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ABSTRACT

New experiments are performed concerning the high frequency in-
teractions of electron beams and plasmas. A modulated (500 Mc and 3000
Mc) electron beam is passed through a uniform plasms region of a mercury
arc discharge, after which it is demodulated. Exponentially growing
wave amplification along the electron beam is observed for the first
time at a modulation freguency equal to the plasma frequency. No con-
stant magnetic fields are used in these experiments. Calculations
based on the one dimensional analysis of Bohm and Gross of an electron
beam passing through a plasma are made to predict the effects of the
random energy of the plasma electrons and collisions. By studying the
interaction of a finite diameter beam and a plasma with no thermals OT
collisions, it is shown that the effect of the finite geometry is to
reduce the growth constant.

Recent work by Trivelpiece and Gould has pointed out that &
plasma column in free space may propagate forward and backward waves
at a velocity small compared to the velocity of light. The experi-
mental techniques of passing a modulated electron beam through the
plasma, as described above, are applied to observe traveling wave TYyPe
of interaction with the slow wave mode of propagation in the absence
of any magnetic fields. Theory predicting experimental rates of
growth is presented. Experimental results in good agreement withr
theory are presented.

In the course of verifying plasma density measurements, the
excitation of the dipole resonance of a plasma column is considered.

Multiple resonances are observed and discussed.
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1. INTRODUCTION

This thesis is concerned with the amplification mechanisms
assocliated with the interactions of an electron beam, modulated at
microwave frequencies, passing through a plasma. The plasma used in
the experimental parts of this research is that of an electric dis-

charge in mercury vapor.
1.0 Previous Investigations

Electric discharges in gases have been investigated by a large
number of researchers ever since the classic investigations of Langmulr
and Mott-Smith (1) in 1924 on the characteristics of low pressure
electric arc gas discharges. High frequency plasma electron oscilla-
tions have been the subject of many papers (2-25) and in 1929 Tonks
and Langmuir (5) defined the electron plasma oscillation frequency and
reported on experiments involving them.

Langmuir and Mott-Smith recognized two primary regions in a
discharge; the nearly neutral plasma regi@n consisting of the main
body of the discharge, and the boundary region or sheath which separates
it from the tube and electrode surfaces. This plasma region consists
of electrons and ions of approximately equal charge density swarming
about in continuous thermal motion due to their random energies. The
plasma electrons typically have random energles of several electron
volts and the ions only one volt or so. Because of the greater mass
of the lons and their smaller energy it is obvicus that the random ion
current density will be much less than the random electron current
density across any imaginary plane in the discharge. In mercury vapor

discharges the ratio of random electron current density to ion current



density is typically 400.

Because of the reguirements of conservation of energy and
momentum, electrons and ilons recombine at the walls of the discharge
tube and not within the main body of the plasma. Thus there is a
continuous flow of ions and electrons to the tube walls where they
recombine. Since the random electron current density in the plasma
is much greater than the random ion current density, there must be
an electric field set up in the sheath separating the plasma from
the discharge tube walls which reflects practically all of the elec-
trons back into the plasma. This sheath consists of an excess of
positive ions over a thin region of the order of a Debyé (35) length
thick. The electric field between this excess positive charge and a
surface charge accumulation of electrons on the tube wall form a
potential barrier which repels all but the most energetic of the plasma
electrons.

As a result of the probe measurements of Langmulir and Mott-Smith
(1) it was well established that the plasma electrons have a Maxwellian
velocity distribution. The above discussion indicates however, that
only a small fraction of the plasma electrons have sufficient energy
to overcome the positive ion sheath and escape to the discharge tube
walls. Therefore it was expected that there should be a depletion in
the high velocity tail of the Maxwellian distribution of random
energies for the plasma electrons. Such has never been found to be
the case. This has been referred to as Langmuir's Paradox by Gabor,
Ash and Dracott (21).

In low pressure discharges where the mean free path of the plasma

electrons with un-ionized gas atoms is an order of magnitude or more
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greater than the tube radius, the plasma electrons 'collide" with

the sheath many times more often than with gas atoms. Thus collisions
with the latter could not be expected to maintaln the Maxwellian dis-
tribution of the plasma electrons.

The mechanlism which seems to be accepted today as the "ther-
ﬁalizing" force for the plasma electrons is that of plasma sheath
oscillations (21). To substantiate this conclusion has required many
experiments over a lqng period of years on the nature of such plasma
oscillations. Since there are always dissipative forces present in a
plasma, there must be some exciting force to maintain these sheath
oscillations. This exciting force usually consists of an electron
beam penetrating the sheath.

Many experiments have been performed on trying to excite plasma
oscillations by a directéd electron beam. Such oscillations are then
obgerved with a small probe inserted into the plasma near the bean.
Radio frequency signals are then looked for with this probe, and many
can be found [(18) and (23) are good examples]. The frequencies of
oscillation observed seem to be related to transit time effects of
electrons between sheaths more often than they seem to equal the plasma
frequency as defined by Tonks and Léngmuir (5).

Wehner (14) describes a plasma oscillator which operates on
the bunching principles of klystrons and reflex klystrons. Such is
felt to be one source of plasma oscillations in discharge tubes. Ex-
periments relating to this have been performed by Looney and Brown (18),
Gabor, Ash and Dracott (21), Merrill and Webb (9), and a long list of

others (9-23). Certainly some forms of plasma oscillations can be
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explained in terms of klystron oscillations.

Looney and Brown's experiment 1s guite representative and will
be described in more detail. A beam of high-energy electrons (several
hundred volts) is injected into the plasma of a dc discharge from an
auxiliary electron gun. This is found to excite plasma electron oscil-
lations as detected by a small wire probe placed in the plasma. The
probe is movable and shows the existence of standing wave patterns of
oscillatory energy. ‘Nodes of the pattern coincide with electrodes
which bound the plasma. The thickness of the ion sheaths -at these
electrodes determine the standing wave pattern. It was verified that
the energy transfer mechanism from the electron beam to the oscillation
of the plasma electrons was established as a velocity-modulation process
by transit time considerations between the ion sheaths. Gordon (22) has
more recently investigated the energy exchange mechanism involved and
performed similar experiments.

Aside from transit time (klystron, etc.) theories of plasma
oscillations there have also been developed traveling wave theories
(11,26-30) of the interaction of an electron beam with a plasma. These
have primarily been investigated by Bohm and Gross (11). The mechanism
is essentially that of the double stream amplifier invented by Haeff
(28), and independently by Pierce and Hebenstreit (31).

In 1948 Haeff (26) suggested that plasma oscillations in the
solar corona may be responsible for certain types of radio frequency
electromagnetic energy received from the sun. He vigualized that a
group of charged particles traveling through the solar corona would
interact with the electrons of the corona in such a manner as to amplify

statistical fluctuations present in the corona or on the moving group of
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particles. This stimulated much interest and there has been a great
deal of work concerned with the existence of growlng space charge
waves on electron beams interacting with plasmas [see Gould (29)].

Looney and Brown in their experiments tried to detect such
growing waves along the electron beam interacting with the plasma as
predicted by Bohm and Gross. They reported such attempts as
"fruitless". KoJjima (23) was no more successful in repeating these
experiments.

The principal féct to be discerned from previous experiments in
this field is that all researchers were concerned with experimental
situations in which the mechanism of self-excited plasma oscillations
was = being investigated. These were naturally occurring oscillations,
i.e., they were not forced by a premodulated electron beam, except by
Gordon (22). Even then, Gordon's device was basically an oscillator
and many resonances were observed at varying densities. He further
reports that "there was no evidence that the plasma was resonant when
the plasma frequency egualed the beam modulation frequency. No varia-
tion of amplitude was observed along the beam" as predicted by Bohm
and Gross.

In contradistinction to all of the previous experimental work on
plasma oscillations, the research reported in this thesis is concerned
with plasma amplifiers, not oscillators. Also the electron beam in-
teracting with the plasma is at all times modulated by an external
gsignal source. The beam is then allowed to pass through the plasma
and ié then demodulated by an identical microwave céupler.

The experiments to be described here were successful in obtaining
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interaction with a plasma at an electron beam modulation frequency
equal to the plasma freguency as well as observing growing waves
along the electron beam as predicted by Bohm and Gross. Other in-
teresting effects are also reported.

Previous experiments by other workefs were unsuccessful because
they did not use a modulated electron beam with which to excite the
growing wave. They relied upon electron beam noise at the prescribed
frequency to excite the growing wave and this did not produce a suf-
ficiently strong detectable signal. Also, since they were dealing
with oscillators that were dependent upon sheath boundaries, the
observed effects were often extremely complicated. The experiments
reported herein are between a modulated electron beam and the uniform
plasma of a mercury arc discharge and were not a result of interactions
with ion sheaths. Since the devices in this thesis are amplifiers and

not oscillators, their behavicr is much easier to understand.

1.1 Interaction of a Modulated Electron Beam with a Plasma at the

Plasma Resconant Frequency

The first of these experiments was reported upon in a preliminary
form by Boyd, Field and Gould (32) and consists of a device as shown in
Figure 1.1 . An electron beam at a specified voltage 1s modulated over
a wide frequency range with a short helix which propagates a slow
electromagnetic wave at a phase velocity close to that of the electron
beam velocity. The electron beam is then passed along the axis of the
arc discharge for a distance of 5 cm at which it then leaves the plasma
region. The electron beam is then demodulated by another short helix

and the energy coupled into the output waveguide.
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ch this device experimental verification has been obtained of
spatially growing waves in a plasma which is traversed by an electron
beaﬁ. The growing wave results from the excitation of oscillations
in the electron plasma by the electron beam and the interaction of
the oscillating electrons back on the beam. In this mode of operation
the plasma is a resonating structure as opposed to the form of opera-
tion to be described in the following section in which the plasma is
a slow wave propagating structure.

The wave amplitude increases exponentially with distance along
the beam and the rate of growth reaches a maximum when the excitation
frequency, ® , on the electron beam 1s approximately equal to the
plasma frequency w_ . w§ is related to the electron plasma par-
ticle density n_ by &§ = noeg/meo , [Tonks and Langmuir (5)]. This
thesis will present the theory of this device and the experimental per-
formance.

1.2 Interaction of an Electron Beam with the Surface Slow Wave

Propagating Mode of a Plasma Column

During the course of experiments on the above device of Section
1.1 an interaction of the electron beam with the plasma was obtained
at a plasma frequency several times that of the excitation frequency
on the beam. -At the same time in this laboratory, Trivelpiece and
Gould (33) were investigating newly found modes of propagation on a
cylindrical plasma column. These propagating modes have a phase velo-
city which is small compared to the velocity of light. The propagating

waves are electromechanical in nature and result from the interchange

of kinetic energy of the electrons and the stored energy of the electric



_8-

field. These slow wave propagating modes have been studied in general
by Trivelpiece and Gould with an axial magnetic field. In the special
case of no magnetic field there is no charge accumulation within the
plasma column, only at the surface of the plasma. The electric fields
of this propagating wave are strongest at the surface of the plasma
éolumn and are therefore referred to as Surface Waves by Trivelpiece
and Gould.

If an electron beam is made to pass along the axis of such a
plasma column with its velocity coincident with the phase velocity of
the surface wave of propagation, then by familiar traveling wave tube
theory [see J. R. Pierce and L. M. Field (34), for a physical descrip-
tion of traveling wave interaction], one should expect spatially
growing waves to exist on the system consisting of the electron beam
and the slow wave circuit. Such an interaction of an electron beam
with the surface wave was observed in the device of Figure 1.1, as
well as the interaction at the plasma frequency (that is, when the
excitation frequency o equals @ ).

To investigate more completely the interaction with the surface
wave, however, the tube of Figure 1.1 had severe limitations in that
the beam velocity was fixed because of the modulation scheme of using
helices and the beam did not pass sufficiently close to the surface
of the column to give a strong interaction with the electric fields
of the surface wave. Since the phase veloclty of the surface wave can
be varied by changing the ratio of w/wp (excitation frequency to
plasma frequency), it was felt desirable to investigate the surface
wave interaction with an electron beam over a range of velocities. The

experimental tube of Figure 1.2 was constructed in which the electron
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beam ig modulated by a resonant cavity. Thus, as opposed to the
device of Figure 1.1, the modulation frequency is now fixed but the
beam velocity is variable and can be adjusted to synchronism with
the phase velocity of the surface wave on the plasma column.

This paper will present experimental data on the operation of

this device with a simple description of its theory.
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2. INTERACTION OF A MODULATED ELECTRON BEAM WITH A PLASMA MEDIUM
NEAR THE PLASMA RESONANCE FREQUENCY

2.0 Definition of a Plasma and Elementary Properties

For the purposes of this paper a plasma will be considered to
be a partially ionized gas which is neutral over distances greater
than the Debye shielding distance (35). The positive ions of this
plasma will be considered to be infinitely massive compared to that
of the plasma electrons. This is because only the high frequency
properties of the plasma will be under investigation and, under such
circumstances, the ions can be considered to be relatively fixed in
position, while the electrons oscillate back and forth around such
fixed positive charges under the action of external alternating elec-
tric fields.

The plasma will have an average electron charge density Py= -n ¢
where n is the number density of electrons per cublc meter. As the
plasma is neutral, the lon charge density will be equal and of opposite
sign o, Since the plasms electrons are in a continuous thermal
motion, they have a certain random energy which is often characterized
by an equivalent kinetic temperature. The plasma electrons will ex-
perience two types of collisions, one being collisions with other
particles in the gas (un-ionized gas atoms and ions), and the other
being with the walls of the container. In a later section the effects
of collisions will be estimated.

