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ABSTRACT

A continuum model for materials that can undergo martensitic phase transfor-
mations is developed and applied to the study of several problems that involve
such transformations. One of the several advantages of using this continuum model
is that the corresponding boundary value problem is in a form that permits direct
linearization, while retaining finite shape deformations for the martensite phases. The
continuum model is used to study several problems dealing with which variant of
martensite is preferred during the application of a loading. Among these problems
is the case of a uniaxial tensile traction applied to a two-phase cylindrical body,
and the case of a hydrostatic pressure applied to a two-phase body that has a finite
shape deformation with an infinitesimal dilatation. The results that are obtained
correspond with those that have been observed from experiments and with those that
might be expected from physical considerations. The next problem that is considered
involves the temperature at the interface and quasi-static motions of a two-phase
thermoelastic bar. The bar is subject to different temperatures at each boundary
and to a mechanical end-loading. The last problem that is considered involves the
longitudinal free vibrations of a fixed-free, two-phase bar. The main focus in this
problem is the damping behavior of the two-phase bar that is due to the motions
of the interface during the free vibrations. A finite-difference numerical routine is
used to approximate the displacement solutions for this problem. The damping of the
bar is studied as the material coefficients are varied, and the values of the material

coefficients that produce the maximum damping are investigated.
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CHAPTER 1
INTRODUCTION

In this thesis, a continuum model for materials that can undergo martensitic
phase transformations is developed and applied to the study of several problems that
involve such transformations. In comparison to some of the other continuum models,
the continuum model that is developed here provides a more accurate representation
of certain aspects of martensitic phase transformations and simplifies the construction
of the constitutive equations and the forms of the boundary valué problems that are
considered. Several of the problems that this continuum model is applied to deal
with the issue of which phase or which variant of martensite is preferred during the
growth process when a boundary traction is applied. Among these problems are the
case of a uniaxial tensile traction applied to a cylindrical body, and the case of a
hydrostatic pressure applied to a material that has a finite shape deformation with an
infinitesimal dilatation. The next problem that is considered involves a finite, two-
phase, thermoelastic bar. The bar is subject to different temperatures at each boundary
and to a mechanical end-loading. The temperature at the interface is calculated, and
the motion of the interface is determined during a quasi-static process. The last
problem that is considered involves the longitudinal free vibrations of a fixed-free,
two-phase bar. The main focus of this study is the damping behavior of the two-
phase bar that is due to the motion of the interface during the free vibrations. A

finite-difference numerical routine is used to obtain the vibration solutions for this

problem.



1.1 Allotropy

Materials that can exist in more than one type of crystal structure are said
to exhibit allotropy if the transformation from one crystal structure to another is
reversible, and polymorphism if this transformation is not reversible.! Each of the
different crystal structures of an allotropic (or polymorphic) material is considered to
represent a different phase of the material. The particular crystal structure(s) that a
given allotropic material will exist in depends, in part, on the relative values of the
Gibbs free energies of the different phases of the material. The quantities that the
Gibbs free energy of a phase depends on are determined by the type of constitutive
behavior the phase exhibits. However, for most types of constitutive behavior, the
Gibbs free energy of a phase can usually be considered to depend, at least in some
way, on the temperature and the deformation of the phase. The phase that is preferred
is the phase with the lowest Gibbs free energy, although there are other considerations

for this issue, which will be discussed at later points in this thesis.

1.2 Martensitic Phase Transformations

The term martensitic phase transformation was originally given to the diffusion-
less phase transformation that occurs when the high-temperature austenite phase of
a steel is quenched, and the term martensite was originally given to the phase that
is created from this solid-solid phase transformation.?2 The term martensitic phase
transformation has since been given to almc;st all solid-solid phase transformations
that proceed by a diffusionless cooperative movement of atoms at the phase boundary,

involve a change in crystal structure, have a distinct orientation relation between the

! Here, the term reversible means that if, e.g., crystal structure A can be transformed into crystal structure B,
then crystal structure B can be transformed into crystal structure A, and not that the transformation is necessarily
conservative with respect to energy dissipation.

% These terms are in honor of the metallurgist A. Martens, who studied these phase transformations in the late
nineteenth century.



crystal lattice of the parent phase and the crystal lattice of the product phase, and
have a shape deformation associated with the product phase [13, 17].> Similarly,
the phase created by a transformation considered to be martensitic is sometimes
referred to as the martensite phase of the given material. In this thesis, when
a martensitic phase transformation between a high-temperature phase and a low-
temperature phase is being considered, the high-temperature phase will be referred
to as the austenite phase or the parent phase, and the low-temperature phase will be
referred to as the martensite phase or the product phase, regardless of which phase is
being created by the martensitic phase transformation. Additionally, the martensitic
phase transformation that creates the austenite phase may sometimes be referred to
as the austenite phase transformation, and the martensitic phase transformation that

creates the martensite phase may sometimes be referred to as the martensite phase

transformation.

1.2.1 The Transformation Temperatures

As indicated earlier, one of the quantities that determines what phase or phases the
material exists in is the temperature of the material, since the Gibbs free energies of the
different phases of the material depend on this quantity. In the absence of any external
mechanical loading, the temperature at which the martensite phase transformation
first occurs as the temperature is lowered is called thé martensitic start temperature
(M), and the temperature at which the austenite phase transformation first occurs
as the temperature is raised is called the austenite start temperature (As). These
temperatures are material-dependent. At the temperature M;, the Gibbs free energy
of the unstressed martensite phase is less than the Gibbs free energy of the unstressed

austenite phase, and at the temperature A , the Gibbs free energy of the unstressed

3 There are other properties of martensitic phase transformations; however, these are the primary defining ones.



austenite phase is less than the Gibbs free energy of the unstressed martensite phase.
The temperature at which the Gibbs free energies of the unstressed martensite phase
and the unstressed austenite phase are equal will be denoted by 7,. For most materials,
the temperatures Ms, As, and T, do not coincide, and for most of these materials, Ms
< T, < A,. For these latter materials, because M < T, it is said that supercooling is
necessary to induce the martensite phase transformation, and because As > T, it is
said that superheating is necessary to induce the austenite phase transformation. The
difference in Gibbs free energies of the martensite and austenite phases is considered
by materials scientists to represent a “driving force” for the phase transformation.
Thus, e.g., Ms # T, is equivalent to a positive driving force being necessary for the

martensite phase transformation to take place.

The temperature at which a martensitic phase transformation first occurs can
be affected by the application of a boundary traction.* Whether the transformation
temperatures are lowered or are raised by the boundary traction depends on the
particular type of material considered and the type of boundary traction involved.
In this thesis, when the martensite is produced at a constant temperature by applying
a boundary traction, the martensite is considered to be stress-induced, and when
the martensite is produced at a constant boundary traction (which may be zero) by

lowering the temperature, the martensite is considered to be thermally-induced.

1.2.2 The Shape Deformation and Growth of the Martensite

Once nucleation takes place and a phase boundary emerges, growth of the
martensite phase proceeds by the phase boundary passing over particles of austenite

and transforming them into particles of martensite, or vice-versa if the austenite phase

4 This, of course, includes a boundary traction that is produced by applying a boundary displacement or some
other type of mechanical boundary condition.



transformation is taking place. As this occurs, a cooperative movement of atoms
takes place at the phase boundary which, in effect, “deforms” the crystal structure
of the austenite phase into the crystal structure of the martensite phase. Partly as a
consequence of this, the martensite phase has a macroscopic deformation relative to
the undeformed austenite phase. This deformation is, in general, a finite deformation.
No long-range diffusion of atoms takes place at the phase boundary, and the phase
transformation takes place only at the phase boundary. Additionally, there is usually

a discontinuity of strain and continuity of displacements at the phase boundary.

The total deformation corresponding to the martensite phase consists mostly of
the deformation that occurs sblely from the mechanisms of the martensitic phase
transformation that occur at the phase boundary. This portion of the total deformation
corresponds to an unstressed state of the martensite and will henceforth be referred
to as the shape deformation of the martensite.> Additionally, the strain corresponding
to the shape deformation will sometimes be referred to as the transformation strain.
The shape deformation is in general a finite deformation, and consists primarily of the
deformation that would be necessary to deform the austenite crystal lattice into the
martensite crystal lattice, and for some materials the deformation that is necessary to
maintain continuity of displacements at the phase boundary. The remaining portion of
the total deformation corresponding to the martensite is due to the surrounding matrix
material constraining the formation of the shape deformation and/or by any applied
boundary tractions. These deformations are usually infinitesimal deformations, even
though they may be greater than the yield strain of the martensite, and in this thesis
they will be considered to be superimposed upon the finite shape deformation. If the

martensite is stressed, it is due solely to these superimposed deformations.

5 Because the shape deformation corresponds to an unstressed state of the martensite, it can be considered to
represent the undeformed martensite.



The speed of the phase boundary, and hence the rate of the martensitic phase
transformation, varies considerably with the type of material, although it can be
affected, but to a much lesser degree, by an applied boundary traction. The speed is
proportional to the amount of deformation that it would take to deform the austenite
lattice into the martensite lattice, which is proportional to the shape deformation of
the martensite. For materials with large shape deformations, the speed of the phase
boundary can approach the speed of sound within the material, and for materials
with smaller shape deformations, the speed of the phase boundary may be less than
a millimeter per second. Additionally, growth of the martensite at a temperature less
than the temperature M; will proceedéonly partially and then stop. The transformation
will not continue until the temperature is lowered further or a boundary traction is
applied. Also, during the growth process, phase boundaries cannot, in general, cross
grain boundaries. Therefore, one crystal of austenite will transform into one or more

crystals of martensite.

1.2.3 The Morphologies and Other Properties of Martensite

The particular type of morphology that the martensite exists in depends on many
factors. Some of these factors are the type of material, whether the martensite forms
at or near a free surface or within the material, and how the martensite is formed

(e.g., by quenching or stressing). Of all these factors, the type of material is the

most dominant.

Many martensites have a shape deformation that appears to have the macroscopic
form of an invariant plane strain,% which in most cases is very close to a simple shear.
When these martensites form at or near a free surface, there is negligible deformation

superimposed upon their shape deformations. Consequently, these martensites are

§ See Section 2.7 for the mathematical definition of this type of deformation.



approximately unstressed. However, when such martensites form in the interior of a
material, away from a free surface, their macroscopic shape deformations sometimes
do have a slight superimposed, inhomogeneous deformation, which is primarily due
to the constraint against the formation of their shape deformations imposed by the
surrounding matrix material. These superimposed deformations occur mostly near the
boundaries of the martensites and tend to alter their overall macroscopic shape from
that of an invariant plane strain. Additionally, most of the martensites that have shape
deformations with the macroscopic form of an invariant plane strain are internally
twinned, internally slipped, or have some other structure on the “microscopic™ level
that tends to minimize the total energy of the martensite and helps preserve the

continuity of displacements at the phase boundary.

There are materials, including some steels and other iron alloys, that have
martensite phases with shape deformations that are always highly deformed. Many of
these martensites have lens-like or nearly elliptical, overall macroscopic shapes and
have shape deformations that are among the largest of all the known martensites. The
deformations superimposed on the shape deformations of these martensites usually go
beyond the elastic limit of the martensite and/or the surrounding austenite material,
especially near the phase boundaries, and as a result, many dislocations appear at or

near the phase boundaries in these materials.

Most materials that can undergo martensitic phase transformations have several
variants of their martensite phase(s). These variants all have the same type of crystal
lattice, but differ from each other in some other way. For example, they may be
formed from the austenite lattice in a slightly different way, and as a result they may
each have a different orientation with respect to the austenite lattice or their plane of

slip may be different, if they have an internally slipped morphology. Several of these



variants may coexist in a material. When this is the case, the variants are sometimes
twin-related. In fact, when the “microscopic” structure of the martensites that have a
“homogeneous” invariant plane strain macroscopic shape deformation is an internally
twinned structure, the structure is usually comprised of different twin-related variants

of the same martensite.

The morphologies that have been briefly described above are only some of the
different types of morphologies that have been observed in nature. Additionally, these
morphologies may be induced thermally or by the application of a boundary traction.
However, if they are induced by an applied boundary traction, the shape deformation
of the martensite may be further deformed by the boundary traction, or the boundary
traction may cause a particular morphology or variant of martensite to be preferred

during the growth process.

1.2.4 Shape Memory Alloys

Some materials that can undergo martensitic phase transformations also exhibit
a phenomenon known as the shape memory effect [14]. This phenomenon has the
effect that if a material in its austenite phase is quenched to its martensite phase and
then deformed, when it is heated to its austenite phase, it will return to the shape
that it originally had in its austenite phase. Most of the materials that exhibit this
phenomenon have relatively small shape deformations associated with their martensite
phases. Also, the steels that martensitic phase transformations were first studied in
are not shape memory materials. The interest in martensitic phase transformations
in these materials stems from the fact that their martensite phase is a much harder
material than the phase obtained by slowly cooling the austenite and allowing a

diffusion-type phase transformation to occur.



1.3 The Continuum Model Developed in this Thesis and Some of the Other
Continuum Models

One of the goals in this thesis is to develop a continuum model that provides
an accurate representation of the change in crystal structure that takes place during a
martensitic phase transformation and treats the shape deformation of the martensite
as a finite deformation. Additionally, it is desired that this continuum model provide
a feasible method of construction for the constitutive equations and a direct and

relatively simple formulation of the boundary value problems that are considered.

The symmetry of a material’s crystal lattice is reflected in the material symmetry
group of the material. When a material is modeled as a continuum, the material’s
symmetry group restricts the functional‘ form of the material’s constitutive equations.
Thus, when a particle of material in its austenite phase is transformed to its martensite
phase, the material symmetry group of that particle of material should change
accordingly, and this should be reflected in the constitutive equations of that particle of
material both before and after the transformation. This change in material symmetry
group should not only represent the change in the type of crystal lattice; it should

also represent the orientation relation between the crystal lattices of the austenite and

the martensite.

There are several other continuum models for materials that can undergo marten-
sitic phase transformations. One of these continuum models assumes a “globally”
elastic material with a single elastic potential that has relative minima at the de-
formation corresponding to the undeformed parent phase and the shape deformations
associated with the different variants of martensite.” This continuum model, however,

does not provide the correct material symmetry groups for the martensite phases when

7 Technically speaking, this elastic potential may not be truly global; ie., it may not be defined for all
deformations. However, it is defined for a range of deformations that includes all of the deformations that
correspond to all of the phases of the material.
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the material symmetry group of the single “global” elastic potential is taken to be
the crystallographic point group® of the parent phase crystal.’ Therefore, as far
as the constitutive equations are concerned, the change in crystal structure is not
completely represented. Another difficulty of this continuum model is that a single
“global” elastic potential with local minima corresponding to the different phases of
the material has to be constructed. This may be relatively easy to do for a system
with one or two components of strain to consider, as in the case of a one-dimensional
bar with only one component of strain. However, this task would be very difficult
for a general three-dimensional problem, where the elastic potential is a function of
the six independent components of the right deformation tensor or the Lagrangian

strain tensor.

Another continuum model for materials that can undergo martensitic phase
transformations assumes that each phase has its own linear constitutive equations and
treats the transformation strain of each martensite as an infinitesimal strain [5]. The
fact that the transformation strain in this continuum model is treated as an infinitesimal
strain and not as a finite strain has a very significant effect on the entire formulation
and analysis of the problem. It should also significantly affect the solutions of most of
these problems. There are also some who have used continuum models where each
phase has its own elastic potential, and the shape deformation of each martensite

is treated as a finite deformation (see [6])!0. However, in [6] and in the references

§ Roughly speaking, the crystallographic point group of a crystal consists of the set of all rofations that rotate
the crystal into a position that coincides with the crystal’s position before it was rotated. For example, the

crystallographic point group of a crystal with cubic symmetry consists of the twenty four rotations that map a
cube into itself (see [15]).

® This can be readily seen by considering the crystallographic point group of the parent phase with respect to the
reference configuration coinciding with the shape deformation of one of the martensite phases. This is discussed
further in Section 2.5, where the change of reference configuration formula for a material symmetry group is
presented.

10 11 [6], there is also a list of references (p.99) that use a single elastic potential, and a list of references that use
a different elastic potential for each phase.
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listed in [6] that also use a different elastic potential for each phase and treat the shape
deformations of the martensites as finite deformations, specific equations representing
the elastic potentials of the martensites, where the shape deformations are treated
as finite deformations, are not constructed, and the manner in which the material
symmetry groups for the martensites must be specified, so that they are correct, is

not discussed.

The continuum model that is developed in this thesis provides the correct material
symmetry group for each phase of the material and treats the shape deformation of
each martensite as a finite deformation. Additionally, “global” constitutive equations
do not have to be constructed, although they can be accommodated if required, and
a feasible method of construction for the constitutive equations is provided. In fact,
constitutive equations are constructed for most of the problems considered in Chapters

3-5 of this thesis.
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CHAPTER 2
THE CONTINUUM MODEL

In this chapter, a continuum model for materials that can undergo martensitic
phase transformations is developed, and the corresponding field equations for a
purely mechanical process are derived. The form of the corresponding boundary

value problem is also considered.

2.1 The Eulerian Global Form of the Balance Laws

It is assumed that the process under consideration takes place at a constant,
uniform temperature and with no heat conduction. Such a process is an isothermal
and adiabatic process and is also known as a purely mechanical process. It is
assumed that this process takes place in a time interval I' = [to,%1].! The body B
that is considered is assumed to occupy a regular region Ry at time ¢ € I, and it is
assumed that R, is a subset of the three-dimensional Euclidean space E;. A point
or the position vector of a point in R; is denoted by y. The traction on the surface
with unit normal n(y,t) is denoted by t(y,n,t), the body force per unit volume by
b(y,t), and the mass per unit volume by p(y,t). Also, the Eulerian form of the
velocity of the particle of material at y € R, at time ¢ € T' is denoted by V(y,t). The
familiar Eulerian global form of the balance of mass, linear momentum, and angular

momentum are

d
— pdV = 1
a o, p 0, 2.1.1)

U In this thesis, math-italic quantities denote scalars and bold-faced quantities denote tensors, including vectors.
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/tdA—i—/de = -Eg/p\?dV, 2.1.2)
8D, D, Dy
d __
/yxtdA—k/yxde:-c—ﬁ-/yvadV, (2.1.3)
8Dy D, Dy

respectively, VDy C Ry and Vit € I'.2 Equations (2.1.1), (2.1.2), and (2.1.3) can be

used to derive the rate of work-energy equation given by

/t~vdA+/b-vdV = /r'vyvdvjtd—f/%ﬁ“-vdv, (2.1.4)
8Dy Dy Dy Dy
VYD, C R; and V¢ € T, where 7(y,?) is the true (or Cauchy) stress tensor, and V¥
denotes the gradient of ¥(y,t) with respect to y. The two terms on the left side of
(2.1.4) represent the rate of work done on Dy by the traction acting on the boundary
of D, and the body forces acting on Dy, respectively. The first term on the right side
of (2.1.4) is referred to as the stress power of Dy, and the second term on the right

side of (2.1.4) represents the time rate of change of the kinetic energy of D;.

2.2 Multiple Reference Configurations

Consider a region R in Ej; that the body B can occupy, in the sense that there
exists a suitably smooth and invertible mapping that maps R into R;. Note that R is
not such that the body B has to occupy it at some time ¢ € I'. Such a region R can

be used as a reference configuration for the body B.

Most continuum models for materials that can undergo martensitic phase

transformations use only one reference configuration, which is taken to be stationary,

2 In this thesis, unless otherwise stated, whenever a subset of a regular region is considered, it is assumed that
the subset is a regular subregion. Similarly, all subregions of regular regions are assumed to be regular.
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for the definition of the constitutive equations and for the derivation of the field
equations for each phase of the material. This is the case, for example, with the
continuum model that uses a single “global” elastic potential and with the continuum
model where each phase has its own elastic potential and the shape deformation of
each martensite is treated as a finite deformation, which were both described in Section
1.3. This is also the case with the continuum model where each phase has its own
linear constitutive equations and the transformation strain of each martensite is treated
as an infinitesimal strain, which was also described in Section 1.3. More specifically,
in this continuum model, because the shape deformation of each martensite and
the deformation of each phase are treated as infinitesimal deformations, there is
no distinction between the reference configurations coinciding with the undeformed
austenite, the shape deformation of the martensite, and the deformed body, in the
sense that the forms of the fields equations with respect to each of these reference |

configurations are the same.

In the continuum model that is developed in this thesis, each phase has its own
constitutive relation. However, these constitutive relations are not all defined with
respect to the same fixed reference configuration. Instead, each phase has its own
reference configuration for the definition of its constitutive equations. These reference
configurations may be independent of time, or they may be special functions of time.
Furthermore, the field equations for each phase can be expressed with respect to
these reference configurations in a nominal-type form. This can be a very useful and
powerful way of setting up the field equations, especially if there exists a configuration
for each phase such that the deformations of that phase from this configuration are

infinitesimal for all ¢ € T'. In this case, linear constitutive equations can be used
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if these configurations are used as the reference configurations for the phases of

the material.

Using multiple reference configurations for the “nominal” field equations of the
different phases of a given material involves only kinematics. However, defining the
constitutive equations of the different phases of a material with respect to different
reference configurations involves more than just kinematics: It also involves an
assumption of the constitutive behavior of the given material. Whether such an
assumption is reasonable for a given material depends on the chosen reference
configurations for the phases of the material and on the types of constitutive behavior

the phases are assumed to exhibit.

It is well known that the solid phases of a metal behave elastically for at least
small deformations about a configuration corresponding to an unstressed state. It will
be shown later in this chapter that for these types of materials it is reasonable to use
multiple reference configurations in the manner described above and that a consistent
continuum model can be developed, provided these reference configurations are
chosen properly. Whether such a continuum model can be developed for materials
with constitutive behavior that is not elastic is an issue that is not considered in

this thesis.

2.3 The Kinematics Using Multiple Reference Configurations

For simplicity, a two-phase material will be considered in the following. The
corresponding results for a material that consists of more than two phases can be

obtained in a similar manner.

As in Section 2.1, consider a body B that occupies a regular region R at time

t € T. Additionally, assume that this body consists of two phases, which will
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henceforth be referred to as phase 1 and phase 2. Assume that at each ¢ € I phase 1
occupies a subregion Ry of Ry, and phase 2 occupies a subregion R{ of Ry, where
R; URY = Ry and Ry N R} = 0 (Figure 2.1). These two subregions of Ry are
separated by an interface S; which can pass over particles of material in R;. If this
occurs, R;” will increase in size while R{ decreases in size, or vice-versa, depending

on the direction of motion of S;.

