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Abstract

A new method for unconstrained global function optimization, acronymed TRUST, is in-
troduced. This method formulates optimization as the solution of a deterministic dynamical
system incorporating terminal repellers and a novel subenergy tunneling function. Bench-
mark tests comparing this method to other global optimization procedures are presented,
and the TRUST algorithm is shown to be substantially faster.

This algorithm is provably convergent to the global minimum for objective functions
of one variable. Theoretically, convergence to a global solution is not guaranteed in the
multi-dimensional case. However, in practical applications, TRUST has found the global
minimum in all multi-dimensional benchmark functions as a result of its global descent
property. The TRUST formulation leads to a simple stopping criterion.

The algorithm is also applied to Backpropagation learning in artificial neural networks
in order to overcome the susceptibility to local minima during training, which is associated
with gradient descent. TRUST (or Global Descent in this context) was proposed as a
candidate for replacing gradient descent in order to eliminate the local minima problem.
We test the ability of the new dynamical system to overcome local minima with common
benchmark examples and a pattern recognition example. The results demonstrate that the
new method does indeed escape encountered local minima, and in most cases converges to

the globally optimal solution of a specific problem.
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The structure of the TRUST’s equations enables an implementation of the algorithm in
analog VLSI hardware for further substantial speed enhancement. We have designed, fabri-
cated and tested a terminal repeller circuit and a gradient descent circuit, which constitute
the main components of the TRUST’s dynamics. Measured chip data, which confirmed
the efficient performance of these circuits, are presented. We have also designed a novel
global optimization circuit which incorporates the above circuits with additional control
logic. This circuit implements the TRUST algorithm, and thus locates the global minimum
of arbitrary one-dimensional objective functions. Simulated experiments of this circuit are
thoroughly discussed. The convergence time required for the circuit to converge to the

global minimum is remarkably at the order of micro-seconds.
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Chapter 1

Introduction

1.1 TRUST Algorithm

Many engineering applications can be formulated as a nonlinear function optimization prob-
lem in which the function to be optimized (i.e., objective function) possesses many local
minima in the parameter region of interest. In most cases, it is desired to find the local min-
imum at which the function takes its lowest value, i.e., the global minimum. The problem of
designing algorithms that can distinguish between the global minimum and the numerous
local minima is known as the global optimization problem.

In the past few years, several methodologies related to global optimization have been
developed and investigated. These algorithms can be divided into two primary classes:
probabilistic and deterministic.

Most probablistic methods involve the evaluation of the objective function at a random
sample of points which are drawn from a uniform distribution over the domain of interest.
Following this, some probabilistic measures are applied to the samples to determine the
smaller region where there exist a higher probability for the global minimum. The simplest
probabilistic algorithm is the Pure Random Search Algorithm by Brooks [Bro58] and An-
derssen [And72], where a single local search is performed starting from the best point in the

sample set. Here, the best point corresponds to the sample that has the highest probability



to be in the region of the global minimum. An extension of this algorithm is the Multiple
Random Search Method by Bremermann [Bre70]. In this method each random point is
taken as a starting point for a local optimization and the global minimum is identified by
comparing the corresponding results.

Another widely used probabilistic method is a Monte Carlo technique called Simulated
Annealing (SA) [KGV83] which is analogous to the annealing process of metals. Simulated
annealing emulates the process by which a molten metal is slowly cooled to reach its crys-
talline form, which is the lowest ground state, or global minimum, of the material’s energy.
The cooling schedule employs Gaussian random processing which is inversely proportional
to the logarithm of time. The evolution of the process in time is performed according to
a probabilistic measure based on Boltzman distribution. Theoretically, it has been proven
that the global minimum of a cost function can be reached as long as the cooling schedule is
sufficiently slow [MRTT53]. Therefore the choice of a cooling schedule is critical to the per-
formance of this technique. Szu and Hartley [SH87] introduced a related algorithm termed
Fast Simulated Annealing (FSA), which is a modification of SA. This algorithm employs
a faster cooling schedule, which is based on Cauchy random processing, that is inversely
proportional of time.

While SA and FSA have received a wide following, other stochastic global optimization
methods exist. An extensive review of such computational schemes can be found in [KT85].
The algorithms mentioned above and all other probabilistic methods developed so far have
their own advantages and disadvantages, but since they rely on stochastic processes, they
can require formidable computational effort to reach a global minimum.

A number of deterministic methods exist in the literature. Most of these techniques
are tunneling based approaches. Generally tunneling methods, as their name implies, rely
upon the idea of finding a new optimization initial condition in another “lower valley” in
order to escape from the current local minimum and to continue the optimization procedure
which will lead to the global minimum. The Tunneling Algorithm introduced by Levy and
Montalvo [LM85], and the Dynamic Tunneling Algorithm by Yao [Yao89] are thoroughly



reviewed in Section 2.2.

This thesis presents a new global optimization scheme whose acronym is TRUST ( Ter-
minal Repeller Unconstrained Subenergy Tunneling). This method incorporates a tunneling
feature, which is substantially different than other tunneling based techniques. In this ap-
proach, we formulate optimization as the solution to a deterministic dynamical system which
incorporates a novel subenergy tunneling functional and terminal repellers. In addition,
the TRUST formulation leads to a well-defined stopping criterion. Chapter 2 introduces
the TRUST algorithm and compares TRUST performance to other global optimization
methods. Several standard one- and multi-dimensional objective functions taken from the
literature are used as benchmark functions. The standard benchmark tests demonstrate
that TRUST is significantly faster than previously published techniques. The simulation
parameters are listed in Appendix A.

The TRUST computational scheme can be guaranteed to find the global minimum for
functions of one variable. The method is currently not guaranteed to find the global minima
in multiple dimensions. However, in practice, as a result of its global descent property,
the global minimum was found in all benchmark simulations, including 10-dimensional
test functions. Furthermore, the structure of the optimizing dynamical system is highly
parallel, allowing implementation in a form whose computational complexity is only weakly

dependent on problem dimensionality.

1.2 Local Minima Problem in Artificial Neural Networks

Neural networks with massively parallel processing units provide an effective approach for
a broad spectrum of applications — pattern mapping, pattern completion and pattern clas-
sification. In this thesis, emphasis is given on those tasks of the artificial neural networks
where the network maps a set of input patterns to a set of output patterns (i.e., function
learning tasks). One of the most influential developments in this area was the invention
of the Backpropagation algorithm [RHWS86], which is a systematic method for training

multilayer artificial neural networks.



Backpropagation is a learning algorithm that gives a prescription for changing the con-
nection weights of a feed-forward network to learn a training set of input-output pairs
without a.ny-prior knowledge of the mathematical function that maps them. Given an error
energy measure [E] (e.g., summation of the squared differences between the actual and tar-
get output values), backpropagation uses gradient descent to adjust the weights following
the local slope of the error surface towards a minimum. Thus, it is hoped to find a global
memum to the error energy surface, which will correspond to the optimal weights that
solve the speéiﬁc mapping problem. However, gradient descent is a dynamical system which
only locally minimizes the error energy function.

Despite its popularity, Backpropagation learning by gradient descent has two major
drawbacks — the slow convergence time and the presence of local minima. First, there is
no guarantee that the network can be trained in a reasonable amount of time because the
convergence process may be exceedingly long. Second, there is no assurance that the network
will train to the best conﬁguratioﬁ possible, since a local m_im'm:lm found by gradient descent
can trap the training algorithm in an inferior solution, wherdas ideally a global minimum
is desired to solve the problem.

Statistical training methods have previously been proposed to alleviate the local minima
problem. Hinton and Sejnowski [HS86] introduced the Boltzmann Machine Learning Algo-
rithm, which employs a simulated annealing type of approach in order to control the connec-
tion weights of the network. Here, upward steps in E are allowed occasionally according to
the Boltzﬁw probability distribution, with a temperature T controlling the probabilities.
Annealing—a gradual lowering of T—is then performed. Such upward motion in E is ex-
pected to bring the states of the network out of the local minima. This technique has been
extended by Wasserman [Was89], who suggested the employxment of simulated annealing in
Backpropagation learning. Thus, backpropagation is modified to have two components: a
deterministic component due to gradient descent; and a random component determined by
simulated annealing. Alternatively, von Lehman et al. [vLPL*88] proposed to add noise
explicitly by randomly changing the connection weights of the network slightly. Sietsma and



Dow [SD88] offered to add the noise to the training set inputs instead. All these methods
aim to alleviate the local minima problem in the context of learning with neural networks,
but suffer from extreme slow convergence due to their probabilistic nature.

Chapter 3 discusses primarily the local minima problem associated with gradient descent
and proposes the use of the TRUST algorithm to overcome it. In the context of artificial
neural networks, TRUST (hereafter named Global Descent) provides a simple extension to
the Backpropagation algorithm by replacing the gradient descent method during training.
Global Descent is a deterministic method and therefore is not limited by the drawbacks
(e.g., the slow convergence time) of the probabilistic techniques mentioned above.

The new formalism has been tested for common benchmarks, like the XOR and par-
ity functions, and also for a pattern recognition example using 60 patterns. The results
demonstrate that Backpropagation associated with Global Descent escapes encountered lo-
cal minima and in most cases converges to the globally minimal solution. Chapter 3 also

presents these simulation results.

1.3 Implementing TRUST

The deterministic dynamics of TRUST enables an implementation of the algorithm in ana-
log VLSI circuitry for further speed enhancements. In order to implement the TRUST
formalism, we first implemented its main components. A terminal repeller circuit and a
gradient descent circuit have been designed and fabricated for this purpose (Chapter 4).
Zak [Zak89] has introduced terminal dynamical systems, which are based on the non-
Lipschitzian dynamics of odd power-law transfer characteristics. As a result of this property,
terminal repellers form systems whose dynamics will be repelled from the unstable point
(i-e., the repeller) in a finite amount of time. Similarly, terminal attractors constitute sys-
tems whose dynamics will be attracted by the stable point in finite time. Hence, terminal
systems are important tools of nonlinear dynamical systems. Zak, Barhen, and Toomarian
[Zak89, ZB90, BT G90, BZT90b, BZT90a] have used the concept of terminal attractors and

repellers in the context of neural network dynamics to obviate the infinite-time solution



limitations of regular attractors and repellers. In the context of global optimization, ter-
minal repellers allow the TRUST dynamics to be repelled from the local minimum at high
speeds. Terminal systems are discussed in Subsections 2.3.2 and 2.3.3 in further detail.

To the best of out knowledge, there exist no implementation of terminal systems in the
literature. We have designed analog VLSI circuits that implement terminal attractors and
terminal repellers. The terminal repeller circuit required for the TRUST algorithm has been
fabricated and tested. Section 4.1 describes the research and experiments we have done,
including our measured chip results. The results demonstrate that almost ideal terminal
system performance has been achieved.

The second main part of the TRUST formulation is gradient descent. Gradient descent
is a dynamical system, whose stable equilibrium point locally minimizes a given objective
function. Thus, it is useful for a wide range of optimization applications and its role in
learning with artificial neural networks is discussed in Section 3.1. Gradient descent enables
TRUST dynamics to locally minimize the objective function as soon as a functionally lower
valley is reached by the effect of the terminal repeller mentioned above. A wider description
of the role of gradient descent in TRUST formalism is given in Subsection 2.3.3.

Section 4.2 presents the gradient descent circuit which we have developed in analog
VLSI hardware. This circuit approximates the gradient descent dynamics by measuring the
gradient based on discrete samples of the objective function. It is shown the approximation
is valid as long as the sampling interval is sufficiently small (see Section 4.2 for corresponding
discussion). The measured chip results corresponding to different experiments testing this
circuit are also given. Our findings show that the gradient circuit performs stably and
relatively accurately (except for very steep functions) for locating the critical points of
arbitrary one-dimensional objective functions.

Similar work independently has been done by Umminger and DeWeerth [UD89], who
uses the same conceptual approach as ours with a different circuit design. In order to
enhance the accuracy of the gradient operation, an alternative method has been proposed

by Anderson et al. [AK]. Their model estimates the gradient of the function by using a



noise-function correlation approach. Kirk [Kir93] has further extended this approach to
handle multiple dimensions. A detailed discussion of this technique can be found in [Kir93].

By employing these circuits—terminal repeller and gradient descent, and additional
control logic circuit, we have designed a global optimization circuit, which is the subject of
Section 4.3. This circuit implements one-dimensional TRUST dynamics. A thorough anal-
ysis and discussion of this circuit together with its simulated experiments are also described
in Section 4.3. It is shown that the circuit performs very efficient global optimization of arbi-
trary one-dimensional functions. The convergence time required for the circuit to converge

to the global minimum is remarkably at the order of micro-seconds.



Chapter 2

TRUST for Fast Global

Optimization

2.1 Problem Formulation

The global optimization problem to be considered in this thesis can be stated as follows.
Let f(Z) : R™ — R be a twice continuously differentiable function, where  is a vector of n
state variables or parameters. Hereafter, f(Z) will be referred to as the objective function.

The goal is to find the value, £Gas, of the state variables which minimizes f(Z),
f* = f(Zem) = min{f(Z)| ¥ € D}, (2.1)

where D is the domain of interest over which one seeks the global minimum. D is assumed
to be compact and connected. In the sequel, and without loss of generality, we assume D

to be the hyper-parallelpiped

where z;7, and z;u are respectively the lower and upper bounds on the jth state variable.

The compactness of D and continuity of f(Z) ensure that f(Z) is bounded away from infinite



magnitude in the domain of interest. Further, we assume that every local minimum %7/

of f(Z) in D satisfies the conditions

Of(Trm)
) (2.3)
(%
*T—fa(ng)gjz 0, Vi€ R (2.4)
T

We further assume that the global minimum satisfies these local minimum criteria and that
the global minimum does NOT occur on the boundary of D.

