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Abstract

Large interferometers are currently under construction for the detection of
gravitational radiation. These will contain a number of optical surfaces at each
of which the relative phase of incident beams must be kept strictly controlled in

order to achieve high sensitivity.

The type of interferometer considered here consists of two Fabry-Perot cavities
illuminated by a laser beam which is split in half by a beam splitter, together with
a recycling mirror between the laser and the beam splitter, which reflects light
returning from the beam splitter toward the laser back into the interferometer. A
scheme for sensing deviations from proper interference has been analyzed and the
adequacy of this method for incorporation in a control system has been evaluated.
The sensing scheme involves phase modulating the laser light incident on the
interferometer, introducing an asymmetry in the distances between the Fabry-Perot
cavities and the beam splitter, and demodulating the signals from photodetectors
monitoring three optical outputs of the interferometer. These optical outputs
are light returning to the laser, light extracted by a pick-off from between the
recycling mirror and the beam splitter, and light leaving the interferometer at the

beam splitter.

The analysis has shown that the matrix of transfer functions from mirror

displacement to demodulated signal is ill-conditioned, that as many as three of

iv



the transfer functions may contain right half plane zeros, and that one of these
transfer functions can be affected by the modulation depth. The performance of
the closed-loop system, however, need not be significantly affected, provided that
certain constraints are observed in the optical and electronic design.

A table-top interferometer has been constructed, to demonstrate the feasibility
of constructing a control system using this sensing scheme and to compare the
response of the interferometer with that predicted by calculations. Good agreement

between the experiment and the calculation has been obtained.
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Chapter 1 Introduction

In the year 1915, Albert Einstein published a theory which he called the
General theory of Relativity. This theory interprets the force of gravity as a
distortion of space and time produced by objects with mass. The theory also
predicts that wave-like distortions of space and time be able to propagate across
the universe, in a fashion similar to the propagation of electromagnetic waves.
These waves would be produced by accelerating mass, much as electromagnetic
waves are produced by accelerating charge. The direct detection of these waves
would provide a strong confirmation of Einstein’s theory. Their observation with
good signal-to-noise ratio could provide a wealth of new information about the
universe, since most anticipated sources of gravitational radiation are difficult to
observe optically.

Although the General theory of Relativity is conceptually quite subtle, the
effect of gravitational waves on detectors is simple: they produce a fluctuating
shear strain transverse to the direction of propagation. This is shown in Fig. 1.1
for a gravitational wave propagating horizontally through a human being. Also
visible from the size of the effect” indicated on this figure is the fact that a human

being is not nearly sensitive enough to detect gravitational waves directly.

* The size shown is the rms amplitude of gravitational waves expected with a mean frequency of three times per year

in bursts from coalescing compact binaries.
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Figure 1.1 Effect that a horizontally propagating gravitational wave might have on a human being.
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The fact that the wave produces a transverse shear strain makes the Michelson
interferometer (Fig. 1.2) an obvious candidate for a detector and in fact early
detectors used this configuration!-2, Interferometers currently being developed for
LIGO (Laser Interferometer Gravitational Observatory®) will be variants (to be

described below) of the Michelson interferometer.

If the detector is operated with the mirrors positioned so that the antisymmetric

output is dark then a displacement of A/4 (about 125 nanometers for green light)
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of either of the back mirrors PB and IB will cause the intensity at the output to
change to full brightness. One easy way to increase the sensitivity is to increase
the length of the arms. The planned LIGO detectors will have arms that are 4
km long. Since the gravitational wave strains space, stretching it in one direction
and compressing it in the orthogonal direction, the change in length of an arm is

equal to the size of the strain times the initial length of the arm.

Another way to increase the sensitivity of the detector is to have the light in
each arm reflect several times from each back mirror. This can be accomplished
by using an optical delay line*, where the light strikes the mirror in a different
spot on each traversal of the arm, or by using a “Fabry-Perot” resonant cavity”,
where light from many traversals interferes in a single spot on each mirror. In
initial LIGO detectors the Fabry-Perot resonators (or “arm cavities”) are formed
by inserting partially transmitting “front” mirrors PF and IF between the beam
splitter and the back mirrors, as shown in Figure 1.3. Such a cavity is said to
be resonant when light entering through the partially transmitting front mirror
interferes constructively with light traveling back and forth inside the resonator.
Near resonance the phase of the light returning from the resonator is very sensitive
to the length of the resonator, and the effect of the small displacement produced

by a gravitational wave on the intensity at the output is magnified.

Larger signals can also be obtained by increasing the amount of power
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Figure 1.3 Interferometer with Fabry-Perot arms.
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incident on the beam splitter”. This is accomplished, in a technique referred
to as “power recycling,”® by inserting a (partially transmitting) “recycling mirror”
R between the laser and the beam splitter as shown in Figure 1.4. If light returning
from the arms to the beam splitter interferes destructively in the direction of the
photodetector, then by energy conservation the light must interfere constructively
in the direction of the laser. The recycling mirror allows this light to be reused.
To do so, the recycling mirror must be placed so that the light it reflects back into
the interferometer interferes constructively with fresh light transmitted through it
from the laser.

This work addresses two problems that exist with the simple interferometric
detector outlined thus far. The first problem is that the intensity at the output
is minimum in the absence of a gravitational wave and increases when a grav-

itational wave distorts the arms in either direction. By symmetry, the signal is

* A more precise way to state the advantage obtained thus is to note that the signal to shot noise ratio is improved.

‘We will discuss this in more detail in chapter 7.
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Figure 1.4 Interferometer with power recycling.
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at best a quadratic function of the gravitational-wave induced distortion; thus
3i _ .. .
m = 0, where ¢, is the signal from the photodetector, and X;p and

Xpp are the displacements of the two back mirrors, as shown in Figure 1.4.

The second problem is that it is virtually impossible to build a mechanical
structure sufficiently stiff and thermally stable to hold the mirrors in the locations
where the interference conditions are satisfied. (There are four such interference
conditions, one for each optical surface where interference takes place: the two
front mirrors, the beam splitter, and the recycling mirror.) In practice, the mirrors
are individually suspended from wires (Figure 1.5)" in order to attenuate seismic
noise which would otherwise shake the mirrors, imitating gravitational waves.
While these passive suspensions reduce seismic noise at higher frequencies, they

can amplify low-frequency seismic noise.

f Drawing courtesy of Aaron Gillespie.
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Figure 1.5 Interferometer, showing mirror suspensions.

recycling
mirror

Light Source
beamsplitter
photodetector

One way to keep the interferometer resonating is to implement some sort

of sensing scheme which produces signals corresponding to the deviations from
perfect interference, and to use these signals to feed back to the positions of the

mirrors and to the laser frequency, in order to cancel any such deviations.

In 1991 S. Whitcomb suggested that the following scheme’®?, illustrated in
Figure 1.6, would accomplish this task. The phase of the laser light is modulated
at a radio frequency (“RF”), typically on the order of 10 MHz (we will use 12.5
MHz in examples throughout this text). The effect of this modulation is to impose
two sidebands on the light, one at 12.5 MHz above the optical “carrier” frequency
and one at 12.5 MHz below the carrier. The arm cavity lengths are chosen so that
the sidebands do not resonate in the arms, the “in-line” cavity is placed farther

from the beam splitter than the “perpendicular” cavity by a distance [ — lp =6,
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and the “average recycling cavity length” L”—'{—ll is arranged to be® ),,,q/4 where

Amod is the modulation wavelength A,,.q = ¢/ finoq (@and fy,04 is the modulation
frequency). The effect of these choices of lengths is to allow both the carrier and
the sidebands to resonate in the recycling cavity, and to allow sideband light to be
transmitted to the antisymmetric port while that port remains dark for the carrier.
When the interferometer is distorted by a gravitational wave, some carrier light
exits the antisymmetric port, where it beats against the sidebands. This light is

detected and demodulated with a mixer (circled “x” in Figure 1.6).

Figure 1.6 Signal extraction scheme.
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The insertion of a pick-off” into the recycling cavity and an isolator between
the phase modulator and the recycling mirror! produces two more optical outputs,
each of which can be demodulated using either the inphase modulating signal “T”
or the quadrature phase signal “Q”, as shown in Figure 1.6. Four of the signals
obtained this way* (labelled v; through v4 in Figure 1.6) can then be fed back
as shown in Figure 1.7. The inphase signal from the isolator is fed back to the
laser frequency. The quadrature phase signal at the isolator is fed back to all
four of the arm cavity mirrors in proportion such that !y and [p are changed by
equal and opposite amounts. The inphase signal from the pick-off is fed back to
the recycling mirror, and the quadrature phase signal from the antisymmetric port
is fed back in equal and opposite amounts to the two arm cavity back mirrors.
Other feedback configurations are also possible; some of these are discussed in

Appendix C.

* This pick-off need not be a separate optical element. From example, the anti-refiection-coated surface of the beam
splitter might be usable if it faces the recycling mirror. Even if this surface faces away from the recycling mirror, useful
signals are likely to be available in the light reflected at this surface. This latter situation has not been analyzed in detail.

t In addition, LIGO will have a passive optical filter, sometimes called a “mode cleaner,” installed between the isolator
and the recycling mirror. This filter will be transparent to the carrier and the RF sidebands, and its effect is irrelevant for

most of the issues addressed here.

¥ The quadrature phase signal at the pick-off contains the same information as the quadrature phase signal at the
isolator, but generally with lower signal-to-noise ratio. There is in addition an optical output available at the other side
of the pick-off (since light propagates in both directions in the recycling cavity); this output contains virtually identical
signals to the output shown. Some (generally small) improvements in some of the signals are possible by mixing down

the signals from all of the optical outputs in both phases and taking appropriate linear combinations.
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Figure 1.7 Feedback configuration.
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Let us restate in greater detail the problem to be solved. We will concentrate
on the problem of keeping the above-mentioned interference conditions satisfied,
and show along the way that the configuration described here also meets the
requirement of producing a gravitational wave signal. For each interference
condition, we must examine the consequence of allowing small errors, so that we
can determine the deviations from each condition that can be tolerated without
significantly degrading the sensitivity of the detector. This issue is examined in

Appendix B; the results are summarized below.

A constraint on the cavity lengths is due to the fact that if the arm cavities
deviate from resonance in the same direction, the phase of the light returning to
the recycling mirror will change. This would degrade the constructive interference

between light reflected there and light entering from the laser. This sets a limit
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of 6 x 10™13m to the common-mode-displacement of the cavity back mirrors, or

equivalently, a limit on the common-mode arm cavity phase”
&y <3x107° (radians) (1.1)
® is defined as the sum of the arm cavity round-trip phases':
O, =007+ 0®py (1.2)

The condition on the phase of light returning to the recycling mirror also

constrains the common-mode recycling cavity phase, such that

¢4+ =6010+00p0
(1.3)
< 0.01
(where é19 = 2kply — 2¢Guoy and ¢po = 2kolp — 2¢Guoy)-
If the arm cavities deviate from resonance in opposite directions, then the

destructive interference at the antisymmetric port could be disturbed, allowing

excess light to hit the photodetector®. This sets a condition on the differential

" We will see that using differential and common-mode combinations of phases is more convenient than using the
individual phases themselves.

i The round-trip phase is the phase change the light accumulates in travelling twice the length of the cavity, including
the Guoy phase, which is a phase deficit due to the fact that the laser beam has a finite diameter. For example
®ry = 2koLr — 20Gouy, Where kg = 27 /Ay is the wave number of the light. It will generally be more useful
for us to work with these round-trip phases than with the distances between adjacent mirrors. We use the subscript 0 to
identify quantities related to the carrier; later we will use the subscripts 1 and —1 for the upper and lower RF sidebands.
* Excess light on the photodetector represents an unnecessary loss of light from the interferometer which reduces the

optical efficiency and generates additional shot noise.
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change in arm cavity phases:

O_=6P79—-60p
(1.4)
<5x107*

The requirement above, to keep excess light from the antisymmetric port

photodetector, also constrains the differential recycling cavity phase, such that

¢- = 6¢ro—95dpy
(1.5)
<6x1072

In the following chapters we will investigate the behavior of the interferometer
output signals in response to motion of the mirrors and changes in the laser
frequency. This detailed characterization is necessary for the design and analysis
of a control system. There are two parts to this analysis: an analytic approach
in which approximations are made and relatively simple expressions describing
the interferometer response are derived, and a numerical approach, within which
the approximations are less significant and which therefore can be used to test
the validity of the approximations made in the analytic derivations. The value of
the analytic derivation is that it more clearly expresses how the choice of certain
optical parameters in the interferometer (such as mirror reflectivities and positions)
affects critical aspects of the behavior of the instrument. For example, we will
see that if the asymmetry 6 is chosen to be too large, the response of ve to ¢4
contains a right-half-plane-zero, which compromises control system performance.
This sort of conclusion can be derived from numerical models only through a

tedious exploration of parameter space and the use of inductive assumptions.
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On the other hand, some accuracy has been sacrificed in the derivation of
the analytic model. Our goal will be to derive expressions which are accurate
to 10% over the range of frequencies in which the servos feeding back to the
mirror positions are active. It is for honing these predictions that the numerical
models are useful.

The LIGO interferometers are not yet sufficiently well specified to merit a
detailed numerical analysis and control system design®. Nonetheless, the exercise
of analyzing a possible interferometer and designing a control system for it is
useful, and will give insight toward a final design. A set of possible optical
parameters for a LIGO interferometer is listed in Table 1.1. We will apply
our analytic results and our numerical model to this interferometer to explore
its behavior, and then we will design a control system around it, to meet the
specifications listed above.

It is virtually certain that neither the optical parameters nor the specifications
will remain unchanged between the time of this writing and the time when a
LIGO control system is installed, and for this reason we will emphasize more
the methods of analysis and design than the details of our numerical example.

The numerical model will provide examples of the size of neglected quantities

* For example, specifications for mirror surface error have not been set and possible trade-offs between cost and

quality are still being evaluated.

i The arm cavity lengths are displaced slightly from the length where the RF sidebands would be exactly anti-resonant.
See also the footnote on p. 27, and Section 7.5.



Table 1.1 Possible optical parameters for a LIGO interferometer.

13

Quantity Symbol Value Units
Recycling Tg 5%
mirror
. Arm cavity TF 3%
Mirror front mirrors
(power) -
transmissions | AT cavity Ips L
Back mirrors
Beam Tps 50%-L/2
Splitter
Pick-off reflectivity R, 0.1%
Loss in each optical element | L 100 ppm
In-line cavity | L; 4002.0041 meters
Arm cavity
length Perpen- Lp 4001.996 meters
dicular cavity
recycling lr 6.29 meters
mirror to
. in-line cavity
Recycling -
cavity lengths rc?ychng lp 5.71 meters
mirror to
perpen-
dicular cavity
2 18
Laser power | E1| 2.6 x 10 photons/
second
Modulation index T 0.1 radians
Modulation Frequency Q 12.5 MHz

compared to relevant ones, and will give us some idea of the magnitude of
the errors introduced by the approximations made within the analytic approach.

It is hoped that, as the parameters and specifications of LIGO interferometers



14

become better defined, these same methods will be valuable tools for designing
and analyzing control systems, and may even influence the choice of optical

parameters and the definition of performance specifications.
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Chapter 2 DC Analysis

We begin our analysis of the interferometer by obtaining the derivatives of
the voltages v; with respect to the mirror positions.*
Consider a small region, as shown for example in Figure 2.1, inside one of

the laser beam paths within our interferometer.

Figure 2.1 Example of a section of laser beam.
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§ section of laser beam

I

It contains electromagnetic radiation travelling in two directions, which we

will call the +z and —z directions, and the electric field due to that radiation

can be written:

=0 _ = |2 \pi(2avt—kz Vi (2rvt+hz
E(z,1) =p,/?€[—)Re{E(+z)(t)e @mvi=ka) 4 B (8)elCm t+’“~>} @.1)

We will assume uniform linear polarization in the 7 direction. For the remainder

of this work, we will concern ourselves exclusively with the complex functions

¥ Expressions similar to the ones in this chapter were first derived by A. Abramovici using a different approach.
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of time E(, )(t) and E(_.)(t), which we will refer to as the field traveling in the
+z direction and the field traveling in the —z direction, respectively. The factor
2 js used to make the units of the fields 1/v/second (the field magnitude
squared equals the number of photons per second), which is convenient when

calculating shot noise.

The light from the laser is phase modulated at some angular frequency (2
before entering the interferometer. This means that!® if F; is the field from the

laser and E;,,. is the field incident on the interferometer,

By = et o8
~ Jo(T) By + iJ1 (D) By + 4 J1 (D) Ee ™% 2.2)
= Einc 0+ Bine 16 + Ejpe —1e™¥
we call E;,. ¢ the carrier field, and F;,.1 and E;,. _1 the upper RF sideband
field and the lower RF sideband field, respectively. We will continue to use
numeral subscripts to index different frequency components of the light, and

literal subscripts to denote location.

In the remainder of this chapter, we will first show how the fields incident on a
photodetector affect the corresponding mixer output and how the derivatives of the
mixer output are related to the derivatives of those fields. Then we will analyze a
simple Fabry-Perot cavity to find the fields and their derivatives within the cavity.

Finally we will solve for the fields in the interferometer and their derivatives, and
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conclude with expressions for the derivatives of the mixer outputs with respect to
the phases @, ®_, ¢4, and ¢—. These are then easily interpreted as the response

in the mixer outputs to changes in mirror position or laser frequency.

2.1 Photodetector, Mixer

If we assume that the photodetectors have unit quantum efficiency then the

photocurrent in a detector is
. 2
i = |E|
. 2
= IE() + Elez.Qt + E'_le""ml
) 2.3)
= IE()|2 -+ |E1|2 —+ IE_1l2 + 2R6{E1Eile2zﬂt}

+ 2Re{ (E*,Eq+ E(‘;El)eiﬂt}

We assume that the mixers are double-balanced mixers, followed by low-pass or
notch filters to eliminate harmonics of the modulation frequency. To a reasonable
approximation®, the mixer multiplies its input by cos Q¢ (or sin Q¢ if the mixer is
fed by the quadrature phase local oscillator signal). By the Fourier shift theorem
(or “heterodyne” theorem!!), the only frequency components of the photocurrent

which will pass through the low-pass filter unattenuated are at frequencies near

§ The true effect of most mixers is to multiply by something more closely resembling a square wave. This has little
effect if the modulation index is small or if the photodiode is tuned, with a resonant filter, to be sensitive only to amplitude

modulation at frequencies near the modulation frequency.
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2. The inphase low-pass filter output then is

14

1 o
orlt) = = / 2Re{ (EZ, By + B3 B1)e™ } cost'a’
t-T

= Re{EilE() + E(’;El}

2.4)

where for convenience we have modelled the low pass filter as a device which
averages over an integral number of modulation periods T' = %’{
Similarly,
vo(t) = —~Im{E* Ey+ EyE; } 2.5)
Note that for pure phase modulation, for example if £ = E;,., both outputs
vanish: vy = vg = 0.
Now we can find the rate of change of these mixer outputs. Suppose Ey, E1,

and E_; are all functions of some parameter #; then

) 8Ey, . 0 .
31(’95 - Re{ —g B+ E-1) + Ey55(B1+ B-1) } 2.6)

In the special case where £y = E_; and both are pure imaginary and their

derivatives are real and equal, and Ey is real and its derivative imaginary, we have

Ovr _ %E,E; [

2.7

1 JOEy 1 O0E;
00

(—iEy) 89  (—iE;) 6
Recognizing ii%h as the rate of change of the phase of Ej, we see that

in this special situation %’BL is proportional to the difference between the rate of

change of carrier phase and the rate of change of sideband phase.
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Similarly

39 =Im { 58 (E1 E_1) + EOBQ(EI — E_l) 2.8)
and if £y and £_; are equal and pure imaginary, and if Fy is real, we have

dvg

=5 _E()Im{_(El E_l)*} 2.9)

We see that a quadrature phase signal is produced if one sideband grows and the

other shrinks.