Consider a stationary reference configuration R for Ry (Figure 2.1). Let x
denote a point or the position vector of a point in R. Let y(x,t) be the
suitably smooth and invertible mapping that maps R into R at each ¢ € L,
with y = 9(x,t) = x + 4(x,t) V(x,t) € RxT, where u = f(x,t) is the
displacement of the point y = J(x,t) from the point x at time ¢ € I'. The
deformation gradient of ¥ is defined as F(x,t) = Vy(x,t), and the Jacobian of
F is defined as J(x,t) = detF(x,t), where it is required that J > 0 to exclude
reflections.> The velocity of the particle of material at y = y(x,t) is defined as
v(x,t) = 29(x,1), and the Eulerian form of the velocity used in Section 2.1 can
be defined as ¥(y,t) = v(X(y,t),t), where X(:,#):Ry ~— R at each ¢ € I' is the
inverse of §. Let R~ = (R ,t), Rt = %(R{,1), and S = X(S;,t). Note that
R-UR* =R, R-NR* =0, S is the surface separating R~ from R*, and S moves

within R as S; moves within R;.

Consider a second, not necessarily stationary, reference configuration R{ for
phase 2 (Figure 2.1). Let x; denote a point or the position vector of a point
in R, and let X,(x,t) be the suitably smooth and invertible mapping that maps
R* into R} at each ¢t € T, with x, = X,(x,t) Vx € R* at each ¢ € T. Let
F(x,t) = V&(x,t) and J(x,1) = detF(x,t), with J > 0. Let §,(x,,t) be the

suitably smooth and invertible mapping that maps R{ into R at each ¢ € T, with

3 ¥ denotes the gradient operator with respect to x € R.
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y = $1(x1,t) = x; + tu(x,,?) Vx, € R at each t € T'. Note also that y =
$1(%:(x,1),1) = (x,t) Vx €R* at each t € T'. Let Fy(xy,t) = V1¥:1(xy,t) and
Ji(x4,t) = detF,(x,,t), with J; > 0.* The velocity field of the particles of material
in phase 2 as a function of x; € R is given by ¥,(xy,t) = V(J1(x1,1),?) VX, ERT
at each ¢ € I, or equivalently as ¥,(x,,t) = v(X(x,1),t) Vx; €Rf ateacht € T,
where %(-,#):Rf — R* at each ¢ € T'is the inverse of X,. Also, %,(-,2):R{f —»RY

at each ¢ € I represents the inverse of ¥,.

As discussed in the Introduction, the displacements at the interface separating
the austenite phase from a martensite phase are continuous while the strains at the
interface may be discontinuous. We will therefore require that y(x,t), and hence
u(x,t), be continuous on R x T', and allow the first and second derivatives of ¥
and u to be piecewise continuous on R x I', with discontinuities occurring only at

points on S.

Let N(x,t) represent a unit vector normal to S that points into R*, and let
L(x,t) represent a vector tangent to S, both at a point on S coinciding with the point
x € R at time ¢t € T. Also, let V(x,t) represent the velocity of the point on S
coinciding with the point x € R at time ¢ € I'.*> In the following, if g(x,?) represents
a generic field quantity that is discontinuous at S, then g~ (x,t) and g*(x,t) denote
the limiting values of g at x € S as this point x is approached from negative and

positive sides of S, respectively, in directions parallel to N(x,t).5

4 ¥, denotes the gradient operator with respect to x; € RY.

5 In the rest of this thesis, a point on the surface S that coincides with the point x € R at time ¢ € I will simply
be referred to as the point x € S. Also, note that V represents a nominal-type velocity and not the velocity of a
point on S;.

6 If a piecewise continuous field quantity is discontinuous at S, it is sometimes said that the quantity jumps
across S, and an equation relating g~ and g% is sometimes referred to as a jump condition.
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Because the displacement is required to be continuous at each point on the phase

boundary, we have
T (&i(x, ), ) = 7 (x,1), (2.3.1)

Vx € S at each t € T'. Taking the differential of both sides of (2.3.1) while keeping

time fixed (and recalling the continuity conditions on ¥) yield
(Ffﬁ‘* _ F“)L —0, 232)

Vx € S at each ¢t € T, and for every vector L tangent to S at x € S, where

x, = %,(x,t) in F}. Differentiating (2.3.1) with respect to time yields
VE v+ (Ffl?* - F“)V =0, (2.33)

Vx € S at each t € T, where x, = %,(x,t) in ¥{ and F}.

It can be shown that if given an F~,F}, and an F* such that Equation (2.3.2)
is satisfied at a point on some surface, there exist vectors a4 and N defined at that

point such that
FIFt—F = a®N, (2.3.4)

where N is normal to the surface at that point® Also, note that & ® N in this

equation is a rank-one two-tensor.

7 The corresponding forms of Equations (2.3.2) and (2.3.3) involving only one reference configuration are well
known and can be found, e.g., in [2].

8 The corresponding form of this equation with FfF* replaced with F¥, where F* = F}F*, is well known
and can be found, e.g., in [16].
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2.4 The Nominal Form of the Field Equations Using Multiple Reference
Configurations

Consider the two-phase material described in Section 2.3. In addition to the
continuity requirements on ¥ and u discussed in that section, it is assumed that b is
continuous Vy € R; and V¢ € T', and that 7 and its gradient are piecewise continuous

Vy € R, and V¢ € T, with discontinuities occurring only at points on Sg.

The global form of the balance of mass given by Equation (2.1.1) can be

expressed with respect to R as

E‘;/pdv —0, 2.4.1)

where D = %(D,, ), and p = Jp represents the mass per unit volume of R. Note
that since (2.1.1) is valid ¥ D, C R, (2.4.1) is valid VD C R. We require that p
be continuous V x € R. Localizing Equation (2.4.1) yields the familiar result that p

must be independent of time V x € R. Thus,

p(x) = J(x,£)p(F(x,1),1), (2.4.2)

V (x,t) € R x I'. Note that the global field equations given by (2.1.1)-(2.1.3) are
still valid in the regions of space and time indicated there, for the case where p,
+, and b have the continuity conditions specified in this section, and y has the
continuity conditions specified in the previous section. However, for these continuity
conditions, the work-energy equation given by (2.1.4) is valid only for subregions of

R, not containing a portion of S, as will be discussed further in Section 2.9,

For subregions D;” of R, the global forms of the balance of linear and angular
momentum for phase 1 given by (2.1.2) and (2.1.3), respectively, can be expressed

with respect to R~ as
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/ ondA + / fdV = ——/ pvdV, (2.4.3)

8D~

/ yxondA+fyxde—d/yvadV (2.4.4)
oD~ D-

respectively, where D~ = %(Dy,t), o(x,t) = J(x,t)7(§(x,1),t)F T (x,t) is the
nominal stress tensor with respect to R, f(x,1) = J(x,t)b(¥(x,t),t) is the nominal
body force per unit volume of R, and n(x) is the outward unit normal vector field
on the boundary of D~. These nominal field equations can be obtained in the usual

way from Equations (2.1.2) and (2.1.3), respectively (see, e.g., [15]).

For subregions Di of R}, the global forms of the balance of linear and angular
momentum for phase 2 given by (2.1.2) and (2.1.3), respectively, can be expressed

with respect to RY as

/ ocindA + / f,dV = Zl%/ p1v,dV, (2.4.5)
oD} D} D}
. . df. __
/ ¥V, X oyn,dA + /y1 x f1dV = gi/ Vi X pv,dV, (2.4.6)
aD} D} D}

respectively, where DT = %,(D{f,t), pu(x1,t) = Ji(x1,1)p(F1(%1, ), 1) is the mass
per unit volume of RY, 01(xy,t) = Ju(x1,t)71(F1(x1,1),1)F7 T (x4, ) represents the
stress tensor with respect to RY, fi(xy,t) = Ji(x1,t)b(J1(x1,1),%) represents the
body force per unit volume of Rf, and n,(x;,t) is the outward unit normal vector

field on the boundary of Df. Also, g, is related to p by

p(x) = J(x,)p(Fa(x, 1), 1), 2.4.7)
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¥ x € Rt at each t € T. Note that oy, f;, and p, do not have a true nominal
form since X, is a function of time. In fact, because of this time dependence, these
quantities are closer to having an Eulerian form. Note also that Equations (2.4.5) and
(2.4.6) can be obtained from Equations (2.1.2) and (2.1.3) in a manner completely
analogous to that used to obtain Equations (2.4.3) and (2.4.4), regardless of whether
R; is stationary or whether points in R} are moving, which is the case if X, is

a function of time.

Localization of the global nominal balance laws given by (2.4.3) and (2.4.4)
using (2.4.2) yields
dive + f = pa,
(2.4.8)°
oFT = FoT,
respectively, Vx € R~ at each ¢t € T, where a(x,t) = 2v(x,t) is the acceleration

of the particle of material in R, that corresponds to the point x € R™.

Localization of the global nominal balance laws given by (2.4.5) and (2.4.6)
using (2.4.7) yields
div,oq + f; = p,a,,

(2.4.9)10
o1FT = F,07,

respectively, ¥V x; € R at each t € T, where &(x,,t) = [5“%\‘5(}'&1(}(,1t),1t)]).((x1 )
is the acceleration of the particle of material in R; that corresponds to the point

X, = %i(x,1) in R}

For subregions D; of R;, which contain a portion of S, the global form of the

balance of linear momentum given by Equation (2.1.2) can be expressed with respect

® div denotes the divergence operator with respect to x € R.
10 div; denotes the divergence operator with respect to x1 € Rf.
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to R in terms of the field quantities defined on R~ and Rf. Localizing this equation

at points on S would then yield
~ ~ +
((JUIF*T) - a“)N +p(¥F =v7)(V-N) =0, (2.4.10)

Vx € S at each t € T, where x; = X,(x,t) in o} and ¥F.!1

The balance of angular momentum given by Equation (2.1.3) for a subregion
D, of R, containing a portion of S; is automatically satisfied if the jump conditions
(2.3.2), (2.3.3), and (2.4.10) are satisfied at the points on S corresponding to the
points on the portion of S; contained in D;. Also, the local field equations given
by (2.4.2) and (2.4.7)-(2.4.9), the kinematic jump condition (2.3.1), or (2.3.2) and
(2.3.3), and the linear momentum jump condition (2.4.10) are altogether equivalent

to the global field equations given by (2.1.1)-(2.1.3).

2.5 Elastic Materials

In this section, a brief introduction to elastic materials will be given. In particular,
a formal definition of elastic materials will be presented, and some of the restrictions
on the functional forms of the corresponding elastic potentials will be investigated.
The form of the stress power for an elastic material will also be considered. For
convenience, the notation used to describe the material considered in Sections 2.3
and 2.4 will be used for the materials considered in this section, with the exception
that the materials considered here are assumed to be entirely in one phase, which

corresponds to phase 1 for the material considered in Sections 2.3 and 2.4.

" The corresponding form of this jump condition involving only one reference configuration is well known and
can be found, e.g., in [2]. In fact, the jump conditions (2.3.2), (2.3.3), and (2.4.10) can be obtained formally

- a ~ )t
from the jump conditions presented in [2] by replacing F*, v*, and o* with F¥F*, ¥, and (Ja+F-‘) ,
respectively.
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The type of constitutive behavior that a material is said to have is determined by
the quantities that the stress response function of the material depends on.!? For a

simple material without memory, the stress response function has the form

T(§(x,t),t) = g(F(x,1),%). 2.5.1)

The term simple is used in this description because the stress depends only on the
first gradient of ¥, and the term without memory is used because the stress does
not depend on the history of the deformation of the material. Additionally, this
constitutive relation is usually defined for only a subset Lt of L1, where £ denotes
the set of all two-tensors with positive determinants. The set L* represents the range
of deformations for which the material has such constitutive behavior. Also, although
the specific functional form of the stress response function in (2.5.1) depends on the
particular reference configuration that it is with respect to, the corresponding true
stress 7(y, 1) is independent of the reference configuration and depends only on the

current configuration of the material.

An elastic (or hyperelastic) material is a special type of simple material without

memory. In particular, such a material possesses an elastic potential
W = W(F(x,t),x), (2.5.2)

Vx e Rand VF € £t such that the nominal stress tensor for the material is

given by
o(x,t) = Wp(F(x,1),x), (2.5.3)

Vx € Rand VF € L*, where the F subscript on W denotes the tensor gradient

with respect to F, and £+ is a subset of L and represents the range of deformations

12 Eor the case where thermal effects are considered, the quantities that the internal energy, entropy, and heat flux
vector depend on also determine what type of constitutive behavior the material is said to have (see [15]).
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about R for which the material behaves elastically. The elastic potential given by
(2.5.2) also represents the strain energy of the material per unit volume of R. In the
rest of this section, an elastic material with an elastic potential that, for simplicity, is

defined for every F € L™, as opposed to only a subset of £¥, is considered.

It is assumed that the elastic material under consideration is objective. In

particular, it is assumed that at each x € R
W(QF,x) = W(F,x) VQe¢ O*,VF e LT, 254

where O denotes the set of all proper orthogonal two-tensors.!® It can be shown that
the assumptions of hyperelasticity and objectivity are sufficient for cFT = FoTl4 A

necessary condition for objectivity is that at each x € R
W(F,x)=W(U,x) VFe¢ L, (2.5.5)

where U = VFIF € S*, F = RU represents the right polar decomposition of F
with R € OF, and St denotes the set of all symmetric, positive definite two-tensors.

Considering this, we can define a function W:S*xRw— R as
W(C,x) = W(U,x), (2.5.6)

where C = U?¢ ST, and R denotes the set of all real numbers.

Another restriction on the functional form of W is imposed by the material
symmetry group G of the material. As mentioned in Section 1.3, for a crystalline
solid the transformations that comprise G reflect the crystal symmetry of the solid.

It is also required that the transformations in G be unimodular, so that they preserve

3 Note that QF represents the deformation gradient with respect to x of the composition mapping p o q(x) of
the two mappings p = Qq and q = Fx.

4 Recall that this is equivalent to the balance of angular momentum at points not on a surface of discontinuity.
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volume.!S For an inhomogeneous material, G is a function of x, and at each x € R

the elastic potential must be such that
W(FHx)=W(F,x) YVHeG(x), VFe L', 257

In terms of W, (2.5.7) is equivalent to
W(HTCH,x) = W(C,x) VH € G(x), VC € ST, (2.5.8)

at each x € R.

Consider next a second reference configuration R* for the elastic material that
can be obtained from R by the mapping with deformation gradient P(x,%). It can be

shown that the elastic potential of the material with respect to R* is given by
1
W*(F*) = —=W(F"P 259

where F* is the deformation gradient of the mapping that maps R* into R, (see
[15]). It can also be shown that if G is the material symmetry group of W, then

the material symmetry group of W* is

G*=PGP™. (2.5.10)"7

15 By definition, a unimodular tensor has a determinant equal to one.

16 Note, however, that in [15] the factor detP will be missing since the potentials there are defined per unit mass
of the material.

7 With regard to the continuum model that uses a single “global” elastic potential that was described in Section
1.3, if G is the crystallographic point group of the austenite phase and if P represents the shape deformation of a
martensite phase, then G* will not be the crystallographic point group of the martensite phase that P is supposed
to represent (in fact, in general, G* will not be any crystallographic point group, and will not even be a subset
of the orthogonal group). The only exception to this is the case where the austenite and martensite have crystal
symmetries that differ only by a rotation and P is the deformation gradient of a mapping that is the composition
of a mapping that preserves the material symmetry group of the austenite and the mapping that is the rotation by
which the two crystal lattices differ.
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We next consider the nominal form of the work-energy equation. This equation

can be obtained in the usual way from Equation (2.1.4) and is given by

/an-vdA+/fovdV=/a-VvdV+?j§-/%pv~vdV, (25.11)
oD D D

¥D c R and V¢ € I.I3 For the material under consideration, the stress power can

be written as

/a -VvdV = zg/WdV. (2.5.12)
D D

Using this result, it is easy to show that the change in the total strain energy and

kinetic energy of any D C R in a complete cycle is zero.

2.6 Elastic Materials and Multiple Reference Configurations

It will be shown in this section that for materials with phases that behave
elastically for some ranges of deformations about undeformed configurations, a
reasonable continuum model using multiple reference configurations in the manner
described in Section 2.2 can be developed, provided these reference configurations
have the proper form. The material described in Sections 2.3 and 2.4 will be
considered. Additionally, it is assumed that R~ and R for this material are such that
phase 1 and phase 2 have elastic-type constitutive behavior for ranges of deformation

about these configurations, respectively.

Since R~ is stationary, in the sense that points x € R~ are stationary, the

elastic-type constitutive behavior of phase 1 is assumed to be the elastic constitutive

¥ Note that it has been assumed here that all quantities in this equation have the continuity conditions necessary
for its derivation.
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behavior described in the previous section. In particular, it is assumed that phase 1

possesses an elastic potential
W = W(F(x,t),x), .6.1)
Vx € R~ and VF € L, such that the nominal stress tensor for this phase is given by
o(x,t) = We(F(x,1),x), 2.6.2)

Vx € R~ and VF € £*, where L is a subset of £* and represents the range of

deformations about R~ for which phase 1 behaves elastically.

Assume that there exists an elastic potential W7 for phase 2 defined with respect
to Rf. It is assumed that W; is a function of F;. Additionally, as one might expect,
it is required that the inhomogeneity of W; remain the same for each particle of
material in phase 2 as time progresses. If X; is a function of time, the reference point
x; € RY for a given particle of material in phase 2 is changing as time progresses,
and a different particle of material occupies a given point x; € R{ at different times
t € T'. Because of this, the inhomogeneity of W; cannot be expressed with respect
to points x; € R} if X; is a function of time.’® Instead, the inhomogeneity of W;
must be represented with respect to points x in the stationary reference configuration
R™*, so that the effect of the inhomogeneity of ¥/; on a given particle of material in

phase 2 follows that particle for all ¢ € I'. Thus, we assume that W; has the form
I/Vl = Wl(Fl(Xl,t), i(xl’t)), (26.3)

Vx; € Rf,Vt €T, and VF, € L}, where L} is a subset of £* and represents

the range of deformations about R} for which phase 2 behaves elastically. It is

¥ However, if %; is not a function of time, which would be appropriate for the static case, the reference

configuration R} is stationary, and consequently the inhomogeneity of W; can be expressed explicitly with
respect to points x; € RY.
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further assumed that Wi is such that the stress tensor for phase 2 with respect to

Ry} is given by
o1(xy,t) = WlFl(Fl(xl,t),i(xl,t)) (2.6.4)

Vx; e Rf,VteTl,and VF, € L. The material symmetry group for phase 2 is
also defined with respect to Rf. We note that since the material symmetry groups
for phase 1 and phase 2 can be chosen independently of each other and arbitrarily,
with the exception that they must be subsets of the unimodular group, the material
symmetry group of each phase can be chosen to reflect any type of crystal symmetry
with any orientation. Therefore, the change in crystal structure that takes place during
a martensitic phase transformation and the orientation relation between the crystal
lattices of the austenite and the martensite can be accurately represented.® We next
require that X, be such that

0. ,. 0.« -
Vi [a)ﬁ(}h(xﬂf)aﬂ} = l:"a_t[vlyl(xl’t)]fq(x,t) (2.6.5)

x(x1:t) x(x1,t)

Vx1 € R ateach t € I'. It is easy to show that a necessary and sufficient condition

for (2.6.5) is that x; has the form
X:(x,t) = ¥(x) + O(1), (2.6.6)

Vx € Rt at each t € T

If %, has the form given by (2.6.6), the constitutive behavior for phase 2 given by

(2.6.3) and (2.6.4) results in the stress power for any subregion of phase 2 being equal

2 The orientation relation that a given material has can be determined experimentally, or from the phe-
nomenological theory of martensite (see [13, 17]), for materials to which this phenomenological theory is
applicable.
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to the time rate of change of the integral of W7 over that subregion. To show this, we

first note that the stress power of phase 2 can be expressed with respect to Rf as

/01 . vl\—']_dV, (267)

Dy
YD} ¢ R} and V¢ € 2! This equation can be expressed with respect to R* as
/ Tlo1 - Vivilg, e dVs (2.6.8)
D+

where D* = X(D7,¢). For the moment, we will assume that X, is a general function
of time. In this case, using (2.6.4) and expanding the term V,V,, the above equation

can be written as

/ i) | m v (R 2] O dv
1 ot 1) ot 1)
! xi(x,

D+

- . 0 ~
= / J{ [WlFl((VlFl)w + 5;Fl)} + [(Frfal).(vlvl)]il(x,t)}dV,
D+ %1 (x,t)

(2.6.9)

where ¥,(x, 1) = [2%,(x,1)] im’t).zz We next note that

d . J., -
EEWI(Fl(XI(X,t),t),X) =W - —5—£F1(x1(x,t),t)

(2.6.10)2

0%, 0
= Wiy, ((VIFI)%}I— + EFl).

2 This form of the stress power can be obtained from the Eulerian form of the stress power in Equation (2.1.4)
in a manner completely analogous to that used to obtain the stress power with respect to R in Equation (2.5.11).
2 In a given frame, the two-tensor (VA)b, where A is a two-tensor and b is a vector, has components
((VA)b); = A5, bk

3 Note that if the inhomogeneity of W; were expressed explicitly in terms of points x1 € R}, there would be
the extra term 32 W, - 2%, in this equation.
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If %, has the form given by (2.6.6), V,¥, =0Vx € R* ateacht € I' and J = J(x).

In this case, Equation (2.6.9) becomes

. 0
/ J(x) [W%-((vlf‘l)x”r1 n é-t—Fl)] dv. 2.6.11)
il(x,t)

D+

Substituting (2.6.10) into (2.6.11) and bringing the time-derivative operator outside

the integral yields

21% f(x)Wl(Fl(il(x,t),t),x)dV=c—g / Wi(Fi(xy, 1), %(x1,1))dV. (2.6.12)

D+ D;r

Thus, if X; has the form given by (2.6.6),

/0'1 -V i dV = zg—/WldV, (2.6.13)

1 1

VDY ¢ Rf and V¢t € I

Equation (2.6.13) can be interpreted as a statement that the stress power of any
subregion of phase 2 equals the time rate of change of the strain energy of that
subregion of phase 2. It can easily be shown that for this case the change in the total
strain energy and kinetic energy of any subregion of phase 2 in a complete cycle is
zero. Since this is the most important property of elastic materials, the constitutive
behavior described by (2.6.3) and (2.6.4) along with the requirement that X; has the
form given by (2.6.6) can be considered to be included in a generalization of the
definition of elastic materials, which was formally given in the previous section. We

will henceforth assume that the mapping X; has the form given by (2.6.6).
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2.7 The Mapping %, and Invariant Plane Strain Deformations

As discussed in the Introduction, the martensite has a shape deformation relative to
the undeformed austenite. Additionally, because this shape deformation corresponds
to an unstressed state of the martensite, it can be considered to represent an
undeformed configuration of the martensite, and the martensite will behave elastically
for at least small deformations about this configuration. Motivated by this, it
will henceforth be assumed that R~ corresponds to an unstressed, undeformed
configuration of phase 1 and that there exists a shape deformation for phase 2
with respect to R*, which can be considered to represent an unstressed, undeformed
configuration of that phase. It will be assumed that RT coincides with this shape
deformation of phase 2. Note that the mapping X; corresponding to this shape
deformation is assumed to be given in a problem. Note also that because it has been
assumed that %, has the form given by (2.6.6), the transformation strain for phase 2
is independent of time, which is probably most appropriate for the case considered
here (i.e., for the case where phase 2 represents a phase that is in a purely mechanical

process and behaves elastically).