Section 2.2 reviews previous global optimization approaches which are relevant to this
work. This review focuses on tunneling methods, since the TRUST algorithm introduces a
novel approach to tunneling. Section 2.3 presents the one-dimensional TRUST optimiza-
tion algorithm. Section 2.4 discusses the convergence properties of the one-dimensional
algorithm, while Section 2.5 considers the multi-dimensional TRUST scheme. Section 2.6
presents the results of benchmark simulations and compares the TRUST performance to

other global optimization methods. Section 2.7 summarizes Chapter 2.

2.2 Methodologies for Global Optimization: Background

Previously developed global optimization algorithms can be roughly categorized into two
classes: probabilistic and deterministic. An extensive review of probabilistic computational
schemes can be found in [KT85]. Here we focus on deterministic tunneling methods, as
these are most closely related to the concept presented in this thesis.

Tunneling for global optimization was introduced by Levy and Montalvo [LM85]. Their
tunneling method is composed of a sequence of cycles, where each cycle has two phases:
a local minimization phase and a tunneling phase. In the first phase, minimization algo-
rithms such as gradient descent or Newton’s method are employed to minimize f(Z). We
assume that starting from an initial point & 0(0), the minimization converges to the first

local minimum Z '*), which satisfies conditions (2.3) and (2.4).
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In the second phase, a tunneling function is defined,

(5,510 = (EEFC ))ﬁ% FIonG (2.5)
where
f@) = f(&) - (&), (2.6)

The tunneling phase searches for the zeros of T(:E’ Z1)); that is, T(Z,7'™) = 0 is
solved for any #1(® such that 21 # 1) but f(Z19)) = f(#'™). The denominator of
(2.5) is a pole of strength « located at the previously determined local minimum 7 1(*), thus
preventing the zero-finding algorithm from rediscovering & 1) as a zero of the tunneling
function. The zero Z(%) of (2.5) is used as the starting point of the next cycle, and the
process is repeated sequentially, as shown in Figure 2.1, until a stopping criterion, such as
the failure to find a zero within a prescribed CPU time, is met. The last local minimum to
be found is assumed to be the global minimum.

If we denote #'(*) as the minimum reached during the ith minimization phase, the

tunneling algorithm implements a global descent property,
FEHE) < f@0).

However, this method has a number of disadvantages:

(i) The pole strength o is problem dependent. While searching for a zero, a should be
incrementally increased until the pole in the denominator of (2.5) becomes strong
enough to eliminate the last local minimum of higher order. Every increase in «

requires the algorithm to be restarted, leading to increased computational effort.

(ii) The tunneling algorithm may find another local minimum #2(*), such that f(z1*)) =
f(£2()). In this case, an additional pole must be placed at the second local minimum,

and the tunneling process must be restarted.

(iii) Division by a pole causes smoothing of f(Z) as & — oo; that is, f(Z) = 0 as T — oo.
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b £(X)

CYCLE 1

CYCLE I

CYCLE IV

> Y

Figure 2.1: Schematic diagram of tunneling operation.

This smoothing increases with «, yielding a tunneling function that becomes very flat.

In this case, zeros can be difficult to detect correctly.

(iv) The zero-finding algorithm in [LM85)] is based on a modified Newton iteration which
requires finding the roots of a scalar function with multiple variables. This can be
a computationally expensive procedure, and as yet there are no globally convergent

zero finding algorithms. Thus, stopping criteria cannot easily be defined.

The difficulties associated with finding the zeros of (2.5) have been partly overcome
by the dynamical tunneling algorithm of Yao [Ya089]. His dynamical tunneling procedure

has two phases: dynamic optimization and dynamic tunneling. The dynamic optimization
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phase implements minimization via gradient descent,

91(Z)
o

Zr=-

(2.7)

Starting from an initial point £%9), the system (2.7) reaches its first equilibrium at a local
minimum #'*). However, in the second phase, instead of finding the zeros of the tunneling

function (2.5), Yao defines an energy function
B(#,#'0) = T(2,8'¥) + / u(z)dz, (2.8)

where u(z) is the Heaviside step function,

1, 220,
u(z) = (2.9)
0, z<0.
The energy function in (2.8) is minimized in Yao’s tunneling phase, instead of finding the
zeros of T(&,Z'™). The derivative of (2.8) with respect to its state vector Z is:
OE(Z,2'™) _ (8f/99) || - &P - 20(F — ') [|& — £ 0] 2D f(&)

ot B 17 = 1] 4a

) fayu e, (2.10)

+

From (2.10), it is clear that the second term in (2.8) enforces the constraint f(Z) < 0 [i.e.,
f(Z) < Ff(£'™)] if the magnitude of k is chosen large enough. When gradient descent is
applied to E(Z,Z1(*) in (2.8), we obtain the dynamical system

0EB(7,5'0)
or '

7= (2.11)
The initial conditions for this system are #'(*) 4+ & where € is a small perturbation which
displaces the system from the tunneling function pole located at #'(*), When (2.11) con-

verges to its final equilibrium state, it minimizes the tunneling function with respect to the
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constraint f(Z) < 0. Thus, the system in (2.11) will reach an equilibrium point #'(®) that
lies in another basin of attraction, with functional values lower than f(Z 1(*)), if one exists.
This new equilibrium point will be the starting point for the dynamic optimization phase
of the next cycle. The procedure is repeated until a new equilibrium in a lower valley can
not be found in a prescribed amount of time. It is then assumed that the last minimum is
the global minimum.

This approach also has a number of deficiencies:

(i) The pole-strength o must be chosen sufficiently high to enable the pole in the denom-
inator of (2.5) to cancel the last local minimum of higher order, and thereby prevent

restarting of the tunneling phase, as this necessitates back tracking of (2.11).

(ii) The penalty constant k is problem dependent, and a global minimum cannot be

guaranteed for a prescribed k.

(iii) An implementation of global optimization in terms of the solution of two different
dynamical systems in two different phases makes the algorithm impractical for imple-
mentation in analog VLSI hardware. A method based on a single differential equation

would be preferable.

In this thesis, we introduce a deterministic global optimization methodology which is
also based upon the concept of dynamic tunneling. However, in contrast to these previous
approaches, tunneling is implemented here in a substantially different manner, by employing
so-called terminal repellers and a novel subenergy tunneling function. The next section
introduces these concepts and assembles them into an optimization algorithm which is the
solution of a single vector differential equation. This characteristic simplifies the hardware

implementation of our algorithm.
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2.3 Terminal Repeller Unconstrained Subenergy Tunneling

Algorithm

2.3.1 Subenergy Tunneling Function

We define a subenergy tunneling function, or subenergy function for short, as follows:

1o 1 |
B ) = () =1

where

f(&) = (&) - f(&7) (2.13)

and a is a constant whose value will be considered below. In the above expression Z* is a
fixed value of Z, whose selection will be discussed in Subsection 2.3.4.
Equation (2.12) is a nonlinear but monotonic transformation of f(Z) which has several

useful properties. First, the derivative of E,;;,(Z,Z* ) with respect to 7 is:

OFE,u(Z,Z*) _ af(%) 1 (2.14)
oz 0T 1+ exp(f(Z)+a) '
Since
1
— >0, VZeD,
1+ exp(f(Z)+ a)
we conclude that
OE u(Z,Z2%) _ af(%) _
e =0 & ot =0. (2.15)

From (2.15), it is clear that E,u(Z, %) has the same critical points as f(Z) and the same
relative ordering of the local and global minima. In other words, E,;(Z,Z*) is a transfor-
mation of f(Z) which preserves all properties relevant for optimization. In addition, this
transformation is intended to have the following effect. We wish E,,,(&,Z*) to asymptot-
ically but quickly approach zero for f(Z) > 0. Second, we would like to leave f(Z) nearly

unmodified for f(Z) < 0. Hereafter, f(Z*) will be referred to as the zero subenergy limit,
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since

Esub(fvf*) ~ 0, for f(f) 2 f('f* )

The monotonicity of the transformation is not affected by the particular value of the
constant a, though the asymptotic properties are affected by its value. Figure 2.2 plots
E.w(Z,Z*) vs f(a’:’ ) for various values of a. The algorithm can be formulated to work for
nearly any reasonable value of this parameter. In subsequent analyses, the necessary and
sufficient values of other TRUST algorithm parameters are derived in terms of a. However,
for practical applications, a value ¢ = 2 is chosen, as it leads to the most desirable asymptotic

behavior of the subenergy tunneling transformation.

F(x) - f (X7)
5

Esus(®:X’)
-5

7

a==6 4 2 0 .2

Figure 2.2: Behavior of Ee(Z,Z*) vs f(Z) for various values of a.

Figure 2.3 shows an example of a one-dimensional function,

f(z) = (sin(2z) — z — 1),
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to which the transformation in (2.12) has been applied for the case

z* = —6.80678, a = 2.

150.0 T T - T T

100.0

i

50.0
f(x*)=24.411
0.0
x.=-s‘eos78Xf JN /
v ESLB(X'X*)
50,0 ‘ * : : I '
-10.0 -5.0 0.0 5.0 10.0

Figure 2.3: Example of one-dimensional subenergy tunneling transformation.

Figure 2.4B shows an example of the transformation E,.(Z,Z*) applied to the two-

dimensional function (Figure 2.4A):

f(z,y) = (z — 0.1)*(y — 0.2)* + 35in(0.2 + 1.5722) 5in(0.3 + 7y)
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for the case

(.'E*,y*) = (0, —3/2), a=2.

2N % % 20 %’igﬁh&
RS
3 \«{\@%@f@\\iw%w

L

v Ty
AN
LA RN Lt p it
’&g"’%i\@‘@? 22
LD &S

63‘«.@»;;

e ssia
CEOMETY X

: {\

3
"Bv

i

(i

el
2 k\\‘\

Esus(X.y.x"y")

Figure 2.4B: Subenergy tunneling transformation applied to the example of Figure 2.4A.
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As can be observed, the subenergy function has the following approximate behavior,

which is the key to this optimization algorithm:

. 0, f(E)>0, ie., f(F) > (&%),
Esub(:‘c,x ) ~ P ,\(_') . (_’) (.’ ) (216)
(&), (@) <0, ie, f(T) < f(&7),
OE (T, T* 0, (&) > f(z7),
bgf ) . (_,) (4*) (2.17)
9% > f(Z) < f(3).
Next we summarize and review the properties of terminal repellers.
2.3.2 Terminal Repellers
An equilibrium point 7.4 of the dynamical system
£ = §(%) (2.18)
is termed an attractor (repeller) if no (at least one) eigenvalue of the matrix M,
_ 99(Zcy)
M= =2, (2.19)

has a positive real part. Typically, dynamical systems such as (2.18) obey the Lipschitz

condition
l 09(Zeq)

oz

00, (2.20)

which guarantees the existence of a unique solution for each initial condition Z(0). The-
oretically, the system’s relaxation time to an attractor and escape time from a repeller is
infinite, because the transient solution cannot intersect the corresponding solution to which
it tends.

Zak, Barhen, and Toomarian [Zak89, ZB90, BTG90, BZT90b, BZT90a] have used the
concept of terminal attractors and repellers in the context of neural network dynamics to

obviate the infinite-time solution limitations of regular attractors and repellers. Based on
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the violation of the Lipschitz condition at equilibrium points, these points induce singular
solutions such that each solution approaches the terminal attractor or escapes from the
terminal repeller in finite time.

For example, the system

&= —z'/® (2.21)
has an attracting equilibrium point at 2 = 0 which violates the Lipschitz condition,

dz 1.-
dz

3 — o0, as z— 0. (2.22)

_ '_1 2/3

The attractor is termed terminal, since from any initial condition z¢ # 0, the dynamical

system in (2.21) reaches the equilibrium point z = 0 in a finite time,

z—+0
to = “/ Ve = (3/2)z3>. (2.23)

o

Similarly, the dynamical system

& = g'/? (2.24)

has a repelling unstable equilibrium point at z = 0 which violates the Lipschitz condition.
Any initial condition which is infinitesimally close to the repelling point =z = 0 will escape

the repeller, to reach point ¢ in a finite time,
zg
to = / 2 da = (3/2)a5”. (2.25)
e—0

The behavior of the terminal attractor and repeller is shown in Figure 2.5. Terminal re-
pellers, in conjunction with the subenergy tunneling function introduced above, form the

basis of our global optimization algorithm.
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Figure 2.5: Behavior of terminal attractor and repeller.

2.3.3 TRUST Algorithm: One-Dimensional Case

We now assemble the above concepts into the TRUST global optimization scheme. For
simplicity, the case of one-dimensional optimization is considered first. Section 2.5 discusses

the multi-dimensional case.

Let f(z) be a scalar function which is to be globally minimized over a given interval
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[z1,zy]. Define a new cost function to be minimized,

z,z") = lo 1 _3 z — 5V By f(z
Bles) = ot ()~ e e

= E.p(z,2%) — k Enep(z, z5)u(f(z)). (2.26)

The Heaviside step function u(-) was defined in (2.9), and f(z) = f(z)— f(z*), as in (2.13).
The first term in the right-hand side of Equation (2.26) corresponds to the subenergy
function. The second term is referred to as the repeller energy term, i.e., a term which
when differentiated will yield an expression of the form (2.24). The parameter & > 0 is
referred to as the power of the repeller. The selection of its value will be addressed below.
Application of gradient descent to E(z,z*) in (2.26) results in the dynamical system

_0E(z,z7)
ox

_ _3f($) 1A 2 — VY30 f(z
e s L GRS R C)

+ Ska oo f(e)) (2.27)

The third term in the r.h.s. of Equation (2.27) is identically zero for any z. Consequently,
(2.27) simplifies to

. _0f() 1 Ho — 5 Ha
9z 1+ exp(f(z)+ a) + k( ) Pu(f(z)). (2.28)

Equation (2.28) represents gradient descent on E(z, z*); therefore, its equilibrium state will
be a local minimizer of E(z,z*).
To qualitatively discuss the behavior of this system, we refer to the components of (2.28)

as follows:

1
1+ ezp(f(z) + a)

_0f(z) 1A
9z 1+ ezp(f(z)+a)

= gradient multiplier;

= subenergy gradient;
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k(z — z*)Y3u(f(z)) = repeller term.