In this paper the small-signal sinusoildally time-dependent inter-
action of an electron beam, modulated at an angular freguency w ,
passing through a plasma of plasma frequency wb , will be considered.

This problem can be approached from either a microscoplc or a macroscopic
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point of view. In the former case the perturbation in the distribu-
tion function for the velocity distribution is obtained, and from this
such quantities as the perturbation current density in the plasma are
obtained by integrating over all velocity classes. This is the point
of view adopted by Bohm and Gross (11). 1In the latter point of view
one obtains the first two moments of the Boltzmann equation which
results in the continuity equation and the momentum transport equation.
These are then linearized to obtain the small signal perturbation par-
ticle density and average velocity. This point of view is used by
Spitzer (35) but will not be used here.

Plasma oscillations at the plasma frequency wp do not depend
on the boundary conditions on the plasma. Such oscillations are inde-
pendent of the wavelength of the disturbance in a cold plasma and the
displacement current and convection current just cancel. Therefore,
these plasma oscillations do not give rise to a time varying magnetic
field. Thus the electric fields associated with such oscillations may
be derived from a scalar potential. It is stralghtforward to show
that the high frequency properties of a cold plasma are mathematically
equivalent to a charge-free medium with a relative dielectric constant

given by

€
—=1- (2.0.1)

e}

Plasma oscillations also exist at frequenciles different from mb
which depend on boundary conditions. For example, a plasma column in
free space, excited by a transverse electric field into dipole oscil-

lations has a normal mode of oscillation

wg/m2 = 2 . (2.0.2)
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Such oscillating modes depending on the geometry of the plasma, have
béen termed "Plasma resonance" by Herlofson (36). In Section 5.1
this resonance condition 1s used to measure the plasma density of a
cylindrical plasma column. In Appendix 1, equation 2.0.2 is derived
for the more general case of a cylindrical plasma column surrounded

by a layer of glass.

2.1 One-~Dimensional Theory of Interaction by the Distribution
Function Method Including the Random Energy of the Plasma

Electrons

Bohm and Gross (11) have derived a dispersion relation for a
one-dimensional electron beam passing through a one-dimensional
stationary plasma including the effect of the random distribution of
velocities of the plasma electrons. The effect of short range colli-
sions of the plasma electrons is approximately accounted for by the
inclusion of the collision frequency v . Collisions of the beam
electrons are ignored. This is reasonable if one visualizes a beam
electron collision as removing it from the beam and therefore merely
reducing the beam current by some appropriate amount. Plasma electron
collisions, on the other hand, tend to damp out plasma oscillations and
must be included in some approximate way. In the following expressions
all waves are assumed to have a spatial and time dependence of
ei(wt-yz) v 1s the complex propagation constant and will often be
written as y =B - i vwhere B and o are real. If the wave grows
with distance, & is negative. If the wave propagates with constant
amplitude, then & =0 and y =8 . The electron beam has a particle

density oy and thus one may define a beam plasma freguency
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wg :ynbe2/ me . The random distribution of velocities of the electron
beam about their mean velocity vy is neglected. This is valid since
the beam electrons come from a hot cathode (1000°C) and thus have
approximateiy .1 ev of random energy which is small compared to the
random energy of the plasma electrons, i.e., of the order of 4 ev. The
electron beam voltage in the first experiment is 400 volts which is
large compared to both random energies. The plasma electron particle
density of ng is ag order of magnitude greater than 0y in the ex-
periments to be performed. The plasma frequency of the "plasma medium”
is, of course, w§ = noeg,/meo

With this definition of terms the one-dimensional dispersion

relation is written (see Appendix 2)

. £ (u) du 2
1 = w§ (w = iv) f o) + i (2.1.1)
w

. v\ 2 2
(w- T, -iy) (w-—yvb)

where fo<5) is the unperturbed distribution function of velocities
of the plasma electrons and by du 1s meant duXduyduZ . HSince an
ionized gas has a Maxwellian velocity distribution (1) for the plasma
electrons, one may vwrite

m

() = (22 BT

2 2 2
(W +u T+ )
0) = X Yy 2
0= 2 KT

(2.1.2)
where T is the equivalent "temperature" of the plasma electrons;

u is their random velocity vector. The distribution function in
velocity space is normalized as

ffo<3) do = 1 . (2.1.3)

u
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Substituting equation 2.1.2 into equation 2.1l.l1, one may
evaluate, as does Sumi (24), for the case of v = O (indenting
properly around the pole as determined by % % 0) and obtain a
function of the error integral of imaginary argument. To be useful
for computational purposes, however, this must then be expanded in
an asymptotic series and the first few terms taken. The resulting
series expression is found to be identical with that obtained by
simply expanding the denominator of the integral in eguation 2.1.1
in a power series in uZ and integrating term by term. For the pur-
poses of this paper the simpler method will be used. Define the

following

= —= (2.1.k)

R is the ratio of the beam electron energy to the average random
energy of the plasma electrons. For the experiment of Section 1.1
it will be seen in Section 4.0 that a reasonable value 1s Rz 100 .
The complex quantity {—1is the ratio of the propagation constant of
the space charge waves to the electronic wave number (w/vb) of the
electron beam. Thus rjis s normalized propagation constant and will
have a magnitude for reasonable parameters between 1 and 2.

If one integrates over the random velocity components s uy,

u, after expanding the denominator in equation 2.1.1, one obtains for

the dispersion relation
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s[4 (/) (5159
vy 2 3 2 L (r1 1)2 ’

In this expression, neglecting collisions, there is a range of para-
meters over which the normalized propagation constant [ﬂ is complex
and a range in which it is real.

Equation 2.1.5 has been solved numerically for a wide range of
values applicable to the experiment neglecting collisions. For the
special case of w = mp some results are given including collisions
of the plasma electrons.

One needs only to take the first two terms of the above series
for the experimental situation of this paper since R =100 . Neglect-

ing collisions, equation 2.1.5 becomes

®_ 2 M2 (mb/w)2

= (= + +
1=(x) 1+ T2

which is a fourth degree polynomial in r‘. This may be placed in a

(2.1.86)

convenient form for computation with the definitions of

o = R(C—G— (2.1.7)
P
2
N==rE2 - =5 (2.1.8)
®p

Note that ¢ is proportional to the ratio of beam electron density to
plasma.electron density. With the above, one may write equation 2.1.6

as a function of two parameters

(C-02 %) +o=0 : (2.1.9)
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If one were to include more terms of the series from equation 2.1.5
in equation 2.1.6 the propagation constant would be a function of
three parameters, instead of two.

Equation 2.1.9 has been solved for the complex values of the
normalized propagation constant over a range of parameters of ¢ and
/\ . These normalized results are presented in the complex vy plane

in Figure 2.1. UNote that equation 2.1.9 may be solved easily for

© = o (IAL = 0) resulting in

—sevz 1Tk Vo 1T 1Yo o<l . (2.1.10)

In Figure 2.2 is shown the maximum value of the imaginary part,
o, of y wversus o . Also the real part, 8, of y corresponding
to this maximum value of « is shown.

Inspection of Figure 2.1 reveals that the maximum value of the
growth parameter in the range .003 £ ¢ £ 3.0 corresponds to
-1 ézAL £ + 1 approximately. Practically speaking, a low value of the
ratio of electron bean energy to random plasma electron energy would
be R = 30 . The normalized frequency, w/mp » at which the maximum
growth parameter occurs corresponding to the above range of ¢ is in

the range 1.016 = iﬁ > ,083 . For larger values of R the ratio of

b
modulation freguency to plasma frequency is even closer to unity.
Therefore, one concludes that the maximum interaction occurs very close
to w/w = 1.
/ b
‘It is interesting to note in Figure 2.1 that the maximum value

of the growth constant « appears to shift from w/wb >1 for o< 1L

to &/&b <1 for o> 1.
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Figure 2.2 Maximum Growth Parameter as Obtalned from Figure 2.1
versus a Quantity Proportional to the Ratio of the
Beam Electron Density to the Plasma Electron Density.
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The presentation of theoretical data that most closely corresponds
to the way in which the experimentsal data 1s obtained is shown in
Figure 2.3 in which the growth constant o is plotted versus Qg/cbg
for representative values of R and mg/cgg . Note carefully the
suppressed zerc of the abscissa.

It is also of interest to estimate the reduction in gain due to
collisions. BSince the maximum growth constant is closely equal to that
at w=w ([\ = 0) for parameters of interest, it is reasonable to
estimate the growth constant with collisions only at o = wp . Thus
from equation 2.1.5 one obtains, taking the first two terms in the
series as before,

) e (/)

l=————-— <1+

Lo
1-1 2 R(l-i.i)g ([-1)2

(2.1.11)

2
Under the approximation v/h)<<1. and fﬂ /Rléil , one may neglect v/m

in the second term of the bracket, as well as when it multiplies

(mB/w)g . Therefore,

VR (o /o)

—_— - (2.1.12)
[M2+iR £
w

Since this was derived with w = wp , one may rewrite 1t as

(2121

;

[=1 x4 (2.1.13)

U g
/2
rﬂ + iR £
®
This may be solved by iteration, assuming as a zeroth approximation

2
fﬂ = 1 inside the square rcot.

For the experiments under discussion reasonable values are R = 100
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and wi,/wg - 1073 . As will be seen later, in Section 4.0, two
interesting values of the collision frequency are v = 3xlO7 collisions
per second and v = 3XlO8 collisions per second. If one assumes

w = 2% (3000 Mc) then

[=1.08 21 .265 v = 3x10"/sec
[=1.103 £1 .18k v = 3x10%/sec
compared with
[t 1.071 £1.277 y =0
at w = ab from Figure 2.1 . The maximum growth constant for

2 /e° 21073, R = 100 ab w/o_ = 1.0038 (see Figure 2.3) is
P 1% ’ P

[=1.15 £1.30 y=0 .

In the polynomial equation for the propagation constant, equation
2.1.9, the coefficients are all real, implying that complex solutions
of this equation come in complex conjugate pairs. By a previous defi-
nition the growth constant in nepers per unit length is o = w/vbIm((ﬂ).
For the growing wave « 1s negative since waves have a spatial depen-
-z e—iBz

dence of e The growth constant along the electron beam

can then be written as ¢ = 8.68q db per cm, if « 1is in nepers per cm.

2.2 Three-Dimensional Theory Neglecting the Random Energy of the

Plasma Electrons

Plasma oscillations have been previously described as an oscilla-

tion of energy between that stored in an electric field and that stored
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in the form of kinetic energy of the oscillating electrons. If in a
plasma the wavelength of the disturbance is small compared to the

free space wavelength corresponding to the frequency of this distur-
bance, then one may assume that the disturbance propagates at an
infiﬁite velocity instead of the velocity of light. This is called
the quasi-static approximation and allows one to neglect the magnetic
field associated with such disturbances. One may then derive the time
varying potential of the electric field of such plasma oscillations as
the negative gradient of a scalar. Poisson's eguation relates the

time varying potential and charge density

v2¢l = - pl/eo . (2.2.1)

Iﬁ should be pointed out that in the one-dimensional case analyzed
in Section 2.1 no such quasi-static approximation is necessary. This
is a result of there only being variation in the z direction (e_iYZ)
allowed, and hence only an electric field in the z direction. Then,
since the direction of the propagation is parallel to the electric
field, the curl of the electric field V x El =-ve X El = 0 . Thus
there is no time varying magnetic field.

The three-dimensional problem that will be considered here is that
of an electron beam of finite radius b passing through an infinite
plasma medium. To solve this it will be necessary to compute the sum
of the perturbation charge density from the electron beam and the elec-
tron plasma. Substituting this into equation 2.2.1 gives a determining

differential equation. The random energy of the plasma electrons will

be neglected.

To derive the perturbation charge density for a non-drifting plasma
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one needs the’linearized small signal continuity and force equations.
iw P1p = -V (p_ v.,) (2.2.2)
iwv, = - % E, = + % v ¢l . (2.2.3)

Solving for the small signal perturbation plasma charge density plp R

one obtains

2
p o e w
lp _ e} 2 _ js) 2
= =* VP =-35 Vi (2.2.5)
o meow W

As an aside, notice thét if there is only a plasma present, a combi-
nation of equations 2.2.4 and 2.2.1 results in the equivalent relative
dielectric constant of a plasma as stated in eguation 2.0.1 .

When a beam of radius b dis present in the plasma, the per-
turbation charge density of the beam 1s obtained as above, remembering

that the beam veloclty vector vy is in the z direction

1w pyy, ==V e oy ¥yq + 3, Ppy) (2.2.5)

dv v
Y1p T ) _ ; -+ Sy
- T 5 + (Vb V) vlb = 1Vlb(w va) = + ¢l. (2.2.8)

Note that for convenience the gradient in the z direction is sometimes
taken as ~iy times the gquantity since it was previously assumed that
1Yz

only solutions with z dependence were to be allowed. Combin-

ing equations 2.2.5 and 2.2.6 one obtains

2
o o -
o _ b V2. - “ 72

2 1 1
o meo(w-yvb) (m-—yvb)
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Then by superposition pl =p which, 1f substituted

1p © P1p

into eguation 2.2.1 and rewritten slightly, becomes

2 2
af
Voegl-—5- 5 v¢l = 0 (2.2.8)
as the appropriate differential equation inside the beam and plasma
region. In the region where there is just plasma alone, one sets

a)b:O

Note that equatibn 2.2.8 is written in the form V . Ql = 0 where

El is the mathematical guantity in the bracket. In this form the appli-
cable boundary condition at the interface between the region containing
plasma alone and plasma plus beam, is obvious. That is, the normal com-

ponent of the quantity D, 1s continuous between regions. The other

1
necessary boundary condition is that the potential be continuous.

