. In this study, we address the
above question in the principal-agent framework and focus on one specific problem that a
principal is likely to face in a flexible multi-project organization — the problem of forming
temporary task-oriented teams from a given set of agents. Assuming the principal has
incomplete information about the agents’ characteristics, we consider whether she can gain
from teams-based production. Curiously, we learn that rather often, when the potential
efficiency gains from flexible organizations are high, it becomes too costly for the principal
to run such organizations.

We consider an adverse selection model with a principal who has a number of (possibly
profitable for her) projects to carry out and needs to hire the agents to work on these
projects — each person for at most one project — from a given group of people. Each
agent is characterized by his preference over working on projects (which might represent
his personal taste and/or the difficulty of each job for him), and each subgroup of agents —
by its productivity of working on each project. The principal needs to choose an allocation
of the agents among projects that would maximize the principal’s profit, which is the share
of the revenue from all the projects net of the payments to the agents necessary to induce
them to behave in the principal’s interest. A difficulty arises when the principal does not
have complete information about the agents’ characteristics and hence cannot impose her
most preferred outcome without the costly creation of the “right” incentives for the agents.

The recent literature in the economics of incomplete information pays a lot of attention
to both the issue of inducing the “right” incentives for agents working in teams (Groves
(1973), Holmstrom (1982), McAfee and McMillan (1991)), and the one of choosing the right

agent for a job (Laffont and Tirole (1987), McAfee and McMillan (1987)). Both the moral
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hazard and the adverse selection aspects of the problem have been studied. Yet, the problem
of optimally selecting teams for a given set of projects has been hardly addressed. Bolle’s
“Team Selection” paper (1991) is a rare study that addresses the issue of team formation
in the Nash equilibrium framework with complete information. In our study, we use Bolle’s
approach to model the team production process, but consider incomplete information envi-
ronments and seek to find optimal incentive-compatible team selection mechanisms under
various behavioral assumptions. We use a simple model of team production where the moral
hazard problem is absent. The social surplus produced by a team of agents on a project is
a deterministic function of the agents’ joint productivity parameter, which is assumed to
be common knowledge, and the agents’ private characteristics, or cost types. The agents’
private characteristics are assumed to be independent.

We mainly focus on two information structures and two behavioral assumptions. In
section 1.2 we assume a “complete ignorance” information structure, where there is no
well-defined probability assessment over the agents’ (possibly multi-dimensional) private
characteristics that is common knowledge among the agents and the principal. Therefore,
the agents are assumed to follow dominant strategy behavior. We consider feasible dominant
strategy incentive compatible (DSIC) and individually rational (IR) mechanisms. Under
these assumptions, the social efficiency maximizing information revelation mechanisms have
been broadly studied in the literature, and truth is found to be a dominant strategy if and
only if the mechanism is Groves-Clark (Groves (1973), Clark (1971), Green and Laffont
(1977)). However, it is generically not budget-balancing (Green and Laffont (1977), Walker
(1980)), and hence the “social planner” (the principal) may run into losses. The inconsis-

tency of efficiency maximization with the principal’s profit maximization is recognized by a
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number of authors (Groves and Loeb (1975, 1979), J. Miller and P. Murrell (1981), G. Miller
(1992)), but the problem of profit-maximization constrained by dominant strategy incentive
compatibility and individual rationality of the agents has not been explicitly studied. We
address this problem and find that under the “complete ignorance” assumption, there does
not exist a uniform strongly optimal mechanism for a principal — a mechanism that in any
environment! produces a higher level of profit than any other DSIC IR mechanism. The
mechanisms that are optimal under an alternative, weaker criterion of optimality (Arrow
and Hurwicz, 1972) exist, but they can be “ad hoc,” very inefficient and hardly sensitive to
the environment. Among the efficiency maximizing mechanisms, any DSIC mechanism that
is individually rational for the agents is not individually rational for the principal. The re-
sult indicates that, in contrast to the efficiency-maximization case, in generic environments
a principal cannot successfully organize production without having substantial information
about agents’ characteristics.

We further analyze specific types of environments that can be of interest and find that
the more competitive the environment is, the higher the principal’s profit is. In this part,
our results are very similar to Makowski and Ostroy (1987), who establish a close con-
nection between perfect competition and efficient dominant strategy incentive compatible
mechanisms. We find that in the perfectly competitive environments, where each agent
is dispensable, the principal can use efficient DSIC mechanism to acquire the whole social
surplus for herself. On the other hand, perhaps surprisingly, we establish that the higher

the social gains from the teams’ production are, the lower is the principal’s profit. Thus,

!By an environment we mean the teams’ productivity parameters and the agents’ private cost
characteristics.
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pursuing efficiency gains from a flexible organization form appears to be completely at odds
with the principal’s self-interest.

In section 1.3 we move to the Bayesian Nash equilibrium framework, where the infor-
mation incompleteness on the principal’s part is less extreme. The full consideration of this
problem would require us to address a multi-dimensional adverse selection issue, allowing
agents’ costs to be independent (or stochasticaily correlated) across project. While a num-
ber of recent studies approach the latter problem (Rochet (1985), McAfee and McMillan
(1988), Wilson (1993), Armstrong (1993a, 1993b)), all of them indicate that explicit char-
acteristics of the solutions are difficult to obtain even for a single-agent case. In characteriz-
ing incentive-compatible mechanisms in a multi-dimensional setting, McAfee and McMillan
(1988) derive a generalized single-crossing property which requires, essentially, the agents’
types to line up. In this study, we reduce the pfoblem to a one-dimensional case by assum-
ing that agents’ costs on different projects are deterministic functions of one-dimensional
types. The types’ probability distribution is known to the principal and the agents. Both
the principal and agents are risk-neutral. Under these assumptions, we derive Bayesian
incentive compatible (BIC) IR mechanisms that maximize the principal’s expected profit,
and present necessary and sufficient conditions for such mechanisms to exist. We show
that an optimal BIC IR mechanism is similar to an optimal auction with risk-neutrality
and independent private values a la Myerson (1981). Furthermore, following a technique
presented by Mookherjee and Reichelstein (1992), we show that an optimal mechanism can
be equivalently implemented in dominant strategies with no expected profit loss to the prin-
cipal. In this way, the problem of finding an optimal DSIC IR mechanism is resolved for

this type of information structure. However, we find that the larger the number of projects,
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i.e., the more complicated the allocation problem is, the stronger the restrictions are on
the mechanism needed to satisfy the agents’ incentive compatibility. The principal is often
bound to treat agents of different types alike and hence faces losses in her expected profits.

In section 1.4 we briefly explore the levels of profit achievable by the principal if she is
“completely ignorant” (as in section 1.2), but the agents have complete information about
each other’s characteristics and follow Nash equilibrium behavior. We present our main
conclusions and discuss their implications for issues about flexible organizational forms in

section 1.5. Section 1.6 contains proofs of the propositions.

1.2 Dominant strategy mechanisms with “complete igno-

rance”

1.2.1 The model

Consider a simple case of the multiple team formation problem with pure adverse selection,
where nature-induced uncertainty and moral hazard are absent. We are given the set of
agents N = {1,.n}, n > 1, and the set of projects K = {1,..,k}, £ > 1, among which
the agents are to be allocated. Each agent 7 is characterized by a vector of costs (disutility
levels) ¢; = {c;;}, with each ¢;; denoting 7’s disutility of being assigned to the project j. For
every i, let ¢; € C;, where C; is a convex bounded subset of R*¥ with a non-empty interior.
We may interpret these disutilities as exogenously given costs of an agent’s effort which vary
depending on the project to which he is assigned. Let C = (cy,..,¢,) denote the matrix
of all agents’ costs, and C_; — the matrix of costs of agents other than 7, for every i € N.

Then let C = x;C; denote the set of all possible disutility profiles. Assume that the costs c¢;;
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are expressed in monetary terms and are the private information of each respective agent.

A team of agents T' C N assigned to a project 7 € K is represented by an n-dimensional
vector &; = (%1j,..,2n;), where for all ¢ € N z;; = 1 if agent ¢ is assigned to the project j,
and z;; = 0 otherwise. Then an n x k matrix X = (x1,..,z;) denotes a particular allocation,
or assignment, of agents across the projects. An allocation X is feasible if for all 1 € N,
Yjex®i; < landforalli € N, j € K, x;; € {0,1}°. Let X denote the set of all feasible
allocations.

Suppose each team xzj, z;; € {0,1} for all { € N is characterized by its potential
productivity on a project j, Fj(z;), |Fj(z;)] < 0o, expressed in monetary terms. Assume
F;(0,..,0) = 0 for all j. For each z; and each j € K, let F;(z;) C R be the set of all
possible productivity parameters. Assume that the projects have no external productivity
effects on each other, and that each agent can be assigned to at most one project. Then for
any feasible allocation X of agents among the projects, the total gross productivity of the

allocation equals the sum of the teams’ productivities over projects:

F(X) =Y Fj(z) .

JjeEK

Note that F'(0) = 0. For future convenience, for every agent i € N, let z; denote a k-
dimensional vector of ¢’s assignment, and X_; — a matrix of allocations of agents other than
i. Let F C xxex Xjer Fj(z;) C R denote the set of all possible productivity profiles.

We denote an environment as (F,C), a set of parameters characterizing the teams’

% Alternatively, we could assume that an agent’s contribution can be distributed among several projects
and, therefore, z;; is a continuous variable, z;; € [0,1]. Most of the results presented in this chapter are still
valid in the continuous case. We will indicate which parts of the analysis hold for z;; € {0,1} case only.
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productivities and the agents’ private costs on each project. Let (F,C) denote the set of
possible environments.
Given an environment (F,C), the net productivity, or the social surplus, of a feasible

allocation X equals the difference between the gross productivity and the agents’ costs:

n k
S(X)=F(X) - ZZcij:Eij . (1.1)

i=1 7=1

A feasible allocation X* € X is called efficient if it maximizes the social surplus among
all the feasible allocations. We assume that (F,C) is such that for every F' € F there exist
C,C" € C such that S(X;C) < 0 for every X € X'\ 0 and S(X;C’) > 0 for some X e X,
i.e., there exist environments where production is efficient and other environments where
the only efficient allocative option is “no production” X = 0.

Assume that the teams’ productivities on each project are common knowledge, whereas
the agents’ costs are the agents’ private information3. Suppose that the principal has no
specific probébility assessment about the distributions of the agents’ costs and assumes that

the agents have no common priors. Therefore, the principal is restricted to consideration

of dominant strategy mechanisms?.

The principal’s problem is to offer the agents an allocation rule X (-) and a menu of wages

W (-), with w;; denoting the wage paid to agent 7 if he is employed on the project j, so that

3 Almost equivalently, we can assume that the team productivities ex-ante are only known to members
of the teams, but the output of each team is ex-post observable. Then, with no uncertainty involved, a
simple forcing contract (as in Holmstrom (1982)) could enforce truthful revelation of productivities as a
Nash equilibrium. A coordination problem, however, prevents making the truthful productivity reports
dominant strategies.

*If the principal were uninformed about the distribution of the agents’ costs but the distribution was
the common knowledge among the agents, there might exist extended revelation mechanisms in which the
agents first report their common priors to the principal, and then the actual costs are revealed. In this case
Bayesian equilibrium mechanisms could be considered by the principal.
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it will be always in the agents’ self-interest to submit to the principal the information which
will allow the latter to choose her most desirable allocation, i.e., dominant strategy incentive
compatibility will be sustained. The principal seeks to maximize her profit, defined as her

share of surplus net of the payments to the agents, which is

n k
W(_X) = F(X) - EZ WijTij - (1.2)

i=1 j=1

Suppose that the agents are indifferent to the outcome of production per se and care

only about their own costs and wages. Specifically, we assume each agent is characterized

by a quasi-linear utility function

k
ui@i, wi; ¢) = Y _ (w5 — ¢i)ij - (1.3)
=1

Thus, each agent is maximizing his payoff from employment, which, given his assignment,
equals the difference between his wage and cost.

By the revelation principle (Dagusta, Hammond and Maskin (1979)), without loss of
generality, we can restrict our attention to direct revelation mechanisms, where the agents
report their cost vectors to the principal. For each ¢ € N, let ¢; denote the reported costs
as opposed to the true costs ¢;. Given the reported costs C, the principal chooses allocation
and wage matrices according to a prespecified rule g(C) = (X (C), W(C))®. The principal’s
task, then, is to choose a dominant strategy incentive compatible decision rule g(é’ ) that will

maximize her objective function 1.2. We also assume that the agents cannot be forced to

5Since the productivity environment F' is observable to the principal, the rule may and will, in general,
depend on F' as well as C: g = gr(C). The dependence of mechanisms on the observable elements of the
environment is omitted, where possible, to simplify exposition.
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participate in the project, and have a reservation utility level of 0 if they do not participate.
Hence the principal has to observe the individual rationality constraints for every agent
to be able to employ him. Given the above assumptions, we can present the principal’s

problem as follows:

n k
max _F(X(C)) - w;(C)z45(C) (1.9)
X)W (C) ‘:\_"‘1; T
subject to:
.’L'ij(é) €{0,1} foranyie N,jeK (1.5)
k
Z:cij(é) <1 foreveryi€ N (1.6)
i=1
k . . k . .
S (Wi (Cesy i) = €ip)ais (Coiy ) 2 Y (wi(C) — €i5)E4(C)
j=1 7j=1
for every i € N, any ¢;, any C (1.7)
k -~ -~
(wij(c-—i7 ci) — C'ij)-Tz'j(C._i, ¢i)>0
=1
for every i € N, any C_; (1.8)

In the above formulation, 1.5 and 1.6 are feasibility constraints, 1.7 is the incentive
compatibility constraint which guarantees that each agent cannot gain from a non-truthful
report no matter what the others’ reports are, and 1.8 is the individual rationality, or the
voluntary participation, constraint.

The problem would be a variant of a traditional resource allocation problem if the prin-
cipal were a social surplus (expression 1.1) maximizer; it becomes quite different when the

principal’s objective function is to maximize her own share of surplus (expression 1.2). Be-
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low, we consider the mechanisms that are feasible and optimal for a self-interested principal

under various productivity-cost environments.

1.2.2 Complete information solution

We start with the compete information solution. Consider the payoff that would be available
to the principal under complete information (principal’s first best). If each agent’s type were

observable to the principal, she would choose the allocation and payment schedule (X*, W*)

such that
n k
{X*} maximizes F(X) — Z Z CijTij (1.9)
i=1j=1
w;; = cixy; foralli € N, j € K . (1.10)

Thus, under complete information, the principal chooses an efficient allocation — one
that maximizes the social surplus. Each employed agent is compensated for the cost he
bears at the project he is assigned to, and hence the individual rationality constraint is
satisfied. However, the agents get a zero share of the social surplus, which goes exclusively
to the principal. Note also that none of the agents can gain from changing his assign-
ment to a different project under the suggested payment scheme since he does not get any
compensation for his costs elsewhere.

In what follows, we compare the principal’s payoffs under “complete ignorance” to her

first best payoff and determine the information rents that the agents are able to extract

from the principal.
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1.2.3 The principal’s choice of mechanisms under complete ignorance

We begin our consideration with the direct revelation dominant strategy incentive compat-
ible (DSIC) individually rational (IR) mechanisms that are not environment-specific. Sup-
pose the principal ex-ante has no well-defined beliefs about the distribution of the agents’
costs, except, perhaps, it is known that each particular C' € C occurs with probability
zero. We will call this a “complete ignorance” situation, keeping in mind the inaccuracy of
the term. A number of possible optimality criteria can be used for comparison of various
dominant strategy mechanisms under complete ignorance. For a broad class of problems
with a social surplus maximizing principal, it has been shown (Groves (1973), Green and
Laffont (1977), Walker (1980)) that there are DSIC mechanisms that are ex-post efficient
even under the complete ignorance assumption. For any environment, they guarantee a
level of social surplus no less than any other DSIC mechanisms. In the analogy with the
efficiency-maximization case, we first consider the strongest possible criterion of optimality
for a self-interested principal — ex-post profitability. We then discuss an alternative — and
much weaker — optimality criterion.

Given the agents’ cost reports C, let (F, é’) denote the reported environment.

Definition 1 Within the class of direct revelation DSIC IR mechanisms, a mechanism
g(C) = (X(C),W(C))® is called strongly optimal if for any other DSIC IR mechanism

§(C) = (X(C),W(C)), for every environment (F,C)

m(g(C)) 2 (§(C)) .

SHereafter, we will denote DSIC mechanisms by g(C) instead of g(C) so as to not cause confusion.
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The following proposition shows that this optimality criterion is too strong a requirement

for any incomplete information structure.

Proposition 1 If a principal has incomplete information about the environment, there does

not exist a strongly optimal DSIC IR mechanism.

We prove the above statement with the help of several lemmas”.

Lemma 1 A DSIC IR mechanism is strongly optimal only if in any environment it guar-

antees the first best, i.e., the complete information level of profit to the principal.

Corollary 1 A mechanism G(F,C) is strongly optimal only if it is social surplus mazimiz-

ing.

Therefore, we need to consider a class of DSIC mechanisms that maximize social effi-
ciency. For this class of mechanisms, Green and Laffont (1977) have shown that the only
truth-dominant direct revelationrmechanisms are Groves mechanisms, and, moreover, these
mechanisms are not generically budget balancing (Walker (1980)). We now define a class

of Groves mechanisms corresponding to the team formation problem.

Definition 2 A mechanism is called a Modified Groves mechanism if, given a reported

environment (F,C), it chooses an allocation X*(F,C) such that

n k
X* mazimizes F(X) — Z Z CijTij (1.11)
i=1j=1

"The proofs for the statements, if not presented in the text, are given in section 1.6.
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and a set of transfers W*(F,C) defined by

Zw;jx;j =F(X*) - ; Z &a};(8:,Cs) + h(C=s) , (1.12)
J ()

where h(é'_i) is an arbitrary deterministic function of the other agents’ cost reports.

Lemma 2 The Modified Groves mechanisms in the problem with observable production
have the same properties as the standard Groves mechanisms in the allocation problem
without production. That is, the Modified Groves mechanisms are the only DSIC efficient

mechanisms, and they are not generically budget-balancing.

Corollary 2 There does not exist an efficient DSIC IR mechanism which in every envi-

ronment allocates the whole social surplus to the principal.

Proof Follows from the fact that the Groves mechanisms are generically not budget-

balancing (Walker (1980)). O

Combining the results of lemmas 1,2 and corollaries 1,2 concludes the proof of proposi-
tion 1.

Proposition 1 shows that if a self-interested principal has no (or incomplete) information
about the agents’ cost types, she cannot choose a mechanism that will perform better for
her in any environment compared to other DSIC mechanisms. This conclusion contrasts
with the results obtained for a social surplus maximizing principal: in the latter case, the
principal ex-ante need not have any information about the agents’ costs to implement a
socially efficient outcome. The difference in the results apparently emerges from the fact

that with social efficiency maximization there is “enough” coincidence of interests between
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the social planner and the agents; the Groves-type transfer rules compensate individuals
for the differences in the social and individual objective functions. On the contrary, with
profit maximization, the principal and the agents have opposing interests with respect to
the social surplus division, which makes fhe principal’s first best not implementable in
dominant strategies®.

The above results rest heavily on the optimality criterion used and the complete igno-
rance assumption. In section 1.2.5 below we consider a much weaker optimality criterion
suggested by Arrow and Hurwicz (1972) for decision-making under complete ignorance; we
find that under this criterion optimal mechanisms often ekist. Then in section 1.3 we show
that if the principal has a prior over the distribution of the agents’ cost types, then the
ex-ante optimal mechanism that maximizes the principal’s expected profit subject to domi-
nant strategy incentive compatibility is well defined. Before turning to these issues, however,
we characterize certain suboptimal feasible mechanisms. In the next section, we consider
efficiency-maximizing mechanisms and analyze the range of payoffs (or the share of social
surplus) that the principal can guarantee for herself under these mechanisms depending on

the type of environment she operates in.

1.2.4 Efficient dominant strategy mechanisms

Makowski and Ostroy (1987) consider the connection between the properties of efficiency-

maximizing DSIC mechanisms and the competitive characteristics of an economy for a

8Roberts (1979) presents a complete characterization of the social choice functions that are implementable
in dominant strategies for the class of quasi-linear utility functions. He shows that such social choice functions
maximize the weighted sum of individual utilities of an allocation plus a function that does not depend on
individuals’ preferences. Hence, coincidence of interests between the social choice function and individual
preferences is a necessary condition for implementation in dominant strategies.



A Mechanism Design Perspective 16

general class of incentive problems with incomplete information. They establish a direct
connection between the DSIC property of mechanisms in a mechanism design framework
and the notion of perfect competition in Walrasian equilibrium theory. They find that
a perfectly competitive economy in which no individual can change equilibrium prices is
equivalent to the special kind of DSIC IR mechanism — the marginal product mechanism
under which each agent is rewarded with the level of utility exactly equal to the value of
his marginal product, when agents’ characteristics exhibit no complementarity with each
other. Our findings presented in this section are remarkably coherent with the Makowski
and Ostroy results, although we approach the problem from a different perspective. We
find that the “best” profit-maximizing mechanism for the principal restricted to the use
of ex-post efficient DSIC IR mechanisms is the marginal product mechanism, and then
investigate under what classes of environments the principal can, using this mechanism,
extract all the social surplus from the agents.

Suppose the principal — for some reason — can only use DSIC mechanisms that are social
surplus maximizing. Consider the implications of this restriction for the principal’s profit.
From the previous section we know (lemma 2) that the principal in this case is restricted
to the class of Modified Groves mechanisms. Within this class, and taking into account
that a mechanism should satisfy individual rationality, define the principal’s preference
over mechanisms by
Definition 3 Within the class of Modified Groves individually rational mechanisms, a
mechanism g(C) = (X(C),W(C)) is preferred to a mechanism §(C) = (X(C), W (C))
if for all environments (F,C)

m(g(C)) 2 =(§(C)) -
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A mechanism is called dominant if it is preferred to every other Modified Groves IR mech-

anisms.

Corollary 3 A Modified Groves IR mechanism ¢g(C) = (X(C),W(C)) is preferred to a
Modified Groves IR mechanism §(C) = (X(C), W(C)) if and only if for every (F,C)

S h(C) (X af) < Y hi(C) « (D xh) (1.13)
J J

tEN iEN

where hi(C_;), hi(C_;) are arbitrarily components of transfers in g(C) and §(C), respec-

tively, as given by 1.12.

In the above definition the preference relation is not strict: There may exist more than
one dominant Modified Groves IR mechanism. What matters, however, is that all dominant
mechanisms are ex-post profit-equivalent, i.e., they provide the principal with an equal
amount of profit for every environment. Therefore, it is sufficient to find just one dominant
mechanism. We now introduce a Modified Groves individually rational mechanism that

satisfies the desired dominance property.

Definition 4 A direct revelation mechanism g*(F,C) is called the Marginal Product Wage
(MPW) mechanism if, given a reported environment (F,C), it chooses (X*(F,C), W*(F,C))

such that

n k
X* mazimizes F(X) — Z GijTij ; (1.14)
1=1j=1

W?* such that for each i
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-

[F(X) — iz 205 Gyy) — [F(X_5) = T 5 G15)
wy=| i ay=1 (1.15)

0 i a}=0,

where X_; is an (n — 1) x k allocation matriz that mazimizes

F(X_Z) - Z Zéijmij = S(X_i) .
I#i

Proposition 2 The Marginal Product Wage mechanism is efficient, dominant strategy in-

centive compatible and individually rational.

It can be easily seen that the MPW mechanism pays every employed agent his “raw
marginal product” — the net marginal product that the agent produces in the most efficient
allocation and his cost compensation. Let S* = S(X*) denote the social surplus produced
in the efficient allocation, and S_; = S(X_;) denote the social surplus produced in the

efficient allocation without agent i. Then
J J

Two important properties of the mechanism (DSIC and IR) follow: first, the agents can
only gain from truthful revelation since they are rewarded with the value of the whole social
surplus minus a lump sum transfer. Second, since only the agents who produce non-negative

marginal social surplus are employed, each agent is guaranteed to have a non-negative level

Tt follows that each agent’s utility equals the value of his (net) marginal product, and therefore this
mechanism is indeed the Makowski-Ostroy marginal product mechanism. So proposition 2 directly follows
from Makowski-Ostroy (1987).
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of utility. We also note that this mechanism is envy-free, i.e., no agent could gain from
changing his employment given the wages he is offered!?. The next proposition shows that

the MPW mechanism is indeed dominant.

Proposition 3 The Marginal Product Wage mechanism is dominant in the class of Modi-

fied Groves individually rational mechanisms.

Knowing that the Marginal Product Wage mechanism is “the best” for the principal in
the class of efficient DSIC IR mechanisms, we turn to the question of how profitable this
mechanism could be. Unfortunately, as the next proposition shows, the principal is not

guaranteed against losses under this mechanism.

Proposition 4 The principal cannot guarantee herself a non-negative profit for every en-

vironment under the Marginal Product Wage mechanism.

Proof It is sufficient to present an example of an environment in which the principal
gets a negative payoff. Let n = 2, k = 2, FIi({1}) = 5, FA({2}) = 7, Fi({1,2}) = 15,
Fy({1}) =0, F2({2}) =3, F»({1,2}) = 4, ¢;; = 2 for all ¢, j. Then the efficient allocation
isa}; =1, 21, =0, z5; =1, 23, = 0, with F(X*) = 15. The MPW mechanism wages are
wip = (15~2) - (7-2) =8, wyy = (15 —2) — (5 — 2) = 10, w3 = wez = 0. Then the

principal’s payoff is 7(X*) =15-8-10=-3<0. O

10Formally, we call a mechanism (X*(C), W*(C)) envy-free if for every i € N,
D (wh — i)zl > Y (wh — o)
j€K jEK

for any feasible z;. Since under the MPW mechanism an agent, if employed on a project j, can only gain from
employment, and is offered zero wages at the projects other than 7, the envy-free requirement is satisfied.
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Under specific types of environments, however, the principal is able to extract a non-
negative surplus from the agents. These are highly competitive environments, in which the
agents’ marginal contributions to the total surplus produced are “low enough.” We now

characterize these environments.

Corollary 4 If the agents’ net marginal products (S* — S_;) are “low enough” in the sense

that the following inequality holds:
n ~
(n-1)8*<> S, (1.16)
1=1

then the principal gets a non-negative payoff in the MPW mechanism.

The above conditions may correspond to different types of economic situations: in one
type, an efficient allocation does not employ every available agent, but for many employed
agents there are unemployed ones that closely match them in productivity and cost charac-
teristics. In this case there exists a high degree of substitution among some agents, and an
environment can be called highly competitive. The other possible situation is when most
agents are employed but the teams’ net productivities are characterized by “decreasing re-
turns to scale.” We start with analysis of the latter case. Consider an environment in which

it is efficient to employ every available agent under the MPW mechanism. We call it a full

employment environment.

Definition 5 A full employment environment is one in which every available agent is em-
ployed under the MPW mechanism. Formally, given the set of agents N and any Np C N,

let X*(Ny,) be the matriz of efficient assignments when the subset N, of agents is available.
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Then the environment is called full employment if

S S al(Na) = [Ny for all Ny SN, (1.17)
i€ENp ]

where |N}| denotes the number of elements in Np,.

Next, we introduce the notion of decreasing returns to scale. For our model it is easier
to define decreasing returns to scale in terms of average per person surplus (net product)
produced under the MPW mechanism. Let s*(N) = $*/(32; ¥, z;) denote the average
per person surplus produced when all the agents are available for employment, and 5_; =
S(N_;)/ (X1: 22 T15) — average per person surplus when all the agents but i are available.
Finally, let §(N_;) = (v, §-;)/n denote the average per person surplus produced when

an “average” agent is excluded from possible employment.

Definition 6 A production environment is characterized by decreasing net returns to scale
if an average agent, efficiently employed under MPW mechanism, decreases the average per
person social surplus produced, as compared to the efficient employment without this agent.

That is,

s*(N) < §(N_,) . (1.18)

Corollary 5 If an environment is full employment and characterized by decreasing net
returns to scale, the principal can guarantee herself a non-negative payoff under the MPW

mechanism.

We now turn to another type of environment which is extremely favorable to the prin-

cipal — a perfectly competitive environment, where no agent is indispensable. In such



A Mechanism Design Perspective 29

environments, each agent faces the competition of at least one other agent who is identical
to him. With a continuum of possible types of agents and independence of types, such envi-
ronments occur with probability zero, but if the number of agents available for employment
is large, there might exist some agents who closely match each other in productivity-costs
characteristics. Then each agent’s marginal contribution, and, consequently, his share of the
social surplus will be small, therefore increasing the principal’s share of the surplus. The
analysis of the extreme, perfect competition case indicates that, in general, competition

serves the interests of the principal.

Definition 7 An environment (F,C) is called perfectly competitive if for any agent i € N

who 1s employed under MPW mechanism

S(X*(F,C)) = S(X-;(F,C_i)™ .

Proposition 5 If an environment is perfectly competitive, then under the MPW mechanism
the principal achieves her first best level of profit, i.e., she captures the whole social surplus

of production.

This statement follows from the definitions of the MPW mechanism and the perfectly
competitive environment.

To summarize, we find that efficient dominant strategy individually rational mechanisms
do not always leave the principal with a non-negative profit. The environments in which

the principal can guarantee herself a non-negative profit are rather restrictive and look a

11 Makowski and Ostroy define perfect competition as a situation in which no individual can change
equilibrium prices. They further show that this is equivalent to an environment where each agent’s marginal
product equals zero.
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lot like traditional labor markets with homogeneous workers; competition among agents
serves to the principal’s advantage. On the other hand, if the agents have complementary
characteristics and their joint production in teams produces increasing social surplus, the
principal is doomed to run into losses. The last observation is curious since from a pro-
duction efficiency viewpoint, the teams should be formed exactly when the efficiency gain
from the joint production is high. Our analysis indicates, however, that a self-interested

principal who is forced to implement efficient allocations only loses from high efficiency.