As discussed in the Introduction, the shape deformation of many martensites has
the macroscopic form of an invariant plane strain. By definition, such a deformation

has a deformation gradient of the form

1+c®m, (2.7.1)

where 1 is the identity tensor and ¢ and m are both vectors. Consider next the
homogeneous invariant plane strain deformation q = §(p) with
q=4§(p)=(1+c®m)p

(2.7.2)
=p +(p-m)c.
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From this, it can be seen that points p on the plane that goes through the origin and
has a unit normal m remain fixed under this mapping, since p - m = 0 for these
points. This plane is therefore invariant under this mapping. It can also be observed
from (2.7.2) that a point p is displaced in the direction ¢ a distance proportional to
its distance from the invariant plane. The vector ¢ is sometimes referred to as the
amplitude vector of this type of deformation. Also, note that a simple shear is a
special case of an invariant plane strain and exists when ¢ - m = 0. A homogeneous
invariant plane strain is also the type of macroscopic deformation that is assumed to
exist in the phenomenological theory of martensite (see [13, 17]). In fact, for some

problems, the deformation determined from this theory might be a good choice for X,.

For the case where phase 1 and phase 2 coexist with continuous displacements
at their interface in an unstressed, undeformed state, F' must have the form of an
invariant plane strain locally at each point on the interface, as can be seen by
substituting F~ = F} = 1 into Equation (2.3.4). In this case and when Fisa

homogeneous invariant plane stain, X; must necessarily have the form
%, (x,t) = (L+a®n)x +x3(t), (2.7.3)%

where x} is chosen such that (2.7.3) satisfies Equation (2.3.3), when F~ = F} =1.
Alternatively, x] can be determined from Equation (2.3.1). Either way, both of these
equations will be satisfied, and consequently the displacements will be continuous at
the interface when F =1V x € R~ and F, = 1V x;, € R{, if and only if x} has

the form x}(¢) = —(& ® n)X(¢), which results in

xu(x,t) =x + ([x — %(t)] - )4, (2.7.4)

* Note that for the general case of a homogeneous deformation, the deformation gradient may be a function of
time. Here, however, it is not since X; is also required to have the form given by (2.6.6).
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where %(t) is any point on the interface S. We note that for the X, given by (2.7.4)
and when F=1Vx e R and F, =1V x, € R, at each ¢ € T, the interface S is
a plane with unit normal @i and translates with velocity V() = £%(t). Also, in this

case, all points in phase 2 translate with velocity v(¢) = —(V(¢) - n)a.

2.8 The Domains of the Elastic Potentials

As indicated in Section 2.6, the elastic potentials given by (2.6.1) and (2.6.3) are
defined for finite deformations in £+ C £+ and £} C L¥, respectively. Additionally,
L7 is with respect to R in the sense that the two-tensors in L7 represent deformations
F; with respect to Rf. The corresponding subset of £* that represents LT with

respect to R can be defined as
= {F/ F = F,F, where F, € E;f}. 2.8.1)
In the space 8+, the deformations with respect to R corresponding to the undeformed

configurations of phase 1 and phase 2 are C = 1 and C = FTF, respectively.

Considering this, the sets
St = {C/ C = F'F, where F € E+},
(2.8.2)
Sf ={C/C =F"F, where F € L} }
represent the domains with respect to R about C = 1 and C = FTF in S* for
which phase 1 and phase 2, respectively, behave elastically. We note that if S* and
Si are relatively large and 1 and C are relatively close, these two phase domains
may intersect in S*. In this case, some might consider this constitutive model to be

multivalued. Either way, an intersection of these two phase domains will not present

any difficulties in setting up or solving a boundary value problem.

Most metals, however, have phases that are not elastic for finite deformations
about their undeformed configurations. Instead, they have phases that have elastic-

plastic constitutive behaviors with yield stresses corresponding to infinitesimal
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deformations. If the material under consideration represents such a material and
if the stresses within phase 1 and phase 2 are less than the yield stresses of these
phases, respectively, for all ¢ € I, both of these phases will behave elastically in this
time interval. Additionally, in this case, because the deformations are infinitesimal for
all t € T, the linearized forms of the constitutive equations given by (2.6.1) and (2.6.2)
about F = 1 and (2.6.3) and (2.6.4) about F'; = 1 can be used. This is probably most
appropriate in the temperature interval containing the temperature M, where the stress
necessary to induce nucleation or growth of a variant of martensite is less than the
yield stresses of both phases. In this case, the material will deform by a martensitic
phase transformation before it will deform by plastic deformation.> This martensitic
phase transformation may be associated with the austenite phase transforming into a
martensite phase, or with one variant of martensite transforming into another variant
of the same martensite, which is also known as reorientation. Also, for this case
where £+ and £} contain only deformations such that |V << 1 and |V i, << 1,
respectively, and if X is a finite deformation, there is no chance that §+ and Sf

will intersect.

2.9 The Driving Traction

As mentioned in Section 2.4, the global form of the rate of work-energy equation
given by (2.1.4) is not valid for subregions of Ry containing a portion of S;, since
the continuity assumptions that are necessary for the derivation of that equation from
Equations (2.1.1)-(2.1.3) do not exist for these subregions. For the two-phase elastic
material under consideration, the global form of the rate of work-energy equation for

subregions D, of R, containing a portion S} of S; can be expressed as

25 A material deforms by a martensitic phase transformation in the sense that the creation of the martensite phase
produces a deformation that is due to the shape deformation of that martensite.
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]t~\'rdA+/b-\7dV—/fN-VdA
S "

oD, Dy
(29.1)
d d d [__ _
D- Dt ¢

f=(Fwi-wr) - %((jalﬁ“T)+ + o*‘) (FHFF-F7). 92)

The quantity fIN is referred to as the driving traction, and f as the scalar driving

traction.?s The integral

/ fN-VdA (2.9.3)
S*

can be interpreted as representing the rate of work done on the interface S* by the
traction fIN exerted by the body on the interface. We require that this integral be
positive so that it represents a dissipation of energy. Localizing this equation at

points on the interface S then yields
fN-V>0 2.9.4)

Vx € S at each ¢ € I'*” Note that energy can be dissipated only at the phase

boundary, and that if fIN-V =0 Vx € S at each ¢t € T, energy is conserved. Thus,

26 Refer to [2] and [9] for a more extensive discussion of the drivin g traction. Also, the scalar driving traction given
by (2.9.2) can be obtained {ormally from the scalar driving traction derived in [2] by replacing W*, ¢, and F*
with J*WF, (f a*f‘_'l‘) , and F}F*, respectively.

2 This requirement is also equivalent to the second law of thermodynamics for the type of process under
consideration. See [2] and Section 2.12.
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by allowing fN -V > 0, we are in effect considering a nonconservative system even

though both phases behave elastically for points not on the interface.

We can also postulate a constitutive relation relating the scalar driving traction
to the normal component of the phase boundary velocity at each x € S (see [2]).

More specifically, we can postulate that

at each x € S, where ®(f,x) is given and depends on the material, and V, = V - N.
This may be done primarily to provide an extra equation for the extra unknowns —

the variables describing the location of the phase boundary.

2.10 The Boundary Value Problem

Upon substituting the constitutive equation given by (2.6.2) into Equation (2.4.8);
and expressing a in that equation in terms of G, we obtain that field equation in terms

of the displacement . The resulting equation is as follows:
div(We) + £ = pi, (2.10.1)

Vx € R ateacht € T, where F = 1 4+ Vi in W, and tG(x,t) = %ﬁ(x,t). Ina
given frame, the term div(Wpg) has components
*W 9%y o*w

div(We), = 9F;0Fy Baids, + BF.05; (2.10.2)

Similarly, upon substituting the constitutive equation given by (2.6.4) into
Equation (2.4.9); and expressing a; in that equation in terms of {i;, we obtain that

field equation in terms of the displacement 1i;. The resulting equation is as follows:

div, (Wlpl) £ =p (3“&1 + ul) (2.10.3)
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Vx, € Rf ateacht € ', where F; = 14 V,f; in Wy, §1(t) = gg)‘(l(x,t) =

%@(t), and ﬁx(Xht) = {%ﬁl(il(x,t),t)] o) In a given frame, the term
x(xyp,t
div, (Wlpl) has components
oW, 0%y W, i
(W), = k 2.104
(W) = 37 9F, . 02y,00s, T OF,, Ozs Or,’ (2.104)
] kl i 7 ©) J
and the term 511 has components
? o[/ 0ty, 0ty
"‘—ﬁli(il(x, t),t) = - [( : "lv)k -+ t ]
ot? ot [\ Oz, ot %1 ()
82ﬁ1i . 82'&12. . 01y, diy, 821211.
= (axlkaxln T P o T L
(2.10.5)

where ¥(x,t) = 2%,(x,t) = £0O(t). The inertial-type terms in (2.10.5) obviously
occur because points in R are moving. This also results in the boundary conditions
on the boundary of R} /S;, where S; = X,(S,t), being with respect to a moving
boundary. Both of these issues complicate solving the corresponding boundary
value problem, whether it be by using analytical methods or by constructing a

finite-difference or a finite-element computer program.

Fortunately, the boundary value problem with the balance of linear momentum
for phase 2 in the form given by Equation (2.10.3) does not have to be solved.
Instead, Equation (2.10.3) can be transformed into a more tractable equation. In

particular, we can use the mapping X; and define the function u; as
0,(x,1) = 4, (X, (x,1),1), (2.10.6)

Vx € Rt and Vt € T, and then solve for u; = @,(x,1) instead of u, = G,(xy,1) in

the boundary value problem. This results in Equation (2.10.3) becoming
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. - _ (0. > _
[div, (Wlpl)]il(m + (% (x,1),1) = pl(b-ﬁm(x,t) + gﬁul(x,t)), 2.10.7)
Vx € Rt ateacht € T, where in a given frame, [div1 (WIFI)] ) has components
xi{x,t
62W1 aFl 82W
div, ( W, = kL 4 !
<[ 1( IFI)] il(x,t)>z. aFlij aFlkl 3:1:1]. aFlijB:vlj 2t
o*wW,

OF,, 0k,

x1(x,1) J

&y, | 0%y O, | Oy | O,
00z, | Oy, azclj 0z, | 02,02, 1 ()
XX,

il(x,t)

92W, a:z,c}
OF, 0wy oy |

J

(2.10.8)
From these equations we can observe that not only have most of the inertial terms
been eliminated, the resulting boundary value problem is in a completely Lagrangian
description; i.e., it is completely in terms of the coordinates of the fixed reference
configuration. This includes the boundary conditions for phase 2 being specified
with respect to a fixed boundary. The only penalty that is paid for this coordinate
transformation are the additional terms in Equation (2.10.8). For the special case

where X; is a homogeneous deformation and phase 2 is a homogeneous material,

(2.10.8) reduces to

o'W, 0%y, 0%, 0%
div, ( W, = L k mo_n .10.
([ 1V1< 1F1>];q(x,t)>i aF‘z‘jaFlkz 0z, 0z, dar, 3331]" (2.10.9)

where x; = X,(x,1) in W1F1F1 and V,X. For this case, the additional terms in

(2.10.9) contribute only to the coefficients of the terms involving second spatial
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derivatives of ;. Thus, in at least this case, the advantages of using multiple
reference configurations along with this coordinate transformation far outweigh their
disadvantages. For the static problem, however, points in R are stationary, and it is
probably much more convenient to solve for u; = {1,(x;) instead of u; = G,(x) in
the boundary value problem. In this case, the inhomogeneity of W; can be expressed
explicitly with respect to points x; € R{ and the linear momentum equation for phase
2 would have the same form as (2.10.1), with (2.10.2), except that all quantities would
have a 1 subscript and the inertial terms would, of course, be equal to zero. It is also
probably much more convenient to solve for u, = @,(x;) instead of u; = #,(x)
in the boundary value problem for the quasi-static case. This type of process will

be discussed in the next section.

2.11 A Quasi-Static Process

In this section, a special type of process will be considered. This type of process
will be referred to as a quasi-static process, even though it does not conform to the
exact definition of such a process. For the process under consideration, a = O in
Equation (2.4.8);, &, = 0 in Equation (2.4.9);, the kinematic jump condition (2.3.3)
is considered to be trivially satisfied (and therefore not part of the boundary value

problem), and the linear momentum jump condition reduces to
N
((JalF‘T) - a‘)N =0, @2.11.1)

which is equivalent to the continuity of tractions across the interface. All of the other
field equations and jump conditions in Sections 2.3 and 2.4 remain the same, and

condition (2.9.4) is still required.?® Using (2.3.4) and (2.11.1), it can be shown that

8 See [2] for a more extensive discussion about this type of process.
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the driving traction for such a process can be written as
f= (.f*W{“ - W“) o - (F'{ﬁ‘* - F-). 2.11.2)

For this type of process, the only equation in the boundary value problem containing
a nonzero time derivative is the kinetic relation with a nonzero V. Such a process
corresponds to a process where | V| << 1, and the acceleration of the phase boundary
is negligible, for all ¢+ € I'. We note that this type of process is not a true quasi-static
process because time is not just a parameter in all quantities, and consequently the set
of all solutions as time is varied does not consist of only static equilibrium solutions.

Static equilibrium occurs only when V = 0.

2.12 Thermomechanical Processes

In this section, a brief discussion is given about the continuum model which
uses multiple reference configurations for a process involving heat conduction and a
nonuniform, nonconstant temperature distribution, and for the case where both phase
1 and phase 2 have thermoelastic constitutive behavior. For this type of process,
in addition to the field equations for the balance of mass, linear momentum, and
angular momentum given by (2.1.1)-(2.1.3), respectively, we also have the balance
of energy equation and the rate of entropy production inequality; i.e., the first and

second laws of thermodynamics.

The balance of mass, linear momentum, and angular momentum for phase 1 with
respect to R~ are given in Section 2.4. The balance of energy and the rate of entropy

production for this phase can be expressed with respect to R~ as
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/an-vdA+/f-vdV+ / q-ndA+/rdV

aD~ D= 8D— D~
2.12.1)
d
=dt/5dV+—g—/%pv vdV,
D= D—
ﬁ-/ndV— / %(q-n)dA——/%dVZO, (2.12.2)
D= 8D- D-

respectively, VD~ C R~ and V¢t € T', where q(x,t) is the heat flux vector for phase
1 per unit area of R, r(x,t) is the heat source per unit volume of R™, e(x, ) is the
internal energy of phase 1 per unit volume of R™, n(x,t) is the entropy of phase 1
per unit volume of R~, and 6(x,t) is the temperature field for phase 1. We can also

define the Helmholtz free energy for phase 1 as

P(x,t) =e(x,t) — 0(x,t)n(x, 1), (2.12.3)

and the Gibbs free energy as

g(x,1) = ¥(x,1) — o1(x, 1) - F(x,1). (2.12.4)

The balance of mass, linear momentum, and angular momentum for phase 2 with
respect to R} are given in Section 2.4. The balance of energy and the rate of entropy

production for this phase can be expressed with respect to R} as
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/Glnl-VldA+/f1-\_’1dV+ / q1~n1dA+/7‘1dV

apf b} oD} Df
(2.12.5)
d d e
= a—t- /é&dV -+ "(E‘ %vax -V, dV,
DY Df
d 1 T
2 pdv— | (q-n)dA— [ 24V >0, 2.12.6
Jt L / 9, (Ch nl) 9. =z ( )
Df’ 8D'1" D'l"

respectively, VDT € R} and V¢ € T, where q;(x;,?) is the heat flux vector for phase
2 per unit area of R, ry(xy,?) is the heat source per unit volume of RY, €,(x,,1)
is the internal energy of phase 2 per unit volume of R}, n;(x;,#) is the entropy of
phase 2 per unit volume of RY, and 6,(x;,?) is the temperature field for phase 2.

We can also define the Helmholtz free energy for phase 2 as
¢1(X1, t) = 5l(xla t) - 91(X17 t)nl(xla t)7 (212°7)
and the Gibbs free energy as

g1(X1,t) = Yi(xy,t) — o1(x1, 1) - Fr(xy,t). (2.12.8)

Localizing Equations (2.12.1) and (2.12.2) yields

o -F+divg+r=2¢,

. (2.12.9)
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respectively, Vx € R™ at each ¢t € I, where F(x,t) = 2F(x,1), &(x,t) = Ze(x, t),
and 7(x,t) = %n(x,t). Note that (2.4.8); was used to obtain (2.12.9);.

We next require that X; have the form given by (2.6.6). In this case, localizing

Equations (2.12.5) and (2.12.6) yields

oy - Fl + div1q1 -+ ry = él,

(2.12.10)

. r .
div,(q./6;) + -t < M,
1

respectively, V x, € Rf at each ¢t € I', where F.(x,,1) = [(%Fl()"(l(x,t),t)] S
Ei(xy,t) = [%61(i1(x,t),t)]i(xht), and 7y(x1,1) = [%m(il(x,t),t)]i(xht). Note
that (2.4.9); was used to obtain (2.12.10);.

For points on the phase boundary, the kinematic jump conditions given by (2.3.1),
or (2.3.2) and (2.3.3), and the linear momentum jump condition given by (2.4.10)
must be satisfied at each t € I'. We also require that the temperature be continuous

at all points on the phase boundary; i.e., we require

0™ (x,t) = 6] (Xi(x, 1), 1) (2.12.11)
Vx € S at each t € I'. For subregions of the body containing a portion of the
phase boundary, the global forms of the balance of energy and the rate of entropy
production can be expressed with respect to R in terms of the field quantities defined

on R~ and R{. These equations can then be localized at points on S, and the resulting

equations can be manipulated to yield
~ + e +
o((n) = Yta= == ((7F70) " =)

fVa 20,

(2.12.12)



respectively, Vx € S at each ¢t € I, where
. o o~ e\t ~
f= (Jﬂpj _ zp—) _ %((]alF“T) + a') : (F;“F+ - F”) (2.12.13)

represents the driving traction for a thermomechanical process.? Also, note that
(2.12.12); has the same form as the requirement (2.9.4) for a purely mechanical

process. In fact, (2.12.12), reduces to (2.9.4) for such a process.

For the case where phase 1 of the material under consideration behaves

thermoelastically, we assume that its Helmholtz free energy potential has the form
P = (F,0,x), (2.12.14)
and is such that the nominal stress tensor and entropy for phase 1 are given by

o(x,t) = Yp(F(x,1),0(x,1),x),

n(x,t) = —e(F(x,1), 0(x,1),x),

(2.12.15)

respectively, Vx € R™ at each t € I'.30 Additionally, for this type of constitutive
behavior, we assume that the heat flux vector for phase 1 has the form

q(x,t) = q(F(x,1), Vi(x, ), 0(x,t),x), (2.12.16)
Vx € R™ ateacht € I'.

For the case where phase 2 of the material under consideration behaves
thermoelastically, we can assume that its Helmholtz free energy potential has the

form

7/J1 = lbx(FlaGui(Xut))a (2.12.17)

2 See [2] for the forms of the field equations and jump conditions that were presented in this section that
correspond to a continuum model that uses a single elastic potential and uses only one reference confi guration.
30 Usually, there will also be restrictions on the domains of F and 4.
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and is such that the stress tensor and entropy for phase 2 are given by

01 (Xla t) - ¢'1F1(F1(Xh t)’ 91(}(1, t)’ i(xl’t)),

_ (2.12.18)
m(xi,t) = —¢191 (F1(x1,1), 01(x1,1), X(x1,t)),

respectively, Vx; € Rf at each t € '3 Additionally, for this type of constitutive

behavior, we can assume that the heat flux vector for phase 2 has the form

ql(xla t) = QI(FI(XI’ t)’ vlel(xla t)a 91(}(1, t)a i(xlst))a (21219)

Vx, € Rf at each t € '

For the thermoelastic material under consideration, we can also postulate a

kinetic relation of the form

V, = &(f,6,x), (2.12.20)

Vx € Sateach t € I' (see [2]).

A Usually, there will also be restrictions on the domains of Fy and 4.

32 The functional dependencies of the constitutive relations for a thermoelastic material defined with respect to a
single reference configuration are well known and can be found, e.g., in [15].
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Figure 2.1. The two reference configurations and the deformed body at time ¢ € I'.
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CHAPTER 3
THE LINEARIZED PROBLEM

In this chapter, the linearized forms of the field equations and jump conditions
for a purely mechanical process are presented and discussed. Some linear problems
are then studied. In particular, the issue of which variant of martensite is preferred
during the growth process, when a boundary traction is applied, is considered, and a

two-phase material subjected to a uniform hydrostatic pressure is studied.

3.1 The Linearized Boundary Value Problem

One of the main advantages of working with multiple reference configurations
where the field quantities and equations for each phase are expressed with respect
to the reference configuration corresponding to an unstressed, undeformed state of
that phase is that the field quantities and equations are in forms that permit direct
linearization.! This is the case since the displacements for each phase are measured
from the reference configuration for that phase, and consequently, for the appropriate
boundary and initial conditions, the displacement gradients can be considered
infinitesimal.2 Another advantage of using multiple reference configurations in this
manner is that for the linear case the nominal stress for each phase is approkimately

equal to the true stress for that phase.® This is very convenient for solving certain

! 1t is also assumed here that the unstressed, undeformed configuration of each phase corresponds to a local
minimum of the elastic potential for that phase.

2 Note that if a different potential for each phase is used, where all of the potentials and the field equations for
each phase are expressed with respect to the same fixed reference configuration corresponding to the undeformed
austenite, the field equations for the martensites are mot in forms that permit direct linearization, since the
displacements from that reference configuration are not such that their gradients can be considered infinitesimal.
In this case, one must at least make a transformation such that the differential equations and jump conditions are
in terms of the displacements from the unstressed state of each phase.

3 Note that this is not the case if a different potential for each phase is used and all of the field quantities are
with respect to the same fixed reference configuration.
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types of boundary value problems, as will become more apparent in Sections 3.2
and 3.3, where several of these types of problems are considered. Also, we note that
when using this continuum model, linearizing the field equations for each phase in
no way restricts the magnitude or form of the shape deformation for that phase, since

the displacements for that phase are measured from this shape deformation.

3.1.1 The Linearized Field Equations

In the following, a purely mechanical process occurring in a time interval
' = [ty, 1] is considered. The two-phase body described in Section 2.3 is considered,
and the corresponding notation in Chapter 2 will be used. It is assumed that R~
corresponds to an unstressed, undeformed configuration of phase 1 and that R}
corresponds to an unstressed, undeformed configuration of phase 2. It is assumed
that both phase 1 and phase 2 have elastic constitutive behavior with %; having the
form given by (2.6.6). It is further assumed that the undeformed configurations of

phase 1 and phase 2 correspond to local minima of their respective elastic potentials.