The solutions to equation 2.2.8 are either

or
2
v, = 0 0£r£o . (2.2.10)

The former case, eguation 2.2.9, is identical to that of equation 2.1.6,
neglecting the random energy. This represents the one-dimensional solu-
tion and is independent of beam radius. Note that in the one-dimensional
case V2¢l-+ —Y2¢l . Clearly for waves to exist ¢l # 0 and hence
equation 2.2.9 must apply. Equation 2.2.9 corresponds to that derived

by Pierce (27) except that he was considering the interaction of beam

electrons with ions. The solution of equation 2.2.9 is
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(D_b 1

ie)
o]

where [—‘is the normalized propagation constant defined by equation
2.1.4 . Equation 2.2.11 is plotted in Figure 2.3 under the designa-
tion of R = .

In the three-dimensional case of an electron beam of radius D
passing through an infinite plasma medium, the appropriate solutions
are obtained from eguation 2.2.10 . Note that equation 2.2.10 implies
that plb = plp =0 . This means that the electron beam has no density
modulation, only a "rippled boundary" form of modulation at r =D
which is the interface between the two regions. Another way to see
this is to realize that for the modulation schemes used in the experi-
ments of this thegis--that is, a gridless cavity or a helix--the
modulation fields are derived from Laplace's eguation. Thus V -El =0
and from the force equation 2.2.6 on an electron beam the velocity is
divergenceless (V - le) = 0 . This and the continuity equation
2.2.5 clearly states that op =0

1b

It ie apparent that in the experiments presented here the modu-
lated electron beam is "ripple boundary" modulated and not density
modulated. An electron beam can be density modulated only by a gridded
cavity in which Poisson's equation 1s applicable rather than Laplace's.
The difference between these two types of modulation will have no
qualitative effect on the experimental results and only a minor gquanti-
tative one.

The solutions to equation 2.2.10 for no angular dependence of the

fields are
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(2.2.12)

IN
H
N
8

_ o] -iyz

where we require the potential to be finite at the origin and zero at

infinity, as well as continuous at r = b . Matching the boundary con-

dition on the normal component of D. as given above, one obtains the

1

determinantal equation for a finite size electron beam in an infinite

plasnma.
2 { 2
® (a')
1-2+ i 5 (2.2.13)
@ (o= yv)
where
B, 2 1 |
(55) = IO(Yb)Kl(Yb) . (2.2.14)
1

* I K _(70)

Clearly the only guantitative effect in equation 2.2.13 compared
%o equation 2.1.6 neglecting the random energy of the plasma electrons,
is to replace the electron beam plasma frequency W, by a "reduced"
beam plasma frequency w% . Note, though, that ¥y in eguations

2.2.13 and 2.2.14 is complex over a certain range of values of (a/ab)
but as a reasonable approximation over part of this range [ excluding
the region where Tm(y) > Re(y)] vy in equation 2.2.11 is replaced by
the electronic wave number m/vb . For wb/vb«Q:E.S as is typical for
the experiments in this paper, (w%/d%)z = .39 . The significant point

is, however, that in the one-dimensional limit of b - oo ,



-08-

(wé/mb)g—» .5, not 1, which would be expected from the previous one-
dimensional treatment. This result is due to the difference between
"rippled boundary" modulation and density modulation.

The finite geometry problem including the effects of the random
energy of the plasma electrons is quite difficult due to the complexity
of the boundary conditions. Also, one cannot easily solve the Boltz-
menn equation in three dimensions and one is thus forced to use the
first two moments of the Boltzmann equation to include the effects of
the random energy of thé plasma electrons. As an approximation it is
assumed that one may take the one-dimensional dispersion relation of
2.1.5 and replace the beam plasma frequency by the reduced beam plasma
frequency of 2.2.14. This results in an approximate dispersion rela-
tion, including the random energy and collisions of the plaswma electrons,
for a finite diameter beam in an infinite plasma.

Bohm and Gross' analysis considers one~dimensional disturbances
in which there is a density modulation on an electron beam. For the
experiments ﬁerformed in this thegis there is no density modulation in
the interior of the beam, but instead there is a rippling of the bean
boundary assoclated with the disturbance. However, the above analysis
demonstrates that the dispersion relation for a finite diameter beanm
can be cast in the same form as obtained by Bohm and Gross when a sult-
able reduced beam plasma freguency is defined. It is of interest to
note that if the electron beam were immersed in an infinite axial mag-
netic field there would actually be a density modulation. For a finite
axial mégnetic field both rippled boundary and density'modulations would
be set up. For the experiments of this thesis no axial magnetic fields

are used.
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3. INTERACTION OF A MODULATED ELECTRON BEAM WITH THE SIOW WAVE
SURFACE MODE OF PROPAGATION ON A PLASMA COLUMN

3.0 Slow Wave Mode of Propagation

Consider a cylinder of non-drifting plasma of radius a filling
a glass tube of outer radius c¢ . This glass tube will be considered
both in free space and when covered by a conducting layer at its sur-
face of radius c¢ . The random energy of the plasma electrons will be
neglected as will collisions. Also, there is no constant magnetic
field present.

Trivelpiece and Gould (33) have shown that such a plasma column
will propagate a slow electromechanical wave with a phase velocity
small compared toc the velocity of light. The energy on such a wave
oscillates back and forth between the stored energy of the electric
field and the kinetic energy of the plasma electirons.

The physical existence of such waves can easily be understood by
analogy with the equivalent circuit of a transmission line. A distri-
buted transmission line can be represented by inductance in the
longitudinal direction and capacitance in the transverse direction.

As was seen in equation 2.0.1, a plasma may be replaced by a charge
free medium of relative dielectric constant (1 - ai/w2). Therefore,
if the frequency  is less than the plasma frequency <gp , the dis-
placement current 521/5t = imeo(l- wg/wg)gl lags the electric field
vector E and the medium appears inductive. Free space 1s cobviously
capacitive, however, since the displacement current leads the.electric
field. If one visualizes a plasma column in free space and cu(a@ B

then it is inductive in the longitudinal and transverse directions.
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But since the column is assumed to be of finite size, one must add in
series to this transverse inductance, the capacitance of free space
from the edge of the column to infinity. This capacitance can be
sufficient to cause the net impedance in the transverse direction to be
capacitive and therefore the plasma column in free space appears as a

transmission line capable of propagation.

It has been shown (33) that the propagation characteristics of
these electromechanical modes are derivable from the guasi-static ap-
proximation. In this approximation the perturbation magnetic field is
neglected compared to the perturbation electric fields, as long as the
phase velocity of such modes is small compared to the velocity of light.

In the quasi-static approximation, the potential satisfies Laplace's
equation. As a simple example, consider the two-region case in which the
glass tube has a conductling surface at r = c¢c. Waves are assumed to vary

el(wt—n@—Bz). Since the propagation characteristics of a plasms

as
column are to be analyzed in the absence of an electron beam, it is clear
that the propagation constant will be real, neglecting loss in the plasma

and therefore B 1is used instead of 1y .

The time varying potential in each region 1s given by

TBr) i (norpa)

g = r £ g
1 1,(BD)
I (Br) K (Bc) - I _(Bc) K (Br) _,
¢l _ In n n n e—l(n@+z) sr<c, (3.0.1)
(Ba) x_(pe) - 1_(pe) K_(Pa)
where the eiwt dependence 1is assumed.

In the above expressions the potential is finite at the origin, con-
tinuous at the plasma-glass interface r = a, and zerc at the glass-~

conducting surface interface r = c¢. The remaining boundary condition
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to be applied is the continulty of the normal displacement vector at
r = a using 2.0.1 for the plasma dielectric and k for the relative

dielectric constant of the glass. One then obtains

1 I.(pa) (I'(Ba) K (Be) - I_(Be) K!(Ba)

- I, (pa) In(ﬁa) Kn(gc) - IH(BC) Kn(ﬁa) (3.0.2)

2
ab
(1 - —§)
W
where the primes represent the total derivatives of the Bessel func-
tions with respect to.the argument. A curve of w/ab versus pPa
gives the freguency versus propagation constant of these slow surface
wave modes of propagation. The phase velocity of such waves 1s given
by /B and the group velocity by ow/dB . The large Pa asymptotic

frequency of propagation is easily obtainable from eguation 3.0.2 as

e . (3.0.3)

Vl—rm

The dashed curves of Figure 3.1 represent such a plot corresponding to

wSIS

the glass tube used in thg cavity modulation experiment of Figure 1.2 .
In Figure 3.1 it should be noticed that the curves for the angularly
independent mode (n = 0) and the first dependent mode (n = 1) are
given. The nearly horizontal dashed curve represents the n = 1 mode.
For the tube of Figure 1.2 the ratio of the outer radius to the inner
radius of the glass is‘ c/a.251.5 . The glass dielectric constant is
k = 4.60

The interaction of interest in this paper is of the electron beam
with tﬁe angularly independent (n = 0) mode. The éurve of the first

angular dependent mode is included for pedagogical reasons as well as

to illustrate, as shall be seen in Section 6.2, that certain anomalous
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results cannot be explained in terms of interaction with this angularly
dependent mode.

The solid curve of Figure 3.1 is for the plasma-glass columm in
free space. Only the angularly independent (n = O) mode of propaga-
tion is plotted for this case. The vertical lines labeled 800, L0O,
200, and 100 volts correspond to constant phase velocity lines at a
fixed frequency f . The intersection of these curves with any of the
propagation constant curves specifies the operating point at which the
electron beam velocity is in synchronism with the phase velocity of
the surface wave. According to traveling wave tube theory (30) this
is the point of maximum interaction and therefore maximum output signal
level. The w-B curves of Figure 3.l are dimensionless and apply to any
plasma filled glass tube of the given ratio of outer to inner radil and
glass dielectric constant. The phase velocity voltage lines apply only
for the fixed frequency f = 490 Mc and plasma radius a = .275 cm, as
is appropriate for the experiment performed in this thesis.

IT one does not coat the glass tube with a conducting surface at
r = ¢, but lets it remain in free space, then the problem is a three-
region one of plasma (r £ a), glass (a £ r € ¢) and free space
(c £€r <1a3) . The propagation characteristics of such a system is
obtainable by an analysis as above with an increase in algebraic com-

plications. The determinantal equation for the propagation constants

of the angularly independent mode (n = 0) is
| K(8)
2 P
" wp) Il(Ba) v KO(BJ betanh(Bc,pa) ( 3
_® - ) 3.0.
wg IO(Ba) pecoth(pe, fe) + Kl(BC} Betanh(Bc,pa)
K + T {Bay ’

o}
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where the functions

+

I,(pe) K (Ba) + I_(Ba) K, (Be)

becoth(Bec,pa) =
T (Bc) K (Pa) - I (pa) K (pc)
I, (Be) K (Ba) - I,(pa) K, (Be)

pevenn(pe,Pe) = TET R, (Ba) ¥ 1,(Pa) K (59) (3.0.5)
I K - I K (Bc)

Betanh(po,pa) - o(Be) X (Ba) - I (pa) K (Bc

+

I,(Be) x (Ba) + I (Pa) K, (Be)

are defined and tabulated by Birdsall (37).

For the above described glass tube in free space, the propagation
frequency curve (w-p diagram) is plotted as the solid line in Figure
3.1. This curve will be of the greatest interest since normally the
tube of Figure 1.2 was operated in free space, though a comparison of
experimental data obtained in free space against that obtained with a
conducting coating on the tube will be made.

One will notice in Figure 3.1 that a horizontal line is drawn at
m/mp = 1 . This corresponds to plasma oscillations discussed pre-
viously (neglecting the random energy). The Tact that the frequency
versus propagation constant diagram is a horizontal straight line
coincildes with the understanding of plasma oscillations at w = ab belng

independent of the wavelength of the disturbance.

3.1 Interaction Impedance and Estimation of Growth Constant

An electron beam traveling in synchronism with the previously
described slow surface wave will interact with the axial electric field
of sald wave. Under these conditions, a spatially growing wave will

result (that is, the propagation constant is complex) in an increasing
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amount of radio-frequency energy on the electron beam. This energy
results from the conversion of the beam kinetic energy into time
dependent fields. Thus the electron beam will slow down slightly
as the perturbation wave grows.

The plasma column alone is bilateral, meaning that the surface
wave may travel in either direction. In tﬁe presence of an electron
beam the wave traveling against the electron motion is little affected.
The surface wave trayeling in the direction of the electron beam plus
the fast and slow space charge waves on the electron beam interact and
can be described in terms of three waves. For a lossless plasma
column, one of these forward waves is attenuated, one is unattenuated,
and the third increases in amplitude as it travels; that is, it has
negative attenuation. On the average, the electrons travel slightly
faster than the phase velocity of the growing wave.

Pierce and Field (34) have compared the situation to one of a
breeze blowing past ripples in a stream. The ripples grow larger as
the breeze blows them along.

Pierce (30) has shown that an approximate value of the growth
constant can be calculated in terms of an interaction impedance defined

by

Z = — . (3.1.1)

ElZ(O) is the z directed perturbation electric field on the axis and
?Z is the average z directed power flow of the surface wave in ques-
tion. In the simplified thin beam analysis the electron beam is

assuned to be concentrated on the axis and the space charge effects of
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the beam will be neglected. The traveling wave tube interaction

parameter C 1s defined Dby

zZ I
3 oD
c° = HVb (3.1.2)

where Ib and Vb are the electron beam current and voltage. The

maximum value of the growth constant can be shown to occur at syn-
chronism between the electron beam velocity and phase velocity of
the surface wave. At synchronism the growth constant is given by

41'3C db per cm (3.1.3)

e

where xe is the electronic wavelength in centimeters on the electron
beam and is given by
v
hy = A = %ﬂ . (3.1.1)

In equation 3.1.k the quantity A isnthe free space wavelength cor-
responding to the frequency of modulation on the electron beam and
vb/c is the ratio of the electron beam velocity to the velocity of
light.