2.2 Fields in Optical Cavities

Now let us show how the fields are related to the mirror positions.
Figure 2.2 Partially transmitting mirror.

Laser

beam A
N\ LA
e

Consider first a partially transmitting mirror A, illuminated from the left, as in
Figure 2.2. We define its reflectivity r 4 (sometimes called “amplitude reflectivity”)
as the ratio of the reflected field F,, to the incident field £,. We will always model
our mirrors as having positive real reflectivity on one side, and we denote that
side with a “+” as shown. We will also model the transmission ¢4 as being
positive and real; then energy conservation requires'? that we assign negative real

(13824
I

reflectivity to the other side of the mirror, denoted by a
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Figure 2.3 Fabry-Perot cavity.

D
E, |
I
.-
Next, consider the cavity AD, shown in Figure 2.3.
It is easy to find the other fields in terms of Ey:
E, =t4E, —T4Ey

Ey = rpe *E,

E, =rsFE, -I-‘tAEy

(2.10)

(2.11)

(2.12)

where ¢ is the travel phase corresponding to the optical path from A to D and

back: ¢ = 2kd — 2¢,,,- Solving:

t
E, = A
14+ rprpe—®
tarpe”t?

(2.13)

(2.14)

(2.15)
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To find derivatives, we define

z=rpe (2.16)
then
(@) e
2
Edz' (%) T +t:Az)2 @

As we saw in (2.7), the rate of change of the phase of a field can be a useful

quantity; we define

Ey-d(—lié) (2.20)
1 + T4TpET?
and e ﬂ_ p (ﬂ)
~ Eyd(—i¢) \ E,
~ ti"‘Dﬁ_i‘é (2.21)

('rA + (7‘3l -+ ti)rpe‘i‘f'i) (1 -+ rArDe‘i¢)

and call these the bounce number" and augmented bounce number respectively.
For a resonant cavity, the bounce number is the ratio of the rate at which the phase

of the field returning to the front mirror changes when the rear mirror moves, to

- The expression “bounce number” is something of a misnomer in this context, since it does not correspond to the
number of times any physical quantity “bounces.” It derives historically from an analogous quantity for “delay line”

gravitational wave detectors.
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the rate at which that phase would change if the front mirror were absent. The

augmented bounce number is the same ratio except that it is defined for the field

E,, reflected from the cavity.

2.3 Fields in the Interferometer

We can use these expressions to solve rather easily for the fields in our
interferometer and also for their derivatives. We will first find the carrier fields
everywhere, then the sideband fields. Then we will find the derivatives of these

fields. Finally we will assemble these into expressions for the derivatives of the

mixer outputs.

Figure 2.4 Fields at in-line arm cavity.

—T—PB

——PF
Inline Cavity

R v T
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[~V 5% A | !

i o % Bt
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First, consider the carrier fields in an arm cavity, the in-line one for example.

Using (2.15), and assuming that the two arm cavities are identical, e.g., rjp =
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rpr = TF, etc., we have
—=Tp+ t%rBe“i‘I”
E, " 14+rprpe—i®r (2.22)

= 'I'L,((I)I)

where ®; is the round-trip phase of the in-line arm cavity, and we have defined
r. as the reflectivity of an arm cavity. We choose the length of the arm cavity

so that the carrier resonates in it. This means

bro=7 (modulo 2) (2.23)
Then from (2.19),
it2
0 (Eb “) - s (2.24)
0210\ Eav/) (1=rprp)

The arm cavity reflectivity and its derivative will occur so frequently that we

assign them special symbols:

T = —7',_,(71')
t2 (2.25)
= —rp+ ———FTB
l1—-rprp
12
rhy = b (226)
(1 - 'I'F'I'B)

Next, we include the beam splitter and pick-off, illustrated in Figure 2.5:
For convenience we will assume that the beam splitter, pick-off and recycling

mirror (identified by the subscripts “BS,” “p” and “R” respectively) are all

1 The sign of rcp is chosen so that this quantity is positive for an over-coupled, resonant cavity.
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Figure 2.5 Fields at beam splitter and pick-off.
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very close together'. The generalization to arbitrary component positions is

straight forward, but clutters the formulae. We make the approximation that

rps = tps = % to get, for the carrier:

Eret P o 1z —ig
= —=re(Dpo)e "

E.o  V2°

Eret 1 0 _ tp ((I)I 0) —igro

Eqqp \/:
Eantio tp (’rz ((I)P ())e iopo _ Tc((I)I O)e—ifi’l 0)
E,q )
s = —‘"(n (@ro)e™"° +7(2p t))e“w“)
E.o 2
Erg T

Ero _‘)—( (@r0)e™7 +7(®p ())e_iépo)

Here “very close together” means separated by distances small compared to A, 04-

(2.27)

(2.28)

(2.29)
(2.30)

(2.31)
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where, in the final equation, we have written 7}, for t2, using the convention
that upper case R’s and T’s equal the squares of the corresponding lower case

quantities. Taking

Q70=0pg=m (2.32)
we have
Efo _ —T, —igro o —ibpo
=t (e +e ) (2.33)

In this last equation we have the ratio between the light to the right of the recycling
mirror travelling away from the recycling mirror, and the light returning to the
recycling mirror. Another way to think of this (shown in Figure 2.6) is that all
of the mirrors of Figure 2.5 form a compound back mirror for the cavity having
the recycling mirror as its front mirror.

Figure 2.6 Compound mirror.
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Using (2.13) we have

E.o 12

= — — 2.34
Eipeo  1- TRTp’rd)% (e"lw 0 4 e—i9r u) (2.34)

and to achieve maximum power buildup in the recycling cavity,” we need to
arrange for the second term in the denominator to be as nearly as possible equal

—1. Hence we choose

¢ro=9¢po=0 (2.35)
so that

E,q iR
= 2.36
Einco 1- TRTp"'c:U ( )

Using (2.14) and (2.15)

FE —tpT

fo _ —trITpre 237

Einco 1- TRTp Tel)

Eref 0 _ o — t%TpTcO

Einc 0 B 1- TR:Z})TCU (2 38)
_ "TR=Tyrep

T 1-rpTyra
where the last expression was derived using the approximation that losses in the

recycling mirror can be neglected®: 7% +t% ~ L.

2
¥ The ratio | EQLD;] is called the recycling gain or the recycling factor and is a measure of the benefit delivered by
the recycling mirror.
¥ Losses of a few tens of parts per million are anticipated in the recycling mirror, whereas the total round-trip loss in

the recycling cavity is expected to be a few percent.
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Since Ef = Esymtp,

Esym 0 —tRtpT
= 2.39
Eineo 1- TRTpTc() ( )
and from (2.29)
Eantio =0 (2.40)

Now we turn to the sideband fields in an arm cavity. We begin with the
upper sideband; the derivation for the lower sideband is almost identical. The
arm cavity length is chosen so that the sidebands are almost exactly antiresonant?,

ie. ®7;1 ~ 0. Referring back to Fig. 2.4,
Ey1
al (2.41)

tfp'l‘]_;
=7 —
F+ 1+rprp

Tel =

{3y

d
o 0 Ey

0®r1 Ean

_ —it%?‘B
~ (+rprp)’

Because the sidebands are nearly perfectly excluded from the arm cavities,

[ A
Tal =

(2.42)

we can approximate the expressions above as being unity and zero, respectively

(in our numerical example, their values are 0.99995 and 0.008).

§ If they were exactly antiresonant then the RF sidebands at 2052 would all be resonant, causing the interferometer

response to be very sensitive to arm cavity length and modulation depth. See also Section 7.5.
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Figure 2.7 Equivalent optical configuration for the analysis of sideband fields.
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Accordingly, Figure 2.7 shows the interferometer with the arm cavities re-

placed by mirrors with unit reflectivity. Then

Eﬁ_l _ _%e—icsn (2.43)
E_;f_zlg _ %e—wm (2.44)
Egtl 1_ % (e_wm _ e—iqsn) (2.46)

We have stated already that the average distance between the beam splitter

: : s Agod . i A §
and the arm cavity front mirrors is" <%24; because of the asymmetry it is <t + 2

I See footnote, p. 7, and Section 7.5.
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for the in-line arm and A%ﬁ - % for the perpendicular arm. Then

2y + Q) (/\m,,d
4

2Q (A,
=@dro+ —('—wd
c 4

=T+«

where o0 = %

)
+§)

6
+§)

(2.47)

In similar fashion one can show that ¢p; = 7 — . It then follows that

Esym 1

= ~{,cosQ
P
E’r 1
Bantin _ ttp sina
= —ity
E’r 1
Similarly
Egym -1
= o —1y cos
E, -1
Banti -1 _ it, sin o
. Tty
Er -1

(2.48)

(2.49)

(2.50)

(2.51)

Finally, as we did for the carrier, we find the sideband fields everywhere by

considering the pick-off and everything to its right as a compound mirror (shown

in Figure 2.8). The difference 2a between ¢y and ¢ p ; affects the transmission

(to the antisymmetric port) of this mirror. The average of ¢y ; and ¢ p ; determines

whether the cavity formed by the compound mirror and the recycling mirror is

resonant.

From (2.13) through (2.15):

Erl _ 7]

Eine1 1-=rglycosa

(2.52)
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Figure 2.8 Compound mirror for the RF sidebands.
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&
E¢q —tgT,cosa
= (2.53)
Einc1 1—rgpT,cosa
Eyym1 —tgt, cos
syml _ Rip (2.54)
E‘inc 1 1- TRT}) cos &
Eref1 t%Tp cos &
= TR -_— -
Eien 1—rgTycosa (2.55)

TR — I cosa
~o/

~ 1-rgTycosa

(the approximate equality above holds when we neglect losses in the recycling

mirror) and using (2.49) and (2.52)

Eanti1 _ —itgt, sin o 2.56)
Einc. 1 1-—- TRTp COS

Let us summarize this in words. For the carrier and for the sidebands, the
field is amplified in the recycling cavity because the circulating field interferes
constructively with the incoming field. For the sidebands, the amplification is
mainly limited by the transmission to the antisymmetric port, whereas for the

carrier it is limited principally by loss in the arm cavities.
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2.4 Derivatives of Mixer Outputs

Now we can differentiate the fields and find the derivatives of mixer outputs.

We will consider first the differential signals: the derivatives of the gravitational

wave output v3 and the isolator quadrature output v4 with respect to phase changes

®_ and ¢_. Then we will calculate the common-mode signals: the derivatives

of the pick-off and isolator inphase outputs v; and ve with respect to @ and ¢.

First we note that since
1
08ro= 5(‘I’+ + o)

1 .
0®pg = 5(‘1’+ -o)

we have

0 0%r9 0 0®py O

Ab_ ~ OP_ 8br, OB_ 9Bpy

(o)
2\0®r¢ 0%py

and that for Q constant and Q <« v

27y §)
ér1= 21]( P + —C_) - 2¢Guoy

Q
=¢ro+ 211;-

so that

11 1
Odro

whether the independent variable is v or /;.

(2.57)

(2.58)

(2.59)

(2.60)
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Differential Signals

We begin with the gravitational wave signal. Differentiating (2.29)

alatmti 0 _ aEantz' 0 3(1)1 0 aEanti 0 a(I)P 0

]
=gk 0tpTe0

and, using (2.8), we have (at the antisymmetric port)

0%_ 0%

E,,. E nti
= ~B ROy () l ()

which can be further expanded using (2.49) and (2.51). Equation (2.62) can

ov OF nti
3 = Im{ anti 0 (Ea'nti 1 Ea,'utz' —1)*}
(2.62)

IT::()‘

be understood as follows. When ®_ deviates from 0 we cease to have perfect
destructive interference at the antisymmetric port for the carrier. The size of this
deviation from perfect destructive interference is proportional to the rate |r/,| at
which the carrier field returning to the beam splitter from the arm cavities changes
with ®_. This carrier light then beats against the sidebands which are present
because of the asymmetry, producing modulation of the photocurrent at €2, and
a signal at the mixer output.

A similar mechanism is responsible for the sensitivity to ¢_ at the antisym-
metric port. When ¢_ deviates from 0 we also cease to have perfect destructive
interference at the antisymmetric port for the carrier. Quantitatively, to find g‘—;’{-,

again differentiate (2.29)
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ov Er E nti
= = E} Jy(T) A1 (T) ( = 0 ) ( Eﬁf” l>tp7'd) (2.63)
inc () inel

We now move on to g—q';lﬁ_-. From (2.45) the reflectivity of the compound
mirror for the upper sideband is —7j cos(a + ¢—/2); using (2.19) with z =

—Tpcos (o + ¢—/2) we have

2 -
3} (Ere.f 1) _ tplpsina (2.64)

0¢-\Eimc1/) 2(1 — rgT, cos a)”
Similarly,
3] (E,,e,f _1) _ —t%Tpsina i 2.65)
0¢- \ Einc -1 2(1 — rgT, cos )

Since the conditions leading to (2.9) are satisfied, we have

Erjo  t4Tsina
Einco (1 — rgT, cosa)?

3’04

5 (2.66)

which can be further expanded using (2.38).

In words, this sensitivity in v4 to ¢_ is due to the fact that when ¢_
changes, the reflectivity of the compound mirror increases for one RF sideband
and decreases for the other. This causes a corresponding change in the relative
size of the sidebands reflected from the recycling mirror and a signal according
to (2.9).

There is also a small dependence in v4 on ®_. Because the derivative (2.42)

of the arm cavity reflectivity for the sideband is not exactly 0, it is non-negligible
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when it is responsible for the only contribution to the signal. We re-insert 7.(®y 1)
and r.(®p1) into (2.45) and differentiate to get (using (2.9))

dvy P w2 7o Erefo__ thTpsina
R g 3 2.67
30_ I cll 1 0( ) 1( )Ez'nc() (1 _rRTpCOSOl)2 ( )

Common-mode Signals

Now let us look at the common-mode signals. We begin with vs, the inphase

pick-off signal. Using (2.31) and (2.18) with

Efy
z= 2.68
E.q ( )
] Eso .
to find m(ﬁ) we have:
0 (Esym ()) _ thpTZ-,() 5 (2 69)
8(I)+ Eineo 2(1 - TRTp'rc())
Then, using (2.7), we obtain
Ovy 2 \ Esym 0 Esym 1 I"',-()l
— = E7 Jo(T')J1(T')R, Ny—= .
8(1)-{- ! 0( ) 1( ) ? ( Ei‘nc {) Einc 1 0 Tel) (2 70)
which can be further expanded using (2.25), (2.26), (2.39) and (2.54), and where
1 OEgym
Esym 0 6¢+
1 0 Esym ())
= 2.71
—EE—S;W—"—O 3¢+ ( Ez'nc 0 ( )
inc 0
S S
 1—rpTyra

is the bounce number for the carrier in the recycling cavity. In words: When &

changes, the phase of the carrier light changes in proportion to the factors %%l
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(which is just the augmented bounce number for the carrier in an arm cavity) and
Ny, generating a signal according to (2.7).

When ¢, changes, the phases of the carrier and of the sidebands all change,
so that by (2.7) the signal is proportional to the difference in the rates of change

of these phases. To find ggl'i- we have, using (2.31) and (2.45),

2= — 2T, (2.72)

for the carrier and

z = —e~i0+/ 2Tp cos (2.73)

for the sidebands; then using (2.18) and (2.7), we have

61 . Es» T Es TR
22 = B} Jy(T )R (T)R, =L LNy — Ny (2.74)

6¢+ Ez’nc 0 Einc 1

where

1
N = (2.75)

" 1-—rgTycosa

Ny and N; are the bounce number for the carrier and upper sideband (respectively)
in the recycling cavity. The bounce number for the lower sideband equals the
bounce number for the upper sideband.

We now move on to v;, the inphase signal at the isolator. This signal is
produced by the same mechanism as gﬁ— except that the rate of change of carrier

phase is proportional to N}, instead of Ny. 22 is found using (2.31), (2.21),
0 E{?i‘
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(2.19), and (2.7):

o (Eref ()) - t%z:’}ﬂ'cu (2.76)
0P+ \ Einco 2(1- rRTpnn)z
on 2 Eref 0 Eref 1 i |T’~()l
— = Ef Jy(I)J1 (T Ny~ .
3(1’-}- ! 0( ) 1( )(Ei'nc 0 Eine1 0 T @17
To find %’: we use (2.31), (2.19), (2.45), and (2.7):
6111 2y E'ref 0 Eref 1 1 !
3¢+ B EI JO(P)JI(F) (Einc (]) (Einc 1 [M) Nl] (2'78)

Here the mechanism is the same as the one for ggf, except that again, augmented

bounce numbers are used. With the approximation that the recycling mirror is

lossless, we can write

N = 1  OE.. 0
07 —iEreso 064
2T, .79
— R ‘p cl) ‘
(rp = Tprao)(1 — rpTpra)
and 5
1 Erer1
N, _ : ref
! "'ZEref 1 a¢+
—t2T, cos a (2.80)
Rip

B (rr — Tpcosa)(l — rpT,cos )
Both (2.77) and (2.78) can be expanded using (2.38) and (2.55).
This completes our analysis of the signals of interest. One can show that the
remaining eight derivatives all vanish. Table 2.1 shows the factors which vanish to

make (2.6) vanish, and Table 2.3 shows the factors which cause (2.8) to vanish.
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Table 2.1 Vanishing terms in equation (2.6) for derivatives of
v; and vy with respect to the differential degrees of freedom.

Output
1 )
iv- OEy _ dEy _
Deriv L =0 2 =0
ative Q- | 2 (B +E ) =0 8 (By+E_1)*=0
5= (B1+E_1)" = 8- (E1+E_1)" =
with re-
OFE, OE,
Eo — Eo —
spect - -
. O~ | (B +Ey) =0 7-(Er+ E-1)" =
o:

Table 2.2 Vanishing terms in equation (2.8) for derivatives of
vy and vy with respect to the differential degrees of freedom.