For the linear problem, we assume that |Vii] << 1 Vx € R~ and |Viy,| <<

1 Vx; € R} ateach t € I. In this case, we have for phase 1

W =W* +1Va- (CVa) + O(Val®)

=W*+1e-(Ce)+0(le*),

‘ (3.1.1)
o =CVi+0(|vVal*)

=Ce+0(|e]?),
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T(9(x,1),1) = a(x,t) + O(|Va[*),

o =a' +0(|Vi]),

Vx € R™ ateacht € T, where ¢ = %(Vﬁ—k(Vﬁ)T) is the infinitesimal strain tensor

for phase 1, W*(x) = W(1,x), and C(x) with Cjjr; =

2w . . .
5 0Fw |p_y is the elasticity

four-tensor for phase 1.* For phase 2, we have

Wy =W+ %vlﬁl (CiViily) + O(]V1ﬁ1l3)

=Wy +Ler - (Cier) +O(les ),

01 = Clviﬁi + O(!Viﬁd?)

= Cie1+ O(|&sl*), (3.1.2)
T(F1(x1,1),t) = o1(x;,t) + O(|V1ﬁ1[2),

01 =0} + O(|V,iu|*),

Vx, € R} at each t € T, where ¢; = %(V1ﬁ1+(VIﬁI)T) is the infinitesimal

strain tensor for phase 2, W (X(xy,t)) = Wi(1,%(x4,t)), and C,(X(x4,t)) with

Cy.,6 = - is the elasticity four-tensor for phase 2. We can also express
15kl aFlijaFlkl Piel
1=

the linear elastic potential and stress tensor for phase 2 in terms of ;. In this case,

Equations (3.1.2), and (3.1.2); become

* In a given frame, the two-tensor Ab, where A is a four-tensor and b is a two-tensor, has components
(Ab)'-j = Aijrtbri.
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Wy = Wy + (VL V, %) - [Cy(VE, V)] + O(|Va*),
(3.1.3)
01 e CI(VﬁIVIi) + O(IVI—I]_!Q),

respectively, Vx € R* at each ¢t € T, where x, = %X,(x,t) in V,%. The elasticity
tensors C and C; are both four-tensors, which contain the material coefficients and
reflect the material symmetry of phase 1 and phase 2, respectively. Additionally,
both C and C; are positive definite, since it has been assumed that the undeformed
configuration of each phase corresponds to a relative minimum of the elastic potential

for that phase. These four-tensors also have the usual major and minor symmetries.

In a given coordinate frame, substituting (3.1.1), into the equation representing

the balance of linear momentum for phase 1 given by (2.4.8); yields

OCijn Oiy

0%y, 8%,
afL‘j ax, +Ct

jk!m;‘Ffi =PaE

(3.1.4)

Vx € R at each ¢t € I'. Substituting (3.1.3), into the equation representing the

balance of linear momentum for phase 2 given by (2.4.9); yields

%ﬂ[aﬁn} ?}_‘_&{Bim' |
amn 6331] il(x,t)axm awll'il(x,t)

32111k 6£Em B:En ] aalk a2fém
+ Clijkl (axmaxn [3$1, 3x1j + O m ax,,amlj . T [f ‘i]il(x,t)
J XX,

x1(x,t)
_ B 6251:'1'- + 62’&11
AN A

Vx € R* at each t € T. For the important special case where %, is a homogeneous

(3.1.5)

deformation, phase 2 is a homogeneous material (i.e., C; is independent of x), and
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f, = 0, Equation (3.1.5) given above reduces to

O, Of, 05, % (f’%n 32‘11-), (3.1.6)

Uit 3zpda, Oy, Doy, | J\ OF | 0P

where x; = X,(x,?) in V,;X%.

For the static problem, points in R; are stationary, and it is probably much
more convenient to work in terms of u, = 0,(x,) instead of u; = G,(x) for phase
2. In this case the inhomogeneity of W; can be expressed explicitly in terms of
points x; € R}, and the equation representing the balance of linear momentum for
phase 2 would have the same form as the equation representing the balance of linear
momentum for phase 1 given by (3.1.4), except that all of the quantities would have

1 subscripts and the inertial terms would, of course, be equal to zero.

For the linear problem where it is assumed that |Vi| << 1 Vx € R~ and
Vi, << 1 Vx; € Rf at each t € T, we define a quasi-static process as a
process where the first and second time derivatives of i1 and @, are negligible
Vx € R™andVx € R, respectively, |V| << 1, and dV/dt is negligible, for all
t € I3 Such a process corresponds to a process where the strains of each phase are
infinitesimal, the motions of each particle of each phase relative to the undeformed
configuration of that phase are negligible, the magnitude of the phase boundary
velocity is infinitesimal, and the acceleration of the phase boundary is negligible, for
all t € T'. For this type of process, it is probably much more convenient to solve for
u, = ly(x,) instead of u, = @,(x) in the boundary value problem. However, unlike

the static problem, points in R} are moving. Therefore, the inhomogeneity of W,

5 Note that such a process is not a true quasi-static process since time is not just a parameter in all variables of

the problem, and consequently, the set of all solutions as time is varied does not consist of only static equilibrium
solutions.
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still needs to be expressed with respect to points x € R* (see Section 2.6). Thus,
for a quasi-static process the balance of linear momentum for phase 2 would have
the same form as it would have for the static case, except that 301,~jk,/3$1j would

be replaced by (BClz.jkl/ 0a:n) (azn / Oa:lj).

3.1.2 The Linearized Jump Conditions

As was partially discussed in Section 2.3, at each point x € S, at each ¢t € T, the

displacements are required to be continuous, and we therefore have
¥ (Fa(x,0),1) = §7(x,1), (3.1.7)

where ¥,(X,(x,t),t) = X,(x,t)+0,(x,t) and §(x,t) = x+1u(x,t). If we work with
the continuity-of-displacements condition in this form, there is nothing to linearize.

However, the jump conditions

(F;fl?“+ - F-)L -0,
. (3.1.8)
v+ (F;*F* - F')V =0,
which together represent the continuity of displacements,’ are such that they or

equations equivalent to them can be linearized. In particular, as was mentioned in

Section 2.3, Equation (3.1.8); is equivalent to
Fif+t —F- =a@N. (3.1.9)

Since both & and N are real quantities, we can conclude that the two-tensor 4 ® N,
and hence F;“I'.f‘+ — F~, has two zero eigenvalues and one real not necessarily zero

eigenvalue.® Thus, we can write the characteristic equation for F{F* — F~ as

NN LA+ L =0, (3.1.10)

§ These two equations can be used in place of (3.1.7) in the boundary value problem.
7 This equation can be used in place of (3.1.8); in the boundary value problem.
® This can easily be seen by working in the coordinate frame where either N or & coincides with a basis vector.
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where
I =tr (F;*fi‘* - F“),
I= %{ |t (T - F")r —tr (P - F“)2}, (3.1.11)
I, = det (F;“f‘* - F-),

and

FIEY —F = (Vi)™ + (Vi V.V, +(Va, Vi)t — (V)™ (3.1.12)
A necessary condition for the existence of two zero eigenvalues of FHEF+—F- is that
I, =0, L=0. (3.1.13)
Equations (3.1.13) can both be linearized with respect to Vu and Vii,. The set of
all vectors L that satisfy (3.1.8); can then be determined.

As was discussed in Section 2.4, the linear momentum jump condition is
~ ~ o\ T
((J alF-l) -~ a‘)N +p(¥ =V )V =0, (3.1.14)

which must hold Vx € S at each ¢ € I, where x, = X,(x,t) in o} and ¥{. Once
the set of all L(x,t) is obtained from (3.1.8);, N(x,t) can be determined such that
N:-L=0VxeSateacht € I'. N can then be substituted into (3.1.14), yielding

three scalar equations, which can be linearized with respect to Vu and V.

Consider the path of the phase boundary during a motion in the time interval T'.
Next consider the special case where we assume that at each location of the phase
boundary in this path there is continuity of displacements at all points on the phase
boundary for 1t =0 Vx € R~ and &, = 0 Vx, € Rf. In this case, as discussed

in Section 2.7, F+ must have the form

Ft=1+4QA, (3.1.15)
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at each point on the phase boundary at each ¢t € I', where a and fi may both be
functions of x € S.° In this case, we can conclude from substituting (3.1.15) into
(3.1.8), that the first-order approximation of L is L, where L - fi = 0. Additionally,

in this case, the first-order approximation of the linear momentum jump condition

given by (3.1.14) is
(6f —o7 )i+ p(¥f —v7)V, =0, (3.1.16)

where o and o, are given by their respective linear constitutive relations.!®

For the static case, jump conditions (3.1.7) and (3.1.8); are the same, jump
condition (3.1.8), is trivially satisfied, and the linear momentum jump condition

given by (3.1.14) reduces to

((falf‘-"f)J' _ a—) N=o,

o~
(95
sk
o
~J
L —

which is equivalent to the continuity of traction across the interface. For the case

where F = 1 +a@® n, (3.1.17) reduces to

(6t —o7 ) =0. (3.1.18)

For a quasi-static process, jump conditions (3.1.7) and (3.1.8); are the same.

However, for this type of process, the first-order approximation of jump condition

(3.1.8); is

~ N+ |
(%‘t_l.) — _(Vii)*V. (3.1.19)

® This may be a good assumption for a material that has continuity of displacements at the phase boundary and
is unstressed when it is in static equilibrium with no applied boundary tractions.

1 Note, however, that because all the Jjump conditions are evaluated at points on phase boundary and the location
of the phase boundary is part of the solution of the boundary value problem, the jump conditions are inherently

nonlinear with respect to the variables representing the location of the phase boundary. For the static or quasi-static
case, however, this does not present any difficulties.
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If the displacements are to be continuous at the phase boundary for all ¢ € I' with
respect to a first-order approximation, the mapping X; should be chosen such that
(3.1.19) is satisfied. For the case where the shape deformation is a homogeneous
invariant plane strain for all ¢ € T, X; must have the following form in order for

(3.1.19) to be satisfied at each t € I
%(x,t) =x+ ([x — %(t)] - n)a, (3.1.20)

where %(t) is any point on the interface S (see Section 2.7). Also, for a quasi-static
process, the first-order approximation of the linear momentum jump condition is the

same as that for the static case.

For the static or quasi-static case, when @,(x,) is being solved for instead ’of
{i;(x), the jump conditions would have the same form as described above, with the
exception that V@i, V,X would be replaced by V;#;. Consequently, Fff"f —Fin
Equations (3.1.8);, (3.1.9)-(3.1.11), and (3.1.13) becomes

FIFt —F = (Vi)' + (Vat, Vi)' + (Vi)™ — (V)7 (3.1.21)

Whel‘e X, = il(x,t) in Vlﬁl.ll

3.1.3 The Linearized Driving Traction and Kinetic Relation

The driving traction acting on the phase boundary was presented and discussed in

Section 2.9. For the linear case where we assume that ' has the form F = 1+ 3@,

“at each point on the phase boundary at each ¢ € T, the driving traction given by
(2.9.2) becomes

f= ((J W;‘)+ - (W*)‘) —1[(o% +07)d] -a+O(IVal, |VE,[?). (3.122)

11 Note that for the static case, X, in (3.1.21) is independent of time. However, for the quasi-static case, the phase
boundary velocity is assumed to be nonzero, and consequently, X, is a function of time in (3.1.21).
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The driving traction for the quasi-static case is given by (2.11.2). For the linear case

and whenF=1+3aQ® 1, this driving traction becomes
¥ * + .\~ —_ ~ a2 ~ 12
f= ((JWI) — (W) )— (675) - &+ O(IVa, |Vaiu ). (3.1.23)

The implications of this form of the driving traction for the quasi-static case will be

discussed further in Section 3.2.

In Section 2.9, it was mentioned that a kinetic relation
Vo= ®(f,x) (3.1.24)
at points x € S can be postulated with the requirement that
o(f,x)f 20, (3.1.25)

Vx € S ateach ¢t € I, This kinetic relation is a constitutive relation in the sense that
® depends on the given material [1, 2]. Consider a kinetic relation, which is such

that

>07 f> f‘z
@(f) =0, for i<f<fo, (3.1.26)
< 0’ f < fl

where the constants f; and f, are material-dependent and are such that f; < 0 and
Jo > 0.22 We note that such a kinetic relation satisfies (3.1.25). Before presenting
the linearized form of (3.1.26), we will first consider some motivation for the general

form of (3.1.26).

12 Kinetic relations of this form have been studied in [1].
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As was discussed in the Introduction, for most materials, M, < T, < A..
Assume that phase 1 represents the austenite and phase 2 represents the martensite.
In this case, T, corresponds to the Gibbs free energies of both phases being equal
Ge., g(1,T,) = Jg:(1,T.))," A, corresponds to g(1,As) < Jgi(1, A,), and M
corresponds to Jg,(1, M,) < g(1, M,). Let

fA - jgl(l’As) - g(]-vAE.)v

) (3.1.27)
fM = ng(lvMs) - 9(17M8)'

Note that fy > 0 and fu < 0.

For the case where each phase is unstressed in its undeformed configuration,
g(1,6) = (1,8) and gy(1,6;) = %,(1,6;). Thus, in this case, Jeu(1,4,) —
$(1,As) = fa and Jepu(1, My) — (1, M,) = fu. Additionally, as was discussed in
the Introduction, a thermally-induced martensitic phase transformation will not occur
unless 8 < M., and this corresponds to Jg:(1,6) — g(1,6) < Jai(1, M) — g(1, M),
or equivalently f¢1(1,9) — 9(1,60) < fu. Thus, for an unstressed material at a
temperature § < M,, f' < fu, where f' represents the driving traction for a
thermomechanical process given by (2.12.13), and this corresponds to a nonzero
phase boundary velocity with V,, < 0.1 Similarly, for an unstressed material at a
temperature 6 > A,, f' > fa, and this corresponds to a nonzero phase boundary
velocity with V,, > 0. Additionally, for an unstressed material at a temperature
M, < 6 < A,, we have fu < f' < fa, which corresponds to a zero phase boundary
velocity, since a thermally-induced martensitic phase transformation does not occur

in this temperature interval.

13 For this comparison of the Gibbs free energies of both phases, the Gibbs free energies are considered to be
with respect to the same reference configuration. Also, in the rest of this section, the spatial dependence of the
potentials and kinetic relation will not be displayed in the notation.

14 Note that if phase 1 is the austenite and phase 2 is the martensite, V;, < 0 corresponds to a martensite phase
transformation, and V;, > 0 corresponds to an austenite phase transformation.
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For an isothermal process occurring at the temperature 6o, 1(F,6y) = W(F)
and ,(Fy,8;) = Wi(F,). Thus, for an isothermal process occurring at 6 = M,,
JWi(1) = W(1) = fu, and for an isothermal process occurring at 6 = A,,
JWi(1) = W(1) = fa. Motivated by this, the above discussion, the fact that it
takes a finite applied boundary traction to induce a martensite or austenite phase
transformation for § > M, and 6 < A,, respectively, and considering (3.1.25), one
might postulate a kinetic relation of the form given by (3.1.26). Additionally, for an
isothermal process occurring at § = M, one might choose f; such that f; = fy, and
for an isothermal process occurring at § = A, one might choose f» such that f, = fa.
An example of when it might be appropriate to choose f; = f; (= 0) is for the case
where phase 1 and phase 2 represent two different variants of the same martehsite
in an isothermal process at a temperature near a transformation temperature, since in
this case J Wy(1) = W(1), and it has been observed from experiments that at such a
temperature, reorientation!> occurs for any nonzero applied boundary traction. More
generally, f, — f1 might be chosen to be proportional to the difference in the free

energies of phase 1 and phase 2 at the transformation temperatures.

For the linear case, the kinetic relation of the form (3.1.26) is given by

,,%(f— fa)s f>F
o(f)= {0 for HASf<Ff, (3.1.28)
;,l[(f“ fi), f<h

where f is the linearized driving traction, and v, and v, are constants that depend on
the given material. We note that as »; and vy — oo, V,, — 0 and the phase boundary
moves with the particles of material at the interface but does not pass over them,

converting them from one phase to the other.

15 Refer to Sections 2.8 and 3.2 for discussions of this phenomenon.
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3.2 Reorientation

As discussed in Section 2.8, the phenomenon where a boundary traction is applied,
resulting in the phase boundary separating two variants of the same martensite moving
and transforming one variant into the other, is known as reorientation. In a material
that is fully martensitic, reorientation takes place until the material consists of only

one variant of martensite, or the boundary traction is removed.!6

The issue of which variant of martensite is preferred during the growth
process, whether the process is reorientation or simply an austenite-martensite phase
transformation where several variants of martensite nucleate at different points in the
material, is an issue that has received much attention. For the case where a uniaxial
tensile traction is applied, it has been observed from experiments in [14] that for
18R martensitic alloys, the variant of martensite that is preferred during the growth
process is the variant that yields the largest amount of extension because of its shape
deformation in the direction of the uniaxial tensile traction. The consistency of this
experimental observation with a minimum energy criterion is shown and discussed
in [8]. There have also been proposed criteria involving the shear traction on the
interface of the martensite,'” and criteria based on the shear stress on the plane of

slip for internally slipped martensites.

Consider the quasi-static case where the shape deformation of phase 2 is a
homogeneous invariant plane strain. In this case, the driving traction is a special case

of the driving traction given by (3.1.23) and is as follows:

f= ((fW;")+ - (W*)“) ~(o-1) - &, (3.2.1)

¢ More specifically, for a material initially consisting of many crystals of austenite, there will usually be many
crystals of the same variant of the martensite, and not one crystal of one variant, since phase boundaries cannot,
in general, cross grain boundaries.

17 Such a criterion is discussed, e.g., in [10].
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where the second-order terms have been neglected.!® We next assume that all of the
variants of martensite of the material under consideration have the same value for their
elastic potentials in their undeformed states,!® and we assume that the material has a
kinetic relation of the form (3.1.28). To consider the case of an austenite-martensite
phase transformation, we let phase 1 represent the austenite and phase 2 represent
a variant of martensite. From the assumptions given above, we can conclude that
(f Wl*)+ — (W*)” has the same value regardless of which variant of martensite
phase 2 represents. We next note that o™i is the traction on the interface and that
(67h) - a is the component of this traction in the direction of the amplitude vector
of the variant of martensite that phase 2 represents, multiplied by the magnitude of
this amplitude vector. We also note that the variant that has the largest negative
value for its driving traction will grow at the fastest rate. From the discussion above,
we can conclude that this variant is the variant with the largest value of (6™ 1) - &.
Thus, for the case under consideration, we can conclude that the variant of martensite
with the largest value of the component of traction on its interface in the direction
of its amplitude vector multiplied by the magnitude of its amplitude vector will
be the variant preferred during the growth process in a stress-induced austenite to
martensite phase transformation. To consider the case of reorientation, we let phase
1 and phase 2 represent two different variants of the same martensite. From the
assumptions given previously, we bcan conclude that (.f Wl*)+ ~(W*)™ = 0 for
every combination of variants that phase 1 and phase 2 can represent. Therefore, the
variant with an amplitude vector & and an interface normal i1 that result in (¢~11) - &

having the largest value will grow at the fastest rate. We note, however, that in this

18 The only difference between (3.1.23) and (3.2.1) is that & and fi in (3.1.23) may be functions of x.

¥ For this comparison of the elastic potentials, they are all considered to be with respect to the same reference
configuration.
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case a and n for the variant under consideration are measured with respect to the

neighboring variant across the interface with normal n.

Consider next a cylindrical body parallel to the unit vector e;. Assume that a
tensile traction t = — oye, is applied at the end with unit normal —e,, a tensile
traction t = oye, is applied at the end with unit normal e;, and the remaining surface

of the cylindrical body is traction-free. For this case, the stress tensor
T =0p€6; ® e; (3.2.2)

is a solution of the field equations, the traction jump condition, and the boundary
conditions for the quasi-static process under consideration.? Considering (3.1.1)s,

the first-order approximation of o~ is
0 = oype; @ e. (3.2.3)
For this special case, the linearized driving traction given by (3.2.1) becomes
f = foa — opacosgceosa, (3.2.4)

. +
where £, = (J Wl*) —(W*)",a = |4|, acos¢ = & - e,, and cosa = 11 - e;.

We next note that the extension of a unit fiber of material originally parallel to

e; that is due only to the shape deformation is

~les| = /e, - Ce, — 1, (3.2.5)

where C = F'F., The component of extension in the direction of the tensile traction

6= |Fe1

is

§' = e, -Fe, —e, - e, = acosgcosa. (3.2.6)

2 This can be readily scen by expressing these equations in there Eulerian form.
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This is also equal to the extension given by (3.2.5) if rotations are neglected or do

not occur. From this, we can write the driving traction given by (3.2.4) as
f=fu—00b'. (3.2.7)

Thus, for a given o, the variant of martensite that yields the largest component of
extension in the direction of the uniaxial tensile traction will be preferred during the

growth process. This corresponds to the experimental observations presented in [14].

Let € be a unit vector in the (&,i) plane such that €-n =0 and €-a > 0.
For the case of a uniaxial tensile traction described above, the (shear) component of

traction on the interface in the direction of € is
S=8- [(ove, @ e;)n] = oycosAcosa, (3.2.8)

where € - e, = cosA. For the case where F' is a simple shear, € is parallel to a,

resulting in A = ¢, and (3.2.8) becomes
S = gycospeosa. (3.2.9)
Thus, for this case, the driving traction given by (3.2.4) can be written as
f = fu—adS. (3.2.10)

From this, we can conclude that the variant that is predicted to be preferred, by a
shear-stress criterion stating that the preferred variant is the variant with the largest
value of S, will correspond to the variant with the largest negative driving traction
for a given oy, only if each variant has a simple-shear shape deformation and has the

same value for the magnitude of its amplitude vector.
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3.3 The Case of a Uniform Hydrostatic Pressure

In this section, the effect that an applied hydrostatic pressure has on a martensitic
phase transformation in a given material is studied.?! The two-phase material
described in Section 3.1 is considered. If a given loading results in an increase
in the driving traction, that loading is considered to favor the growth of phase 1,
and if a given loading results in a decrease in the driving traction, that loading is
considered to favor the growth of phase 2. If, on the other hand, the given loading
results in no change in the value of the driving traction, neither phase is favored by
that loading. For the problem under consideration, it is assumed that a hydrostatic

pressure exists such that

T=—pl, - (33.1)

at every point of the deformed body, where p > 0. A quasi-static process is considered
where |Vi| << 1 Vx € R~ and |Viy| << 1 Vx; € Rf. For this case, we can

conclude from (3.1.1); that the first-order approximation of o~ is

0~ = —pl. (33.2)

It is assumed that the shape deformation of phase 2 is homogeneous and has the
form F = 1 + & ® fi. For the following, let (7/2) — & denote the angle between
a and n. Note that ¢ is a measure of the dilatation (or volume expansion) of the
shape deformation of phase 2. For the case under consideration and when § is not

infinitesimal, the linearized driving traction given by (3.1.23) becomes

~ -+ . ‘
f= ((J W;) -(W*)‘) +pa- i+ OVl Vi)

= f. + pasiné + O(]Vﬁl‘z, |V1ﬁ1|2)-

(3.3.3)

2! See [13] for a discussion of this type of problem and for a list of some references where such problems are
considered.
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Thus, if 6 is not infinitesimal, we can conclude from (3.3.3) that a hydrostatic
pressure favors the austenite phase transformation in a material where the martensite
phase is such that siné > 0,2 and a hydrostatic pressure favors a martensite phase
transformation in a material where the martensite phase is such that siné < 0.
Additionally, as can be observed from (3.3.3), these results are independent of the
material coefficients of both the austenite and martensite. However, for the case
where |6] << 1, the term pasiné becomes a second-order term.? Therefore, in this
case, the lowest-order approximation of f — f,; is a second-order approximation, and
the second-order terms that have been neglected in (3.3.3) must be retained to obtain
a lowest-order approximation of f — f... We note that these second-order terms

contain the material coefficients of both phases.