To compute the growth constant corresponding to the interaction
of an electron beam on the axis of a plasma column of radius a in
a glass tube of radius c¢ surrounded by free space, the propagation
diagram of such a situation is shown by the solid curve of Figure 3.1,
it is necessary to obtain the interaction impedance of equation 3.1.1
which in turn reguires the power flow in the z direction. To compute

the power flow in this three-region propagating system is somewhat
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complex. As a simplification, the power flow will be computed for
the two-region problem of a plasma column surrounded by dielectric
medium extending to infinity. Por small values of the normalized
propagation constant pa , the electronic wavelength Xe in eguation
3.1.4 is long compared to the thickness of the glass walls (c- a) of
the tube and hence the fields see predominately free space outside of
the plasma. For large values of PBa the wavelength of the fields on
the plasma colum are much less than the glass thickness aﬁd hence as
a fair approximation the surrounding medium to the plasma column
appears as a glass dielectric. In the experiment of this paper, the
beam velocity can be varied such that .5 € pa £ 1.5 . Since

¢/a = 1.5 , clearly 1/8x ¢ (c- a)/xe £ 3/8x . Therefore, the plasma
column appears to be in free space.

In the two-dimensional problem the surface wave fields may be

written
B, = ElZ(O) IO(Br) 0£r €a
I (pa) (3.1.5)
o
ElZ = ElZ(O) -K;Té—a—)- KO(BI') a £r o

where ElZ(O) 1s a constant representing the axial electric field
strength. The power flow in the z direction for the angularly in-

dependent surface wave mode (n = 0) is

0
- 1 *
_ = . _ % s .1,
P, 2Re[ (B, x H))- ds ﬁf E,,. Bf, rdr (3.1.6)
Surface 0

The radial electric field is obtained from the axial electric field as

. OF
" _ 1 1z

1r E St It should be remembered that the potential from which
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these fields were originally derived was obtained from the quasi-
static approximation in which the perturbation magnetic field El
is neglected and thus V x El = 0 . Therefore one may ask if an

approximate value of the magnetic field may be obtained now. Such

may be obtained from V x El :ix»egl resulting in

2
w

(1--5) e E 0<£r £a (3.1.7)
®»

where k is the relative dielectric constant of the surrounding
medium. If one compares the magnetic field obtained from quasi-static
approximation ﬁith that obtained from a field analysis, it will be
found that they are equal to within the approximation that w§/52c2<21
where ¢ is the velocity of light.

One may then compute the z directed power flow by equation 3.136

and from it the interaction impedance from equation 3.1.1 in ohms as

2 2
= Eﬂg\/-ig (E)K(ﬁa)IQ ngi {EE - E&} + [ Eg - fi
HO A o} IlKO IO 12 KO Ki

o}

|+

J (3.1.8)

The Bessel functions are all of argument (Ba), x 1s the glass
dielectric constant and the quantity [1 - (mg/mg)] in equation 3.1.7
has been replaced by the determinantal equation of propagation for this

two-regilon geometry

2
w
p __ ol :
1 - ;ﬁ = -k T (3.1.9)

which may be obtained from eguation 3.0.2 for the axially symmetric
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mode (n = 0) Dby letting the radius of the glass ¢ —~ co.

The interaction impedance of eguation 3.1.8 is plotted in Figure
3.2 corresponding to the experimental tube of Figure 1.2 . 1In this
experiment the modulation cavitles are resonant at f = 490 Mc
(» = 61.2 cm) and the plasma radius is a = .275 cm. The glass is
Nonex 7720, with x = 4.60 . The interaction impedance is plotted for
this value of dielectric constant and «k = 1 .

The true interaction impedance for the three-region problem of
plasma-glass-free space will lie between these two curves. Previously
though, it was stated that for experimental reasons the beam voltage
was only varied such that .5 £ Ba £ 1.5 and that for this range of
Ba the space charge wavelength of the disturbance 1s long compared
to the glass thickness so that actually the medium surrounding the
plasma appeared as free space. Therefore the true curve of the inter-
action impedance will lie closest to the k =1 curve for the region
of interest. From equations 3.1.2 and 3.1.3 the growth constant is
proportional to the cube root of Zo , so for the range of interest of
pa the variation is unimportant. A representative value of interac-

tion impedance is ZO = 800 ohms.



)
S

INTERACTION IMPEDANCE Z,IN OHMS

)

Figure 3.2

@)
o

O
o

-L4o-

O
(V)
W
H

PROPAGATION CONSTANT Ba
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Used in this Experiment.
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L, EXPERIMENTAL, PROPERTIES OF THE PLASMA AND THE ELECTRON BEAM
4.0 Characteristics of Mercury Arc Discharges

The plasma used in these experiments consists of the positive
column of an arc discharge in mercury vapor. The mercury gas pressure
is controlled by the temperature of a pool of mercury in a separate
appendage called the mercury "well”., In all the experiments of this
paper the temperature of the well is maintained at 300 X .lo Kelvin
(26.820 C) by a regulated water bath. At this temperature the vapor

3

pressure of mercury is 2.1x10 “mm Hg (2.1 microns). The gas density

of mercury atoms is 6.8x:lO13 per cms. For a plasma electron frequency
of 3000 Mc and 490 Mc the plasma electron density, n, o is respectively
l.l2>cloll and .298;{1010 electrons per cm3. These plasma densities
correspond to an ionization of .165% and .00L4% respectively.

In an ionized gas such as a mercury arc discharge, the electrons
and ions are in a continuvous milling motion and have a guantity of ran-
dom energy that is often characterized by an equivalent plasma electron
temperature Te . The equivalent ion temperature is typically a third
of this (l). The‘plasma electron temperature may be measured with a
Langmuir probe (1). Such measurements have been made, Figure 4.1, on
a mercury arc discharge tube of internal diameter 1.04 cm corresponding
to the plasma interaction region of the helix modulation tube of Figure
1.1 . These measurements are not as reproducible  as one would like,
but they do give an average value of Te = 36,000O K , corresponding
to a random energy for the plasma electrons of approximately 4.7 elec-

tron volts. The ionization potential of mercury is 10.4 ev with

excitation energy levels as low as 4.66 ev.
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Figure 4.1 ZLangmuir Probe Measurements of Temperature versus Arc
Current as Obtalned from an Arc Column of the Size
Used in the Helix Modulation Experiments of Fig. 1.1 .
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Klarfeld (39) has compiled extensive probe measurements and
theoretical calculations of mercury arc plasma column properties
.versus pressure. TFor low pressure mercury discharges such as used
here, plasma electron density is linearly proportional to arc cur-
rent. Klarfeld's calculations of plasma density assume that there
is no variation with radius. He states, though, that the axial
plasma density may be 1.5 to 2 times the plasma density at the edge
of the electron sheath. This electron sheath at the tube wall is the
order of the Debye length thick, and for a plasma of the above tem-
perature and a density corresponding to a plasma frequency of 3000
Mc this distance is .Ob millimeters. The sheath potential drop in
a mercury discharge is of the order of 20 volts (assuming the electron
and ion temperatures are equal). Klarfeld's curves glve an electron
plasma temperature of 35,0000 K which agrees well with the measure-
ments of Figure L.1 . He states that the axial voltage gradient for
a plasma column as used in Figure 1.l is approximately .7 volts per
cm and .9 volts per cm for the tube of Figure 1.2 . The axial drift
velocity of the electrons is equivalent to approximately .2 ev of
energy which is small compared to the 4.7 ev of random energy, thus
the plasma is essentially stationary.

At the density of mercury atoms as used in these experiments, the
mean free path of the un-ionized mercury atoms is approximately 2.62
em (4O). This is greater than the plasma column diameters and there-
fore collisions with the wall are more numerous than with each other.
This also applies to collisions of the plasma electrons with the elec-

tron sheath at the tube wall, since the mean free path for collisions
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between plasma electrons, at an average energy of 4.7 ev and un-ionized
mercury atoms is given by von Engel (MO} as 3.5 cm. The collision
freguency 1s therefore approximately 37){106 per second which is small
compared to the modulation frequencies used of 490 Mc and greater. Or
on the basis of collisions with the wall electron sheath for the tube
of Figure 1.1, the collision frequency is approximately 129>c106 per
second as obtained by dividing the r.m.s. velocity by the tube diameter
of 1.0k cm.

In the present eﬁperiments the electron beam voltage ranges from
100 to 1000 volts. The maximum cross section for ilonization of a
mercury atom by a beam electron in this voltage range, according to
von Engel (L0), occurs at 100 volts and givesa mean free path for the
present density of 26 cm. At 1000 volts the mean free path is 65 cm.
For these two cases the fraction of beam electrons traveling a dis-
tance of 10 cm without being removed from the electron beam is respec-
tively 68% and 86%.

Mercury vapor was chosen as the gas primarily because of the ease
of controlling its pressure, but also because the plasma column
voltage gradient is less than that of, say, hydrogen at similar

densities.

4.1 Characteristics of the Electron Beam

The electron beam gun used in the experimental tubes of Figures
1.1 and 1.2 are of conventional design as used in traveling wave
tubes, In the helix modulation tube of Figure 1.1, the cathode button
is .0Oh45 inches in diameter. The cavity modulation tube of Figure 1.2

has a cathode button of .090 inches.
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As these electron guns are operated in the presence of mercury
vapor there is always a supply of ions in the gun region. It is for-
tunate that these ions do not appear to affect the gun operation
adversely, other than to reduce the total current. There is no
conslstent arcing between gun electrodes to as high as 2000 volts
(1limit of voltage supply). This is because the product of mercury

3

pressure as used in these experiments (2.1x10 ° mm Hg) and electrode
separation distance (approximately 5 cm) is two to three orders of
magnitude less than that corresponding to Paschen's minimum of the
sparking potential. In the first few tubes constructed, oxide-coated
cathodes were used, but subsequently L cathodes of type A were found
to be more satisfactory. Tubes with oxide-coated cathodes were found
to have very limited life, due To destruction of their emitting sur-
faces by positive ion bombardment. In one case an arc occurred
destroying the emitting surface entirely. L cathodes have the
advantage of replenishing themselves and being more rugged.

The electron gun appears to be temperature limited at all times
as observed by varying the heater power. Also, as one increases the
beam voltage from 100 volts to 1000 volts, the beam current will de-
crease, often by a factor of three or more. This is presumably due
to positive ion bombardment of the emitting surface. At higher
voltages this destructive action 1s more pronounced. The voltage
dependence of the curreant is important in the operation of the cavity
modulation tube of Filgure 1.2 in which the beam velocity is variable.
The gun in the helix modulation tube of Pigure 1.1 ié by necessity
operated at a fixed 400 volts as dictated by the helix phase velocity.

Atka given voltage, however, a more annoying effect from an experimental
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point of view, is that the cathode emission current is continuously
varying by as much as two to one over an hour or go. It will quite
typically vary by 20% within a minute. This effect is presumably due
to positive ion bombardment of the emitting surface as well as "poison-
ing". TFor instance, due to electrical charging of the glass walls or
varying the relative electrode voltages, one may change the positive
ion trapping and thus the cathode bombardment.

The electron beam is focused entirely by an electron lens (focus-
ing cylinder, Figures 1.1 and 1.2) just past the gun anode and by space
charge forces. No axial magnetic filelds are used in this experiment.
Tn the plasma interaction region the space charge repulsion forces of
the beam are neutralized by positive ions. To improve the beam focus-
ing many electrode voltages may be adjusted. In the helix modulation
tube the first helix is considered fixed relative to the gun cathode at
400 volts corresponding to the helix phase velocity. The focusing
cylinder and the electron gun anode voltages may then be adjusted some-
what above or below the first helix voltage. Upon leaving the plasma
interaction regiqn the beam is focused by the second helix and beam
collector voltages. In practice, one adjusts each of these voltages
+10% or so above and below the first helix voltage so as to maximize
the output signal level of the device for a given input signal level.
With only the electron beam present, the arc plasma being off, one can
visually see the path of the electron beam due to the de-excitation of
ions and atoms which have suffered a collision. It is fascinating to
see the electron beam cross and uncross as one varies the focusing cylin-

der voltage relative to the gun anode voltage.
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If one defocuses the electron beam with the arc off so that it
leaves the first (modulation) helix in a diverging cone, one may
observe it reflected from the electron sheath at the glass walls of
the cylinder. This electron sheath has, of course, been produced by
the beam collisions, since in the above case 1t was assumed that the
arc plasma was off. After reflecting from the electron sheath the
beam may even enter the second (demodulation) helix and be collected.

This effect is especially pronounced in a smaller diameter glass
column such as used iﬁ the cavity modulation tube of Figure 1.2 which
has an internal diameter of .55 cm compared to 1.04 cm. In this
smaller tube the electron beam has been observed to cross as many as
five times in the interaction region of 11 cm length.