1.2.5 An alternative optimality criterion

The above analysis does not imply, of course, that any DSIC IR mechanism would necessarily
make a self-interested principal bear losses under certain environments. It only shows
that no-loss DSIC mechanisms cannot have socially desirable properties such as economic
efficiency. From the profit-maximizing principal’s perspective, however, efficiency is not
nearly as important as the profits that a mechanism produces in every possible environment.
In section 1.2.3 above we have found that there is no DSIC IR mechanism that is ex-post
profit maximizing for all environments. With this result in mind, the principal may prefer
any mechanism which insures her against losses and provides high profits at least in some
environments. This reasoning corresponds to the criterion of optimality suggested by Arrow
and Hurwicz (1972) for decision-making under ignorance. In their terms, an action is called
optimal if the minimal and maximal possible payoffs from this action are not lower than
the respective payoffs from any other action. In application to our problem, this criterion

implies that a mechanism is optimal if it always provides a non-negative profit and in the
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environment with minimal costs guarantees the principal her first best!2:
Definition 8 Within the class of direct revelation DSIC IR mechanisms, a mechanism
g(C) = (X(C),W(C)) is called weakly optimal if for any C € C
m(9(C)) 20
and there exists C* € C such that for any C €C, any X € X
n(9(C*)) 2 8(X;C) .
From the above discussion, it immediately follows that if C is closed from below, then a

weakly optimal mechanisms exists.

Proposition 6 Suppose that C* € C, where C* is defined by c}; = inf{c;;|c;; € Cyj} for all

(i,7) € N x K. Then there ezists a weakly optimal mechanism.

Proof Suppose that C* € C, where C* is defined as above. Consider a mechanism -
g*(C) which chooses an efficient allocation X* when C' = C* is reported, and no production

X* = 0 otherwise. Let w}; = ¢;;x;;. Obviously, g* is weakly optimal. O

Unfortunately for the principal, weakly optimal mechanisms may always result in zero

profit except for a single lowest cost environment. We now suggest an alternative suboptimal

2Note that, first, there do not exist individually rational mechanisms that guarantee strictly positive
profits in all environments, since we have assumed (section 1.2.1) that there is C € C such that for any
feasible X, S(X) < 0. For the same reason, any mechanism that gives the principal a profit higher than the
corresponding level of the social surplus cannot be individually rational.
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class of “no-loss” mechanisms which allow the possibility of positive profits for uncountable

sets of environments.

Consider the following direct revelation mechanism. Given the observable productivity

parameters F'(-), choose an arbitrary n x m matrix of constants B, B € C, such that

max(F(X) = 3 ¥ byzis) > O .
€ €N jEK

Let X*(B) denote an allocation where the maximum is achieved. Next, given the cost

reports C, form the matrix X (F,C) using the following rule:

5 1 if IC%(B) =1 and 5ij < bij

Tij =
0 otherwise .

Now consider the mechanism §(C) = (X(C), W (C)) such that X solves

max(F(X) = 3 3~ bijzij)

€N jeK

subject to:

X is feasible ,

F(X) =3 > bz >0

i€N jEK

if.’i‘,‘j = 0 then Z;;=0,

and W is defined by

) bij if & =1

Wiy =
0 otherwise .
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This mechanism is DSIC, IR and never gives the principal a negative profit. For C* = B,
the mechanism provides the principal her first-best outcome; for any C € C such that cij <
bi; for all (2, §) € N x K, the principal gets a positive profit. In this respect, such suboptimal
mechanisms may be more reasonable than the weakly optimal ones. Yet, these mechanisms
are still generically inefficient and not profit-maximizing, with the resulting allocations
being chosen almost ad hoc; the only purpose of the agent’s cost reports may be to insure
individual rationality. The “constant rule” weakly optimal mechanisms which always assign
the same allocation and wages, unless vetoed by the agents, are even less profitable and
sensitive to the environment then the mechanism suggested above. Unfortunately, it is
hard to find a no-loss dominant strategy IR mechanism that produces an allocation which
is responsive to the cost reports without disturbing the agents’ incentives to report the
truth. For example, suppose the principal adapts an MPW mechanism truncated at zero
level of profit: given the reported environment, she uses the MPW mechanism if it gives
her non-negative profit, and chooses not to engage the production process otherwise. Then
the agents might be tempted to misrepresent their costs in favor of less efficient allocations
for fear of having no production in the case of truthful reports.

To conclude, we find that if the principal has no information about the agents’ costs,
in the sense specified earlier, the dominant strategy incentive compatible mechanisms that
she might use are either almost ad hoc and not sensitive to the agent’s private information,
or make the principal bear losses in some environments. There is no strongly optimal
mechanism for the principal. The result is not surprising in view of the principal’s lack of
information and a strong dominant strategy requirement imposed on the agent’s behavior.

We next consider how our conclusions change if we move away from the principal’s complete
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ignorance assumption.

In the next section, we consider the Bayesian Nash equilibrium framework and charac-
terize optimal Bayesian mechanisms for the expected profit-maximizing principal. We then

return to the question of their dominant strategy implementation.

1.3 Expected profit maximizing mechanisms

The results obtained for dominant strategy mechanisms under complete ignorance do not
require any assumptions on the consistency of agents’ costs characteristics across projects.
In this section we introduce such assumption to be able to reduce the general problem to a
special single-dimensional case. Perhaps surprisingly, we find that the conditions necessary
for Bayesian incentive compatibility of team-formation mechanisms can be quite restrictive

even under this strong assumption.

1.3.1 The model

Suppose now that the principal, when hiring an agent, can observe his profession, but cannot
recognize the quality of the training, or the agent’s type. In the other words, the principal
can tell an engineer from a carpenter, but does not know how qualified each of them is. In
general, an agent’s qualification (type) may affect both the team’s output and the agent’s
personal costs. Yet in what follows we assume that the team’s output is a deterministic
function of the agents’ professions and is uninformative about their quality'®. The role of
agents’ types is to effect their personal costs of performing any task in a consistent way.

The high-quality agents bear lower costs compared to the low-quality agents of the same

3For example, we can imagine that a forcing contract makes each team produce an assigned task.
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profession. The problem of type revelation exists because of the presence of individual
rationality constraints.

Formally, assume that for every agent i, ¢ € IV, his cost of working on each project j, 7 €
K, is a deterministic twice continuously differentiable non-increasing function of his single-
dimensional type #;, ¢;; = ¢;;(ti), ¢i;(t;) < 0, ¢;;(¢;) > 0. The agents’ types are stochastically
independent random variables, distributed over the supports T; = [0,%;] C R according to
the probability distributions H;(¢;). Each H;(¢;) is twice continuously differentiable, with
corresponding density h;(¢;), ¢ € N. The distribution functions conform to the Monotone
Hazard Rate property, i.e., for every i € N, (1 — H;(¢;))/h;i(t;) is non-increasing in #;1%. Let
H(t) and h(t) denote the cumulative distribution and density functions of vectors of types
t = (ty,..,tn) over the support T = x;T;, and H_;(t_;), h_;(t_;) denote the corresponding
distribution functions of vectors t_; = (¢1,..,ti—1,%+1,.,tn). For all « € N, the support
T;, the probability distribution function H;(#;), and the cost functions ¢;(-) : R — RF are
common knowledge. Each agent’s cost type is his private information. Both the principal
and the agents are risk-neutral. The agents follow Bayesian Nash Equilibrium behavior. The
principal’s purpose is to construct a Bayesian incentive compatible (BIC) IR mechanism
that maximizes her expected profit. Using the revelation principle!®, we again restrict
our attention to the direct revelation mechanisms. Consider mechanisms that determine

probabilities of matrix allocations and wages for the agents as a function of their reported

types i.

4The Monotone Hazard Rate property together with c;-']-(ti) > 0 are the standard assumptions made
in the literature to guarantee that monotonicity constraints (see below) are not binding in the optimal
allocation problems with single-dimensional decision space (see, for example, Fudenberg and Tirole (1992)).
As we demonstrate in what follows, the assumptions remain important in the analysis of multi-dimensional
allocation problems as well.

15Gee, for example, Myerson (1979).
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Let X = {X|Xis feasible} denote the set of all feasible matrix allocations. We
can arbitrarily order the elements in ' so that X' = {X1,--,Xz,~-,X(k+1)n}- Let L =
{1,..,1,..,(k +1)"} be the set of corresponding indices, and for every ! € L let F; = F(X}).
Then we can consider a (k + 1)"-dimensional probability vector P = {p1,..,pi, -, P(k+1)= }»
where p; represents the probability of I-th feasible matrix allocation X;. This implies the

new feasibility conditions:

pp2>20 foralllel

ZP1=1-

leL

Equality in the second condition above indicates that X = 0 is a feasible allocation.
Further, let W = (w1, .., w;, .., wy,) denote the vector of agents’ wages. A direct revelation
mechanism then is a function from the reported types ¢ € T into the probability vector
P ¢ R*+1)" and the wage vector W € R"™: g(f) = (P,W). We restrict our attention to the
mechanisms such that P(¢) is piecewise continuously differentiable.
Some additional notation is needed for further analysis. For a given probability vector
P, for every i € N, j € K, let L;;(P) C L denote the set of indices whose corresponding

allocations assign agent ¢ to project 7. Then

ai(P)= Y m

leLi;(P)

denotes the probability of agent ¢ being assigned to project j. Given the profile of reported
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strategies #(t), agent i’s utility under the mechanism (P(E), W(®)) is:

u; (P, I/V,{, t) = 'w,(f) - Z Cij(ti) * Z pl(t~) . (1.19)
JEK leL;;(P)
Similarly, i’s expected probability of being assigned to a project j is

Qi(T,t) = > nuEtoi t))hi(t_s) db_; | (1.20)

T-iteL;(P)

and ¢’s expected utility is, correspondingly,

= / (wilt(t-i,t:)) = D eig(t) * S pi(Et—s, t:))hi(t_s) dt_; .
T jEK l€L;;(P)

(1.21)

Given that the agents’ type is ¢ and their reported strategy is #(-), the principal gains
the profit

T(P,W,1,t) =3 Fpi(E(t) — 3 wi(i(2)) (1.22)

lel iIEN

and his expected profit is

WP, W0) = [ (5 FinlE) - 3 wiFe)hct) de (1.23)

lel €N

Let u;(P,W,t) and U;(P,W,t;) denote agent’s ¢ utility and expected utility when the

agents report their true types, i.e., £(t) = ¢t. Then the principal’s problem can be stated as
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follows:

max Fipi(t) — w;{1))h(t) dt 1.24
e | (X Fw(®) = 3 wi(0)hce) (1.24)
subject to:
p(t) >0 foranyleL (1.25)
S ont)y=1 (1.26)
leL
Uz(P7 I/V,tz) 2
2/ (Wilt—i i) = Y ci(t)* S pites, &) hs(t_s) db_,;
T jEK 1eLi;(P)

for every ¢ € N, any t;, any ¢, - (1.27)

Ui(P,W,t;) >0 for every i € N, any ¢ (1.28)

Here the feasibility constrains take the form of 1.25-1.26, and the incentive compati-
bility (BIC) 1.27 and individual rationality 1.28 constrains are written assuming Bayesian

equilibrium behavior.

A direct revelation mechanism (P(t), W (t)) is optimal if it solves the problem 1.24-1.28.

1.3.2 Optimal Bayesian equilibrium mechanisms

Note that the assumption c}(#;) < 0 insures that the single-crossing property, or the con-
stant sign condition (Guesnerie, Laffont (1984)) holds; i.e., the agents’ costs on each project
change with their types in a consistent manner. This allows us to use the standard tech-

niques developed for the analysis of mechanism design problems in a Bayesian framework!S.

165ee Fudenberg and Tirole (1992), chapter 7, for an overview.
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Consider the necessary conditions for Bayesian incentive compatibility'”.

Proposition 7 (Interim monotonicity) If a feasible direct revelation mechanism (P(t), W (t))

is Bayesian incentive compatible, then for any i € N, any s;,t; € T; the following is true:

> (eij(ts) = ei(s:))(Qij (P ts) = Qij(Pysi)) <0 . (1.29)

JEK

We call the above condition “monotonicity” in analogy to the one-project case, where
the condition reduces to the requirement that the expected probability of employment is
monotonic in an agent’s type. For the multi-project case the condition becomes more
demanding. First, as in a one-project case, it réquires that an agent of a higher type should
be hired with higher expected probability than an agent of a lower type. Second, with
respect to shifting an agent’s employment probabilities among the projects, it requires that
an agent should be more likely to be assigned to the project where his cost decrease is the
fastest among the projects. We first solve for the optimal mechanism assuming that the
necessary conditions for BIC hold, and then characterize the conditions under which this
assumption holds.

In the spirit of Myerson’s (1981) analysis, for every i € N, j € K, let

Jii(t:) = eij(ti) ~ cgj(ti)-l-:};i%i%@ | (1.30)

17The proofs for the propositions in this section are given in section 1.6.
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denote agent’s i virtual cost of working on a project j. Similarly, define a virtual surplus

5(X) of an allocation X by

S(X;t)y=F(X) =3 3 Jij(t)zss - (1.31)

iEN jeK

Proposition 8 A direct revelation mechanism (P(t), W(t)) of the form

1 if X; mazimizes S(X;t) subject to
b= interim monotonicity constraint 1.29; (1.32)

0 otherwise ;

L
wi(ts) = Y cij(t)Qij (i) —/ > () Qus(mi) drg
jEK 0 jex
forallie N, allt; € T; (1.33)
is optimal for the principal'®.

Hence, an optimal mechanism, within the constraint imposed by monotonicity, chooses
an allocation that maximizes virtual social surplus and offers each agent an expected pay-
ment which is never lower than his expected costs of employment (the latter follows from
the assumption that ¢}(¢;) < 0). Similar to the optimal auctions results (Myerson (1981)),
we find that, first, the optimal team-formation mechanisms are generically inefficient, since
the principal trades off some efficiency for higher expected profit. Second, there exists the

whole class of equivalent optimal BIC mechanisms which differ from each other in the form

8In the above statement we ignore the possibility that there may exist more than one allocation X that
maximizes the virtual surplus. Generically, these cases occur with probability zero. However, if such a
situation emerges, an optimal mechanism, equivalent to 1.32-1.33, randomly chooses one of the efficient

allocations.
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of actual wages paid to the agents; expected wages are given by 1.33. Also note that,
similarly to the optimal auction, an agent’s probability of being hired under an optimal
mechanism is a non-decreasing function of his type: Provided that the Monotone Hazard
rate condition and the assumption ¢j;(¢;) > 0 hold for all 4,j, we get that Ji;(t:) < 0 for

any %,7. This important observation is useful for the further analysis; we state it as the

following lemma:

Lemma 3 Under an optimal mechanism of the form 1.32-1.33, for anyt € T, any 1 € N,
agent i’s probability of employment 3_;c i ij(t—i,t;) is @ non-decreasing function of his type

t;.

The optimal BIC mechanisms differ depending on whether the interim monotonicity con-
straints 1.29 are ever binding. If H(t) and ¢;’s are such that the constraints are not binding,
then the optimal mechanism is explicitly given in Proposition 7. Otherwise, bunching is
optimal over the ranges of types where the monotonicity is binding!®. We now proceed with

the analysis of the restrictiveness of the monotonicity constraints 1.29.

1.3.3 Analysis of monotonicity requirements

To see that the constraints 1.29 can be indeed rather restrictive and often binding, consider

the following example.

Example (Restrictiveness of the monotonicity constraint) Consider the problem of hiring

one agent on two alternative projects, i.e., let n = 1, k = 2. Let F; = 100, F5 = 98. Suppose

19See Guesnerie and Laffont (1984) for an exposition of bunching technique.
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that the agent’s cost type t is uniformly distributed on [0, 5], and let ¢;(¢) = 3/(¢t+0.1) +10,
c2(t) = 20 — 4t. Note that the uniform distribution conforms to the Monotone Hazard
Rate property and the cost functions are decreasing and convex, as required by the initial
assumptions. We demonstrate that the monotonicity condition 1.29, which in this case

takes the form of ex-post monotonicity,
> (cj(t) — ¢j(s))z;(P,t) — z;(P,s)) <0, (1.34)
jEK
is not trivially satisfied. Take s = 0.23 and ¢ = 2.5 and let us compute the virtual surplus
maximizing allocations X(s), X (). Since ci(s) = 19.08, ca(s) = 19.08, ¢1(¢t) = 11.15,
c2(t) = 10; (1 — H(s))/h(s) = 0.19, (1 — H(t))/h(t) = 0.1; ¢\ (s) = —27.59, ch(s) = —4,
ci(t) = ~0.44, c5(t) = —4, we obtain Ji(s) = 24.7, Jo(s) = 19.84, J1(¢) = 11.55, Jo(t) =

10.04. Therefore,

Si(s) =753 Sy(s) =782 Si(t) =88.45 Sy(t)=87.96

1131(8) =0 1'2(8) =1 .T,‘l(t) =1 .’L‘Q(t) =0.

However, the above allocations do not conform to the monotonicity constraint 1.34 and

therefore cannot be chosen:

(c1(t) — ex())(@1(t) — 21(5)) + (ea(t) — ea(8)) (alt) — ma(s)) =

= (11.15 — 19.08)(1 — 0) + (10 — 19.08)(0 — 1) = 1.15 > 0 .

Figure 1.1 gives a graphical illustration of the above example. Note that the graphs
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Figure 1.1: An example of cost functions violating sufficient conditions for monotonicity:
cj(t) = 3/(t+0.1) + 10, cx(t) = 20 — 4¢, t € [0, 5].

of the cost functions for the two projects intersect more than once, which indicates that
there is no consistency in the cost change on one project relative to the other. Specifically,
there is a switch in the relative rate of cost decrease between the projects: ¢}(s) < ch(8),
but ¢j(t) > cj(t). As a consequence it is possible that with the change in type the true
costs change in favor of one project, whereas the virtual costs change in favor of the other.
Under these rather typical circumstances, the monotonicity constraint can be violated quite
easily, as the example above shows. Below, we present sufficient conditions for monotonicity,
which guarantee that the above situation is never the case?’. The condition states that the
difference in the rates of cost decreases between any two projects does not change “too

much” compared to the difference in the change in the absolute costs between the projects.

20The sufficient conditions for monotonicity presented in propositions 9 and 10 are specific for z;; € {0,1}
case.
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Proposition 9 (Sufficient conditions for monotonicity) The monotonicity conditions 1.29

are satisfied if the following is true:

For every i € N, any si,t; € Ty, any j, k €EK,j#£k, if

(cij(si) = ei5(ti)) = (cin(si) — can(ts)) > 0, (1.35)

then

(60 = 0) = el = ) > (7 5 - Lo )
1—Hi(si) , 1-Hi(t)
() s = ) () o (1.36)

Moreover, the above condition is also sufficient to guarantee that the ez-post monotonicity
requirement is satisfied: if for any i € N, any si,t; € T; 1.85 implies 1.36, then for all

t—i € T_; the following inequality holds:

D (esslts) = eij(s0)) (@i (2) — zij(si,t—)) <0 . (1.37)
JjEK
Outline of the proof The complete proof is given in the section 1.6; here we present

the outline to show that the above conditions guarantee not only interim, but also ex-post

monotonicity.

We show that virtual surplus maximization

max{F(X) = 3 ¥~ Jij(ti)ai} (1.38)

iEN jEK
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implies that for any ¢ € N, any s;, ¢;

> (Jig(ts) = Jig(s0))(wej (k) — wij(s:)) < 0, (1.39)
jeK

which, under the conditions stated in the proposition, in turn implies

> (eij(ts) = eij(s:)(sts) — wi5(s:)) < 0 . (1.40)

JEK

The latter inequality is ex-post monotonicity, which is clearly stronger than interim

monotonicity and implies it. O

The form of the sufficient conditions together with the earlier example suggest that the
conditions that guarantee monotonicity are not trivial and do not generically hold. Rather,
they are satisfied for certain groups of type distributions and cost functions. In particular,
the monotonicity conditions hold if each agent’s costs change in a consistent manner not

only with types, but also from project to project. We state this case in the following

proposition.

Proposition 10 Suppose that for every i € N, for every pair of projects j, k € K, either

(1) ¢;(ts) < cjg(ti) and cii(t:) > cip(t;) for all t; € T | (1.41)

or

(1) cj(ts) > cip(ti) and cii(ti) < cip(t;) for all t; € T . (1.42)

Then the monotonicity conditions 1.29, as well as 1.37, are satisfied.
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Figure 1.2: An example of cost functions satisfying sufficient conditions for monotonicity:
¢j(t) = (z~6)* -1, k() = (z = 7)*/4+5, L € [0, 5].

The set of assumptions presented in the proposition 10 implies that for each agent, the
projects are ranked with respect to the rates in cost changes; this ranking does not change
with types. This can be interpreted as a single-crossing property for the cost functions of
each agent: under the given conditions, an agent’s cost functions for any two projects j and
k can intersect at most once (compare this to the cost functions in the example above).
Figure 1.2 illustrates the idea.

The above versions of sufficient conditions for the monotonicity, together with the stan-

dard single-crossing property guaranteed by the assumption c;; < 0 for any i,j, present

ij
a set of very restrictive regularity requirements. Although the necessary and sufficient

conditions®! for the interim monotonicity may be less restrictive, the example presented

*IThe necessary and sufficient conditions are not considered here for the reason that they differ depending
on the values of the observed productivity parameters; obtaining sensible necessary conditions requires
imposition of certain regularity requirements on productivities, which would narrow the scope of the analysis.
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in this section demonstrates that some consistency in each agent’s cost functions for dif-
ferent projects may still be required. The above analysis indicates that the monotonicity
conditions become much harder to satisfy once we move from one-dimensional to multi-
dimensional decision spaces. Therefore, under a broad range of circumstances, bunching
will be optimal over wide ranges of an agent’s type. This suggests that multidimension-
ality of decision variables, through making monotonicity conditions more restrictive, may
substantially decrease the principal’s expected profit compared to a one-dimensional (one-
project) allocation problem.

For the rest of the section, we restrict our attention to the cases when the necessary
monotonicity conditions are not binding, and therefore the optimal BIC mechanism is of

the form explicitly presented in proposition 7.

1.3.4 Implementation in dominant strategies

Following the results of Mookherjee and Reichelstein (1992), we now show that an optimal
BIC mechanism can be equivalently implemented in dominant strategies with no expected
loss to the principal. This brings us back to the problem initially stated in section 1.2 —
the one of finding an optimal profit-maximizing dominant strategy incentive compatible
mechanism. The following result shows that if the principal knows a prior distribution of
the agents’ cost types there exists an optimal, in the sense of expected profit maximization,

DSIC IR mechanism.

Proposition 11 Suppose that the cost functions ¢;(t;) and the distribution functions H;(t;),

¢ € N, are such that the ex-post monotonicity conditions 1.37 are satisfied. Then the direct
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revelation mechanism (X (t), W (t)), given by

X*(t) = X that mazimizes S(X;t) , (1.43)
t;
wilt) = 3 etz () — / S b )z (b, ) dr
JEK 0 jer
forallie N, €T, ,t_;, €T, (1.44)

is a dominant strategy incentive compatible and ez-post individually rational mechanism
which yields the same expected profit as the optimal Bayesian tncentive compatible mecha-

nism 1.32-1.35.

The above proposition says that we can replace the optimal BIC mechanism with an
equivalent DSIC mechanism??. Moreover, since the DSIC constraints are more restrictive

than the BIC constraints, we have also established

Corollary 6 If the cost functions c;(t;) and the distribution functions H;(t;), i € N, are
such that the sufficient conditions for monotonicity (proposition 9) are satisfied, then 1.43-
1.44 is an optimal expected profit mazimizing dominant strategy incentive compatible indi-

vidually rational mechanism.

To draw a parallel with the section 1.2 results, note that the above mechanism is not
an efficiency-maximizing Groves mechanism, but it does have certain incentive properties
in common with it. First observe that an agent’s type report affects his wage only through
the allocation decision; within the same allocation of an agent, his wage is constant in his

own report. Indeed, for any ¢ € N and any t_; € T_;, suppose z} (t—;, t;) = z}(t—i, 8;) = 2}

22The finding still holds if the z;;’s are continuous variables.
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for some ¢; # s;. Let ¢; > s;. Then, by 1.44,

wi{t_;, t;) — wi(t—;, ;) =

t;
=3 eyt~ [ 5 dir)ale) dr -

JEK JEK
84
=Y s+ [ y(rlaf (i) dr =
jeK 0 jex
t;
= 3 cltey - 3 cijlsi)al — / > di(Maf(t,r) dr=0.  (1.45)
JjEK jeK % jek

Second, sufficient conditions for monotonicity 1.35-1.36 guarantee that, given the alloca-
tion rule 1.43, an agent’s true cost report maximizes his own utility as well as the principal’s
objective function?3. Comparing these findings with the properties of the DSIC IR mecha-
nisms under complete ignorance, we find that the principal’s knowledge of the probability
distributions of the agents’ cost types — at least in the special case when these types are
one-dimensional — is decisive in determining the employment rules which insure that (7)
individual rationality holds and (i) the expected profit is nonnegative?* and is maximized.
In contrast, under complete ignorance nearly the only way to satisfy individual rationality
in DSIC mechanisms was to sacrifice the profit maximization motive and either choose ran-
dom allocations or pay unreasonably high wages to the agents. One might conclude that no

matter how well or poorly informed the agents are about each other’s costs, the principal’s

*1n fact, given any t—; € T_;, i’s assignment and, respectively, his wage are step functions of his type report
ti. This follows from the form of the allocation rule 1.43 and continuity of J;;(¢;) in ¢;. Thus, for everyi € N
we can identify a collection of threshold types {sio(t—;) = 0,8i1(¢~i), ..., sir(t—s) = &;}, L < oo, such that
77 (t—s,¢:) and, consequently, w; (t—;, ;) are constant within each interval (sit—1(t—1), su(t-)), L = 1, .., L.
Note that since i’s probability of employment is non-deceasing in his type (lemma 3), z} (t~i,t;) = 0 if
t; € [0,8:1(t—;)) and E}EK zj;(t—i,t;) = 1 otherwise. Then one can easily show that i’s wage at each
allocation is a function of his costs at the threshold types only, and does not directly depend on his own
type report.

2By construction of the optimal mechanism, an allocation X = 0 is always an option, which guarantees
that the expected profit is nonnegative.
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possession of information is crucial for her profit maximization.

1.4 A note on Nash equilibrium mechanisms

In the above study, we ignored the case of the extreme informational asymmetry ~ that
is, when the principal is “completely ignorant” (as defined in section 1.2) but the agents
themselves are well-informed about each other’s characteristics. Assuming that under this
information structure the agents follow Nash equilibrium behavior, we present two notes on
the Nash equilibrium mechanisms. First, we find that if the agents follow Nash equilibrium
behavior, the principal can design mechanisms that will always secure her a non-negative
profit, but generically cannot guarantee her most preferred outcome. However, we further
demonstrate that if the agents are sequentially rational, there exist sequential mechanisms
that allow the principal to acquire, almost costlessly, all the hidden information and obtain
an outcome which is arbitrarily close to her most preferred alternative. In other words,
under certain circumstances the principal can use the agents’ self-interest to accumulate

the hidden information at a low cost.

1.4.1 Nash implementation and the first best

Assume that the agents have complete information about each other’s types and follow Nash
equilibrium behavior. However, the principal has no information about the agents’ costs
characteristics and can pursue her own interests only by setting the “rules of the game”,
or the mechanism under which the agents are employed and paid for their jobs. Without
focusing on any specific Nash equilibrium mechanism, we use the Nash implementation

theory framework to consider what levels of principal’s profit are implementable in Nash
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equilibrium.

As in section 1.2, let (F,C) characterize an environment, and let (F,C) be the set of
all possible environments, as given in section 1.2.1. A feasible alternative ¢ = (X, W) is
a feasible allocation X and a wage matrix W such that |3 ;cn 205ex wis| < M, where M
is a big enough real number?®>. Denote by A the set of all feasible alternatives?®. The
principal’s profit corresponding to an alternative ¢ in an environment (F,C), n(a; (F,C)),
is given by 1.2. With the agents’ utility functions given by equation 1.3, the agents’ cost
parameters bear sufficient information about their utility functions. Since F' is observable
for the principal, given any F' € F we can present a choice rule as a correspondence Gp:
C — A; denote by Gr(C) the resulting choice set. Then Gr is implementable in Nash
equilibrium if there exists a game with the set of Nash equilibria coinciding with the choice
set Gr(C).

Consider whether the principal’s most preferred choice set is implementable in Nash
equilibrium. Since we assume that the agents always have an option not to participate in
the game proposed by the principal, a chosen allocation and wage have to be individually
rational for every agent. Therefore, in any environment the principal prefers the choice rule

that gives her first best, or the complete information outcome given by 1.9-1.10. Given

?*For example, we can choose M = Y, Z]‘ ijTij, where & = sup{cilc; € C;}, and X maximizes F(X) —
Zi Z]. CijTij. Restrictions on the range of possible wages are imposed for the tractability of analysis;

otherwise the agents might unanimously prefer infinitely large wages.
%6Note that the set of feasible alternatives is not constrained to the set of individually rational alternatives

and therefore stays the same for every environment.
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F € F, the principal’s first best is the following choice rule:

X* = X that maximizes S(X;(F,C))
Gr(C) = (1.46)

wi = cijx;‘j for all 4, 7,
where, as before, S(X;(F,C)) denotes the social surplus of an allocation. We can show
that for almost all (F,C) this rule violates the monotonicity property which is necessary for

implementability in Nash equilibrium (Maskin, 1979), and thus establish

Proposition 12 Suppose the set of possible cost profiles C is such that for every F € F
there exists C € C which satisfies the following conditions: for every surplus-mazimizing
allocation X*(F,C) there exists at least one pair (3,5), i € N, j € K for which z};(F,C) =1
and ¢;; > inf{c;jle;; € Cij}. Then the principal’s first best is not implementable in Nash

Equilibrium.