In the rest of this section, the case where |6] << 1 is considered. The strains
in each phase corresponding to the hydrostatic pressure are calculated, and the
continuity-of-displacements condition (the only nontrivial portion of the boundary
value problem) is enforced. The driving traction is then calculated to determine what
values of the material coefficients of both phases will yield a driving traction that will
favor the martensite phase transformation. Additionally, the case where phase 1 and
phase 2 represent two different variants of the same martensite that are twin-related
is considered, and a result that is expected from physical considerations is obtained.
These problems not only demonstrate the convenience of using multiple reference
configurations in the manner that they are used in this thesis, but the result that is
obtained involving the two different variants of the same martensite Serves as a very

good check of the continuum model.

2 This corresponds with the well-known result that a hydrostatic pressure stabilizes the austenite phase in many
iron alloys [13]. The martensite phases in these iron alloys have small, but not infinitesimal, volume expansions.

B Note that because p in (3.3.3) is related to the infinitesimal strains through the constitutive equations, p is
considered to be a first-order term in (3.3.3).
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3.3.1 The Material Symmetry of the Phases

For the problems considered in this section, the two-phase material that was
considered in the previous sections of this chapter is considered. It is assumed that
both phase 1 and phase 2 are homogeneous and have tetragonal symmetry.2* The case
of cubic symmetry for phase 1 and/or phase 2 can be considered as a special case,
once the general results are obtained. It is assumed that each phase has preferred
directions [15]. For the case considered here where the tetragonal symmetry reflects
the symmetry of a tetragonal crystal lattice, the three preferred directions {h;, hy, h;}
of each phase can be considered to be in the [1 0 0], [0 1 0], [0 0 1] directions of a
tetragonal unit cell of each phase, respectively. The material symmetry group of a

material with tetragonal symmetry can be generated by the set

G, = {R;f,R;'”}, (3.3.4)

where Rﬁ denotes a right-handed rotation by an angle ¢ about an axis parallel to
h,.» The eight distinct elements of the tetragonal material symmetry group Gy,

which the elements of G| generate, are
g"l‘ = {17 R;ra Rg) R;f/2’ R; Rgﬂn, RgR;/za R‘lszg’”ﬂ} ° (335)

The elements of Gy map the preferred directions of the phase into equivalent
positions, and as discussed in Section 2.5, we require that the elastic potential

of the corresponding phase be invariant with respect to these rotations.

3.3.2 The Remaining Assumptions

Let {e;,e;,e3} form an orthonormal basis for vectors in Ey. For the following

problem, a state of plane strain is assumed, with e3 normal to the plane of plane strain,

% Note that tetragonal symmetry is equivalent to orthotropic symmetry.

5 If the elements of H* generate the elements of H, all of the elements of H can be obtained by multiplying
the elements of H* with each other and their inverses.
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and a quasi-static process is considered. It is assumed that |Vi| << 1VxeR™ and
|V, | << 1Vx; € Rf. Let {h{, hf, hi} represent the preferrea directions of phase
2 and assume that {e;,e,,e;} are such that they are aligned with {h{,h{ hj},
respectively. Let {hy,h;,h; } represent the preferred directions of phase 1, with
h; in the direction of e; and the angle between h] and e, denoted by « (Figure
3.1). It is assumed that F* = 1 + &4 @ .2 Let ¢ denote the angle between f and
e, and let 6 be defined as it was in the beginning of this section. As mentioned
above, it is assumed that || << 1. It is also assumed that a plane-strain hydrostatic

pressure exists such that

T =—pl, (3.3.6)

at every point of the deformed body.- Additionally, in the fdllowing analysis, we
will decompose the displacement gradients into their symmetric and skew-symmetric
parts as follows

Vi=¢e+w,

(3.3.7)
Vil =& +wy,

where w = skewV1i, and w; = skewV,1,.

3.3.3 The Stress and Infinitesimal Strain Tensors

Considering (3.3.6), (3.1.1)3;, and (3.1.2);, we can conclude that the first-order

approximations of o and o, are

o= —pl,

(3.3.8)
o) = ""p1>

% Unless otherwise indicated, for the following plane-strain problem, it is assumed that all tensors correspond to
the two-dimensional Euclidean space containing {e;, ez}.
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respectively.?’ For the linear case of plane strain and tetragonal symmetry considered
here, the inplane components of stress for phase 1, in the frame coinciding with

{h7,h; }, are given by

o1 Cin Chw 0 €11
032 ¢ = | Clizn Copm 0 €2 (> (3.3.9)
0';2 0 0 2C;212 6;2

(see, e.g., [7, 11]), where o, and ¢_ ; denote the components of & and ¢, respectively,

in the {hy, h; } frame. These equations can be inverted to obtain

{ €n 1 Kin Ky 0 o1
€xm ¢ = | Kfj99 Kygy 0 Oaz ¢ > (3.3.10)
l 8;2 0 0 2K1—:212 0'1_2

where K171y = Copn/1, iy = —Chia/ny Kapey = Crint/n, 2K 51, = 1/(2C510),
and 1 = CjyComs — (Ciim)’2® For the case where ¢ = —pl, the inplane

components of strain given by (3.3.10) become

(Kian + Kiig) 0
€] = —p . (33.11)
0 (K + Kiy) |

The components €5 of ¢ in the {e,,e,} frame can be obtained from (3.3.11) in the

usual way and are given by

27 Note that since @, 01, &, and &; are homogeneous, 6™ = &, 6] =6y, 6~ =¢, ande] =¢,.
% Note that K, ays are the components of the compliance four-tensor K for phase 1 in the {h{,h; } frame.
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{Kl—lu(cos‘)‘)2 + Kip(sina)’ + Kiin ) %(Kﬁu — K )sin2a

YK — Kop)sin2a {Kppi(sina)® + Kggy(cosa)” + Kﬁ.zé}3 2

Since {e;, e,} coincide with {hf,h}} , the inplane components of o for phase

2 in the {e;, e,} frame are given by

+ + + +

11 Ciin Chis 0 €n
+ \ _ + + +

03 ¢ = | Cliz Coam 0 €22 (5 (3.3.13)
+ + +

012 0 0 20 €12

where o}, and £} 5 denote the components of g5 and &y, respectively, in the {hf, hj}
(or, in this case, the {e;,e,}) frame. Solving the above equations for e}, and

substituting (3.3.8), yield

(K + Kifg) 0

el = —p (3.3.14)

0 (Kiigs + Kiyy)

where K}, ; are the components of the compliance four-tensor K; for phase 2 in

the {hi*., h;.} (Or {el,eg}) frame.

3.3.4 The Continuity of Displacements

Because the true stress is assumed to be uniform and constant throughout the
body, the linear momentum field equations and the traction jump condition are
trivially satisfied. A necessary condition for the continuity of displacements at the

phase boundary is that

det (F{ff‘ - F-) = 0. (33.15)
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For the case where F = 1+a®1 that is considered here, the first-order approximation
of L is L, where L - fi = 0. In terms of the displacement gradients, the above

equation becomes
det(a@n+ V,0f(aQ#) + V,if —Va~) =0. (3.3.16)

In the {e,,e,} frame,

cos ¢ — sin(¢ — §) — sing cos¢
sing cos(¢ — §) cos¢ sing
(3.3.17)
Substituting (3.3.7) and (3.3.17) into (3.3.16) and retaining only first-order terms

yield
5 (ef —eh + €7 — 17 )sin2¢ + e5c082¢ + W™ — wt =0, (3.3.18)

where ¢j; and ¢, denote the components of ¢ and &; in the {e;,e,} frame,
respectively, and w'~ and w™ denote the w}; and w;; components of w and w; in the
{ei1, e;} frame, respectively.?’ We note that for the linear case under consideration, the
symmetric parts of the displacement gradients of & and @; are completely determined
by the stress distribution and are given by (3.3.12) and (3.3.14), respectively, and
Equation (3.3.18) is the only equation that restricts the skew-symmetric parts of these

displacement gradients. Substituting (3.3.12) and (3.3.14) into (3.3.18) and solving

for w* — '™ yield

wt—w'" = g(K;;m — Kj,))sin2¢ + g(K{m — Kpp,)sin(2a — 24).  (3.3.19)

% Note that because of (3.3.14), €7, has been taken to be equal to zero in Equation (3.3.18).
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This equation can be written in nondimensional form by using the following

nondimensional quantities:

B 2aw'™ o+ 2awt v Ko
PKfm ’ PK1+111 ’ ? K1+111 ’
(3.3.20)
. K ~ K,

K- 1111 K- = 2222

' K 2 Kiin

The nondimensional form of Equation (3.3.19) is
Gt — o = (K} —1)sin2g + a( Ky — K7 )sin(2a - 29). (33.21)

3.3.5 The Driving Traction

Considering (3.3.8), (3.1.1);, and (3.1.2);, the corresponding second-order
approximations of the elastic potentials are
W=W*'-3je-0=W*- %ptre,

(3.3.22)
W=W*—%€1'0'1 =W1*——%ptr€1.

For the case considered here, the second-order approximation of —o - (Fff‘ - F‘)
is
p(ad + i - (V18,8) + tre; — tre), (3.3.23)

where the first-order approximations of a and n are used. Substituting (3.3.22) and
(3.3.23) into (2.11.2) yields the second-order approximation of the driving traction

given by

f=fa+p(ad+i-(Vid,a) + 1§ treg — L tre). (3.3.24)
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Retaining only first-order terms, the individual terms in (3.3.24) can be expressed as

fi- (Vi) = a(wt — 1 p(Kh,y, — Kfy))sin2é),
tre = —ptr(K1) = —p(K{j;; + 2K 790 + Kopn) (3.3.25)

trey = —ptr(Ki1) = —p(Kiin + 2K + Kiy)-
Substituting (3.3.25) into (3.3.24) yields

f = fu+ p{ad + aw + Lap(Kfyy — Kihyy)sin2g + § pltr(K1) — tr(K,1)]}.
(3.3.26)
We can put the driving traction given by (3.3.26) in nondimensional form by
using the nondimensional quantities given by (3.3.20) and the following additional

nondimensional quantities

z 2 5 2fer
= PR e i
(3.3.27)
§ = ;%‘-f;, B = K;m [tr(K1) — to(K,1)] .
The nondimensional driving traction f is as follows:
F=futé+ot+ a(l - ff;)sinzqs +3. (3.3.28)

Note that &* is a parameter in the above equation for f. We can obtain f as a

function of @~ by using (3.3.21). The resulting equation is

~

f=fatb+a+ a(K; - I"q)sin(za —2¢)+ 4. (3.3.29)
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3.3.6 The Austenite-Martensite Phase Transformation

In the following, it is assumed that phase 1 represents the austenite and phase
2 represents the martensite. From the discussion in the beginning of this section,
a hydrostatic pressure will favor the austenite phase transformation if it results in
f—fu>0,anda hydrostatic pressure will favor the martensite phase transformation
if it results in f — f.. < 0. For the case under consideration where |§| << 1, if
@* is used as the parameter, we can conclude from (3.3.28) that the second-order

approximation of f — f.r can be negative if and only if
§+at+f< —a (1 - 12'2) sin26 . (3.3.30)

Alternatively, if @~ is used as the parameter, we can conclude from (3.3.29) that the

second-order approximation of f — f.. can be negative if and only if

~

§+6™+f < —a(Ky - K7 )sin(20 — 29). (3331)

We note that a value for @~ or &* might be prescribed by some displacement
boundary condition that is applied to the material in addition to the hydrostatic
pressure, and that is consistent with the assumed state of stress within the material.
Thus, a hydrostatic pressure will favor the martensite phase transformation if and
only if the shape deformation of the martensite, the material coefficients of both
phases, the orientation of the phase boundary, and the additional boundary conditions
are such that (3.3.30) or (3.3.31) is satisfied. Otherwise, the hydrostatic pressure will

favor the austenite phase transformation.
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3.3.7 The Case of Twin-Related Variants

For the case where phase 1 and phase 2 represent two variants of the same
martensite that are twin-related and the isothermal process is at a temperature near
the transformation temperature, we have: (1) 6 = 0, since one twin has a simple-shear
shape deformation relative to the other twin; (2) f.. = 0, since J W;(1) = W(1)
for two variants of the same martensite near the transformation temperature; (3)
Ky = Ky, since both phases represent the same material; (4) B =0, as a result
of (3); and (5) a = 2¢, as can be seen from Figure 3.2. In this case, the driving

traction given by (3.3.28) becomes

~

f=w++a@~j§)mm¢ (3.3.32)
and Equation (3.3.21) becomes
o+—av=—m(y-ﬁﬂgﬂ¢. (3.3.33)

If we now require that the deformation of one twin be symmetric with respect to
the deformation of the other twin (because of the symmetric stress distribution), we

must require that

w™ = —wt. (3.3.34)

In this case, substituting (3.3.34) into (3.3.33), solving for &* in the resulting equation,

~and then substituting the resulting equation for @™ into (3.3.32), yield

f=0. (3.3.35)

This is what should be expected, since everything else in the problem is symmetric,

and consequently, one twin should not be preferred over the other.
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2

Figure 3.1. The hydrostatic pressure problem.
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Figure 3.2. Twin-related variants.
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CHAPTER 4
A THERMOMECHANICAL PROBLEM

In this chapter, a thermomechanical problem involving a one-dimensional, two-
phase bar is studied. The bar is subject to different temperatures at each boundary and
to a mechanical end-loading. A quasi-static process is considered, and the temperature
and static equilibrium positions of the phase boundary are calculated and studied as the

material coefficients, temperature boundary conditions, and end-loading are varied.

4.1 The Field Equations and Jump Conditions

A one-dimensional, finite bar that initially consists of two phases is considered.
It is assumed that the process under consideration is thermomechaﬁical with no body
forces and no heat sources present. It is further assumed that the process occurs in
a time interval I' = [ty,¢,], and in a temperature interval Q = [}, 6] containing
the temperatures M,, Tj, and A,. Unless otherwise indicated, the notation used in
Section 2.12 will be used in the following, with the understanding that it corresponds
to the one-dimensional problem under consideration. Let z = s(t) be the location
of the phase boundary at time ¢ € I, and let L be the length of the bar with
respect to the reference configuration R. Considering this, R = {z/z € [0, L]},
R™ = {z/z €]0,s(¢)]}, and Rt = {z /= € [s(¢), L]}. It is assumed that #,(-,t) :
R* — R ateach t € T is given by

T

Bat) =a+ [ A(6E)E, @)
s(t)
where 6(x) is the temperature field of the material with respect to the coordinates of

R. The displacement gradient (transformation strain) corresponding to this choice of
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# is 4(6()), the Jacobian is J =1 + 4, and Rf = {@1/ z:€ [#,(s(t), 1), #,(L, 1))} =
{z\/ € [s(t), L1(¢)]}, at each t € T, where Ly(t) = &,(L,t), and ¥ > —1 so that
reflections are excluded from (4.1.1). Also, the temperature field for phase 2 with
respect to the coordinates of R} is denoted by 6;(z,). In the following, a quasi-static
process is considered. In particular, a process is considered where time is treated as
just a parameter in all quantities except for s(t).! The dependence of s(t) on time
is such that (ds(t)> (n>1)and §(t) = z s(t) are assumed to be negligible for all
t € T', and are therefore taken to be equal to zero. For this type of process, the only
time-derivative terms in the boundary value problem that are not identically equal

to zero are those that are linear in $(t) = dfi(tt). Such a process corresponds to a

process where |$(t)| << 1 and the acceleration of the phase boundary is negligible
for all t € T.

The balance of linear momentum, the balance of energy (the first law of
thermodynamics), and the entropy inequality (the second law of thermodynamics)

for phase 1 and for the assumptions given above are

do
pria
dgq
k. S 41.2
- 0, (4.1.2)
drq
— (%) <
dzx (6) =0,

respectively, Vx € (0,s(t)) at each ¢ € I'. The balance of linear momentum, the

! Because of this, the dependence of all quantities, except for s(t) and &,(z,t), on time will not be displayed
in the notation. Also, strictly speaking, such a process is not a true quasi-static process since time is not just a
parameter in @ll variables of the problem, and therefore the set of all solutions as time is varied does not consist
of only static equilibrium solutions.
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balance of energy, and the entropy inequality for phase 2 are given by

dO'l

az, = O

dg,

el 0, (4.1.3)

d (¢
—_— =<
d.’l)l (91) - 0,

respectively, Vz; € (s(t),Ly(t)) at each t € T,

At z = s(t), the continuity-of-displacement and the continuity-of-temperature

conditions are

| uy (s(t)) = u™(s(t)),
(4.1.4)

07 (s(t)) = 0~ (s(1)),

respectively, at each ¢ € I"2 The jump conditions at = = s(t) that are equivalent to
the balance of linear momentum, the balance of energy, and the entropy inequality

are given by

{‘9(J~’7fr - ’7") + f}S' +(¢f—¢7) =0, (4.1.5)

f$20,
respectively, at each ¢ € T', where

F=d9f =4~ - (F+17+4F —7) (4.1.6)

2 Note that the original form of the continuity-of-displacement condition y = y~ reduces to (4.1.4)1 for the #,
given by (4.1.1).
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is the driving traction acting at the interface for the quasi-static process under
consideration. We also have at the phase boundary a kinetic relation relating s to
at least f. This kinetic relation is a constitutive relation and will be discussed in

Section 4.3.
The boundary conditions for equations (4.1.2); and (4.1.3), are
u(0)=0, o,(Li(t)) = oy, (4.1.7)
respectively, and the boundary conditions for the temperatures 6(z) and 6,(z,) are
6(0) =6, 6,(Li(t)) =07, (4.1.8)

respectively.

4.2 The Constitutive Assumptions

It is assumed that both phase 1 and phase 2 are homogeneous, thermoelastic
materials. In particular, for phase 1 it is assumed that there exists a Helmholtz free

energy potential

"/) = ":b("f’e)v (421)
such that
_%
= 37’
(4.2.2)
_ %
n= - 60 3

where v = ﬁj—:—, and it is assumed that the heat flux response function for phase 1

has the form

. do
g= q('r, 6, 2;). (42.3)
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Similarly, for phase 2 it is assumed that there exists a Helmholtz free energy potential

Y1 = ¥u(71,61), (4.2.4)
such that
(4.2.5)

where v, = j"—;%, and it is assumed that the heat flux response function for phase 2

has the form

) do
m=m6m%31> (4.2.6)
Ty

We note that all of the quantities for phase 1 given by (4.2.1)-(4.2.3) are defined with
respect to the reference configuration R™, and all of the quantities for phase 2 given

by (4.2.4)-(4.2.6) are defined with respect to the reference configuration Ry .

We next assume that the thermomechanical process under consideration takes
place in a neighborhood of a temperature 6, € Q. More precisely, letting § =
(6 — 6y) and 6, = (8, — 6,), we assume that || << 1 Vz € [0,s(t)] and |6, | << 1
Vz, € [s(t), L1(t)], at each t € T'. Additionally, we assume that for a given 6y, the
dependence of 4 on 6 is at least second-order; i.e., we assume

5 =7+ O(6%), (4.2.7)
where vy =.4(6y) > —1. For this assumption, the first-order approximation of 7, is

E(z,t) = ¢ + yo(x — s(2)), (4.2.8)

and the first-order approximation of Ly(t) is L;(t) = L + vo(L — s(t)). We assume

that phase 1 is unstressed at (v,6) = (0,6,), and that phase 2 is unstressed at
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(71,6,) = (0,6y). We also assume that |y] << 1 Vz € [0,s(t)) and |v| << 1

Vz, € (s(t), L1(t)], at each ¢t € I'. Considering this, ¢ for phase 1 can be written as

=9 =06+ 0(8,9,7), (42.9)

where ¥* = ¢(0,6,) and n* = 1(0,6y) = ‘%gl(o,ao)' Similarly, +; for phase 2
can be written as

b1 = v =16+ O (8%, 70,7%), (4.2.10)

where ¥ = ¥,(0,6;) and n; = n1(0,6) = — %’é’—f 0y’ We next assume that the

heat flux ¢ for phase 1 is zero when gg = 0, and that the heat flux ¢; for phase 2

is zero when S = 0. We additionally assume that 92| << 1V z € [0,s(t)) and

doy
dxy

<< 1V z, €(s(t),L1(t)], at each t € T. For these assumptions, the first-order

approximation of ¢ for phase 1 is

g=k (4.2.11)

a’; 3
where k = [0§/0(%£)] (06,0 and the first-order approximation of ¢; for phase 2 is

Q= klfzf‘l“ ) (4.2.12)
d$1

where k, = [aql /a(gj%)] gy USINE (42.9), (42.10), and (4.1.4,, the first-order

approximation of the driving traction given by (4.1.6) is
f=0ur =g = (Fnp = n")8% = o™, (42.13)

where o~ is given by the linearized form of (4.2.2),, and Jr=1+ #(6y) = 1 + 7.
We must also specify the kinetic relation, which relates $ and at least f. This will

be discussed in the following section.

3 Note that Equations (4.2.11) and (4.2.12) both have the form of Fourier’s Law.
* Note that because both phases are homogeneous, ¥~(0,8)) = ¥*, 57(0,60) = n*, #(0,60) =
¥1, and 77 (0,60) = 7;.
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4.3 The Kinetic Relation

It is assumed that the thermoelastic material under consideration has a kinetic

relation of the form

§ = 3(F,0), (43.1)

where 6 = 6(s). Because of the entropy inequality (4.1.5), this kinetic relation must

be such that

F2(f,6) > 0. (43.2)

We additionally assume that at each temperature 6(s) € €2, the kinetic relation given
by (4.3.1) has the form

>0, f> fu6)
®(f,6)§ =0, fi(0) S fF<f0) (43.3)
< 09 f < f1(0)

where f1(6(s)) and f2(6(s)) depend on the material and are such that f; < 0 and fy >
0 V 0(s) € 2. We note that this kinetic relation satisfies (4.3.2). A kinetic relation

that has the form given by (4.3.3) and is linear in f is

' jﬁ{f —HO®), > A0

o(f,6) = 4 0, AO) S F<HO) (43.4)
1

\ ;‘;@“)'{f — f1(6)}, f < fi(8)

where v1(6(s)) > 0 and 15(6(s)) > 0 V 6(s) € Q. We note that because
(4.3.4) is linear in f, it is probably most appropriate only for values of f such
that fi < f < fo, (F—-F)/fl << 1, or |(f—fi)/fl << 1. For the
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following, let B(6;) = {(7’,7?,9)/ v << 1, il << 1, 18] << 1} and A(6,) =
{(f(y 11, 9),0)/ (v~,7i,0) € B(6y)}, for a given ) € Q.5 Three cases will be

considered.