Returning the discussion now to the helix tube of Figure 1.1, it
1s apparent that the same phenomenon of reflection of the electron beam
from the electron sheath will occur with the arc plasma on, only the
electron beam will no longer be observable. As previously stated, the
sheath potential for a mercury arc is approximately 20 volts and thus
beam electrons are reflected from the sheath for a divergent beam of
half-angle up to 120, assuming a LOO volt beam. This reflection
phenomenon of the beam from the electron sheath will be seen shortly
to be necessary in order to explain the interaction with the surface
wave of propagation on the plasma column in this helix tube.

The electron beam diameter while passing through the plasma inter-
action region is seldom of constant diameter, since perfect focusing
was found to be very difficult. Also, with the arc 5n, since the elec-
tron beam is not then visible, the only estimate of the guality of the

beam focus is the strength of the output signal. Based on visible
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obgervations with the arc off, one concludes that the mean diameter
of the electron beam is approximately that of the internal diameter
of the focusing cylinder. Such diameters are 3 and 4.8 millimeters
respectively for the helix modulation tube, Pigure 1.1, and the
cavity modulation tube, Figure 1.2 .

The electron beam plasma frequency in terms of beam current,
voltage and diameter in MKS units, is mﬁ - 1.06x 10 Ib/be\/QZ
where the beam radius is b . For the helix modulation tube of
Figure 1.1 at 400 volts and a plasma frequency of 3000 Mc, the beam

3 ana 10"”, is 1.5 and

current corresponding to wﬁ/wﬁ equaling 107
.15 milliamps respectively. These are reasonable values of beam cur-
rent for the helix modulation tubes. In the case of the cavity
modulation tube the voltage of the beam is an adjustable parameter.

A value of 200 volts corresponds approximately to Ba = 1, where the
adjustable range is .5 £ Ba 4 1.5 . From Figure 3.1 for pa =1,

it 1is seen fo? the plasma-glass column in free space that w/mpz .32 .

~

With a modulation frequency of 490 Mc the beam current corresponding

3

to aﬁ/wg equaling 10—2 and 10 ° is 7.08 and .708 milliamperes, res-
pectively. From these representative numbers it is simple to scale
the values to other cases.

The electronic wavelength as defined by equation 3.1.4 is of im-
portance gince in traveling wave tube theory one often refers to the
interaction length as so many electronic wavelengths. The helix modu-
lation tube operating at 3000 Mc with a 400 volt beam has an electronic

wavelength of .396 cm. The cavity modulation tube at 490 Mc with a

200 volt beam, has an electronic wavelength of 1.72 cm.
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5. HELIX MODULATTON EXPERIMENT
5.0 Method of Operation

A schematic of the helix modulation tube is pictured in Figure
1.1 . The actual device has evolved through four principal stages as
shown in Figure 5.1 A,B,C,D . The glass tube through which the plasma
and beam interact remained the same in all of the tubes of Figure 5.1 .
The inside glass diameter, 2a , is 1.04 cm and the ratio of outside
diameter to inner is c¢/a 221.2 . The dielectric constant is wk=ch.71 .
The interaction region between helices 1s 5 cm in all but tube A .

In Figure 1.1 the energy is coupled from the S band waveguide,

(TE, . mode) onto the helix by means of a wire antenna on the end of

10
the helix which is parallel to the electric field. The waveguide
height has been reduced to 1 cm to minimize over-all beam lsngth. The
input and output helices are each 3 cm long. At a distance of approxi-
mately one-fourth of a gulde wavelength from the helix antenna in the
waveguide 1s an adjustable short which is adjusted for maximum output
signal strength during operation. Only limited data has been taken
concerning the input match from wavegulde to beam but a representative
number for the input voltage standing wave ratio is 3:1

The method of operation of the tubes of Figure 5.1 1s to modulate
the electron beam at some frequency between 2.2 kMc (kilomegacycles)
and 4.0 kMc, and to observe the output signal from the demodulation
helix as one sweeps the arc current. It is known (39), that the plasma
density, and thus plasma freguency squared, is linearly proportional to
arc current for low pressure arc discharges. By the elementary theory

of Section 2, the output signal level should be a maximum when the arc
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Figure 5.1 Helix Modulation Tubes at Various Stages of Development.
Tube A Contains Langmuir Probes with which Plasma Tem-
perature Measurements were Made. The Plasma Interaction
Region of Tubes C and D are More Uniform than that of
Tube B, Since the Beam Need Not Pass Through the Bend
in the Plasma Column. The Arc is Significantly Easier
to Strike in Tube D than in Tubes B and C
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current is such that the modulation freguency w equals the plasma
freguency <gp . This value of arc current for interaction will
change as one changes the input frequency. For convenience, the
arc current is swept at 60 cps by an a.c. voltage in series with
the d.c. arc voltage. The detected output signal is filtered by a
blow pass filter with a lO_M second time constant.

Typical operation is shown in Figure 5.2 for various values of
the modulation frequency. The abscissa is proportional to the plasma
arc current and ordinate to the detected output power which is propor-
tional to linear gain. The numbered vertical line at the far left is
the zero of arc current. A plot of frequency sguared versus arc cur-
rent from photographs such as Figure 5.2 is shown in Figure 5.3 for
several experimental runs by the curves labeled G . Experimental
runs G and G were on tube C and were taken a month apart. The

2 3

points of Gl were obtained on tube B and were previously reported
(32).
5.1 Experimental Verification of Theory and Plasma Density

The experimental observation that points Gl’ G2, and G3 lie
on straight lines with a remarkably small spread, passing nearly
through the origin, is in itself strong evidence that the interaction
observed is that predicted by Bohm-and Gross (11) and discussed in
Chapter 2. That the modulation freguency eguals the plasma frequency
on the axisvof the discharge where the electron beam passes may only
be ascertained from an independent measurement of plasma density. The

fact that such straight lines extrapolated to zero freguency do not

pass exactly through the origin but to the left of the origin may be



-2

ceagadus TITIW C°T “C'T ‘2'T ‘2°T fo'e
‘01 ‘AT2ata0adsay ST JuUSIJN) SPOULB] Wedd UOILOoTH Ul - saTtousnbaa] uoT1BIMPOK
I

SNOTABA JOJ 5 20nT XIT2H WoIJ PauTBAgQ SB JUSIIN) 0Jy snsdar TRUSIG ndinQ psjosiad g- ¢ 2angi

SAHIdWY Of" = SNOISIAIC Oz  *NOTIWHIIIV) IVINOZIHOH

LNAHEND DYV SNSHEA I0dINO0

W 0"t




-53~

*£3TABD SABMOJIOTW B JO
fousnbagg jusuossy syl Jurqmiaasd Lq pourBlq0 SB D 9qnl XTTSH JO UOTEsY UOTIoBISIUT
BmseTJ oY1 JO UOT309G ss01) oyl Ioao Lousnboad BuseTd 988BISAY SYJ JO SIUSWRJINS
-Bo|{ quessadsy s9TOATD YL * D °aqnl XTTSH WOIZ PauTelqo €n pue 2p * g sany XTT=H
WOIJ PoUTBIA0 L) ‘quaaIn) OJY snsasa pegenbg Lousubead 'WsBTd JO SONTBA PaJnsesW €76 aamITd

S3H3dNV NI LN3HHNO DYV
og’ 0¢’ ol O

T T
9 38Nl XI13HY,
NOILv8dNLlY3dd ALIAVD o
xOx 4 G
.
8 x' &¢
PR
X 0%’ 4 Ol
° * -m" ¢ .uw
o o.r
w X ."v * N
x ) ..-..
O x o0 7 m_
(o} x e ©

5 5,01¥02



-5k

expléined in terms of the plasma produced by beam collisions. It may
also be possible that the curves depart from a straight line to pass
through the origin as the arc current is reduced. This was not veri-
fied as the S band waveguide used to couple to the helices would not
propagate at significantly lower frequencieé. The contribution of
the electron beam to the production of plasma electrons will be esti-~
mated later in this section.

The slow undulation of curves G2 and G3 can be explained
ags due to the slow variation of the water bath temperature since the
experiﬁental points in curves G and G were taken in sequential

2 3

time order. The points of Gl were not taken in order. The mercury
well water bath was regulated to i.lOC which theoretically allows a
2% variation in mercury vapor pressure neglecting any thermal time
constants in the system.

The difference between curves G2 and G3 is most probably
due to differences in the quality of beam focusing between the two
experimental runs if the éxplanation of beam electron collisions
causing the zero frequency intercept is correct. It may alsoc very

likely be caused by inaccuracies in the zero point of the arc current

in the photographs of Figure 5.2 since curves G2 and G are

3
shifted horizontally with respect to one another by approximately
.01 amperes corresponding to half of one division in Figure 5.2 . The
slopes of curves G2 and G3 are quite equal, a condition which
would‘be required by elther hypothesis.
It is essential in order to verify the theory of interaction

with the plasma resonance at = wb that the electron plasma density

be measured by an independent method. The method that has proven to
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be the most suitable though, unfortunately, not the first tried, is
that of perturbing the resonant frequency of a microwave cavity (41).
Since a plasma may be represented by a relative dielectric constant
1 - wgﬁmg , then inserting it into a resonant cavity will perturb the
resonant fregquency according to ,ﬁf/f =z&ﬁ/ﬁ where AW is the change
in the average stored energy resulting from the insertion of the
dielectric column.

Such measurements have been made with a split S band rectangular
cavity operating in the TElOl mode. The plasma column interaction

region of tube C of Figure 5.1 was placed parallel to the electric

field in the above cavity. Measurements of plasma density versus arc

current were made and are plotted as circles in Figure 5.3 . Recall
that the measurements G2 and G3 were made on the same tube C ,
whereas Gl is from tube B

The cavity perturbation technigue measures average plasma elec-~
tron density, whereas the growing wave experiment at a>za% measures
the axial plasma density, since the electron beam diameter is small
compared to the plasma column diameter. Thus the difference in
slopes between the cavity data and that of growing wave data G2 or

G is probably attributable to the radial variation of plasma electron

3

density in the plasma column.

Howe (U42) has discussed the radial variation of electron density
but points out that the use of ambipolar diffusion theory is not
really applicable when the mean free path of the mercury vapor is of
the order of the tube diameter or greater. Normally one can approxi-

mate the radlal electron density variation by a parabolic variation

from the tube axis to some finite value at the tube walls. Of course,
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this neglects the rapid variation of the plasma density in the electron
sheath to zero, but is satisfactory as long as the sheath thickness is
small compared to the tube radius. From Figure 5.3 the ratio of the
slopes of curves G2 or G3 and the cavity data 1s approximately
1.42. Based on the assumption that the variation is parabolic, one
then estimates that the edge plasma density is L4 of the axial plasma
density which seems to be a reasonable number.

In the preliminary report (32) of this work, the independent
method of measuring deﬁsity was by scattering microwaves from a plasma
column, see Appendix 1. In such an experiment the plasma arc column is

inserted in a rectangular TE waveguide so that the axis of the column

10
is perpendicular to both the electric field and the direction of propa-
gation. When the reflection coefficient of the column is plotted versus
arc current at a fixed frequency, several distinct maxima are found (32).
The principal or first resonance (36) occurs at wi/mz = 2 (modified

by a straightforward correction for the glass walls which, in the case
of the tube of Figure 1.1, gives wﬁ/mg = 2.81) and corresponds to
dipole resonance of the plasma column. It can be shown that with a
monotonic density variation radially, reflection should occur at

nearly the average density. These multiple resonances have been
experimentally observed by others (6),(7),(4h),(L45),(L6), but are
unexplained in the literature. Much speculation has occurred that these
multiple peaks may be caused by the radial charge density variation
(36),(43),(47),(48), but Keitel based on his own work (49), criti-

cizes tﬁese results as erroneous (50). Recently, Gould (51) has suc-
ceeded in predicting an infinity of peaks by the approximate inclusion

of the effects of the random energy of the plasma electrons. Such



-57-

random velocities succeed in coupling the plasma resonance at
ws/w2 = 2 1To the plasma oscillations near o = mp .

For the purposes of this paper only the principal resonance is
of use in measuring the plasma density. The minor peaks will not be
cqnsidered further. As mentioned in the preliminary report (32),
there was an appreciable discrepancy between the estimated average
plasma density obtained by the scattering experiments and the axial
density as measured by the electron beam. This discrepancy was caused
by the erroneous aésumption that the positive column of an arc dis-
charge is independent of bends in the column. That is, the scattering
measurements were performed for convenience on a long straight arc
column made from an identical piece of glass as used for the plasma
interaction region of the helix tube of Figure 1.1 . The plasma den-
sity versus arc current was then mistakenly assumed the same in both
tubes a@ identical conditions of mercury pressure. That such is not
the case is apparent in Figure 5.&, where cavity perturbation measure-
ments made on a long straight plasma column are compared with the data
presented in Figure 5.3 obtained from the helix tube model C of
Figure 5.1 . Both measurements were made with the same rectangular
TElOl cavity. Also in Figure 5.4 are measurements of average plasma
density as obtained from the principal resonance of the scattering
experiment (designated by the points & ). Likewise, the line labeled
K represents an estimate of average plasma density by Klarfeld (39)
and is based on a compilation of Langmuir probe meagurements. The
crosses labeled W are measurements of average plasma density on said

straight columm as obtained from the slow wave propagation method (33)

by Trivelpiece. All the measurements on the straight column agree
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reasonably well as they all measure average density but differ consider-
ably from the cavity measurements on the plasma interactlion region
between the helices of tube C shown in Figure 5.1 .