Output
v3 V4
Deriv- E() =1 El — E-—l —_

: o 8Ey _ d _ —_
ative + 5&{: =0 Om(E]_ E...]_) =0
with re-

Ey=0 Ei-E_;=
spect SE s
o ¢+ m’- = Om(El - E_l) =

Finally we consider the effect of a change in the laser frequency. Since, for

example,
(I)I 0= szI + 2¢Gu0y
(2.81)

4y
= TLI + 2¢G’uoy
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changes in this phase can be effected either by a change in the length of the in-line

arm cavity or by a change in the laser frequency. Now

02y _ 8l (2.82)
ov c

and

0¢+ _ 8rl (2.83)

v c

so that, for example

3’01 _ 5’01 8<I>+ 81;1 6(254_
ov  0%L v ' Oéy Ov
8w o ovy
=— (L—3¢+ + l_é_é:) (2.84)
7L oy
¢ 6<I>+

where we can make the approximation in the last line because [ < L and because

b < Fg-. Similarly, we will use

Ove . 8rL Ove

ov =~ ¢ 0P, 2:85)

which is a very good approximation for the same reasons.

In chapter 4 we will compare, for our numerical example, the values of the
derivatives found using this analysis and the values found by a numerical model
which makes fewer approximations.

It is easy to generalize the analysis above, of the response to particular

combinations of mirror displacements, to the case of arbitrary combinations. We
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simply note that the following combinations of mirror displacements and changes
in laser frequency produce no signal at all. They are in the kernel of the Jacobian

of interferometer outputs with respect to mirror position and optical frequency.

1. Displacement of the entire interferometer towards (or away from) the laser.

2. Displacement of the arm cavities towards the beam splitter and displacement
of the recycling mirror away from the beam splitter, all by equal amounts.

3. A change Av in the laser frequency, together with displacements of the
arm cavity input mirrors PF and IF away from the recycling mirror, through
distances [ pA—V’ﬁ and Iy %”-, and displacements of the arm cavity back mirrors

PB and IB through distances of (Lp +{ p)%’i and (Ly+1 I)%ﬂ respectively.

These three combinations have the property that they leave the relative phases of
any interfering beams unchanged.

From this observation we can conclude, for example, that a displacement of
the recycling mirror towards the beam splitter will generate the same signals as
an equal-sized displacement of all of the arm cavity mirrors towards the beam
splitter, since the two differ by an element (#2 above) of the kernel. Similarly,
displacement of the beam splitter and of the recycling mirror, such that I; and Ip
change by equal and opposite amounts, differs only by an element of the kernel
from a displacement of the two arm cavities in opposite directions in the same

amounts, and the two combinations must produce the same signal.
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Chapter 3 Interferometer
Frequency Response

Implicit in the analysis of the last chapter, since we did not allow any of the
fields Ey, E1, or E_; to depend on time, is the assumption that changes in the
phases ® and ¢ occur slowly. Suppose instead that we want to know what the
response in the output signals is when the laser frequency changes abruptly, or
when a mirror vibrates at a high frequency. This is the problem we will analyze

here.

3.1 Fabry-Perot Cavity

As in Chapter 2 we will begin by analyzing a single cavity in some detail,
and then extending the results to the complete interferometer. The response of a
Fabry-Perot cavity to back mirror motion has been understood for some time!3-14,
but we will re-derive it because our method will include the RF phase modulation
in a natural way and will be easily generalized to more complex optical systems.
Our cavity, shown in Figure 3.1, consists of two mirrors A and D, separated by a

distance d such that the carrier resonates in the cavity but the two RF sidebands

do not.
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Figure 3.1 Fabry-Perot cavity.
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If both mirrors are stationary, then as in (2.2), the field at the back mirror

essentially consists of three frequencies:
Ey = Epyro+ Ey 16 + By g™ (3.1)

Now suppose the back mirror is shaking with small amplitude at a frequency w

w K D, ie.,
zp(t) = Re{Xe*'}  |X|< A

(B.2)
= X coswt for XeR
This motion modulates the optical path within the cavity so that

ER =rp E.M ei2kX coswt

‘ . (3.3)
~rpExr (1 +ikXe™t + ikXe_""t)
Clearly if Es contains three frequencies

Ey = Eso+ Eay16™ + Eyy 1o (34)

then Ep contains nine:

Eg = TD[ikXE.M —1€_i(Q+w)t + Ey —16—iQt + kX Eyp _1e_i('Q_w)t
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+ikX Ezr 0e™" 4+ Eyr o + ik X Epf et

+ikXEpr 169 4 Byp165¥ 4 ik X Eyp 160490 (35)

We will call the additional six frequencies “audio sidebands” imposed on the
original three “RF frequencies” (the carrier and its two RF sidebands), and we

will identify them with an additional index. Using this notation, we write:
Ep=Ep; _1e_i(9+“’)t +.--+Ep1 lei(Q+w)t

1 1 '
— Z Z ERu_vez'(u-Q+vw)t

u=—1yp=—1

In the summation above,  indexes RF frequency and v indexes audio sidebands.

(3.6)

To avoid ambiguities between the use of the “-” to indicate a negative index and
a subtraction, we will enclose any operation in parentheses; for example if u = 0
we would write E,_;) for E_;.

Now suppose the field £y incident on the moving mirror contains nine
frequencies instead of only three (which in general it will, since mirror A reflects
Ep back to mirror D). Then by (3.3) Ep is a product of a factor (£37) containing
nine terms and a factor (1 -+ tkXe™? + tkXe™*?) of three terms, so Ep has 27
terms (at 15 distinct frequencies). However, 12 of these terms are of order (kX)?

and we neglect them. The remaining 15 terms (at nine frequencies) are:

1
Er=rp| Y | Esuot™ ¥+ Y (Esuv +ikXEpqyo)e’ ot

u=-1 v=-1,1

3.7)
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Evidently the shaking of the mirror causes, for example, an amount
So1=rpikXEygo0 (3.8)

to be added to the incident Ejr¢3 field upon reflection (and corresponding
quantities to be added to the other audio sideband fields). The moving mirror
acts as a source of this frequency component of the light. As in (2.10) — (2.15)

we can solve for the field at this frequency everywhere. At the two mirrors, we

have:
Eyo1=—rae 1 Epg1 (3.9
Ero1=rpEyo1+So1 (3.10)
Solving:
E = 1 S (3.11)
R0l = 1 + TATDe__iQ'O N 01 .
£ 4e=i%o1/2
FBro;1=—2 So1 (3.12)

14 rarpe~itor

if the carrier is resonant in the cavity,

doo=T (modulo 27) (3.13)



2nvy +w
$01 = 2d

(3.14)

=¢go9+wr  where 7= y—

c
eI = g7 (3.15)
e—iéu 1/2 — _ie—in/2 (3.16)

Then
—it e—z’wr/2

Erp1= 4 So1 (3.17)

1—r rpe~iwr

We call the ratio of the audio sideband field at the photodetector to the source
Sp1 of that field the transmission function K1 from the shaking mirror to the
optical output and write

ETo1=Ko1501 (3.18)

We find for the lower audio sideband on the carrier

_?‘tAelu)T/2
Erg_1=

7 So -1 (3.19)
—TATD

etwT
Similar expressions can be found for the other audio sidebands.

Given full information about the spectral content of E1 we still need to know
the mixer output when this light is present at the photodetector. As before, the

photodetector output is
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ip(t) = |Er|’
11 2 (3.20)
= Z Z ETuvei(uQ-Fvw)t )
u=—1v=-1

Again, as in (2.3), this contains terms at a number of frequencies, of which only
those near €2 will be mixed down to near DC and pass through the low-pass filter.
Moreover, of those frequencies, we are only interested in the ones at frequencies
of +w and §2 — w because these will be mixed down to w, and it is the response

in the mixer output at w that we want". These terms are

0 0
ip at Ow = 2Re{ E Z (B o oBr (us) (o€

u=—l1v=-1

(3.21)

+ E;' u (-v+1)ET (u+1) vei(Q—W)t.)}

t
1
vr(t) = / ip at O (t) cos Qt'd’
~T

0 0
= Re{ [ Z Z (E;‘ woBT (u+1) (v+1) T Ery (’u+1)E;' (u+1) u):l ezwt}
e (322)

which is in the form

vr(t) = Re{V7e'} (3.23)

-

The only other component passed by the lowpass filter is at DC, corresponding to (2.4) and (2.5). We are usually

interested in the response to small motions around the point of perfect resonance, where this term vanishes.
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with

0 0
Vi= Z Z (E;' u 'vET (u+1) (v+1) + ET u (v+1)E;' (u+1) v) (3.24)

u=—1v=-1

so that |V;| is the size of the response and arg (V7) is its phase.
Hence we define the transfer function from mirror position to inphase mixer

output

Vi

X (3.25)

L&ﬂu)z

which is a function of frequency. By a similar argument, we can show that

0 0
Vo= 3 3 (BFuuBrsn o) - Bru @B uiy,) (326

u=—1v=—1

In principle, this completes our analysis of the frequency response. For a
given amplitude and frequency of mirror motion we know how to find the spectral
content of the light on the photodetector and we know how to find the mixer
output given that spectral content. This algorithm is well suited to numerical
implementation and is in fact the one used in the program described in Chapter 4.

Let us examine the expressions for V7 and Vy more carefully. Each term in
these expressions is the product of an RF field which is independent of the shaking
frequency w and either an upper audio sideband field or the complex conjugate

of a lower audio sideband field. Each audio sideband field is proportional to the
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transmission function from the shaking mirror to the optical output or to a sum
of transmission functions if several mirrors are shaking or if the shaking mirror
is illuminated from both sides. In any event, the transfer functions from X to V;
and Vg are linear combinations of transmission functions and complex conjugates

of transmission functions.

It is often the case that a few reasonable approximations can reduce these
linear combinations to a very simple form. In our analysis of the interferometer
we will see that the transmission functions for the audio sidebands on the RF
sidebands are all frequency independent, and that the complex conjugate of each
transmission function for the lower audio sideband on the carrier differs at most
by a constant from the corresponding transmission function for the upper audio

sideband on the carrier. From these two facts we can state immediately that

Vi =C+ FKji(w) (3.27)

for some constants C' and F' (and a similar expression for V(5). The constants C
and F can usually be found from the DC model of Chapter 2; the transmission

function K1 will need to be derived separately.

For the simple cavity being analyzed here we assume that the RF sidebands are
essentially absent from inside the cavity so that the sources of audio sidebands

on the RF sidebands are negligible:
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S5-1-1,5-11,851-1,511~0 (3.28)

This means that the corresponding four terms in V7 vanish, and
Vi=(Ef _10+ET10)Bro1+(Er-10+ Er10)Bf¢_; (3.29)

We also restrict our analysis to frequencies much smaller than the cavity free

spectral range:
wr L1l (3.30)

So that (3.17) becomes (by neglecting the exponential in the numerator’ and

Taylor expanding the one in the denominator):
—it e—iw7‘/2
1- TiTDE—iWT So1
ity 1 (3.31)

T l-ryrpl4 i

Erp1 =

So1

1—rar
WhCrC Wegy = T;I%_’TQ.

For the lower audio sideband on the carrier,

it 4 1 «
Etg-1= T=rarpiq W,-LS() -1 (3.32)
since Ejr¢¢ is pure imaginary,
SS 1= —i'I‘DkXE:{I 0o =11 pkXEyoo= 501 (3.33)

1 The exponential in the numerator only produces a small phase change in the frequency range of interest.
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so Ery_; = —FEt01 and, using (3.29)

_4rptakXEpyooEri0 1
1—rarp 1+ &

Wear

Vi = (3.34)

For compatibility with notation used in references on control systems, we may

let s = w and write

Vi = Hy;zp(8)X (3.35)
where
Hopen(s) = Hupap DO (3.36)
3% = Liy;pp DC P .
D vr&p 1+ -
d
an vy

Hw:zp DC = %
_ 4rptakXExooEr10
- 1—ryrp
What if we were to shake the front mirror instead of the back mirror? We

(3.37)

could use the same method to answer this question, adding an additional source
for each of the audio sidebands (since they would now be produced at both
surfaces of the front mirror). This is in fact the approach taken in the program.
In our analytic derivation, however, this becomes quite tedious since we can no
longer neglect the audio sidebands on the RF sidebands, and since, for each audio
sideband on the carrier, there are different transmission functions from each of

the two sources to the photodetector.
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Instead we use a simple thought-experiment to argue that if the carrier is
resonant, the response to motion of the two mirrors must be the same in amplitude
(and opposite in phase except for a factor which is negligible for frequencies small
compared to 1/7). Suppose we shake both mirrors with the same amplitude and
in the same direction and with a relative phase such that motion of the front mirror
lags motion of the back mirror by a time delay of 7/2. Now if the back mirror,
mirror D, is moving with a certain velocity when a particular bit of light reflects
from it, then all of the frequency components in that piece of light will be Doppler
shifted to new frequencies, only to be shifted back to their original frequencies
when the bit of light reflects from mirror A, after travelling the length of the
cavity, which takes a time 7/2. The light travelling towards the back mirror then
has no audio phase modulation because it is a combination of fresh light from
outside the cavity and light which has been modulated by reflection from the back
mirror and un-modulated by reflection from the front mirror. The light inside
the cavity travelling towards the front mirror then has a total phase modulation
corresponding to one reflection from a moving mirror, as does the light reflected
from the outside of the front mirror. All of the RF frequency components of the
light returning to the photodetector then have the same audio phase modulation,

that amount corresponding to one reflection from a moving mirror:

Er = (ET 00+ Er10e™ + Er _1 (,e-im) (1 +ikXe™ +ikXe™™?) (3.38)
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which produces no signal at the mixer output. Since the mixer output is linear
in (small) mirror motions, and since this combination of mirror motions produces
no output, either motion by itself must produce the opposite signal as that which
the other motion by itself would produce.
Finally we want to show that the response to laser frequency modulation is
the same as the response to motion of the back mirror; we will show that for

frequencies small compared to 1/7,

d
Hv1 Sy = ;ij X (339)

The argument is the following:

Modulating the laser such that v(t) = vpc + 6vcoswt, for example by

changing the length of the laser cavity, is equivalent to modulating the laser phase:
Ey(t) = By poe® ™+t (3.40)
with
6= g7-r—<51/ (341)
w

and we have already seen that the latter will impose audio sidebands on the light.
Now the field E7 on the photodetector as before will contain nine frequency com-

ponents. The audio sidebands on the RF sidebands will be frequency independent,
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whereas the audio sidebands on the carrier will have some frequency dependence.

T t2 e_i";’01
Erp1=|ra+ DA — 01
1+ ryrpe—ton (3.42)
s "'Dt?q 1 3 ’
= TAO0 — ()1
l—rarpl+ -—-u’:z

where Sp; o ¢ is again the source of audio sidebands (in this case they originate
in the laser).
Because of this, some of the terms in the expression for V7 will be frequency

£

independent, and some will have a 1/ (1 + %) frequency dependence:

14

Wear

VI=(C+F 1 )9 (3.43)

Now F = —C, because in the limit w — ( the response in V; to finite év is finite

(see for example (2.82)); hence the response to finite ¢ vanishes.

V}=C(1—1 lz,u )9
= (3.44)

We know (as in (2.81-2.85)) what the low frequency limit of this response is:

Ovr _ 4mwd Ovy
Y
_ 4md 1 0uy (3.45)
¢ 2k 0z
d 3’0_[
T vz
Substituting, we get:
d
Hv; by = ;Hsz (346)
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3.2 Response of the Complete Interferometer

At this point we are ready to compute the frequency response corresponding
to the derivatives we found in Chapter 2. We will proceed in roughly the same
order as we did there, finding first the response, as a function of frequency, in the
gravitational wave output vz and in vy, the isolator quadrature phase output, to
®_ and ¢-. These responses are relatively simple because for each of them either
the audio sidebands on the carrier or the audio sidebands on the RF sidebands can
be ignored. Moreover, we will argue that the transmission function for the audio
sidebands on the RF sidebands is frequency independent; this further simplifies
two of the transfer functions.

Next we will analyze the response in the common-mode outputs v; and vs to
@ and ¢4. The responses to ¢ are the most complex ones we will encounter.
In these responses, all of the audio sidebands contribute significantly to the signal.

Throughout our analysis of frequency response, we will restrict our attention

to frequencies much smaller than the free spectral range of an arm cavity:
WTarm K 1 (3.47)

(where Tgpp = %f- ~ ﬂjﬂ) This allows us to make a number of simplifying
approximations, and moreover gives us all of the information we need to design
any of the servo loops which will feed back to a force on a mirror, since all of

these loops are constrained to have unity-gain frequencies much smaller than the
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arm cavity free spectral range, due to internal resonances in the mirrors. The
loop which feeds back to the laser frequency can have a bandwidth approaching
or even exceeding the arm cavity free spectral range; here our analysis is of little
help. For this one loop we rely on a numerical model (see Chapter 4) to verify
that the interferometer transfer function is sufficiently well behaved to permit us

to implement a stable controller.

Differential Signals

We begin our characterization of the interferometer with the signal in which
we would observe gravitational waves. Suppose the mirrors IB and PB are shaking
at frequency w with opposite phase. Each will be a source of audio sidebands
on the carrier and these sidebands will propagate out to the beam splitter. At the
beam splitter, they will interfere almost perfectly destructively on the symmetric
side and almost perfectly constructively on the antisymmetric side. The reason
that the interference is not perfect is that one pair has had to travel a distance
6 farther than the other. For an asymmetry of 57 cm and an audio sideband
wavelength of A;,4:;, = 30 km (corresponding to a shaking frequency of 10kHz),

Azudio

a fraction sin? (A) ~ 1.4 x 1072 of the audio sideband power is diverted

from the antisymmetric port to the symmetric port. We will ignore this effect.

Again we ignore the effect of the arm cavity back mirrors on the RF sidebands.

Then each term in V3 is proportional to the transmission function from the sources
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of audio sidebands (at the back mirrors) to the antisymmetric port:

1

Hys = Huys po7r (3.48)
where
w,= LZTETD (3.49)

 TFTBTarm

The response at this output to ¢_ is essentially frequency independent. To
see this we imagine shaking both mirrors of the in-line arm cavity in the same
phase, and at the same time shaking both mirrors of the perpendicular arm cavity
in the opposite phase. As we saw in the argument leading to (3.38), this produces
frequency-independent audio phase modulation of the light returning from each
cavity. The phase of the corresponding (frequency independent) audio sidebands
in the light returning from the in-line cavity are opposite in phase from the audio
sidebands in the light returning from the perpendicular arm cavity, and all of this

audio sideband light exits the interferometer at the antisymmetric port. Thus*
Hv3¢_ = H03¢_DC (3‘50)

Now let us consider the response in vy, the isolator quadrature phase output, to
®_ and ¢_-. First we note that the audio sidebands on the carrier produced by
changes in ®_ and ¢_ interfere destructively on the symmetric side of the beam

splitter and therefore are absent at the isolator.