The dynamical system (2.28) autonomously switches between the following two phases:

Phase I. This phase, which is effectively a tunneling phase, is characterized by f(z) >
f(z*). Since the gradient multiplier rapidly tends toward zero for increasing f (), the

subenergy gradient magnitude is nearly zero,

OE up(z,z*)

~ 0.
oz

In other words, the subenergy function is nearly flat and approximately zero in magni-
tude for f(z) > f(z*). Since the subenergy gradient magnitude is negligible compared
to the magnitude of the repeller term, in this phase (2.28) behaves approximately as

&~ k(z — 2*)1/3.

Thus, the dynamical system (2.28) is repelled from z* across the surface of the flat-
tened subenergy tunneling function, until f(z) < f(z*). In effect, this phase tunnels
through portions of f(z) where f(z) > f(z*).

Phase II. In this phase, which is a minimization phase, f(z) < f(z*). The gradient
multiplier term has approximately unit magnitude, and the repeller term is identically
zero. Thus, (2.28) behaves approximately as

9f(z)
gz

This phase implements minimization via gradient descent.

In summary, Equation (2.28) behaves approximately as:

k(z — z*)1/3, f(z) = f(z"),

2.29
e f(@) < f(z*). (229



23
A more detailed analysis of TRUST algorithm represented by (2.28) is considered below.

2.3.4 Initial Conditions and Overview of the TRUST Algorithm Opera-

tion

In the one-dimensional case,

D=z <z <zy].

To initiate optimization, z* is chosen to be one of the boundary points of D. In effect, a
repeller is placed at z*, and the dynamical system in (2.28) is given initial conditions z* +¢,

where € is a small perturbation which drives the system into the domain of interest.

Remark 2.1. Consistency in the flow direction is necessary, i.e., € is of constant sign
throughout a particular optimization. A system will be termed “positive flow” if
it is initiated at 7 and € > 0 is consistently chosen. Likewise, a system is termed

“negative flow” if it is initiated at zy7, and € < 0 is consistently chosen.

The selection of z* defines a zero subenergy limit f(2*) above which E,s(z,2*) is nearly
zero in value and approximately flat. If f(z* +¢€) < f(z*), the system immediately enters a
gradient descent phase (Phase II above) which equilibrates at z = 21 Typically, z!) is a
local minimum, though it could be an inflection point (or saddle point in higher dimensions).
We refer to £1(*) as a “lower critical point.” Here we assume it is a local minimum, though
the case of an inflection point is considered in the sequel.

We then set z* = z'(*) in (2.28), and perturb z to z* + e. Since z'*) is a loca
minimum, f(z) > f(z*) in a neighborhood of z*. Consequently, the repelling term is activ
in this phase (Phase I above). Although the gradient of the objective function is uphill, the
associated subenergy surface is essentially flat in the vicinity of z*. If the magnitude of k i
chosen sufficiently large (see below), the repeller located at z* repels the system across the
flattened subenergy surface, which in effect pushes the system up the hill of the associatec
objective function surface. The dynamical system remains in the repelling phase until if

reaches a lower basin of attraction, where f(z) < 0. In effect, this phase tunnels through al
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of the state space region with functional values that lie above that of the last found lower
critical point f(z'().

As the dynamical system enters the next basin, f(z) < 0, the algorithm automatically
switches to gradient descent, leading to minimization of f(z). The system will equilibrate
at the next lower local minimum z2() (i.e., f(z2®)) < f(z'™)). We set z* = z2(*) and
repeat the process. This is shown graphically in Figures 2.6A-2.6D.

If f(z* 4+ €) > f(z*) when the optimization procedure is initiated, (2.28) is initially in
a tunneling phase. The tunneling will proceed to a lower basin, at which point it enters a
gradient descent phase and follows the behavior discussed above.

A sufficient value of k to ensure tunneling can be determined as follows. After reaching
a local critical point z*, the zero energy limit is reset, effectively placing a repeller at the
minimum z*. The dynamical system is restarted with initial condition z¢ = z* + ¢, where
¢ > 0 (assuming positive flow). The repeller need only be strong enough to push the system
over the relatively flattened surface. If 2™ is an inflection point, then any positive value of
k is sufficient. If z* is a local minimum, then for ¢ to be positive when the positive flow
dynamical system is restarted at the perturbed location zo = z* + ¢, the following condition

must be satisfied:

k(zo — z*)V/° > 91(z0) 1 : (2.30)
9z 1+ exp(f(zo) + a)
A sufficient condition to satisfy (2.30) is that
1/3¢ ; Oz
/311 eapl(f(z0) + 0))
62/3 (?Zf(a:*)
(1 + ezp(a)) oz? (2.31)

Note that € is typically a small number, like 0.001 or 0.01, hence necessary values of k are
typically very reasonable. Thus, stiffness considerations in the integration of (2.28) do not
arise from the choice of k. For example, for ¢ = 0.01 and ¢ = 2, a value of k¥ such that

k> 0.()056@;;}“—*l is sufficiently large to ensure proper tunneling behavior.
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Figure 2.6A: Schematic of TRUST operation (Cycle I).

Figure 2.6B: Schematic of TRUST operation (Cycle II).
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Figure 2.6D: Schematic of TRUST operation (Cycle IV).
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During the remainder of the tunneling phase, we need only ensure that at any point z

1 af(z) 1
P ey s (1 Fea(i(@) + a)) | (2.52)

Note that the value of k computed using (2.31) at the beginning of the tunneling process
is almost always sufficiently large for the entire tunneling process. The gradient multiplier
term decreases at an exponential rate with respect to increasing f(z). Thus, f(z) must
increase at a rate faster than exponential to ever require an increase in the value of k over
the value computed at zo in (2.31), i.e., generally (2.31) is sufficient for (2.32). A similar
analysis of the negative flow case shows that (2.31) and (2.32) hold in this case as well.

TRUST’s implementation of tunneling as a repeller-induced flow over a subenergy sur-
face has a number of advantages over other tunneling methods. First, the tunneling opera-
tion is algorithmically and computationally quite simple. Second, if f(z2(*)) = f(z!(), the
associated subenergy surface is still flat, and the system tunnels past this local minimum
(or inflection point) into a basin with a lower local minimum. This feature eliminates the
difficulty with multiple poles in the tunneling algorithm of Levy and Montalvo. Third,
convergence of the gradient descent phase to an inflection point does not cause a problem,
as the dynamical system will escape the inflection point during the next gradient descent
phase.

It must be stressed that TRUST was developed to be implemented in continuous analog
circuitry, where the integration of (2.28) is stable. In digital computer implementations,
some care must be exercised during the numerical integration of (2.28) to ensure that a
basin of attraction is not jumped over due to the finite-step-length integration of (2.28).
Determination of an appropriate step size could follow from [GS90]. Finally, the TRUST
tunneling method will always reach a point in the adjacent basin of attraction with lower
functional values. Other tunneling methods which find zeros of a tunneling function are
not guaranteed to find the most adjacent tunneling point, and therefore have complicated
and less reliable stopping criteria. The TRUST stopping criterion is outlined below, and a

more detailed examination of the convergence behavior of TRUST is given in Section 2.4.
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2.3.5 Stopping Criteria

The successive minimization and tunneling computational processes continue until a suitable
stopping criterion is satisfied. For the one-dimensional case, the stopping criterion is quite
simple. As soon as a local minimum zrar in D has been reached, the optimization cycle
is repeated by placing a repeller at zrar and perturbing the system to initiate the next
tunneling phase. If 25 were the lowest local minimum (i.e., if £13r = zgar), the subenergy
transformation would flatten f(z) in the entire domain of interest, since f(zgas) should be
the lowest objective function value in D. The perturbed dynamical system, which is now in
a repeller tunneling phase, will eventually flow beyond the upper boundary of D. Assuming
positive flow, when the state flows out of the domain boundary, z > zy, the last local
minimum found is taken as the global minimum. Recall that we assume that the global

minimum does not lie on the boundary of D.

2.4 Analysis of One-Dimensional Convergence

We now examine the convergence of the TRUST algorithm in light of the above discus-
sion. In the one-dimensional case, we seek to globally minimize f(z), a twice differentiable
function, over the domain D = [z1,zy]. To show that TRUST will converge, under the
assumptions of Section 2.1, to a global minimum (if one exists), we analyze its behavior
during the different phases of operation. The analysis proceeds as follows. First, the tunnel-
ing behavior of TRUST is considered, assuming a local minimum has been found (after an
initialization phase). We show that, from a local minimum, the tunneling phase of TRUST
reaches a point of the same functional value in an adjacent basin of attraction of a lower
critical point, or flows to a boundary of D if no such point exists. Next, we show the obvious
result that the gradient descent behavior of TRUST will converge to a lower critical point.
An inductive analysis of these two phases leads to the global minimization behavior and
stopping criterion. Finally, we consider the initialization of the TRUST algorithm, showing
that, from all possible initial conditions, TRUST will reach the first effective local minimum,
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if it exists, or flow out of D. The case of inflection points are considered throughout the

discussion as necessary.
Let us first consider the tunneling behavior of TRUST after finding the 7th local mini-

mum z7*) of f(z). To simplify the discussion, introduce the following notation. Let
Dy (z7™)) = [z1,2'™) and Dy (z/™)) = (a7, 2]

respectively be termed the lower and upper domains of 21 Let SL(a:j(*)) and Sy (z7())

respectively denote the sets of lower and upper tunneling points of 2

Sy ={z € Dy | f(z) = f(='™)) }, (2.33a)
Sp(e?™) = {z € Dy | f(z) = f(z7™) }. (2.33b)

That is, S1,(z/®)) and Sy(z7*)) are points in D with the same functional values as f(z7(*).
Note that Sp(z/*)), or Sy(z7(), or possibly both, may be empty sets depending upon
23, f(z) and the chosen direction of flow. ¥ S7(z7*)) or Sy (27™*) are not empty, define

the adjacent lower and upper tunneling points as follows:

R _ i

Tay xesrf(lﬁm)”x =", (2.34a)
i _ i

Ty zes?,l(lﬁ(*))ux i (2.34b)

If either Sp,(27™) or Sy (z7(*)) are empty, define the adjacent tunneling points respectively

as

TAp = TL, (2.35a)

TAy = TU- (2.35b)
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Now define the lower and upper tunneling intervals:

D, (¢7®)) = [24,,2)), (2.36a)

Finally, we construct the tunneling interval Dr(2/(*)) as follows:

DT(mj(*)) = pTL(xJ'(*)) U DTU(ﬂCj(*)) U {ﬂ(*)}

= {o€D(z) |za, <z <24y} (2.37)

That is, the tunneling region, Dr(z/(*)), is the connected interval containing 2/*) and whose
endpoints are either points with the same functional value (and thus points for initiating
a subsequent local optimization phase) or a boundary of D. Note, that f(z) may assume

local minima, maxima, and inflection points in Dr(z’ (*)), though
f(z) > f(z?™), Vz € Dr(z/™).

We wish to show that the dynamical system (2.28) is unstable on Dr(z/*)) and will flow
toward the boundary of this interval (thus performing the tunneling operation, or satisfying

the stopping criterion). To do this, we define a Lyapunov energy function
~ . 3 :
E(z(t),2'™) = L Ha() - /043, (2.38)

We note that E(z) is positive definite on Dr, (z/(*)) and Dy, (z7(*)), and is positive semi-
definite in Dr(z/™)), assuming a zero value only at z/™). Further, note that E(m,mj(*))
is a strictly increasing function of ||z — /(|| on both D7, (z/™)) and Dr,(2/*)), and
respectively assumes its maximum values on the lower and upper boundaries of DTL(xj(*))

and Dry,(27*)). The time derivative of E(xz(t),z7™) is

%E(w,ﬂ(*)) = k(z — ?®)3
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= k(g — oI 21 (=) ( 1 ) (@ — 29™)% (2.39)
9z \1+ ezp(f(z) + a)

Recall that k is a positive constant. From the discussion in Subsection 2.3.4, also recall that
the value of k for positive flow is chosen so that ¢ > 0 on Dr, (2’ (*)). Similarly, for negative
flow, k is chosen so that ¢ < 0 on Dz, (z’(*)). Note that for both cases (i.e., positive and
negative flow), the same sufficient condition for k in (2.31) holds. Thus, (d/dt)E(z,z™) is
positive on D, (2/*)) and D, (z7*)); (d/dt)E(z,2?*)) assumes a zero value only at z7(*).
This implies that ||z — z7**)|| must also be increasing with time on D, (2/)) or D, (2(*)).
That is, from any initial condition in Dy, (z7(*)), (2.28) will flow to z4, (negative flow).
Similarly, from any initial condition in Dy, (z/(*)), (2.28) will flow to 4, (positive flow).