One must conclude, based on the experimental results of Figure
5.M,kthat the plasma electron density versus arc current of a short
plasma column (such as the interaction region of Figure 1.1) depends
on the end conditions to a large extent. In figure 5.1B 1t may be seen
that the beam passes through the bends in the arc column whereas in
tube C the helices and their surrounding small glass tube project
through the bends. Thus the geometry at the ends of the plasma inter-
action region is different for helix tubes B and C and therefore one
might expect the plasma densities, for a glven arc current, to be dif-
ferent. This explains the slope discrepancy in Figure 5.3 between Gl 5

which was obtained on helix tube B, and G, and G3 , which were ob=-

2
tained on helix tube C

One may even go so far as to explain why helix tube C has &
higher plasma density for a given value of arc current than does tube
B as seen in Figure 5.3 . Note that the arc column 1s more restricted
by the bends in tube C than tube B . This is because the small glass
tube supporting the helix passes through the bend of tube C but not
tube B . It is known that constricting an arc column raises the voltage
gradient along it so one might expect that the voltage drop through the
bend of tube C should be greater than that of tube B . Therefore,
plasma eiectrons passing around the bend of tube C might be expected

to hsve more energy than tube B and thus have a greater probability of

producing an lonizing collision.
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The contribution of the electron beam to the production of plasma
electrons will now be estimated. For a 400 volt electron beam as used
in the helix tubes the mean free path (40) for beam electrons to ionize
Hg atoms is 43.7 em. It is possible to compute a rate of ion produc-
tion, rb , in ions per sec per centimeter length of the beam for a
typical beam current of, say 1.5 ma, as is typical for Figure 5.2 .

From Klarfeld (39), knowing the plasma electron temperature, one can
compute the rate of ion production due to the plasma electrons, assuming
a plasma denslty corresponding to a plasma frequency of 3000 Mc, in ions
per sec per centimeter length of the arc column. The ratio rp:rb is
approximétely 113, which implies a small beam contribution compared to
that of the plasma electrons. This is experimentally substantiated by
the fact that in the cavity perturbation experiments, which measure

the average plasma density throughout the cross section of the tube,
there is no detectable shift in the resonant frequency due to the elec~
tron beam.

In Figure 5.3 the intercept at zero frequency for curve G or

1

G is approximately -.0l ampere. The arc current for interaction at

2

3000 Mc¢ is approximately .1 ampere for G Assuming that the beam

1
contribution theory is correct, this implies that the ratio of the
rates of lon production due to plasma electrons and due to the beam
electron collisions is approximately 10:1 . To explain the discrepancy
between 113 and 10 one must assume that the plasma electrons produced
by the electron beam remain, at least for several cyc;es of the signal

frequency, within the beam radius of .15 cm (Section 4.1). The plasma

colunn radius is .52 cm. Over the beam cross section the ratio of
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roiTy becomes 113 (.15/.52)2x9.u which is satisfactory.

To substantiste this assumption of the plasma electrons produced
by beam electron collisions remaining for several cycles within the
beam radius, it is necessary to know the average random energy of the
electrons produced by ionizing collisions between beam electrons and
mercury atoms. Such an answer is not easily obtained but, for the sake
of argument, assume that such random energy is 4.7 ev, corresponding
to that of the plasma electrons. A traversal frequency across the
beam is obtained by dividing the corresponding one-dimensional random
velocity by the beam radius. Such a traversal frequency is approximately
500 Mc which is a reasonably small fraction of 3000 Mc implying that a
plasma electron produced by a beam electron collision remains within
the beam radius for several cycles of the modulation field. Mott and
Massey (52) show a curve of the energy distribution of ejected electrons
for hydrogen at various beam voltages although, wunfortunately, not for
Hg. This and related calculations indicate that the average random
energy of the ejected electron may range from the above assumed value
to several times that value. This is, however, a satisfactory order of

magnitude calculation.

5.2 Interaction with Surface Wave Mode of Propagation

During the course of experimentation on the helix tube it was found
that an interaction occurred at a plasma frequency greater than the
modulation frequency. Such interactions for various freguencies are
shovwn ih Figure 5.5 where the detected output signal is shown versus

arc current. The arc current increases from left to right and is zero

at the numbered vertical line at the far left. Two interactions occur,
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the one at lower arc current being at o = wp , and the other one
presumably with’the axially symmetric surface wave mode of propagation.
Note in Figure 5.5 that there are two photographs at 3.0 kMc. The
second one is with the detected output signal of the amplifier not
filtered (N.F.). The noise that is apparent will be discussed later.
The surface wave frequency versus propagation constant diagram
for the helix tube is shown in Figure 5.6. The vertical lines are
both for phase velocities corresponding to a 400 volt electron beam
at two different frequencies. Their intersection with the surface wave
w~-p diagram represents the ratio f/fp at which the electron beam is
synchronous with the slow wave of propagation on the plasma column.
As can be seen in Figure 5.6, the intersections for this helix tube
at its fixed beam velocity occur at large values of pa for frequencies
in the range 2.5 to 4,0 kMc. The interaction occurs at fg/f2 = 6.0
In order to obtain the operation as shown in Figure 5.5 instead
of that of Figure 5.2, it is necessary to defocus the electron beam
such that it is reflected by the electron sheath into the second helix.
This is accomplished by first obtaining the pure w = &b interaction
as in Figure 5.2, This in itself is often very difficult as all the
different electrodes through which the beam passges have voltages which
must be adjusted a slight amount about the synchronous voltage. The
criterion of optimization is to maximize the outpubt signal strength and
to obtain a sharp response as in Figure 5.2 . If then, at this condi-
tion of optimum performance, the second (demodulation) helix is shifted
a few percent in voltage, the output signal strength at the peak of the

interaction in Figure 5.2 decreases, necessitating an Increase in the
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oscilloscope sensitivity. When the decrease of the principal interac-
tion reaches approximately 20 db the second interaction is of appre-
ciable magnitude as seen in Figure 5.5.

From photographs such as Figure 5.5 one is able to plot the
arc current corresponding to the two interaction peaks versus the mod-
ulation frequency squared. Typical results from helix tube C are
shown in Figure 5.7. Also included are the cavity perturbation mea-
surements of average plasma frequency versus arc current which were
previously presented in Figure 5.3. The points Gu correspond to the
body resonance interaction at o = ab and agree well with curves G2
and. G3 of Figure 5.3. The experimental points of both interactions
lie on good straight lines and have zero frequency intercepts to the
left of the origin. The fact that the intercept of the purported
surface wave interaction lies to the left of the principal interaction
is unexplained.

The ratio of the slopes of these two experimental lines is 4.3
compared to the theoretical value of 6.0. The effect of the radial
charge density variation is unfortunately in the directlion which will
increage the theoretical value of the ratio. This is because the sur-
face wave Tields interact with the edge plasma density, whereas the
body resonance interaction occurs when the modulation freguency equals
the axial plasma density. This discrepancy is unexplained.

The mechanism of the reflection of a divergent electron beam from
the electron sheath was described previously. It is necessary to pos-
tulate that such is occurring in order to explain the interaction of

the surface wave mode of propagation with the electron beam of the

helix tube. This is because the electric fields of the surface wave
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at the surface of the electron beam are a factor of 88 weaker
[IO(Ba) /IO(Sb) for f = 2.5 kMc] than at the surface of the plasma
colum of Figure 1.1, and hence significant interaction will not
occur if the electron beam is well focused and remains close to the
axis. Strong interaction with the surface wave will occur only if
the beam is made to pass close to the surface of the plasma column.

In Figure 5.5 are shown two photographs of the interaction at
3.0 kMc. These were taken in immediate succession. The filtered and
nonfiltered detected output signal is shown. OCbviously there is an
appreciable noise or hash present and because of this the detected
output signal is normally filtered for the experiments of this paper.
The noise spectrum appears to be rather broad although it probably has
a maximum in the 10 ke to 20 ke range. This noise vanishes when the
input signal level is removed (except when the tubes are oscillating)
and may be associated with density fluctuations from moving striations
(53). Since both the interaction with the body resonance at w = @
and the surface wave appear to be extremely noisy, it would appear
that the devices described in this paper are of limited usefulness
unless one can clrcumvent this difficulty in some manner.

Also in evidence in Figures 5.2 and 5.5 is hysteresis in the trace.
This implies that the arc plasma electron density differs for a given
arc current depending on whether the 60 cps arc sweep voltage is in
the increasing or decreasing part of the cycle. This may possibly be
caused by space charge bpild up and decay on the glass walls, or by
non-equilibrium heating effects in the arc column. The exact mechanism

is not understood. For counslstency, the first occurring peak is nor-

mally chosen in this thesis from which curves are plotted.
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5.3 Experimental Rates of Growth

The theoretical rates of growth including the beam plasma frequency
reduction factor, but neglecting collisions, may be computed from section
2 with the conditions of section 4. Assuming a 400 volt beam,

R = 4o0o/4.7 = 85. At 3000 Mc assuming an electron beam current of .1
and 1.0 ma, the growth constent G is 12.4 and 26.1 db per cm. As seen
in section 2.1, collisions of the plasma electrons can significantly re-
duce these growth constants.

Experimentally the maximum net gain observed between the input and
output waveguides of the device of Figure 1.1 performed on tube D of
Figure 5.1 is +25 db. Under this condition the electron cathode current
was 2.0 ma and that reaching the beam collector was 148 ma. When the
arc was turned off, but the beam left on, the net loss was as little as
10 db if the beam remained well focused. This implies an electronic
gain of 35 db or a growth constant of 7 db per cm. The above operation
is shown in Figure 5.8.

It should not be implied though, that such high net gains were
always observed. On tube C, for example, the highest net gain observed
was +8 db with a cathode current of .8 ma. Turning the arc off, the net
loss was approximately 30 db with the beam well focused. This again
predicts a growth constant of 7 or 8 db per cm.

Many times with the tube operating as in Figure 5.2, the device
would show a net loss of 10 db or so. Adjusting the device well enough
to show pet gain is quite difficult and requires much adjustment.

Under the most favorable circumstances the growth constant was esti-

mated at only 7 or 8 db per cm. This discrepancy of experiment and theory

is most likely explained by inhomogeneities in the axial plasma density,
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since the inclusion of collision effects, as in Section 2.1, fails to
reduce the gain to sufficiently near that required by experiment. By
inhomecgeneities in the axial plasma density is meant either a gradual
or statistical variation in the plasma electron density along the axis
of the plasma interaction region of Figure 1.1.

It can be seen in Chapter 2 that the theoretical bandwidth of
this amplification device is less than one percent. As an example,
consider a beam current of .15 ma; the bandwidth as defined by the
half power points is thén 2%, The experimental curves of Figure 5.2
indicate a bandwidth up to 40% or so. Based on the narrowness of the
theoretically predicted bandwidth, it is easy to understand how a few
percent change of electron density along the plasma interaction region
of Figure 1.1 could drastically reduce the observed growth constant and
make comparison with theory very difficult.

The helix modulation experiment has also been found occasionally
to oscillate without external feedback. The output versus arc current
under such circumstances is similar to Figure 5.2 and 5.8 and is only
discernable in that the output does not disappear when the input is -
turned off.

The output signal level versus arc current such as Figure 5.8
should be compared to that of Figure 2.3. The vertical axis of the
latter figure is, of course, proportional to the logarithm of the output
signal level of Figure 5.8. The fact that the output signal falls off
less rapidly at arc currents above the maximum interaction current than
below is.seen in the second through fourth photographs éf Figure 5.8

which were obtained from tube B. These latter tThree cases were used

to form Figure 2 of the preliminary report (32). The electronic gain
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of tube B in the latter three cases was much less than that of the
first photograph of Figure 5.8 which was obtained from tube D. The
data obtained from tube B substantiates the general shape of the
theoretical curves of Figure 2.3. The second bump in the output is
presumably due to surface wave interaction.

The primery advantage of tubes C and D over B is that the beam

passes through a more uniform region of the arc columm. The advantage
of tube D over C is that the arc is much easier to strike. Tube A of
Figure 5.1 showed interaction but was never very satisfactory and was
gulckly discarded for the more ideal geometries. It served its pur-~

pose in encouraging our iniltial efforts.

A direct experimental observation at w = wp of growing waves
along the electron beam obtained by moving an antenna along the outside
of the glass column is very difficult to observe. There are two maln
reasons for this. The first is that the fields fall off as KO(Br)
from the edge of the beam to the edge of the plasma column. This factor
becomes quite large for the helix modulation tube, since pa ranges
between 6 and 11 as seen in Figure 5.5. The second 1is concerned with
the coupling of plasma oscillations at w = mb to outside the plasma
column. Note from equation 2.0.1 that when the modulation freguency
equals the plasma frequency the equivalent dielectric constant is zero
inside the plasma medium. Therefore, the displacement vector is zero
inside this equivalent plasma dielectric. From the boundary condition
on the continulty of the normal displacement vector at a charge free
interface 1t 1s then apparent that if the displacement vector is zero
inside the plasma the normal electric field must be zero outside
the plasme surface. From a theorem in electrostatics it is known that

if the normal component of the electric field is zero over a surface,
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there is no field outside this enclosed region. As applied to the
experiments of this thesls these conslderations indicate why it is
difficult to detect oscillation fields at the plasma frequency outside
the plasma body. Of course the above discussion neglects the effects
of the random energy of the plasma electrons and plasma density inhomo-
geneities.

When this experiment was tried on helix tubes C and D, the results
were negative, i.e., no growing wave at w = ab could be recagﬁized
amid the background radiation of the helices, etc. When this was tried
on the cavity modulation tube aﬁ ® = wp the experiment was successful
and will be discussed further in Sections 6.2 and 6.3 . The experiment
was successful there probably because the electron beam passed closer
to the surface of the colum as well as operating at values of PBa
between .5 and 1.5 .