3 The audio sidebands on the RF sidebands do not contribute to this signal since Eqntioo =0
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For the response to ¢_, we consider the compound mirror of Figure 2.8 as
the source of audio sidebands on the RF sidebands. For the cavity in which these
audio sidebands resonate (consisting of the recycling mirror and the compound

back mirror),

1—7‘RTpcpsa with 7 '=ll+lP

(rRT, COS @) Tree e (3.51)
~ 800 kHz

in our numerical example. This is far outside of the frequency range of interest

Wree =

and we approximate

~ 1 (3.52)

to get
Hv4¢_ = ’U4¢_DC (3‘53)

For the response to ®_, as in (2.66), the source is the small audio sidebands
put on the RF sidebands by motion of the arm cavity back mirrors. We repeat
the steps leading up to (3.17), using ¢19 >~ 0 (modulo 27) for an RF sideband

in an arm cavity, to get

e—z'wrarm /2

173

1T rprpe—iatom S11 (3.54)

Er11=

which is essentially constant in the frequency range of interest. The same thing
is true for the remaining audio sidebands on RF sidebands, and we conclude that

the response is frequency independent:

Hye_ = Hys_DC (3.55)
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Common-mode Signals

Next we turn to the response to @, which corresponds to common mode
changes of arm cavity length. When the arm cavity back mirrors shake in phase,
the audio sidebands on the carrier interfere constructively at the symmetric side
of the beam splitter. Because the carrier audio sideband light coming from the
two arm cavities has the same amplitude and phase and because any of this light
reflected back towards the cavities will be treated in the same way by the two
arm cavities, we can'®, for the purpose of calculating the response to this type
of mirror motion, replace the beam splitter and arm cavities with a single arm
cavity, as shown in Figure 3.2.

Figure 3.2 Equivalent system for the purpose of deriving common-mode response.

R
|
I

T —

The mirrors R and F form a compound mirror$1%17 with (using (2.15))

reflectivity from the right of

TE + (7‘% + t%;)Tp'rR

s (3.56)

TFxR =

§ Implicit in this simplifying substitution is the assumption that the reflectivity of the compound mirror is frequency
independent. This is in fact a very good approximation. Letting ¢9 = wTrec (With Trec = écl in (2.16), (2.21) gives
roughly ﬁzﬂmc as the rate of change of phase of the reflectivity with w. This is exceedingly small compared to 7arm,
which is the rate of change of round-trip phase due to the length of the arm cavity.
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so that
1
Hv1 L (3) = HU1Q+D01_3 (3°57)
+ o
where
1—rp
Wep = ——E*ETD (3.58)
TF«RTBTarm
Noting that
Eref 01 = Es-ym- 0 lthp (3.59)
Eref0-1= Esymo-11RYp (3.60)
we have immediately
- 1
Hl)2§+ (3) = H’Uz@-{.DCl + iEN (3'61)

Wee
It is useful to write our expression for w,.., in terms of individual mirror parameters,

in a more compact form. We write

rr=\1-Tr—Lp

Tr Lp (3.62)
-5 -7
where Lr =1 — Rp — TF is the loss in mirror F, and
T,=1-R,-L, (3.63)
T L
rpe1-2_ZE (3.64)

2 2
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to get
1-F -8 +(-Lr)(-R - L)1 -F - G)
R T - 1-B—L)1-R, - L
+ 7 - F)(1-%F - F) » — Lp) (3.65)
1 TeTn R,Tr
~1 2[£F+ 7 + 5
and”
1 TrT R,Tr
Wee = ( PR, F+£F+£B+TB) (3.66)
2Tarm 4 2

Unlike our previous expression for w,., the evaluation of this expression does not
require subtracting nearly equal numbers.

The transfer functions from ¢, changes in which correspond to displacement
of all four arm cavity mirrors towards (or away from) the beam splitter, are the
most complex of the ones we will analyze. As we saw in the analysis leading
to (2.74), the low-frequency response in the inphase pick-off signal vo is due to
the fact that when the recycling cavity length changes, the carrier phase changes
in proportion to Ny and the sideband phases change in proportion to /i, so that
a signal is produced according to (2.7). To generalize this result to the case of
mirror motion at arbitrary frequencies, we first use the audio sidebénd picture to
explain the same result. At very low frequencies (where the two models overlap),
the resultant phasor formed when the carrier (or one of the RF sidebands) and its

two audio sidebands are summed is a phasor slowly rotating back and forth at

" The set of terms in parentheses represents the set of “leaks” through which carrier light is able to escape from the
system. If the laser were abruptly shut off, it would take the field about 1/10 of a second to decay to l/e of its initial
amplitude; in fact this step response represents an alternate way of calculating the frequency response to certain inputs.
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the shaking frequency. The frequency-dependent analog of the statement above
involving phases changing at different rates is the remark that the audio sidebands
on the RF sidebands beat against the carrier, producing a signal which partially
cancels the signal produced when the audio sidebands on the carrier beat against

the RF sidebands.

Now we see that as the shaking frequency increases, the contribution to the
signal from the audio sidebands on the RF sidebands will be constant (as in (3.52))
whereas the contribution due to the audio sidebands on the carrier may have some
frequency dependence proportional to the transmission functions Ko 1 and K _;.

Anticipating that K§_; = K1 we write

Bauld) Ny

. M- % 01 (0
Hv2¢+ (Zw) = Hv2¢+DC Nl _ JV()) (367)

Let us find Ky1. We consider the arm cavities and beam splitter as the
compound back mirror and source of audio sidebands for the cavity having the
recycling mirror and pickoff as its compound front mirror. The reflectivity of
this back mirror is frequency dependent. Using (2.15) with &g 1(w) = T + wTarm

we get

t%—-?‘B
1- TFTB(]- - iw'rarm)

| e (3.68)
= ~Tep | ——=
1+

7'1:(7r + WTarm) =TF —
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Now according to (3.11) and (3.14) with ¢gy = 0 and” wTree < 1 we have
1
1+ TRCZ})rc(ﬂ' + w'rarm)
1 1 + Zu)
1o rRTpT 1+ 12

So1

anm 01 =
(3.69)
50 1

where we have used’ w,. = 'i'-—'k%f%%“" To find K, _,, we repeat the above,

using —w instead of w. and conclude that Kj _, = Kjy1. Substituting into (3.67),
0-1

we get
iV, 1 N 1
1+s (.,wl—lzvo e T M-N ,T)
Hy,p,(8) = Hyg, D0 it (3.70)
w'cr:
Neglecting 5= next to x--1- we have
1+ V—T——]-s T
N. cc
Hvz¢+ (3) = v;tp.g.DC"—'—lT——' (3.71)

1+ 2=
To derive the response in v1 to ¢4, we use exactly the same argument,
substituting augmented bounce numbers N and NV} for the bounce numbers N,

and N, to get:

. N Ny
1 + w (.'V'—IV' U'Lcc - .N'II_O.N'(; ;'l:)
v1¢+ ('9) v1¢’+DC 14 2 W
Wee
1+ ot (3.72)
_ﬁiwcc
'U1‘»"’+DC 8
1+ P

More relevant here is the fact that arg (e™*“Trec) « arg (—7ro(7 + WTarm))

i This can be shown to be equal to our previous expression for wee by simplifying as we did in (3.65).
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where the approximate equivalence again is derived by neglecting _’MT’ next

Finally, since we intend to feed back to the recycling mirror, we need to
understand the response to recycling mirror motion’. We define Hy,5, to be the
set of transfer functions from recycling mirror displacement (94 = 4k{ézg)) to

the mixer outputs. We can see immediately that

Hyg, = Hyg, (3.73)

P+

by an argument similar to the one advanced in Section 3.1. There we found that
for a Fabry-Perot cavity, the effect of motion of the front mirror differs only by a
phase from the effect of back mirror motion. If we shake the recycling mirror, the
arm cavity front mirrors, and the arm cavity back mirrors all at the same frequency
and in the same phase, then again, to a good approximation’ we impose an equal
audio phase modulation on each RF frequency, generating no signal. This means
that motion of the recycling mirror by itself produces a signal equal and opposite*

to the signal produced by motion of the other four mirrors.

* Together with the response to beam splitter motion of Appendix C, this will complete the analysis of the dynamic
response of the interferometer.

1 This result is exact if the mirror motions are not exactly in phase, but instead the arm cavity front mirrors lead the
recycling mirror by the time it takes light to travel across their respective separations, and the arm cavity back mirrors
lead the front mirrors by the time it takes light to travel the length of an arm cavity.

¥ This sign difference does not appear in equation (3.73) because we use the opposite direction of motion for the

recycling mirror to define 6.
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In the next chapter we will compare plots of the frequency response calculated
according to our simplified analysis above to plots of the response calculated by

a purely numerical model, which makes fewer approximations.
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Chapter 4 Numerical Models

Two numerical models have been developed for the purpose of analyzing the
optical system.

The first one, the “numerical DC model” calculates the same derivatives that
we found in Chapter 28. Written in Mathematica, it finds symbolic expressions
for all of the relevant fields in the interferometer. It then differentiates them as
required to find the symbolic derivatives of the mixer outputs with respect to
the phases. Because Mathematica does not make the approximations we did, the
expressions for these derivatives are quite long, typically filling several pages. Into
these expressions the program substitutes numerical values for mirror reflectivities
and phases, to generate a table of derivatives. The same program is of course
also able to find values for the fields at the outputs; these numbers are useful for
shot noise calculations.

The second model, called “Twiddle,” calculates the frequency response of the
interferometer. To understand how it works, we consider the simple Fabry-Perot

cavity, fed by a source of light of unit magnitude.

The equations for this system may be written

E,=1 @.1)

§ A model which calculated the mixer output signals instead of their derivatives was written in 1991 by S. Whitcomb.
The model discussed here was adapted from that earlier model.
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There is one equation for the source, a pair of equations for the front mirror, a
pair of equations for the space between the source and the front mirror, and so

on. These can also be written in matrix form:

Eq 1
E

M| = 0 (4.10)
E; 0

and solved by matrix inversion. The Twiddle program constructs the matrix
M from a set of commands specifying mirror properties and separations. For

example, a set of commands for constructing the cavity above is:

sl source[gamma]

ml = mirror[rl, tl]
connect[sl,1l,ml,1l,lengthl]
m2 = endmirror([r2,t2]
connect[ml,2,m2,1,length2]

Each command above corresponds to one group of equations from (4.1) to
4.9).

In addition to these commands, the program needs to be given a matrix
containing the propagation phase, for the carrier and for each RF sideband, for
each connection defined. The program then calculates the propagation phases for
the audio sidebands from the lengths of the connections. When calculating the

audio sideband fields, the equations are slightly different because the source of
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this light is in a different location. If the back mirror is shaking, then it is the

source of audio sidebands; equation (4.1) becomes
Ee=0 (4.11)
and equation (4.6) becomes
Ey=rpEys+ S (4.12)

where S is proportional to the amplitude of the mirror motion and the RF field
E, found in the previous step. Thus to find the audio sideband, the program
inverts the same matrix (which however contains different values of ¢; and ¢9
since the frequency is different) and multiplies it with a different source vector

to solve for the fields:

E, 0
Ey :

M : =g 4.13)
E; 0

In summary, Twiddle begins by constructing the matrix M from a set of
commands specifying mirror positions, reflectivities and transmissions, and a
matrix giving the propagation phase for each frequency. It inverts this matrix
and multiplies by the appropriate source vector to find the RF fields everywhere.
Next it forms the source vectors for the audio sidebands from the RF fields incident
on the mirror being shaken. Finally, for each frequency of interest, it inserts the

appropriate propagation phase into the matrix M and solves for the audio sideband
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fields everywhere. From the values of all of these fields it calculates the mixer
output using" (3.24) or (3.26).

As mentioned earlier, the numerical models have the advantage of being more
precise than the analyses of Chapters 2 and 3. Both numerical models include
the effects of loss in the recycling mirror and beam splitter and neither neglects
the RF sideband fields in the arm cavities. The numerical frequency response
model is not limited to frequencies much smaller than the free spectral range of
the arm cavities and is believed to be accurate up to a significant fraction of the
modulation frequency.

It is instructive to see how the calculations compare. Table 4.1 shows the
values of the derivatives calculated in Chapter 2, evaluated numerically using
the parameters of Table 1.1, and the derivatives calculated by the Mathematica
model described above. Evidently the amount of accuracy sacrificed to the
approximations made in Chapter 2 is not large.

The plots in Figures 4.1 and 4.2 show the comparison between the approximate
frequency response analysis of Chapter 3 and the Twiddle program. Each plot is
labelled H_nm; the first index indicates the output, i.e., V3 through V4, and the
second index indicates the driven degree of freedom, i.e., 4+, ¢4, ®_, and ¢_,

in that order. We see from the plots that the approximate analysis is good up to

' The program contains a generalized form of these equations which can include the effect of having more RF
frequencies, as would be appropriate for larger modulation depth.
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Figure 4.1 Table of numerical (upper) and approximate analytic (lower) derivatives

of interferometer outputs, for the optical parameters given in Table 1.1.

Derivative with respect to

4 P+ o_ ¢
v -52.6161 -0.226582 | 0. 0.
-52.5585 -0.221949
V -4.06208 0.00664 0. 0.
-4.09635 0.00676
Ouput
Vi 0. 0. -27.9861 -0.213105
-28.1611 -0.214438
Vi 0. 0. 0.000200 | 0.0263128
0.000207 | 0.0271507

frequencies of about 1 kHz. The plot of H_11 extends over a broader frequency

range than the others; this is useful for the numerical servo design of Chapter 6.

The fact that the two curves in this first plot agree up to very high frequencies

is accidental since the approximations made in deriving the approximate analytic

expression for this response are violated at high frequencies.




Figure 4.2 Frequency response curves calculated using the approximate

analytical method and (dashed) the strictly numerical model.
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Chapter 5 Experiments with
the Table-top Prototype

Several table-top optical configurations of gradually increasing complexity
were set up over the past several years. This set of experiments culminated with
the construction of a complete interferometer to be described later in this chapter.
The formal goal of these experiments was to verify a reasonable number of the
predictions of the low-frequency optical model*. A secondary motivation was
simply to demonstrate the general feasibility of this extraction scheme. A large
number of unmodelled effects could in principle make the operation of such a
configuration impractical: extreme sensitivity to misalignment, to asymmetry in
losses, to mirror imperfections, or difficulty in acquiring lock being important
examples. Although the successful construction of a small scale prototype by
no means proves that none of these effects will be important in a full-sized
interferometer, it nonetheless gives one some comfort.

The first section of this chapter contains a description of the parts from
which all of the experiments were set up. The following sections describe
the experiments in order of increasing complexity, from the method used to

characterize the displacement transducers, to the characterization of a simple

* It is difficult to test the frequency response model in a table-top experiment because the lengths (hence delays)
are shorter and the losses larger; both of these effects lead to optical characteristic frequencies hard to attain with the

displacement transducers used.
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Fabry-Perot cavity, to the characterization of the three-mirror “coupled cavity”

interferometer, and finally, to the characterization of the full interferometer.

5.1 Setup and Hardware

All of the experiments described in this chapter have in common certain
aspects of the setup and certain building blocks from which the optical and
control configurations were assembled. A (Coherent Innova 100) argon-ion laser
operating at 514 nm served as the light source. This laser had been modified
by replacing its factory-installed mirrors with mirrors glued to piezo-electric
transducers, so that the length of the laser cavity, and thereby the laser wavelength
could be adjusted electrically. Furthermore two Pockels cells (Gsdnger PM 25)
outside of the laser cavity were used to effect high-frequency corrections to the
laser wavelength. These feedback elements were driven by a high-bandwidth,
low noise amplifier in a configuration which made it possible simply to connect
the demodulated signal from an appropriate photodetector to the amplifier input
in order to lock the laser frequency to a cavity. This setup had previously been
used with another prototype within the LIGO project, and was easily adapted
for the work described here. The laser light was phase modulated at 12.33
MHz by an additional Pockels cell (Gsinger PM 25), which was driven by a
power amplifier (LIGO 5 Watt Amp #9) and impedance-matching transformer

(LIGO Step-Up Transformer). Then the laser beam passed through an acousto-
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optic modulator (Intra-Action AFD 402) used for power stabilization, through a
single-mode optical fiber to improve the beam quality, and through a pair of mode-
matching lenses used to produce a beam with a convenient waist size and location.
Before entering the fiber, a portion of the beam was diverted to an optical spectrum
analyzer which was used to check whether the laser was operating single-mode,
and after the fiber, a portion was diverted to a “reference cavity,” a Fabry-Perot
cavity to which the laser frequency could be locked when a stable frequency was
necessary (for example during alignment of the interferometer). Also after the
fiber, a stray reflection from a mode-matching lens caught on a photodetector was
used to stabilize the power leaving the fiber, by feeding the photodetector signal
back to the acousto-optic modulator. A roughly 4 by 10 foot area of optical
table was reserved for the construction of various interferometers. A transparent
plastic cover with plastic curtains was installed over this area to protect it from
air currents and from dust. A small blower equipped with a filter was installed
for the purpose of purging the enclosed volume with dust-free air. In addition, a
clean bench in the room was operated whenever doing so did not interfere with
the experiments. Unfortunately, it was necessary to shut off both the clean bench

and the blower whenever it was desired to have an interferometer resonating on

the table.

An RF signal was used for phase modulation and as a signal to drive the

mixers. Figure 5.1 shows the setup used to generate and distribute the RF
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Figure 5.1 RF Distribution.
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modulation signal.

A relatively small number of building blocks was used to assemble all of the
experiments listed herein. Mirrors of various reflectivities were used. Some of
the mirrors were mounted on piezo-electric stacks (“displacement transducers™)
allowing them to be electrically displaced along the beam axis. Some of these
were also supported in mirror mounts (Klinger SL25.4BD) provided with piezo-
electric fine alignment controls (“orientation transducers”; Marshall Industries
#AE0505D08 or AE(0505D16, micrometer adapter machined in house). The
mirrors were 1 inch diameter mirrors from various manufacturers (but mainly
from CVI), with thickness ranging from 1/4 inch to 3/8 inch. Some of the mirrors
were superpolished before coating and some were not, but the difference between
these two types of mirror was found to be of little importance in the presence of
larger losses due to dust. The piezo-electric stacks were made by gluing together

(with Stycast #1266 epoxy) two piezo-electric washers (1 inch OD, 0.5 inch ID,
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type 550, from Piezo Kinetics) with brass washers serving as the electrodes. The
mechanical design of the assembly of mirror mounts, displacement transducers,
and orientation transducers was adopted, with only minor modifications, from

experiments!®1%-20 performed at the Massachusetts Institute of Technology.