Case I. Consider first the case where the temperature §;, €  and the material

are such that f(0,0,68,) = fi(8y) = f:(6y) = 0.5 Additionally, assume that

(v~,7{,0) € B(6) at each t € T". For this case, %% 0o = 0 and % o = 0,

since f1(6y) = fo(6y) = 0 and it is required that f; < Oand f, > 0 V6(s) € Q.
Thus, for this case, fi = O(62), f = O(#2), and the first-order approximation of
(4.3.4) is

. ‘%{(j*ﬂ’f—n*)é—ko“%}, —(j*n;—n*)é——a‘%:zo
) _;1;{(']”*77?—77*)64-0—70}, —(f*r}f——n*)é——a‘fyugo ,

(43.5)
Y (v~,vt,0) € B(6y), where v, = 11(6y) > 0 and v, = v5(6y) > 0.

Case II: Consider the case where the temperature §; € Q and the material are such
that f(0,0,6;) = fi(6) and f1(6y) is not small, in the sense that |f — fi| < fi
V (f,0) € A(6y). If phase 1 represents the austenite and phase 2 represents the
martensite, the temperature 6, for this case might be considered to represent the
martensitic start temperature of the material. We also assume that (y~,~;,6) € B(6) |

at each ¢ € T. For this case, the portion of (4.3.4) that corresponds to (f,6) € A(6y)

07 f 2 fl(e)
0= { TSti-h@),  s<n@ o @

is

5 Note that although f depends on 8(s), it can be varied independently of 6(s) since it also depends on v~ and 47 .
¢ Note that f(0,0,80) = J*} — ¢*
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Substituting (4.2.13) and

fi = f(8) + i + O(6%), (43.7)

where y, = %L . into (4.3.6) and retaining only first-order terms yield

0, —(f*ni"—n*)é—o“voz 0

- -3;{ (ot (Fnp =) |8+o7w ), —(Fni=n")8-ov0< wid
(43.8)

b=

b

Y (v7,7i,60) € B(6o).

Case III: We next consider the case where the temperature 6, € {2 and the material are
such that £(0,0,6;) = fo(6y) and fo(6,) is not small, in the sense that |f — fu| < fo
V (f,0) € A(6y). If phase 1 represents the austenite and phase 2 represents the
martensite, the temperature 6, for this case might be considered to represent the
austenite start temperature of the material. We also assume that (y~,~;,6) € B(6y)
at each ¢ € I'. For this case, the portion of (4.3.4) that corresponds to (f,8) € A(6)

is

1
57,6 { S ROY  F>R6) @39)

0, f S f?(e)
Substituting (4.2.13) and

fo = Fao(80) + 126 + O(6?), (4.3.10)
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where p, = % o into (4.3.9) and retaining only first-order terms yield
0

P - ‘32‘{ [H?'*‘ (j*’?f - ﬂ*)]é+0~’>’o}, —(j*nf-n*)é—a‘% > p.b
. (i) ud
(43.11)

v (7—a71+79) € B(GO)'7

Another method for obtaining a linear approximation of the nonzero portion of
a kinetic relation of the form (4.3.1) is to simply expand it in a Taylor series about
(f,90) = (fv,6y), where f, = f(0,0,86;). For the moment, assume that (4.3.1) and its
first derivatives are continuous at (f,8) = (fo,6s). For the case where ®(fy,8) =0,

the Taylor series expansion of (4.3.1) about (f,0) = (fy, 6) is
@ =ay(f - fu) + ad + O((f = fo)’, (f - 70, 8*), (4312

where a; = $%|(500) and @ = §2|(s0,)-° Substituting (4.2.13) into (4.3.12) and

retaining only first-order terms yields
P = [a2 -y (j*n’f - n*)]é — a0 Y- (4.3.13)

For the case where «; is not continuous at fy, «; is taken to be the limiting value of
%;3 as f approaches f from the side of f corresponding to a nonzero portion of ®.
Comparing (4.3.5) with (4.3.13), we can conclude that a;, = % and a, = 0, where
vV = v; Or v = 1, depending on which branch of (4.3.5) is considered. Comparing
(4.3.8) and (4.3.11) with (4.3.13), we can conclude that o, = L and a, = —£, where

V=, = Or V=1, = U, depending on the case considered.

7 Note that there are other cases concerning the linearized form of (4.3.4) that can be considered. For example,
one can consider the case where f;(f,) and/or f2(6;) are small and nonzero.

¥ Note that although f — fy is not small for a relatively large range of values of (v~,,8) € B(fo), f — fo
does go to zero at the same rate as v, 77, and §(s) go to zero.
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4.4 The Solution of the Boundary Value Problem

From Equation (4.1.3); and the boundary condition given by (4.1.7),, we can

conclude that

o1(z1) = oy (4.4.1)

for s(t) < z; < Ly(t), at each ¢t € I'. From Equation (4.1.2);, the jump condition

(4.1.5);, and (4.4.1) given above, we obtain

o(e) = oy, (4.4.2)

for 0 < = < s(t), at each ¢t € I'. Since the objective is to calculate the temperature
at the interface and the corresponding kinetic relation, the displacements will not be

calculated.

Using (4.2.11), Equation (4.1.2), for phase 1 becomes

ko5 =0, (4.4.3)

Vz € (0,s(t)), at each t € I'. Using (4.2.11) and (4.4.3) given above, Equation
(4.1.2); becomes |

~\ 2 ‘
1d6
—_ —— < e
k(G dw) <0, (4.4.4)

Vz € (0,s(t)), at each t € I'. Additionally, the boundary condition (4.1.8); in terms
of § is

6(0) = 4, (4.4.5)
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where § = 6* — §;,. From (4.4.4), we obtain the well-known result that £ > 0.
Assuming that £ > 0, the solution of (4.4.3) that satisfies the boundary condition
(4.45) is

0(z) = Crz +9, (4.4.6)

for 0 < z < s(t), at each t € T.

Using (4.2.12), Equation (4.1.3), for phase 2 becomes

d*6,

2
dz?

ki =0, (44.7)

Vi, € (s(t), L1(t)), at each ¢t € I'. Using (4.2.12) and (4.4.7) given above, Equation
(4.1.3); yields k, > 0. The boundary condition (4.1.8), in terms of 6, is

0,(Ly(t)) = 6, (4.4.8)

where 6, = 07 — 6y. Assuming that k; > 0, the solution of (4.4.7) that satisfies the

boundary condition (4.4.8) is
b,(z,) = Cs(z; — Ly(t)) + 6y, (4.4.9)

for s(t) < =, < Ly(t), at each t € I'. From the continuity-of-temperature jump

condition, we can solve for C; in (4.4.6) in terms of Cj in (4.4.9) and obtain
b(z) = {-Cs(1 + )L —s) + 8, — 9}§ +0, (4.4.10)

for 0 < =z < s(t), ateach t € I,

For the calculation of the first-order approximation of the energy jump condition,

a kinetic relation that can have the forms of the kinetic relations given by (4.3.5),
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(4.3.8), and (4.3.11) will be used. In particular, we consider the kinetic relation with

the form

1
s_y(g){f F4(0)}. (4.4.11)

We next assume that the temperature 6, and the material are such that £(0,0,6,) =

f*(6y). Considering this and substituting (4.2.13) and
£ = f*(8o) + b + 0(6*), (4.4.12)
where p = %e: . into (4.4.11) and retaining only first-order terms yield
0

. 1 Fx x «\| A -

§= —;{ [,u+ (7t~ )]0+a 0}, (4.4.13)
Y (y7,v,0) € B(6y), where o~ = g for the problem considered here. This kinetic
relation wﬂl be used for the boundary value problem under consideration. Using

(4.2.13), (4.4.13), (4.2.11), and (4.2.12), the first-order approximation of the energy
jump condition given by (4.1.5), is

—%{Go(f*ni‘ - 77*) + fu}{ [u + (f*n’f - n*)]é + awo}

~ + A\ —
do, de
+(k(7) —k(7> )"0'

The constant C; in Equations (4.4.9) and (4.4.10) will be determined from this

(4.4.14)

equation. We next define the nondimensional quantities




89

where ¢} is the internal energy of phase 2 evaluated at (v;,6,) = (0,6;), &* is
the internal energy of phase 1 evaluated at (v,6) = (0,6;), and (f*e’,‘_‘ — 5*) =
(j*z/)’f - ¢*) +6, (j*n;* — n*). Substituting (4.4.9) and (4.4.10) into (4.4.14), using

the nondimensional quantities given by (4.4.15), and then solving for Cs yield
(o
6o {50 +6; + —'f—((%——l}

+__’i’i_}
-9

Substituting (4.4.16) into (4.4.9) or (4.4.10) yields the following for the temperature

03 =

(4.4.16)

| ™

L(1 4+ 7)1 - 5){1 +

at the interface:

(78 - 503) (1 - )+7k ;3
(7 + 8)(1 - 3)+i ks

6(3) = (4.4.17)

4.5 The Temperature at the Interface

The temperature at the interface given by (4.4.17) for the three cases described
in Section 4.3 will be studied as the material coefficients & and k, the temperature
boundary conditions 6* and é’f, the end-load &y, and the position § of the phase
boundary are varied. The temperature at the interface for each of these three cases
can be obtained from (4.4.17) by substituting the appropriate values of » and p. For
Cases II and III, when f is in an interval such that s = 0, the temperature at the

interface can be obtained from (4.4.17) by letting v — oo.

Plots of 6(3) vs § for several values of © are presented in Figures 4.1 and
4.2. In these figures, and in the rest of the figures in this section, the values of

§(§), 6, 6, and &, that are shown should all be multiplied by some small number;



90

e.g., 107°. We note that such a multiplicative factor can be divided out in (4.4.17).

The limiting values of () as # — 0 and & — co are

lim 0(3) = —éy,
3 - (4.5.1)
lim §(5) = 6*(1 —8) + 67k ,

o0 1—5+ks

8d(3)
]

v

respectively. An easy calculation shows that as 7 is varied,

— 0 only as
7 — oo, and that limy_.o %@ = 0. Therefore, as 7 is varied, (3) (at a
given 3) monotonically increases or decreases, depending on the values of the other
parameters.” Also, note that (4.5.1), is the temperature at the interface for Cases II

and III when f is in an interval such that s = 0.

Plots of 6(3) vs. 3 for several values of k are presented in Figure 4.3. The

limiting values of 6(3) as k — 0 and k& — oo are

(45.2)

respectively. An easy calculation shows that as k is varied, a—gfl — 0 only as k — oo,

. 2j(s . PR A .
and that lim;_, o, %%(}l = 0. Therefore, as k is varied, 6(3) monotonically increases

or decreases, depending on the values of the other parameters.

Plots of 6(3) vs § for several values of &, are presented in Figures 4.4 and 4.5.
The limiting value of 9(§) as &y, — 0 can be easily observed from (4.4.17), and the

limiting value of 6(3) as &y — oo is oco.

® ‘Whether 6(3) monotonically increases or decreases can, of course, be determined by comparing (4.5.1); and
(4.5.1), for a given set of parameter values.



The values of 6(3) as § — 0 and § — 1 are

lim 6(3) = 6, lim 6(3) =67, (4.5.3)

§—0

respectively. These results should be expected. An extremum of 6(3) can, of course,

be determined from

dé(3)
ds

=0. (4.5.4)

For a given set of material coefficients and boundary conditions, the values of 3 that

satisfy (4.5.4) are

&y + 0"
&0(1—79) + 6 — k6:

. 50+ O 2+m"c(é;-é*) — (5o +8)
&o(1- '

B) + 6 — k6; oo(1- k) +6 - k6

5=

(4.5.5)

Note that for a given set of parameters, § given by (4.5.5) is a physically meaningful

solution only if it is real-valued and is such that 0 < 3§ < 1.

4.6 A Quasi-Static Process

In this section, a quasi-static process will be considered for the three cases
described in Section 4.3. The direction of motion of the phase boundary will
be considered and the static equilibrium positions of the phase boundary will be

determined. For the following cases, let

§= ds—(f)-, =t f“e" : (46.1)
dt L2 (J* S’f — 6*)
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Before we consider the three cases, however, we will first consider the signs of
some of the variables that have the same signs for all of the cases considered. As
is usually done, we assume that the dependence of the Gibbs free energy ¢g* for an
unstressed phase 1 and the Gibbs free energy J *g; for an unstressed phase 2 (with
respect to R*) on the temperature is qualitatively like that presented in Figure 4.6.1°
As can be observed from the definitions of the Gibbs free energies of both phases
that were given in Section 2.12, ¢* = ¢* and ¢ = g; for all temperatures where
the undeformed configurations of both phases are unstressed. From this, we can
conclude that n* > J*n* V 8 € Q, for the case under consideration. We also always
have L > 0, 6, > 0, J > 0, k>0, k; >0, and v > 0. From this, we can conclude
that &£ > 0. We can also conclude from this, and the kinetic relations presented in
Section 4.3, that for a given oy, an increase in temperature will result in an increase
in f, and a decrease in temperature will result in a decrease in f. Therefore, if
phase 1 represents the austenite and phase 2 represents the martensite, which is
what corresponds to Figure 4.6, an increase in temperature favors the austenite,
and a decrease in temperature favors the martensite. This corresponds exactly with

experimental observations and what was discussed in Section 1.2.1.

Case I: From the description of this case given in Section 4.3, we have Jrpr —op* =
0 and p = 0. We next make the additional assumption that »; = v, = v, and we let

Gy = Gol =g - (4.6.2)
For this case, the sign of § is opposite the sign of .§, the sign of & is opposite
the sign of oyyy, 7' > 0, and the kinetic relation given by (4.3.5) in terms of the

nondimensional variables is

f= - Vi(e +5), (4.6.3)

19 See [13] and Section 1.2.1 of this thesis.
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where @ is the temperature at the interface given by (4.4.17) with (7, 5y) = (#,89).
For the quasi-static process under consideration, static equilibrium occurs when § = 0.

From (4.6.3), we can conclude that this occurs when
é(g) = —&y. (4.6.H!

Using (4.4.17) in (4.6.4), the static equilibrium position of the phase boundary for a
given set of material coefficients and boundary conditions will occur at
& + &4

T s (1-%)a (46

with the requirement that 0 < § < 1. We note that in Figures 4.1 and 4.2, where plots
of 6(3) vs & for several values of o are presented, the static equilibrium positions
given by (4.6.5) occur where all of the temperature curves intersect. This is because
the static equilibrium position of the phase boundary given by (4.6.5) is independent
of 7. From (4.6.3) and the fact that the sign of § is opposite the sign of 3, we can
conclude that 5 > 0 for §(3) > — &}, and 5 < 0 for 6(3) < — &). Because of this,
the static equilibrium positions in Figures 4.1 and 4.4 are unstable, in the sense that
the phase boundary will move away from these static equilibrium positions for any
perturbation away from them, and the static equilibrium positions in Figures 4.2, 4.3,
and 4.5 are stable. In Figures 4.4 and 4.5, some values of & are used which result in
the static equilibrium position determined by (4.6.5) being outside the interval (0, 1).
Consequently, the static equilibrium states of the bar for these values of &y consist

of only one phase.

"' In the remainder of this section, the temperature at the interface may sometimes be referred to simply as 6(3),
with the understanding that it corresponds to the case under consideration.
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The case where J*n* = n* in addition to J** = ¢* can also be considered
here.!? In particular, for this case, the first-order approximation of the energy jump
condition reduces to the continuity of heat fluxes across the phase boundary. From
(4.4.14), we can conclude that the temperature solution for this case is the same as
the temperature solution for the case where v — oo. Thus, the temperature and
quasi-static motions for the case where J b = p* and J*n? = n* are the same as

they are for the cases presented here for Case I, where 7 — oo.

Case II: For this case, let

~

Gy = &y (4.6.6)

vy = ﬁ‘(v,u)=('/1,u1)’ p=py
From the description of this case given in Section 4.3, we have J P < *. If we
also make the assumption that |u| < |J*p* — n*|, the sign of § will be opposite that
of 3, the sign of &, will be opposite that of oy, and # > 0. The kinetic relation

given by (4.3.8) in terms of the nondimensional variables is

0, (é(‘“ + &1) >0

i BT R N

41

(4.6.7)

where () is the temperature at the interface given by (4.4.17) with (7, &y) = (¥,,61),
and 6 is given by (4.5.1),, which corresponds to (4.4.17) with v — oo. In Figures
4.7 and 4.8, plots of 6(5) vs § for # = 0.1 and # — oo are presented. The case
where 7 = 0.1 represents 6V with #, = 0.1, and the case where v — oo represents
6™, Quasi-static processes will be considered for the cases presented in these two
figures. The position of the phase boundary corresponding to 6(3) = — &, is given

by (4.6.5) with & = &. This static equilibrium position also corresponds to the point

12 These assumptions might be most appropriate for the case where phase 1 and phase 2 represent two different
variants of the same martensite.
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where 6 and 6@ intersect, since it is independent of 7. When 8(3(%,)) < — &,
the temperature at the interface is given by 8, and when 8(3(%)) > — &, the
temperature at the interface is given by . From (4.6.7), we can conclude that
a phase boundary with an initial position of 3(f,) such that 6(3(f)) > —&; will
stay at that position, and a phase transformation will not occur. However, a phase
boundary with an initial position such that §(5(%)) < — & will have a § < 0, and

consequently, phase 1 will be converted into phase 2.

Case III: For this case, let

~'

Uy = ﬁ'(u,u)=(u2,u2)’ 02 = &Ol:muz : (46.8)

From the description of this case given in Section 4.3, we have ¥* < J Py,
Also, for the following, we assume that [u| < |J/*nf —n*|. For this case, the
sign of 7 and the sign of $(¢) in relation to § depend on the relative values of
(Jof — ¢*) and 8y(JIn; —n*). Thus, we cannot make such definite conclusions
concerning the sign of # and the sign of $(¢) in relation to § for this case, as we
were able to do for the two cases discussed previously. The kinetic relation given by

(4.3.11) in terms of the nondimensional variables is

Slmas),  (#4w)20

vy
0, (é“) + &2) <0

e
Il

: (4.6.9)

wﬁere 6™ is the temperature at the interface given by (4.5.1),, which corresponds to
(4.4.17) with v — oo, and 6 is the temperature at the interface given by (4.4.17) with
(9,64) = (7, 64). For this case, we will consider a quasi-static process for the cases
presented in Figures 4.7 and 4.8. The position of the phase boundary corresponding

to 6(3) = — &, is given by (4.6.5) with &) = &,. This static equilibrium position also
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corresponds to the point where 61 and 1 intersect, since it is independent of 7.
When 6(3(%,)) < — &1, the temperature at the interface is given by §1), and when
8(5())) > — &, the temperature at the interface is given by 6. From (4.6.9),
we can conclude that a phase boundary with an initial position of §({0) such that
8(5())) < — &, will stay at that position, and a phase transformation will not occur.
However, a phase boundary with an initial position such that 6(3(%y)) > — &, will

have a s > 0, and consequently, phase 2 will be converted into phase 1.
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P

(3

W

Figure 4.1. The temperature at the interface vs. the position of the interface as ©

varies; 8* = 1, 67 = 5, 5 = -3, k = 1.2,
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e

Figure 4.2. The temperature at the interface vs. the position of the interface as 7

varies; 6* = 4, 61 = =5, 5y =2, k = 1.2.



99

Figure 4.3. The temperature at the interface vs. the position of the interface as k

varies; §* = -1, 6 = -5, 6, = 3, ¥ = 0.1.
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5-
oo = —5
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(3) :
10
15
—~15t .
0 . 1
S

Figure 4.4. The temperature at the interface vs. the position of the interface as &y

varies; §* = —7, 6:= -3, 7 = 0.1, k = 1.2.
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oo = —10
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-5
0 0
5
10
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S

Figure 4.5. The temperature at the interface vs. the position of the interface as &y
varies; 6* = 3, §; = —6, ¥ = 0.1, k = 1.2.
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gk, :f*g*
A 1

Figure 4.6. The dependence of the Gibbs free energies of the undeformed phase 1

and the undeformed phase 2 on the temperature § € ).



103

e

Figure 4.7. The temperature at the interface vs. the position of the interface for

p=01and ¥ — o0; 6* = —4, 6; =3,5,=1, k = 1.2.
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e

Figure 4.8. The temperature at the interface vs. the position of the interface for

p=0land ¥ — o0, 6* =5, 61 =1,6y= -3, k = 1.2.
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- CHAPTER 5
THE FREE VIBRATIONS OF A TWO-PHASE BAR

In this chapter, the longitudinal free vibrations of a fixed-free, two-phase bar are
studied. For an elastic bar consisting entirely of one phase, it is well known that
during the free vibrations of the bar, the displacement and stress at each point of the
bar oscillate as time progresses [12]. If there is damping present, these oscillations
will decay and go to zero as time goes to infinity; otherwise, their amplitudes will
remain constant in time. Considering ﬁlis, for a bar that initially .consists of two
different phases that both behave elastically, one might expect that the displacement
and stress at each point of the bar will also have oscillatory-type behavior during
the free vibrations of the bar. If this is the case, the driving traction at the interface
separating the two phases will oscillate. As a result of this, if the nominal phase
boundary velocity is related to the driving traction through a kinetic relation that does
not have an interval of the driving traction corresponding to a zero nominal phase
boundary velocity, the nominal phase boundary velocity will also oscillate. Since
energy is dissipated when the phase boundary moves and passes over particles of
material of one phase, converting them into particles of material of the other phase,
one might conclude that the oscillatory-type responsé of the two-phase bar during the
free vibrations of the bar should decay as time increases. It is this damping behavior
of the two-phase bar that will be the main sﬁbject of this chapter. The solutions
of the boundary value problem will be determined by a numerical method, and the
damping of the two-phase bar will be studied as the material coefficients are varied.
The values of the material coefficients resulting in the maximum damping will also

be investigated.
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5.1 The Field Equations and Jump Conditions

A one-dimensional, finite bar that initially consists of two phases is considered.
It is assumed that the process under consideration is a purely mechanical process with
no body forces present. It is further assumed that the process occurs in a time interval
I' = [ty,?1]. Unless otherwise indicated, the notation used in Chapter 2 will be used
in the following, with the understanding that it corresponds to the one-dimensional
problem under consideration. Let x = s(¢) be the location of the phase boundary
at time ¢t € I, and let L be the length of the bar with respect to the reference
configuration R. Considering this, R = {z/z € [0, L]}, R~ = {z/ z € [0, s(?)]},
and R* = {z/ « € [s(t), L]}. It is assumed that 7,(-,¢) : R* — Rf ateacht € T’
is given by
E1(z,t) =z + vo(z — s(t)). (5.1.1)
The displacement gradient (transformation strain) corresponding to this choice of %,
is 7o, the Jacobian is J = 14 vy, and R} = {2,/ z; € [&:(s(2),1),5(L,1)]} =
{z1/ z1 € [s(t), L1(2)]}, where L(t) = Z,(L,t) = L + vw(L —s(t)). It is also
assumed that vy > —1, so that reflections are excluded from (5.1.1). Additionally,

the inverse of the #, given by (5.1.1) is

1
1+
Vz; € Rf ateach t € I, In the following, the phase occupying R~ ateach ¢t € T

E(zy,t) = (z1 + 7os(2)), (5.1.2)

will be referred to as phase 1, and the phase occupying R} at each ¢t € T" will be
referred to as phase 2. The suitably smooth and invertible mapping that maps R
into the current deformed configuration of the bar at each ¢t € I’ is §(z,t), with
9(z,t) = = + 4(z,t), and the suitably smooth and invertible mapping that maps R}
into the current deformed configuration of phase 2 at each t € T' is g(z;,t), with

Bz, t) = 21 + 4(x1,1).
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The field equations for the problem under consideration consist of the balance
of linear momentum for phase 1 and the balance of linear momentum for phase 2.