Hence, we have just shown that (2.28), when perturbed to 27 4 ¢, will flow to a point
z7(®) whose functional value is just below f(:cj(*)), ie., f(z/(®) < f(a:j(*)). If no such point
exists, the system will flow to the boundary of D. Also note that the analysis shows that:

1) Any nonzero perturbation size € leads to correct tunneling behavior.

2) Because of the properties of the terminal repellers, the tunneling flow must occur in
finite time.

We also need to consider the behavior of the tunneling phase if z7(*) is actually an
inflection point, and not a local minimum. Assume that the inflection point z7(*) was
reached by a minimization phase which originated in Dy, (i.e., from a positive flow system).
In this case, DTU(:cj(*)) is a zero length interval. A small perturbation z/**) + ¢ will put
TRUST in another gradient descent phase. Similarly, if f(z) is infinitely degenerate, and
thus flat in Dy (27(*), the repeller induced flow will push the system over the degenerate
interval.

Next, consider the behavior of the TRUST dynamical system in a gradient descent
phase. Assume that a tunneling phase has been completed, and we are at point z(%).

This point must be within a basin of attraction of a lower local critical point, such that



32

|0f(z)/8z| # 0, and f(27(®) < f(z7™*)) holds. The dynamical system (2.28) then becomes

_of 1
=5 (T TomTa) (240

Again, we can analyze the convergence properties of this system by defining a Lyapunov

energy function,

E(z) = f(z) - f(a?H'1)),

where z9t1(*) is the next adjacent lower critical point of f(z) and E(z) is defined on the
interval [z7(%), g7 +1(+)],

The time derivative of E(z) in the domain is

(d)dt) B(z) = 6’;(‘”)5; S (ﬁ)z L , (2.41)
z 92/ 1+ exp(f(z)+a)
which is a negative semidefinite function, assuming zero value only at ?%(f) = 0. Thus, from
290 the dynamical system (2.28) will converge to a lower critical point z9+1*), where we
reset z* to z7T1(*) and repeat the same process, and the above analysis procedure holds.
Thus, the above analysis has shown that, starting from a local minimum or inflection
point 27(*) | and applying the algorithm outlined in Section 2.3, Equation (2.28) will converge
to another local minimum (or inflection point) z/H1*) with f(z/+1)) < f(2()), or flow
out of D if there are no lower minima. We call z/+1(*) the nezt effective local minimum, as
there may be many local minima located between z7 () and 27+ but these lower minima
have functional values greater than f(z’(*)). Thus, by the inductive analysis of the two
above phases, TRUST (assuming a positive flow system) will find a sequence of effective
minima,

') < 220 << gH) (2.42)

such that “global descent property” is implemented as follows:

F(@O) > f(@2M) > o> f(2'), (2.43)
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From z!(®), (2.28) will flow to zy, and we know from the above discussion that no lower
local minima can exist in the interval (!(*) z7]. Thus, the last local minimum found must
be the global minimum.

The above inductive analysis assumed that the TRUST algorithm was initiated at local
minimum z1*), We now turn to the operation of TRUST from its initial conditions, to show
that it will converge to the first effective local minimum z'*), if it exists. From there, the
previous inductive analysis holds. Assume a positive flow system (a similar analysis holds

for negative flow). Several possible different initial conditions at z;, have to be considered.

Case 1. z, is a local minitnum. The above analysis holds immediately.

Case 2. zj, is an inflection point. If f(z) is increasing in a positive flow neighborhood
of 27, then an upper tunneling region exists. Initiation of (2.28) at z;, + ¢ will initiate
a tunneling phase, which as shown above will either flow out of the domain D if no
global minimum (that satisfies the local minima constraints (2.3) and (2.4)) exists, or
will reach a point where subsequent gradient descent converges to the first effective
local minimum. If f(z) is decreasing in a positive flow neighborhood of z,, then the
system enters a gradient descent phase, which will converge to a lower local critical

point.

Case 3. 71 is a local maximum. Initiating (2.28) at z + € puts (2.28) in a gradient

descent phase, which will converge to z1(*).

Case 4. 8f(z)/dz > 0 at 2. An upper tunneling region D, (z) exists. According to the
previous analysis, perturbing z to z, + € will cause (2.28) to reach either an adjacent
tunneling point, where subsequent gradient descent will find the first effective local
minimum (or inflection point) z'*), or will flow to zs if in fact f(zr) is the lowest

value f(z) assumes in D.

Case 5. 9f(z)/dz < 0 at z1,. At z ¢ (2.28) immediately enters a gradient descent phase,
converging to the first effective local minimum (or inflection point), if one exists; else,

gradient descent will flow to zy if no such point exists in D.
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Thus, in the continuous case and under the assumptions in Section 2.1, TRUST is
guaranteed to find the global miniraum in a one-dimensional interval. If the function is
degenerate (i.e., several global minima), TRUST will determine only the first encountered
global minimum. In order to locate the consequent global minima, we iteratively reset zj,

to Tgp + € and restart there.

2.5 TRUST Algorithm: Multi-Dimensional Case

The one-dimensional algorithm of Section 2.3 can be extended to handle multi-dimensional
global optimization, though convergence to the global minimum is not absolutely guaran-

teed. Let f(Z) be a function of the n X 1 state vector Z, and define the multi-dimensional

functional
o oawy 1 ___%n RVA/3, ( Fm
e = log<1+emp(—(f(f)+a))) P () IED
= Euw(Z,8%) — k Evep(&,2°) w(f(Z)). (2.44)

The multi-dimensional subenergy term is analogous to the one-dimensional subenergy func-
tion. The portions of the objective function surface which lie above the zero subenergy limit
f(Z*) are flattened by the use of the subenergy function (as shown in Figure 2.4B).
Upon application of gradient descent to E(Z,Z*) in (2.44), we obtain the dynamical
system
_9f(@)

T; = 1 2 — VB F(F
’ Oz (1+ecc;p(f(f)+a)) +k(z; T Pu(f(F)), (2.45)

where z; denotes the jth component of Z. Equation (2.45) has a highly parallel structure
consisting of n weakly coupled differential equations. This dynamical system is analogous to
the dynamical system described by Equation (2.28). The initial conditions, operation, and
stopping criterion for Equation (2.45) are also highly analogous to those discussed above.
In the multi-dimensional case, £* is initially chosen to be one corner of the hyper-

parallelpiped D, usually z} = ;7,, Vi. A repeller is placed at £*. It should be noted that
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the repelling terms in the multi-dimensional case can be interpreted as hyperplane repellers,
and are active whenever f(Z) > 0. The initial state of the system is set to Z* -+ &, where &
is a small perturbation which drives the system into D. We assume € has uniform direction
during the optimization, analogous to the consistent positive or negative flow operation of
the one-dimensional algorithm. Depending upon the relative values of f(Z*) and f(Z* +¢),
the dynamical system will initially be in a tunneling phase or a gradient descent phase.
These phases are analogous to the one-dimensional case. An appropriate value for the
repeller power k£ can be determined by analogy to (2.30)-(2.32). The multi-dimensional
stopping criterion is also similar to the one-dimensional case. When the system state flows
out of the domain boundaries, the last local minimum found is taken as the global minimum.

Theoretically, convergence of the method to a global minimum is not formally guaranteed
in the multi-dimensional case due to the constant perturbation direction vector € However,
in practice, as a result of its global descent property, the system dynamics escapes local
minima valleys with help of the repeller effect, and flows into lower valleys of the objective

function using the information it gets from the gradient term.

2.6 Benchmarks and Comparison to Other Methods

This section presents results of benchmarking tests carried out for the TRUST algorithm
using several standard one- and multi-dimensional test functions taken from the literature.
In Tables 2.1-2.4 the performance of TRUST is compared to well-known global optimiza-
tion procedures. Specifically in Tables 2.3 and 2.4, TRUST is compared against the best
competing global optimization methods, where the term “best” indicates the best widely
reported results the authors could find for the particular benchmark test function. The
criteria for comparison is the number of function evaluations. For the TRUST algorithm,
the function evaluation count includes every iteration from the initial conditions to the
satisfaction of the stopping criterion outlined in Subsection 2.3.5. We note that in every
benchmark, TRUST converged to the global minimum.

In accordance with Subsection 2.3.1 the constant a assumes the value a = 2 in the sequel.
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Furthermore, Equation (2.28) was integrated using a simple Euler integration scheme; that
is,
- 2L el 3
Tf:?w(k+1) (k):_é’E(azix )’
At 0F

(2.46)

where At is the step size. The time constant 7 is taken to be 1 in all cases studied here.
For highly nonlinear and stiff objecf,ive functions, more robust integration schemes are
preferable ([ZB90] and [BTG90]). We note that for Euler integration, the selection of the
integration stepsize must be done carefully to ensure stability. We do not provide an analysis
of the step size in this thesis, since (as we have previously stated) our ultimate goal was
implementation of this algorithm in continuous analog VLSI circuitry (Chapter 4), where

such considerations do not apply.

Table 2.1: Comparison of TRUST and other algorithms based on number of function eval-
uations.

Method
Function SM| TM| DT| IM|FFA|TRUST
l(z) 10822 | 1496 | 1469 168
1(4) 10822 | 1496 | 1132 168
1(47) 10822 | 1496 32
1(iv) 375 76
2('1,) 241215 | 12160 | 6000 | 7424 588
2(1,'1,) 241215 | 12160 | 6000 | 7424 269
2() 408 256

A description of each test function, the relevant initial conditions, domain of interest
(D), TRUST parameters, and integration step size are given in the Appendix A. It should
be noted that in each comparison, the relevant parameters (such as initial condition) are
the same as those used in the reported literature. In Tables 2.1 and 2.2 the following
abbreviations are used: SM is the stochastic method [APPZ85]; TM is the tunneling method
[LM85]; DT is the dynamic tunneling method presented in [Yao89]; IM is the interval
method [WHS85]; FFA is the filled function approach [Ge90]; and FSA is the fast simulated
annealing method [SH8T].
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Table 2.2: Comparison of TRUST and other algorithms based on number of function eval-
uations.

Method
Function SM| DT | FSA | TRUST
3(7) 38
3(is) 1414 22
3(31) 21
3(i17) 7871 | 9228 21
4(3) 19940 74
4(i1) 58
5() 7390 40
5(4) 4853 94
5(44t) 8235 163
5(i?}) 27859 1449

Table 2.3: Comparison of TRUST and other algorithms based on number of function eval-
uations.

Method
Function | SA | MRS | P |CRS|SCA  MLSL | TRUST
6 5917 | 1176 | 179 77
7 160 | 133 | 1800 | 1558 206 60

In Table 2.3, SA is an abbreviation of simulated annealing [KGV83]; MRS is the multiple
random start method [Bre70]; P is an abbreviation of the P-algorithm [TZ89]; CRS is the
controlled random search of Price [Pri78]; SCA is the search clustering approach of Térn
[Tor78]; and MLSL is the multi-level single linkage method [KT85].

In Table 2.4, PIJ, BAT, STR, ZIL, and BRE are respectively abbreviations for the
results of Pijavskij, Batishchev, Strongin, Zilinskas, and Brent [TZ89].
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Table 2.4: Comparison of TRUST and other algorithms based on number of function eval-
uations.

Method
Fanction | PIJ | BAT | STR | ZIL | BRE | TRUST
8 4621 120 45| 33 25 19
9('&) 3817 816] 150} 125 161 69
9(7,?.) 3817 | 816 | 150 | 125 161 99

2.7 Summary

We have introduced TRUST, a novel deterministic methodology for unconstrained global
function optimization, which combines the concept of terminal repellers with a new suben-
ergy tunneling function. Global optimization is formulated as the solution to a system of
deterministic differential equations which incorporate these novel features. The flow of this
dynamical system leads to global optimization. It was shown that, under very general as-
sumptions [see Section 2.1], the algorithm is provably convergent to the global minimum in
the one-dimensional case. In higher dimensions it exhibits a global descent property.

Benchmark comparisons (Section 2.6) with other global optimization procedures have
demonstrated that TRUST is significantly faster, as measured by the number of function
evaluations, than the best currently available methods for these standard functions. Fur-
thermore, our algorithm systematically converged to the global minimum in all benchmark
simulations, even in the multi-dimensional case. However, one can construct hypothetical
functions for which TRUST may not find the global minimum, depending upon the initial
conditions.

This chapter considered TRUST in the context of general objective function optimiza-
tion. The next chapter discusses the application of TRUST to artificial neural networks, in
order to overcome the limitations which arise from local minima during standard training

procedures, such as backpropagation.
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Chapter 3

Global Optimization in Artificial

Neural Networks

3.1 Local Minima Problem Associated with Backpropaga-
tion

Backpropagation is a learning algorithm that gives a prescription for changing the connec-
tion weights of a feed-forward network to learn a training set of input-output pairs without
any prior knowledge of the mathematical function that maps them. More specifically, it
uses gradient descent to adjust the weights following the local slope of an error surface
towards a minimum. In order to establish the notation, and for the sake of completeness
and clarity, we first briefly review the Backpropagation algorithm below.

Without loss of generality, we assume a two-layered feed-forward network with one
hidden layer, as shown in Figure 3.1. Let 5" and #*, 4 = 1,2,...,p be the input and
target output patterns respectively.