Two types of photodiodes were used: tuned RF photodiodes made in house
(LIGO #5 and #6), and broadband PIN photodiodes (Thorlabs DET1-Si); the
bandwidth of the latter type depends on the load impedance. Photodiodes were
used in two applications: low-bandwidth applications where the power at some
optical output was measured (here the Thorlabs diodes were used with a 5 k
ohm load), and RF applications in which fluctuations in the output intensity at the
modulation frequency were measured (by demodulating). Either the less expensive
Thorlabs diodes terminated in 50 ohms or the in-house tuned diodes (which
provided better signal-to-noise performance) were used in the RF applications.
The high-bandwidth photodiodes were sometimes followed with an amplifier
(LIGO Comlinear E103 Composite Amplifier, #MEZ 8/17/84, or 1/3 of LIGO
Triple W/B Amp) but always with a mixer. Double balanced mixers (Mini-Circuits
ZAY-1) were used, followed by low-pass filters to remove the modulation-
frequency components from the mixer output. The mixers were driven by
limiter/phase shifters (LIGO #3,9,10 and 12), devices which contain an adjustable
delay line and a limiting and filtering circuit, so that the output is of fixed

amplitude (9 V peak to peak) but the phase delay is adjustable with a pair of
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knobs on the front panel. The phase-shifters were driven by the output of a 6-way
power splitter (Mini-Circuits ZFSC-6—-1-BNC), in turn driven by the RF oscillator
(LIGO 12.33 MHz Oscillator #4). General purpose adjustable-gain amplifiers were
used in various applications and high-voltage amplifiers (LIGO Dual translation
PZT Driver, #1 and 2) were used to drive the displacement transducers. These
amplifiers (see Figure 5.2 a)) have two inputs (a main input and a “test input,”
of which a linear combination is formed internally) and two outputs. One output
is the high voltage to be applied to the displacement transducer; the other is that

voltage divided by 100 and is called the “output monitor” signal.

Figure 5.2 Schematic representation of a high voltage amplifier and the dynamic signal analyzer.

a) High Voltage ampilifier b) Signal Analyzer
input l\ HV output
S 1 d s 2
output
gest monitor
input Signal Analyzer

The standard battery of test and measurement equipment was used: oscil-
loscopes, function generators, and a voltmeter. One piece of equipment which
deserves special mention is the HP3562 Dynamic Signal Analyzer (Figure 5.2

b)). This apparatus has the ability to generate a swept frequency sine wave at its
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output and simultaneously take the ratio of the components at that frequency in

the two signals present at its inputs.

5.2 Component Response Measurements

Displacement Transducers

As mentioned earlier, several of the mirrors in the interferometer were sup-
ported on piezo-electric transducers (displacement transducers) so that the optical
path lengths (and hence the phases) could be modified by applying appropriate
voltages to these transducers. The response of each displacement transducer was
characterized before installation into the interferometer, for two reasons. First, in
order to measure the response of the interferometer to changes in mirror position,
it is necessary to know what those changes in position are. Second, it was found
that the response of most of the displacement transducers contained a large reso-
nance at around 25 kHz; the installation in the loop of a notch filter, adjusted to
cancel the resonance as well as possible, allowed the low frequency loop gain to
be increased substantially while keeping the loop gain at the resonance frequency
below unity. The setup for displacement transducer characterization is shown in
Figure 5.3.

The signal from the photodetector was fed in to a differential amplifier (GP
in Figure 5.3), the other input of which was driven by an adjustable voltage

source. Before closing the servo loop, the displacement transducer was driven
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Figure 5.3 Displacement transducer characterization.
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with a large amplitude triangle wave and the voltage supply adjusted so that the
differential amplifier output was zero when the signal from the photodetector was
halfway between its minimum and maximum values vy,;,, and v,,4z. To lock the
Michelson, the differential amplifier was fed back to the high voltage amplifier
driving the transducer. At this operating point, the derivative of photodetector
signal with respect to mirror position is given by

dv 27
a‘(’é—l)' = _/\‘(Uma;v - 'Umi'n)- (51)

48 was then calculated by dividing this into the response measured with the

dvpiczo

Michelson interferometer locked, using the signal analyzer.™

Moving the mirror through a distance of several wavelengths (the displacement transducers typically have a range
of ;j-z\) provided an additional opportunity to measure the response of the displacement transducers. This was done simply
by counting the number of bright fringes produced at the output for a given voltage change at the displacement transducer.
Measurements of displacement transducer response done this way generally yielded values for the response that were

about a factor 1.7 larger than the response measured using small driving voltages.
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Modulation Index

The modulation index was measured by configuring a Fabry-Perot cavity as

an optical spectrum analyzer® (Figure 5.4)
Figure 5.4 Measuring the modulation index.
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The oscilloscope in this setup would show separate peaks for each frequency
component of the light as they individually resonated in the cavity. The modu-
lation index was then calculated from the relative heights of the carrier and RF

sideband peaks.

Mixer Gain

The mixer gain was measured by driving the “RF” input (which is normally
connected to the photodetector) with a sine wave of known amplitude and at
a frequency of 12.3 or 12.4 MHz (the mixer’s “Local Oscillator” input was

connected to a phase shifter as usual). Under these conditions the (low-passed)

" The commercial spectrumn analyzer sampling the beam before the fiber had insufficient resolution to measure the

modulation index accurately.
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mixer output was a sine wave at the difference frequency, a few tens of kilohertz.
The mixer response was calculated by taking the ratio of output amplitude to

input amplitude.
5.3 Response of a Fabry-Perot Cavity

An initial experiment consisted of measuring the response of a Fabry-Perot
cavity. The cavity was locked on resonance and the response measured by driving
the summing node, shown in Figure 5.5, and then taking the ratio of the two

outputs using the dynamic signal analyzer.

Figure 5.5 Measurement of the response of a Fabry-Perot cavity.
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The expected result (calculated by multiplying together the gains of all of the

cascaded components) is easily found using (2.7) and (2.19); it is

dV:zmp2 d(2k.’L‘) !
= Vbc4d ca Jo 1N ™miz L
dv‘})iezo d%ie:o D47 cav Jo LN Griizer Gan p2 5.2)

~ 190 £ 30
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Where g%;’:—z is the displacement transducer response, Vpc is the voltage from the
photodiode when the cavity is far from resonance, Jj and .J; are Bessel functions
evaluated at the modulation index, N' is the augmented bounce number, and

Grmiger and Gamp2 are mixer and amplifier gains. The measured result is

dV;zmpZ
——=17219 5.3
deiezo ( )

The uncertainty in the measured result is due mainly to fluctuations in alignment.
The fact that this is a more accurate way to measure the product of the gains of
all of the cascaded elements (than the individual measurement of each factor)
was important in obtaining more precise results in experiments with the full

interferometer, described below.

5.4 Response of the Coupled-Cavity

The “coupled-cavity” experiment consisted of a three~mirror interferometer
as shown in Figure 5.6.

The optical outputs were mixed down and one was fed back to the third mirror,
the other to the laser frequency. The response of the interferometer was again
measured by injecting a swept-frequency sine wave into a summing node in the
displacement transducer-driving amplifier and, using the signal analyzer, taking
the ratio of the signal from the mixer to the signal at the displacement transducer.

The DC optical model described in chapter 4 was used to calculate the

expected response of the coupled cavity in the absence of any servos. Now let us
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Figure 5.6 Coupled-cavity experiment.
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calculate the response in the presence of the servos. We will show that if the gain
in the loop feeding back to the laser is sufficiently large, then the measurement
described above depends only on the optical response, and not on the gain of

either loop. Let the optical response be the matrix A = [Zu ZRJ so that
21 @22

[&}=AK} (5.4)
Where X and z represent changes in the length of the arm cavity and the recycling
cavity. We want to represent the interferometer as a two-input, two-output device
where one of the inputs corresponds to changes in the laser frequency, which is
equivalent to equal changes in both X and x. We do this by calling the new

system P:

11

_ je11+a12 a2
a1+ a2 a2

PEAF q
5.5)
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so that

i|_ %51}
)-elt

where [ is the cavity length and A the optical wavelength.

The two feedback amplifiers we group into a “controller”

;1 0
C—[O 92} 6.1

Figure 5.7 Block diagram of the control system for the coupled-cavity experiment.

s
A

>S5

' - S

Then the closed-loop response can be calculated with simple matrix manip-

ulations: .
€=d+CP¢
(5.8)
=[1-cP"d

i Historically, in control theory, the points in the loop where signals are summed in have often been taken as
differencing, rather than summing nodes. This convention becomes awkward if nodes exist at several points in a loop or
if no nodes exist at all (the latter case is of interest when analyzing stability). We will use the convention that no changes
of sign occur except where they are explicitly included. Because of this, some of the expressions we derive may differ

by a sign from expressions found in some textbooks.
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F=P1-cPd (5.9

The experiment illustrated above corresponds to this block diagram with

- Jo
d= [dz] (5.10)

the signal analyzer then measures

52 axp-—g det A

s1 1—gi(a11 + a12)
det A (5.11)

2 P —
a11 + a12

where the approximation is valid when g; is very large*. As in section 5.3 above,
the value of this expression was multiplied by the appropriate factors such as
power on the photodiode, Jy.J1, the displacement transducer response, and the

amplifier gains, and compared to the measured values.

Table 5.1 below shows the measured and calculated response for two different
values of the recycling mirror (labelled “R” in Figure 5.6) and several different
values of the modulation index. The agreement was good for small modulation
depths and fair for larger modulation depths. It is suspected that the larger
discrepancy at larger modulation index is due to the fact that this optical model
excludes the effect of the higher harmonics generated in the optical spectrum

when the modulation index is large.

¥ Specifically, for the approximation to be valid, we require |g1] 3> |azy/ det (A)] and |g1| 3> [1/(a11 + az2)|
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Table 5.1 Results of Coupled-Cavity Experiments

Ty J? Response (dB)
73_'*'171" Measured Calculated
8.9% 0.012 46 49
16.9% 0.012 31 32
16.9% 0.10 36 40
8.9% 0.17 56 58
16.9% 0.17 39 42

5.5 Response of the Complete Interferometer

Once the coupled-cavity experiment was deemed adequately understood, a
complete interferometer was set up. Its layout is shown in Figure 5.8. The
recycling cavity and both arm cavities were folded in half; the recycling cavity
because it needed to be slightly in excess of 6 m in length and the arm cavities to
allow the convenient use of cavity back mirrors with the same curvature as that of
the recycling mirror. Table 5.2 shows the optical properties of the interferometer.
The loss in the arm cavities was mainly due to dust on the mirrors and in the
air, and the loss in the recycling cavity is presumed to be mainly due to pick-off
reflectivity and dust and scattering loss on the surfaces within that cavity”.

Alignment of each arm cavity was done by observing the light transmitted
through the back mirror with an oscilloscope while driving the back mirror with a

large amplitude triangle wave. The oscilloscope would show a number of peaks,

Light traveling around the recycling cavity encounters an average of 16 surfaces during one round trip (counting

surfaces encountered twice as two surfaces).
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Table 5.2 Fixed Mass Interferometer Optical Properties

Fabry-Perot Arm Front Mirror 9 %
Cavities Transmission
Back Mirror 13 ppm
Transmission
Losses 02 %
Fringe Visibility 9 %
Cavity Gain 40
Recycling Cavity Recycling Mirror 18 %
Transmission
Cavity Losses (including 16 %
Pickoff beams)
Fringe Visibilty 88 %
Recycling Factor 4
Beam splitter Contrast 99 %

one for each resonant transverse mode, and one for each frequency of light incident
on the cavity. The height of the peak corresponding to the carrier resonating in
the (degenerate) 01 and 10 transverse modes was then minimized by adjusting the
orientation transducer voltages. The recycling mirror was aligned by driving both
it and the second arm steering mirror (SAS in Figure 5.8) with triangle waves
(at different frequencies) and again minimizing the peak corresponding to the 01
and 10 transverse modes.

The feedback configuration which was used is shown in Figure 5.9%. This

t Although the figure shows loop 4 driving the beam splitter, this drive was actually applied to the second arm steering
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Figure 5.8 Layout of complete interferometer.
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configuration is quite different from the more balanced configuration which would
be used in LIGO; however it holds the interferometer on resonance and thus is

adequate for the purpose of verifying the calculations made with the optical model.

Arranging for the interferometer to lock initially was a problem which was
only solved by the application of considerable amounts of patience. The “method”
used to adjust the four gains and mixer phases to their operating values was to
observe the light transmitted through one of the cavity back mirrors with a pair
of photodiodes connected to a storage oscilloscope, while driving several of the

mirrors with low-frequency triangle waves. The drive and whatever other sources

mirror (see Figure 5.8). The effect of driving the second arm steering mirror is nearly the same as the effect of driving
the beam splitter; one changes only the optical path length ({p) from the recycling mirror to the first arm, and the other
changes only the optical path length ({7) from the recycling mirror to the second arm.
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of disturbance were present would occasionally cause the interferometer to pass
close to resonance, and the storage oscilloscope would then record the length of
time the servos held it resonant, typically only a fraction of a millisecond when the
various connections were first established. The operator would change a setting
on some gain or phase dial, and again watch the oscilloscope, to see whether this
change improved or worsened the performance. The servos were adjusted in order
of the degree to which they are critical to resonance: the laser frequency servo first
(because the laser frequency contains the most noise and because deviations in the
laser frequency push the interferometer away from resonance most effectively),
the servo driven by the gravitational-wave signal second, and the remaining two

in either order.

Figure 5.9 Servo configuration of Table-top prototype. Feedback amplifiers not shown.
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Once the amplifiers and mixers were properly set up, however, the interfer-
ometer would acquire lock with remarkable ease. The mechanism by which this
occurs is not yet fully understood, but it was found that when the second arm
steering mirror was moved back and forth slowly with the other servos active,
the other servos would acquire lock and hold it until the continuing motion of the
second arm steering mirror destroyed the resonance (resonance is relatively insen-
sitive to the positions of the beam splitter and second arm steering mirror, as we
see in Appendix B). This fact made it easy to devise an automatic lock-acquisition
system: the power transmitted through each of the two arm cavity back mirrors
is compared to a threshold. When either power level is below threshold, the
second arm steering mirror displacement transducer is driven by a triangle wave;
once both power levels exceed their respective thresholds, the second arm steering
mirror drive is disconnected from the triangle wave source and connected to the
amplifier which supplies the appropriate feedback signal. Figure 5.10 is a set of
oscilloscope traces showing the light levels in the interferometer and the voltage
applied to the second arm steering mirror displacement transducer. When the
interferometer is knocked out of lock (in this case by rapping one’s knuckles on
the optical table cover), the voltage begins to ramp up and down; once resonance

is re-established the circuitry disconnects the ramp and reconnects the servo loop.

Closed-loop response measurements were made as shown in Figure 5.11.

Loop numbering is shown in Figure 5.9. If a driving signal d is applied in loop j
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Figure 5.10 Time record of lock interruption.
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by the signal analyzer, and the analyzer inputs are connected to the displacement
drive signal of loop j and to the mixer output in loop % respectively, then the

expected ratio” of the signals at the two outputs is

82
, (GBPA), - (4 GBPA™) (5.12)
_ 4 col j
Gk ([1 + GBPA]‘I) B
JJ

“ Mathematica code was used to calculate the interferometer response, and Matlab® code was used to calculate the
closed-loop response given the interferometer response. Matlab® is a registered trademark of The MathWorks, Inc.
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Figure 5.11 Block diagram representing setup for closed loop measurements.
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where P is a matrix representing the interferometer response, and A, B, and G are
diagonal matrices representing the Ay, Dy, and Gy, respectively. The products

A;B; were found using

'z_i rr = BchavityAi (5.13)

where | ., was measured, as shown in Figure 5.12, in each case using a single
Fabry-Perot cavity, whose response Peqyity 15 deemed understood.

The responses calculated (and measured) for the full interferometer, unlike
the coupled-cavity response, are not frequency independent. Although the plant is

still frequency independent, and the gain of the laser frequency servo large enough
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Figure 5.12 Setup for measuring the factors A; and DBj.

vaity

bl
s‘ldsZ

Signal Analyzer

to make changes in it (with frequency) irrelevant, the gains of the remaining loops
do change significantly with frequency over the range where the measurements
were made. Figure 5.13 shows plots of experimental and calculated response (Hyy)
for measurements made by driving loop j and measuring the response in loop %,
with both of those indices ranging from 2 to 4. Phase plots are modulo 180°
and are shown for reference only. The laser frequency loop was excluded from
these measurements because it was difficult to achieve adequate signal to noise
ratio without disrupting lock in any measurement where a signal was injected

into the laser frequency loop™. In addition, samples of the plotted curves (at 2

* Some readers may consider this result counterintuitive (this author certainly does). How can it be that the noise is
large enough that adding a signal comparable to the noise even in a small frequency band disrupts lock, yet small enough
that the entire noise power over all frequencies does not disrupt lock? The answer is that the element which behaves in a

non-linear manner, disrupting lock, is in general located at a different point in the loop from the point where we measure

the output.
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Table 5.3 Sampled values of experimental (bold) and calculated response.

Measured and Calculated Loop in which response measured
Response at 2 kHz (dB) 2 3 4
2 38.3 37.7 986 16.4 154 17.8
Loop 3 269 246 |19.0 221 |23.6 234
Driven
4 24.6 25.8 273 31.8 36.3 36.9

kHz) are presented in Table 5.3, in order to allow the data to be summarized
more compactly.

The experimental uncertainty estimated for these results is about +3 dB, due

mainly to uncertainty in the displacement transducer response (about *1 dB),

The figure above shows a block diagram of a system with two inputs, a signal s and a noise source n. If the point in
the loop which limits the dynamic range (the point where non-linear behavior occurs most easily) is at the input to H,

then the condition for maintaining lock can be written

n Gs
g — z 14
Y=1—emti-cm <" G149
From which
7 < (11— GH)Ymaz (5.15)
1-GH
s< C Ymaz (5.16)

and the maximum contribution to z = s/(1 — GH) + nH /(1 — GH) that the inputs can produce is given by ¥maz/G
and Ymaz /H for the signal and the noise input, respectively. The dynamic range constrained signal-to-noise ratio can

take any value, depending on the distribution of gain within the loop.
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uncertainty in the losses in the arm cavities® (about +1.5 dB), and fluctuations
in alignment (about +2 dB). All of the plots of experimental versus calculated
response show reasonable agreement within this uncertainty except for the case
of Has, where the discrepancy is perhaps twice the experimental uncertainty. It
is not known whether this discrepancy is due to a random large fluctuation in the

cumulative error or to an unmodeled systematic effect.

* The fractional uncertainty in the arm cavity round trip loss was perhaps +/-50% (due to fluctuating dust levels), but
the corresponding fractional uncertainty in the recycling cavity round trip loss only about +/-15%, since arm cavity loss

was not the dominant loss in the optical system.
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Figure 5.13 Plots of experimental and calculated (dashed) response.
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Chapter 6 Design and Analysis
of a Control System

If we consider the interferometer as a four-input, four-output device, then
the problem of designing a control system is that of constructing another 4x4
device which when connected to those inputs and outputs will suppress seismic
disturbances and keep the interferometer on resonance. At this level of generality
the problem is quite complex, and the only systematic approaches known are
purely numerical. Our approach will be instead to make a number of simplifying
assumptions about the structure of the controller, to develop some guidelines for
the design of a control system, and then to use numerical methods to calculate
the expected performance.

First let us write the matrix of transfer functions of our interferometer in a
simpler form. We assume that we can connect amplifiers with arbitrary (stable)
frequency response and gain to the outputs of the interferometer and we will
choose the gain and frequency response of these amplifiers to make the new
system as simple as possible. This simplified system we will call the “plant.” Its

transfer functions can be written in matrix form:

‘/1 1 61(8) 0 0 ‘I’.i.
Va| |1 eax(s) 0 0 [|o4
sl = o o0 1 es(s) | |@- ©.1)
Va 0 0 egs) 1 |lo-
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Figure 6.1 Equivalent block diagrams for the plant.