These equations are

oo
—a—:; = pa, (5.1.3)
Vz e R ateacht € T', and
do
o = P, (5.1.4)
I

V z; € R} at each t € T, respectively.

The continuity-of-displacement condition in its most direct form is
v (s(8),t) = y~(s(t),1). (5.1.5)
For the #; given by (5.1.1), (5.1.5) reduces to
af(s(t),t) = 4~ (s(t),1). (5.1.6)
The jump condition at ¢ = s(t) representing the balance of linear momentum is
ot —o™ +p(v7 —v7)s =0, (5.1.7)

where $(t) = d;(tt). Differentiating (5.1.5) with respect to time yields

(o+7tv+7t—7)s+07 —v™ =0, (5.1.8)
at ¢ = s(t), where v = % and vy, = g—ﬁ‘{. Using (5.1.8) in (5.1.7), we can obtain an

alternate form for the linear momentum jump condition:

ot —o” =p(w+rw+7 —7)E) (5.1.9)

The remaining equation at the phase boundary is a kinetic relation relating $ and the

driving traction f. This kinetic relation is a constitutive equation and will be discussed
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in the next section. For the problem under consideration, the driving traction is given
by
fF=IWr =W =L(of +o7 ) (w+rn+r —77). (5.1.10)

We also have the boundary conditions at ¢ = 0 and z; = Ly(t) (or z = L). For

the fixed boundary condition at z = 0, we have
u(0,t) =0, (5.1.11)

Vt € T'. Atthe x; = L,(t) boundary, there is nothing applied to the boundary; i.e., it
is a free boundary. Therefore, the traction at this boundary is necessarily zero. Thus,
the boundary condition at x;, = Ly(t) is

oy(Ly(t),t) = 0, (5.1.12)

vVt el

5.2 The Constitutive Equations

It is assumed that both phase 1 and phase 2 are homogeneous, hyperelastic
materials of the type described in Section 2.6. In particular, for phase 1 we assume

that there exists an elastic potential

W =W(), (5.2.1)
such that
o= (52.2)
Oy

and for phase 2 we assume that there exists an elastic potential

Wy = Wi(m), (5.2.3)
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such that

_ow,
—3’71.

01

(5.2.9)

If we solve for u; = 4,(z,,t) in the dynamic boundary value problem, the
acceleration term @, in Equation (5.1.4) will contain several inertial-type terms that
are solely a result of &, being a function of time. This was discussed for the general
three-dimensional problem in Section 2.10. As was further discussed there, but
again for the general three-dimensional problem, these inertial-type terms can be
avoided instead by solving for u; = #@(z,t) in the boundary value problem, where
ay(z,t) = 4,(%,(z,t),t) and 4y(z,,t) = @,(Z(=z,,t),t). This will be done in the
boundary value problem considered here.

It is assumed that phase 1 is unstressed at v = 0 and phase 2 is unstressed at
71 = 0. We next assume that the initial conditions are such that |y| << 1 Vz €

[0,s(t)) and |y,] << 1 Vz € (s(t),L], at each ¢ € T', where here and in the

following, v, = 321 =2 —g—%. For the # given by (5.1.2), 7, = T%'YE L. For these
assumptions, W for phase 1 can be written as
W=W"+ %E'y2 + 0(73), (5.2.5)

where W* = W(0) and E = %%1 +=0» and W for phase 2 can be written as
Wy =W, + LEv 4+ 0(+)), (5.2.6)
where W} = W,(0) and E, = Q;?}lql_._o, From (5.2.2) and (5.2.5), the first-order
1

approximation of o for phase 1 is

o=FEvy= E%:— , (5.2.7)
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and from (5.2.4) and (5.2.6) the first-order approximation of o, for phase 2 is

E, 0u,
T 0 (5.2.8)

o = El7l =

We note that the constitutive quantities for phase 1 given by (5.2.1), (5.2.2), (5.2.5),
and (5.2.7) are defined with respect to R™, and the constitutive quantities for phase
2 given by (5.2.3), (5.2.4), (5.2.6), and (5.2.8) are defined with respect to R}, even

though (5.2.6) and (5.2.8) are in terms of the independent variable + € R*.

We next assume that W* = J W. This assumption might be most appropriate
if phase 1 and phase 2 represent two different variants of the same martensite. We
note, however, that if this were the case, we need not assume that E, = E, since in
a real three-dimensional material the moduli in a given direction of two variants of
martensite separated by a phase boundary are not, in general, the same, and this can
be incorporated into a one-dimensional model by assuming that E, # E. For these

assumptions and using (5.2.5)-(5.2.8), the first-order approximation of the driving

traction given by (5.1.10) is

1) B (0w o\
f= ~§{1+70 (B_m) +E(5:-c—) }’yo. (5.2.9)

We next postulate a kinetic (constitutive) relation

§ = o(f), (5.2.10)
such that
®(f)f =0, (5.2.11)

for all f. The requirement given by (5.2.11) is imposed so that energy is dissipated (or

preserved if the equality sign holds) during a phase transformation, instead of being



111

created.! We further assume that for the problem under consideration, the first-order

form of ®(f) is

- 1 (] E, ?jg_ ¥ ?ﬁ -
®(f)=—f = “55{14-70 (aw) +E(8m) } (52.12)

where the constant v depends on the material and is such that v > 0 so that (5.2.11)

is satisfied.

5.3 The Boundary Value Problem

Substituting (5.2.7) into (5.1.3) and expressing the acceleration in that equation in

terms of @, we obtain the following for the balance of linear momentum for phase 1:

&4 0*4

Oz p—é—t? N (531)
Vz € (0,s(t)) at each ¢ € T'. Substituting (5.2.8) and 5, = p/J = p/(1 + ) into
(5.1.4), and calculating @, in that equation using §:(#(z,1),t) = &(z,t) + u.(z, 1),

we obtain the following for the balance of linear momentum for phase 2:

2~ 2 2 -
E1 0 Uy p( JS 3 Ul) : (5.3.2)

Atw 022 \" " 3

Vz € (s(t),L) ateach t € T

For the linearized problem, the continuity-of—displacemeht condition is still given
by (5.1.6), since there is nothing to linearize in that equation. We next consider the
linearized form of the linear momentum jump condition given by (5.1.9). Because s is

related to v and 4, through the kinetic relation given by (5.2.12), $? is second-order in

! See Section 2.9.
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~ and 71; i.e., 2 goes to zero at the same rate as 2, v, and y7; go to zero. However,
the second-order terms in $? also contain the constants E*/v, E?/v, and EE,/v.
Considering the fact that the magnitudes of E and E, are very large, if the magnitude
of v is not also large, v and ~; might have to be unrealistically small in order for the
terms in $2 to have magnitudes that are negligible in comparison to the magnitudes
of the first-order terms. In the following, it will be assumed that the values of
the material coefficients are such that the magnitudes of the second-order terms in
Equation (5.1.9) are negligible in comparison to the magnitudes of the first-order terms
in that equation for realistic values of the infinitesimal strains.? The restrictions that
this assumption puts on the relative values of v and the other material coefficients can
best be observed when the linear momentum jump condition and the kinetic relation
are in nondimensional form, which will be done in the next section. The true first-

order approximation of the linear momentum jump condition given by (5.1.9) is

E [%] _E[Qg] ~0, (5.3.3)
1+ [0z (s(8),8) Oz (s(t)t)

Vt € T, which is equivalent to the continuity of tractions across the interface. Using
(5.3.3) in (5.2.12), the first-order approximation of the kinetic relation for the problem

under consideration can be written as

= __70E[_6_1:‘_

—— , (5.3.4)
ax] (s(£)t)

v

vVt el

For the linearized problem, the fixed boundary condition is still given by (5.1.11),
and using (5.2.8) in (5.1.12), the first-order approximation of the free boundary

2 We note that the values of the strains at the interface as time progresses are proportional to the initial conditions
given.
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condition is

=0, (5.3.5)
Oz (L)

vVt el

5.4 The Nondimensional Form of the Boundary Value Problem

For the problem under consideration, we define the following nondimensional

variables: ({/ )
~ E:- r . . S w
F=7, f=ot, s(i)_—————L ,
a(;,;,ﬂ = 3@_1%_/5"_)_, 1(96 ”) = M (5.4.1)
E . E1 b= v
(14+7)E’ YwEp’

where w = /E/(pL?).> Using these nondimensional variables, the nondimensional

form of the balance of linear momentum for phase 1 is

&*a 0%
R (5.4.2)
Vi € (0,5(f)) ateach i € T, where I' = [£y, #1] = [wty, wt1], and the nondimensional

form of the balance of linear momentum for phase 2 is

. 0% d?s 0%
E ~s1 +TN—m = "‘1 y
07 dt? ot?

(5.4.3)

Vi € (5(1),1) at each e T.

3 In the following, & will denote the nondimensional independent variable defined by (5.4.1);, and not the inverse
function of the function #;, which maps R* into Rf ateach ¢ € T.
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The nondimensional form of the continuity-of-displacement condition is

@(3(f),t) = a.(3(),1), (5.4.4)

Vie f‘, and the nondimensional form of the first-order form of the linear momentum

jump condition given by (5.3.3) is

E [a“‘ Oi 0, (5.4.5)

55} GOH [55] GO

v { e T'. Additionally, the nondimensional form of the kinetic relation given by
(5.34) is

ds 1[oa

E‘;’; - [53;-] , (5.4.6)

(3(D))

vieT. Inthe previous section, the issue concerning when it is appropriate to neglect
the second-order terms in the linear momentum jump condition was discussed. The
nondimensional form of the lowest-order term that was neglected in that equation
is vg %—%)2. From this, (5.4.6), and the definitions of the nondimensional parameters,
we can observe what relative values of the material coefficients are appropriate for
the assumption that the magnitude of 70(%)2 is negligible in comparison to the

magnitudes of the terms in (5.4.5), for realistic values of the initial conditions.

The nondimensional form of the fixed boundary condition is
#(0,{) =0, (5.4.7)
Vi e T, and the nondimensional form of the free boundary condition is

0, =0, (5.4.8)
637 (Li)

Vi el
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We must also specify initial conditions for the two-phase bar. In particular, for

phase 1 we specify

i(#,%) = h(%),

(5.4.9)
o0u e
AT = g(:L’) ’
ot (3.0)
for 0 < # < 3(%), and for phase 2 we specify
i, (%,8) = (&),
(5.4.10)
ou ~
""771' = 91(37) 3
ot (2.40)

for §(f) < & < 1. We must also specify an initial position for the phase boundary.

In particular, we specify

5(f) = . (5.4.11)

The initial boundary value problem that will be considered consists of the field
equations (5.4.2) and (5.4.3), the continuity-of-displacement condition (5.4.4), the
linear momentum jump condition given by (5.4.5), the kinetic relation given by
(5.4.6), the fixed boundary condition (5.4.7), the free boundary condition (5.4.8),
and the initial conditions given by (5.4.9)-(5.4.11).

5.5 The Numerical Method of Solution

We can observe that the differential equations involving time derivatives in the

boundary value problem presented in Section 5.4 consist of a wave equation given
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by (5.4.2), a forced wave equation given by (5.4.3), and an ordinary differential
equation given by (5.4.6). The boundary conditions for Equations (5.4.2) and (5.4.3),
given by (5.4.7) and (5.4.8), are both with respect to fixed boundaries.* However,
the jump conditions given by (5.4.4) and (5.4.5), which are also types of boundary
conditions, are with respect to a moving boundary (i.e., the interface). We also note
that because § (f) is one of the unknown dependent variables in the problem and the

jump conditions are evaluated at # = ({), the boundary value problem is inherently

nonlinear with respect to 3(%).

Dynamic boundary valup problems involving moving interfaces within finite
bodies have been studied before (see [4]). Some of the more well known of these
problems are the class of problems considered to be Stephan problems. These types of
problems involve melting solids, with a moving interface (or boundary) separating the
solid from the liquid. The unknowns in these types of problems are the temperature
distributions of both the liquid and solid phases, and the position of the interface
separating these two phases. The governing equations for these Stephan problems
consist of heat equations for both phases and an equation governing the motion of
the interface. There are a variety of numerical methods that have been used to study
these Stephan problems (see [4] for an overview and discussion of these methods).

Among these numerical methods are several types of finite-difference ‘methods.

For the problem considered here, the type of numerical method that will be used
is a finite-difference method. This type of numerical method has been chosen, as
opposed, e.g., to a finite-element method, because it is probably the most straight-
forward to apply to the type of boundary value problem that is being considered. The

particular finite-difference method used here, however, does differ somewhat from

* Note that if we were solving for 4 instead of #; in the boundary value problem, the free boundary condition
would be with respect to a moving boundary.



117

the finite-difference methods that have been used for the Stephan problems that are
discussed in [4]. Most of these differences reflect the fact that the field equations in
the Stephan problems are of parabolic-type with monotonically decaying solutions,
and the field equations in the problem considered here are of hyperbolic-type with

decaying oscillatory solutions.

In the following, let Z[a,b] = {m€ Z/a<m <b, a€ Z, be 2}, where Z
denotes the set of all integers. For the finite-difference method used here, the bar will
be divided into n intervals, each of length A = 1/n. The points z = th, ¢ € Z[0,n],
will be referred to as the nodes of the bar. In the finite-difference method, the
displacements at these nodes will be determined (i.e., approximated). The time
increment is denoted by T, and for convenience we assume in the following that
f, = 0. Considering this, f = jT, j € Z[0,1;], where , and [; are chosen such
that , T = 1,. We let s(j) represent 3(;T), and k(j) denote the node such that
|s(j) — k(j)h| < Rh/2, at time { = jT. Additionally, we let p(j)h represent the
distance from the node k(j) — 1 to s(j), at time f = jT. Considering this, we can
write s(j) as s(j) = [k(j) — 1+ p(y))h, at each j € Z[0,})]. Let u(s,j) represent
@(ih,jT), 0 < ih < s(j) at each j € Z[0,1], and let u (%, j) represent @,(sh,jT),
s(j) <ih <1 ateach j € I[0,;]. Additionally, let ¢(j) denote the displacement at
the interface at time t = jT; ie., let ¢(5) represent 4(3(;T),;T) = @ (3(;T),5T).
We also let ®(j) represent the nondimensional kinetic relation given by (5.4.6) at
time { = jT.

At each time increment, the numerical routine begins by calculating s(j + 1).
We are given s(0) as an initial condition. At j = 0, we use Euler’s method to

approximate Equation (5.4.6) and obtain s(1). In particular, we use

p(1) = p(0) + %@(0) (5.5.1)
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to obtain p(1). Since k(0) is given when s(0) is given, we can then obtain s(1). For
this case where j = 0, we can use the initial conditions given by (5.4.9), and (5.4.10),
to obtain the derivative term in ®(0). The specific form of these initial conditions will
be discussed at a later point in this section. Also, we note that Euler’s method has
an O(T) numerical error. At j = 1, we use an Adams-Bashforth two-step method,
which has an O(T?) error (see [3]), to approximate Equation (5.4.6) and obtain s(2).

The resulting equation for p(2) is
T
p(2) = p(1) + 5-{38(1) — 2(0)}, (552)

which can then be used to obtain s(2). Also, to obtain the derivative term in (1), we
can use the initial conditions given by (5.4.9) and (5.4.10). For j € Z[2,1; — 1], we
use an Adams-Bashforth three-step method, which has an O(7*) error, to approximate
Equation (5.4.6) and obtain s(j + 1). In particular, we use

T

PG +1) = p0) + 3o

{238(j) — 16®(j — 1) + 5&(j — 2)} (5.5.3)

to obtain p(j + 1) for j € Z[2,l; — 1]. p(j + 1) is then used to obtain s(j + 1).
The specific form of the finite-difference approximation in ®(j), j € Z[2,1), will be
discussed at a later point in this section. Also, because of the definition of k(j + 1),
after each p(j + 1) is calculated, it must be checked to determine whether it is such
that 0.5 < p(j +1) < 1.5. If p(j + 1) is calculated to be such that p(j +1) < 0.5,
k(j + 1) must be set to k(j +1) = k(j) — 1, and p(s + 1) must be updated to
p(j +1) = p(j +1) + 1. If p(j + 1) is calculated to be such that p(j + 1) > 1.5,
k(j + 1) must be set to k(j +1) = k(j) + 1, and p(j + 1) must be updated to
p(i+1) = p(G+1) -1

At each time step, once p(j + 1), k(j + 1), and s(j + 1) are determined, and

p(j + 1) is updated if necessary, the displacements at the nodes are determined.
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For each j € Z[1,l; — 1], the displacements u(é,j + 1), ¢ € Z[1, k(7 +1)-1],
and u,(4,5 +1), 7 € I[k(j +1)+1,n— 1], are determined from centered-type
difference equations. It will also be assumed in the following that |s(j + 1) — s(j)| <
h/4, ¥V j € Z[0,},]. This is done so that u(i,5 — 1), u(¢,7), and u(é,j +1) in
the difference equations representing Equation (5.4.2) all correspond to phase 1,
and u;(i,5 — 1), ui(%,5), and u,(%,5 + 1) in the difference equations representing

Equation (5.4.3) all correspond to phase 2.3

To obtain the initial displacements at the nodes, we use the initial conditions given
by (5.4.9), and (5.4.10),. Wé assume that these initial displacements are continuous
VY & € (0,1), satisfy the boundary conditions given by (5.4.7) and (5.4.8), are such
that the linear momentum jump condition given by (5.4.5) is satisfied, and have a

first-mode-type mode shape. In particular, we assume that

i) = o, (5.5.4)

for 0 < & < §(0), and

€0

hi(#) = 2E(3(0) — 1)

{(& = 1)" = (3(0) = 1)*} + £03(0), (5.5.5)

for 5(0) < # < 1. The values of the displacements at the next time increment can
be approximated by the Taylor series expansion in time of the displacements. In
particular, using the initial conditions given by (5.4.9) and (5.4.10), the first-order

approximation of i and i, at ¢ = T are

a(&,T) = k(&) + §(2)T, (5.5.6)

5 Note that this is consistent with the assumption that the magnitudes of the terms in & in the linear momentum
jump condition are negligible in comparison to the magnitudes of the first-order terms in that jump condition.
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for 0 < & < §(0), and
(3, T) = k(&) + 51(8)T , (5.5.7)

for §(0) < & < 1, respectively. It is assumed that the initial velocity distribution
results in a continuous displacement at the phase boundary at time t =T, results in
the boundary conditions given by (5.4.7) and (5.4.8) being satisfied at time { = T,
results in the linear momentum jump condition given by (5.4.5) being approximately
satisfied at time = T, and has a first-mode-type velocity profile. Such an initial

velocity distribution is given by

(%) = v, | (5.5.8)

for 0 < # < §(0), and

Vo

BT D (&~ D~ GO~ 1} 4 wi(T), (55.9)

g1(%) =

for 5(0) < & < 1. This initial velocity distribution was used in (5.5.6) and (5.5.7),

which were then used to obtain the displacements at the nodes at t = T.5
For j € I[1,5; — 1], u(0,5 + 1) is obtained from the following equation, which
represents the fixed boundary condition given by (5.4.7):

u(0,j +1) =0, (5.5.10)

VY j € I[1,l; — 1]. We can obtain u(z,j + 1), for : € Z[1,k(j + 1) — 2] at each
J € I[1,,; — 1], from a finite-difference approximation of Equation (5.4.2), which

uses centered-difference equations for equally spaced nodes to approximate each term

¢ We note that 3(T') is not a given constant in the problem and therefore cannot be used if an analytical solution
was to be obtained. In this case, we could use §(0) instead of 3(T’) in (5.5.9) as an approximation. For the
numerical method, however, we can use 5(T).
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in that equation. In the following, centered-difference equations for equally spaced
nodes will be referred to as standard centered-difference equations. The resulting

difference equation that is used to obtain u(z,5 + 1) is

u(i,j 4+ 1) = 2u(i, ) — u(i,j — 1) + a{u(@ + 1,5) — 2u(3,j) + u(@ — 1,5)},

(5.5.11)
fori € I[1,k(j + 1) — 2] ateach j € Z[1,1; — 1], where & = (T'//h)". The difference
equation given by (5.5.11) is commonly used for the wave equation [3]. It is also
well known that a numerical routine using this difference equation is numerically
stable if and only if @ < 1, and that the numerical error increases as a decreases
from 1 [3]. We can obtain wu(¢,j + 1), for i € Z[k(j +1)+2,n—1] at each
J € I[1,l; — 1), from a finite-difference approximation of Equation (5.4.3), which
uses standard centered-difference equations to approximate each term in that equation.

The resulting difference equation that is used to obtain u,(z,j + 1) is

wi(iyj +1) = 20,5, §) — wii,j — 1) + Bafu(i +1,5) — 2ua(6,5) + (i — 1,)}

+7{s(j +1) — 2s(4) + s( — )}, 55.12)

for: € I[k(j + 1)+ 2,n — 1] at each j € Z[1,1; — 1]. For j € I[1,{; — 1], we can
obtain u(n,j + 1) from an O(h?) difference equation representing the free boundary

condition given by Equation (5.4.8). This difference equation is
. 1 . .
u(n,g+1)= 3 {4uy(n —-1,5+1) —uy(n — 2,5 + 1)}, (5.5.13)
for each j € ZI[1,,; —1].

For the displacements u(k(j +1)—1,7 +1) and/or u,(k(j +1)+1,5+1),
finite-difference methods using ¢(j) will be used. For the derivation of the difference

equations for these displacements, we first note that the distance separating s(j)
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from its nearest nodes is not equal to h. Because of this, difference equations for
unequally spaced nodes must be used to represent %% and/or %2—%%. These difference
equations will be derived from the second-degree Lagrange interpolating polynomials
for 4 and/or 4; near the interface. For a function g(z), its second-degree Lagrange
polynomial, denoted by P(z), is given by

(z — zo)(z — z9)
g(‘TU) + (301 — wU)(wl ___ x2)

(z — z)(z — 1)
+ (9 — zo)(zg — 11

P(:I:) (:L" - xl)(x - :c?)