We conclude that under the Nash equilibrium behavior hypothesis, the principal cannot
always get her most preferred alternative if she has no information about the environment?’.
The proof of the proposition 12?8 also shows that no matter what Nash equilibrium mech-
anism the principal uses, under many cost profiles she has to give to the agents substantial
shares of social surplus in order to sustain monotonicity. Note, however, that the principal
can use her power as mechanism designer to obtain the outcomes which are always indi-
vidually rational for herself. We introduce the notion of an acceptable alternative, which

corresponds to the notion of feasibility for the game of surplus redistribution without a

principal.

2"The result depends crucially on the assumption that zi; € {0, 1}, as the proof in section 1.6 shows.
28The proof is given in section 1.6.
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Definition 9 An alternative a = (X, W) € A is called acceptable if
F(X) ——ZZwijxij Z 0.
i J

Proposition 13 For any environment, the principal can guarantee an outcome from the

set of acceptable alternatives.

Proof Consider any mechanism that includes the following element. Given observable
productivities F', for any (X, W), determined according to some choice rule, let

(X, W) = (X, W) HF(X)~Yien Zjex witij 2 0 (.47

(0,0) otherwise .

Thus, the principal can “veto” any outcome that gives her a negative payoff by choosing

not to employ anybody. O
We summarize the above findings in the following corollary.

Corollary 7 If the agents follow Nash equilibrium behavior, the principal can guarantee

herself a non-negative profit, but cannot guarantee her first best.

1.4.2 Sequential mechanisms

Surprisingly, the situation drastically changes in favor of the principal if we assume that the
agents follow subgame perfect Nash equilibrium behavior. In this case, the principal can
use simple sequential mechanisms to implement the outcomes that in any environment are

arbitrarily close to her first best alternative. Indeed, we prove the following proposition.
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Proposition 14 If the agents follow subgame perfect Nash equilibrium behavior, for any

arbitrarily small € > 0 there ezists an individually rational mechanism G¢(F,C) = (X, W)

such that for any environment (F,C)

m(G(F,C)) > (1 — e)n*(F,C) ,

where w*(F,C) is the principal’s complete information profit level.

Proof Consider the following sequential mechanism?®. For an arbitrary € > 0, choose
€1 > 0, €2 > 0 so that € + €2 < e. Pick randomly two agents m,l € N. Let each stage of
the mechanism be observable to the agents. At stage 1, let agent [ choose a k-dimensional
vector z,, and a scalar s,,, such that z,, constitutes a feasible allocation of agent m. At
stage 2, let agent m choose an (n — 1) x k£ matrix X_,, and a (n — 1)-dimensional vector
S_m, where, again, X_,, is a feasible allocation of agents other than ¢. At stage 3, allow any

agent to veto m’s or I’s choices by reporting “no.” Define the following “profit” function:

pX,S)=F(X)-> 5. (1.48)
1EN

Finally, let the mechanism choose the resulting outcome (X*, W*) by the following rule.

For every i € N, every j € K, let

0 if “no” has been reported by any agent
* = (1.49)

z;; otherwise ;

291 am grateful to John Duggan for suggesting the idea of this mechanism to me.
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85 fzj;=landi#!,i#m

si+eap(X,S) ifzjj=1andi=I

sm+€p(X,S) ifzj;=1landi=m

0 otherwise .

Using backwards induction reasoning, we now show that any two chosen agents will
pick an efficient allocation X and the “base wage” vector S with s; = 3¢ ¢;;%i; for every
i € N. From stage 3, agents [ and m cannot be better-off by choosing s; < 2 ek CijTij
for any 7 since then their choice will be vetoed and their gain will be identically zero. This
guarantees individual rationality of the mechanism. Next, on stage 2 agent m, with his
assignment and “base wage” s, already given, can only maximize his utility by maximizing
the principal’s profit. This implies that he will choose a surplus-maximizing allocation,
constrained to his own allocation, and “base wages” s; < ¥ jck CijTij, i-€., 8; = Eje K CijTij
for every agent including [. Hence at stage 1 agent [ knows that no matter what choices he
makes, the difference between his “base wage” and cost at his assignment will be identically
zero. Therefore, agent [ also can increase his utility only through maximizing the principal’s
profit. It follows that agent [ will pick an assignment for m that is consistent with an efficient

allocation, and choose sy, = Zje K CmjTmj. O

The above analysis indicates that, assuming sequential rationality, a completely unin-
formed principal can almost costlessly acquire all the information he needs to implement
his most preferred outcome. All she needs to do is to hire two informed agents on a profit-

sharing basis®®. One might conclude that the agents do not always gain from having more

20Think of foremen who are put in authority over groups of workers or particular operations in a plant.
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information: As our results on dominant strategy mechanisms show, if the agents themselves
are ignorant of the other agents’ cost types, the principal often needs to pay huge infor-
mation rents to accumulate the dispersed private information. Yet, the agents’ complete
information case more readily applies to situations where the agents have a past experience

of working together than to newly formed teams in flexible organizations.

1.5 Conclusion

In considering the multiple teams formation problem, we were able to demonstrate several
points. First, most generally, the principal’s knowledge of the informa,tiop structure of
the agents’ characteristics is crucial for her profit-maximization motive — as opposed to
efficiency maximization, where no information on the principal’s part is required to make
an efficient decision. If a principal starts a new project (or a new firm) with no idea how
costly this project might be for her, then, even with no nature-induced uncertainty and the
information dispersed among the agents, she is likely to run into losses in an attempt to have
agents truthfully reveal this information. Yet, if the agents themselves are well-informed
about each others’ characteristics, the principal can use their self-interest to accumulate this
information at a low cost. If the principal is aware of the distribution of the agents’ cost
characteristics, there exists a well-defined optimal mechanism that maximizes her expected
profit. However, when the decision space becomes more complicated, as in the multiproject
case, the incentive compatibility constraints are more likely to become binding and thus
reduce the principal’s profit by often making her treat “good” and “bad” agents equally.

Competition among agents might substitute for the information needed by the principal.
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We learn that in perfectly competitive environments the principal may collect all the social
surplus without having any information on the distribution of the agent’s costs. This is
also the case when efficiency gains from team production are low. On the other hand, when
each agent is indispensable and the efficiency gains from team production are high, the
principal is very likely to bear losses. This suggests that a principal might prefer to run
a robustly-structured enterprise with homogeneous labor factors and standard tasks rather
than a flexible corporation with highly innovative tasks and indispensable agents. Changing
to the latter requires acquisition of new information about the agents’ characteristics, which
might turn out to be very costly for the principal in a hierarchy.

Turning back to our initial question, we find that the appeal for partnerships in the
context of flexible organizational forms has theoretical explanations. The agents might
want to organize themselves as partners and share efficiency gains from their joint activities
when it cannot be profitably done by an outside principal. Yet, incentive compatibility
needs to be sustained within a partership, as well as a principal-run firm, if the agents have
incomplete information about each other. This important problem has to be addressed
before we can argue in favor of partnerships. Still, when the agents are well-informed
about each others’ characteristics, parterships appear to be a feasible way to achieve higher
efficiency by means of flexible organizational forms. Small consulting firms working on a
variety of different tasks is the most obvious example.

As the other side of the same conclusion, we might expect large hierarchical structures to
have major incentive problems, either on the principals’ or on the agents’ side, in attempts
to reorganize towards more flexible internal structures. A possible solution might be in

reducing informational asymmetries or, possibly, changing the ownership structure towards
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partnerships.

1.6 Proofs of the statements

Proofs for section 1.2 Proof of Lemma 1 Let 7*(F, C) denote the profit that the princi-
pal would be able to get in an environment (F, C) if she had complete information. Suppose
there exists a strongly optimal DSIC IR mechanism g(F, C) such that 7(g(F, () < n*(F,C)
for some environment (F, é’) Then consider the following degenerate direct revelation
mechanism §(F, C): Denote by X*(F) an allocation that maximizes

CijTyj -

n k
=1

P30 -3

=17

Then for any (F,C) choose (X(C), W(C)) such that

1 if :E:](F) =1 and Cij < G5
0 otherwise
éij if Zij = 1

0 otherwise

Note that, first, g(F,C) is DSIC and IR for any environment and, second, for the

environment (F, C’) it provides the principal the level of profit
w(§(F, ) = x*(F,C) > n(g(F,C)) .

This contradicts our initial supposition that g(F, C) is strongly optimal. O
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Proof of Lemma 2 For the class of problems with no production, any efficiency-maximizing
DSIC mechanism has to be a Groves mechanism, with the transfers (wages) given in the

form (Green and Laffont, 1977):

Swigal =~ &ah(E,Coi) + h(C)
J

1#i 3

Introduction of production, however, changes the social efﬁciency criterion and correspond-
ingly modifies the form of the transfer function. Consider the problem of choosing a socially
efficient allocation in the variant with observable production. One can easily show that a
direct revelation mechanism is DSIC if and only if it satisfies the following properties (this
is a modified “Property A” (Green and Laffont, 1977)):

(). For all i, w; is independent of ¢; at X*; i.e., for any F, C_i, &, ¢, if X*(¢&;, C_i,F) =

X*(&,C;, F), then w;(&,C_s, F) = wi(&,C_;, F).

79

(’L’L) w,‘(éi, é_.i, F) — wi(éé, é_,’,F) =

= [F(X*) = 33 &a5(e, Coiy F)) = [F({&g}) — 3 > &85(&, C—iy F)]

I#i j I#i j
where X* maximizes F(X) — >3, ¢ijzi5(Ei, C_i), and X maximizes F(X) -
i 2 Giywi (6. C=i).
Next we can show that the only mechanisms that satisfy these properties are the Modi-

fied Groves (as defined above). Moreover, all the properties of the standard Groves mecha-

nism hold for the modified version3!. Therefore, the results regarding the standard Groves

31The proofs go exactly as they would for the Groves mechanisms and hence do not present anything new
of interest; see Green and Laffont (1977) for the original proofs.
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mechanisms apply. O

Proof of Proposition 2 By construction, the MPW mechanism is Modified Groves, which
implies that it is DSIC and efficient. It is left to show that it is individually rational. Note

that if an agent 4, ¢ € N, reports the truth, then

k
Z CHEHES max [F(X) - Z Z CijTiy — Z CijTij)—
j=1 '

l# 3
- fgl(aX[F({xij}—i) - Z Z clﬂlj + Z clﬂzz
-t I#£ 7
= S(X*(C_i,c)) — S(X_i(C_y)) + Zc,-jxij >3 ey (1.51)
J J
since
S(X*(Cuiyei)) > S(X-i(Cy)) -
Therefore,
k
S (wlj — i)l > 0. (1.52)
j=1
O

Proof of Proposition 8 As before, let X*(F,C) denote an efficient allocation of the set
N of agent, and X_;(F,C_;) - an efficient allocation of the set {N \ i} agents. Besides, let
N*(F,C) be the set of employed agents: N*(F,C) = {i € N| 3, z}; = 1}. By corollary 3,

it is sufficient to show that for every (F,C)

- Y S(X_y(F,Cu) < Z J(C-y) (1.53)

iEN* eEN*

for any h(C) = (h1(C-1), .., hn(C_,)) such that the corresponding Modified Groves mech-
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anism is individually rational for any (F,C). Suppose this is not the case. Then there
exists an environment (F,C) and a vector-function A(C) = (h1(C_1), .., An(C_y)), with the

corresponding individually rational Modified Groves mechanism g(F, C), such that

— 3 S(X_i(F,Co)) > Y hi(Cy) (1.54)

1EN* 1EN*

This in turn implies that
— S(X_s(F,C_)) > hi(C_;) for some i € N*, (1.55)

We now show that this leads to the violation of individual rationality in certain environ-
ments. Note that since any Modified Groves mechanism is social surplus maximizing, we

have

S(X*(F,C)) — S(X_i(F,C;)) > 0iffi € N*,

Two cases are possible:

(i) S(X*(F,C)) = S(X_i(F,C—;)). If condition 1.55 holds, then individual rationality
for 7 is violated. Hence, this cannot be the case.

(i) S(X*(F,C)) > S(X_;(F,C_;)). Then suppose S(X*) — S(X—;) = a > 0. In

accordance with 1.55, let h;(C_;) = —S(X_;) — € for some € > 0. Then

waj:cfj = F(X") - ?: Z cljx;‘j —+ ﬁ(C_z-) =
J #i g

=S(X*)+ 3 cyay —S(X_i) —e=D izl +a—e
J J
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and

u; = Z(w;‘j —Cij)T =a—¢.
J

Now consider a different environment (F, C’), such that &; = ¢;; + a — ¢/2 for all j,

¢ij = ¢y for all [ # 4, all j. Then
S(X*(F,C)) - S(X_(F,Cy)) = ¢/2> 0,

¢ is still chosen and the whole allocation does not change: X = X *(F,C) = X *(F,C).

Further, #; = w}, where @; = w}(F, ), w} = w}(F,C). Then

wi(F,C) =3 (s — &5)245 =

J
= Z(wfj —cj—at+e/2)z=(a—€)—a+te/2=—¢/2<0, (1.56)
J

which contradicts individual rationality. O

Proof of Corollary 4 The principal gets a non-negative payoft if 7(X*) = F(X*) -

i

=FPX") =328 =3 Y e+ 8=

i

=(1-n)s"+3 5., (1.57)

F(X*) =32 whay =
;

which is non-negative only if 1.16 holds. O
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Proof of Corollary 5 In this case,

T(X") = F(X*) = 30> (wj; - ey)af; =
ig
=Y 5. — (n—1)§* =n(n - 15(N=s) - (n — ns*(N) =

=n(n—1[E(N_;) - s"(N)] 2 0 (1.58)
since n > 1 and by definition 2. O

Proofs for section 1.3 Proof of Proposition 7 Let U(P,W, s;|t;) denote 4’s utility of

reporting s; when his true type is ¢;, given the mechanism (P,W). Then one can easily

show that
U(P,W,silts) = UP,W,s:) — > _ (cij(ts) — ci5(5:))Qi; (P, 53) -

JEK

If the mechanism (P, W) is BIC, then for any s;,t; € T;

U(P’ Wv tz) _>. U(Pa Wa Slitl)

and

U(Pa Wa Si) > U(P7 Wa t’LIS’L)

or, equivalently,

U(P,W,t;) 2 U(P,W,s:) = > (cij(ts) — ei5(51))Qi; (P, 85) (1.59)
jek
U(P,W,s;) > UP,W,t;) — > (cij(ss) — i (£:))Qij (P 1) - (1.60)

JEK
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It follows that

> (cij(ss) — eij(ti))Qij (P si) <
jek
SUPW,t) — UP,W, ) <> (ei(s:) — €i5(t:))Qij (P, 1) (1.61)
jeK

which yields 1.29. O

Proof of Proposition 8 For simplicity of notation, let U(P, W, s;(t;) = U(s;|t;), U(P, W, t;) =

U(t;). Incentive compatibility means that

U(t;) = max U(sift;) -

From the Envelope theorem, if the mechanism is incentive compatible, then

ey U (s4)ti)
U’i (t’l) - atl 9
or
Ul(ts) = = > ¢;(t:)Qi5(ts) (1.62)
JEK

for all 7, all ¢; € T;. Integrating both sides of the equation and letting U;(0) = 0, we obtain:

t;
Uitt) = = [ (3 s(r)Q(r)) drs (1.63)

JjeK

Individual rationality is then guaranteed for all 4, all ¢; € T} since c(¢;) < 0 by assump-
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tion. Let W;(t;) denote i’s expected wage. Then, by definition,

Ui(t:) = Wi(ti) — Y ¢i(t)Qi(t:)

JjEK
and therefore the expected wage is
t; ,
Wi(t:) = > ¢ij(t:)Qij(t:) —/ (D () Qus(2)) dri . (1.64)
jEK 0 jexk

We now show that 1.29 and 1.63 together imply incentive compatibility, i.e.,
U(t;) > U(silts) -
for any t;, s;. From 1.63 and 1.64,

U(silts) = U(ss) = Y (ci(ti) — cij(5i))Qig(s1)

- JEK
and, therefore, it is sufficient to show that for any s; < ¢;
i; ,
—/ D i (NQu(r)dr = = Y (eijlts) — eij(5i))Qij(si)
% jEK JEK

or

- /ti Z c;j(T)Qij(T)dT > = /:1 Z C;j(T)Qij(Si)dT .

5i jeK jeEK

Observe that the above always holds since the necessary condition for monotonicity 1.29
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implies that

> (M Qu(r) — Qij(si) < 0

JEK
for all 7 > s;. The case s; > t; is established by reversing the inequality signs twice.

Incentive compatibility and individual rationality are therefore established. Finally,

since

= Et{z Eip(t) ~ Z Z c’tj(t)Q’L] t) — Z Us(ts)}

(el €N jEK 1EN
where E; denotes expected value over the domain of t, substitution of the expression 1.63

into the principal’s objective function, after standard transformations, yields:

P) = B Ain) = 3= 3 (en(t) = ) i) 57 ) =

leL iEN jEK leL;
=E{)_ Fp(t) - > > Jita)( S m)} (1.65)
leL i€EN jEK le€L;;

Since both the principal’s and the agents’ utility functions are linear in allocation X ,
there cannot be any gain from randomization over X. The optimal choice of P(t) follows.

O

Proof of Proposition 9 By proposition 8, the optimal mechanism chooses an allocation

X (t) to maximize, subject to the monotonicity constraint,

S(X;t) = F(X) - =0 Ttz (1.66)

1EN jEK
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We first show that this implies that for any ; € N , any s;, t;

D (i (t) = Jij(30))(@sj(ts) — mi5(s:)) < 0 . (1.67)
jeK

Given the form of the optimal employment rule an agent’s probability of being hired is
non-decreasing in his type (lemma 3). Thus, we can restrict our éttention to the case of an
agent being moved from one project to another, within the range of the types where the
agent is employed. In the latter case, for an arbitrary ¢_; € T_;, let X* be the allocation
that maximizes 1.66 given (¢_;, s;), and X — an allocation that maximizes 1.66 given (t_;, t;).
Suppose that agent 7 is optimally employed at project j being of type si, but is optimally
moved to the project £ when his type changes to ¢;: zi; =1, zf = 0 for all k 7, and

Zik =1, Z;; = 0 for all j # k. Then

S(X*t_,8) = F(X*) - D> Ttz = Jij(si) > S(X;ti, s1)
1#i jeK

for any feasible X ;
S(X;t_it;) = F(X) - DD Ji(t)Ey ~ Ju(t) > S(X3ts, t;)
I#i jeK
for any feasible X .

In particular,

F(X*) =33 Jy(t)aly — Jij(si) > F(X) - DD Tyt F — Ja(ss) (1.68)

I#i jEK I#i jEK
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and

F(X) =33 J(t) iy — Jun(t:) > F(X*) - DN dtoal; — Jit) - (1.69)

I#i jeK I#i jEK

Combining the two above inequalities, we obtain
Jij(t:) — Jij(si) = T (ts) — Jir(ss)

or

D (i (k) — Jij(30))(mij (tiy t—i) — 45 (si,t-5)) < 0. (1.70)
jeK :

Note that interim monotonicity certainly holds if ex-post monotonicity holds, i.e.,

D (eij(ts) = cij(5))(mij (tiyt—i) — zi;(s3,t-5)) <0, (1.71)
jEK

which is thé case when

cij(ti) — cij(s5) > cn(ts) — cin(s;)

whenever

Jij(ts) = Ji5(ss) = Jiw(ti) — Tin(ss) .

Equivalently, monotonicity holds if

cij(8i) — €ij(ts) > cinlss) — cin(ti) (1.72)
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implies

Jig(ti) — Jij(ss) < Jaw(ts) — Jire(s:) - (1.73)

But, using the definition of J;;, the latter is always the case if the conditions stated in

the proposition hold. O

Proof of Proposition 10 For an arbitrary i € N, take any two j,k € K and, without

loss of generality, suppose (%) is the case. Then for any s;,¢; € T;, such that s; < t;, we have

t; i
/ ci; (1) dr < / cip (1) dr |
si

Ll

which implies

cij(si) — (i) > canlss) — ca(ts) -

Therefore, by proposition 9 it is sufficient to show that for any s;,t; € 7, such that

s; < t;, the following inequality holds:

1 - Hi(t;) , 1— Hi(s;) , 1- Hi(t;) , 1 - Hi(s;) ,
“‘}Z(-tig—)cij(ti) - _}L—,'(T'()—)-Cij(Si) > “E#%k(ti) - —'}Fsi()f_)cik(si) . (L7g)
Note that
1— Hi(¢t) , . _l—Hi(si) ! (e) = ti 1— H;(r) " i 1-Hi(r),,
—W—Cz’j( i) Thite) cij(si) = ) (——_hi(r) ci; (1) dr(_——hi(r) )eij(T) dr .

Hence it is sufficient to show that for any 7 € [s;, ¢;]

() = () g L+ ) = D) 20 )



A Mechanism Design Perspective 63

Since (1 — H;(7))/hi(1) > 0 and the Monotone Hazard Rate condition holds, the above

inequality follows directly from the assumptions stated in the proposition. O

Proof of Proposition 11 First note that, given that the sufficient conditions for mono-
tonicity hold, the mechanism belongs to the class of optimal BIC mechanisms as defined
in proposition 8; hence it is expected profit maximizing. Applying the theorem of Laffont
and Maskin (1982) to the team-formation probiem, we obtain that an allocation rule X ()

is implementable in dominant strategies if and only if the following conditions are satisfied:

> (eijlts) = eij(si))(wits) — zij(s:)) <0, (1.76)
JEK
t;
wi(t;) = Z cij(ti)xfj(t) —/0 Z ng(T).’E;j(t_i,T) dr + e;(t—;)
jEK jeK
forallie Nyallt_; € T_; , (1.77)

where e;(t_;) is an arbitrary function that does not depend on ¢;.
The first condition above is dominant strategy monotonicity; by construction of the
sufficient condition for interim monotonicity, it holds whenever the sufficient condition for

interim monotonicity holds. In the wage function, using e;(t_;) = 0 guarantees that
t; ;
Ei_(wilt—its) = Y €ij(t:)Quj(t:) —/ > di(m)Quj(m) dry
jeK 0 jek

for any i, any t; € T;, and therefore the principal’s expected profit is preserved at the
BIC optimal level. Finally, ex-post individual rationality follows from the property that

c;i(t;) <0 for alli,j. O
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Proofs for section 1.4 Proof of Proposition 12 The principal’s role is restricted to the
one of mechanism designer, and we only need to prove that the choice function given by 1.46
is not Nash implementable among the agents. Since monotonicity of a social choice function
is a necessary condition for implementability (Maskin, 1979), it is sufficient to show that
for any F' € F GFr(C) given by 1.46 is non-monotonic. Consider the choice rule given by
1.46 for an arbitrary F € F. If Gr(C) is monotonic, then for any C, C, if a € Gr(C) and
for any b € A, for any 4, u;(a; C) > u;(b; C) implies u;(a; C) > u;i(b; C), then a € Gr(0).
Take an arbitrary cost profile C' € C such that for every surplus-maximizing allocation
X*(F,C) there exists at least one pair (1,7), i € N, j € K for which z};(F,C) = 1 and
cij > inf{c;5|ci; € Cy;} (under the conditions specified in the statement above, such C always
exists). Let an alternative a = (X*, W*), as defined in 1.46 be in the choice set, (X*, W*) €
Gr(C). Let Ny C N denote the set of agents : employed in X* for which there exist a
project j(i) such that z};(F,C) = 1 and ¢;; > inf{c;;]lc;; € Cij}. Note that Ny is always
non-empty by the assumption of the proposition. Next, consider another environment C
such that ¢;; = ¢;; — e if i € Ny and :v;‘j = 1, for some ¢ > 0 small enough to ensure that
ij € Cyj, and &;; = c;; otherwise. Then for any b € A, u;(b; C) = ui(b; C) + €2 zi;(b) if
t € Ny and z5(b) = zj;, and u; (b; C’) = u;(b; C') otherwise; note also that zi; € {0,1} for
all 4, j. Therefore, for any b € A, any 1 € N, u;(a; C) > u;(b; C) implies u;(a; C) > u;i(b; C);
then monotonicity requires that a € Gp(C)*2. However, 1.46 requires that ui(a;C) = 0

if @ € Gr(C) which obviously does not hold. Therefore, a ¢ Gp(C) and the necessary

3 Notice that the assumption that z.; € {0,1} is crucial for the analysis: Suppose that 0 < z;;(a) < 1 for
some (i,5). Then consider an alternative b such that z;;(b) = 1 for this (i, ), and wi(b) = ¢ij — €1, where
0 < &1 < e. Then u;i(a;C) =0 > ui(b;C). However, ui(a;C) = € * z:;(a), whereas u;(b;C) = e;. Thus, if
€1 > € * zij(a), we obtain that u;(a; C) < ui(b; C).
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monotonicity condition is violated under 1.46. O

65
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Chapter 2

Wage-Demand Mechanisms for

the Formation of Teams

2.1 Introduction: the purpose of the study

In this chapter, we proceed with the analysis of the problem of the profit-maximizing prin-
cipal who needs to assign agents to work on a given project or projects when agents differ
in their contributions to the production process. The chapter includes some theoretical
analysis of the possible outcomes of specific team-formation mechanisms, and the results
of an experimental investigation. In the theoretical part, we assume that the agents have
complete information about each other’s characteristics, but the teams’ efficiencies might
not be fully observable to the principal. As it has been shown in chapter 1, if the principal
is uninformed about the agents’ costs, then her first best outcome, or the level of profit
that she would get under complete information, is not implementable in Nash equilibrium

by the agents. Below, we examine a specific e-Nash equilibrium mechanism that always
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provides the principal with a non-negative profit, and under some environments guarantees
the principal her first best outcome. We consider the one-team case, but the theoretical
results are fully extendible to multiple teams.

Bolle (1991) first considered, theoretically and experimentally, complete information
team-selection wage-demand games. In these games, each potential team is characterized
by a productivity, or output, parameter. Potential team members submit their individual
wage demands to the principal, the principal selects a team which gives her the highest
profit — defined as the output of the team net of wages demanded by the team-members,
— and then pays all the employed agents their demanded wages. Bolle found that the
principal’s ability to detect and choose efficient teams among all profit-maximizing teams is
essential for the existence of pure strategy Nash equilibria of the game. The reason is that an
equilibrium, if it exists, is always characterized by more than one profit-maximizing team; if
the principal always chooses the most efficient, among all profit-maximizing teams, then all
agents’ equilibrium strategies are well defined. The members of efficient teams choose their
wage-demands to provide the principal with the level of profit which makes her indifferent
between the efficient and some other, inefficient, team; i.e., no extra surplus is “given away”
to the principal. If, instead, the principal chooses any profit-maximizing team, which is the
case when she cannot observe teams’ efficiencies, then the members of efficient teams are
faced with a no-best-response problem. It is sufficient that each “efficient” agent decreases
his wage demand by an infinitely small amount to get selected!; however, since there does

not exist a smallest positive number, the Nash equilibrium collapses. The situation is quite

"Hereafter, we will use terms “select,” “choose,” “hire” and “employ” to denote the principal’s decision
on the team formation.
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similar to other games with no best response properties; for example, in the first price
auction with complete information, the bidder with the highest value needs to bid just
above the second highest value to get selected, but his Nash equilibrium bid is undefined?.

Therefore, when the team efficiencies are not fully observable to the principal, and this is
the case we are interested in, the pure strategy equilibria of the wage-demand game do not
exist. However, we find that there exist “reasonable” e-Nash equilibria of the incomplete
information game which, in all important respects, such as efficiency and profitability of
outcomes, are “almost” identical to the Nash equilibria of the complete information game.
Using again the first price auction analogy, we can posfulate the agents’ behavior in this
game, even though the pure strategy equilibrium of the game does not exist.

The main purpose of the experimental investigation in this chapter is to test the pre-
dicted robustness of the outcomes of the wage-demand games with respect to the principal’s
information. Qur experiments investigate two kinds of wage-demand games corresponding
to complete and incomplete information on the principal’s part: the one in which only
the most efficient profit-maximizing teams are chosen, and the other in which any profit-
maximizing team can be selected. We analyze and compare the outcomes of these two
games with respect to their profitability, efficiency and employment and wage structures.
If we find that the outcomes are not substantially different, then we can conclude that the
incomplete information on the part of the principal in the wage-demand games is not a
serious problem, since all the important characteristics of outcomes stay the same under

either regime.

There is also another, related aspect of our experimental study. Bolle (1991) conducted

2The problem vanishes if only discrete increments of, say, $.01 are allowed.
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a set of complete information experiments with two symmetric agents and a principal to
test the Nash equilibrium behavioral hypothesis in the team-selection games. He found
that the agents did not always follow Nash equilibrium behavior in his experiments and
exhibited “tacit collusion.” Bolle argued that his results demonstrate that fairness and
cooperation often play an important role in agents’ behavior. Correspondingly, the second
objective of our investigation is to test whether collusive behavior found by Bolie is robust
to changes in team size and payoff symmetry. To investigate this issue, we consider three-
agent experiments, in which agents have asymmetric contributions to team productivity.
We analyze whether the agents in our experiments follow competitive Nash equilibrium
behavior or they sustain cooperative behavior as in Bolle’s experiments.