P.

-

Figure 6.2 Closed-loop system.

P.

Since the plant is block-diagonal, it is equivalent, as shown in Figure 6.1, to
two disconnected sub-plants, the common-mode sub-plant Py and the differential-

mode sub-plant P_.

There P, and P_ correspond to the upper left and lower right 2x2 blocks of P.
P_ is a simple subsystem to control because it is nearly diagonal; it represents two
loops which are almost independent. P, on the other hand is difficult to control
because it consists of two rows which are barely linearly independent. We will
spend most of the rest of this chapter considering the problem of designing an

adequate control system for Ps.

This problem, then, consists of finding a matrix of transfer functions such
that the closed loop system of Figure 6.2 performs adequately. We will make an
effort to design a controller C' which is diagonal, which means that it consists of

two independent feedback amplifiers, C; and Cy as shown in Figure 6.3.
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Figure 6.3 Closed-loop system with a diagonal controller.

Figure 6.4 Closed-loop system with a “crossed” controller.

P.

]

G

If we can achieve adequate performance with such a controller, then we will
have avoided some complexity. Several questions arise in the design of this
controller which do not arise in the design of a controller for the P— sub-plant.
For one thing, it is not obvious for the P, system which output should be fed
back to which input. For P_ that choice of connection scheme is guided by the
fairly intuitive rule that each output is fed back to that input to which the output

is most sensitive.

In the Py system it may be better to connect the feedback in the “crossed”
configuration illustrated in Figure 6.4. The system obtained this way is equivalent
to the system we get by re-numbering the rows of P, (i.e., interchanging £; and
€2) and connecting the amplifiers in the “straight” configuration illustrated in

Figure 6.3.
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Another important concern is that the transfer functions of Py may contain
right-half-plane zeros, as we can see from (3.71) and (3.72). It is well known?1-22
that in a one-dimensional servo loop, right-half-plane zeros in the plant limit the
achievable unity-gain frequency. In our case, we may wish to design the optical
system to avoid such problems. We will investigate the effects of right-half-plane
zeros in the first section of this chapter.

In the second section, we will consider the size of the performance price
we are paying by using a signal-extraction system which produces a poorly-
conditioned plant. Other signal extraction methods?, which at the expense
of increased complexity produce a very well-conditioned plant, are available
for sensing deviations from resonance in the interferometer, and in evaluating
the relative merits of the system presented herein against such an alternative,
performance benefits are an important criterion.

At the end of this chapter, as a demonstration of the design guidelines we
will have seen, we will design a control system for the example interferometer

we have been carrying, and we will evaluate its performance numerically.

6.1 Feedback Configuration and Gain Constraint
The frequency-independent 2x2 plant

Consider a system as shown in Figure 6.5, with a plant

_1 &
P= ,:1 52} (6.2)
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Figure 6.5 Block diagram for analysis of system containing frequency-independent plant.

P

=l

%

where £; and & are constants. We will use very simple feedback amplifiers with
one pole each (both at the same frequency wq/(27)) and we will leave ourselves

the freedom to adjust the polarity and gain of each amplifier:

_ 1K
C1= 1+;3j 6.3)
and
_ QK
Cy = 1+T:—a 6.4)

where w, > 0 (for stable amplifiers), the (); = F1 represent polarity switches,
and the K; > 0 represent adjustable gain controls. Since C' and P are open-loop

stable, the closed-loop system is stable if and only if' det [1 — CP] contains no

right-half-plane zeros**. Now

K1 QKb  KiKp(&—&)
1+% 1+% )2
- TR ()

= —-——‘-—5[1 ~ Q1K1 — Q2K2és + Q1K1Q2:K2(& — &)

det[1-CP]=1-

2
+(2- Q1K - Q2K2€2)§- + (wi) ]

6.5)

i We will continue to use the feedback sign convention explained in the footnote on page 84.
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We know that a polynomial with real coefficients has zeroes with positive
real part if any pair of coefficients has opposite signs® (for a quadratic, it can
be shown that the latter is also a necessary condition for the former). The last
coefficient ((i) 2) in the numerator polynomial (in s) is positive, so for stability,
all of the remaining coefficients must be positive.

Now suppose we choose (1 = 1 and we want to start off with K7 = Ko =0
and then increase the gain K first. If we increase it to the point where K7 > 1
the system will be unstable since the coefficient of s’ becomes negative. This
is an undesirable situation because we would prefer to be able to increase the
gains arbitrarily and enjoy the resulting improvements in performance. In this
case it is easy to understand what is wrong; as in a one-dimensional servo, if the
sign of the feedback is wrong, the system will be unstable for gain exceeding a
certain threshold. We need to choose (J; = —1 to avoid this problem. Similarly
we find that if {3 > 0 then we need to choose (92 = —1 to be allowed arbitrary
Ks when K1 = 0.

We might ask whether these choices of polarity guarantee stability for all
values of the gains K; and K». The answer is “no”: As we can see from the last

coefficient of s' in (6.5), if & — & < 0, the system is unstable if

14+ K1 + Ksé,

£1— & (©6)

KiKs >

so again the gain is constrained by stability considerations. It is easy to verify
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that had we numbered our outputs differently we would have had a stable system
no matter what (non-negative) values we chose for K; and K». Equivalently, had
we hooked up the amplifiers in the crossed configuration, the corresponding term
in the s coefficient would have been & — £2 and again the system would have
been stable for any non-negative K; and K.

With this motivation, we make the following
Definition:

The closed-loop system consisting of the plant P and two controllers C; =
%%i and Co = —Q‘ﬂl‘i is gain constrained if AQ1, Q2¢{1, —1} such that the system
is stable for all positive real values of X; and Ko.

Now we can show the following:

Theorem 1:
The system consisting of the plant P = E g} and controllers C; = %l

and Cy = QAI% connected in the straight configuration is gain constrained if and

only if
£2(f2—&1) <0 6.7)
Proof:
Sufficiency: &2(é2 — £1) < 0 implies either

i & >0and & —& < 0or

ii.h & <0andé& ~& >0



105

Case i) is the one we looked at in the example and we saw that it is gain-
constrained. In case ii), if we choose ()2 = —1 then the term —Q2K>¢s is
negative and the coefficient of s becomes negative for large Ks. If we choose
Q2 = 1, the term Q1 K1Q2K2(é — £1) is negative.

Necessity: If {2(€2 — &) > 0 we take (1 = —1 and the sign of Qo opposite
the sign of 2. Then all of the coefficients in the numerator of (6.5) are non-

negative for all values of K; and K.

Frequency-dependent plant

Now we will prove a weaker but more relevant result.

Theorem 2:

the system consisting of the plant

1 &(1+ fl-
P= : 6.8)
1 &1+
and the controllers
1K
Ci = —— 6.9
1=17 x (6.9
and
() K.
Co = __22__2_7 (6.10)
(1 + })

¥ Py can be written in this form by factoring 7 +1_,._ out of (3.57), (3.61), (3.71), and (3.72).
wee
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connected in the straight configuration is gain-constrained if any of the following
is true:
i &(—-£&)<0
i &(2-&) <o
i, we < 0
Proof:
As before, we form

QK1 Q2K3262 (1 + ;“;)
1+ (1+ w—*‘;)z

det[1-CP]=1-

Q1K10Q:K> [.52 (1 + :fj) — & (1 + HJLI)]

(1 + ;“:)3
(—"1—")—3'{[1 ~ Q1K1 — QaKaba2 + h K1Q2K2 (&2 — £1)]
14 £

+[8 = 2Q1K1 — Q2 Ka&» (1 + %)
+ Q1K1Q2Kow, (% - f_l)] (i)

w1 Wq
2 3
+ [3 — QLK - Qszfzﬁ] (—3—) + (i) }
w9 Wy Wy

Now it is easy to see that if any of the conditions listed in the theorem holds,

-+

(6.11)

then at least one of the coefficients of K7, Ko, or K1 K> will be negative and the

system will be unstable for some values of these gains.
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Implications for the Interferometer

Because of the way in which we numbered the interferometer outputs, the

feedback configuration of Figure 1.7 corresponds to the straight configuration for

Py . In Chapter 7 we will see that this has an important advantage over the crossed

configuration (with the same numbering). We let

8 Hv1¢+ (5)
14— ) = Zuéel?)
51( wl) 2, (5)
Substituting from (2.77), (2.78), (3.57) and (3.72), we get
61 =
N(')V&ﬂ
and
N — N!
wy = me
Similarly, letting
s Hy,s, (8)
1 + = = 20+ .
& ( w2) H02§+ (3)
and using (2.70), (2.74), (3.61), and (3.71), we have
£ = No— Ny
' Nolregl
and
o = Ny — an
2 _—Nl — Wee

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)

(6.17)

Now the necessary conditions for freedom from gain constraint (Theorem 2)

become:
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(from the third condition, and from (3.66) which implies w.. > 0)

N1 — Ny
Tl >0 (6.18)
which implies & < 0 (since, from (2.17) and (2.75), 24fal > oy;

then the first condition gives:

N Ni)
— ——==1>0 6.19
(NO (') ( )

and the second condition enforces the same constraint as the first. We will explore
the consequences of these conditions for the optical design in more detail in

Chapter 7.

6.2 System Performance

Let us now address the question of how much performance we sacrifice by
operating with a poorly conditioned plant. Figure 6.6 shows a block diagram of
the closed-loop system with d; and d2 representing seismic disturbances driving
the system away from perfect resonance and e; and es the residual deviations

from resonance in the presence of the servos.

Figure 6.6 Block diagram used to analyze performance, showing inputs driven by seismic disturbance.

i P




We solve for &

If we let

then
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S=Q1-cp]?

eg = Sa1d1 + Sads

We will consider this term first.

(6.20)
(6.21)

(6.22)

(6.23)

(6.24)

The smaller e is, the better a job our control system is doing. Clearly the

larger we can make the elements of C, the better. In a real system there are

always aspects of the high frequency performance of the system which limit the

unity-gain frequency and thereby the gain one can achieve at those frequencies

where one wants to suppress disturbances. In our system, assuming that it is not in

a gain-constrained configuration, these high frequency features will be mechanical

resonances at about 10 kHz for any loop driving a mirror, and propagation

delays in the optical path and wiring, which produce significant phase delays
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Figure 6.7 Block diagram showing plant and one feedback loop as a single block.

G

for frequencies exceeding about 1 MHz, for the loop feeding back to the laser.
In Figure 6.7 these are shown explicitly as additional factors R; and Ry.*
When one of the outputs of the plant is connected back to one of its inputs

via controller C; the resulting one-input, one output system’

(R1Cy) # Py = Cs (62 L ) (6.25)

can be treated as a simple block from the point of view of analyzing loop 2. If we
assume that (R;C1) * Py is smooth and minimum-phase in the frequency range
where Ry is smooth, then its exact frequency response is irrelevant since we can
in principle cancel it by appropriate choice of frequency response of C». Then
the minimum achievable value of S22 depends only on Ry, and, in particular, not

on whether or not Py is diagonal. The other contribution to es is S21d;, and we

* These factors have not been relevant until now because we model them as equalling unity at the frequencies where

we want to suppress seismic noise, typically frequencies of less than 10 Hz.

i For brevity, we will write £1 and 2 instead of €3 (s) and £2(s) throughout this section.
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may ask how the size of this contribution compares to the other, since if we had

a diagonal plant, this contribution would vanish. We can write S explicitly:

S=[1-CP]™?
_ _1_ 1—-Ches  Cheg (6.26)
A Cs 1-C;
where
A=1-C1—Chea+ C1Cs(e2 — €1) 6.27)
and see that
Sa O
5~ 1-C (6.28)

In other words, the fact that our plant is not diagonal does not degrade performance

significantly if
ICo| < |1~ (6.29)

A more useful expression can be derived by writing this in terms of the loop

gains, G1 and Gj:
G1 = C1(P xCy)

_ 81C2
= (1 1= czez) (6:30)

ad Cl (1 - ﬂ)
€2

where we have assumed that |Coez| > 1. Similarly

G2 = Cz(cl * P+)
(6.31)
o~ 02(82 - 81)
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and if C; > 1 we get the approximate result:

S
S22

Ga
Gie9

(6.32)

In other words, we do not sacrifice a significant amount of performance by
adopting this scheme as long as G; is sufficiently large. The required ratio
of G to G3 is 1/ey; typically a few hundred”. This is easy to achieve for any
reasonable loop shape in loop 2 since the unity gain limitations on loop 1 are
so much less severe.

Next we look at loop 1 to see whether performance there is degraded. Here

e1 = S11d; + S12d2 (6.33)
and the relevant ratio is
Sz _ I_C_Zl__
S11 1—¢2Cs
N Gie1 (6.34)
= |

Since €3 is typically larger than €2, this means that as we increase G we first start
to experience a degradation in performance in loop 17 (over what it could have
been with a diagonal plant) and then we stop experiencing any degradation in
loop 2. One of the loops always experiences some degradation. In the numerical

analysis presented later in this chapter, G; is very large, so that the performance

* In our numerical example, €7 ~ 0.0043 and €2 ~ —0.0016.
f The performance in loop 1 does not become worse as we increase Gy; it just ceases to improve. If we had a

diagonal plant, the performance in this loop would continue to improve as we increased the gain.
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in loop 1 is not as good as it would be with a diagonal plant. Nonetheless,
according to the predictions of this numerical analysis, adequate performance
can be achieved in both loops. If the specs on loop 1 were much tighter or if
we found that we had trouble meeting them, then we might want to consider
using a different signal extraction scheme or implementing a “decoding matrix”

to improve the performance in loop 1.

A decoding matrix is a set of amplifiers interconnected so as to form a 2x2
system which, when connected to the outputs of P, produces a new plant, say
P, = E ‘Z;] (6.35)
For an ideal decoding matrix, P, would be nearly diagonal (i.e., €1 ~ 0 and €5 ~
00). Under these circumstances the noise injected into either loop by the other
would become negligible. For a more realistic decoding matrix all of the relations
between the matrix P, and stability and performance derived above apply equally
to Py, and performance can be improved if the new plant is more nearly diagonal
than the original plant. When analyzing such a system, it is especially important
to consider the imperfections in the components used to build the electronic
decoding matrix, and possible fluctuations in the interferometer response, due

to misalignment or deviations from resonance. The design of an ideal decoding

matrix would be straight forward if one had ideal electronic components and a
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non-varying interferometer response; a real device with imperfections may yield

smaller performance benefits.

6.3 Numerical Example of a Control System Design

Mainly for the sake of illustrating some of the ideas developed above, a
controller was designed and evaluated numerically’. The design was done by
trial and error. Poles and zeros were added to the controller and their frequencies
changed until adequate performance was achieved and all of the constraints
satisfied. The poles and zeros of the final design?, as well as the performance

predicted for this design, are shown in Table 6.1.

Simple numerical models were used to represent the plant and the controller.
For the plant, the rational function approximation derived in Chapter 3 was used;
for the controller, a rational function (pole/zero) representation was used. Thus the
numerical model did not contain the effect of internal resonances in the mirrors,
nor the effect of propagation delays. That these unmodeled effects would not

cause instability in a real system was checked by inspection during the design

Process.

* Almost all of the analysis described in this section was done using Matlab® code.

i L. Sievers first observed that adequate performance could be achieved, and all of the design constraints satisfied,

with controllers containing only real poles and zeros (i.e., no complex conjugate pairs of poles or zeros).
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Constraints

Stability As mentioned above, a mirror resonance could cause instability if the
loop gain at the resonant frequency were to exceed unity. Since the resonances
are expected to have quality factors of up to 107 and are expected to occur at
frequencies as low as 10 kHz?’, this type of instability was ruled out by assuring
that the magnitude of the loop gain in any of the loops driving a mirror was less
than 1077 at frequencies exceeding 10 kHz'%,

In the loop feeding back to the laser frequency the criterion was simply
that the unity gain frequency be less than 1 MHz. At that frequency 80 ns of
delay (corresponding to 24 m of optical path), together with 15 degrees of phase
change seen in the high frequency interferometer response (H_11 of Figure 4.2),
still leaves a phase margin of up to 70 degrees.

The simplified rational function model of the closed loop system could also
be unstable by itself. This was checked by finding the eigenvalues of the “A”
matrix in the state-space representation’ of the closed-loop system, to make sure

that their real parts were positive.

Noise One additional constraint was observed during the design. As we saw in

Chapters 2 and 3, the gravitational wave output, in addition to being sensitive to

* A Mathematica program was written to check this particular constraint. This was necessary because the Matlab®
code, using the state-space formalism, underestimated the attenuation at high frequencies.
T The (Matlab®) software used to do this part of the analysis and design does all of its calculations in state space.
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®_, is also sensitive to ¢. If ¢_ is controlled by a loop containing a noisy sensor,

then the induced noise in ¢ will contaminate the gravitational wave signal”.

Quantitatively, we require, at frequencies where we want interferometer
performance to be limited only by shot noise at the antisymmetric output (above

100 Hz),
sl [ 52 (f)]l1 o l<<Sz () (6:36)

where Sg_ (f) and SZ (f) are the shot-noise limited sensitivity to ¢_ at the
isolator and to ¢_ at the antisymmetric output, and G4_ is the open-loop gain in

the ¢_ loop. In our numerical example, this corresponds to
Gy 0.1 (6.37)

and we use G4_ < 0.01 as our constraint.

Performance

Figure 6.8 shows the expected seismic disturbance driving each of the interfer-
ometer mirrors'2°, To calculate the rms deviation from resonance, this spectrum

is first multiplied by a number M}, corresponding to the number of mirrors being

" In principle, this noise, being separately measurable in the ¢_ loop, could be subtracted out of the gravitational
wave signal. However, the precision with which this can be done is limited by practical considerations, and the additional
complexity is undesirable.

¥ This curve was calculated from a combination of estimated and measured spectra of the seismic motion, and from

the transfer functions of the mechanical anti-seismic isolation.
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perturbed, and multiplied at each frequency by the closed loop gain of the sys-

tem. This set of operations is represented diagrammatically in Figure 6.9. This

produces the spectrum of residual deviations, which is then squared, integrated,

and raised to the power of 1/2.

Figure 6.8 Seismic spectrum.
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Figure 6.10 shows the magnitude of the open-loop gains, and the spectra

of residual motion for the common-mode degrees of freedom. We see that the

ratio of open loop gains easily exceeds 1/¢5 at all frequencies where the seismic

disturbance is significant, and, as expected, the residual deviations are due mainly

to the disturbance input in loop 2. This is illustrated by Figure 6.11, which shows
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Figure 6.9 Block diagram for the propagation of seismic disturbance.
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the contributions to the residual deviations in loop 1 and loop 2, due to seismic
disturbances entering loops 1 and 2.