Given pattern u, hidden unit j receives an input h;‘ and produces an output y;‘ ,

hE="wp &y Y =s(hh) (3.1)
k
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Figure 3.1: A two layer feed-forward network, showing the notation.

where, s(-) is a sigmoidal function of the form 1/(1 + ezp(—(-))). Output unit i receives g’

and produces the final output z,
g = vy 5 2 =gl (3.2)
J

Bias to the units are not explicitly formulated but can be considered as an extra input
clamped to +1 and connected to all units in the network.
As an error energy measure, or cost function, we choose the squares of the differences

between the actual and target output values summmed over the output units and all pairs of
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input/output patterns

p p I
[, 7] :%ZZ(t“—z - %ZZ(e;‘V (3.3)

where, @ and ¥ are the row-concatenated vector representation of the weight matrices W
and V respectively. To train the network, the weights of each unit are adjusted to minimize
the above energy function, thereby reducing the error between the actual and target outputs.
In the Backpropagation algorithm, this is accomplished by using gradient descent, which
changes the weights in proportion to the negative energy gradient. Thus, it is hoped to
find a global minimum to (3.3), which will correspond to the optimal weights that solve the
specific mapping problem.

To apply gradient descent, we first calculate the energy gradient for the hidden-to-output
connections

OE[w, 7]
— —Ze“ s'(g )y] (3.4)

0v;;

and then for the input-to-hidden connections

OE[w, 7 p 1
O] - S e gty v S (35)
J [T

Finally, we apply gradient descent to equations (3.4) and (3.5) to get the weight dynamics

bij = =1 9L, 7] ;o ik =1 o8}, 5] (3.6)
v Ow;ik
where 7 is the learning rate.

Thus, training of the network consists mainly of weight adjustments performed according
to (3.6). Clearly, gradient descent is a dynamical system whose stable equilibrium point
only locally minimizes the error energy function. This works well with simple convex error
surfaces, which have a unique minimum, but it often leads to nonoptimal and unacceptable

solutions with the highly convoluted nonconvex surfaces encountered in practical problems.
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Once the algorithm gets trapped in a local minimum, application of more training iterations
fails to improve learning. Ideally, only the global minimum of the error energy in equation
(3.3) satisfies the convergence of the output patterns to the desired ones.

In the next section, we propose the “Global Descent” dynamical system, which is based
on the TRUST algorithm (Chapter 2), and can be substituted for gradient descent in the

Backpropagation algorithm to overcome the aforementioned limitations.

3.2 Global Descent Formalism

The TRUST algorithm has been discussed in Chapter 2 in the context of general uncon-
strained global function optimization. The algorithm has already been employed, with
encouraging results, to robotics applications [BCB91, CB92|. Since the primary purpose of
this chapter is the adaptation of the TRUST formalism to Backpropagation learning (here-
after named Global Descent), we review here its dynamics from a different perspective; that
is, in the context of optimization in artificial neural networks.

Global Descent formulates global optimization as the solution to a system of determin-
istic differential equations, where E[w, 7] of (3.3) is the function to be optimized with the
connection weights being the states of the system. Let ¢ denote (@, 7') and have elements

©ap. Global Descent is based on the multi-dimensional TRUST dynamics of Equation (2.45),
which becomes

OE|[F] 1

T pm 1T e (Bl < Bl 5 a) 1 (e~ e PuBG] - BIET)) (37)

Qbab =

where, ¢* is a fixed value of ¢, which can be a local minimum or an initial weight state,
u(.) is the Heaviside step function, and o is a shifting parameter (its influence is discussed
in Subsection 2.3.1, in numerical applications we typically take o = 2). The first term in
the r.h.s. of equation (3.7) is the subenergy gradient, with 1/(1 + exp(E[@] — E[g*] + 7))
being the gradient multiplier, while the second term is the non-Lipschitzian terminal repeller

(Subsection 2.3.2). The parameter k >> 0 is referred to as the “power” of the repeller, whose
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magnitude can be determined using the analysis of Subsection 2.3.4. In the simulations of
Section 3.3, k = 0.001 — 0.01 gave good results.
The dynamics in (3.7) is achieved upon application of gradient descent to the “cost

function”

C16.5") = 8 (e G =TT o)~ F1 S ) (Bl - BlE),

(3.8)
which is of the form given in (2.44). Recall that the first term in the r.h.s. of equation (3.8)
is a nonlinear, but monotonic transformation of E[@], which preserves all of its properties
relevant for optimization, i.e., it has the same critical points as E[@] and the same relative
ordering of the local and global minima. Additionally, it works like a filter by flattening
only the portions of the energy surface E[@] which lie above E[@*] and leaves it nearly

4/3 is referred to as the “repeller energy

unmodified elsewhere. The term Y ,;(®ab — ¥5p)
term,” which creates a convex surface with a single minimum located at @ = ¢*. In effect,
as seen in Figure 3.2, C[@, *] of (3.8) transforms the current local minimum of E[F] into
a global maximum such that gradient descent can escape from it to a lower valley.

Thus, when the gradient descent in equation (3.6) is replaced by the Global Descent
of (3.7), the Backpropagation algorithm escapes the encountered local minimum of the
multidimensional functional E[@] of (3.3), due to the following characteristics of the Global

Descent system.

The dynamical system (3.7) autonomously switches between the following two phases:

Phase I. This phase, which is effectively a tunneling phase, is characterized by E[F] >
E[@*]. Since for this condition the subenergy gradient magnitude is nearly zero in the
vicinity of the local minimum ($*) , the dynamical system (3.7) behaves approximately
as:

Qbazb ~=n k ((Pab - @;b)l/B .

This system represents a terminal repeller, originally introduced by Zak [Zak89], which

has a repelling unstable equilibrium point at . = ¢}, i.e., at the local minimum of
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Figure 3.2: A one-dimensional schematical representation of the cost function C[e,p*] for
an arbitrary error energy E[¢p].

the energy functional E[@]. Thus, due to this repeller, the dynamical system (3.7),
when initialized with a small perturbation from (@* ), will be repelled from the local
minimum until it reaches a lower basin of attraction, where E[@] < E[g*]. In effect,

this phase tunnels through portions of E[@] where E[@] > E[g*].

Phase II. This phase, which is a minimization phase, is characterized by E[@] < E[@g*].
The gradient multiplier term has approximately unit magnitude, and the repeller term

is identically zero. Thus (3.7) behaves as:

2540
a(Pab '

Pab X — 1

Clearly this phase implements minimization via gradient descent.
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In order to provide a clearer picture of the Backpropagation with Global Descent, we
outline its implementation in terms of a step-by-step procedure. First let us assume the two-
layered feed-forward network has K units, with M input-to-hidden weights and N hidden-

to-output weights, and will be trained for p input-output patterns.

1. Calculating the activation of the units, defining the error energy and finding the energy
gradients will be performed using equations (3.1) through (3.5) as in standard Back-
propagation. However, training will be performed by using Global Descent dynamics
in (3.7), which will be substituted for the former gradient descent law of equation

(3.6).

2. To initiate the dynamics, we pick an arbitrary domain in the form of hyper-parallelpi-
ped of dimension M + N, and choose (§*) as one corner of the domain. In effect, a
repeller is placed at (@* ) and the dynamical system in (3.7) is given initial conditions
(@* + €,) where €, is a small perturbation which drives the system into the domain

of interest in weight space.

3. If E[g*+¢€,]< E[g*] , the system immediately enters a gradient descent phase

(phase II above), which equilibrates at a local minimum (g'*).

4. We then set (¢*) = (F1*), and perturb () to (g** + €, ). Note that consistency in

the flow direction is necessary.

5. Since (@*) is a local minimum, E[@] > E[F!*] holds in a neighborhood of (§'*).
Thus, the system enters the repelling phase (phase I above), and the hyperplane
repeller located at (@1* ) repels the system until it reaches a lower basin of attraction,
where E[@] < E[@g!*]. In effect, this phase tunnels through all of the state space
region with error energy values that lie above the last found lower local minimum.
As the dynamical system enters the next basin, the algorithm automatically switches
to gradient descent, leading to minimization of E[@] in (3.3). By using the energy
gradient flow, the system will equilibrate at the next lower local minimum, (¢2*). We

then set ($*) = ($2*) and repeat the process.



46

6. If E[§* + €,] > E[@*] when the training is initiated, (3.7) is initially in a tunneling
phase. The tunneling will proceed to a lower basin, at which point it enters the

minimization phase and follows the behavior discussed above.

7. The successive minimization and tunneling computational processes continue until
a suitable stopping criterion is satisfied. If an exact solution for the weights exist
such that for the specific problem input patterns can be accurately mapped to the
target output patterns, then the global minimum at E[@] = 0 will set the stopping
criteria. However if an exact solution does not exist, the global minimum associated
with E[@] > 0 can be located by ocular inspection (it is detected as the lowest
local minimum) of the energy E[@] vs. the number of training epochs curve, which
will indicate the optimal solution to the problem. Additionally the global minimum
satisfies the criteria of a local minimum; that is, ¥, (9E[@*]/0¢)* ~ 0 (i.e., energy

gradients for all weights being close to zero).

It is worth noting that training the network in the batch mode (i.e., weights are adjusted
after presenting all input-output patterns) is required, since the system in (3.7) necessitates
a unique energy surface E[@] of (3.3) for all patterns.

Evidently, the structure of the dynamical system in (3.7) is highly parallel, allowing
implementation in a form whose computational complexity is only weakly dependent on

problem dimensionality (i.e., M + N here).

3.3 Examples and Applications

This section presents results of benchmark tests carried out for comparison of standard
Backpropagation and Backpropagation associated with Global Descent. Our first two ex-
amples are problems that are often used for benchmarking a network [HKP91]: the XOR
and the parity problem. We also consider a pattern recognition example of 60 input-output
patterns as an application. In all of them we demonstrate that for some initial weights,

learning with the standard Backpropagation gets caught in a local minimum and either



47

Table 3.1: Input, target, output results and local minimum weight states for XOR function

pattern # | & | & Target | Local | Global
1 0.010.0 0.0 | 0.056 | 0.030
2 00,10 1.0 0.961| 0.963
3 1.0 0.0 1.0} 0.493 | 0.964
4 1.0 1.0 0.0 0.498| 0.031

Local Minimum Weights
Wio 1.3643 Wap = 5.5906 mo — 9.7378
wy; = —18.68 | wgy = 19.143 | vy = —10.88
Wig — —5.4145 Wog = —~T7.6285 Mo = —9.7378

gives an inferior solution or even may be unable to solve the problem. Backpropagation
with Global Descent on the other hand escapes the encountered local minima and con-
verges to the global minimum of the error energy function. For simplicity we will refer to

the former as gradient descent and latter as Global Descent.

3.3.1 The XOR Problem

We begin with the exclusive-or problem since it is a classical problem requiring hidden units
and since many other difficult problems involve an XOR as a subproblem. The truth table
with the input and target patterns of the XOR function is shown in the first four columns
of Table 3.1. One of the common problems in doing the XOR problem with a standard
back-error paradigm is the presence of the local minima [Day90, Blu89].

We employed the smallest number of units in the network that can accomplish the XOR
function: two units in the hidden layer, one in the output layer. The network required
two external inputs, and bias units as demonstrated in Figure 3.1. The network with nine
connection weights presented a 9-dimensional optimization problem. 50% of all simulations
with random initial weights got stuck in a local minimum when using gradient descent.
Figure 3.3 shows a comparison simulation of gradient descent and Global Descent for a

specific random initial weight set. As the dashed line indicates, gradient descent got caught
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in a local minimum causing 12.74% error (i.e., 0.255/2.0) and thus evaluated only the
first two entries in the training set correctly and failed for others as indicated in the fifth
column of Table 3.1. Application of more training iterations in this case failed to get better
convergence. Global Descent, on the other hand, as the solid line of Figure 3.3 shows,
escaped the local minimum by tunneling through functionally higher values of the error
function (seen as hill) and located the global minimum with only 0.11% error and solved

the XOR problem as demonstrated in the sixth column of Table 3.1.

0.60 y T y T T T T T
Global D.
— - Gradient D.
0.40 ~
>
>
L]
<
L‘J -
S
Lb S LD G G— — — —— — — —
0.20 -
0.00 . . . : . .
0.0 200.0 400.0 600.0 800.0 1000.0

Number of Learning lterations (epochs)

Figure 3.3: Comparison of Global vs Gradient Descent for XOR function.
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It is also worth noting that gradient descent fails to escape the critical point even after
four million training iterations. Furthermore, to disprove the popular speculation that the
XOR and similar functions do not have local minima but rather possess almost flat regions
with extremely small slopes [MHB89], we have calculated the eigenvalues of the Hessian
matrix for the local weights shown in Table 3.1, and found that they all have positive

values, which proves the existence of a true local minimum.

3.3.2 The Parity Problem

The parity problem is essentially a generalization of the XOR problem to K inputs, and
has been extensively discussed by Minsky and Papert [MP69]. The single output unit is
required to be on if an odd number of inputs are on, and off otherwise. It is often used for
evaluating network performances and has been classified as a challenging problem, since the
output changes whenever any single input unit changes, i.e., the most similar input patterns
correspond to different target patterns. This fact has been observed to cause local minima
for certain initial weights.

The network topology has four inputs, four units in the hidden layer and and a single
output unit. Thus training the network gives rise to a 25-dimensional optimization problem,
(i.e., E[@] in (3.3) contains 25 states as the connection weights). The training set has 16
input-target patterns. Figure 3.4 shows a performance comparison between the aforemen-
tioned methods for a specific random initial weight set. While gradient descent produced
an unacceptable local solution with a 17.59% error, Global Descent after escaping through

two consecutive local minima converged to the global solution with 0.22% error.

3.3.3 A Pattern Recognition Example

We also considered a simple pattern recognition example of 60 patterns [Ati91]. Figure 3.5
shows a set of two-dimensional training patterns from three classes. This requires the design
of a neural network recognizer with three output neurons, each of which shall be on if the

coordinates of a sample of the corresponding class is presented, i.e., a “winner take all”
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network is necessary. Several simulations suggested that at least two units in the hidden
layer were required to solve the problem. Figure 3.6 presents our results. Gradient descent
trained the network to learn the patterns with 13.77% (i.e., 12.4/90) error due to a local
minimum in the 15-dimensional error energy. Performing the same experiment with Global

Descent solved the problem globally with a 0.32% total error for all 60-patterns.
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Figure 3.4: Comparison of Global vs Gradient Descent for Parity function.