The experimental study of wage-demand games has relevance to at least two different
bodies of existing literature. First, to the extent that we are testing two different wage-
demand mechanisms for team formation with respect to their efficiency and profitability, we
are concerned with mechanism design issues. Earlier experimental research in mechanism
design (Banks, Ledyard, Porter, 1989, Olson and Porter 1994) proved to be very useful
to evaluate and discriminate among different mechanisms for such problems as resource
allocation and assignment. Our objective is to test whether the complete information variant
of the team-formation mechanism produces substantially higher gains in profit and efficiency
for the principal.

Second, since we are considering the competitiveness of agents’ behavior in wage-demand
mechanisms, earlier experiments that test the Nash equilibrium behavioral hypothesis against
cooperative, or “collusive” behavioral theories are relevant. The most important ones in-

clude the studies of imperfect competition/collusion (see, for example, Plott’s review of
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experimental studies in industrial organization, 1989), and collective actions/public goods
experiment (see Ledyard’s survey, 1993). The results indicate that in small groups collusive
behavior, even if it does not constitute a Nash equilibrium, often occurs if it is mutually
beneficial to the subjects compared to the Nash equilibrium behavior. However, collusion
is generally sensitive to such factors as repeatedness of the game, asymmetry of payoffs,
players’ information about other players’ payoffs, size of the group and the presence or ab-
sence of communication (Plott, 1989, Ledyard, 1993). Cooperation is more likely to occur
in small groups of symmetric agents, when each agent is informed about others’ payoffs, the
games are repeated and communication is allowed. In this respect, Bolle’s results on the
presence of collusion in wage-demand games with two symmetric perfectly informed agents
is not surprising. On the other hand, the studies indicate (see the same reviews) that a
one-shot game, asymmetric payoffs, subjects’ uncertainty about each other’s payoffs, large
group size tend to prevent cooperation and cause more competition among the agents even
if the cooperative outcome is strictly preferred by all subjects. Therefore, we might expect
to find that in settings with asymmetric agents and bigger groups, the cooperation easily
breaks down in wage-demand games.

Finally, the studies of bargaining (Rubinstein, 1982) are remotely relevant, since they
concern the issue of dividing a common good among several individuals. Yet, the games
we consider have the principal restricted to the role of mechanism designer and the agents
acting simultaneously, which substantially constrains the bargaining freedom of the players.

To summarize, the current study considers two related research questions. First, do
team-selection mechanisms, and, in particular, two variants of the wage-demand mech-

anisms that correspond to the complete and incomplete information on the part of the
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principal, substantially affect efficiency and profitability of the team-formation process for
the principal? Second, is collusive behavior among agent characteristic to the wide range of
wage-demand games or do competitive tendencies prevail when the features of experimental
design are altered? These questions are related since the mechanisms themselves might to
some extent influence — induce or reduce — competitive or cooperative tendencies in agents’
behavior. We proceed with the investigation as follows.

In section 2.2 below, we present the theoretical solutions to the team-formation wage-~
demand games. The Nash equilibrium and cooperative solutions are considered. According
to the Nash equilibrium theory, the outcomes of the complete and the incomplete informa-
tion varian’;s of the mechanism should be almost identical. However, the set of cooperative
solutions is different under the two mechanisms. In view of these theoretical results, in
section 2.3 we restate the main questions addressed by the experimental study and discuss
experimental design. The preliminary experimental results are reviewed in section 2.4. In
section 2.5 we analyze the subjects’ individual behavior and present the answers to the

questions above. We conclude in section 2.6. Proofs of theoretical statements are given in

section 2.7.

2.2 Theoretical findings

The wage-demand games considered below and the findings on the Nash equilibria of these
games are due to Bolle (1991). We extend his results by considering the e-Nash equilibria
of the games and possible cooperative outcomes. The framework given below and the

results are presented for the one-team case for simplicity of exposition, but they are easily
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extendible to the multiple team case. Likewise, the agents’ private costs of working on
the projects, introduced in chapter 1, are not explicitly present here. They are implicitly
introduced with the assumption that the teams’ efficiencies are not fully observable to the

principal (see footnote 3 below).

2.2.1 The formal model

Suppose there is a principal who has to hire a team T of workers from a given set of agents
N ={1,.n},n > 1, T C N, to accomplish a task. The principal is constrained to a set
of mechanisms in which each agent submits his wage demand v; € R to the principal, and
the principal has to meet this demand if she decides to hire the agent. Each potential
team is characterized by its productivity F(T') € R, expressed in monetary terms; assume
F(@) = 0. We will assume that the teams’ productivities are known to all agents, but
may be not known to the principal®. A team T is called efficient if it has the highest
productivity among all possible teams. We will call an agent ¢ € N efficient if he belongs
to every efficient team. Denote by I* C NN the set of efficient agents. If an agent is not
efficient, he is inefficient?.

For a given vector of agents’ wage-demands v = (vy,..,v,) € RY, a team’s profit for

3This assumption may seem unnatural since we will further assume that the principal can observe each
team’s profitability, which is a deterministic function of the productivity and agent’s wage demands, and
the latter are known to the principal. However, in more general situations, where the agents may bear
some private costs of working on a task, it might be the case that the team’s profitability — defined as the
difference between the output and the wages — is observable to the principal, while the team’s productivity
— the difference between the output and the agents’ costs — is not; this is the case when the team’s outputs
alone are known. In this chapter, the agents’ costs are not included for simplicity of the exposition.

“Note that there may be efficient agents who belong to inefficient teams and inefficient agents who belong

to efficient teams.
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the principal is defined by

w(T,v) = F(T) - 3 v; . (2.1)
€T

We assume that, given the agents’ wage-demands, the profit of each potential team
is known to the principal. A team is called profit-maximizing if, given v, it offers the
principal the highest profit among all other teams. We assume that the principal is a profit-
maximizer, and each agent maximizes his expected payoff from employment, which depends

on his wage w; and the probability of being employed p;:

Uz‘ = D;W; . (2.2)

We therefore assume that agents are risk-neutral®.

We consider the following class of wage-demand mechanisms, first suggested by Bolle

(1991). Let each agent ¢’s message v; be the agent’s demanded wage.

Definition 10 A wage-demand mechanism is a rule that maps the agents’ wage demands
v = (v1,..,Uy) into the probability distribution Q = (Q1,..,Qon) over possible teams T C N,

and wages w = (w1, .., wn) for the agent, such that
e Q(T) > 0 only if T is profit-mazimizing;

e Foralli €N,

v; if i is employed;

w;
0 otherwise.

5For the analysis of pure strategy Nash equilibria of the wage-demand games, the agents’ attitudes towards
risk do not matter as will be demonstrated below, and the assumption therefore is not restrictive. However,
agents’ attitudes towards risk affect the cooperative solutions of the games. We assume risk-neutrality for

simplicity of the analysis.
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Given v, a team T is called selectable by a wage-demand mechanism if Q(T) > 0. An

agent i is called selectable if he belongs to a selectable team.

Let p = (p1,..,pn) denote the vector of agents’ probabilities of being hired under a

wage-demand mechanism. Then for each agent i, p; = Y rier Q(T).

Note that no production (an empty team) can be selected under the wage-demand

mechanism if all other teams impose losses on the principal.

2.2.2 Characterization of the Nash equilibria

In this section we consider the pure strategy Nash equilibria® of the games induced by
wage-demand mechanisms. Denote the latter games as the wage-demand games.

The class of wage-demand mechanisms can include many different mechanisms which
differ from each other by the choice rule they assign in case a profit-maximizing team is not
unique.

Bolle (1991) finds that Nash equilibria restricted by an equilibrium selection assumption
of a wage-demand game exist only if only the most efficient, among profit-maximizing teams,
are chosen with positive probability. He assumes that the agents who are not employed with

certainty demand zero wages.

Assumption 1 (Equilibrium selection, Bolle, 1991) If an equilibrium ezists in a wage-

demand game, then, if for some i € N p; =0 then v; = 0.

Since, further, v; > 0 if p; > 0 by the utility-maximization assumption, without loss of

generality we can restrict our attention to the wage-demand games where only non-negative

SMixed strategy equilibria are not considered.
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wage demands are allowed. We now define two kinds of the wage-demand mechanisms,

which correspond to complete and incomplete information on the part of the principal.

Definition 11 Given the agents’ wage-demands v = (v1,..,v,), the Bolle Mechanism is a
wage demand-mechanism in which only the most efficient, among profit-mazimizing teams,

are selectable”

Definition 12 Given the agents’ wage-demands v = (vl,..,vn), the Generalized Wage-
Demand Mechanism is a wage demand-mechanism in which every profit-mazimizing team

18 selectable with equal probability.

We will denote the corresponding games, the Bolle game and the Generalized Wage-

Demand Game, by BG and GWDG, respectively. With the above assumption, we obtain

the following:

Proposition 15 (Bolle, 1991) A pure strategy Nash equilibrium of a wage-demand game
exists if and only if the game is induced by the Bolle Mechanism. Therefore, there are no

pure strategy Nash equilibria in the Generalized Wage-Demand Game.

This proposition points out the restrictiveness of the conditions under which the pure
strategy Nash equilibria of the wage-demand game exist. In particular, the principal should
know (or be able to to detect) which team is the most efficient. Yet, we are interested
in considering situations where the principal is uninformed about the productivities, and
therefore cannot use the Bolle mechanism. To get an idea about what may happen in the

wage-demand game where the principal cannot observe the productivities, it is useful to

"It follows that the Bolle mechanism maps not only agents’ wage-demands, but also teams’ productivities,
into selection probabilities and wages.
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first consider properties of pure strategy Nash equilibria of wage-demand games when the

equilibria do exist.

Proposition 16 (Bolle, 1991) If a pure strategy Nash equilibrium of a wage-demand game

erists, then, under assumption 1, it is characterized by the following properties:
1. The set of selectable teams equals the set of efficient teams.

2. Only the agents who are employed with certainty can gain from employment; i.e.,

v; > 0 only if p; = 1; v; = 0 otherwise.
8. An agent is employed with certainty if and only if he is efficient.

4. Given v, for every selectable team T* and for any agent i, i € T™, there is at least one

team T_; with i ¢ T_; and such that

w(T*,v) = w(T-;,v) .

5. An agent’s equilibrium wage demanded is never higher than his marginal product: for

allt €N,

vi S F(T%) = F(T-) ,

where T* is a selectable team from the set N of agents, and T—; - a selectable team

from the set (N \ 1) of agents.

The above properties explain why the ability of the mechanism to recognize and choose

efficient teams is essential for the existence of equilibria. The problem is that competition
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makes the efficient agents decrease their wage demands down to the point where efficient
teams provide the same level of profit to the principal as some other team, but not below
that, since there does not exist a minimal positive number (which would allow efficient
agents to lose a minimal amount of wage and get selected with certainty under any wage-
demand mechanism). The marginal product produced by an agent gives an upper limit
on his wage demand. Curiously, we are able to make the following observation: first, the
equilibria of the wage-demand game exist only if the mechanism is able to recognize efficient
teams; second, no agent can be better-off if an inefficient team is chosen (efficient agents
can only lose from not being employed, and inefficient agents do not gain from employment
anyway). &fet, if the productivities are not observable to the principal, she will have to
use GWD mechanisms®, and therefore cannot guarantee to always choose an efficient team.
Hence the only way that the efficient agents may signal about the teams being efficient
may be by decreasing their wage demands by some arbitrarily small amounts. Although
this behavior does not constitute equilibrium behavior in its strict sense, we can consider
the existence of e-equilibria in the game with incomplete information, where each agent’s

e-equilibrium strategy “almost” maximizes his payoff from the game.

Definition 13 For any given € > 0, an e-equilibrium of the wage-demand game is a set of

wage demands v = (vy,..,vp) such that for any i

Ui(vilv=;) > U;(9;]v—;) — € for any ; . (2.3)

8There might be extended wage-demand mechanisms that implement the selection of efficient teams.
In this study, we restrict our attention to a class of “direct” wage-demand mechanisms, where the agents’
messages are restricted to their wage-demands; other mechanisms are not considered.
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We can obtain the following desirable existence property of e-equilibria of the wage-

demand games.

Proposition 17 In any wage-demand game, for any € > 0, there exists an e-equilibrium for
which the set of profit-mazimizing teams equals the set of efficient teams. This e-equilibrium
differs by at most € from the corresponding pure strategy Nash equilibrium of the Bolle
game with respect to each agent’s equilibrium wage demand and the profitability of selectable

teams®.

In this e-equilibrium — which we will denote by e*-equilibrium — inefficient agents de-
mand zero wages, and efficient agents decrease their Bolle game equilibrium wage demands,
if they were positive, by arbitrarily small numbers to “signal” efficient teams. As a result,
only efficient teams become profit-maximizing, the efficient agents are employed with cer-
tainty and only efficient teams get selected. Since in such €*-equilibrium the mechanism that
chooses any profit-maximizing team is guaranteed to select an efficient one, the problem
with non-existence of equilibrium does not arise. From the description of the wage-demands
it is also clear that such e*-equilibrium of the incomplete information game (GWDG) can
get arbitrarily close to the Nash equilibrium of the Bolle game with respect to wage demands

and profits. We can conclude:

Corollary 8 If the agents follow €*-equilibrium behavior, then, as € — 0, the set of possible
outcomes of the GWDG becomes arbitrarily close to the set of possible outcomes of the BG

with respect to the agent’s wage-demands, efficiency and profitability of the selectable teams.

9The proof of this proposition is given in the section 2.7.
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We next characterize the properties of the outcomes of the wage-demand games if the

agents follow cooperative behavior.

2.2.3 Cooperative solutions

Let us now consider the possible outcomes of the wage-demand games assuming the agents
follow collusive bekavior if it is mutually beneficial to them compared to Nash equilibrium
behavior!?. Below we define cooperative and collusive outcomes and characterize their
properties.

Since a wage-demand vector v = (v1, .., vn) uniquely determines the outcome (p(v), w(v))
of a given wage-demand game (either BG or GWDG), by the abuse of notation we will often
identify a wage-demand vector v with the outcome; 7(v) will denote the corresponding level
of profit of a selectable team. We will denote Nash equilibrium outcomes by v?, and

cooperative and collusive outcomes (to be defined below) by v¢ and v¢, respectively.

Definition 14 An outcome v¢ = (vf,..,v;) is called cooperative if there exists a pure

strategy Nash equilibrium outcome vV such that

Ui(v®) > oY foralli=1,..,n, and either
(i) Ui(v®) > oY  for someie N ; or

(@) v =vN and w(WN)=0.

An outcome is called fully cooperative if, in addition to the above, w(v¢) = 0.

10Hereafter, when mentioning the Nash equilibria of the wage-demand games, we will be referring to the
pure strategy Nash equilibria of the BG and the corresponding efficient ¢*-equilibria of the GWDG.
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In the above definition, we use the result that in a Nash equilibrium for any i € N,
Ui(vN) = o]

Thus, an outcome of the wage-demand game is cooperative if either (i) no agent is
worse-off compared to some Nash equilibrium and at least one agent is strictly better-
off or (ii) it coincides with a Nash equilibrium in which all the output is divided among
the agents, and therefore the corresponding principal’s profit equals zero. The cooperative
outcomes defined in this way may not be stable in the sense that the agents might gain from
deviations. However, these outcomes are Pareto-superior to Nash equilibrium outcomes
from the agents’ viewpoint. We can make the following observations about the properties

of cooperative solutions of wage-demand games.

Proposition 18 (Characterization of cooperative outcomes)'t

1. Any inefficient agent is always weakly better-off in any outcome other than a Nash
equilibrium as long as he demands a non-negative wage: for any i ¢ I* | for any
v" and any v such that v; > 0, U;(v) > U;(vN). Therefore, the set of cooperative
solutions of a wage-demand game is determined solely by the payoffs of the efficient

agents.

2. In any outcome v¢ that is cooperative relative to a Nash equilibrium outcome vV , any
efficient agent i € I* such that v)¥ > 0 is chosen with positive probability p;(v¢) > 0,
and vf > (v /pi(v°)) 2 o}

3. There may exist cooperative solutions in which efficient agents are not selected with

certainty.

"!The proof is omitted for the reason of simplicity.
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. The principal’s profits are never higher under a cooperative outcome v¢ than under
4

the corresponding Nash equilibrium v' :

m(vN) > 7(v°)

Moreover, w(v") = w(v°) if and only if the Nash equilibrium itself is cooperative.

Otherwise, w(v"V) > n(v®).

‘The above observations rest on the properties of the Nash equilibria of the wage-demand
games (proposition 16): inefficient agents always demand zero wages in any Nash equilib-
rium of a wage-demand game, and the efficient agents are selected with certainty. We note
that there is a class of cooperative solutions in which the efficient agents trade off their

certainty of being selected in Nash (or ¢*-Nash) equilibrium for higher expected wages.

Example 1 Suppose F(1,2) = 100, F(1) = F(2) = 90. The Nash equilibrium solution
is v/ = (10,10). The principal’s corresponding profit is 7V = 80. The set of the cooperative
solutions is defined by v® = (z, z), where z € [20,90]. In the cooperative outcome each agent

is selected with probability p; = 1/2 and gains U; = /2 in expected utility.

Let us now define collusive outcomes as outcomes in which every agent who can affect
the payoffs of other agents in the game by altering his wage demand strictly gains from
cooperation compared to some Nash equilibrium outcome. Basicly, we want to exclude
from the set of the cooperative outcomes the ones in which some inefficient agent or agents

altruistically keep their wage demands high enough to allow other agents to gain from
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cooperation, whereas their own probability of being selected is zero.

In general, if any wage-demands are allowed, almost always any agent can affect other
agent’s payoffs by demanding v; = —oo. To make the analysis interesting, we would like
to restrict our attention to the set of non-negative wage-demands: v € R%. Since the

agents are utility-maximizers, if p; > 0, then v; > 0. Then, by adding a weaker analog of

assumption 1 from section 2.2.2,
Assumption 2 If p; =0, then v; > 0,

we obtain that only non-negative wage-demands are possible. We can then define the

following.

Definition 15 Given the agents’ wage demands v, an agent i € N is called offensive if

there erists some v; # v;, v; > 0, and some j € (N \ i) such that pj(v-i,v}) # p;(v).
Definition 16 An outcome v< is called collusive if it is cooperative and every offensive
agent i strictly gains from cooperation compared to the Nash equilibrium outcome:

Uz'c(’U) > va

for every offensive 1 € N.
The collusive outcomes are characterized by the following properties.

Proposition 19 (Characterization of collusive outcomes)'? In any outcome v which is col-

lusive relative to the Nash equilibrium v" | the following is true:

12The proof is presented in section 2.7.
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1. All agents who are selected with positive probability are strictly better-off than in the

Nash equilibrium: for all i € N, if pi(v) > 0, then U;(v) > vV,

2. Only the agents who are not offensive may be kept at their Nash equilibrium utility

levels. Therefore, for all i € N, if p;(v) = 0, then p;(v_s, v;) =0 for any v} > 0.

3. If 1 € N belongs to at least one of the profit-mazimizing teams, then either (i) pi >0

and v; > 0, and i is offensive; or (it) p; = 0 and v; =0, and i is not offensive.

4. Every efficient agent whose Nash equilibrium wage-demand is positive is strictly better-

off than in the Nash equilibrium: for any i € I* such that v} > 0, U;(v) > o).

9. The principal’s profits are strictly lower under a collusive outcome than under the

corresponding Nash equilibrium:

(™) > 7(v°)

We now state some properties of the cooperative outcomes in the BG and then compare
them to the cooperative outcomes of the GWDG. First consider the possible types of co-

operative outcomes. We divide them into two types with respect to efficiency of selectable

teams.

Definition 17 A cooperative outcome of a wage-demand game is called a type 1 outcome
if at least one efficient team is selected with positive probability. An outcome is called type

2 outcome if none of the efficient teams is selectable.
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Notice that a type 1 cooperative outcome can be obtained from a Nash equilibrium
outcome by increasing the agents’ wage-demands in such a way that the set of profit-
maximizing teams does not change, but the level of profits decreases compared to the Nash
equilibrium. In this way, as we will demonstrate below, in the BG, type 1 outcomes preserve
some properties of the Nash equilibria: the outcomes are always efficient and the efficient

agents are selected with certainty.

Example 2: a type 1 outcome Let F(1,2) =110, F(1,3) = F(2,3) = 100. Then the
Nash equilibrium outcome of the BG is v = (10,10, 0), and a possible type 1 cooperative
solution is v = (z,z,z — 10), with @ < z < 55, ¢ = 10 for the BG and a = 15 for the
GWDG. Under the BG, only efficient team {1,2} is selectable; under the GWDG, any of

three teams are.

Type 2 cooperative solutions occur, in particular, when efficient agénts trade-off their
certain (but low) wages under Nash equilibria for higher, but risky, expected payoffs under
cooperation. This may happen when the agents’ marginal contributions to the efficient
teams are low, but every efficient agent can be a member of an alternative — inefficient team
— which produces high enough output to allow the agent to demand high wages if this team

1s selected.

Example 3: a type 2 outcome Let F(1,2) =110, F(1,3) = F(2,3) = 100. The Nash
equilibrium solution is "V = (10, 10,0) = U, where U denotes the vector of agents’ expected

payoffs. A type 2 cooperative outcome is v¢ = (z,z,100 — z), where 55 < z < 100, with

ra

&
corresponding expected payoffs U = (x/2,2/2,100 — ). The solution is (fully) cooperative

(and collusive) under both BG and GWDG.
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The following properties of type 1 cooperative outcomes are presented to show that the
selection rule, or the type of the wage-demand game, significantly affects the set of possible

cooperative (and collusive) outcomes of the game.
Proposition 20 (Type 1 cooperative outcomes)'3

1. In type 1 cooperative outcomes of the BG, all efficient agents are selected with cer-

tainty, and only efficient teams are selected. This is not generally true for the GWDG.
2. If, in the wage-demand game, a type 1 cooperative solution is collusive, then

o cvery efficient agent is strictly better-off than in the Nash equilibrium;

o if the game is BG, every inefficient agent either belongs to at least one efficient

profit-mazimizing team and demands v; > 0, or is inoffensive;

o if the game is GWDG, every inefficient agent either belongs to at least one profit-

mazimizing team and demands v; > 0, or is inoffensive.

3. Suppose that every type 1 cooperative solution of a wage-demand game contains at
least one inefficient offensive agent i € (N \ I*) with v; > 0, p; = 0. Then the only

collusive outcomes that are possible are type 2.

The findings indicate that quite often, unless all inefficient offensive agents belong to
some efficient allocations, the set of type 1 collusive outcomes of the BG is empty. Therefore,
if agents follow collusive behavior under BG, efficient outcomes will rarely occur. In contrast,

in the GWDG, type 1 collusive outcomes do not require inclusion of every inefficient agent

13The proof is presented in section 2.7.
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into some efficient team; inefficient agents can secure positive chances to be selected by
belonging to any — not necessarily efficient — profit-maximizing team. Therefore, the efficient
outcomes may occur along with the inefficient ones in GWDG.

We now offer a general observation concerning the non-equivalence of the sets of coop-

erative and collusive outcomes of the BG and the GWDG.

Proposition 21 1. The set of cooperative (collusive) solutions of the BG is not equiva-
lent to the set of cooperative (collusive) solutions of the GWDG for every wage-demand
game. There may be solutions which are cooperative (collusive) under the BG but not
under the GWDG, and solutions that are cooperative (collusive) under the GWDG but

not under the BG.

2. If the agents follow collusive behavior and there are no type 1 collusive outcomes in
the BG, then the efficient outcomes never occur in the BG, but may occur in the

corresponding GWDG.

Part (2) of proposition 21 follows from proposition 20; we illustrate part (1) by means

of the following examples.

Example 4: an outcome which is collusive under the BG but not under the
GWDG Let F(1,2) = F(1,3) = 100, F(2,3) = 80. The Nash equilibrium solution is
v™ = (20,0,0). Then the outcome v = (25,5,5) is collusive under the BG with p(v|BG) =
(1,1/2,1/2), and U;(v|BG) = 25 > 20, U;(v|BG) = Us(v|BG) = 5/2 > 0. Yet it is not
collusive under the GWDG, since agent 1’s expected payoff is now lower than his Nash

equilibrium payoff: p(v|GW DG) = (2/3,2/3,2/3), and Uy (v|GW DG) = 50/3 < 20.
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In this example, the efficient agent 1 lost in the probability of being selected when the
game changed from the BG to the GWDG, and therefore his expected payoff decreased. We
may expect that rather often the probability of being selected for the agents-members of
the efficient profit-maximizing teams will decrease in the GWDG as compared to the BG,

therefore eliminating some outcomes from the set of collusive outcomes.

Example 5: an outcome which is collusive under the GWDG but not under
the BG Let F(1,2) = 110, F(1,3) = F(2,3) = 100. The Nash equilibrium solution is vV =
(10,10,0). An outcome of the form v = (z,z,z—10) with 15 < z < 55 is collusive under the
GWDG with p(v|GWDG) = (2/3,2/3,2/3), and Uy (v|GW DG) = U (v|GWDG) = 22/3 >
10, Us(v|GW DG) = 2/3(x — 10) > 0. Yet it is not collusive under the BG, since agent 3’s

probability of being selected decreases to zero: p(v|BG) = (1,1,0), and Us3(v|BG) = 0.

This example demonstrates that a lot of outcomes that are collusive under the GWDG
are no longer collusive under the BG because inefficient profit-maximizing teams are no
longer selectable in the BG. By the same reason, in the latter example, the set of collusive
outcomes that allow selection of the efficient team {1, 2} is empty in the BG but not in the

GWDG, which illustrates the second statement in the above proposition.

'To conclude, the e-Nash and the collusive behavioral hypothesis give different predictions
about the outcomes of the BG as compared to the GWDG: the former suggests the outcomes
should be almost identical, whereas the latter claims they might be quite different. In
our experimental investigation, we test which theory gives better predictions of the actual

outcomes of the wage-demand games.
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2.3 Experimental design

2.3.1 Bolle’s experiments and research questions restated

Bolle (1991) conducted a set of experiments to test his theoretical findings and the Nash
equilibrium behavioral hypothesis in the team selection games. He considered three-person
experiments with a principal (being a subject) and two symmetric agents. The agents
could produce a value of 100 as a team, and each agent was characterized by a value F;
that he was able to produce alone; in all experiments this “marginal productivity” value
was equal for two agents and it ranged from 0 to 100 in different experiments. Bolle found
that the principals did use profit-maximization as the only team selection criterion, but
on the part of the agents a pattern of behavior quite different from the Nash eqﬁilibrium
behavior was observed. The Nash equilibrium hypothesis predicted that the wage demands
are v = (100 — F;,100 — F;) for F; € [50,100], and v = (v1,100 — v1), v1 € [0,100] for
F; < 50. However, Bolle reports that for different (symmetric) values of agent’s marginal
productivity parameters, the most common agent’s demands were of about 40 each, inducing
a split pattern (35,35,30) of total output of 100 among two agents and the principal, or a
split pattern of (35, F; — 35) between one of the agents and the principal, respectively. Bolle
argues that this result supports his hypothesis that fairness, in the sense of equal split, and
collusion considerations often play an important role in agents’ behavior.

Faced with the theoretical predictions and the results of Bolle’s experiments, we can
now restate the purpose of our experimental investigation. We want to consider the out-
comes — profitability and efficiency — and the agents’ behavioral patterns in two variants of

wage-demand games — the Bolle Game and the Generalized Wage-Demand Game. Are the
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outcomes of the GWDG distinguishable from the outcomes of the BG? Do the agents follow
competitive Nash-equilibrium-type behavior in these wage-demand games or do they always
collude? If the agents are competitive in the BG, do they follow e*-equilibrium behavior
in the corresponding GWDG? If the agents are collusive, in what way can the outcomes of
the BG differ from the outcomes of the GWDG? Is the BG inefficient under a broad range
of circumstances, as the collusive theory predicts?

Below, we state two alternative sets of conjectures which contain possible answers to
these questions stated from the competitive and cooperative perspectives. We further offer

an experimental design in view of the possibilities to test these conjectures.

2.3.2 Two alternative sets of conjectures

The first two conjectures below contain the answers to the questions presented in the previ-
ous section given from the competitive perspective. The first conjecture rests on the Nash
equilibrium theoretical findings presented in section 2.2, and the second one, on the results

on non-robustness of cooperation reported in the studies reviewed in the introduction.

Conjecture 1 The Bolle Game and the GWD Game are essentially equivalent with respect

to the structure of agents’ wage demands, efficiency and profitability.

Conjecture 2 Collusion is not robust in the wage-demand games. It is sufficient to in-
troduce asymmetry in the agents’ roles, and the presence of inefficient agents to make the

outcomes of the wage-demand games closer to the competitive (Nash) than to the cooperative

solution.
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Note that the first conjecture can be true only if conjecture 2 is true. Alternatively,
we can expect collusion to be a rather common pattern of behavior within small groups of
agents in the wage-demand games, if cooperation is mutually beneficial. Then the results
of section 2.2.3 applies: the sets of collusive outcomes of the BG and the GWDG are not
generally equivalent. Therefore, we might make different predictions about the outcomes
of the BG as compared to the outcomes of the GWDG. The obvious difference among the
two games is that the latter (GWDG) treats all profit-maximizing teams — and therefore all
agents who are the members of all profit-maximizing teams — equally, whereas the former
(BG) discriminates among the teams in favor of more efficient ones, and therefore discrimi-
nates among the agents. Hence, we may suppose that the BG will trigger more competition
on the part of the members of profit-maximizing inefficient teams, who might fight fiercely
against the more efficient teams in an attempt to get selected with positive probability. On
the other hand, the members of efficient teams are strongly interested in cooperation on the
part of the inefficient agents in the BG, and therefore might not initiate attempts to drive
the wage-demands down. In the GWDG, the inefficient agents that were selected with zero
probability under the BG now have a positive chance to get selected, and therefore may be
interested in cooperating and not driving the wage-demands down. Yet, the efficient agents
in the GWDG might try to restore their high probability (and often certainty) of being
selected and in this way trigger competition. Thus, we can expect more or less cooperation
in the BG relative to the GWDG depending on which tendency is predominant in a given
game.