Finally we note that although the performance specifications set forth in
Chapter 1 and Appendix B were only barely met in this design, considerable
improvements are possible at the cost of modest additional complexity. In loops
2 and 3, which are limited in bandwidth by mirror resonances, gain increases can
be achieved by installing notch filters in these loops, to partially cancel the effects
of the resonances. The gain in loop 4 can be increased without contaminating
the gravitational-wave output if subtraction circuitry is installed to re-subtract the

noise introduced by this loop from the gravitational-wave output.
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Figure 6.10 Loop gains (a)) and residual motion (b)) in common-mode
degrees of freedom. Curves corresponding to the ¢ loop are dashed.
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Figure 6.11 Contributions from loop 1 and loop 2 (dashed) to
residual deviations from resonance in loop 1 (a) and in loop 2 (b).
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Table 6.1 Loop shapes and performance predictions for numerical servo design.

pole zero Unity-gain Performance
frequen- frequen- frequency (RMS residual
cies (Hz) cies (Hz) deviation,
radians)
Degree of o, 0.0016, 1.6, 1.6, 16, 300 kHz 7.3x 107
Freedom 3 at 0.016 16,
¢+ 0.0016, 1.6, 16 70 Hz 7.2x 107
2 at 0.016
4 at 3000
&_ 3 at 0.016 92, 60 Hz 3.8x 10
4 at 3000 16, 16
é_ 2 at 0.0016, 3 9 Hz 2.5x 1072
30, 30
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Chapter 7 Optical Design Considerations

In previous chapters, a number of somewhat arbitrary choices of optical
parameters and layout have been made. Inb this chapter we will investigate
the motivation behind some of those choices. In particular, we will consider
the choice of common-mode feedback configuration, of asymmetry, of recycling

mirror reflectivity, and of modulation depth.

7.1 Common-mode Feedback Configuration

In Figure 1.7 we showed the feedback to the laser frequency coming from
the isolator inphase output and the feedback to the recycling mirror position from
the pick-off inphase output. In principle one could reverse these connections for
some optical configurations. One compelling reason to feed back to the laser
frequency with v; is that the shot-noise limited sensitivity to @, is better in v;
than in vs (typically by a factor of about 30). Since we insist on high gain in this
loop, any sensing noise in this loop will be impressed on the laser frequency’.
This noise can be measured, and it could in principle be subtracted out of the
gravitational wave signal, but this is technically difficult, and would require a

separate low-noise frequency reference’.

* Although the gravitational wave output of an ideal interferometer is insensitive to v1, a small asymmetry in the arm
cavities can compromise this common-mode rejection.
1 The currently proposed mode cleaner (see footnote, page 8) is almost quiet enough, and could be made sufficiently

quiet by narrowing its bandwidth.
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7.2 Asymmetry
An immediate consequence of this choice of feedback configuration is that
(according to (6.18)) avoiding gain constraint will require

N1 — N
1 0

A 0 (7.1)

which implies (using (2.71) and (2.75))
cosa > Ty (71.2)

A number of other aspects of interferometer behavior are affected by the value
we choose for the asymmetry 6. One of these is the shot-noise limited sensitivity
in vz to ®¥_, the gravitational wave signal:

1 V Sugvs (f
S¢_(f) = ) (7.3)

Hy,g_(i2f)

where

S-v;;-va (f) = |Ee.:vc,e..s'.s-l2 + 3IEa‘nti 1,2 (74)

and

: ; E, E nti
Hyo_ = EfJU(r)Jl(r)( r 0 )( ant 1>tpr&, (1.5)
Einco) \ Einc1
The above expression is complicated and its optimization is usually done numeri-

cally. However, ¢ affects only the term 3|E,,4; 1|2 in the numerator and (%ﬂﬁl)

in the denominator. The numerator increases with E,,,;; 1 more slowly than does
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the denominator, so increasing (%ﬁfil) improves the shot-noise limited sensi-

tivity to ¢—. Now

Eanti 1 sin o
( Eine1 ) x 1- TRTp cos (7.6)
is maximum when
cosa = rgT, a7

which corresponds to a =~ 0.2 in our numerical example. However, the following

considerations motivate us to choose a smaller value for o:

1. The vacuum envelope must be able to accommodate the test mass positions
corresponding to the desired asymmetry. This may be easier with a smaller
value of 6.

2. The shot-noise limited sensitivity to ¢4 in vy is degraded if the amount of
sideband reflected from the recycling mirror (-g’—n%) is too small. From
(2.77) we can see that in fact the signal will vanish when (%—:f—ll) =0,
which happens when cosa = %, a value uncomfortably close to the value
in (7.7) above.

3. As mentioned above, if we wish to be free from gain constraint, we must
choose cosa > r4; moreover, we will see in the next section that we wish
to choose g =~ 7.9, S0 again this motivates the use of a smaller value of a.

4. The shot-noise limited sensitivity to ®— is quite a weak function* of o. This

¥ A numerical survey over a large range of values for contrast defect, recycling mirror transmission and losses showed

that the shot noise limited sensitivity to gravitational waves was degraded by at most 5% when o was reduced to 0.15.
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is because a lack of efficiency in transmission to the antisymmetric port can

be partially compensated by an increase in the modulation index.

From the above arguments we conclude that the choice of a is not critical, and
we choose one which is roughly 75% of the value which would give optimum

shot noise performance.

7.3 Recycling Mirror Reflectivity

The recycling factor (see footnote, page 26) is maximum for 7z = Tpr, and
we would like to operate as close as possible to this value. Before choosing 7z

we will make sure that condition (6.19) is not violated.

N1 N
_ = 7.8
No N @.8)
implies
— Tpre
(1 - M) >0 (7.9)
TR —Tpcosa

which is satisfied if

COSQ > Tep (7.10)

But we have already chosen to satisfy this in Section 7.2, in order to achieve
wy > 0 (no right-half-plane zero in H,,4. (s)). We are free to choose any recycling
mirror reflectivity we want. It is interesting to note that this would not be the

case were we to demand that H, 4, (s) also be free of right-half-plane zeros.
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7.4 Modulation Index

The shot noise limited gravitational wave sensitivity of the instrument is a
relatively sensitive function of the modulation index I', especially if E.yceqs is
large, and for large E.;ces, the optimum value of I' is also large. For large T
the approximation (2.2) is no longer valid, and one needs to add (at least) an

additional pair of terms:
Eine ~ Ey (J()(I‘) + (T) (1™ + ie_mt) ~ B(T) (eimt + e‘*’zm)) (7.11)

We call the frequency components separated from the optical carrier by 2(2 second-

order RF sidebands; they are reflected almost perfectly from the recycling mirror

Ere.f 2)
~1 7.12
(Einc2 ( )

since (by design)” they do not resonate in the arm cavities nor in the recycling
cavity. They are capable of beating against the first-order RF sidebands to create

a signal at the mixer output. Generalizing (2.4):
vy = Re{E*_2E_1 +EX Ey+ EjEy + EIEQ} (7.13)
If E_» = F5 and these fields as well as Ey are real, and if £_; = E; then
vy = 2Re{E1(Ey + E2)} (7.14)

The fields at the isolator satisfy these conditions, and the above explanation holds

for v1, the inphase signal at the isolator. We see that the signal generated in v

»

See footnote page 27.
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when the carrier phase changes is unaffected by the presence of the second-order
sidebands, so that H,, ¢, (s) is unaffected by the presence of the second-order
RF sidebands. The contribution to Hy, 4, (s) due to the change in phase of the
first-order sidebands is affected, however; the size of this contribution changes

by a factor”

Ey+ E» Eref2
—_— ] 7.15
Ey Erero (7.15)

This contribution remains frequency independent, since the signal is due to audio
sidebands on the first-order RF sidebands, and we account for it by defining
N, = (1+ f{f-fL:)N{ and replacing N by Ni in all of our formulae. In

particular, (7.9) becomes

- E
TR~ Ty (1 4+ oref2 2) <1 (7.16)
rp—Tpcosc Erero

Using (7.11), (7.12) and (2.38), we find

Erega , J(D)1—rgTyre

~ . 7.17
Erero Jo(T) rp — Tpren (7.17)

Now if (motivated by the arguments in Section 7.2) we have rg — T cosa < 0

then regardless of whether rg — T, is positive or negative’, (7.16) is harder

to satisfy than (7.10).

* The fields E3 and E_, are unaffected by the phases in the interferometer since they do mot resonate in it.
t These two cases correspond to having the carrier be “undercoupled” or “overcoupled,” respectively, at the recycling

mirror.
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A sufficient condition for this effect to be small is

E —Jo(T
Eref 2 ~ ,,.ZR(__;‘ — <1 (7.18)
ref0  Jo(U) 2

or

TR — Tp"'c()

7.19

Jo(T) «

This effect of the second-order RF sidebands is inconvenient because it implies
that the frequency response of the interferometer depends on modulation index.
Increasing the modulation index to optimize the sensitivity will require not only
adjusting the servo gains to compensate for the change in overall response, but

will carry a risk of significantly degrading the control system performance.
One solution, although itself inconvenient, is to amplitude modulate the beam

at 2Q before or after the phase modulation occurs®. If properly tuned, the

sidebands applied this way will exactly cancel those due to the phase modulation.

Another potential solution is to arrange the arm cavity lengths so that the
second-order RF sidebands are exactly resonant in the arm cavities. This possi-

bility has not been investigated in any detail.

¥ If an electro-optic modulator is used as the power-stabilizing feedback element, then a convenient and power-
efficient way to apply this modulation will be to insert an additional crystal driven at 2§} between the polarizers, or
to sum the power stabilizer and 22 signals electronically before applying them. A stand-alone amplitude modulator is
power-inefficient because the beam must be attenuated to some extent for the modulator response to be quasi-linear.
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7.5 Arm Cavity and Recycling Cavity Lengths

The arm cavity length which is easiest to analyze is one for which the first-
order RF sidebands are exactly antiresonant, i.e., a length of (n -+ -%-)L\Igﬂ with
n a whole number. In this case the sidebands experience no phase change upon
reflection from the arm cavities and the average length of the recycling cavity is
chosen to be (m + %) Aﬂgﬂi Then when the carrier resonates in all three cavities,
the sidebands resonate only in the recycling cavity’®. This configuration has the
disadvantage that it allows the second-order RF sidebands to resonate in all three
cavities as well, making the response of the interferometer harder to understand,
and very sensitive to small deviations from these design lengths. For this reason, in
our numerical example the arm cavity lengths were chosen to be slightly different
from those which would make the first-order RF sidebands exactly antiresonant.

It is also possible to use virtually arbitrary arm cavity lengths, so long as the
first-order RF sidebands do not resonate®' in the arm cavities. However, if the
sidebands are far from being antiresonant in either arm, then they will experience
significant phase changes upon reflection from that arm, and the average recycling
cavity length as well as the asymmetry must be adjusted to compensate for this

phase.

§ I the sidebands resonate in the arm cavities, then the RF sideband phase becomes quite sensitive to & and the

plant becomes more ill-conditioned.
I To avoid an exaggerated sensitivity to alignment it is also important to avoid allowing the sidebands to fall onto the

resonant frequency of other low-order transverse modes.



130

Chapter 8 Summary and Conclusion

When the system for extracting signals described herein was first conceived, a
number of concerns existed about whether the asymmetric layout would fit into the
proposed vacuum system, whether the asymmetry would cause excessive losses
because of the different mode-matching demands imposed by the two arms*3!, how
the system would respond to imperfections in the optical components or in their
alignment, and whether it would be possible to acquire lock with such a system.
In addition, it was unclear whether the fact that two of the outputs are proportional
to barely independent linear combinations of two of the degrees of freedom (that
the plant is ill-conditioned) would prove to be a formidable technical problem.

Since then, a number of these issues have become better understood. An
experimental prototype has demonstrated that, at least for a particular set of optical
parameters, the assumptions made in constructing interferometer models have
been reasonable. The issue of whether it is possible to control the ill-conditioned
system adequately has been resolved. The performance sacrifices involved are
understood, and the construction of a working prototype is further evidence that
this problem is not critical. The dynamics of the interferometer are also believed
fairly well understood. The approximate results from a simple analysis agree well

with an independently assembled numerical model, and both predict behavior

# A, Abramovici has since shown that this effect is completely negligible.
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which is simple enough not to require additional complexity from the controller.
Optical configurations corresponding to a plant which is hard to control have
been identified, and are easily avoided.

Other issues remain less well settled. The following sections describe a

number of such issues.

8.1 Robustness

Although the prototype interferometer described in chapter 5 showed, for
one geometry and set of optical parameters, that the system is not dangerously
sensitive to imperfections, very little was done to quantify the magnitude of
the imperfections existing there, and in any case, it would be difficult to make
predictions for the behavior of a full-sized interferometer this way. In its full
generality, the issue of interferometer behavior in the presence of imperfections
is very complicated. However, with a combination of analysis of imperfections
perceived as likely to cause trouble, and careful prototyping, the risk that an
important problem may surface very late can be reduced. One area which remains
largely unexplored concerns robustness. This is loosely defined as the ability
of a control system to maintain good performance in the presence of various
imperfections. These imperfections can include differences between actual and
ideal mirror reflectivities, misalignment, imperfections in electronic components,

and even the effect on the interferometer response of deviations from resonance.
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Both experimental prototyping and numerical analysis are powerful methods
for testing robustness. The former automatically tests for the simultaneous
effect of a large number of imperfections, whereas the latter permits a carefully
controlled calculation of the effect of a relatively small number of imperfections.
The system presented herein may merit some additional numerical investigation
before the next stage of prototyping is attempted. Some types of imperfections,

which are likely both to occur and to affect system performance, are listed below.

Beam Splitter Reflectivity

Even with today’s best coating techniques it is difficult to produce a beam
splitter having a reflectivity differing by less than about 5% from the specified
value of 50%. Consequently the RF sidebands sample the lengths I; and Ip
in different proportions; the effective average recycling cavity length and the
effective asymmetry § are both affected. The effect of an asymmetric beam
splitter can be partly cancelled® by an appropriate modification of {; and [p; this

has been checked in a limited number of numerical tests.

Mixer Phase Error

In our model each mixer is driven by a local oscillator signal which is either
exactly in phase with the phase modulating signal or exactly in quadrature phase.
In a real interferometer, these phases will be affected by propagation delays in

the optical beam path, in cables, and in circuitry. The output v4 is particularly
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vulnerable to this type of phase error because the inphase signal at the same
photodetector is more sensitive to ®4 and to ¢4 than the quadrature phase is
to ¢—. In our numerical example the performance in loop 4 is not significantly
degraded even for a mixer phase error as large as 20 degrees (the derivation of
this result is in Appendix D). Future design changes could however reduce the

tolerance to this type of error.

Changes in Interferometer Response due to
Deviations from Resonance

For arbitrary positions of the interferometer mirrors, the output signals are
non-linear functions of these positions™ and any substantial deviation from reso-
nance can cause the interferometer response to further small mirror displacements
to be changed. This change in response can affect the performance of the con-
trol system, allowing even larger deviations to occur. This mutual dependence
of control system performance and interferometer response makes this a difficult
problem to analyze, and further protoyping may be the most effective approach.
A preliminary numerical exploration was done to see how the matrix of deriva-
tives (of chapters 2 and 4) is affected by a few selected types of deviation from
resonance. The magnitude of the deviations explored was comparable to the
deviations permitted within the specifications of Appendix B. It was found that

for deviations in ¢ alone there was no significant change in the matrix, for si-

s

For example, the outputs are periodic in the round-trip phases.
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multaneous changes in ¢4 and ¢_ or in ¢4 and O_, the matrix changed, but
the diagonal elements changed by less than 10%, and each off-diagonal elements
changed by less than 10% of the diagonal element in the same row. It remains
to be seen how these changes in the plant matrix would affect performance and

whether other combinations of deviations from resonance will have more serious

effects on the plant matrix.

8.2 Lock Acquisition

When the laser and control electronics for an interferometer are first switched
on, the mirrors are in essentially arbitrary positions, and, for an interferometer
with suspended components, moving with a wide range of velocities. In this
situation, the interferometer output signals are non-linear functions of the mirror
positions and of the laser frequency. When the interferometer is locked, the
mirrors and laser frequency are not allowed to deviate except very slightly from
resonance, and, to a good approximation, the signals at the output are related to
the mirror positions and laser frequency by a (linear) matrix of transfer functions.
The transition from the former “out-of-lock™ state to the locked state is difficult to
analyze because of the non-linear response of the system in the out-of-lock state.
Low-order systems have been analyzed33-34, but the generalization to higher order

or multi-dimensional systems is not obvious.
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It is in principle possible to model the out-of-lock state numerically in the time
domain, and this has been done with limited success for a servo loop controlling
a simple Fabry-Perot cavity". The algorithms used are computationally intensive
and a thorough exploration of initial-value space for a complete interferometer
will require a large amount of computer time. Model development is also time-
consuming because few analytic or experimental results exist to confirm or refute

any numerical result.

8.3 Conclusion

In addition to modeling efforts which will likely continue for some time, an
important next step in the development of this signal extraction and control system
will be prototyping in the 40m interferometer on the Caltech campus. In two
important respects, this instrument is much more like a LIGO interferometer than
the tabletop prototype described herein. The mirrors are suspended, and the losses
and lengths are such that the optical dynamics occur much more slowly. The fact
that the mirrors are suspended means that the spectrum of the seismic noise to be
suppressed is quite similar to that in LIGO. The fact that the dynamics are slower
will make it possible to measure the response to mirror motion for comparison

with the numerical and analytic models.

A program called Simulink® was used. Sirmlink® is a trademark of The MathWorks, Inc.
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Appendix A Shot Noise at the Mixer Output

To quantify the noise performance of an instrument, we must somehow
characterize the random process x(t) corresponding to the output in the absence
of any signal. For stationary noise, this is most conveniently done using the
one-sided power spectrum S;.(f) of x(t), defined as the Fourier transform of the

autocorrelation R, (7) of x(t):

R (1) = E{x(t + 7)x(¢)} (A1)
See(f) =2 / Ry (T)e®™ 74 (A.2)
Ry (1) = /sz(f) cos 27 fr df (A.3)

0

(As in the widely-used text by Papoulis’ we use boldfaced symbols for random
variables and the notation E{} to mean expectation value or ensemble average.)
The reason that this is a useful way to characterize the noise is that if x(¢) is the

input of a linear system H(f), and y(¢) its output, then

Syy(f) = [H(F)*Sea(f) (A4)
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E{Y(t)2} = Ryy(0)

= Syy(f )af
! (AS5)

XD

~ [ Psealr)df
0
Now if, for example, H{w) were an ideal “brickwall” bandpass filter (one which

passes frequencies within the bandpass unattenuated but attenuates out of band
frequencies infinitely) with passband [f1, f2] in an ideal spectrum analyzer, then
the expected power out of that filter (expected power “‘in that frequency band’’)

would be
0 f2
[swindi = [satnar. 0
0 f

The output io(t) of our model, in the absence of signal, is not stationary since
the photocurrent fluctuates at twice the modulation frequency and since it is
then demodulated at the modulation frequency. Similar problems to this have
been analyzed previously>>. Neither of these solutions was derived within the
formalism of Papoulis’s text, and a re-derivation in this more standard language
is useful.