Figure 3.5: Training patterns for Pattern Recognition
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Figure 3.6: Comparison of Global vs Gradient Descent for Pattern Recognition.
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3.3.4 Discussion

Two other benchmark tests are carried out with less success than those mentioned above.
These are the chaotic time series and the binary addition problem. In the first test, no local
minima was found for any initial condition, so that Global Descent performed identical to
Gradient Descent. In the second test, for some initial conditions, Global Descent failed to
converge to the global minimum. However, solutions that are very close to the optimal
solution were found.

It is important to note that in all the simulations above, we mainly concentrated on the
local minima problem. The issue of rate of convergence was not the objective of this thesis,
therefore we used the simple Euler integration scheme which resulted in a relatively large

number of iterations (i.e., epochs). Better integration schemes can speed up convergence.

3.4 Summary

In this chapter, we have introduced Global Descent in the context of artificial neural net-
works to improve learning. The methodology, which is based on the TRUST algorithm of
Chapter 2, is proposed as a candidate for replacing the gradient descent formalism in the
Backpropagation algorithm, in order to eliminate the local minima problem during training.

Benchmark tests demonstrate that Global Descent associated with Backpropagation
escapes encountered local minima, and in most cases converges to the globally optimal
solution of a specific problem.

Chapter 4 discusses an Analog VLSI implementation of the TRUST algorithm and also
presents the results of the measured and simulated experiments performed with the circuits,

we have designed.
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Chapter 4

Analog VLSI Circuits for Global

Optimization

This chapter reviews the design of a novel circuit that implements the TRUST algorithm
(or Global Descent) for an arbitrary one-dimensional objective function. The global cir-
cuit consists of two main modules, which implement the concepts of terminal repeller and
gradient descent, and an auxiliary module that unifies these two concepts. First, the main

modules are considered in detail, and then the entire global optimization circuit is analyzed.

4.1 Terminal Repeller Circuit

As discussed in Subsection 2.3.2, terminal dynamical systems are based on the non-Lipschit-
zian dynamics of odd power-law trausfer characteristics and have unusual behavior at the

terminal point. The properties of terminal repellers can be illustrated by the example
i =g'/? (4.1)

As Figure 4.1 suggests, terminal systems in their phase space can be observed to have

transfer functions (i.e., ¢ vs ), which are odd-symmetric and have a very high slope (ideally
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Figure 4.1: Terminal repeller phase space diagram

infinite) at the terminal point. However, designing an exact cubic root circuit would be
impossible due to the analog circuit components, which precludes attaining integer numbers.
We therefore implement the following system to obtain the behavior of (4.1):
zt/ m, z2>0
T = (4.2)
~(—z)Y/™ z<0
where, m > 0 is a positive real number. Equation (4.2) preserves the exact terminal
characteristics that (4.1) has.
The term z!/™ for z > 0 can be obtained by employing Mead’s square root circuit
[Mea89], which is shown in Figure 4.2. In this circuit, the input current can be written by

using the transistor characteristics,

Lin = Iy VeVt (4.3)
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> Vd
Vi >—
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Figure 4.2: Square root circuit
and, the output current can be found similarly,
Iout = Iy GKVa_Vd = IO e“Vd. (44)

Thus, V, can be solved from (4.4) and substituted into (4.3) to yield,
Lin = Iy el®tt)Va—1 (4.5)

where, Vj is given by (4.4), such that equation (4.5) becomes,

Iout ) (xt1)/n

o= ] -V
Im ]06 ( IO (46)
Finally, solving (4.6) for I,,; yields,

Tou = c1 el*/5H0V (L )/ (4.7)
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where ¢; = ]5/ KH, I, is the leakage current, and I;, and I,,; are positive valued input and
output currents respectively. Note that for x = 0.7, the exponent x/(x + 1) is 1/2.43.

The transfer function of equation (4.7) is shown in Figure 4.3 for different values of V3.

4.5 " Q:ﬂ}j
g

=0
A%

Vi= 065V

Lt (10784)

0.0 } } t + } } + t + !
0 1 2 3 4 5 6 7 8 9 10

Iin (IO_SA)

Figure 4.3: Transfer characteristics for square root circuit of Figure 4.2 for various V;.

As Figure 4.3 suggests, V; is a gain factor in the square root circuit.

However, the square root circuit of Figure 4.2, having the dynamics of (4.7), operates
only in the first quadrant, i.e., for positive currents. To implement the term —(—z)/™ for
z < 0 of (4.2), i.e., operation in the third quadrant, we implemented a mirror image of
the square root circuit by replacing the n-channel transistors by p-channel transistors in a

manner given in Figure 4.4.
A similar analysis yields the following transfer function for this circuit,
(x/K+1)Va (_Im)n/n+1 (4.8)

= dout = €2 €

where, ¢y, similar to ¢y, is a constant that depends on Iy; I;, and I, are negative valued
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Figure 4.4: Square root circuit for negative currents

currents, and V3 is a constant gain voltage.

Finally, the repeller transfer function characteristics of (4.2) can be achieved by employ-
ing both circuits of Figure 4.2 and Figure 4.4 as shown in Figure 4.5.

The symmetry in this circuit enables operation in the first and third quadrants. That
is, when I;, > 0, transistor Q1 is on and Q7 is off, resulting in I;, = I;. When I;, < 0, thr
condition reverses to yield I;, = —I;. Note that I; and I, are the input currents of the squar
root circuits, which operate in the first and third quadrant respectively. Furthermore, th
current mirrors, at the end of the circuit, superimpose both quadrants with I, = Is — I¢
where Iy and Ig are the output currents of the square root circuits operating in the first
and third quadrant respectively. Thus, the circuit of Figure 4.5 implements the following
transfer function,

¢; (/2431 (I, )1/2.43 I, >0

Iout = ] (49)
—c 6(1/2'43) Vo (_Iin)1/2'43a Im <0
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Figure 4.5: Terminal repeller transfer function circuit

which has the desired form of equation (4.2), with I,,; and I;, corresponding to £ and z
respectively.

We have fabricated the circuit of Figure 4.5 and tested its performance by sweeping the
input current source with 1nA intervals and measuring the corresponding output current
via a current meter. The result of the experiment is shown in Figure 4.6, which reveals the
measured DC transfer function.

Note that the circuit captures the important characteristics of the terminal systems,
that is, having odd-symmetry around the origin and a very high vertical slope in the neigh-

borhood of the origin, as shown in Figure 4.7.
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Figure 4.6: Terminal repeller transfer function data as measured from the chip.
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Figure 4.7: Measured transfer function characteristics of the circuit near zero current.
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It is interesting to note that as a by-product we achieved a bidirectional high gain
current-mode amplifier.

We have also control over the terminal characteristics, i.e., on the vertical slope of
the transfer function by adjusting the knobs V; and V3, which serve as the gain factors.
Additionally, setting V7 and V5 to a subthreshold level brings the output current I,,; to a
desired level (i.e., at the order of 1072 4). It should be noted that when V; and V;, are zero,
the output current is at the order of femtoamps, which would be negligibly small. However,
in order to operate the circuit transistors in the saturated region at all times, the maximum
limit for V; and V5 (about 1V each) have to be taken into account. Another significant issue
is that, although the diodes @; and @7 operate as digital switches, they have the additional
role of supplying about 1V drop across their terminals. Because of this, when the input
current is zero, the inner loop of the circuit (i.e., Vo = Qs = Q7 = Q1 = Q, = V7),
which causes a voltage drop of about 5V against the upper rail (Vg = 5V), will not yield
an undesired non-zero output current.

By adding additional components, the terminal repeller transfer function circuit of Fig-
ure 4.5 can be extended to achieve the terminal repeller dynamics of equation (4.2). Figure
4.8 shows the terminal repeller dynamics circuit. Note that the capacitor C integrates I,

of the repeller transfer function circuit,
Iy = C dX/dt. (4.10)

From previous analysis we know that I, is related to I;,, as in equation (4.9), which for

positive I;;, has the form

Tout = 1 (1/243) Ve (1, Y1/243, (4.11)

For simplicity and clarity we will use (4.11) instead of (4.9), since the corresponding
case for negative I, merely requires sign changes in (4.11). Equating equations (4.11) and

(4.10) yields
X — (Cl/C) 8(1/2.43)V1 (Iin)l/2,43' (4.12)
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The voltage X at the capacitor terminals could not be fed back directly to the input of
the terminal repeller transfer function circuit because it requires a current input. Hence,
we employ a wide-range transconductance amplifier W to linearly convert the voltage X to
current I;,, assuming that W is used in its linear range. Thus the amplifier characteristics

for small signals (i.e., AX = X — X* < 100mV) can be approximated as
Imp = G (X — X7) (4.13)

where, G = k Iy ¥+ /2 V is the transconductance, Vj is the bias voltage, V7 = 25mV is the
constant thermal voltage, and X* is a constant voltage with properties explained below.
The amplifier output is fed back to terminal repeller transfer function circuit and therefore
simply yields,

Lin = Lamp. (4.14)

Finally, manipulating (4.12) with (4.13) and (4.14) results in
X =K (X - X"/ (4.15)

where, K = (¢ /C) e(1/243)%1 (G)L/243,

Equation (4.15) represents a terminal repeller dynamical system, which has an unstable
equilibrium point at X = X*. The initial condition for the dynamical system is supplied
by the variable voltage source Xo, which sets X to Xy when Vyg is set to 5V such that the
transistor Q; is on and short-circuited. The dynamics of (4.15) is initiated by switching Voo
from 5V to 0V, which turns off @; and thus disconnects the rest of the circuit from Xp.
This enables the circuit to start with the initial condition X = X,.

The simulated behavior of this circuit, which implements (4.15), is shown in Figure 4.9
for the initial condition Xy = 2.55V. In this simulation, X* is set to 2.5V, placing a repeller
there. When the dynamical system is initiated with a small perturbation from the repelling
point, it will be repelled from the unstable point to the rail (V44 in this case) in less than

0.1 micro-seconds. Note that K represents the power of the repeller and can be increased
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Figure 4.9: Simulation of the repeller circuit response for the initial condition X, = 2.55V.

by increasing Vi, Vs or V.

The terminal repeller circuit becomes a terminal attractor circuit by switching the inputs

of the wide-range amplifier W, so that the new circuit implements
Limp =G (X" -X)=-G (X - X™) (4.16)
instead of equation (4.13). Therefore combining (4.16) with (4.14) and (4.12) yields,

X =-K (X - X*)l/243 (4.17)

where K is as given in (4.15).

Equation (4.17) represents a terminal attractor dynamical system, which has a stable
equilibrium point at X = X*. We have also designed and fabricated a terminal attractor

circuit as described above and as seen in Figure 4.10.
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Figure 4.10: Terminal attractor dynamics circuit

The terminal attractor circuit was tested by observing the voltage X on an oscilloscope.
The time solution of X is plotted in Figure 4.11 for the initial condition X = 3.6V. X™ is set
to 2.5V, placing an attractor there. As Figure 4.11 suggests, the voltage X of the terminal
attractor circuit, starting from an initial point, tends to and intersects with equilibrium

point at X = X*. The behavior is neither exponential nor underdamped in accordance
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Figure 4.11: Experimental response of the terminal attractor circuit for the initial condition
Xo = 3.6V and attractor at X* = 2.5V.

with the desired terminal characteristics, i.e., the dynamics show first-order differential
equation characteristics, but also intersects the solution in a finite time. However, there
exists a small bump when the solution intersects the equilibrium point, which is due to
internal parasitic capacitances inside the transistors, which tend to create a second order
behavior. Such behavior is nevertheless negligible, since it dies out in about 400 micro-
seconds. Furthermore, such parasitic capacitances can be made negligibly small compared
to C, by choosing a larger value for capacitance C. In above experiments C was set to 1pF.

Thus, we conclude that the circuit of Figure 4.9 is a first-order terminal attractor circuit,

whose behavior is close to that of the ideal terminal attractor.
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4.2 Gradient Descent Circuit

Gradient descent can be used to locally minimize a given objective function. Thus, it is
useful for a wide range of optimization applications and its role in learning with artificial
neural networks was discussed in Section 3.1.

In this thesis, gradient descent is a major component of the global optimization circuit.
We have developed, fabricated and tested a circuit for this purpose, which will be considered
in this section.

Other investigators have also developed gradient descent circuits. Figure 4.12 shows
the conceptual scheme for implementing a gradient ascent circuit, that was suggested by

Umminger and DeWeerth [UD89).

ﬁa‘/
~
{ﬁ

F(X) :> dX

Figure 4.12: Schematical representation for implementing gradient ascent by Umminger et
al.
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Although our circuit is different than this prior effort, it uses the same conceptual
approach, which is based on taking two sample points from an objective function (or energy
function), comparing the corresponding energy state, multiplying the difference by a fixed
constant ), integrating the end-product, and feeding back this result to the input in order
to advance the two sampling points one step further. In this way, the gradient descent rule
X = -\ dF(X)/dX is expected to converge to the nearest local minimum of F(X) (see
gradient ascent in Figure 4.12).

The drawback of the aforementioned “gradient descent scheme” is that it samples the
objective function discretely rather than smoothly. More explicitly this means, the gradient
descent

dF(X) . F(X +AX) - F(X)

X=-—"x ="", AX (4.18)

is approximated by the following formulation:

_F(X +AX) - F(X)

X~ %

(4.19)

where, AX is a small constant. The equilibrium point of this system is close to, but not
exactly a local minimum.