This difficulty in detecting plasma oscillations with an r-f probe
outside the plasma emphasizes one of the points that has made the
experiments in this thesis successful. That is, in these experiments
one generally couples to the modulated electron beam emerging from the
plasma as opposed to coupling to radio frequency fields. The‘other
main point is that in these experiments the growing wave is excited
by a modulated electron beam and therefore usable signal levels may
be reached in a shorter distance than if left to grow from the inherent
noise on an electron beam. For these reasons one can gppreciate why
Looney and Brown (18) were unsuccessful in detecting.growing waves,
in the direction of their unmodulated electron beam, as had been pre-

dicted by Bohm and Gross (11).
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6. CAVITY MODULATION EXPERTMENT

6.0 Method of Operation

To more fully investigate the interaction of an electron beam
with the slow surface wave mode of propagation on a plasma column,‘the
cavity modulation tube of Figure 1.2 was constructed. The resulting
tube and its split M9O Mc re-entrant cavities are shown in Figure 6.1 .
The cavity gap is .150 inches and each cavity has a tuning plunger
capable of shifting the resonant freguency as much as 2.4% . The
. cavity gap fields must penetrate through the glass to the beam. This
results in poor coupling of the cavity to the beam, but this is not of
great importance, since for this'experiment it is the interaction
mechanism that is of importance and not the over-all net gain.

In the helix tube experiments, interaction with the surface wave
was observed but only at a fixed phase velocity as specified by the
helices. Also, because of the high frequency and large plasma colum
diameter, interaction was observed only far out on the asymptote of Pa
as seen in Figure 5.6 . Weak interaction was obtained because the
electron beam diameter was small compared to the plasma columm.

In Figure 3.2 it was seen that the maximum interaction impedance
occurred in the range .5 £ Ba £ 1.5 , whereas the helix tube had
values of Pa greater than 6 for frequencies of interest. Of further
interest was the fact that for Ba {2 the value of mﬁwp changed
with pa . For the beam voltage and frequencies as used in the helix
tube, the surface wave interaction occurred at a constant value of
w/wp . To verify the interaction properties with the surface wave it
is of interest to vary the beam velocity in the range .5 £ Ba £1.5 and

see that the arc current at which interaction occurs varies as
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prescribed by theory.

Typical experimental results obtained from the device of Figure
.6.1 are shown in Figures 6.2 and 6.3 . In Figure 6.2 the detected
. (and filtered) output signal is presented versus arc current for dif-
ferent electron beam voltages. The zero of arc current is the numbered
vertical line at the far left. As the beam velocity increases the
phase velocity of the slow surface wave mode of propagation must also
increase to remain in synchronism. It is seen in Figﬁre 3.1 that as
the velocity increases, Ba decreases and f/fP decreases. The tube
of Figure 6.1 is operated at a fixed frequency of 490 Mc. Thus for
increasing synchronous velocity the plasma frequency must increase.
This is seen to be true in Figure 6.2 where the interaction peak shifts
toward higher arc currents as the beam velocity is increased. 1In
Figure 6.3 the arc currentvis held fixed and the beam velocity is
swept (at 60 cps). As before the interaction occurs at increasing
beam voltages as the plasma density is increased by way of the arc cur-
rent.

To obtain the operation shown in Figure 6.2 requires a consider-
able amount of adjustment of the electrode voltages along the electron
beam to focus it well. Of course, with the arc on, the beam cannot be
seen so the only measure of the guality of the beam focus is the
strength of the output‘signal level and the current reaching the beam
collector shown in Figure 1.2 . Actually, the current reading is only
of limjited usefulness, since current readings to electrodes surrounded
by plasma can be very misleading. This is because the plasma appears
to d.c. electrode voltages as a medium of finite conductivity. Thus

between any two electrodes there flows a current (ions being collected
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at one electrode and electrons at the other) resulting from the plasma
alone. The current reading at any electrode‘is‘the algebraic sum of
current resulting from the conducting medium and the eiectron beam
current collected by that electrode. The measure of beém current used
in this paper is taken as the electron gun cathode current. It is
réason&bly isolated from the plasma region. Naturslly all the cathode
current does not remain in the beam when it reaches the plasma interac-

tion region due to interception by the various electrodes along the way.
6.1 Growlng Surface Waves

Since the electric field resulting from the surface wave interac-
tion is strongest at the surface of the plasma column, a probe on the
exterior of the colummn is capable of coupling to the surface waves. If
one moves an antenna probe along such a column a growing standing wave
pattern will be apparent as seen in Figure 6.4 for several values of
the beam voltage. The electron beam travels from left to right. The
standing wave pattérn is a result of the propagating surface waves
being partially reflected from the ends of the plasma columm. That is,
the plasma column appears as a mismatched transmission line. The grow-
ing/wave envelope is a result of the interaction between the surface
wave and the electron beam. As noted in Figure 6.#, the probe is
moved between the input and output cavities a distance of 8.7 cm.
Directly above three of the growing wave patterns are photographs ob-
tained of detécted output signal strength versus arc current corres-
ponding to that beam voltage. After the photographs were taken, the
arc current sweep was turned off and the current adjusted to the value

corresponding to the maximum output signal strength. At this fixed value
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Figure 6.4 Growing Surface Waves Resulting from the Interaction of
an Electron Beam Traveling from Left to Right with the
Angularly Independent Mode of Propagation. The Horizontal
Calibration for the Photographs is 20 Divisions Equals
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of aré current, the probe is then moved along the plasma column with
the resulting standing wave pattern.

In Figure 6.4 the signal strength versus distance along the plasme
colum is especially of interest for the 250 volt electron beam case.
The upper curve 1s with the electron beam present and shows a growing
sﬁanding wave. The lower curve is with the electron beam current
greatly reduced by lowerihg the cathode temperature. In this latter
case the signal strength decays for most of the distance along the in-
teraction region due to losses in the slow surface wave mpde of propaga-
tion. The 250 volt beam curves of Figure 6.4 clearly show that an
electron beam interacting with the surface wave mode of propagation
produces a growing wave.

From the standing wave pattern one may measure the electronic
wavelength on the plasma column. This agrees reasonably well with that
predicted from the known beam voltage. In fact, this wavelength mea-
surement is a better measure of the velocity of propagation than the
beam voltage, since no electrode voltage gives a true measure of the
potential existing in the plasma interaction region. As is well known,
an electrode in a plasma drawing no current is at a potential less than
the plasma potential by a voltage equal to the sheath potential. This
and such associated phenomena as the anode (arc) drop, all cause the
plasma interaction region potential to be somewhat different from that
of any of the beam electrodes.

As a further verification of the properties of the surface wave
interaction, it is of interest to plot experimental w-p diagrams cor-
responding to Figure 3.1 . To do this, one must have a measure of

plasma density versus arc current. This was accomplished by the cavity



-81-~

perturbation method discussed in Section 5.1 . Plasma density versus
arc current is shown in Figure 6.5 and was obtained from the interaction
region of the plasma column of the tube of Figure 6.1 . Several runs
are shown and indicate a significant variation. The experimental points
indicated by dots and circles were obtained with the previously used

rectangular TE cavity. The crosses were obtained with the plasma

101

column placed along the axis of a cylindrical TE cavity simultaneously

111
with the operation of the surface wave interaction experiment. The ex~
periment was being operated as in Figure 6.3 where the beam voltage was
being swept at a 60 cps rate and the arc current was held constant.

It is apparent that the density versus arc current is not very
reproducible, in that the function seems to split at approximately
.05 amperes. The interaction region of the plasma column of Figure 6.1
is not an infinitely long column and thus the plasma density versus arc
current might well be affected by the conditions on the electrodes at
the ends of the interaction region. Experimentally, such is found %o
be the case, i.e., varying the electron beam electrode voltages affects
the plasma density somewhat, though not in a reproducible way. For the
degree of sophistication and accuracy attained thus far in this ex-
periment, the plasma density versus arc current will be assumed to be
given by the straight line of Figure 6.5

Knowing the plasma density versus arc current, it is possible to
obtain experimental w-B diagrams from data such as Figures 6.2 and 6.3 .
Such a diagram is presented in Filgure 6.6 . The dots, circles and
deltas represent measurements made with the plasma célumn in free space
and thus should coincide with the solid curve. The dots and deltas

correspond to data such as Figure 6.2 where one sweeps the arc current.
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The circles correspond to data such as Figure 6.3 Where the beam
voltage is swept. The crosses represent daté obtained when the
plasma colum was coated by a metallic conductor (silver paint) at
the surface of the glass tube and thus should coincide with the dashe
curve. The significant experimental verification is that the experi-
mental curve formed by the crosses lies below the curves formed by
the dots, deltas and circles. All of the curves have the general
shape as reguired by theory. The closeness with which they lie to
the theoretical curves is, of course, proportional to the calibration
of the ordinate in Figure 6.6 as obtained from Figure 6.5. The effect
of the radial variation in charge density would be to raise the
experimental points upward in Figure 6.6 and thus would increase
the discrepancy. This correction should not be too great, however,
as the cavity perturbation technique measures average plasma density
and the surface wave interaction measures somewhere belween average
and edge density. Note that the ordinate of Figure 6.6 is inversely
proportional to the sguare root of arc current and the abscissa is
inversely proportional to the square root of the beam voltage.
Besides demonstrating the interaction between an electron beam
and the surface wave mode of propagation, the cavity modulation tube
also shows interaction with the body resonance of the plasma at T =f§.
Three such interactions are shown in the top row of Figure 6.7 where
the detected output signal versus arc current 1s shown. The first
occu:ring peak (at lower arc current) corresponds to interaction with
the body resonance as discussed in Chapter 2. The surface wave inter-

action is at the higher arc currents. From experimental curves similar

to Figure 6.7 one obtains points as shown in Figure 6.6 near the
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horizontal line f/fp = 1 . Since the interaction with the body
resonance is at a small value of arc current (7 milliamperes approxi-
mately), the accuracy of scaling the photographs is poor. Also this
small value of current is quite near the extinguishing value of the
arc which causes experimental difficulties. For these reasons the
>experimental interaction points at f = fp in Figure 6.6 are no better

than 20% .
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6.2 Experimental Rates of Growth and Anomalous Effects

The surface wave interaction with an electron beam is experimen-
tally demonstrated in Figures 6.2 and 6.3 . In the latter case the
electron beam voltage 1s swept while holding the arc current constant.
It is sometimes observed, however, that curves such as the bottom row
of Figure 6.7 are obtained. These indicate several subsidiary peaks
in output signal strength at lower voltages than the surface wave
interaction.

As can be seen from a study of Figure 3.1, these lower voltage
interactions (at a fixed arc current) lie on the lower side of the
angularly independent, n = 0 , surface wave dlagram and thus cannot
be explained in terms of interaction with the n = 1 mode of propaga-
tion. A possible explanation is in terms of the Kompfner "dip"
phenomena (54,55) .

Net gain has been obtained with the cavity modulation tube as
was obtained with the helix modulation tubes C and D . The top row
left photograph of Figure 6.7 corresponds to a net gain of +5 db. Net
gain as high as +8 db has been observed. A more interesting experiment
by far is to measure the rate of growth from curves similar to Figure
6.4 obtained by moving a probe along the outside of the glass column.
If the growth constant is large enough, the growing wave predominates
and the output signal will increase exponeﬁtially with distance. By
replotting the average of the maxima and minima of the growing standing
wave péttern on semilog paper, one can obtain the growth constant in
db per cm. Data obtained in this manner is presented in Table'6.l

which follows.
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BEAM CATHODE GROWTH IN
" BEAM VOLTAGE CURRENT IN MILITAMPERES DB PER CM
S 1h3 3.0 .70
170 1.65 .61
185 1.6 .66
200 .73 -99
200 1.1 .78
200 1.2 .68
200 1.2 .72
200 1.2 .80
200 - | 1.k .85
500 .22 il
Table 6.1 Experimental Growth Constants for Surface Wave

Interaction with an Electron Beam as Obtained from
the Cavity Modulation Tube

As can be seen, the spread in data is such that at a fixed voltage
(200 volts as used here) the measured growth constant is not suffi-
cilently reproducible: that the dependence of the growth constant upon
beam current could be verified. The main conclusion to be drawn is
that such growing waves exist and that for a 200-volt beam and 1 ma
beam current, a representative growth constant would be .8 db per cm.
Theoretically from equations3.1.2 and 3.1.3, one may compute a growth
constant of 2.75 db per cm for a 1 milliampere, 200 volt beam. The
interaction impedance, ZO ; was assumed to be 800 ohms as seen in Sec-
tion 3.1 . This discrepancy between experiment and theory is probably
due to the neglect of loss in the plasma column, a factor which is
known to be significant.

In addition to the surface wave interaction, it was found that the

“body interaction could also be observed (Figure 6.7). A moving antenna



-89-

along the plasma column indicated a growing standing wave pattern in the
direction of the electron beam similar to those observed in Figure 6.k4

- for the surface wave interaction. For the reasons discussed in Section
v 5.3, the signal picked up by the probe is very weak and is difficult to
observe. For instance, the body resonance signal decreases 20 db or so
relative to the surface wave signal when one changes from the output
cavity to the probe at the surface of the plasma-glass column. Experi-

mental growth constants are tabulated in Table 6.2.