We note that iy (%) is cyclostationary; for any t; the statistics of i, (tg) are the
same as those of io(to+7") where T is the period of the modulation. Consequently,

the autocorrelation R, ;,(t + 7,t) = E{io(t + 7)io(t)} is also periodic in t. For
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an arbitrary cyclostationary process x(t) with period T, if we define an average

autocorrelation

+T

/ R (t' +7,¢)dt", (A7)
t

1

Rz:z: (T) = -1—_;

and its Fourier transform, the average power spectrum

Se(f) =2 / Roo(1)e¥™f7dr (A.8)

then the latter also has the important properties ascribed to S, (f) above*. Now,
if y(t) is again the output of a linear system H(f) to which x(¢) is the input,
then '@(O) has the significance of being the time average (over the period 7T')
of the variance of y(t). In the example of the spectrum analyzer, we expect the
power at the output of our filter to fluctuate with period T, but the average of the
expected power over an integral number of periods is given by Ry, (0).

Our goal is to calculate S, (f) and S,quq (f), the average power spectrum
of the signal at the mixer output. In Chapter 2 we modeled the mixer as being
a device which multiplies by cos (2t or by sin )¢ and then averages over some
time interval 7', and for convenience we chose 7' to be an integral multiple of
the modulation period. We begin by defining i = 4, cos ¢ and i = i, sinQt to
be the signal after multiplication by the appropriate sinusoid but before low-pass
filtering, and finding S;yi;(f) and Sigiq(f)-

To calculate R;,;,(7), we first find the expected photodetector signal ,(2):
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ip(t) = IE() + B 4 E_le—i-Qt’z
= |Eo[” + |EL]® + | E-o
+ 2Re{Ej1 Elem”}

= Ap + Aj cos Qt + DBy sin Qt + Ap cos 20 + Ds sin 2§t
Next we model the shot noise process as a process of Poisson impulses with

density A(t)
A(t) = Ao + A1 cos Qt + DBy sin Qt -+ As cos 2Qt + Do sin 20t (A.10)

Each impulse corresponds to the generation of one photoelectron in our photode-
tector, and the units of ¢, are photoelectrons/second because of our definition (2.1)
of the fields. A Poisson process x(t) is defined® as a process which is constant
except for unit increments at random points in time t;, where the density of the

points t; is A(t), and the process of Poisson impulses z(t) is its derivative®

dx(t)

= (A.11)

z(t) =
ie.,
z2(t) =) 8(t—t:) . (A.12)
The autocorrelation of a non-uniform lPoisson process is given by’:

2 1
[ A@)dt [1 + fA(t)dt] t >t
Rzz(th t2) = gl v

Y (A.13)
JA@t)de [1 + [ A(t)dt] t2 >t
0 0
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and the autocorrelation of the derivative of a random process is given by®

2R, (1.1
Rgrpr(t1,t2) = —31&%%2

(A.14)
Since z(t) = x/(t) we have only to substitute into the equation above to find

the autocorrelation we seek.

32R¢z(t1,t2)

Rzz(t1,t3) = Bt, Ot (A.15)
For 1 > 19,
iy 131
Realti,t2) = / M)t [1+ / ,\(t)dt} (A.16)
0
6—1?12“—1—”2 / A(#)dt Aty) (A17)
6 R:v:!:(tlth) _
——at;-a—;;— = )\(tl)/\(tz) (A.18)
Similarly, for t; < t9,
31
ooty t2) = / @)t [1+ / A t)dt] (A.19)
0
OFz(tite) _ A(t) + / Alt)dt A(t1) (A.20)
oty
and we have
2
FRaltite) _ 303, (A21)

Oty Ota
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ORzz(t1,t2)
Ot

again. However, there is a discontinuity in at t; = t2, SO

R (t1,t2) = At A(t2) + A(#1)6(t1 ~ t2) . (A.22)

We can use this result to find the average autocorrelation of the inphase

signal i;:

Ripi;(t+7,t) = E{ip(t + 7) cos Q(t + 7)ip(t) cos Ot}
= E{ip(t + 7)ip(2)} cos Q(t + 7) cos Ot (A.23)
= [At+7)AE) + At +7)6(7)] cos Qt + 7) cos Ot
and of the inphase mixer output vy
T
Ton(r) = = / Riyiy(t +7,)dt

T

OT (A.24)
- 5"1_ / [A(t+ 7)A(E) + A2+ 7)6(T)] cos Qt + 7) cos Qt dt .
0

The first term in the above will turn out to be irrelevant to our analysis; it is

T
= / [A(t + 7)A(2)] cos t + 7) cos Ut dit
0

1, .2 2 2, 2 (A.25)
= §[2A1 + (445 + 4A0 A2 + A3 + B3) cos Q7

+ (A2 + B}) cos 207 + (A2 + B2) cos 3Q27]

The second term is
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T
% / [A(t + 7)6(r)] cos Q¢ + 7) cos Ut dt
0
Az

= %‘5 (7) (Ao + 7)

To find the average power spectrum, we take the Fourier transform:

0

Sin'r(f) =2 / Rfiziz(T)ez’rideT
—20

= Ap + —f;—z
+4A%5(2n §)
+ (445 + 4A0A2 + A} + BR)é(2n f — Q)
+ (Al + B2)é(2n f — 2Q0)

+ (A3 + B3)s(2n f — 3Q)

(A.26)

(A.27)

This power spectrum has four sharp components, one at DCY, and three more

at harmonics of the modulation frequency, as well as a broadband component. It

is only the broadband component which interests us, since only it falls into the

frequency range where we expect to detect gravitational radiation. The lowpass

filter in our model of the detection system will leave this part of the noise spectrum

unaffected, and will attenuate the very high frequency components. Hence we

i It is interesting to note that the DC component of the above spectrum will vanish or be very small if our servos

are effective since A; and B; are proportional to the mixer outputs.
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—_— Az
S'v'u f =A()+_
T I( ) 2 (A.28)

= IE()IZ -+ IE1|2 -+ |E_1|2 + Re{EilEl}
For the average shot noise spectral density at the inphase mixer output.

We take the same approach for the quadrature mixer output. We write “sin”

instead of “cos” in (A.23) and (A.24), and evaluate the same integrals to get

—_— A2
Sv v f =A()"_
ave(f) 5 (A.29)

= IE'()I2 + |E1|2 + IE_llz - Re{Ef_lEl}

We have, in the process of deriving this last result again thrown away sharp

components in the spectrum at DC and at harmonics of the modulation frequency.

At either output, there could of course be light due to other sources than
the idealized fields we have modeled here. Two examples are light present in
orthogonal transverse modes because of mirror imperfectons, and light from an
incandescent bulb which might be used to perform a shot noise calibration. When
there is excess light on the photodetector, it frequently contributes only to Ag

and we write
Soror(f) = |Begcess|” + |Bol* + [E1” + |E1) + Re{E*,E1}  (A30)
and
m(f) = |Eezce83l2 + IEO|2 + IEII2 + IE—II2 - Re{EilEl} (A.31)
where |Eegcess|” is the additional optical power (in units of photons/second).
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Appendix B Specification of Allowable RMS
Deviations from Perfect Resonance

B.1 Introduction

In this appendix we will see a set of specifications on allowed root-mean-
square (RMS) deviations from resonance. Each specification is motivated by
some mechanism through which a low-frequency (less than 10 Hz) deviation
from resonance degrades the in-band (100 Hz to 10 kHz) signal-to-noise ratio
either by reducing the signal strength or by increasing the noise. Since the signal
to noise ratio at the output depends on a number of factors, only one of which
is the deviation from resonance being considered, setting specifications on all of
these factors involves an analysis of the costs and benefits of changing any one
of the specifications. A thorough treatment of these issues is impossible here.
It is likely.that as research progresses and new information becomes available,
the costs of changing certain specifications will be reassessed and it is possible
that new mechanisms will be found which will impose additional constraints on
the specifications.

Our goal here will be only to derive a sample set of specifications for
illustrative purposes. It is hoped that although the numerical examples worked
out in this text will lose their applicability as these numbers evolve, the analysis

and design methods outlined will remain relevant and useful.
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The remainder of this appendix deals with four mechanisms by which devia-
tions from resonance can degrade interferometer performance. These involve the
need to keep ample power circulating in the arm cavities, the need to prevent
laser frequency or intensity fluctuations from producing a signal in the gravita-

tional wave output, and the need to keep the antisymmetric output dark.

B.2 Power in the Arm Cavities

As we saw in chapter 3, the generation of audio sidebands on the carrier in the
arm cavities produces the gravitational wave signal. A deviation from resonance
that reduces the power in the arm cavities by 10% would reduce the gravitational
wave signal strength by 5%. We will adopt this number as our specification on
power stability in the arm cavities.

From (2.13) we know that the power in a cavity AD (as in Figure 2.3) is
2

1
Pca-v (0.6 ‘1 — TA’I‘DC_M‘;"
(B.1)
9 2
N 1
T |1 —r47rp 1+i7H422=6¢
and sz = O-QPwv max for
1—r4rp
§¢ ~ 0.3—4AD B.2)
TATD

We can derive a number of specifications by interpreting this for the different

degrees of freedom.
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If the arm cavity back mirrors move equal amounts in the same direction, then
the relevant equivalent cavity is the one of Figure 3.2, which has a compound
mirror consisting of the recycling mirror and a front mirror; then

., < (2)0.35_TE<RTD

TF«RTD

(B.3)

~3x107° (radians)

For changes in ¢ we take r4 = rr and rp = r.; then
1 —7pRTe

< 0.3
b+ TRTc0)

(B.4)

~ 0.01

These two specifications are similar to numbers quoted elsewhere!.

B.3 Frequency Noise

D. Shoemaker®>> has shown that in order to avoid degrading the expected
99% frequency noise rejection ratio due to the symmetry of the arm cavities, we

- *
require

602 — 60% = 0,0 <2 x 1076 (B.5)
If @, satisfies the specification above, then we require

o_ <0.07 (B.6)

* Shoemaker derives the constraint assuming that all mirrors are stationary except for one arm cavity back mirror.

His result is easily generalized to the one shown here.
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B.4 Intensity Noise

Since the gravitational wave signal is proportional to the product of the
laser power and @, low frequency deviations in the latter can couple in-band
fluctuations in the former into the gravitational wave output. If 100 mW of
laser power is picked off for the purpose of power stabilization, then the relative
intensity noise (just after the pick-off, assuming that it is limited by shot noise

in the reference photodetector) will be
1
S-'z'
-—-f-g—) =28 x107°/VHz (B.7)

Now if the pick-off is located between the mode-cleaner (see footnote on p.8) and
the recycling mirror, then the low-pass nature of the recycling cavity will reduce

this noise at the beam splitter by about a factor of 50 (~ w,/we.):
g3
—I—;ﬁ =56x 1071 /VHz (B.8)

If our target interferometer sensitivity is 4 x 1072Ym/+v/Hz, corresponding to

53 =2x107'2/y/Hz, then we require
$_ <4x1072 (B.9)

B.5 Dark at the Antisymmetric Output

If the light returning from the two arm cavities does not interfere perfectly

destructively at the antisymmetric output, then the additional photons hitting the
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photodetector there will generate excess shot noise. It is believed that about 1%
of the power returning to the beam splitter will arrive at the antisymmetric port
photodiode because of mirror-imperfection-induced differences in beam shape or
intensity. We adopt the requirement that no more than an additional 0.1% of the
power returning to the beam splitter exit the antisymmetric port due to deviations

in ¢— and ®_.

N

For ®_ = 0, Egntio = E,¢sin %‘—), SO we require

sin? (%:) < 0.001 (B.10)
and’
- < 6x1072 (B.11)

To derive the specification for ®_, we note that the phase of the light returning

to the beam splitter changes N, = J%gl ~ 130 times faster for ®_ than for ¢_,

so that the specification must be tighter by this factor:

d_<5x1074 (B.12)

B.6 Summary

For our final set of specifications, we choose the tightest constraint on each

of the degrees of freedom:

¥ Specifying separate limits on ¢— and €., in order to ensure darkness at the antisymmetric port, is a conservative
strategy since the power leaving the antisymmetric port is actually proportional to ¢_ + N, ®_. A slightly more
sophisticated numerical servo model than the one in Chapter 6 would show that the effect of residual deviations in ¢— is
partially cancelled by opposing deviations produced in $_ by the loop feeding back to $...
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P <3x107° (B.13)

$1 < 0.01 (B.14)
d_<5x104 (B.15)
- < 6 x 1072 (B.16)

We demand that the RMS deviations in any of these degrees of freedom not

exceed the above-listed bounds.
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Appendix C Alternative Feedback
Configurations

In this appendix we consider two alternative feedback configurations and
outline the consequences of adopting one of these configurations instead of the
one described in Chapter 1.

The first modified configuration we consider is shown in Figure C.1; it differs
from the configuration of Figure 1.7 only in that the quadrature phase signal from
the isolator, instead of being fed back to the arm cavity mirrors, is fed back to
the beam splitter and the recycling mirror in proportion such that /; and [p are

changed in equal and opposite amounts.

Figure C.1 First alternative configuration: feed-back to beam splitter.

\

T

Inverting
Amplifier

I 1 Z}

Summing Protodiods”
Node with | &Q
Demodulator

Let us find the response of the interferometer to this type of mirror motion.

Since the beam splitter affects only {p and since the beam splitter is angled at 45°,
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this occurs when the beam splitter is displaced by v/2 as much as the recycling

mirror (§zps = V2(6zg)) and we let

0 =2k (5:273 - %5&735) (C.1)

represent this combination of displacements. To derive the transfer function from
6 to vz we first note that motion of the recycling mirror produces no signal
here, and we choose to use that combination of beam splitter and recycling
mirror motion which makes the audio sidebands propagating towards the two
input mirrors exactly equal in amplitude and opposite in phase. This occurs for
bzp = ;#69:35. Then these audio sidebands will interfere destructively on
the symmetric side of the beam splitter and constructively on the antisymmetric

side, so that

Hyg_ o 7'(7(71- + WTarm) (C.2)
]— ffiw
Hyo_ = Hy_v,pc—%"* (C.3)
3 3 1 + i—;%

This result has no important effects on system performance since we still have
Hyg < Hys_.

Next we note that
Hyo_ =H,s_ =Hy,s pc (C4)

since, as before, the characteristic frequencies experienced by the sidebands are
all very high.
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Finally we look at the response in v1 and vp. The above combination of dis-
placements, with ézg = ﬁ-z-da: BS, must produce a frequency-independent signal
in v1 and v because the audio sidebands present at these optical outputs have not
interacted with the arm cavities. Let us find the difference between this displace-
ment and 6. We want to consider the beam splitter and recycling mirror as a
compound mirror which is a source of audio sidebands, and we want to solve for
the proportion of displacement for which the sidebands generated in the direction
of the perpendicular arm are exactly equal and opposite those generated in the
direction of the in-line arm. Motion of the beam splitter alone produces sidebands
propagating towards both arms, in the amount [r3E,ep(Tpr1) + tp Erro]zps/V2
in the direction of the perpendicular arm and in the amount ro E, . pTyritozrps/ V2
in the direction of the in-line arm. The recycling mirror when displaced produces
sidebands of the same size r1 Eft,rozp (if we take ro = t5) propagating towards
both arms. Setting the total sidebands propagating towards the two arms equal

and opposite, and neglecting beam splitter loss, we get:

1 1
TR = §(1 + rlm)%)xgs/\/i (C.5)

for the ratio of displacements which produces a frequency-independent response

in v; and v9. Since

Hy0_pc=Hyp pc=0 (C.6)
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we must have

1 1
Hyg_ = 2 (Tch-()T - 1) [H'UJ¢+ - H’01¢+DC]
1 1 ! N! » €D
= — — 1 H DC——— Wee
2\riraTy vt N{ — N} 1+ wee
and
1/ 1 N o
. —_— - — 1 —Wee i
Hoap. 2 (Tlm)Tp )HW%DC N1 — Ny 1+ wee (C8)
These effects can be summarized by writing the new plant P as follows
0 Hyyg
. Py T
P=ly o 0 v €9
0 0 P_

where P_ differs from P- only in its upper right element. The analysis and
design methods presented in Chapter 6 still apply. The non-zero elements in the
upper right sub-block represent additional noise summed into the common-mode
subsystem from the differential subsystem. These will degrade the performance
of the system. In a numerical analysis using the same controllers as in Table
6.6, the predicted performance is the same as in that example, except that in
the @ loop the RMS residual deviation is increased to 1.5 x 107°. A word of
caution is appropriate here. The specs derived in Appendix B implicitly assumed
very-low-frequency deviations from resonance and their generalization to dynamic
deviations is not obvious. Moreover, because of the method used to assess
performance numerically, we implicitly changed the dynamic generalization of the

performance specifications when we switched plants, and this is partly responsible
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for the degradation in predicted performance. Only a more careful derivation of
the specifications on allowable deviations from resonance, which specifies, as a
function of frequency, the constraints on mirror displacements or changes in laser
optical frequency, can resolve this issue properly.

The second alternative configuration to consider involves no feedback to the
arm cavity back mirrors'. Instead the front mirrors are driven. This is shown

in Figure C.2.

Figure C.2 Second alternative feedback configuration.

Inverting
/ Amplifier
1 ]
| 1
The corresponding plant matrix is
. P, 8 g Vi6_
P= V2f- (C.10)

0 0 Hyse_ —Hye_ Hyg
0 0 Hye_ —Hyg Hygp

The main consequence of this change is to make the lower left element of I~3
comparable in magnitude to its lower right element. This means that residual

deviations in loop 4 will produce a larger signal in loop 3. This effect is unlikely
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to be important since the specifications are tighter for deviations in loop 4 than
in loop 3.

One additional consideration in analyzing these alternatives is that in the
presence of mixer phase error, the common mode and differential subsystems
become fully coupled. They can no longer be analyzed (as in Figure D.1) as two
subsystems which are independent except that one injects noise into the other,
since signals now flow in both directions. Both performance and stability can

be affected.
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Appendix D Effect of Mixer Phase Error

In this appendix, we will fill in the derivation of the effect of mixer phase
error mentioned in Chapter 8. As mentioned there, the output vy is particularly
vulnerable to this type of phase error because the inphase signal at the same
photodetector is more sensitive to ®.. and to ¢, than the quadrature phase is to
¢—. This error transforms the interferometer plant matrix from the block-diagonal

form of equation 6.1 to the modified form*

1 €1 0 0
5 |1 €2 0 0
P = 0 0 1 e (D.1)
K Ke e 1
where
Jv
K= PF g (D:2)
Bo

and § is the phase error in the local oscillator at the vs mixer. If we neglect
the small coupling between loops 3 and 4, then the effect of this error can be

analyzed using the block diagram of Figure D.1.

d4 C4
€4 = 1-C, -+ [K61+K6162]1 e
~ 2+Kel + Kejeo (D.3)
Csy

~25%x10724+15x 107 2sin B+ 6.5 x 10 3sin 8

¥ We neglect the frequency dependence of the plant since we seek only a rough estimate of the size of the effect.
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Figure D.1 Block diagram used to analyze the effect of mixer phase error.
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In the second line of this last equation, we have used the approximation that
|C4] > 1, and in the third line we have substituted values from our numerical

example (where K ~ 2100sin £). This is the result we use in Chapter 8.
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