We now state the set of conjectures based on the collusive behavioral assumptions and

the corresponding theoretical findings:
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Conjecture 3 If the number of agents in a wage-demand game is small and there are
substantial gains from cooperation, then collusive behavior prevails. Consequently, the level
of the principal’s profit in the wage-demand games is sustained at a level lower than that

predicted by Nash equilibrium behavior.

Conjecture 4 The outcomes of the the BG and the GWDG differ if the sets of collusive

solutions of the two wage-demand games are not identical.

Conjecture 5 If a wage-demand game is such that the set of cooperative solutions is non-
empty and there are inefficient agents who do not belong to efficient teams, then the BG is

less efficient than the GWDG in the sense that efficient teams are never selected under the

BG.

2.3.3 Experimental design: parameter choices

To test which set of conjectures concerning the comparison of the two wage-demand mech-
anisms gives better predictions for the outcomes of the wage-demand games, we consider a
three-agent game with asymmetric productivity (output) values for teams. The productiv-
ity values are given in table 2.1, where the agents are denoted by roles 1, 2 and 3. As it is
apparent from the table, the design is competitive in the sense that all three agents cannot
be selected; only two-person teams - {1,2}, {1,3} and {2,3} — are selectable. Moreover,
team {1, 2} is efficient, while the other two are not. This induces asymmetry in the agents’
roles: agents 1 and 2 are efficient, whereas agent 3 is inefficient. The game is characterized
by the unique Nash equilibrium of the BG and a wide range of possible cooperative solu-

tions. We first present competitive and cooperative solutions of the above game and then
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Team

{1} | {2} ] {3} [ {1.2} | {1,3} | {2,3} | {1,2,3}
Productivity { -1 -1 -1 ¢ 1100 | 1006 | 1000 0

Table 2.1: Experimental parameters: output values for teams

discuss the parameter choices in more detail.

Nash and ¢*-Nash Equilibrium Solutions The Bolle game has a unique Nash
equilibrium with agents’ wage-demand vector »V = (100,100,0) (the solution is obtained
using the properties of Nash equilibria stated in proposition 16). The principal’s profits 7
are 7(1,2) = 7(1,3) = 7(2,3) = 900, and team {1,2} is selected with certainty. The
corresponding e*-equilibrium of the GWDG is v¢ = (100—¢1, 100 —e3,0), with the principal’s
profits 7(1,2) = 900 + €1 + €2, 7(1,3) = 900 + €1, 7(2,3) = 900 + €3, and team {1, 2} is still
selected with certainty.

Cooperative Solutions The sets of cooperative and collusive solutions differ under
the BG and the GWDG!4. Under the BG, two types of cooperative solutions are possible:
either {1,2} is the only selectable team (type 1 cooperative solutions) br (only) teams
{1,3} and {2,3} are profit-maximizing and are selectable with equal probability 1/2 each
(type 2 cooperative solution). Type 1 cooperative solutions are not collusive since they
exclude agent 3 from the set of selectable agents; most of the type 2 solutions (except on
the boundary) are collusive. Note that the efficient agents’ asks are never lower than 200
under any collusive solution of the BG (assuming risk-neutrality).

The set of cooperative solutions of the GWDG is of a wider variety and includes the cases

where (i) only team {1, 2}; (¢7) any two of the two-person teams; (iii) all three two-person

14The full description of the set of cooperative solutions is given in the appendix A.
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teams are selectable. The set of collusive outcomes excludes case (i) (as in the BG) but
otherwise differs from the cooperative outcomes by the exclusion of certain boundaries. The
efficient agents’ asks are never lower than 150 under any collusive solution of the GWDG
(assuming risk-neutrality).

Among the fully cooperative solutions, where the principal gets a zero profit, we should
mention the unique fair solution of the GWDG v = (550, 550,450). Under this outcome
the selected agents share all the output among themselves; all three two-person teams are
equally selectable, and therefore each agent is hired with equal probability 2/3; and the
agents’ wage demands are close to each other in absolute value. Thus, the proximity of the
actual outcomes of the GWDG to this solution may indicate how important collusion and
fairness considerations are to the agents.

Most importantly, we can state the following!®.

Proposition 22 Let BG® and GWDGC denote the sets of collusive solutions of the BG
and the GWDG, correspondingly, where the teams’ productivities are as given in table 2.1.

Then

BG¢ ¢ GWDGF .

That is, the set of collusive solution of this GWDG is wider than the set of collusive solutions

of the corresponding BG.

We now comment on the design features of the above wage-demand game in view of our
research objectives. First, we are able to compare the outcomes of two variants of the wage-

demand games, the BG and the GWDG. Both games have a unique Nash (respectively,

!°The statement follows directly from the analysis of the collusive solutions given in appendix A.
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| | Bolle | Our design |

Is principal a subject? yes no
Number of agents in a group 2 3

Symmetric productivities? yes no
Varying productivity values? | yes no
Unique Nash equilibrium? varies yes
Varying selection rule? no yes

Table 2.2: Features of experimental design as compared to Bolle’s

€*-Nash) equilibrium; this gives us a well-defined prediction of the competitive outcomes,
which are practically the same for the BG and the GWDG. On the other hand, the BG has a
wider set of collusive outcomes than the GWDG. Thus we can test whether the mechanisms
matter for the outcomes of these wage-demand game, as well as consider which conjecture,
competitive (conjecture 1) or cooperative (conjecture 4), gives a better prediction for the
outcomes of the games. Besides, the design satisfies the assumptions of conjecture 5: the
inefficient agent 3 does not belong to the efficient team {1,2}. As a consequence, there are
no collusive outcomes that allow the choice of {1,2} in the BG, and the efficient team can
never be chosen under the collusive hypothesis. Yet, collusive solutions of the GWDG allow
the choice of the efficient team {1,2} as long as some other team that includes agent 3 can
also be selected. In this way we can test the prediction of inefficiency of the BG relative to
the GWDG if the agents are collusive.

To consider the robustness of collusive tendencies in agents’ behavior found by Bolle
(1991), we introduce the features that were found elsewhere (Ledyard, 1993, Plott, 1989) to
induce competition among agents. Table 2.2 summarizes the differences of our experimental

design as compared to Bolle’s. In our design there are asymmetric productivity values for
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teams'®, and, as a consequence, efficient (roles 1 and 2) and inefficient (role 3) agents.
The inefficient agent 3 does not belong to any of the efficient teams, and therefore we can
expect very competitive behavior on his part in the BG if agents 1 and 2 try to form an
efficient profit-maximizing team and get selected with certainty (note that such an outcome
cannot be collusive). In this way we can test whether the agents’ asymmetry of roles, at
least in the form of presence of inefficient agents, can be sufficient to destroy cooperation
(conjectures 2 and 3). A three-agent (instead of Bolle’s two-agent) design is suggested to
create extra compe;ition — efficient agents 1 and 2 may be competing for employment with
each other as well as with agent 3; it is also the smallest number of agents which allows us
to combine ﬁgains from team production with a competitive environment!?. In particular, in
our design only two-agent teams can be selectable. In other respects, such as a small group
setting and complete information among the agents, we choose, as in Bolle’s experiments,
an environment which may enhance cooperation. The team productivity values are chosen

in way a that the set of collusive outcomes is non-empty under both BG and GWDG, ie.,

cooperation is mutually beneficial for every agent (see above).

2.3.4 Experimental procedures

We conducted two sets of computerized experiments. In the first experiment, the participat-

ing subjects were involved in the Bolle Game (BG): given the table of parameters describing

16 Asymmetry is also necessary to distinguish between the BG and the GWDG. In our setting, if there
is a tie in profit among certain teams (teams {1,2} and {1,3} or {1,2} and {2,3}), different sets of teams
are selected with positive probability under the BG and the GWDG. (The requirement that we be able to
distinguish between the BG and the GWDG excludes symmetric designs such as F(1) = 10, F(2) = 10,
F(1,2) = 0.) For this purpose, inefficient teams {1,3} and {2, 3} that can be profit-maximizing are present.

n a two-agent game, such as studied by Bolle, it is always the case that either agents gain more from
the joint production and therefore do not compete with each other for employment, or each agent expects to
gain more — in expected utility — if he works alone, in which case there can be no gains from team production

for the agents.
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the output values (productivities) of potential teams, they submitted their wage demands
to the computer, which then selected the most efficient, among profit-maximizing, team;
ties were broken by the computer using a fair lottery. The second set of experiments, the
GWDG, was identical to the first one, except in the latter all profit-maximizing teams were
chosen with equal positive probability. The principal was not a subject and the team selec-
tion process was fully determined by the mechanism and realized by the computer. Thus,
the experiments were considered from the mechanism designer’s point of view and focused
on the effects of the different selection rules on the agents’ behavior and the outcomes of
wage-demand games.

A total of seven experiments were conducted, with four experiments - #1, 3,5and 7
being the Bolle Game (BG) experiments, and three experiments — #2, 4 and 6 - GWDG
experiments. All the subjects were from Caltech community, mostly undergraduates. Ex-
cept for one case!'®, each subject was used in only one of the experiments. Twelve subjects
divided into four three-agent groups participated in each of six experiments; nine subjects
divided into three three-agent groups participated in experiment #7. Parameters for all
seven experiments were identical, as given in table 2.1. The design characteristics of all
experiments are summarized in table 2.3. The subjects were provided with the set of in-
structions for the experiment and with the table of teams’ productivity parameters (see
appendix B).

At the beginning of each experiment, eight subjects (six subjects in experiment #7)

were chosen by the computer to be of the efficient type (roles 1 and 2), and four subjects

18One subject participated in experiments #1 and #4.
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Exp. | Selection | # of # of subjects # of Total #
# rule periods | total | eff. | ineff. | groups p/per. | of trials
1 BG 28 12 8 4 4 112
2 GWDG 29 12 8 4 4 116
3 BG 29 12 8 4 4 116
4 GWDG 29 12 8 4 4 116
5 BG 29 12 8 4 4 116
6 GWDG 29 12 8 4 4 116
7 BG 31 9 6 3 3 93

Table 2.3: Experimental design (practice periods excluded)

(three subjects in experiment #7) — of the inefficient type (role 3)'°. The types stayed the
same for the whole experiment to decrease possible repeated game reciprocity effects, where
agents, being in the inefficient role in the BG, cooperate to induce the same type of behavior
from the other agents when it is their turn to take this role. Subjects were informed that
their roles could be either only 3 or change between 1 and 2 during the experiment.

Each experiment included about 30 repetitions (periods), preceded by two practice pe-
riods. The number of periods was unknown to the subjects, but the last period was an-
nounced. At the beginning of each period, the subjects were divided by the computer into
four three-subject groups, with two efficient and one inefficient agents in each. The efficient
agents were assigned roles 1 or 2 within the group, and the inefficient agent was in role 3.
The subjects did not know who the other subjects in their group were. The group and role
reassignment was computerized and occurred at the beginning of each period to eliminate

the repeated game effects.

Each period was organized as a sealed bid, independent for each group?®. The subjects

Tetters A, B and C were used in the experiments to denote the roles.
20 A curious observation is that an English auction cannot be used to test one-shot wage-demand games,
since the English auction which allows ties among teams induces a quite different sequential game among
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submitted their wage demands (any non-negative real numbers between 0 and 10000) to
the computer. Once all the agents submitted their demands, the team selection was made
according to the BG or GWDG selection rules, depending on the experiment. The subjects
were informed about the selection rule used in their experiment. At the end of the period,
the subjects are informed about the wages submitted, the corresponding profits of teams,
the team selected and the wages paid to the subjects in their group.

The information table displaying outcomes of the game for the previous period for the
groups in which each subject participated was available to this subject at any time during
the current period.

At the end of the experimental session, the subjects were paid in accordance with their
accumulated payoffs in the experiment using the exchange rate $0.005 per franc. The
participation fee of $8 (the value of which was private information) was added for the

payoff of inefficient agents to compensate for the potential differences in earnings.

2.4 Experimental results: summary of the data

The data for all experiments pooled by selection rules are summarized in tables 2.4-2.7
and figures 2.1-2.2. The detailed data for each experiment is presented in tables D.1-D.10
in appendix D and figures C.1-C.7 in appendix C. We have structured the data into two
categories: group data, which includes descriptive statistics regarding level of profits and

efficiency of the teams, and individual data, which concerns the individuals’ asks?!. For

the agents. Moreover, a large number of cooperative solutions can be supported as Nash equilibria in an

English auction version of this game.
2The term “ask” was used to denote a wage-demand in the experiments. Hereafter, we will use both

terms when referring to wage-demands.
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convenience of the analysis, we have also divided the data for each experiment into three
time intervals: The first 9 periods of an experiment are referred to as “time 1,” the second
10 periods, as “time 2,” and all the following periods, as “time 3.” Further, we have divided
the data into two “regions” of outcomes according to the proximity to the Nash equilibrium
prediction: the region when profits of selected teams are below 800 is referred to as “far
from Nash equilibrium,” and the region when profits are 800 or above is referred to as “close
to Nash equilibrium” (for the reminder, the Nash equilibrium level of profit of a selected
team is 900). The cutpoint of 800 is chosen rather arbitrarily with the only purpose to
test whether the experimental data differs significantly depending on the proximity of the
outcomes to the Nash equilibrium prediction?2.

The first, major result is immediately apparent from the data.

Result 1 In both BG and GWDG, most of the time the agents followed neither fully col-

lusive (cooperative) nor Nash (e-Nash) equilibrium behavior.

Support: Tables 2.4, 2.5; figures 2.1, 2.2. For all experiments and all time intervals,
the average per period asks were above the Nash equilibrium level of 100 or 0 francs for
efficient and inefficient agents, respectively, but below the fully cooperative level of 550 and
450 francs. (See also tables D.7, D.8 in appendix D.) Consequently, in all experiments and
all time intervals, the average per period profits of the selected teams were significantly
above zero, the fully cooperative level. In fact, the minimal level of profit of the selected
team that was ever observed was 190. On the other hand, in 58.9% of the observed data,

the level of profit of the selected teams was below 800, with 900 being the Nash equilibrium

22In particular, the difference should occur if we observe converges of wage-demands to the Nash equilib-
rium. This issue is treated in more detail in the next section.
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Mean Period 1 | time 1 | time 2 | time 3 || Total
St. deviation

Average profit, all data 567.6 626.2 | 723.9 | 793.6 || 717.6

180.1 150.6 | 122.2 91.8 141.5

-BG pooled 630.2 714.9 | 809.0 | 848.4 | 793.6

175.9 103.6 | 49.2 60.2 91.8

-GWDG pooled 489.3 515.4 | 617.6 | T24.5 | 622.7

159.1 1246 | 101.1 90.9 || 135.3

Profit change, all data - 17.91 | 10.09 3.86 10.32

— 87.35 | 38.61 | 56.78 Il 63.21

-BG pooled — 19.09 | 9.59 -3.06 8.02

— 80.84 | 35.73 | 67.81 || 63.99

-GWDG pooled — 16.52 | 10.73 | 12.64 | 13.18

— 95.02 | 42.08 | 37.03 || 62.18

% Efficiency, all data — 43.6 49.6 48.5 47.4

-BG pooled — 43.0 47.3 57.9 49.7

~GWDG pooled — 44.4 52.5 36.7 44.5

Table 2.4: Experimental results, group data. Profit and profit changes are the averages per
group, per period, in francs. The numbers below are the standard deviations, in francs.
Percentage efficiency shows the percentage of efficient teams selected, in %.

Mean Period 1 | time 1 | time 2 | time 3 || Total
St. deviation

Efficient agents

All data 438.5 | 2853 | 194.2 | 163.4 | 2124
790.2 | 397.7 65.1 64.1 || 234.9
BG pooled 256.4 | 2084 | 151.8 | 136.2 || 164.6

121.6 76.6 33.6 61.6 66.9
GWDG pooled 666.2 | 384.4 | 2473 | 196.9 ) 272.5
115.0 | 581.0 55.2 49.7 i 335.3

Inefficient agents

All data 230.9 | 1829 | 170.9 { 1224 | 158.1
119.5 99.8 | 678.3 | 160.7 || 412.6
BG pooled 202.7 | 1434 83.6 | 121.0 || 115.3

118.1 99.0 } 124.7 | 201.5 || 150.7

GWDG pooled 266.3 | 233.7 | 280.0 | 124.3 || 211.9
116.3 74.8 | 999.4 88.0 || 592.7

Table 2.5: Average per period per person asks, francs. Standard deviations are listed below
the means, in francs.
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Inefficient agents, asks Efficient agents, asks
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Figure 2.1: Average per period asks in BG and GWDG experiments. The graphs on the
left present average asks of inefficient agents; the graphs on the right — of efficient agents.
A - average asks in BG; © — average asks in GWDG; O - Nash equilibrium asks.
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Average profit, BG and GWDG experiments
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Figure 2.2: Average per period profits of selected teams in BG and GWDG experiments.
A - average profits in BG; © - average profits in GWDG; O - Nash equilibrium profit.
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level.

The percentage of efficient teams selected was 49.7% in BG and 44.5% in the GWDG,
which is far below fully the competitive level of 100%, but is, on the other hand, above the

“fair” cooperative level of 33%23. O

We can further make some conclusions about the presence and characteristics of com-

petitive and cooperative tendencies in the subjects’ behavior.

Result 2 Cooperative tendencies, if they were present, were not sustainable in either the
BG or the GWDG experiments: the average individual asks were decreasing from period to

period, and the principal’s profits from the selected teams were increasing.

Support: Tables 2.4, 2.5, 2.7; figures 2.1, 2.2. Average per period asks of efficient
agents were decreasing in time in all experiments; asks of inefficient agents were decreasing
rather consistently until the outcomes were close to Nash equilibrium (Profit >800). Corre-
spondingly, the average profits of the selected teams were increasing until the they reached

the level close to the Nash equilibrium. (See also tables in appendix D.) O

To identify the presence of competitive tendencies, the notion of competition needs to
be reconsidered. As result 1 indicates, the Nash equilibrium behavioral hypothesis does not
explain all the data, although 63.6% of the outcomes of the BG experiments and 12.9% of the
outcomes of the GWDG experiments are close to the Nash equilibrium in the level of profit.

Still, the dynamics of the data — the changes in individual asks and profits of the teams

23 Assuming each team is selected, on average, with equal probability, as in the “fair” fully cooperative
solution v = (550, 550, 450). Trembles can insure that this solution is fair and collusive under both BG and

GWDG.
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BG pooled | GWDG pooled || All data

Selected last period? || yes | no || yes | no yes | no
% of asks increased 3441 9.9 | 40.4 5.2 371 ] 7.8
% of asks unchanged || 33.5 { 13.9 || 26.3 7.8 30.3 | 11.1
% of asks decreased | 32.1 | 76.2 || 33.3 87.1 32.7 | 81.0

Table 2.6: Last period selections and directions of individual ask changes, %.

over periods (see also figures 6-12) — indicates that both BG and GWDG experiments were
similar to market oral auction and sealed bid experiments (Plott, 1989) with a definite trend
of convergence towards the Nash (competitive) equilibrium. Although the convergence in
our experiments — especially in the GWDG — was slow aﬂd noisy, the trend is apparent from
tables 2.4 and 2.5 and figures 2.1 and 2.2. The same arguments which were used to show
the instability of cooperative tendencies can be used to support the competitive tendencies:
the individual asks were decreasing consistently in time until the outcomes were close to
the Nash equilibrium, and the profits from the selected teams were increasing consistently.
In addition, we have computed the frequencies of directions of individual wage demand
changes. Table 2.6 displays how often the agents increased, decreased or did not change
their wage demands depending on whether they were selected or not in the previous period.
The data show that 81% of the time subjects decreased their asks, i.e., acted in the
direction of the best response to the last period asks following their non-selection. Moreover,
32.7% of the time the subjects decreased their asks even if they were selected in the previous
period. Viewing competition in the context of the wage-demand games as a desire to get

selected with certainty by means of the wage-demand decreases, we state

Result 3 Competitive tendencies were present and rather persistent in both BG and GWDG
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experiments: asks were decreasing from period to period, and profits of selected teams were

increasing.
Support: The above, support for result 2. O

The next group of results regards the differences between the BG and the GWDG

experiments.

Result 4 On average, the BG experiments were closer to the Nash equilibrium prediction
than the GWDG experiments: the average per period asks were much lower in the BG than

in the GWDG ezperiments.

Support: Tables 2.4, 2.5, 2.7; figures 2.1, 2.2. On average, the initial — first period
level of asks was higher in the GWDG than in the BG. Average per period asks were much
higher under GWDG than under the BG. Moreover, under the BG an efficient agent’s
average ask was 164.4 francs, which is below the lower bound of the collusive solutions
(200 francs), whereas under the GWDG an efficient agent’s average ask was 272.5 francs,
which is above both 150 and 200, the two lower bounds of collusive solutions possible under
GWDG. In the region of outcomes far from the Nash Equilibrium level (Profit< 800), the
average per period speed of ask decrease was much higher under the BG than under the
GWDG. (See also tables D.9-D.10 in appendix D.)

Consequently, the average per period profits of the selected teams were much lower under
the GWDG than under the BG. The GWDG experiments have less that 1/7 of total number
of outcomes in the region close to Nash equilibrium (Profit >= 800); the BG experiments

have over 60% of observations in this region. In fact, except for experiment #6, the GWDG
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Profit< 800 Profit>= 800 Total
Ask | % of Ask [ % of Ask | % of
change | obs. || change | obs. || change | obs.

All data -22.12 | 60.9 0.23 | 39.1 || -13.99 | 100
-efficient agents -11.93 | 60.9 -0.85 | 39.1 -7.06 | 100
-inefficient agents || -42.49 | 60.9 238 39.1 | -24.97 | 100
BG pooled -30.90 | 38.3 034 | 61.7 [ -11.64 | 100
-efficient agents -9.07 | 38.3 -1.18 | 61.7 -4.20 | 100

-inefficient agents || -74.57 | 38.3 3.37 | 61.7 || -26.51 | 100
GWDG pooled -17.420 | 89.1 -0.54 | 10.9 || -15.57 | 100
-efficient agents -13.467 | 89.1 1.46 | 109 || -11.87 | 100
-inefficient agents || -25.326 | 89.1 -4.52 | 10.9 || -23.05 | 100

Table 2.7: Average per period individual ask changes far and close to Nash equilibrium,
francs.

experiments have no outcomes close to the Nash Equilibrium level; all of BG experiments

had more than 45% of outcomes with the level of profit above 800. O

Note that in the region of outcomes close to Nash equilibrium, subjects in the BG exper-
iments attempted to be more cooperative in the sense of increasing their wage demands. It
is difficult to compare the subjects’ behavior across the treatments (selection rules) because
of the absence of observations in this region for two of three GWDG experiments. The
data from the only GWDG experiment (#6) that has outcomes close to Nash equilibrium
indicates that the behavior of subjects in this region was not significantly different from the
BG experiments (table D.10 in appendix D).

To get the idea why the BG experiments could be more competitive than the GWDG

experiments, we consider the differences in the behavior of efficient and inefficient agents.

Result 5 Both in BG and GWDG ezperiments, inefficient agents were, overall, more com-

petitive than efficient agents: their average per period ask decrease was higher. The ineffi-
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cient agents became less competitive only when the outcomes approached the Nash equilib-

rium level in profits.

Support: Table 2.7. The table indicates that the average asks of the inefficient agents
increased in the region of outcomes close to Nash equilibrium. However, this tendency was

unstable and did not occur in all experiments (see table D.10 in appendix D). O

Result 6 o Querall, inefficient agents were more competitive in the BG than in the

GWDG: their average ask decreases were higher in the BG ezperiments.

o Querall, efficient agents were more competitive in the GWDG than in the BG: their

average ask decreases were higher in the GWDG experiments.

Support: Table 2.7. Results 5 and 6 become even stronger if we consider rates of

subjects’ wage demand decreases in the region of outcomes far from Nash equilibrium. O

The above observations allow us to make the following conclusions. The data indicates
that both the BG and GWDG experiments exhibited substantial competitive tendencies in
the subjects’ behavior, although the subjects did not strictly follow the Nash equilibrium
behavior. The subjects’ behavior was substantially different from the behavior that Bolle
observed in his experiments. In the BG experiments, the competitive tendencies were much
stronger than in the GWDG experiments, and the outcomes converged to the region close
to the Nash equilibrium much faster under the BG treatment. The reason was that the
inefficient agents were much more competitive in the BG than in the GWDG experiments,
therefore driving the outcomes to the levels close to Nash equilibrium faster. This tendency

was consistent over most experiments and, therefore, can be attributed to the differences
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in the selection rules rather than subject pool effects. In particular, it might have been
the case that the subjects behaved more competitively in the BG experiments since the
BG allowed fewer collusive possibilities than the GWDG. We can draw a conclusion: the
experiments showed that the mechanisms do matter for the outcomes of wage-demand
games. The behavior of the inefficient, “marginal” agents in the wage-demand games was
driving the process, just as in traditional competitive market experiments (Plott, 1989).
When getting closer the Nash equilibrium outcomes, the agents, especially the inefficient
agents who were gaining almost nothing in this region even if they were selected, in several
cases tried to induce cooperation by increasing their wage demands, but the tendency was
weak and unstable; the outcomes stayed in the region close to the Nasrh equilibrium (see
figures in appendix C).

In the following sections, we consider whether the above differences between the out-
comes of the BG and the GWDG experiments can be explained by the differences in subjects’

behavior on individual level.

2.5 Classification of individual behavior

The results presented in the previous section indicate that neither the Nash equilibrium
solution nor any one of the cooperative solutions describe the behavior of the individuals in
the wage-demand experiments very well. The asks were above the Nash equilibrium level
most of the time??, which can be attributed to cooperative trends in the behavior. Yet there

was an apparent tendency for the subjects’ asks to decrease through the duration of each

24 While the inefficient agents could not submit their asks below the Nash equilibrium level of 0, the
efficient agents could: their Nash equilibrium ask was 100.
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experiment, clearly indicating the presence of competitiveness. In the BG experiments, the
asks were decreasing faster and were closer to the Nash equilibrium level than in the GWDG
experiments. In this section, we take a closer look at the subjects’ individual behavior in
order to establish whether the difference between the experiments could be attributed to the
differences in subjects’ behavior. We assume that the subjects’ wage demands were history-
dependent, and then estimate whether they were converging to the Nash equilibrium. We
further classify the individual behavior by the degree of competitiveness and distinguish
the competitive-type subjects from the others. Since such competitive types are the only
ones who systematically initiate the decrease in the level wage demands, the share of these
types among all subjects affects the speed of éonvergence of each experiment to the Nash
equilibrium outcome: the higher the number of competitive types, the faster the experiment
converges. We compare the number of competitive subjects across the experiments and
find that there were more competitive subjects in the BG than in the GWDG experiments;
this explains why the outcomes of the BG were closer to the Nash equilibrium prediction.
Moreover, since the difference is persistent across the two types experiments, it can be
attributed to the difference between mechanisms.

We now turn to the detailed consideration of subjects’ behavior.

2.5.1 History-dependence hypothesis

There may be many reasons why competitive behavioral tendencies do not immediately
lead to Nash equilibrium outcomes: for example, “competitive” agents may be counting on
the presence of cooperative — altruistic or not — agents in the subject pool (as in McKelvey

and Palfrey, 1992); or, some of the agents may be “more competitive” than the others, thus
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allowing agents to demand wages above the Nash equilibrium level and still be selected.
More generally, the Nash equilibrium behavior is not a dominant strategy and, therefore, if
some agents do not follow the Nash equilibrium behavior, the others could also gain from
deviations from Nash equilibrium. In particular, competitive agents could follow the Nash
best response behavior: depending on what wage demands an agent expects his opponents
to submit, the agent could submit an ask just below his opponent’s asks in order to get
selected with certainly and maximize the wage. There may be other behavioral rules that
are consistent with competitiveness; however, all these rules depend strongly on an agent’s
expectations about other agents’ asks.

We employ a simple variant of the history-dependence hypothesis to specify the agents’
expectations about their opponents’ asks. We assume that the agents take the asks observed
in the previous period as a signal about the current level of asks. The similar approach
1s applied to the Nash-Cournot best response model which has been proposed and used
before to analyze subjects’ behavior in the context of public good experiments (Ledyard,
1978, Y. Chen and Plott, 1993). In our situation, the use of the Cournot model might
be criticized on the grounds that the subjects are most probably matched with different
opponents each period, and therefore the wage demands observed in the last period might
be a very inaccurate prediction of the asks in this period. We use econometric analysis to
test the validity of the one-period history-dependence hypothesis for our situation.