BEAM CATHODE GROWTH IN
BEAM VOLTAGE CURRENT IN MILLIAMPERES DB PER CM
215. 1.0 ~ .ok
215 1.0 1.07
225 | 1.3 1.31
225 1.3 1.42

Table 6.2 Experimental Growth Constants for Body Resonance (f=f )
Interaction with an Electron Beam as Obtained from
the Cavity Modulation Tube

The reason that growing waves at £ = fp are detectable with a
probe outside the plasma column of the cavity tube but not the helix
tube, 1is probably a result of two factors. The first is that pa is
typically 1 in the cavity tube and 8 or so in the helix tube. Thus the
fields are relatively stronger outside the cavity tube than the helix
tube. The second factor is that, in the cavity tube the electron beam
passes closer to the tube walls.

The theoretical rate of growth for the cavity modulation tube at
f::fp may be computed from Section 2 including the begm plasma freguency
reduction factor but neglecting collisions. Assuming a 200 volt electron
beam, R = 200/4.7 = 42.6. At 490 Mc assuming an electron beam current of

1 ma the growth constant G 1s 10.2 db per cm. This discrepancy with
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experiment is most likely a result of collisions of the plasma elec-
trons since a representative collision frequency (Section 4.0) of
100 Mc is a far greater fréction of 490 Mc than of 3000 Mec.

Measurements of the growing standing wave pattern at f::fp
indicate that the reflected wave has a phase velocity large compared
to the forward beam veloclty and thus is probably a reflected elec-
tromagnetic wave.

The abdve experimental measurement of growth constant along an
electron beam at f::;é is a direct confirmation of the theories of
Bohm and Gross (11). Previous investigators such as Looney and
Brown (18) were unsuccessful in observing such results. Their lack
of success is chiefly attributable to not using a modulated electron
beam. In these previous experiments the electron beam-plasms inter-
action region was too short for an appreciable signal strength to

builld up from the noise level.
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7. SUMMARY AND CONCLUSIONS
7.0  Summary of Results

Two new experiments on the interaction of a modulated electron
/beam with a plasma medium have been performed. One type of interac-

tion is that between an electron beam and the plasma acting as a
resonant, non-propagating medium. Such body resonance interaction
occurs at f/fp-ﬁsl . The modulated electron beam excltes plasma
oscillations which réact back on the beam increasing the modulation
and thus a growing wave exists in the beam direction. The interaction
is independent of the electron beam velocity, in that the wave is
carried by the electron beam.and not by propagation through the plasma
medium.

The other type of interaction studied in this paper is between
an electron beam and a plasma column acting as a slow wave propagating
structure. Such a plasma column acting as a transmission line is a
three-dimensional effect, i.e., its propagation characteristics
depend on the finite cross section of the plasma column. In the
absence of an axial magnetic field such slow waves propagate on the
surface of the plasma column. The interaction of an electron beam
with such surface waves as observed in this paper occur in the range
.2<ff/fp-<.5 . The interaction is velocity dependent in that the in-
teraction occurs when the electron beam velocity is synchronous with
the phase velocity of the surface wave on such a plasma column. The
helix‘modulation experiment and cavity modulation e%periment of
Figures 1.l and 1.2 respectively, were designed to investigate these

interactions.
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The helix modulation experiment operated at a fixed beam velocity
and over a wide frequency range. Because the plasma column radius was
large compared to the beam radius, the principal interaction observed
was with the bodj resonance at f/fpﬁfl. The principal features of
this amplifying mechanism were found to be in gqualitative agreement
with the one-dimensional analysis of many previous workers, i.e., the
existence of growing waves on the electron beam were found at a fre-
guency equal to the plasma frequency of the medium through which the
electron beam passed. The linear dependence of the modulation frequency
squared versus interactlon arc current as seen in Figure 5.3 is in
agreement with theory. This device also shows interaction with the

surface wave mode of propagation.

The cavity modulation experiment operated at a fixed frequency and
over a wide synchronous velocity range. The electron beam filled an
appreciable fraction of the plasma column cross-section and interacted
strongly with the surface wave mode of propagation. An experimental
fregquency versus propagation constant diagram such as Figure 6.6 is found
to be 1n good agreement with the theoretical curves. Interaction was also
obtained with the body resonance at f/fp: 1 for small values of arc cur-

rent.

Net gain has been obtained in both experiments. Exponential growth

constants along the beam were measured by means of a traveling probe for
both interactions and were considerably less than predicted theoretically

including only the random energy of the plasma electrons and the beam
plasma reduction factor. Collisions and plasma inhomogenelties probably

account for the reduction in gain.
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7.1 Conclusions and Future Possibilities

Results have been reported for two new experiments that verify
existing theories of the interaction of a modulated electron beam
with a plasma medium. The experiments are difficult to perform because
éf the uncertainty in the focusing of the electron beam. The amplify-
ing mechanisms in both experiments appear to be extremely noisy. This
is probably due to the random energy of the plésma electrons which
results in collisions with mercury atoms and the electron sheaths at
boundaries of the plasma. Unless this can be overcome, these devices
may not be of great practical importance.

One of the most fascinating future experiments to be performed
with a device such as the cavity modulation tube is to immerse the
entire apparatus in a strong axial magnetic field. This would probably
eliminate beam focusing problems and conseqguently result in far more
reproducible results. Further, if the magnetic field were suffi-
ciently high that the cyclotron radius of the plasma electrons due
to thelr random energy were small compared to the plasma column radius,
then one might expect to lower the collision frequency with the electron
sheath. If this were so, one would hope that the high frequency loss
of slow waves on such a plasma column might be reduced, and with it
the noise on such waves. The noise mechanism is, however, more probably
associated with striations and oscillations in the arc column.

Aside from these considerations, the effect of an axial magnetic
field would change the propagation characteristics of the plasma
column in a most interesting way, as discussed by Trivelpiece and Gould

(33). They have shown that with a magnetic field there exists a back-

ward wave propagating mode (phase and group velocities in opposite
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directions) with which backward wave interaction and thus oscillation
1s possible. Structureless oscillators are an intriguing concept from
the millimeter wave point of view but this is beyond the results of

the present thesis.
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Appendix 1

DIPOLE RESONANCE OF A CYLINDRICAL PLASMA COLUMN IN
A TRANSVERSE ELECTRIC FIELD

Consilder the plasma column of an arc discharge tube placed across
a wavegulde such that the column axis is perpendicular to the direction
of propagation in the guide. The guide is assumed to be propagating in
the TElO mode and the electric vector is perpendicular to the column
axis. The experiment is shown in Figure Al.

The condition of dipole resonance is easily obtained [Herlofson
(36)] if one assumes that the gulde wavelength of the propagating wave
is large compared to the plasma column radius. Such is the case for
the experiments performed in Section 5.1 . Therefore, in determining
the normal modes of oscillation of the plasma column one may use the
guasi-static approximation and derive the fields from the negative
gradient of the potential. The effect of the glass walls will be in-
cluded and the plasma column is assumed to have a uniform charge den-
sity.

In the guasi-static approximation the time varying potential
satisfies Laplace's equation, V2¢l =0 . The radius of the plasma is

assumed to be a . The outer radius of the glass tube is ¢ . The

appropriate solutions are

g = A cos no ra o
1 n n
r
3 *n ~ AN
g, = {?nr + nﬁ} cos ne c>r>ag (AL.1)
g =D r" cos no r€a
1 n

The equivalent dielectric constant of the plasma is
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2

c &3]
-1 - _% (AL.2)

[¢%)

Applying the boundary conditions of continuity of the tangential elec-
tric field and normal displacement at r = a and r = c one cobtains

the set of simultaneous equations

A -B (cgn) -C_ =0
n n n

2n : 2n
Bn(a) +C, - D, (a7) =0

(A1.3)

A +B (ke -0 k=0
n n n

2n €
Dn(a —Cn—Dn(KE) =0

where k is the relative dielectric constant of the glass tube en-
closing the plasma. For there to be a solution, the determinant of

the coefficients must be zero. Making the substitution

A= (-;-)211 -1 (AL.}4)

one obtains as the condition for resonance

_ 2 +A (1L + k) .
=t AL (U] (42-5)

ei\)l”def\)

In the case that there is no glass surrounding the plasma this becomes
wi/wg = 2 which ﬁas given as equation 2.0.2 . Note that this is inde-
pendent of the mode n of oscillation. In Section 5.1 measurements of
dipole resonance were obtained on a plasma column cohstructed from the
same glass as used in the helix modulation tubes of Figure 5.1 . GSub-

stituting the appropriate numerical constants one finds dipole resonarce
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Appendix 2

ONE-DIMENSIONAL DISPERSION RELATTON BY THE BOLTZMANN
EQUATTON METHOD

The dispersion relatlion of an electron beam passing through a
plasma, including the random energy of the plasma electrons, has been
obtained by Bohm and Gross (11) from the Boltzmann equation.

The Boltzmann equation may be writlten as

of Bf)

‘ F
St (u - V})f + = Vﬁf = <§E (A2.1)

collisions

where f(r,u,t) dis the fraction of the number of electrons per unit
volume in six-dimensional phase space in the vicinity of the point

(r,u) at time, t . This is not the customary definition which is the
nunber (as opposed to the fraction) of electrons per unit volume. The
fraction of electrons within the volume dx dy dz at a position r in
the velocity range dux, duy, duz centered about u is given by
£(r,u,t) du, duy du, . The Boltzmann equation states that af/dt , the
rate of charge of f along the trajectory of the particles, is entirely
the result of encounters among the particles. The external force F is
assumed conservative. The long-range interaction force of the plasma

electrons is included in the force term as
F = -e(E+uxB) (A2.2)

The plasma is assumed stationary and steady magnetic flelds are assumed
to be absent.
If the time varying disturbances in the plasma are small, one can

linearize eguation A2.1 . Let the equilibrium distribution fumction be
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denoted by fo and the small signal perturbation distribution function
by fl . The equilibrium distribution is assumed to be independent of

position. One then obtalins

of
1 e of

~—~+(u V), -=(E, +uxB,) VT = (= - (42.3)
3 - r’""l m=1 - =1 u o _Bt collisions

Since the velocities of the plasma electrons are small compared to the
velocity of light, the magnetic force can be neglected compared to thé
electric force. The éffect of short-range collisions of the plasma
electrons is approximated by letting

of

(5D . = (a2.1)

collisions
For the case of longitudinal oscillations of the plasma electrons

as considered in this thesis, the direction of propagation and the elec-
tric field are assumed parallel and in the z direction. Equétion A2.3

can then be solved in the one-dimensional case, where time and?épatial

dependence are assumed to be given by el(wt-YZ), resulting‘in
of_(u)
e El Yy
£(w) = = (82.5)

i(w - Tuz)+ v

fl being defined as the perturbation in the fraction of electrons per

unit volume in phase space. By definition

[fo(_l_l) du = 1 . ' (a2.8)

u

The small signal time varying current density is given Dby
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u fl(E) du (A2.7)

=
l._!
1
]
m
=}
o
e —y

where no is the total number of electrons per unit volume of the
equilibrium distribution and is assumed to be uniform throughout
space. After substitubting equation A2.5 and integrating by parts one

obtains

g, = i(L)Eo -)éz _E_:.l (42.8)

where Zf is defined as the longitudinal susceptibility of the

)

plasma. If the equllibrium distribution function fo(E) is symmetrical

in velocity space then the longitudinal susceptibility is given by

£,(w)
> (82.9)

Y- -ef gt |

7
(@-vu_ - iv)

where wi = noe2/m€O is the plasma frequency.

Equation A2.9 is the longitudinal susceptibility of the plasma.
It is also necessary to obtain the susceptibility of the modulated
electron beam which passes through the electron plasma. The random
distribution of velocities of the beam electrons about their mean
velocity v is neglected. Starting with the linearized eguation of

b

motion and continuity in one dimension and assuming a time and space

dependence el(mt—YZ) as before, one obtains (see Section 2.2)
. e ,
iV (w- Tvb) =--E | (A2.10)
® Py =TI (A2.11)
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It is convenient to define a beam plasma fregquency in terms of the
beam electron density by w% = —pbe/m o " The small signal time

varying current density is given Dby

J (A2.12)

g1 =Py Yy T ¥y Prp

From equations A2.10, A2.11 and A2.12 one can eliminate Py and Vip

and cbtain

J, =iwe )% E (A2.13)

where the electron beam susceptibility )% is given by

2

X, = - _ . (A2.1k)

P -y y)®
Adding equations A2.9 and A2.1L gives the total susceptibility to
longitudinal oscillations of an electron beam passing through an
electron plasma.

It is now necessary to find what requirement must hold on the
total susceptibility of the beam plus plasma system. The two systems
may be superimposed since all equations are linear. For the situation
under discussion of longitudinal oscillations in one dimension in
which the electric field is parallel %o the direction of propagation,
(as opposed to transverse wave propagation), it is apparent that

VxE = 0 (A2.15)

since the total spatial dependence is e—1TZ .  Therefore, the electric

field can be derived from

E, =-V§ (A2.16)
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Poisson's equation then follows from V + ¢ E. = p

o =1 1

v, = - o/ (42.17)
'The continuity equation
iwp, = -V - J (42.18)
and the convection current

gy =iee K E (42.19)

defined in terms of a susceptibility, can then be combined with egqua-

tion A2.17 to give

(1+ %) v2¢l - 0 . (42.20)

,Z£ now represents the total susceptibility of the plasma plus the
beam. The solution Y72¢l = 0 dis not of interest in one dimension
and thus the dispersion relation for longitudinal oscillations be-

comes

X = -1 . (A2.21)

The total susceptiblility from equations A2.9 and A2.1h of the plasma

and beam system when combined with equation AZ.21 results in

2
‘ . f (u) du w
:L:m;(“’;)l")j 0 D2 (A2.22)
), e )7 (ot

which is the one-dimensional dispersion relation given by equation

2.1.1 .
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