Figure 4.13 shows our Gradient Descent circuit, which mainly consist of an objective
function block, an integrator, and an initial condition generator.

A wide class of objective functions with adjustable location and steepness of the minima
are implemented using a cascade of voltage correlator bump circuits. The fabricated circuit
(Figure 4.13) includes three blocks of such bump circuits, which are cascaded at the bottom

layer of Figure 4.13. The characteristic equation of each bump circuit is,

L e X = Xres)

The center of each bump is located at X = X,.¢, as seen in Figure 4.14, while the steepness

of the bump depends on the value of the bias voltage V; (i.e., I =~ Ipe<"?).
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Since our circuit internally produces maxima instead of minima, we implemented a

gradient ascent operation,
. F(X +AX) - F(X)

X :
N (4.21)

instead of gradient descent operation, due to the fact that finding a minimum by gradient
descent is equivalent to finding a maximum by gradient ascent. Thus, the circuit of Fig-
ure 4.13, starting from an initial point, employs gradient ascent on F(X) to converge to
a prelocated maximum. Before discussing this dynamics operation of the circuit, we first
consider the implementation of the objective function in greater detail.

The bump circuit cascade (bottom layer of Figure 4.13) has a common input X and
a common output Iy, (i.e., F(X)). This enables us to produce a highly nonlinear objec-
tive function with three local maxima. More complex functions can be approximated by
adding additional bump circuits. Furthermore, the independent control inputs (i.e., sepa-
rate X,.s and V) for each bump circuit provide the flexibility to create each maximum at
specified location with specified steepness. An example of an objective function, that can
be implemented in this circuit, is shown in Figure 4.15.

Figure 4.15 was obtained by sweeping the common input voltage X from 2V to 3V
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Figure 4.15: Measured objective function with three local minima

and observing the negative value [neg] of the common output current I, (i.e., negly,; or
negF(X)), via a current mirror denoted by CM in Figure 4.13. As expected, plotting the
negative value of the output produces three minima, which is not to be confused with the
internal gradient ascent operation of the circuit on maxima. The discontinuities at 2nA
level, seen in Figure 4.15, are due to the calibration errors of the ammeter, which reduces
its gain at every decade during the automatic range switching process. The parameters of

the circuit required to produce the objective function of Figure 4.15 are given in Table 4.1.

Table 4.1: Parameters for the circuit of Figure 4.13 which produce the objective function
of Figure 4.15.

Bump # | X,y Vs minimum at
1 22V 1080V | X =22V
2 25V 1075V | X =25V
3 2.8V 1082V X =28V

While the bottom layer of the gradient circuit produces F(X) (i.e., I,u:(X)), the top
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layer produces F(X + AX) (i-e., Ipw[X + AX]), which is due to an additional transistor Q*
employed only in the top layer of the circuit (see Figure 4.13). The transistor Q* is placed
on the left branch of each upper differential pair and therefore imposes a symmetry-breaking
operation. This symmetry-breaking behavior can be analyzed as follows.

We assume that the physical layout of @* can have different dimensions (i.e., I ~ w*/*)
than other transistors (mostly with Iy ~ w/!{ = 1) in the circuit, where w and [ are the width
and length of the transistor gate respectively, and Iy is the leakage current of transistor Q.
Therefore the current flowing through the left branch of each upper differential amplifier is
given by

I = (Ig+ I3) "X~V (4.22)

where, V* is the common node voltage of the differential pair as shown in Figure 4.13. In

order to see the effect of I}, the above equation can be reformulated as,
I} = Iy "X ==V" (4.23)

where, o is the explicit contribution of transistor @* and can be solved by equating (4.22)

and (4.23), which yields

- I (4.24)

From equation (4.23) it is clear that the transistor ™ causes a shift in the X axis by «,
whose value is set by (4.24). Hence, as a special case if I} = I, then a = —~25mV.

So, while the output of an ordinary voltage correlator bump circuit at the bottom layer
of Figure 4.13 yields,

Il .[‘2 _ Ib 9 K,(X - X,-ef)
P A L a—

(4.25)

out —

the output voltage of the modified voltage correlator bump circuit with the symmetry



72

breaking transistor Q* at the top layer gives,

Ln _ b sech? AX —a— Xref)

ot T Tyl 4 2

(4.26)

where, Iy = Iy e*X~V and I, = Iy €"%Xr<s~V are the left and right branch currents respec-
tively, If is given in (4.23), and I3 = Iy ¢"%res=V". From equations (4.25) and (4.26), it
simply follows that

I*

out

[X] = Lw[X +AX] with AX = —a . (4.27)

Thus, if I§ = Iy (i.e., @ = —25mV’), equation (4.27) corresponds to producing F(X + AX),
where AX = —a = 25mV, which is an offset from F(X). Figure 4.16 displays F(X + AX),
for F(X) given as in Figure 4.14 and AX = 25mV.

|

: } \ :
T ¥ 1 T T ¥ T
230 235 240 245 2.50 255 2.60 2.65 270

X (V)
Figure 4.16: The offset function F(X + AX), for F(X) as in Figure 4.14

As Figure 4.14 and Figure 4.16 suggest, each upper bump circuit produces an x-axis
shifted (i.e., offset) version of what each lower bump circuit produces. Therefore we can

summarize the above findings as follows. Given a state input voltage X, while the bottom
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layer generates the output current F(X) the top layer generates the output current F(X +

AX), which correspond to the two necessary sample points of the objective function.
Finally, to achieve the gradient ascent system of equation (4.21), the capacitor C in

Figure 4.13 integrates the incoming current F(X)— F(X + AX) in the form of the capacitor

node voltage,

Vo = % / (F(X + AX) — F(X))dt (4.28)

which is fed back to the circuit, i.e.,
X =Ve. (4.29)

This will advance the sampling points one time-step further. However, it should be kept in
mind that while the sampling process is discrete, this advancing process (i.e., integration)

is continuous in time. Manipulating equations (4.28) and (4.29) yields,

\ F(X +AX) - F(X)

X=X N (4.30)

where, A = %&. Equation (4.30) has the desired form of equation (4.21) and therefore

approximates gradient ascent behavior

. dF(X)
X~
A dX

: (4.31)

Equation (4.31) represents a dynamical system, which has a stable equilibrium point at
the local maximum of F(X). The initial condition for the dynamical system is supplied by
the variable voltage source Xy, which (similar to the terminal repeller dynamics circuit of
Figure 4.8) sets the initial point of X to X when Vjq is set to 5V such that the transistor
Q; is on and short-circuited. The dynamics of (4.15) is initiated by switching Voo from 5V
to 0V, which turns off Q; and thus disconnects the rest of the circuit from Xj.

The effect of the offset, AX, on the accuracy and efficiency of the gradient descent

circuit is important and must be considered in further detail. From equation (4.27) we
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found that AX = —a, and combining this with equation (4.24) gives,

Vi, L+ I3
AX = L og 0t 0 (4.32)
K I(]

where, I ~ w*/l*. Thus, we have control over the offset AX, by changing the width-to-
length ratio of the symmetry breaking transistor Q*.

However, there is a tradeoff between two important factors when choosing the w*/I*
ratio of Q*. If w*/I* is too large, then AX is also large. In this case the gradient ascent
approximation (4.30) becomes inaccurate. We thus desire w*/l* as small as possible. On
the other hand, if w*/I* is too small, the gradient circuit may not perform at all due to the
mismatches caused by the fabrication. That is, the upper layer of the circuit in Figure 4.13
may match the lower layer, and thus the dynamics of the circuit becomes static.

In order to find an optimal value for w*/I* which would accommodate both conditions
stated above, we experimented with three different values of w*/I* for transistors QF, Q3 and
Q7% in the layout. Transistors @5 and Q3, with w*/I* ratios of 4/50 and 4/40 respectively, did
not function properly due to the fabrication errors explained above. @} with w*/I* = 4/8
resulted in optimal performance.

Testing our gradient ascent chip after fabrication gave the following results. Starting
from two initial points at Xg = 1.5V and 2.6V at the basin of attraction of the local
minimum at X = 1.8V, the dynamics of the circuit converged to the local minimum, as
seen in Figure 4.17.

As the figure suggests, for both initial states, the system dynamics converged with no
error to the minimum at X = 1.8V when the bias voltage V; was in the interval [1.1V —
1.2V]. The subthreshold operation of Vy; (i.e., [0.7V — 0.9V]) degraded the convergence
as seen in Figure 4.18, where the solution converged to X = 1.85V with 50mwv error. This
relatively poor convergence was due to the high steepness of the objective function obtained
by using a subthreshold V4, such that F(X) = F(X + AX) for X = 1.85V, which assumes
an undesired local maximum at X = 1.85V in the approximated gradient dynamics given

by equation (4.30). Note that all measured voltages are negative due to the p-well chip,
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Figure 4.17: Measured time-behavior of voltage X of the gradient ascent chip, for two
different initial points.

but for convenience the magnitudes are given here.

From the findings stated above, we conclude that our gradient circuit performs stably
and relatively accurately (except for very steep functions) for locating the critical points
of arbitrary one-dimensional objective functions. In order to enhance the accuracy of the
gradient operation, an alternative method has been proposed by Anderson et al. [AK].
Their model estimates the gradient of the function by using a noise-function correlation
approach. Kirk [Kir93] has further extended this approach to handle multiple dimensions.

A detailed discussion of this technique can be found in [Kir93].
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4.3 Global Optimization Circuit

Here, we show how the concepts mentioned earlier (i.e., Terminal Repeller and Gradient
Descent) can be used to develop a global optimization circuit, which additionally requires
a control logic circuit. Before describing the modules of the circuit in further detail, let us
first consider the theory underlying the behavior of this circuit.

As discussed earlier (Equation (2.28)), the one-dimensional TRUST optimization dy-

namics consists of the differential equation

d
T = (]~ e e T KX X P u(FIX] - FIXT]) (433)

X =
which approximates the following ideal behavior,

K(X - X*)!/3, F[X]-F[X*]>0 repelling phase

—d{;&X] ) F[X] - F[X*] < 0 minimization phase.

(4.34)
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This dynamical system locates the global minimum of a given one-dimensional function.
However, since our gradient circuit implements gradient ascent, for the purposes of imple-
mentation we modify the dynamics in (4.34) as follows:

K (X —X*)/3 F[X]- F[X*] <0 repelling phase,

X = (4.35)

dl;’;f : F[X]- F[X*] > 0 maximization phase.

Equation (4.35) performs repelling action whenever the objective function value is below
the last found local maximum and, gradient ascent whenever the function value is above
the last found local maximum. This guarantees a global ascent behavior (i.e., converging to
functionally higher maxima). A schematical representation of the desired dynamics behavior

is given in Figure 4.19.
L
X

K (X-X *)1/3

dF[X]
dX

=
F[X] - FIX*]
Figure 4.19: Schematical representation for the desired dynamics of the global optimization

circuit

The behavior of equation (4.35) shown in Figure 4.19 required designing a control logic
circuit, which would switch between the output currents of I,., and 14 according to the

condition of the state current F[X] — F[X*] being negative or positive respectively. Here,
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I,¢p is the tepeller output current, which was denoted by I,,; earlier in equation (4.10), and

can be also formulated in the following form using (4.10) and (4.15),
L =CX =CK (X - X)/2%, (4.36)

I, is the gradient output current, which was previously characterized as F(X)— F(X +AX)

in equation (4.28), but can also be shown to be

. dF(X
Igr=C’X:F(X)—F(X+AX):C)\~—E—(-)—{——) (4.37)
using equations (4.30) and (4.31).
A winner-take-all circuit was the best candidate to start with for this purpose. Fig-

ure 4.20 shows the circuit diagram for the winner-take-all circuit.

ved Vg4
2 h J:(% Il
vdd vdd
=130nA -
12 = 70nA CP Qja Il =[30nA - [10nA]
V2w [ Q4 QB:H S VI w
Ic2 ict
Q2 :H Ve {[ Ql
lb_w
Vb w 0.7V [ Qb

Figure 4.20: Winner take all circuit
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Figure 4.21: Operation characteristics of the winner-take-all circuit

We now discuss the operation of the winner-take-all circuit in detail, as this discus-
sion is necessary to understand the detailed operation of the optimization circuit. The
output/input characteristics of the winner-take-all circuit is given in Figure 4.21.

The winner-take-all circuit employs the following behavior. When the input currents Iy
and I, are equal, i.e., if we let

Il = .[2 = Im, (4.38)

the two symmetrical branches of the circuit function in an identical fashion such that for

the branch currents the following condition holds.
In = Iy = Iyw/2 = (Io/2) eV, (4.39)

I, and I, are the drain currents of the transistors Q3 and 4 respectively, and I ,, is the

bias current of Qp. Due to symmetrical operation, the output voltages will also be identical

and can be denoted as
Vl..w = V2_w = Vm- (4.40)
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Due to equation (4.39), @3 and Q4 will be on and @, and @, will be saturated, such that

the input current can be approximated by,
In=Ipe™ (4.41)

where V, is the common node voltage, as seen in Figure 4.20, and can be solved directly
from (4.41) to yield,

Im
Ve = — log T (4.42)

Finally, using the characteristic equations for the branch currents
Icl = J9 = I CKVm_VC (4.43)

together with equation (4.39), we can solve for the output voltage V,,,

V. !
vo = Yoy, (os2)Vr
K

K -

(4.44)

where V, is as given in (4.42), and V7 = 25mV is the constant thermal voltage. To sum-
marize, the input current I,,, determines the common node voltage V., which together with
the branch currents and bias current determine the output voltage V;,.