We have performed a least squares regression analysis to consider whether the informa-
tion observed by individuals in the previous periods affected their current wage demands.
Table 2.8 presents the results of the regression of individual period-to-period ask changes on

the factors that could affect the agents’ decisions on wage demands, with the observations
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pooled for all experiments. The independent variables include a constant as well as dummy
variables for the selection rule, subject’s role (efficient or inefficient), three time intervals,
and their cross-products. To account for past history, the set of independent variables in-
cludes the subjects’ own wage demands, a dummy for whether the subject was selected
or not, and the subjects’ best response ask?® in the previous three periods. We have also
included independent variables to differentiate for the influence of this factor depending on
subjects’ roles and whether they were selected or not in each of the three previous periods.
Finally, in case a subject was selected in the previous period, we tested whether he was
trying to match the ask of the other selected subject in his group: a “team-partner’s” ask
is included as an independent variable also?S.

The results indicate (see table 2.8, t¢-statistics for the respective variables) that none
of the variables concerning the history beyond one period back is significant at the 5%
level. On the contrary, the individual ask, the best response ask, the selection outcome

and the team-partner’s ask from the previous period are all significant at the 1% level.

25Best response asks for each agent are calculated given their opponents’ asks in the previous period. (The
exact formula is given below.) If the agents follow the Cournot best response behavior, then an individuals’
ask change in a current period should equal to the difference of his best response ask and his actual ask last
period; and no other factors should matter. If other factors matter but the agents take into account how
much they “missed” from the the best response in the previous periods, then the latter factor should still
appear significant in the results of the regression.

Z6Here is the full list of independent variables: one — a constant; srule — a dummy for the selection
rule: = 1 if GWDG, = 0 if BG; rolel - a dummy for role: = 1 if efficient, = 0 if inefficient; time2,
time3 — dummies for the second and the third time intervals; asklag, asklag2, asklag3 — a subject’s
asks previous period and 2 and 3 periods before; askBRlag, askBRla2, askBRla3 - a subject’s best
response ask previous period and 2 and 3 periods before; Sidlag — a selection dummy: = 1 if a subject
was selected in the previous period, = 0 otherwise; Sidlag2, Sidlag3 - same as Sidlag for 2 and 3 periods
before; askopS1 - in case a person was selected in the previous period, this is the adjusted ask of the
other selected person (equals the actual ask if both subjects were of the same role, and is adjusted by
+100 or —100 francs otherwise), = 0 if a person was not selected; askopS2, askopS3 - same as askopS1
for 2 and 3 periods before; timerull — timelxsrule; timerul2 — time2+srule; timerul3 — time3x*srule;
timrolll - timelx*rolel; timrol21 — time2xrolel; timrol31 — time3xrolel; rolrull — rolel*srule; Sidaskl —
Sidlag+asklag; Sidaskl2 - Sidlag2*asklag2; Sidaskl3 - Sidlag3*asklag3; asklagrl - asklagxrolel; asklagr2
— asklag2xrolel; asklagr3 — asklag3+rolel; asklr1t2 — asklagsrolelxtime2; asklr1t3 — asklag+rolel«time3.
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3 periods back

1 period back

Independent | Estimated t- Estimated t-
Variable | Coefficient | Statistic | Coefficient | statistic

one | 109.27*** 3.19 118.37*** 5.85

srule 34.40* 2.41 53.40%** 5.07

rolel | —147.68*** -2.87 —125.20* -2.31

rolrull -45.00 -1.29 -48.70 -1.53
time2 1.92 0.06 -5.36 -0.19

time3 7.47 0.29 -4.92 -0.25

asklag | —0.98*** -72.04 —0.98*** -76.81
asklag?2 -0.0007 -0.12 o o
asklag3 -0.01 -1.89 —
askBRlag 0.16*** 2.61 0.21* 2.52
askBRla2 0.06 1.14 —_— —
askBRI1a3 0.08 1.49 — —
Sidlag | —46.08*** -3.71 —62.24** -5.05
Sidlag2 -15.69 -1.47 — —_
Sidlag3 -16.28 -1.47 —
askopS1 0.26>** 4.01 0.35*** 4.23
askopS2 0.14 1.84 — —_
askopS3 0.03 0.43 —
asklagrl 0.58*** 2.80 0.64** 2.96
asklagr2 0.17 0.84 —_ —_—
asklagr3 -0.08 -1.03 — o
asklrlt2 —0.60** -2.01 —0.48 -1.71
asklrlt3 -0.16 -0.87 -0.08 -0.38
timerul2 65.05 1.34 55.09 1.19
timerul3 -18.87 -1.34 —29.08 -1.83
timrol21 | 115.09** 2.41 86.22 1.72
timrol31 62.93 1.20 45.02 0.82
Corrected R* 0.602 —_ 0.600 —
# of observations 2343 — 2343 —
DW statistic 1.987 — 2.035 —

Table 2.8: Ordinary least squares estimation of per period individual ask changes, all data.
* — significant at 5% level; ** — 2% level; *** — 1% level.




Wage-Demand Mechanisms 113

In the regression performed with the “past one period back” variables excluded, the fit of
the regression (see the corresponding values of R-squared) did not change much, and the
significance of the previous period variables was confirmed. On this basis hereafter we adopt
the assumption of previous period history-dependence and assume that history beyond one

period did not significantly affect agents’ current decisions.

2.5.2 The approach to classification of individual behavior

Our purpose is to consider, on individual level, whether the experiments were competitive
in the sense that the agents’ asks were converging to the Nash equilibrium, and whether
the BG expériments were more competitive than the GWDG experiments on the individual
level. We take the following approach. Given the history-dependence assumption, we first
statistically estimate individual ask-adjustment rules and then consider whether, according
to these rules, individual asks were converging to the Nash equilibrium. Next, we distin-
guish the individuals who were actively inducing competition from those who just followed
the trend initiated by others, and thus classify the individual behavior by the degree of
competitiveness. Finally, we compare the number of competitive subjects across the BG
and the GWDG experiments.

A short comment on statistical procedures used in this section is necessary. Below,
we deal with the analysis of each subject’s behavior separately, and therefore the number
of data points per individual is relatively low (about 30 observations). Hence, we cannot
expect the statistical analysis to produce very accurate estimations. We use this analysis
in order to highlight the most interesting qualitative features in individual behavior, such

as the decreasing trend in asks, rather than to obtain accurate quantitative estimates of
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individual behavioral rules. We proceed with this comment in mind.

Ask-adjustment rules First consider what rules individuals may use to determine their
current asks given the asks observed in the previous period. If agents follow the Cournot-
Nash best response behavior, then, assuming that the opponents’ asks this period are
equal to the opponents’ asks in the previous period, the agent should submit an ask equal
to (or just below, depending on the role and the selection rule) the highest of two of his
opponents’ adjusted asks?”. This is equivalent to maximizing the wage conditional on being
employed. Formally, given the specific parameters of the game (table 2.1) and the other

agents’ wage demands in the group, each agent’s best response, depending on the role, is

-

max{vz, 100 + v3} if 1000 — vy —v3 >0
UlBR =

max{1100 — a,1000 — a3,0} otherwise;

max{vi, 100 + v3} if 1000 —v; —v3 > 0 ;
’UQBR =

max{1100 — v1,1000 — v3,0} otherwise;

max{vi,vs} — 100 if 1100 — vy —v3 >0 ;
’UgBR =

max{1000 — v1,1000 — v2,0} otherwise.

The best response ask from the previous period could have been, for some agents, the
most important factor that determined the current ask. However, the data overview above
(tables 2.6, D.6) indicates that all agents did not precisely follow the Nash best response

behavior and about 30% of the time changed their asks in the direction opposite from the

2"Hereafter, we will consider the asks adjusted for the role differences to make the agents symmetric; this
can be done by decreasing the efficient agents’ asks by 100 for inefficient agents or increasing the inefficient
agent’s ask by 100 for efficient agents.
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best response. Therefore, we also consider some alternative rules.

Another possibility is that the agents use the highest winning (i.e., resulting in employ-
ment) ask from the previous period as a basis to determine their current asks. Observe
that given the three asks submitted by the agents in a group, the highest winning ask is
the median among the (adjusted) asks; we will refer to it as the median ask. Matching
the previous period average ask rather than submitting the previous period best response
ask can be explained by the following bounded rationality argument. If the agents follow
a Cournot best response, then both of the agents that were selected in the previous period
should match the “losing” (not selected) agent’s ask from the previous period; in the mean-
while, the agent who was not selected in the pfevious period will decrease his ask to match
the highest among the “winning” asks, the median ask. If the previously selected agents
anticipate this action of the non-selected agent, they might also submit their asks close to
the average ask (again, assuming that the asks from the last period are a perfect signal for
the asks in this period). Note that the “median ask behavior” is also fair — at least, in the
GWDG - in the sense of giving all the agents equal chances of employment if they all match
the median ask.

Finally, agents could use simple rules based only on their selection (or non-selection)
in the previous period. In particular, an agent’s ask could stay equal to his previous period
ask if the agent were selected, and be decreased by some increment if the agent were not
selected. Besides, in all three cases, whether the agents used the best response ask, the
median ask, or the simple selection response rule, we assume the possibility that an agent’s

behavior includes the element of inertia, i.e., his own previous period ask affects his current

ask.
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Let v; denote agent ¢’s current ask; v;L, 7’s previous period (lagged) ask; v; BR, i’s best
response ask given the previous period asks; v;M, a previous period median ask; and S,
an indicator for the previous period selection shock: S = 1 if the agent was selected, and
S = 0 otherwise. We can formalize three types of simple rules discussed above that could

determine the agents’ current asks.

1. Selection response (SR) rule:

vi=og+ o1 *xv; L +ar xS (2.4)

2. Median ask (MA) rule:

v; = Bo + P * ;L + B x v, M (2.5)
3. Cournot best response (BR) rule:

v; =% +7 *v%L+ v *xv,BR (2.6)

For each individual, we can use least squares estimations to evaluate the coefficients
of each equation, and then select one of the three rules as a model of an individual’s
behavior. However, since each of the models determines a whole family of rules depending
on the coefficients, the type of rule itself does not determine whether an individual using a
particular rule is cooperative or competitive. Our next objective is to determine a criterion

to distinguish competitive behavior from cooperative.
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Competitive or cooperative behavior? = We use the following idea to evaluate the
competitiveness of the rule. First, intuitively, we may consider the rule competitive if
it results in a decreasing trend in asks from period to period; we may consider the rule
cooperative if the asks are increasing or are sustained at some cooperative level. For this
purpose, we will consider whether the rule produces an increasing or decreasing sequence
of asks if all the agents were identical and submit equal (adjusted) asks every period, and
each agent had an equal probability of being selected. Second, we will test the significance
of an increasing or decreasing trend imposed by the rule. If the trend is insignificant in
the sense that we cannot reject the hypothesis that the rule is stationary, then we classify
the behavior as marginal between cooperative and competitive rather than either of those.
Interestingly, at this point we can relax the assumption of identical previous period asks and
interpret the rule as marginal if it conforms to the hypothesis that the current period ask
1s a convex combination of the asks observed in the previous period. In this interpretation,
the marginal rule may follow a decreasing or increasing trend in asks if it is initiated by
other agents.

We now discuss the above idea in more detail.

Decreasing and increasing regions and stationary points

Definition 18 A rule of the form

vit = f(vi—1) ,
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where vy is agent i’s current ask and v,_1 is the vector of asks observed by i in the previous
period, is called decreasing in the region of asks V. C Ry if, given that all the agents
submitted equal adjusted asks in the previous period, an agent’s ask determined by this rule

decreases in the next period:

Vit < V-1 f07’ Vi1 €V .

Similarly, a rule is called increasing in the region of asks V C R, if the ask is increasing:

Vit > Vit—1 f07‘ vi_1 €V .

Finally, the rule is called stationary in the region of asks V C R if the ask does not

change:

Vit = Vi1 for vy €V .

Using the above definition, we can compute ihcreasing, stationary and decreasing regions
for the MA and BR type rules using the substitution v;L = v;M = v; BR. We should keep
in mind, however, that if an agent’s ask in the previous period was different from the median
or best response ask for this period, than the agent’s asks could increase in the decreasing
region or vice versa. To get an idea how often it could have been the case, we graphically
present in figure 2.3 deviations of individual asks from the same period median and best
response asks, across all individual observations. In both cases, the mean deviations are
small, but different from zero: the mean deviation from the median was 21.4 francs, and

from the best response ask was -16.3 francs. Therefore, we may expect to get slightly biased
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Figure 2.3: Distribution of deviations of individual asks from the current period median
and best response asks, in francs, all data.

estimates of the regions where the asks were actually increasing or decreasing; however,
our purpose is to estimate the regions that would be increasing or decreasing due to this
particular rule. The confidence intervals for the regions will be evaluated below.

In estimating the increasing and decreasing regions for the selection response rules, we
encounter a problem with the selection shocks that enter the ask adjustment rule as a
discrete variable. To get a simple estimate of the regions, we observe that an agent using

rule 2.4 (SR) is, in fact, switching between two models,

v, = (ag + ag) + oq x ;L

and

v = ap+ oy L,

depending on the previous period selection outcome. Therefore, decreasing and increasing
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regions for the rule 2.4 will oscillate between the respective regions of the two above rules.

Since our main purpose is to evaluate competitiveness of an agent’s behavior overall, we

use the observation that, on average,

xS =qy*r,

where r is an individual selection rate, or the share of the times when a given agent was

selected. Therefore we can substitute the selection shock variable S in the rule 2.4 with a

constant 7 to get an approximate estimate of the decreasing and increasing regions?®.
With these modifications, we can evaluate the decreasing and increasing regions for each

rule. A selection response rule is decreasing in the region V¢ C R, if for all v; € V¢

(1 - al)vi >ogtag*xr (27)

likewise, it is increasing in the region V™ C R, if for all v; € V" the above inequality is
reversed. It is stationary if

l-o)vi=ag+ag*r. (2.8)

Similarly, a median ask rule is decreasing in the region V¢ C R, if for all »; € V¢

(1= 61~ B2)vi > fo; " (2.9)

it is increasing in the region V® C R, if for all v; € V'™ the above inequality is reversed.

*8Confidence intervals for the estimates may and will be further tested.
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It is stationary if

(1 =61 = B2)v; = fo . (2.10)

Finally, a best response rule is decreasing in the region V¢ C R, if for all v; € V¢

(I=7=72)vi >0 ; (2.11)

it is increasing in the region V* C R, if for all v; € V™ the above inequality is reversed.

It is stationary if

(I-=m=72)vi="0 - (2.12)

It is easily seen that there may be only a finite number of possibilities regarding de-

creasing and increasing regions for each rule?®.

Proposition 23 If the ask adjustment rules are of the form 2.4, 2.5 or 2.6, and the de-

creasing/increasing regions are evaluated using the expressions 2.7-2.12, then there are only

five possible cases:
1. The rule is increasing for all v; > 0;
2. The rule is decreasing for all v; > 0;
3. The rule is stationary for all v; > 0;

4. The rule is decreasing for all v; > v}, stationary at v; = v} > 0, and increasing for

**The proof for the following proposition is sketched in section 2.7.
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all v; < v}; in this case v} is the asymptote of the asks:

v; — v} ast— 00

where t is the period indez.

5. The rule is increasing for all v; > v}* > 0, stationary for v; = v;* and decreasing for

all v; < vy™*.

Observe that case (1) is equivalent to case (5) with v}* = 0; case (2) is equivalent to
case (4) with vf = 0. We will further refer to v} as type 1 stationary point, or the
asymptote, and to v}* as type 2 stationary point.

Some interpretation of the possibilities presented above is useful. In case (1) we may
call an agent following the corresponding rule cooperative, and in case (2), competitive.
Case (3) would be the case, for example, if agents followed the Nash equilibrium behavior,
or sustained one of the cooperative outcomes. Case (4) is the case of convergence: no
matter at what level of asks the agents start, they end up at v}. In particular, if v = vZN ,
then the process converges to the Nash equilibrium; the agents who follow this rule are,
therefore, competitive. In our statistical estimation for the individual rules which fall under
case (4), we will test whether the asymptote v} is significantly different from the Nash
equilibrium ask. If the difference is insignificant, then we get an indication of the Nash
equilibrium behavior. Finally, case (5) may occur if, for example, efficient agents find it

to be worthwhile sustaining cooperation above some level of asks (for example, the lower

bound of cooperative solutions), but act competitively if the level of asks is already low.
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Marginal behavior  After an initial evaluation of the decreasing and increasing regions
for each rule is completed, the significance of an increasing or decreasing trend in a given
rule should be tested. We should test the hypothesis Hy of stationarity of the rule in the

case when all agents submitted identical adjusted asks in the previous period:
Hy: vy =w5-1.

If we find that the hypothesis cannot be rejected, then the trend is insignificant and therefore
the rule should be considered marginal rather than competitive or cooperative.

Marginal behavior has an alternative interesting interpretation. If we relax the assump-
tion of identical previous period ask, then we could interpret the behavior as marginal if
it does not induce substantial changes in the level of asks by itself but follows the changes

induced by other agents. In this respect, we note the following:

Observation 1 Suppose a set N of individuals is involved in a wage-demand ezperiment.

If each individual’s ¢ € N ask-adjustment rule is of the form
vit = f(ve-1) ,
and is such that for any vi_1
minjeN;’_lvjt—l <wy < MATjeNi  Vjt-1 (2.13)

where N]’f is a subset of agents whose asks i observes in the period (t—1), then in any period
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nlin'U'() < nlin’v't 2'14
lGN ? 1€N ® ( )
max v < max v;o 2.15
1EN § 1EN ’ ( )

where t = 0 refers to the initial period.

In particular, if every agent chooses his next period ask as a convex combination of the
asks observed in the previous period, then the asks submitted by the agents in any period
will stay within the range of the initial period asks. The asks will neither significantly

increase nor decrease. Therefore, if an ask-adjustment rule is of the form:
vie= Y &Vji—1,
JEN} 4

where 6; > 0 and ) ..n: 60; = 1, then we can classify the rule as marginal; it does not
J JENI_, Y5 y g

induce significant changes in the level of asks by itself, but follows the change if it is induced

externally.

Depending on the type of the rule, we adopt the following variants of the hypothesis of

marginal behavior:

e For the selection response rule:

H§: (a1=0) or (ag+r*as=0, o =1); (2.16)



Wage-Demand Mechanisms 125

e For the median ask rule:

HY': (bo=0, fi+p=1); (2.17)

e For the best response rule:

HPR: (=0, m+7=1). (2.18)

We now summarize our approach to testing the competitiveness of individual behav-
ior. We first approximate each individual ask-adjustment process by a simple linear model,
assuming the the current individual decision depends on the observed outcomes of the pre-
vious period. For a given model, we then evaluate the regions of increasing and decreasing
asks; increasing asks indicate on the presence of cooperative tendencies in an agent’s be-
havior; likewise, decreasing tendencies indicate competitive behavior. We further test the
hypothesis that the behavior was marginal between cooperative and competitive; if the lat-
ter hypothesis is rejected, then we can further test if the region of competitive behavior (i.e.,
decreasing asks) coincides with the region of asks above the Nash equilibrium level. If this
1s the case, then we can classify the behavior as competitive. If we find that an agent’s asks
exhibit increasing or stationary trend at the level significantly above the Nash equilibrium
asks, then we can classify the behavior as cooperative. Finally, we can compare our results
on the competitiveness of behavior between the BG and the GWDG experiments and find
out the differences in the behavior that could have been induced by the differences in the

selection rules.
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We next describe the statistical procedures used to implement the above approach and

the resulting classification of individual behavior.

2.5.3 Statistical procedures and classification criteria

Selection of individual rules We performed the least squares estimations of individual
behavioral rules using three alternative models 2.4 (SR), 2.5 (MA} and 2.6 (BR) for each of
81 subjects who participated in the experiments3®. The J-test by Davidson and McKinnon
(as described in Green, 1990, p. 231) for comparison of non-nested linear models3! as well
as F-statistics for the significance of regressions (in case the results of the J-test were incon-
clusive) were used to select one of the three rules as a model of behavior for each individual.
We considered the individual behavior unclassified if none of the three regression models

had a value of F-statistic for the significance of the regression above the 5% significance

level.

Statistical procedures for classification by competitiveness Given the estimated
coefficients of the selected models, we computed the increasing and decreasing regions and
stationary points for each individual rule using inequalities 2.7-2.12. To evaluate standard
errors on the estimates of stationary points, we used Taylor series approximations of the
stationary points as functions of the estimated coefficients of the linear regression models, as

described in Green (1990, pp. 228-230). The values of the test statistic — we will refer to it

30Since the regression models contain lagged dependent variables, we performed the h-test for the presence
of autocorrelation as described in Green, 1990, p. 454. The results (tables E.1-E.14 in appendix E) indicate
that in most cases the value of the h-statistic was not significantly different from zero and therefore the
hypothesis of no autocorrelation was sustained.

31 The test is valid asymptotically.
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as a z-statistic3? — was then calculated to test whether the estimated stationary points were
significantly different from the Nash equilibrium asks. Finally, we tested the hypotheses of
the marginal behavior represented as linear restrictions 2.16, 2.17 or 2.18 for SR, MA and
BR rules, respectively; the ¢-test was used to test if a; = 0, and the F-statistics for testing

the set of linear restrictions were calculated for the rest of the cases.

Criteria for classification of rules by competitiveness We conducted a classifica-
tion of rules into competitive, cooperative and marginal types as follows. If the rule had
an asymptote (type 1 stationary point), it was classified as competitive if the hypothesis
Hy that the rule was marginal was rejected (i_.e.; the value of F-statistics for testing the
marginality restrictions on the model was significant), and the asymptote was not signifi-
cantly different from the Nash equilibrium ask (the value of z-statistic was below the 5%
significance level). The behavior was also classified as competitive if it had a type 2 station-
ary point, the hypothesis of marginal behavior was rejected, and the hypothesis that the
stationary point was above the maximal ask submitted by the given subject was not rejected
(the latter implied that the agent’s asks were in the decreasing region). The behavior was
classified as marginal whenever the hypothesis that the rule was marginal was not rejected
(the value of the F-statistic for marginality restrictions was below the 5% significance level),
except for one case described below. The behavior was classified as cooperative if it was
marginal and had the asymptote significantly above the Nash equilibrium ask, or it had a
type 2 stationary point significantly below the maximal ask and was not marginal. Finally,

if the rule had an asymptote, was not marginal but the asymptote was significantly above

32Since the technique relies on asymptotic properties of the least squares, the standard normal distribution
was used instead of the ¢-distribution for the test statistic.
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Type of If type 1, If type 2, | Margi- Classi-
stat. point | =~ ask Nash? | =~ ask max? | nal? fication
type 1 yes — no competitive
type 1 yes — yes marginal
type 1 higher — yes cooperative
type 1 higher — no switch
type 2 — yes no competitive
type 2 — lower no cooperative
type 2 — yes yes marginal

Table 2.9: Criteria for classification of individual behavior

the Nash equilibrium ask, we classified it as a rule with a switch: apparently, at the high 7
level of asks, the rule was competitive (decreasing), but then stabilizes at some level above
the Nash equilibrium and sustains cooperation. Individuals whose wage-demand rules were

initially unclassified, stayed unclassified. Table 2.9 summarizes the criteria for classification

of the rules.

2.5.4 Results

The results of our statistical estimations of individual behavior are presented in tables 2.10-
2.12 and figure 2.4. The detailed results of the estimations for each individual are given
in tables E.1-E.14 in appendix E. We start our review of the results with classification of

individual behavior by the types of rules.

Individual behavioral rules Table 2.10 shows how often each of the three rules — SR,
MA and BR - was used by the individuals. The results indicate that the median ask
rule was used by about 50% of the subjects, i.e., more often than either the selection

response rule (22% of the subjects) or the best response rule (15% of the subjects). There
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Selection | Med. ask | BR ask | Unclassi- | Total
% (SR) (MA) (BR) fied
All data 22 49 15 14 100
Efficient agents 22 52 13 13 100
Inefficient agents 29 44 19 8 100
BG pooled 24 44 18 13 100
Experiment 1 50 33 17 — 100
Experiment 3 17 41 17 25 100
Experiment 5 8 59 25 8 100
Experiment 7 22 45 11 22 100
GWDG pooled 25 56 14 5 100
Experiment 2 33 33 25 8 100
Experiment 4 17 67 8 8 100
Experiment 6 25 67 8 — 100

Table 2.10: Frequences of individual behavioral rules, %

were no substantial differences in the frequences of use of the rules either between efficient
and inefficient agents, nor between BG and GWDG experiments. We next considered the

competitiveness of the selected rules.

Types of stationary points Let us overview the results on the types of competitive
and cooperative regions and the corresponding stationary points that prevailed in our esti-
mations. Table 2.11 presents the number of cases in which individual rules have type 1 and
type 2 stationary points®. For the rules with type 1 stationary points, or the asymptotes,
the table indicates in what number of cases the asymptotes were significantly different from
the the Nash equilibrium asks®*. As table 2.11 indicates, the overwhelming majority of the

rules in both BG and GWDG experiments have type 1 stationary points, or the asymptotes:

33Since the subjects in the experiments could submit only non-negative asks, the estimates of the stationary
points were truncated at zero: negative stationary points were assigned values of 0.
34The values of z-statistics used to evaluate the significance of the differences are presented in tables

E.1-E.14 in appendix E.
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Type 1 stationary point Type 2 | Unclassi- | Total
~ ask Nash | > ask Nash | Total | st.point fied
Exp. 1 10 2 12 — — 12
Exp. 2 8 2 10 1 1 12
Exp. 3 6 3 9 — 3 12
Exp. 4 8 — 8 3 1 12
Exp. 5 10 — 10 1 1 12
Exp. 6 8 1 9 3 — 12
Exp. 7 7 — 7 — 2 9
All data 57 8 65 8 8 81
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Table 2.11: Classification of individuals by types of stationary points, counts

the rules are decreasing in the region of asks above v, increasing in the region below v},
and converge to v} in time. Moreover, in the majority of cases the asymptotes are not
significantly different from the Nash equilibrium asks, which is the case in both BG and
GWDG experiments. Therefore, we cannot reject the hypothesis that the majority of the

rules followed convergence to the Nash equilibrium under both experimental treatments.

Distribution of asymptotes To get an idea whether the decreasing and increasing
regions of individual rules were any different under the BG than under the GWDG ex-
periments, in figure 2.4 we plotted the distribution of asymptotes for the two types of
experiments3®. This representation should be treated with caution since, as table 2.11 indi-
cates, In most cases the estimates of asymptotes were not significantly different from zero;
however, it may give some indication of the differences among the two types of experiments
regarding the levels of asks and its dynamics. Overall, we can see that the asymptotes in the

GWDG experiments are, on average, higher than in the BG experiment both for efficient

35 As table 2.11 indicates, the stationary points were type 1, or the asymptotes, in most cases; therefore,
their distribution may be informative of characteristics of the experiments.
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and inefficient agents. In the BG, the highest number of the asymptotes are concentrated
around the Nash equilibrium level of asks; in the GWDG experiments, the majority of the
asymptotes are about 100 francs or more higher than the Nash equilibrium level. This
indicates that in the GWDG experiments the process of ask decrease was slowing down at a
higher level of asks than in the BG. In this respect, BG experiments were more competitive

than the GWDG experiments.

Classification of individual behavior We now present the central results of our anal-
ysis. Table 2.12 contains the results of classification of subjects’ behavior into competitive-
ness types. -We can immediately make several interesting observations. First, the share of
competitive agents was higher among both efficient and inefﬁcient agents in the BG exper-
iments than in the GWDG experiments. Therefore, our earlier observations that the BG
experiments were more competitive than the GWDG experiments are confirmed.

Next, surprisingly, in both experiments there was a lower share of competitive behavior
among inefficient than among efficient agents. This finding may seem at odds with our
earlier observation (result 5) that inefficient agents were more competitive than efficient
agents, in the sense that their average per period ask decrease was lower. However, the
situation changes if we take into account the agents who had a switch in their behavior,
i.e., started acting competitively and then switched to cooperative behavior. Since in most
cases the switch occurred close to the Nash equilibrium level of asks (the asymptotes of
the inefficient switch-type agents were often insignificantly higher than 40-60 francs; see
tables E.1-E.14 in appendix E), in the early periods of experiments, the ones that were

particularly gainful for subjects, the switch-type agents were acting competitively. Together
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| % | Agent type | Comp. | Marg. | Coop. | Switch | Unclass. |
All data efficient 48 41 2 4 5
inefficient 19 41 — 22 18
BG efficient 53 37 — 3 7
pooled inefficient 27 20 — 27 26
Exper. 1 efficient | 37.5 50 — 12.5 —
inefficient 50 25 — 25 —
Exper. 3 efficient | 62.5 12.5 — — 25
inefficient — — — 75 25
Exper. 5 efficient | 62.5 37.5 — — —
inefficient 25 50 — — 25
Exper. 7 efficient 50 50 — — —
inefficient 33 — — — 66
GWDG efficient 42 46 4 4 4
pooled inefficient 8 67 — 17 8
Exper. 2 efficient | 37.5 37.5 — 12.5 12.5
inefficient — 75 — 25 —
Exper. 4 efficient | 62.5 37.5 — — —
inefficient 25 50 — — 25
Exper. 6 efficient 25 62.5 12.5 — —
inefficient — 75 — 25 —

Table 2.12: Percentages of individual behavior by competitive categories, %

133
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with the switch-type agents, the share of initially competitive behavioral types in the BG
was close between efficient and inefficient agents and in both cases exceeded 50%. On the
contrary, in the GWDG experiments, even together with the switch-type agents, the share
of the competitive agents among inefficient was only 25%, which was almost twice as low as
among efficient agents. Apparently, this made a big difference in the speed of convergence
of the experiments to the low level of asks; with the higher percentage of competitive types
among the subjects, the level of asks decreased faster in the BG than in the GWDG.