N (x(l - 501)(310 - :1:2) g($1)

(5.5.14)

where zg, 1, T2, g(z¢), g(x1), and g(zs) are given (see [3]). The first derivative

of P(z) = g(z) is

dP(z) T—T1+2T— 19 T—Tp+ T — Ty
= Ty) + T
dz (zo — z1)(z0 — xg)g( 0) (21— zo)(z1 — mg)g( 1)

c-mta-a o (55.15)
(@2 — 20)(@s —z1)° 2
and the second derivative is
d’P(z) 2
——— +
T R TR (21— :vo)2(w1 =) (5.5.16)
g(z2) .

(z2 — zo)(w2 — 1)

If we choose ¢ = zy, ¢, or zy in Equations (5.5.15) and (5.5.16), the errors in
these equations are approximately O(d?*), where d is the maximum distance between
any of these three points.” Also, we note that when z,, z;,, and z, are equally
spaced, (5.5.16) reduces to a standard centered-difference equation of the form used

in (5.5.11) and (5.5.12).

7 See [3] for a more detailed discussion of the error that is involved in the Lagrange interpolating polynomial
and its derivatives. Also, difference equations of this type are used in some finite-difference methods for Stephan
problems (see [4]).
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Case I:  Consider the case where 0.5 < p(j+1) < 1.5, before being up-
dated (Figure 5.1a). For this case, k(j +1) = k(j), and for the calculation of
u(k(j +1)—1,7+1), a difference equation of the form (5.5.16) will be used to
approximate %%% at t = jT in Equation (5.4.2). Using this difference equation and a
standard centered-difference equation for the second-time-derivative term in Equation

(5.4.2), we obtain

w(k(j +1) = 1,7+ 1) =2u(k(G +1) - 1,j) —w(k( +1) - 1,5 - 1)

+20{{u(k(j)~2,j) _uk@)=15)  a() }
1+ p(4) 120)) [L+p()lp J Vi
Similarly, for the calculation of u;(k(j + 1) + 1,7 + 1), a difference equation of the
form (5.5.16) will be used to approximate Q% at t = jT in Equation (5.4.3). Using
this difference equation and standard centered-difference equations for the second-

time-derivative terms in Equation (5.4.3), we obtain

wk(G+1)+1L,i+1)=2u(k(G+1)+1,5) —uw(k(G+1)+ 1,5 —1)

+2_@a{ o) w(k() +1,5) +u1<k<j)+2,j>} (55.18)

2 — p()I[B — p(4)] 2 — p(j) 3 —p(3)

+70{s(7 +1) —2s(j) + s(j — 1)}

We note that when p(j) = 1, Equations (5.5.17) and (5.5.18) reduce to Equations
(5.5.11) and (5.5.12), respectively.

Case I:  Consider the case where p(j + 1) < 0.5, before being updated (Figure
5.1b). For this case, k(j + 1) = k(j)—1and p(j + 1) — p(5 + 1)+ 1. Additionally,

in this case, we can use the difference equation given by (5.5.11) for the calculation
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of u(k(j +1) — 1,7 +1). However, for the calculation of u,(k(j +1)+ 1,5+ 1),
a difference equation of the form (5.5.16) will be used to approximate gg—g-;-, and
standard centered-difference equations will be used to approximate the two time-

derivative terms in Equation (5.4.3). The resulting difference equation is

ui(k( +1) + 1,5 +1) =2u(k(G +1) +1,5) —w(kG + 1) +1,5 — 1)

ropa{ M0 wHi)) | mHi) L)) 55.19)

1-pNI2-pG)]  1-p() 2 - p(j5)
+7{s(G +1) = 2s(5) + s(j — D}-

Case III:  The last case that can occur is p(j + 1) > 1.5, before being updated
(Figure 5.1c). In this case, k(j + 1) = k(j)+ 1 and p(y + 1) — p(j + 1) — 1. In this
case, for the calculation of u(k(j + 1) — 1,7 + 1), a difference equation of the form
(5.5.16) will be used to approximate %2;‘ , and a standard centered-difference equation
will be used to approximate the second-time-derivative term in Equation (5.4.2). The

resulting difference equation is

uk(G+1)=1,7 +1) =2u(k(G +1) = 1,5) —u(k(G +1) — 1,5 — 1)

NECOETLRECOR ) 3

p(j) p(3) -1 p(5)p() - 1(]55 20)

For this case, we can use the difference equation given by (5.5.12) for the calculation

of uy(k(j +1) +1,j +1).

Once s(j + 1) and the displacements at the nodes ¢ € Z[0,k(j + 1) — 1] and i €

T[k(j + 1) + 1, n] have been determined, we determine the displacement ¢(j + 1) at
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the interface from the difference equation representing the linear momentum jump
condition. Using difference equations of the form (5.5.15) to approximate the spatial

derivatives in Equation (5.4.5), we obtain

o Bee-3 m+1\f k9
"(’+1)”{[2—p1[3—p] [1+p]p} (i =240

P o1 - E3

ul(k +1,7+1) (5.5.21)

- — 2 .
"Eg _pul(k + 2,.7 + 1)} 9

where k = k(7 +1) and p = p(j +1).

The last displacement that must be calculated at each time increment is the
displacement at the node k(j + 1). This displacement will be calculated using
a second-degree Lagrange interpolating polynomial. In particular, if k(5 4+ 1)k <
s(j + 1), we calculate u(k(j +1),j + 1) from

u(k,j+1)=1;iu(k——2,j+1)+2[pp ]u(k——l +1)+—‘—1(LJ5—12 (5.5.22)

[1+plp

where k = k(j +1) and p = p(] + 1), and if k(j + 1)h > s(j + 1), we calculate
ui(k(j +1),5 +1) from

2¢(j+1) | 2[1-p|
2-pl8-p] 2-p

ul(k9.7+1)= ul(k+1>.7 +1)+ ul(k+2’] +1)’
(5.5.23)

where £ = k(j+1) and p = p(5 +1).
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The last quantity calculated at each time step is ®(j + 1). Recall that this quantity
is used in the calculation of p(j + 1) at the next time step. For the calculation
of ®(j+1), j € I[1,l; — 1], a finite-difference equation of the form (5.5.15) is
used for the approximation of g—%l(g(f)’i). The resulting finite-difference equation for

B(5+1) is

) _ 1 P o _l4p
d(1+1)= _ﬁh{l—{—pu(k 2,7+1) u(k—1,7+1)
(5.5.24)
2p+1 . }
+ +1) ¢,
1 +p]pq(] )

for j € I[1,l; — 1], where k = k(j + 1) and p = p(j + 1).

The numerical routine discussed above allows for the phase boundary to pass over
nodes other than the node k(). However, for a problem using a kinetic relation of the
form given by (5.4.6), most values of the material coefficients that are consistent with
the assumption that the second-order terms in the linear momentum jump condition
are negligible in comparison to the first-order terms in that equation, and most initial
conditions that produce infinitesimal initial strains will result in the phase boundary
staying within the interval between the nodes k(j) —1 and k(j) + 1 forall { € . In
this case, a simplified numerical routine can be used where &(j) has the same value
at each time increment, p(j + 1) never needs to be updated (in tile sense that it was
updated in Cases II and IIT), and only Case I for the calculation of the displacements

near the interface needs to be considered.

5.6 The Free Vibrations and Damping Properties

In this section, the free vibrations of the two-phase bar that were determined

from the finite-difference method discussed in the previous section are discussed. As
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expected, the response of the two-phase bar to the initial conditions given by (5.5.4),
(5.5.5), (5.5.8), (5.5.9), and (5.4.11) has a decaying oscillatory form. In particular,
the position of the phase boundary oscillates as time progresses and decays to a new
position that has a distance and direction from its initial position that is proportional
to the magnitude and “direction” of its initial conditions (Figures 5.2-5.4). The
displacements also have a decaying oscillatory form, and they go to zero as time
goes to infinity (Figures 5.5-5.9). The mode shape of the bar during these free
vibrations has a first-mode-type form (Figure 5.10)%. This is most likely a result of

the fact that first-mode-type initial conditions were given.

5.6.1 The Damping Behavior

The damping of the bar was studied as 7, E, and ~, were varied. In Figure 5.11,
a plot of the settling time versus # is presented.” Here, the settling time is defined as
the nondimensional time necessary for the amplitude of @,(L,t) to become less than
104, As the settling time decreases, it is said that the damping of the bar increases.
As expected, as 7 decreases, the damping of the bar increases. This is primarily a
result of the fact that for a given amount of strain at the interface, the nominal phase
boundary velocity increases as 7 decreases. Consequently, as  decreases, there is
more motion of the phase boundary in a given interval of time, which results in
more energy being dissipated in that interval of time. This increase in damping as
decreases is also displayed in Figures 5.2-5.7. From Figure 5.11, it appears that the

“frequency” of oscillation does not significantly depend on . In particular, it can be

® In Figure 5.10, @ vs. f is plotted for 0 < # < §(f) and &, vs. { is plotted for 3(f) < # < 1. The shape
deformation for phase 2 is not plotted.

° In this figure, the settling time versus ¥ is not presented for 0 < # < 0.09 because the numerical routine is
unstable for these values of # when E = 1.15, v = 0.1, T = 0.01, and h = 0.02. This will be discussed

further in the next section. Also, in this figure and in Figures 5.12 and 5.13, the initial conditions that were used
are gg = 0.001, vo = 0.001, and s = 0.5.
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than || ~ 0.06 would be considered infinitesimal, and a transformation strain with
a magnitude greater than || ~ 0.06 would be considered finite. These “transition”
values vy = —0.06 and vy = 0.06 separating the infinitesimal transformation strains
from the finite transformation strains are probably much smaller than most might have
guessed beforehand. This also underlines the importance of treating a transformation

strain that is not truly infinitesimal as a finite strain, at least for vibration problems.

5.6.2 Instabilities of the Numerical Routine

As mentioned previously, there are some instability problems with the numerical
routine for values of ¥, E, and +, outside a certain region of the parameter space.
In some cases, these instabilities resemble those of highly damped systems, which
are sometimes referred to as stiff systems in the numerical-methods literature [3].
In the remaining cases, the loss of stability of the numerical routine resembles that
of a standard centered-difference numerical routine for a wave equation, when the
coefficient multiplying the term representing the spatial derivative becomes greater
than one. In both cases, however, the values of 7, E, and 4y, where the numerical
routine loses stability, depends on the values of T and h that are used. For example,
for h = 0.02, E = 1.15 and - = 0.1, the numerical routine loses stability as ¥ is
decreased at 7 =~ 0.22, when T = 0.018, and at 7 ~ 0.09, when T' = 0.01. The
loss of stability in both of thése cases resembles that of stiff systems. In fact, for
the latter case, the displacements reach their settling time in almost one half of one
“cycle” of oscillation. One should note, however, that as & gets close to zero, the
assumption that v is such that the magnitude of 3 is negligible in comparison to
the magnitudes of the first-order terms in Equation (5.1.9) becomes less valid. For
h =0.02, ¥ = 0.5, and vy = 0.1, the value of E beyond which the numerical routine
is unstable is £ ~ 1.23, when T' = 0.018, and E ~ 4.01, when T = 0.01. Both
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of these values of E correspond to E(T/h)* ~ 1 (recall that this term appears in
the finite-difference approximation of the forced wave equation for phase 2 given by
(5.5.12)). For T = 0.018, h = 0.02, E’ = 1.265, and # = 0.05, the numerical
routing is stable for 0.021 < 7, < 0.152. The loss of stability at v = 0.021
corresponds to E(T/h)* ~ 1, and the loss of stability at v ~ 0.152 resembles that of
a stiff system. For T = 0.01, h = 0.02, E' = 1.265, and # = 0.05, the numerical
routing is stable for —0.232 < -y < 0.256. For this case, the losses of stability at

both v, ~ 0.256 and vy ~ —0.232 resemble that of stiff systems.
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Figure 5.1. The nodes near the interface after being updated for the case where: (a)
0.5 < p(j+1) <15 (b) p(7+1) <0.5; (c) p(7 + 1) > 1.5, before
being updated.
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Figure 5.2. The position of the interface vs. time; E=115 v =01, # =1,
&y = 0001, Vg = 0001, Sy = 0.5.
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Figure 5.3. The position of the interface vs. time; E = 1.15, 7 = 0.1, ¥ = 0.5,
Ey = 0001, Vg = 0.001, Sy = 0.5.
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Figure 5.4. The position of the interface vs. time; E =115, v =0.1, o = 0.25,
gp = 0.001, vy = 0.001, sy = 0.5.
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observed from this figure that as # is varied, the settling time remains constant over
an interval of 7, and when the settling time changes, it does so discontinuously. This
is a reflection of the fact that as ¥ decreases, the amplitude of oscillation decreases,

but the “frequency” of oscillation does not.

In Figure 5.12, the settling time versus E is presented. From this figure it can
be concluded that as E goes to zero, the damping goes to zero (i.e., the settling time
goes to infinity), and as E increases, the damping increases. Additionally, for the
values of 7 and 4o considered, and as E increases, the amount of damping begins to

level off at E ~ 0.3. The damping beyond this value of E is relatively high.

For the plots 6f the settling time versus the transformation strain o, we do
not vary 7o and keep £ and i constant. This is because E and # can remain
constant as 7o is varied only if E;/F and v/+/pE also change values. We instead let
E' = E|/E and ¥ = v/+/pE and substitute £ = E'/(1+ ) and & = &'/,
into the difference equations of the finite-difference program. We then plot the
settling time versus o, while keeping E’ and i constant. An example of such a
plot is shown in Figure 5.13. From this figure we can conclude that as v, goes to
zero, the damping goes to zero, and as the magnitude of v, increases, the damping
increases. We can also observe from this figure that as the magnitude of ¢ becomes
greater than |v| = 0.06, the damping becomes appreciable, and for || less than
this value, the damping is relatively small. It is interesting to note that if one were
to define an infinitesimal transformation strain as one producing a vibration response
that is qualitatively like that produced as vy — 0, and if one were to define a finite
transformation strain as one producing a vibration response that is qualitatively like
that produced by a v, that is close to or less than —0.5 or is close to or greater than 1,

for the values of E’ and i considered, a transformation strain with a magnitude less
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Figure 5.5. The displacement at £ = 0.7 vs. time; E = 115, v = 0.1,
v =1, gg = 0.001, vy = 0.001, sy = 0.5.
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Figure 5.6. The displacement at # = 0.7 vs. time; E =115 4 = 01,
v = 0.5, ¢g = 0.001, vy = 0.001, sy = 0.5.
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Figure 5.7. The displacement at & = 0.7 vs. time; E = 115, ~ = 0.1,
v = 0.25, ¢y = 0.001, vy = 0.001, sy = 0.5.
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Figure 5.8. The displacement at the interface vs. time; E =115 v = 0.1,
v = 0.5, gg = 0.001, vy = 0.001, s¢ = 0.5.
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Figure 5.9. The displacement at £ = 0.4 vs. time; E = 115, v = 0.1,
v = 0.5, ¢ = 0.001, vy = 0.001, sy = 0.5.
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Figure 5.10. The mode shape at times ¢} < &}, < --- < t, representing one “cycle”
of oscillation; E = 1.15, 4 = 0.1, & = 0.5, &y = 0.001, vy = 0.001,
Sy = 0.5.
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Figure 5.11. The settling time £, vs. the kinetic coefficient 7; E=1.15v=0.1.
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Figure 5.12. The settling time f; vs. the moduli ratio E; v = 0.1, 7 = 0.5.
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Figure 5.13. The settling time s vs. the transformation strain o, E' = 1.265,
7' = 0.05.
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CHAPTER 6
SUMMARY AND CONCLUDING REMARKS

In this thesis, a continuum model for materials that can undergo martensitic phase
transformations was developed. The continuum model was then used to study several
problems that deal with which phase or which variant of martensite is preferred during
the application of a mechanical loading, a thermomechanical problem involving a
finite, two-phase bar, and the free vibrations and damping properties of a finite,

fixed-free, two-phase bar.

In the continuum model that was developed in Chapter 2, each phase has its own
constitutive equations, which are defined with respect to a reference configuration
that, in general, is unique to that phase. Additionally, this reference configuration is
used for the expression of the field equations for that phase. A two-phase material in a
purely mechanical process was considered in most of Chapter 2. The field equations
and jump conditions for the two-phase material, where the reference configuration
for one phase is stationary and the reference configuration for the other phase is a
general function of time, were derived and discussed. It was then shown that this
continuum model can be used to represent a material with phases that are elastic if
the mapping representing the reference configuration for each phase is restricted to
having the form given by (2.6.6). In this case, the stress power for each phase is
equal to the time rate of change of the integral of the elastic potential for that phase,
where the elastic potential and stress tensor for that phase are defined with respect to
the reference configuration for that phase. It was also pointed out that if the reference

configuration for a given phase is moving, the quantities that are defined with respect
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to that reference configuration (e.g., the stress) do not have a true nominal form. This
continuum model was then specialized to represent materials where each phase of the
material behaves elastically and has a configuration corresponding to an unstressed,
undeformed state. It was assumed that the reference configuration for each phase
of these materials corresponds to the unstressed, undeformed configuration of that
phase. With respect to the undeformed austenite phase, these reference configurations
coincide with the shape deformations of the martensites. Because different elastic
potentials are used for the different phases of the material, the material symmetry
groups of the different phases can be chosen independently of each other and can be
chosen to reflect any type of crystal symmetry with any orientation. Thus, the change
in crystal structure that takes place during a martensitic phase transformation and the
orientation relation between the crystal lattices of the different phases of the material
can be accurately represented. In fact, because the elastic potenti'al for each phase
is defined with respect to the undeformed configuration of that phase, the material
symmetry group for that elastic potential can be chosen to be the crystallographic
point group corresponding to the crystal symmetry of that phase. The driving traction
corresponding to the two-phase material was also presented and discussed. Next, the
form of the boundary value problem in terms of the displacements was considered.
The fact that working with displacements that are functions of points on a moving
reference configuration results in the accelerations in terms of these displacements
containing many inertial-type terms and results in the boundary conditions for that
phase having to be expressed with reépecf to a moving boundary was pointed out. A
coordinate transformation that eliminates most of these inertial-type terms and results
in a completely Lagrangian description of the boundary value problem, while still
working with field quantities that are defined with respect to the different reference

configurations, was then discussed.
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One of vthe main advantages of working with multiple reference configurations in
the manner described in the latter portion of Chapter 2 is that the field equations and
jump conditions are in forms that permit direct linearization, while still retaining
finite shape deformations for the martensites. This is the case since the field
quantities for each phase are in terms of displacements that are measured from the
reference configuration corresponding to an unstressed, undeformed configuration of
that phase, and consequently, for the appropriate initial and boundary conditions,
the displacement gradients can be considered infinitesimal. Also, assuming that the
gradients of these displacements are infinitesimal in no way restricts the magnitudes
or forms of the shape deformations for the phases. The linearized field equations,
jump conditions, driving traction, and kinetic relation were presented in Chapter
3. Another advantage of using multiple reference configurations in this manner is
that for the linear problem, the true stress for each phase is approximately equal to
the nominal stress for that phase. This is very useful for solving certain types of
~ boundary value problems, including the linear problems that were considered in the
rest of Chapter 3. All of these problems dealt with the issue of which phase or which
variant of martensite is preferred during the growth process during the application of
a mechanical loading. After the general problem was discussed, the special case of
an applied, uniaxial, tensile traction was considered. A result that corresponds with
observations made from experiments was derived. The last problem considered in
this chapter involves the application of a hydrostatic pressure to a two-phase material
with a martensite phase that has a finite shape deformation with an infinitesimal
dilatation. The case where the two phases represent two different variants of the same
martensite was then considered as a special case. It was shown that for this case,
the hydrostatic pressure favors the growth of neither variant, which is what should

be expected since everything else in the problem is completely symmetric. All of
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the problems considered in Chapter 3 demonstrate the convenience and accuracy of

using the continuum model that was developed in this thesis.

In Chapter 4, a finite, two-phase, thermoelastic bar subject to different tem-
peratures at each boundary and to a mechanical end-loading was studied. The
linearized problem was considered. The temperature at the interface was calculated
and studied as the position of the interface, the material coefficients, the temperature
boundary conditions, and the end-loading were varied. Additionally, the quasi-static
motions of the phase boundary were studied for a kinetic relation with an interval
of driving traction corresponding to a zero phase boundary velocity. Quasi-static
thermomechanical processes in the neighborhoods of three different temperatures were
considered. One of these temperatures represented the martensitic start temperature
and one of them represented the austenite start temperature. The effects that varying
the material coefficients, temperature boundary conditions, and end-loading have on
the quasi-static processes for each of the three cases considered were studied. This
problem is not only an example of a thermomechanical problem where a continuum
model employing multiple reference configurations is used, it also serves as an
example of solving a nontrivial boundary value problem that corresponds to such

a continuum model.

The longitudinal free vibrations of a fixed-free, finite, two-phase, elastic bar were
the subject of Chapter 5. The process was assumed to be purely mechanical, and the
linearized problem was considered. A finite-difference numerical routine was used
to obtain the displacement solutions of the initial-boundary-value problem. The main
focus in this problem was the damping behavior of the two-phase bar that is due to the
motions of the phase boundary during the free vibrations of the bar. It was found that

the position of the phase boundary oscillates as time progresses and decays to a new
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position that has a distance and direction from its initial position that is proportional
to the magnitude and "direction" of its initial conditions. The displacements also have
a decaying oscillatory form, and they go to zero as time goes to infinity. The damping
behavior was studied as the material coefficients 7, E , and ~yy were varied. It was
found that the damping of the bar does not attain a maximum at any intermediate
values of the material coefficients. Instead, the damping monotonically increases or
decreases as these material coefficients vary. In particular, the damping increases
as I increases or as # decreases, and the damping goes to zero as E goes to zero
or as ¥ goes to infinity. The fact that the damping increases as o decreases should
be expected, since for a given amount of strain at the interface, the nominal phase
boundary velocity increases as o decreases. Consequently, as & decreases, there is
more motion of the phase boundary in a given interval of time, resulting in more
energy being dissipated in tilat interval of time. It was also found that the damping
increases as the magnitude of 7 increases, and the damping goes to zero as o goes
to zero. It was pointed out that if one were to define an infinitesimal transformation
strain as one that produces a vibration response that is qualitatively like that produced
as 7o — 0, and a finite transformation strain as one that produces a vibration response
that is qualitatively like that produced as the magnitude of o becomes larger and o
approaches, say, — 0.5 or 1, the negative and positive values of -, that separate the
infinitesimal transformation strains from fhe finite transformation strains are relatively
small. There were also some instability problems with the numerical routine. In
some cases, these instabilities resembled those of highly damped systems, which are
sometimes referred to as stiff systems in the numerical-methods literature, and in the
remaining cases the loss of stability resembled that of a standard centered-difference
numerical routine for a wave equation, when the coefficient multiplying the term

representing the spatial derivative becomes greater than one.
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