The difference in the shares of marginal types among the subjects in the BG and the
GWDG experiments is also apparent. There were fewer marginal agents among efficient
and, especially, inefficient agents in the BG as compared to the GWDG. Observe that the
marginal types do not themselves initiate the decrease in the level of asks, although they
follow it when it is induced by the competitive types. Therefore, the higher the share of
marginal types as compared to competitive types among the subjects, the slower the asks
converge to the competitive stationary point, i.e., the Nash equilibrium.

The next observation regards the presence of cooperation. As the table shows, we have
detected practically no cooperative types among’the subjects according to our classification.
Cooperation efforts were mostly either “passive” (marginal behavior) or late in the experi-
ment (switching behavior); the asks almost converged to the Nash equilibrium level before
the agents — especially, inefficient agents — exhibited some cooperation attempts. However,
the marginal behavior does not contradict cooperative theories discussed in section 2.2.3.
The crucial thing to notice is that the cooperative solutions for the wage demand game
induced by our design were unstable in two ways: first, each agent had an incentive to

deviate unilaterally; second, cooperation could not be sustained if any one subject devi-
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ated. Apparently, in both BG and GWDG experiments, the presence of some number of
competitive subjects resulted in the tendency of asks among all subjects to decrease until
they approached to the Nash equilibrium level.

We can now formulate our conclusions regarding the BG and the GWDG experiments

based on the analysis of individual behavior of the subjects.

Result 7 The following conclusions can be drawn from the analysis of individual behavior

in the wage-demand experiments.

1. Competitive tendencies were present in the behavior of subjects in both the BG and the

GWDG ezperiments: the share of competitive types was significant in all experiments.

2. The stationary points of the ask-adjustment rules for the majority of subjects in each
experiment were of the asymptote-type and not significantly different from the Nash
equilibrium level. That is, the outcomes of every experiment were converging to the

Nash equilibrium outcomes.

3. The share of competitive behavior among the subjects was higher in the BG than in the
GWDG experiments. Fspecially, the inefficient agents were much more competitive in
the BG than in the GWDG. Consequently, the BG experiments were converging to the
Nash equilibrium faster than the GWDG experiments, which resulted in lower payoffs

to the agents in the BG as compared to the GWDG experiments.

4. Since the differences in individual behavior between the BG and the GWDG were per-
sistent across the experiments, they can be atiributed to the differences in the selection

mechanisms of the BG and GWDG.
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It is appropriate now to look back at the two alternative sets of conjectures (section 2.3.2)
that were stated from the competitive and cooperative perspectives on the agents’ behavior.
As our findings show, none of the two sets gave the correct‘ predictions of the experimental
outcomes. The competitive prediction that the BG and the GWDG games are essentially
equivalent did not prove to be right, but neither did the cooperative prediction that the
outcomes should stabilize at some cooperative level of asks. However, we have observed
that from period to period the outcomes of both the GWDG and the BG experiments were
getting closer to the competitive prediction, although under GWDG it happened much
slower than under the BG. Thus, it is quite possible that, allowing enough repetition, the
competitive conjectures would give a better prediction of the outcomes of the wage-demand

games than the cooperative conjectures.

2.6 Conclusion

Our experimental investigation of the wage-demand games for the formation of teams has re-
vealed several interesting points. First of all, we have discovered that although the agents did
not strictly follow Nash equilibrium behavior, competitive tendencies were always present
in the behavior of some individuals and therefore the cooperative outcomes of the games
were not sustainable. Our results are, therefore, at odds with Bolle’s (1991) experimental
findings; Bolle reported that cooperation was persistent in his wage-demand games with
two symmetric agents. We have thus demonstrated that cooperation is non-robust to such
factors as asymmetries of the agents’ roles and small increases in the size of the teams.

The main research question of our investigation was to consider whether the type of
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the team-selection rule used in the wage-demand mechanism affected the degree of com-
petitiveness of the agents’ behavior and, through the latter, the principal’s profit from
the team formation. We have discovered that, at least in the short run, the type of the
mechanism mattered significantly: the share of competitive agents was much lower and
the agents’ wage-demands were much higher in the GWDG experiments than in the BG
experiments. It is reasonable to assume that extra competition in the BG experiments was
caused by an additional asymmetry among the agents induced by the mechanism. In the
BG, only efficient teams among the profit-maximizing were selected, whereas in the GWDG
any profit-maximizing team was selected with equal probability. This reduced the set of
collusive outcomes in the BG compared to the GWDG and caused extra competition on
the part of the inefficient agents in the BG. As a consequence, the outcomes of the BG
converged faster to the Nash equilibrium than the outcomes of the GWDG experiments,
which resulted in lower payoffs to the agents and higher profits to the principal. This allows
us to conclude that the BG mechanism, which can be used by the principal only if she is
informed about the teams’ efficiencies — as opposed to profits — may be more profitable to
the principal than the GWDG mechanism, which the principal can use under incomplete
information. That is, we find once again that the principal’s information matters for the
amount of profits she can extract from the agents.

Yet, both mechanism, GWDG as well as BG, proved to be rather competitive and,
therefore, profitable for the principal. The presence of asymmetric agents (which is often
likely to be the case) and even a small increase in the number of potential team-members
resulted in considerable competitive tendencies in agent’s behavior. As a bottom line, we

conclude that in the team-formation mechanisms, as in many other economic situations,
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the extent of a principal’s information is important, but markets, if they can be used. often
Y ,

work for the principal even if she has incomplete information.

2.7 Proofs of the statements

Proof of proposition 17 We will use results from the propositions 15, 16 and the

following lemma and its corollary in the proof of the proposition 17.

Lemma 4 In any pure strategy equilibrium of a wage-demand game, the sum of the wages
demanded by the agents of an efficient team T* is necessarily higher than the sum of the

wages demanded by the agents of any inefficient profit-mazimizing team T. That 18,

Z v; > Zv,- . (219)

i€T* iET

Proof By proposition 16(1), in equilibrium any efficient team is profit-maximizing. Now

let 7(T) = n(T*), but F(T) < F(T*). Then, since

( =F (T) Z (&

ieT

and

n(T) = F(T*)~ 3 v,

€T

we get

Zvi< Zvi.

ieT el



Wage-Demand Mechanisms 139

Corollary 9 Let I*(T) = {i € N|i € T,v; > 0} denote the set of agents in a team T who

demand positive wages. Then in a Nash equilibrium of a wage-demand game,

T cIry(rcr,

where T is an arbitrary inefficient profit-mazimizing team and T* is an arbitrary efficient

team38.

Proof Follows from the definition of efficient agents, proposition 16(2,3) and the lemma

above. O

Proof of proposition 17 By proposition 15, there always exists a pure strategy Nash
equilibrium of the corresponding Bolle Game; denote by v* = (v],..,v5,..,v}) the equilib-
rium wage demands. Let I* denote the set of agents who demand positive wages in this
equilibrium: /™ = {i € N|v} > 0}. By proposition 16(2,3), It C I*. Take an ¢ > 0
and consider the outcome of an arbitrary wage-demand game in which the agents use the
following vector of strategies v: for every i € N, v; = v} — €, where ¢, =0 if ¢ It and
0 < & < min{v],e/k} for i € I'", where k is the number of agents who demand positive
wages: k = |I*|. We now show that given such v, a profit-maximizing team is efficient if
and only if it is profit-maximizing. Let T* denote an arbitrary efficient team. Compare

the profits of every team under the the wage-demands v* and v. By construction and by

%6For the reminder, I* denotes the set of efficient agents.
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proposition 16(1,2,3), for any T C N,

7(T,v) < w(T,v*) + Z €
iel+

and

(T, v) = n(T*,v*) + Z €
iel+

for any efficient 7*. Therefore, since all efficient teams are profit-maximizing given v*
(proposition 16(1)), they all are profit-maximizing given v. By the same reason, for any T

- inefficient and T™* — efficient,
if #(T*,v) >n(T,v) then n(T*v*) > n(T,v*) .

Next, consider an inefficient team T such that =(T,v*) = m(T*,v*), ie., it is profit-

maximizing given v*. By corollary 9,

dDa<d &

ief' 1€T™*

and therefore

w(T*,v) > n(T,v) .

Therefore, the set of profit-maximizing teams equals the set of efficient teams given
v. Next we show that the strategy vector v constitutes an e-equilibrium. If an agent is
inefficient, he cannot gain from increasing his wage demand, since, by the definition of an

inefficient agent, there exists 7™ - efficient such that ¢ ¢ T*; therefore, increasing the wage
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is equivalent to not getting selected with certainty. On the other hand, any i ¢ I* can only
lose from decreasing his wage demand from v; = 0. An efficient agent i € I* may gain from
increasing his wage-demand from v; by capturing the difference (7(T*,v) — n(T, v)), where
T is the team with the highest profit among inefficient teams such that i ¢ T. However, by

construction and by proposition 16(4),

w(T*,v) —n(T,v) <€ .

Hence, the gain is always below e. Since v guarantees every i € I* employment with
certainty with the wage w; = v;, the efficient agents can only lose from decreasing their
wage-demands from v;. Therefore, v; = v} — ¢; is an e-equilibrium strategy for every i € N
and v is an e-equilibrium wage-demand vector. Finally, by construction such e-equilibrium

exists for every ¢ > 0. O

Proof of propositions in section 2.2.3 Proof of proposition 19 (1). Such an agent can
always change (at least increase) his wage demand and effect the other agents’ probability
of being selected; therefore, he is offensive. (2). An agent can affect other agents’ payoffs
only if he can change his own probability of being selected. (3). Suppose p; > 0. Then
by (1) above, i is offensive, and therefore v; > 0. Now suppose p; = 0. If v; > 0, then i
can decrease his wage demand and get selected. Therefore, 7 is offensive and the collusive
outcome requires p; > 0, which is a contradiction. It follows that v; = 0. Since p; = 0,
the profit-maximizing team to which ¢ belongs is selected with zero probability. Since %

can only increase his wage-demand, from (2) above, he is not offensive. (4) Follows from



Wage-Demand Mechanisms 142

the proposition 18 that any efficient agent such that v} > 0 is selected with positive

probability in the corresponding cooperative outcome, and from (1) above. (5) Observe
that, by definition, if a collusive outcome ve exists, then v& > v for all ¢ € N, and

vE > vl at least for one 5. O

Proof of Proposition 20 (1) Suppose an efficient team is selectable in an outcome of the
BG; therefore, first, it is profit-maximizing, and, second, only efficient profit-maximizing
teams can be selected. By definition, an efficient agent ¢ € I* belongs to every efficient
team, and therefore every efficient bagent belongs to every selectable team; i.e., every i € I*
is selected with certainty. For the GWDG, since any profit-maximizing team is selectable,
the above logic does not apply (consider also example 2 in section 2.2.3). (2) Follows directly

from propositions 19(1,2) and (1) above. (3) Follows directly from propositions 19(2). O

Proof of proposition 23  The proposition follows straightforwardly from the analysis of
inequalities 2.7-2.12. We illustrate here the proof for the case (4), assuming an agent follows
an MA rule. Observe that for the purpose of determining the regions we use v;L = v; M,

and the rule 2.5 can be rewritten as:
t—1

vie =fo Y_ (B + B2)" + (Br+ B2)" * vio
=0

where v;g is the first period ask. Therefore, if |81 + B2] > 1, the sequence {vy} diverges; if

|61 + B2| < 1 then the sequence converges and

) Bo
lim vy = ———rnab— =¢F .
t~oo ' 1= By + B ’



Wage-Demand Mechanisms 143

Since v;; is non-negative for any t, so is v; therefore, only two cases are possible for the
limit to exist and be non-negative: (1) ag < 0 and —1 < (B + f2) < 0; however, in this
case v;; is negative whenever v;;_; is positive, and hence this case is not feasible. (2) 6o >0
and 0 < (fB1 + f2) < 1; this is the only feasible case when the limit exists. If Bo = 0 then
v; = 0, and the rule is decreasing for all v; > 0. If 3y > 0, then vy > 0. Consider this case.

Since o > 0 and 0 < (f1 + fB2) < 1, from inequality 2.9 we derive that

: *
Vg1 > Vi i vy < v;

and

: *
Vigr1 < v if vy > v; -
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Appendix A

Cooperative Solutions

Cooperative solutions From section 2.2.3, in any cooperative solution v of the wage-

demand game (either BG or GWDG) with teams’ productivities give in table 2.1,

p1(v)ui(vy) > 100
p2(v)uz(ve) > 100

p3(v)us(vs) >0

and each inequality is strict if the solution is collusivel.
Cooperative solutions of the BG Two types of cooperative solutions are possible under
the BG: either {1,2} is among the efficient profit-maximizing teams and therefore is selected

with certainty (type 1 cooperative solutions) or (only) teams {1,3} and {2,3} are profit-

'As a reminder, we suppose that all the agents are risk-neutral and therefore consider beneficial any
lottery which gives them higher expected payoff than in the Nash equilibrium. Therefore, agents 1 and 2
should be chosen with positive probability and have an expected payoff of at least 100 (the Nash equilibrium
payoff) each in any cooperative solution. If the agents were risk-averse, than the lowest expected payoff
which they considered equivalent to their Nash equilibrium payoff should have been higher and therefore the
set of cooperative solutions would be shrunk compared to the risk-neutral case.
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maximizing and are selected with equal probability 1/2 each (type 2 cooperative solution).

Note that type 1 cooperative solutions exclude agent 3 from the set of selectable agents and

therefore none of them is collusive.

Type 1 cooperative solutions are defined by v € B; C Ri where
B = {(vl,v2,03)lv1 > 100,v2 > 100,v3 > 0,01 + vy < 1100,v1 —v3 < 100,79 —v3 < 100}.

Type 2 cooperative solutions require that v, = v > 200 and are defined byv € By C Ri

where

BQ = {(1)1,1)2,’03”'01 =1y > 200,'111 +v3 < 1000,’01 — V3 > 100}

Therefore, the set of cooperative solutions of the BG is defined by
B = B, U Bs.
The set of collusive solutions B¢ of the BG is the subset of Ba:
BC = {(v1,v3,v3)|v1 = v3 > 200,v3 > 0,v; + v3 < 1000, 0] — v3 > 100}.

Cooperative solutions of the GWDG Under the GWDG, there is a bigger variety of
possible cooperative solutions, which we can group by the teams that are profit-maximizing,
and therefore, selectable under each type. Let us denote i-th group (set) of cooperative
solution by G;, and the corresponding set of collusive solutions — by G’Z-C . Then we can

define the set of solutions as follows:
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1. G - the set of solutions where team {1,2} only is selectable. This set differs from B,

only by the boundary:
G = {(’01,’02,1)3),7}1 > 100, v > 100,v3 > 0,v1+vy < 1100, v1—v3 < 100, vo—v3 < 100}.

As in the BG, the set of corresponding collusive solutions is empty.

2. Gy - the set of solutions where teams {1,3} and {2,3} are selected with probability

1/2 each. This set coincides with the set By of the BG:
 Ga = {(v1,v2,v3)|v1 = vz > 200,03 > 0,0 + vz < 1000, v; — v3 > 100}.
Its subset GS of collusive solutions is

GS = {(v1,v2,v3)[v1 = v2 > 200,93 > 0,01 + v3 < 1000, v; — v3 > 100}.

3. G3 - the set of solutions where teams {1, 2}, {1,3} and {2,3} are selected with prob-

ability 1/3 each. It is defined by:
Gs = {(1)1,1)2,1)3)|1)1 =v9 2 150,v; = v +100,v; +v3 < 1000}

The corresponding subset of collusive solutions G§ excludes from G5 the single point

(150, 150, 50):

GS = {(v1,v2,v3)|v1 = v2 > 150,01 = v3 + 100, v; + v3 < 1000}.
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4. G4 - the set of solutions where teams {1,2} and {1,3} are selected with probability

1/2 each. It is defined by:

G4 = {(v1,v2,v3)[v1 > 100,v9 > 200,v3 > 0,v2 > v1,v2 — v3 = 100, v; + vz < 1000}.

The corresponding subset of collusive solutions G§ excludes from G4 three boundaries:

Gf = {(v1,v2,v3)v1 > 100,v2 > 200,v3 > 0,v3 > vy,v9 — v3 = 100,v; + v < 1000}.

5. G's — the set of solutions where teams {1,2} and {2,3} are selected with probability

1/2 each. It is symmetric to the set G4 and is defined by:

G5 = {(v1,v2,v3)|v1 > 200,v2 > 100,v5 > 0,v1 > vg,v; — v3 = 100, v3 + v3 < 1000}.

The corresponding subset of collusive solutions G§ excludes from G three boundaries:

GY = {(v1,v2,v3)o1 > 200,05 > 100,v3 > 0,01 > v9,v1 — v3 = 100, vy + v3 < 1000}.

The entire set of cooperative solutions is then defined by
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and the set of collusive solutions is its subset:

5
G¢={JGY.
=2
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Appendix B

Experimental Instructions

B.1 Instructions

This is an experiment in decision-making. The instructions are simple and if you follow
them carefully, you may earn a considerable amount of money that will be paid to you IN
CASH at the end of the experiment. During the experiment all units of account will be in
francs. Upon concluding the experiment the amount of francs you earned will be converted
into dollars at a conversion rate of ....... dollars per franc. Your earnings plus a lump sum

amount of ....... dollars will be paid to you in private.
Do not communicate with the other participants except according to the specific rules
of the experiment. If you have a question, feel free to raise your hand. An experiment

monitor will come over to where you are sitting and answer your question in private.

This experiment will last several PERIODs. At the beginning of each period, you will be
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assigned to a UNIT with two other participants. Each person within a unit will be given a
role denoted by a A, B or C. You will not be told which of the other participants are in your
unit. WHAT HAPPENS IN YOUR UNIT HAS NO EFFECT ON THE PARTICIPANTS

THAT ARE NOT IN YOUR UNIT AND VICE VERSA.

Market organization and payoffs

In each period of this session you are going to participate in a GROUP SELECTION
process. During the period, you will submit to the market your ASK, which is the amount
of francs you want to be paid in case you are in the selected group. Only non-negative asks
between 0 and 10000 francs are allowed. During a period, you can submit only ONE ASK.
You will not be informed about the asks submitted by the other participants in your unit

until the end of the period.

The period ends when all participants submit their asks. Once the period is over, a
mechanism, which will be specified below, will select a group of participants on the basis of

their asks.

In each period, your EARNINGS are equal to your ask if a group containing yourself is
selected; you earn zero otherwise. A group containing yourself cannot be selected if you do

not submit an ask during the period.

Example 1 Suppose in period 1 you are in role A, you submit an ask of 15, and in your
unit the group {B,C} is selected. Then you earn zero in period 1. Suppose in period 2 you

are in role B, your ask is 15, and the group {A,B} in your unit is selected. Then you earn
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15 in period 2. Your earnings table for this case is given below.

EARNINGS TABLE (in francs)

Period # | Your role | Your ask | Group selected | Your earnings
1 A 15 {B,C} 0

2 B 15 {A,B} 15

Total 15

At the end of each period you are required to enter your ask, the group selected and

your earnings for the period in the enclosed record sheet (table 2).

The group selection mechanism

Each group of participants in a unit is characterized by a VALUE which can be realized
only if the group is selected by the mechanism. Table 1 (enclosed) contains the values for
every possible group of participants in a unit. These values are the same for every unit and

stay unchanged in every period of the experiment. The table below provides a hypothetical

example of group values for a unit.

Group
{A} | {B} | {C} | {AB} | {AC} | {B,.C} | {A,B,C}
Group value | 0 0 0 22 30 13 -5

For example, group {B} has a value of 0, group {A,C} has a value of 30, and group
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{A,B,C} has a value of —5.

The key to the group selection mechanism is the RESIDUAL of a group. Given the asks

of the participants in a unit, the residual of a group is as follows:
RESIDUAL of a group = VALUE of the group — ASKS submitted by the group members

Suppose, for example, that participant’s A, B and C asks are 5, 7 and 15, respectively.
Then, if the value of group {A,B} is 22, its residual equals 22 — (5 + 7) = 10; if the value
of group {A,B,C} is —5, its residual equals —5 — (5 + 7+ 15) = —32.

At the end of each period, in each unit THE MECHANISM WILL SELECT A GROUP
WITH THE HIGHEST NON-NEGATIVE RESIDUAL. No more than one group in a unit
can be selected. If there are several groups with the highest non-negative residual, the
mechanism will select among them the group with the highest value. If there are several
groups with the highest non-negative residual and the highest value, a fair lottery will
determine which of these groups is selected. If all the groups have negative residuals, no

one will be selected?.

After the group selection is made, your computer terminal will display the asks submitted

by the participants in your unit, the residuals of the groups and the group selected. You

!The paragraph above was used in the instructions for the BG experiments. In the GWDG experiments,

it was substituted by the following:

At the end of each period, in each unit THE MECHANISM WILL SELECT A GROUP WITH THE
HIGHEST NON-NEGATIVE RESIDUAL. No more than one group in a unit can be selected. If there are
several groups with the highest non-negative residual, a fair lottery will determine which of these groups is
selected. If all the groups have negative residuals, no one will be selected.
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will calculate your earnings for the period as described above.
You will be given a residual accounting sheet (table 3) to help you record the partici-

pants’ asks and the groups’ residuals for every period.

This will continue for a fixed number of periods. Your unit and role assignment will
change from period to period except for the following. The participants who are assigned
the role C in the first period will stay in this role for the whole experiment. The participants
who are assigned the roles A or B in the first period will never be assigned the role C in later
periods. At the end of the experiment, you will be asked to calculate your total earnings,

which is the sum of your earnings over periods.

Exercise 1 Suppose the group values are as given in the table above (page 2 of the

instructions), and the following asks are submitted by the participants in a unit:

| Participant role | Ask submitted |

A 15
B 2
C 10

Calculate the group residuals corresponding to these asks and enter them in the practice

accounting sheet below.
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GROUP RESIDUAL ACCOUNTING SHEET

Group
{A} [ {B} [ {C} | {AB} [{AC} | {B,C} [{A,B,C}
Group value (V) 0 0 0 22 30 13 -5

Asks (a)

Residual (R)=(V)-(a)

Which group will be selected by the group selection mechanism?

Selected group: ..............

Enter the corresponding earnings of the participants into the table below:

| Participant role # | Earning l

A

B

C

154
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Exercise 2 Given the information below, determine the residuals, the group selected

and the participants’ earnings, and record them in the corresponding tables below.

| Participant role | Ask submitted |

A 10
B 30
C 30

GROUP RESIDUAL ACCOUNTING SHEET

Group
{A} | {B} [{C} | {AB} [ {AC} [{B,C} [ {A,B,C}
Group value (V) -2 -2 -2 40 40 50 0

Asks (a)

Residual (R)=(V)-(a)

Selected group: ..............

| Participant role # [ Earning |

A

B

C

ARE THERE ANY QUESTIONS?
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B.2 Tables used by experimental subjects

Table 1. GROUP VALUES

Group
{A} | {B} | {C} | {AB} [{AC] [{B,.C] [{AB,C}
Group value | -1 -1 -1 1100 1000 1000 0

Table 2. EARNINGS TABLE (in francs)

, Period # , Your role , Your ask l Group selected | Your earnings ]

| Total ‘
Table 3. RESIDUAL ACCOUNTING SHEET
Period Group Group
# {A} [ {B} | {C} | {AB} ] {A,C} [ {B,C} | Selected
Group value (V) -1 -1 -1 1100 | 1000 | 1000
Asks (a)
Residual (R)=(V)-(a)
Asks (a)
Residual (R)=(V)-(a)
Asks (a)
Residual (R)=(V)—(a)
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Appendix C

Experimental Data, Figures
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Figure C.1: Representative dynamics for Experiment 1 (BG). The graphs above present
individual asks of representative subjects, in francs, for each period: an inefficient subject
(left) and an efficient subject (right). The horizontal lines indicate the Nash equilibrium
level of asks (0 and 100 francs, respectively). The graphs below display output-sharing in
two of the four groups, in francs. (Each group was identified with a given inefficient agent,
with efficient agents rotating from period to period.) ® - output of the selected team; A -
profit of a selected team; O — the Nash equilibrium level of profit (900 francs).
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Experiment 2, ID 5 Experiment 2, ID 6
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Figure C.2: Representative dynamics for Experiment 2 (GWDG). The graphs above present
individual asks of representative subjects, in francs, for each period: an inefficient subject
(left) and an efficient subject (right). The horizontal lines indicate the Nash equilibrium
level of asks (0 and 100 francs, respectively). The graphs below display output-sharing in
two of the four groups, in francs. (Each group was identified with a given inefficient agent,
with efficient agents rotating from period to period.) @ - output of the selected team; A —
profit of a selected team; O — the Nash equilibrium level of profit (900 francs).
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Figure C.3: Representative dynamics for Experiment 3 (BG). The graphs above present
individual asks of representative subjects, in francs, for each period: an inefficient subject
(left) and an efficient subject (right). The horizontal lines indicate the Nash equilibrium
level of asks (0 and 100 francs, respectively). The graphs below display output-sharing in
two of the four groups, in francs. (Each group was identified with a given inefficient agent,
with efficient agents rotating from period to period.) ® - output of the selected team; A —
profit of a selected team; O - the Nash equilibrium level of profit (900 francs).
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Experiment 4, ID 5

Experiment 4, ID 8
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Figure C.4: Representative dynamics for Experiment 4 (GWDG). The graphs above present
individual asks of representative subjects, in francs, for each period: an inefficient subject
(left) and an efficient subject (right). The horizontal lines indicate the Nash equilibrium
level of asks (0 and 100 francs, respectively). The graphs below display output-sharing in
two of the four groups, in francs. (Each group was identified with a given inefficient agent,
with efficient agents rotating from period to period.) ® — output of the selected team; A -
profit of a selected team; O — the Nash equilibrium level of profit (900 francs).
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Figure C.5: Representative dynamics for Experiment 5 (BG). The graphs above present
individual asks of representative subjects, in francs, for each period: an inefficient subject
(left) and an efficient subject (right). The horizontal lines indicate the Nash equilibrium
level of asks (0 and 100 francs, respectively). The graphs below display output-sharing in
two of the four groups, in francs. (Each group was identified with a given inefficient agent,
with efficient agents rotating from period to period.) ® - output of the selected team; A -
profit of a selected team; O — the Nash equilibrium level of profit (900 francs).
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Experiment 6, ID 8
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Figure C.6: Representative dynamics for Experiment 6 (GWDG). The graphs above present
individual asks of representative subjects, in francs, for each period: an inefficient subject
(left) and an efficient subject (right). The horizontal lines indicate the Nash equilibrium
level of asks (0 and 100 francs, respectively). The graphs below display output-sharing in
two of the four groups, in francs. (Each group was identified with a given inefficient agent,
with efficient agents rotating from period to period.) ® — output of the selected team; A —
profit of a selected team; O — the Nash equilibrium level of profit (900 francs).
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Figure C.7: Representative dynamics for Experiment 7 (BG). The graphs above present
individual asks of representative subjects, in francs, for each period: an inefficient subject
(left) and an efficient subject (right). The horizontal lines indicate the Nash equilibrium
level of asks (0 and 100 francs, respectively). The graphs below display output-sharing in
two of the four groups, in francs. (Each group was identified with a given inefficient agent,
with efficient agents rotating from period to period.) ® - output of the selected team; A -
profit of a selected team; O - the Nash equilibrium level of profit (900 francs).
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Experimental Data, Tables
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[ | period 1 | time 1 [ time 2 | time 3 || T‘otal‘]

| All data I 27 [ 243 [ 270 | 272 [ 785 |
BG pooled 15 135 150 152 437
Experiment 1 4 36 40 36 112
Experiment 3 4 36 40 40 116
Experiment 5 4 36 40 40 116
Experiment 7 3 27 30 36 93
GWDG pooled 12 108 120 120 348
Experiment 2 4 36 40 40 116
Experiment 4 4 36 40 40 116
Experiment 6 4 36 40 40 116

Table D.1: Number of observations, group data (efficiency and profit)
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| % | time 1 | time 2 [ time 3 | Total |

| All data | 436 | 496 | 485 [ 474 |
BG pooled 43.0 47.3 57.9 49.7
Experiment 1 44.4 45.0 44 .4 44.6
Experiment 3 41.7 47.5 55.0 48.3
Experiment 5 44 .4 37.5 82.5 55.2
Experiment 7 40.7 63.3 47.2 50.5
GWDG pooled || 44.4 52.5 36.7 44.5
Experiment 2 50.0 47.5 40.0 45.7
Experiment 4 38.9 57.5 30.0 42.2
Experiment 6 444 52.5 40.0 45.7

Table D.2: Frequencies of efficient teams selected, %
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Mean Period 1 | time 1 | time 2 | time 3 || Total
St. deviation

All data 567.6 | 626.2 | 7239 | 793.6 || 717.6

180.1 | 150.6 | 122.2 91.8 || 141.5

BG pooled 630.2 | 7149 | 809.0 | 848.4 || 793.6

175.9 | 103.6 49.2 60.2 91.8

Experiment 1 499.2 | 626.0 | 763.7 | 851.6 | 747.7

196.0 | 100.3 47.3 31.0 || 112.5

Experiment 3 783.4 | 802.5 | 826.0 | 829.3 || 819.8

138.1 56.2 34.2 32.7 43.2

Experiment 5 574.8 | 675.1 | 813.0 | 842.4 || 780.3

107.3 59.0 44.2 | 104.3 || 102.9

Experiment 7 674.7 | 769.6 | 841.5 | 873.2 || 832.9

161.5 77.0 29.8 16.2 62.4

GWDG pooled 489.3 | 5154 | 617.6 | 724.5 | 622.7

159.1 | 124.6 | 101.1 90.9 || 135.3

Experiment 2 570.5 | 557.5 | 598.2 | 660.3 | 607.0

139.4 61.2 21.3 28.5 57.9

Experiment 4 334.5 | 376.5 | 520.0 | 681.8 || 531.3

124.8 91.0 54.7 76.7 || 144.8

Experiment 6 563.0 | 612.8 | 734.5 | 831.3 | 729.9

98.9 65.3 59.7 26.5 || 103.3

Table D.3: Average profits of selected teams, francs
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Mean time 1 | time 2 | time 3 || Total
St. deviation

All data 1791 | 10.09 3.86 || 10.32

87.35 | 38.61 | 56.78 || 63.21

BG pooled 19.09 9.59 | -3.06 8.02

80.84 | 35.73 | 67.81 || 63.99

Experiment 1 2413 | 12.13 8.03 || 14.31

101.00 | 48.57 | 31.06 || 64.61

Experiment 3 7.45 3.15 | -1.38 2.92

78.68 | 35.60 | 43.53 || 54.49

Experiment 5 24.75 | 15.18 | -17.55 6.86

61.42 9.72 | 119.86 || 79.90

Experiment 7 21.11 7.33 0.06 8.52

82.66 | 37.98 | 19.29 || 51.01

GWDG pooled || 16.52 | 10.73 | 12.64 || 13.18

95.02 | 42.08 | 37.03 | 62.18

Experiment 2 11.08 5.27 8.57 8.21

114.63 | 24.51 | 29.18 || 67.06

Experiment 4 25.52 | 11.20 | 25.70 || 20.64

94.67 | 49.31 | 40.38 || 64.44

Experiment 6 12,94 | 15.70 3.65 || 10.69

73.27 | 48.10 | 37.77 || 54.13

Table D.4: Average per period profit change in selected teams, francs
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! | period 1 | time 1 | time 2 | time 3 || Total |
All data 81 729 810 804 || 2343
-efficient agents 54 486 540 536 || 1562
-inefficient agents 27 243 270 268 781
BG pooled 45 405 450 444 || 1299
-efficient agents 30 270 300 296 866
-inefficient agents 15 135 150 148 433
Experiment 1 12 108 120 96 324
-efficient agents 8 72 80 64 216
-inefficient agents 4 36 40 32 108
Experiment 3 12 108 120 120 348
-efficient agents 8 72 80 80 232
-inefficient agents 4 36 40 40 116
Experiment 5 12 108 120 120 348
-efficient agents 8 72 80 80 232
-inefficient agents 4 36 40 40 116
Experiment 7 9 81 90 108 279
-efficient agents 6 54 60 72 186
-inefficient agents 3 27 30 36 93
GWDG pooled 36 324 360 360 || 1044
-efficient agents 24 216 240 240 696
-inefficient agents 12 108 120 120 348
Experiment 2 12 108 120 120 348
-efficient agents 8 72 80 80 232
-inefficient agents 4 36 40 40 116
Experiment 4 12 108 120 120 348
-efficient agents 8 72 80 80 232
-inefficient agents 4 36 40 40 116
Experiment 6 12 108 120 120 348
-efficient agents 8 72 80 80 232
-inefficient agents 4 36 40 40 116

Table D.5: Number of observations, individual data (asks)
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Table D.6: Percentage of asks below the level of last period best response, %

| % | time 1 | time 2 | time 3 || Total |
All data 80.5 81.2 78.2 80.0
-efficient agents 83.5 87.2 85.1 || 85.3
-inefficient agents || 74.5 69.3 64.6 69.3
BG pooled 81.5 84.2 75.7 80.4
-efficient agents 84.1 88.0 84.1 85.5
-inefficient agents | 76.3 76.7 58.8 70.4
Experiment 1 81.5 80.8 84.4 82.1
-efficient agents 83.3 86.3 85.9 85.2
-inefficient agents | 77.8 70.0 81.2 75.9
Experiment 3 78.7 80.8 72.5 77.3
-efficient agents 81.9 85.0 82.5 83.2
-inefficient agents 72.2 72.5 52.5 65.5
Experiment 5 84.3 94.2 74.2 84.2
-efficient agents 86.1 93.8 91.3 90.5
-inefficient agents || 80.6 95.0 40.0 71.6
Experiment 7 81.5 80.0 73.1 77.8
-efficient agents 85.2 86.7 76.4 82.3
-inefficient agents || 74.1 66.7 66.7 68.8
GWDG pooled 79.3 77.5 81.4 79.4
-efficient agents 82.9 86.3 86.3 85.2
-inefficient agents || 72.2 60.0 71.7 67.8
Experiment 2 73.1 73.3 75.8 74.1
-efficient agents 79.2 78.8 82.5 80.2
-inefficient agents || 61.1 62.5 62.5 62.1
Experiment 4 81.5 77.5 87.5 82.2
-efficient agents 79.2 90.0 90.0 86.6
-inefficient agents || 86.1 52.5 82.5 73.3
Experiment 6 83.3 81.7 80.8 81.9
-efficient agents 90.3 90.0 86.3 38.8
-inefficient agents || 69.4 65.0 70.0 68.1
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Mean Period 1 | time 1 | time 2 | time 3 || Total
St. deviation

All data 438.5 | 285.3 | 194.2 | 163.4 | 2124

790.2 | 397.7 65.1 64.1 || 234.9

BG pooled 256.4 | 208.4 | 151.8 | 136.2 || 164.6

121.6 76.6 33.6 61.6 66.9

Experiment 1 317.8 | 250.9 ! 1729} 132.0 || 189.1

127.0 80.5 33.6 52.1 76.6

Experiment 3 184.6 | 163.8 | 147.9 | 145.9 || 152.1

108.6 59.3 36.8 40.1 46.4

Experiment 5 272.1 1 221.0 | 146.8 | 142.5 || 168.3

52.4 404 23.6 91.5 69.4

Experiment 7 249.3 | 188.2 | 135.5 | 122.3 || 145.7

167.8 89.8 27.0 43.8 63.7

GWDG pooled 666.2 | 384.4 | 247.3 | 196.9 || 272.5

115.0 | 581.0 55.2 49.7 | 335.3

Experiment 2 296.0 | 285.4 | 256.4 | 224.5 | 254.4

133.9 65.5 194 19.1 46.7

Experiment 4 942.5 | 553.6 | 298.4 | 221.2 || 351.0

1463.1 | 868.7 32.0 44.0 {| 502.6

Experiment 6 760.0 | 314.1 | 186.9 | 145.2 | 212.0

1390.9 ; 468.2 37.3 329 || 270.6

Table D.7: Average per period asks of efficient agents, francs

171



Appendix D

Mean Period 1 | time 1 { time 2 | time 3 || Total
St. deviation

All data 230.9 ] 182.9 1709 1224 158.1

119.5 99.8 | 678.3 | 160.7 | 412.6

BG pooled 202.7 | 1434 83.6 | 121.0 115.3

118.1 99.0 | 124.7 | 201.5 150.7

Experiment 1 2775 | 187.2 | 121.7 56.5 126.5

114.1 82.9 | 143.7 80.8 119.3

Experiment 3 94.8 | 1179 103.1 | 145.5 122.3

45.1 | 134.3 | 183.7 | 186.0 170.2

Experiment 5 218.0 | 137.0 46.0 | 200.5 127.5

75.1 55.1 21.2 | 2724 174.5

Experiment 7 226.3 | 121.3 56.7 62.6 77.8

-175.7 94.7 30.5 | 168.1 120.0

GWDG pooled 266.3 | 233.7 | 280.0 | 124.3 || 211.9

116.3 74.8 | 999.4 88.0 || 592.7

Experiment 2 262.5 | 217.0 | 163.7 | 1424 172.9

62.9 49.7 21.3 44.7 50.4

Experiment 4 319.3 7 3024 573.1 | 129.3 336.0

182.0 64.2 | 1706.5 60.7 || 10124

Experiment 6 217.0  181.8 | 103.2; 101.1 126.9

74.2 51.3 31.5 | 130.6 91.1

Table D.8: Average per period asks of inefficient agents, francs
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time 1 l time 2 l time 3 “ Total

All data -37.57 | 6.38 -11.4 || -13.39
-efficient agents -18.40 | -4.92 -0.53 -7.06
-inefficient agents || -75.91 | 28.99 | -33.14 | -24.97
BG pooled -37.22 | -5.38 5.35 -11.64
-efficient agents -12.89 | -4.28 3.79 -4.20
-inefficient agents || -85.88 | -7.57 8.46 -26.51
Experiment 1 -14.37 | -5.62 -0.84 -7.12
-efficient agents -12.96 | -4.70 0.48 -5.91

-inefficient agents || -17.22 | -7.45 -3.50 -9.53
Experiment 3 -97.71 | -2.97 2.26 -30.57
-efficient agents -10.66 | 0.52 0.87 -2.82
-inefficient agents || -271.81 | -9.95 5.06 -86.04
Experiment 5 -17.81 | -7.79 15.63 -2.82

-efficient agents -18.44 | -7.63 8.58 -5.40
-inefficient agents || -16.53 | -8.10 | 29.73 2.33

Experiment 7 -12.91 | -5.04 2.85 -4.26
-efficient agents -8.37 -5.63 4.66 -2.44
-inefficient agents || -22.00 | -3.85 -0.76 -7.92
GWDG pooled -38.00 | 21.01 | -32.05 || -15.57
-efficient agents -25.29 | -5.72 -5.85 || -11.84
-inefficient agents || -63.43 | 74.70 | -84.47 || -23.05
Experiment 2 -10.82 | -3.65 -3.67 -5.88
-efficient agents -14.15 | -3.54 -4.14 -7.04
-inefficient agents || -4.17 -3.88 -2.75 -3.58
Experiment 4 -86.56 | T4.56 | -90.49 | -32.36
-efficient agents -53.87 | -5.56 | -11.90 | -22.74
-inefficient agents || -151.94 | 234.83 | -247.67 || -51.58
Experiment 6 -16.62 | -7.65 -2.01 -8.49
-efficient agents -7.83 -8.05 -1.53 -5.73
-inefficient agents || -34.19 | -6.85 -2.98 | -14.00

Table D.9: Average per period ask change, francs
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Profit< 800 Profit>= 800 Total
Ask | # of Ask | # of Ask | # of
change | obs. || change | obs. || change | obs.

All data -22.12 | 1428 0.23 | 915 | -13.99 | 2343
-efficient agents -11.93 | 952 -0.85 | 610 -7.06 | 1562
-inefficient agents || -42.49 | 476 2.38 | 305 | -24.97 | 781
BG pooled -30.90 | 498 0.34 ] 801 || -11.64 | 1299
-efficient agents -9.07 | 332 -1.18 | 534 -4.20 | 866
-inefficient agents || -74.57 | 166 3.37 1 267 | -26.51 | 433
Experiment 1 -10.99 | 186 -1.90 | 138 -712 | 324
-efficient agents -10.24 | 124 -0.08 92 -5.91 | 216
-inefficient agents -12.50 62 -5.54 46 -9.53 | 108
Experiment 3 -155.15 66 -1.41 | 282 | -30.57 | 348
-efficient agents 4.05 44 -4.43 | 188 -2.82 1 232
-inefficient agents || -473.55 22 4.65 94 || -86.04 | 116
Experiment 5 -13.42 | 186 933 | 162 -2.82 | 348
-efficient agents -15.57 | 124 6.27 | 108 -5.40 | 232
-inefficient agents -9.11 62 15.46 54 2.33 | 116
Experiment 7 -10.13 60 -2.66 | 219 -4.26 | 279
-efficient agents 0.30 40 -3.19 | 146 -2.44 | 186
-ineflicient agents || -30.99 20 -1.61 73 -7.92 93
GWDG pooled -17.420 | 930 -0.54 | 114 || -15.57 | 1044
-efficient agents -13.467 | 620 1.46 76 | -11.87 | 696
-inefficient agents || -25.326 | 310 -4.52 38 || -23.06 | 348
Experiment 2 -5.89 | 348 — 0 -5.88 | 348
-efficient agents -7.03 | 232 — 0 -7.04 | 232
-inefficient agents -3.58 | 116 — 0 -3.58 | 116
Experiment 4 -32.39 | 345 || -28.27 3 -32.36 | 348
-efficient agents -22.59 | 230 | -40.00 2 -22.74 | 232
-inefficient agents -51.99 | 115 -4.80 1] -51.58 | 116
Experiment 6 -12.56 | 237 0.21 | 111 -8.49 | 348
-efficient agents -9.62 | 158 2.57 74 -5.73 | 232
-inefficient agents || -18.44 79 -4.51 37 || -14.00 | 116

Table D.10: Average per period ask change far and close to Nash equilibrium, francs
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Appendix E

Statistical Estimations, Tables

How to read tables E.1-E.14 Tables E.1-E.14 present the results of statistical esti-
mations of individual behavior; the data is grouped by experiments. The entries regarding
subjects in the efficient role (1(A) and 2(B)) are grouped at the top of the tables, and
subjects in the inefficient roles (3, or C), at the bottom. ** next to subject ID (ID) marks
the inefficient role. Rule: SR - selection response rule, MA - median ask rule, BR -
Cournot best response rule, ??? - unclassified. Estimated coefficients: coefficients that
are significant at 5% significance level according to on the t-test are marked with *. In-
dependent variables: one - constant; asklag — subject’s previous period ask; Select — a
dummy for subject’s selection in the previous period: = 1 if ID was selected, = 0 other-
wise; Med.ask — previous period median ask observed by the subject; BR ask — subject’s
previous period best response ask. R? — R-squared corrected for the degrees of freedom.
h-stat. — a satistic for presence of autocorrelation in the regressions with lagged dependent
variable; the values that are different from zero at 5% significance level are marked with *;

significance indicates the presence of autocorrelation. Askmin, Askmax - minimal and
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maximal asks submitted by the subject, in francs. F-stat. marg. — F-statistic for testing
the set of restrictions corresponding to marginal behavior. The values that are significant
at 5% level are marked with *. Significance indicates that the hypothesis of marginal be-
havior should be rejected. Asymptote — estimated value of the stationary point; most of
the points were type 1 (asymptotes); type 2 stationary points are marked with #. Stat.
for diff. from Zero/Nash ask — z-statistic for testing the hypotheses (Asymptote= 0)
and (Asymptote=Nash equilibrium ask), respectively. The values that are significant at 5%
level are marked with *. Significance indicates that the corresponding hypotheses should

be rejected. Classification — competitive, cooperative, marginal, or switch type.
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ID | Rule Estimated coefficients R? | h-stat.
one | asklag | Select | Med.ask | BR ask

2 BR 24.06 0.64* — — 0.13* 0.797 | -0.55
3 MA 36.72 0.22 — 0.48* — 0.682 | -1.52
4 MA | 148.83* | —0.72* — 0.94* — 0.724 | 0.77
5 SR | —57.08* | 0.91* 71.70* — — 0.950 | 0.23
7 SR 29.50 0.68* 59.55 — — 0.229 e
8 MA -1.94 0.33* — 0.70* — 0.952 | -0.52
9 SR -7.48 0.84* 41.39* — — 0.558 | -0.83
12 | SR -2.16 0.84* 28.78 - — 0.635 | -1.11
1** ¢ MA 28.24 0.33 —_ 0.59 — 0.187 —
6** SR | 142.42* -0.12 | 168.09* — — 0.406 | -0.29

10 | BR 4.00 0.52* — — 0.28* | 0.879 | -0.64

11* 1 SR -10.81 0.87* 24.86* — — 0.911 | -1.02

Table E.1: Experiment 1: individual behavioral rules, least squares estimation

ID | Rule | Ask | Ask | F-stat. | Asymp- | Stat. for diff. from | Classi-
min { max | marg. tote Zero | Nash ask | fication

2 BR | 99 | 299 | 6.64* 110.09 | 1.60 0.15 comp.
3 MA | 100 | 250 | 7.83* 122.88 | 2.01* 0.37 comp.
4 MA | 140 | 500 | 65.53* | 191.41 | 9.72* 4.64* switch
5.0 SR | 99 | 444 | 9.64* 49.57 0.55 -0.56 comp.
7 SR | 99 | 500 1.09 219.01 | 1.49 0.80 marg.
8 MA | 101 | 499 0.74 55.14 0.15 -0.12 marg.
9 SR | 115 | 300 0.62 162.78 | 0.97 0.38 marg.
12 SR | 100 | 207 1.02 136.89 | 1.09 0.29 marg.
1 | MA 2 750 0.25 390.21 | 0.61 0.61 marg.
6** | SR 8 400 | 26.59* | 169.58 | 5.97* 5.97* switch
10 | BR 7 170 | 6.54* 20.37 0.62 0.62 comp.
11 | SR | 40 | 350 | 6.48* 26.38 0.44 0.44 comp.

Table E.2: Experiment 1: classification of individual behavior
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ID | Rule Estimated coefficients R? | h-stat.
one | asklag | Select | Med.ask [ BR ask
1 SR 45.46 | 0.72* 25.75 — — 0.479 | -1.39
2 ? — — — — — — —
4 SR 36.84 | 0.77* | 23.36* — — 0.700 { -1.57
6 MA | 83.51* | -0.19 — 0.84* — 0.812 0.14
8 SR 9.70 0.87* | 29.68* — — 0.909 | -0.02
9 BR | 49.52 | 0.27* — — 0.50* 0.564 1.38
10 MA | 34.70 | 0.29* — 0.53* — 0.875 | -1.44
11 SR -3.54 0.97* | 1417 —_ — 0.942 | -0.53
3** BR 3.20 0.66* — — 0.31* 0.924 | —2.87*
5* | MA | -10.43 | 0.61* — 0.43* — 0.965 | -0.63
T BR | 72.96* 0.33 — — 0.17* 0.185 | 3.79*
12 | MA | 49.23 -0.19 — 0.95* — 0.251 —_—

Table E.3: Experiment 2: individual behavioral rules, least squares estimation

ID | Rule | Ask | Ask | F-stat. | Asymp- | Stat. for diff. from | Classi-
min | max | marg. tote Zero | Nash ask | fication
1 SR | 120 | 290 2.01 238.05 | 2.04* 1.18 marg.
2 777 | 98 | 500 — — — — 777
4 SR | 199 | 300 2.88 241.84 | 2.06* 1.21 marg.
6 MA | 180 | 500 | 24.31* | 235.03 | 5.29* 3.04* switch
8 SR | 200 | 500 | 6.58* 199.06 | 1.70 0.85 comp.
9 BR | 200 | 500 | 4.06* 218.87 | 1.39 0.75 comp.
10 | MA | 200 | 500 | 16.18* | 198.87 | 2.06* 1.03 comp.
11 SR | 219 | 325 1.72 184.52 | 0.54 0.25 marg.
3*>* | BR | 135 | 300 0.35 122.27 | 0.38 0.38 marg.
5 | MA | 100 | 350 1.26 | 215.87# | 1.34 1.34 marg.
7 | BR | 100 | 250 | 4.01* 148.34 | 2.28* 2.28* switch
12 | MA | 97 | 300 1.09 201.61 | 1.26 1.26 marg.

Table E.4: Experiment 2: classification of individual behavior
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ID | Rule Estimated coefficients R? h-stat.
one | asklag | Select | Med.ask | BR ask
1 MA | 113.31* | -0.21 — 0.43* — 0.256 | -1.74
2 777 — — — — — — —
6 MA 8.78 0.24* — 0.66* — 0.963 | -0.05
7 SR 8.37 0.86* | 22.78* — — 0.873 | 0.84
8 SR | -13.22 | 0.90* | 32.97* — — 0.733 | —2.06*
9 BR | 76.78* 0.28 — — 0.31* | 0.509 | 1.77
10 777 — — — — — — —
12 | MA | 54.97 0.35 — 0.19* — 0.145 | -0.42
3** | MA | 11.50* | 0.27 — 0.40* — 0.817 1 0.33
4** | MA | 36.61* | -1.07 0.31* — 0.196 | 1.07
5 | 177 — — — — — —
11** | BR | 490.39* | 0.05 — -2.01* | 0.212 —

Table E.5: Experiment 3: individual behavioral rules, least squares estimation

ID | Rule | Ask | Ask | F-stat. | Asymp- | Stat. for diff. from | Classi-
min | max | marg. tote Zero | Nash ask | fication
1 MA | 90 | 202 | 7.70* | 145.88 | 3.46* 1.09 comp.
2 7?77 1 50 | 200 — — — — 777
6 MA | 130 | 330 | 11.67* | 94.37 1.54 -0.09 comp.
7 SR | 130 | 300 | 4.39* | 139.28 | 1.71 0.48 comp.
8 SR | 117 | 250 0.69 122.94 | 0.78 0.15 marg.
9 BR | 100 | 349 | 4.94* | 184.56 | 2.36* 1.08 comp.
10 | 7?7 | 50 | 500 — — —_ — 777
12 | MA | 90 | 170 | 3.60* | 121.26 | 1.90 0.33 comp.
3** | MA 2 250 | 13.04* | 35.95 | 3.03* 3.03* switch
4** | MA | 29 | 9999 | 14.61* | 53.62 | 4.59* 4.59* switch
5** | 7?77 | 25 | 200 — — — — 777
11** | BR | 500 | 1101 | 8.87* | 165.19 | 4.14* 4.14* switch

Table E.6: Experiment 3: classification of individual behavior
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ID | Rule Estimated coefficients R? | h-stat.
one | asklag | Select | Med.ask | BR ask
1 MA -19.39 0.56* — 0.45* — 0.941 1.14
2 MA | 104.96* -0.11 —_ 0.69* — 0.534 | 4.42*
3 MA 8.36 0.39* — 0.55* — 0.861 | —2.24*
4 BR 89.82* 0.34* — — 0.31* 0.587 0.52
6 MA -1240 0.56* — 4.67* — 0.728 | 2.25*
7 MA -14.45 -0.05 —_ 1.04* — 0.925 —
8 SR -41.74 0.98* | 50.71* — — 0.925 | -1.38
9 MA -29.61 0.90* — 0.15* — 0.897 | -1.09
5o 27 | — = ] = = = 1 = | =
10~ | MA 28.13 -0.36 — 1.21* —_ 0.842 —
11** | SR | -13.69* | 0.99* 5.66 — — 0.990 1.28
12** | MA 47.65 -0.06* — 0.83* — 0.637 1.21

Table E.7: Experiment 4: individual behavioral rules, least squares estimation

ID | Rule | Ask | Ask | F-stat. | Asymp- | Stat. for diff. from | Classi-
min | max | marg. tote Zero [ Nash ask | fication
1 MA | 99 498 6.34* | 1489.03% | 1.00 0.93 comp.
2 MA | 99 750 | 16.84* 246.51 3.18* 0.60 comp.
3 MA | 178 | 450 1.00 176.72 0.37 0.16 marg.
4 BR | 200 | 450 6.24* 257.83 2.32* 1.42 comp.
6 MA | 199 | 5001 2.06 292.60% 1.96* 1.29 marg.
7 MA | 150 | 500 5.49* 0 -1.48 -0.06 comp.
8 SR | 173 | 549 2.52 0 -0.31 -0.13 marg.
9 MA | 100 | 350 5.37% | 488.63% 1.32 1.05 comp.
5 1 777 | 75 | 10000 — — — — 77?7
10| MA | 50 500 2.82 184.83 1.67 1.67 marg.
11 | SR | 45 400 | 22.14* 0 -3.92* | -3.92* comp.
12** | MA | 50 | 5000 1.63 213.43 1.87 1.87 marg.

Table E.8: Experiment 4: classification of individual behavior
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ID | Rule Estimated coefficients R? | h-stat.
one | asklag | Select | Med.ask | BR ask

1 | BR | 63.15* | 0.23* — 0.34 .694 | -1.88
2 | MA | -7.36 | —0.18* 1.21* — 959 | 2.28*
4 | MA | 77.44* | -0.01 0.51 — 292 | -0.97
8 | MA | 45.51 0.03 0.71 — 141 | -0.59
9 | MA | 2832 | 037 0.40* — .805 1.39
10 | MA | 8.87 0.69* 0.21* — 878 | -1.47
11 | MA | 12.33* | 0.18 0.68* — 961 | 2.76*
12 | BR | 42.63 | 0.51* — 0.19* 492 | -0.74
3** | BR | 14.07 | 047" — — 0.33* | 0.656 | —2.62*
5** | SR | 151.35 | 0.52* | -108.32 — — 312 | 2.24*
6™ | MA | 23.05 | 0.98* — -0.17 — .784 0.54
T — — — — — — —

Table E.9: Experiment 5: individual behavioral rules, least squares estimation

ID | Rule | Ask | Ask | F-stat. | Asymp- | Stat. for diff. from | Classi-
min | max | marg. tote Zero | Nash ask | fication
1 BR | 99 | 500 | 16.3* 149.6 | 3.62* 1.20 comp.
2 | MA | 8 | 400 1.22 426% 0.74 0.572 marg.
4 | MA | 100 | 530 | b5.26* 155.3 | 2.67* 0.95 comp.
8 | MA | 100 | 600 0.36 177.2 0.84 0.37 marg.
9 | MA | 91 250 | 6.08* 123.2 | 2.03* 0.38 comp.
10 | MA | 85 | 200 2.71 92.7 0.903 -0.07 marg.
11 | MA | 99.9 ; 350 | 18.87* 92.1 2.23* -0.19 comp.
12 | BR | 100 | 400 | 4.10* 141.9 1.53 0.42 comp.
3** 3 12 | 300 1.47 76.7 1.07 1.07 marg.
5** 1 5 1000 | 3.96* 202.4 1.75 1.75 comp.
6** 2 0 350 0.87 118.7 1.32 1.32 marg.
T 777 | MA | 300 — — — — 77
Table E.10: Experiment 5: classification of individual behavior
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ID | Rule Estimated coefficients R? | h-stat.
one | asklag | Select | Med.ask | BR ask
1 BR | —651.95* | -0.06 — — 3.66" | .523 | 2.09*
3 MA 20.41 -0.30 — 1.16* — .882 —
4 SR | —83.50* | 0.89* | 104.27* — — 819 | -0.60
5 MA -1.12 0.24* — 0.70* — 959 | -0.12
6 SR 17.95 0.68* | 84.16* — — 418 | -1.51
9 MA 27.98 0.42* — 0.41* — 512 | 2.77*
11 | MA 0.94 0.01 — 0.97* — 926 | -0.26
12 | SR -13.97 0.94* | 26.86* — — 926 | -0.21
2** | MA 4.42 0.23* — 0.77* — 894 | -0.74
7™ 1 MA | 110.94* | 0.53* — -0.34 — 381 | 1.30
8 | MA -13.23 -0.17 — 1.30* — 751 | -1.73
10 | MA 1.37 0 — 1.01* — 956 | -0.15

Table E.11: Experiment 6: individual behavioral rules, least squares estimation

ID | Rule | Ask | Ask | F-stat. | Asymp- | Stat. for diff. from | Classi-
min | max | marg. tote Zero | Nash ask | fication

1 BR | 75 | 4200 | 8.63* | 251.1% | 3.28* 1.98* coop.

3 MA | 140 | 325 | 4.36" 151.8 | 1.53 0.52 comp.

4 SR | 100 | 350 1.66 130.4 | 0.96 0.22 marg.

5 MA | 107 | 500 | 14.32* 0 — -0.70 comp.

6 SR | 30 | 475 2.07 200.3 1.82 0.91 marg.

9 MA | 99 | 290 1.19 160.2 0.94 0.35 marg.

11 | MA | 120 | 300 0.31 61.8 0.11 -0.07 marg.
12 SR | 120 | 300 3.19 82.1 0.49 -0.11 marg.
2 2 30 | 400 0.61 07 — — marg.
T 2 10 | 800 | 4.91* 135.9 | 2.91* 2.91* switch
8** 2 17 | 234 0.51 105.7 0.91 0.91 marg.
10 | 2 34 | 399 | 0.69 0% — — marg.

Table E.12: Experiment 6: classification of individual behavior
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ID | Rule Estimated coefficients R? h-stat.
one | asklag | Select | Med.ask | BR ask
2 SR | -34.13 { 0.70* | 67.67* — — 0.403 | 0.61
3 | MA | 48.91* | -0.06 — 0.66™ — 0.799 —
4 | MA | 50.29 | -0.25 — 1.10* — 0.558 —
5 | MA | 72.59* | -0.28 — 0.61* — 0.455 | 0.91
6 SR | 40.65 | 0.61* | 27.80 — — 0.508 | —2.08*
9 | MA | 24.66 | 0.69* — 0.13 — 0.723 | -1.18
1™ BR | -11.22 | 0.39* — — 0.58* | 0.942 | —2.60*
T 77 — — — — — — —
8** | 777 —_ — — — — —_ —

Table E.13: Experiment 7: individual behavioral rules, least squares estimation

ID | Rule | Ask | Ask | F-stat. | Asymp- | Stat. for diff. from | Classi-
min | max | marg. tote Zero | Nash ask | fication
2 SR | 47 | 200 | 2.00 106.76 | 2.05* 0.11 marg.
3 | MA | 109 | 300 | 14.26* | 123.57 | 3.96* 0.75 comp.
4 | MA | 99 | 499 | 241 348.05 1.93 1.38 marg.
5 | MA | 100 | 250 | 16.01* | 107.51 | 3.66* 0.26 comp.
6 SR | 100 | 400 | 7.16* | 146.09 | 2.92* 0.92 comp.
9 MA | 109 | 249 2.06 136.21 1.68 0.45 marg.
1** | BR 1 410 | 5.33* 0 —2.40* | -—-2.40* comp.
N 0 999 — — — — 777
g1 777 | 15 | 300 — — — — 777

Table E.14: Experiment 7: classification of individual behavior
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