The above discussion concentrated on what happens when the two input currents are
equal, such that the circuit is completely balanced. Now we will consider the behavior
during imbalance. Assuming the input current I is constant, if the other input current Iy
increases linearly above the value of I5, since transistor ¢, will always be more saturated
than Q, Q1 will determine the value of V., such that V. will also increase in parallel

a,ctua.]ly 1() authnucally proportional to 11, i.e.,
g
I = Iy erve. (4.45)

However, since V, is also a gate voltage to Q2, an increase in V, will correspond to a
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decrease in the drain voltage of Q3 (i.e., Va_y), since o wants to keep the input current
I, constant, as assumed earlier. Thus as seen in Figure 4.21, as I increases above I,
Vs o first decreases linearly while Q5 is saturated. Then @3 leaves the saturation region
with Vs _, first decreasing logarithmically and then linearly again until it hits the lower rail
(i.e., Vo ~ 0), which declares @, as the loser transistor. On the other hand, while V3 4
decreases towards zero, since such decrease will turn the transistor ¢J4 off, the current I,
will also decrease (exponentially in parallel to V5_,’s linear decrease during Q»’s saturated

operation), (i.e., I — 0). Thus most of the bias current I, starts flowing only via Qs, i.e.,
Iy = Iy =Ipe Vo (4.46)

holds, such that V;_,, increases via the characteristic equation of @3,
Iq = Iy eV, (4.47)

Note that an exponential increase in I;; causes a linear increase in V;_,, (since it is the gate
voltage of Q3) until V;_,, hits the upper limit which can be solved by the equations (4.47)
and (4.46 with Iy = Ip_,) to yield,

Ve
Vi.w = Vi _maz = ‘; + Vb_w (448)

where, V, can be found using (4.45). This declares @ as the winner transistor.

Similarly, when the input current I; falls below the constant value of I, the above
conditions reverse. To summarize, V, will be determined by I, since @+ is more saturated
than Q. However the value for V; will not change due to constant I;. As I; decreases
linearly, Vi_,, of transistor @, will decrease due to constant gate voltage V.. The decrease
in Vi, will be linear during the saturated operation of @ but as soon as )1 becomes
unsaturated, V;_, will decrease logarithmically and then linearly again until it hits the

lower rail and hence @1 becomes the loser. The transistor @3 turns off, all the bias current
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Iy ., starts flowing via Q4, which forces the output voltage V5, to increase linearly until it

hits the maximum limit given by

v
VZ_w = V2 maz = ;C' + Vow (449)

where, V. can be found using
.[2 == IO EKVC. (450)

To summarize the above findings in a simpler format, if we let

I

il

F(X) (4.51)

1P F(X™) (4.52)

then for our purposes, the winner-take-all circuit produces the following behavior (for V4_, =
0.7V),
Vouw = Vo maz = 1.8V, Vi, >0V for F(X) < F(X¥)

(4.53)
Viw=Vimee =18V, Vo, >0V for F(X)>» F(X*).

Although (4.53) implies the desired switching operation of equation (4.35), the outputs
of the winner-take-all circuit are voltages (i.e., Va_, and Vi 4, ), but not currents (i.e., desired
to have I, and Iy, as given in (4.36) and (4.37)). Therefore, we wanted to have a circuit
that would implement the following behavior,

I for F(X)< F(X*) i.e., repelling phase
L =13 (4.54)
I, for F(X)> F(X*) i.e., maximization phase .
To satisfy the above criterion, we designed a modified winner-take-all circuit with

current-mode-operation as seen in Figure 4.22.
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Figure 4.22: Modified winner-take-all circuit with current-mode-operation

The standard winner-take-all of Figure 4.20 can be seen as the center component of this
new circuit as well. Additionally, note that on the right-hand side of the circuit, the node
denoted by V;_, (which is one of the output voltages of the standard circuit) is connected to
an inverter consisting of the transistors ¢;, , and Q;p_, and a voltage source Vyy,. Vyy, is set
to 4V and imposes a threshold to the inverting operation. Thus, if transistor Q; is a winner,

such that Vi_,, = Vi_maz =~ 1.8V holds, the magnitude of the gate to source voltage of Q;,, 4
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(i-e., |Vgs_in| = 1.8V) becomes larger than the magnitude of the gate to source voltage of
Qipa (e, [Vgsipl =5—-Vin = 1V'). However, since both transistors Q;, , and @;, , share
the same channel current, the above condition forces @;,_, to become unsaturated with
voltage V, tending towards zero. Also note that the node denoted by V; is connected to
p-channel transistor Q,, which acts like an inverted switch, i.e., turns on when V, ~ 0V,
and lets the I, current flow freely.

On the other hand if Q; is the loser, all the above conditions reverse in effect. Initially
Vi_w converges to zero, so that this time [Vgs_in| = 0V < |Vys _,-pl = 1V holds, which drives
Qip_a to become unsaturated and V; to the upper rail (i.e., V, ~ 5V). Consequently, this
blocks the I, current (i.e., Iy, =~ 0A) by turning off the @, switch.

The above process describes the behavior of the right side of the circuit. Since the
circuit (Figure 4.22) is symmetrical in structure (but not necessarily in function), the left
side of the circuit performs an action which is similar but opposite to the behavior of the
right side of the circuit described above, i.e., when the transistor ¢; is a winner and @ is
a loser, the current I,¢p is blocked; and when @ is a loser but ()3 is a winner, the current
I ep is allowed to pass freely.

Under the light of the above explanations the operation of the modified winner-take-all
circuit can be summarized as

Iep, when @5 is a winner and @ is a loser
Lout = (4.55)
I,,, when @, is a winner and Q3 is a loser .

For a more detailed understanding of the circuit, we did the following simulations,
analysis and deductions.

Figures 4.23 and 4.24 displays a simulation that demonstrates the operation of the
modified winner-take-all circuit. The external current sources I ., and I, are set to fixed
values of 300n4 and 100n A respectively. The winner-take-all operation is tested by setting
F(X*) to a constant value of 70nA and sweeping F(X) from 58 to 78nA (Figure 4.23).
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As Figure 4.24 suggests, when F(X) is much smaller than F(X*), V1, is a loser and
Va_w is a winner and consequently @, is off and @Qp is on such that I,y = Iep. When
F(X) starts to increase (due to external sweeping process), @y becomes saturated and V;
increases as expected. However, there is a critical point, as soon as V; ,, slightly exceeds 1V
(i.e., 5 — Vi), where it turns @, on. Since Qp is still on, current from both branches flow at
the same time, i.e. Ipy; = Irep + Igr. This condition lasts as long as both V3 _,, and V;_, are
above the 1V level (since that will keep both @, and @y on) and until F(X) increases to a
level where it is somewhat larger than F(X™*), such as to force @, to reduce it’s voltage V5
just below the 1V level (while saturated). Hence, @ turns off. After this critical condition
is over, further increase in F(X) will push Q3 to fall below saturation, such that V3 _, is a
loser and V;_, is a winner and Q) is off and Q, is on such that I,y = Ig.

To summarize, the modified winner-take-all circuit performs (i.e., a detailed analysis)

Lreps for F(X)< F(X*)—¢
Tt =1 Iy +1, for F(X*)—e< F(X)< F(X*)+e (4.56)
Iy, for F(X)> F(X*)+¢

where, € = |F(X*) — F(X).], and F(X), is the value of the current F(X) at the point
where the output voltage Vi ,, or V5, intersects with the 1V (i.e., 5 — Vi) value level (see
Figure 4.23).

The behavior of the modified winner-take-all circuit (Figure 4.22) in equation (4.56) is
very close to the desired global ascent behavior of (4.54), with the exception of the second
line of equation (4.56), which implies that both currents (i.e., I ¢p and I, ) flow at the same
time during a small period of time (as seen in Figure 4.24). This drawback in the operation
of the circuit is due to the fact that there does not exist a sharp transition from the first
phase (i.e., @2 is a winner and Q; a loser) to the second phase (i.e., @1 is a winner and Q
a loser), but the transition is a smooth one, which creates a small region, where there exist
no distinct winner or loser. Instead both transistors @1 and @, are saturated. During part

of this region, especially when both of the drain voltages of @1 and Q3 (i.e., Vi, and V3 )
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are above 1V value, both Q;n,_q and Q,_p are forced to fall below saturation with V, and V4
at the lower rail (i.e., 0V). This arises because the magnitude of the gate-to-source voltage
of Qin_a and Qinp (Which are Vi, and Va_,) is larger than the magnitude of the gate-to-
source voltage of Qip_, and Qipp (each of which is equal to 5 — Vi, = 1V) respectively.
Therefore both switches Q, and Q are on during this period which enable both currents
I,ep and Iy to pass freely, leading to the undesired situation mentioned above.

As we shall subsequently see, this undesired condition does not pose a problem for the
overall performance of the global optimization process. However, a remedy will also be
presented to completely eliminate the problem.

With this review of the major components in mind, we now consider the overall behavior
of the global optimization circuit. Figure 4.25 shows a complete global optimization circuit,
consisting of the terminal repeller circuit, the gradient descent circuit, and the modified
winner-take-all circuit.

On the far right side of Figure 4.25, the gradient ascent circuit can be seen. Two
cascade modules (i.e., voltage correlator bump circuits) internally produce the test objective
function on which the global maximum will be searched. The test function consists of two
local maxima, one of which is global, as can be seen in Figure 4.26. Note that this function
is plotted by sweeping the input voltage X (i.e., input to the gradient ascent circuit) and
measuring the negative value of the current F(X) (via the node denoted by negF (X)) as
the y-axis. Hence the objective function is inverted, with maxima appearing as minima.

The test function has the qualitative characteristics shown in Table 4.2.

Table 4.2: Parameters for the objective function shown in Figure 4.26

Max #| X F(X) Vi
1 2.2V | 28.281nA | 0.76
2 2.8V | 72.114nA | 0.80
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The width-to-length ratio of the symmetry-braking transistors Q7 and @3 in the upper
layer of the circuit (see the gradient ascent block of Figure 4.25) is adjusted to the optimal
value of 4/8 (based on the previous findings of page 74) to select the offset AX, which
effects the efficiency of the gradient ascent operation (recall (4.30), (4.32) and (4.37)).

Before checking the global convergence, the local convergence of the gradient ascent
part of the global circuit was checked for the two local maxima of Figure 4.26. When this
circuit was initiated at Xo = 2V, which was in the basin of attraction of the local maximum
at X = 2.2V, the gradient ascent circuit converged to 2.177V with 23mV error. On the
other hand, when it was initiated at Xo = 2.6V (in the basin of attraction of the local
maximum at X = 2.8V), it converged to 2.769V with 31mv error. Both results confirmed
the operational efficiency of the gradient ascent part of the global circuit on the given
test function. The errors, which were expected due to the high steepness of the objective
function during subthreshold operation of Qp’s, were minimal. A simulation of the local

convergence for one of the cases above can be observed in Figure 4.27.
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Figure 4.27: Local convergence of the gradient ascent part of the global circuit to the
maximum located at X = 2.2V for the test function of Figure 4.26.

After having checked the efficiency of the gradient ascent circuit on the given objective
function of Figure 4.26, we continue analyzing the global optimization circuit of Figure 4.25.
Note that the gradient ascent block receives the capacitor node voltage X (also the state
variable) as the input and produces two different outputs, current F(X) (i.e., function value
at X) and the gradient current Iy, of equation (4.37).

The terminal repeller circuit be seen on the very left side of Figure 4.25. This circuit
receives the same input X, as well as another fixed input X*. The value of X™, which can
be adjusted by an external voltage source, determines the location of the terminal repeller,
which was emphasized in equations (4.15) and (4.35). The terminal repeller block produces
the output current ., as given in (4.36).

On the bottom left corner of the global optimization circuit, there is a single voltage
correlator bump circuit, which outputs the fixed function value at the terminal repeller
point, i.e., F(X*), given X™* as the input.

Finally, the modified winner-take-all circuit is located at the center of Figure 4.25. It

receives the repeller current I, from the terminal repeller circuit, the gradient current g,
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from the gradient ascent circuit and two other input currents, F(X) and F(X*), which
are the decision components of the circuit required for the necessary switching operation
between the main components of I,., and I,. The modified winner-take-all circuit produces

the output current I,,:, as given in equation 4.56 and repeated below.

Trep, for F(X)< F(X*)—¢
Iowt = ILep+ Iy for F(X*)—e< F(X)<F(X")+e (4.57)
Iy, for F(X)> F(X*)+e¢.

The output current I, is integrated at the terminals of the capacitor C' to produce the

state voltage X according to

Lut = C dX/dt. (4.58)

Consequently, X is fed back to the inputs of both the terminal repeller circuit and gradient
ascent circuit (see Figure 4.25) in order to complete the global optimization dynamics.

To summarize, the global circuit implements the following dynamics,

K(X — X*)1/3, for F(X)< F(X*)—¢
X={ EX-X M3+ A EE for F(X*)-e<F(X)<F(X*)+e (4.59)
iy for F(X)> F(X*)+e¢.

Based on these dynamics, as will be seen in the following simulations, the global circuit has
a “global ascent” property, and therefore globally optimizes the given one-dimensional ob-
jective function F(X). It should be noted that equation (4.59) is very close to the originally
desired dynamics of (4.35). Additionally, the ensuing simulation results demonstrate that
the performance of (4.59) is equivalent to the optimal dynamics of (4.35), under a broad
region of the circuit parameters. Furthermore, after presenting the simulations, a technique
will be introduced to bring € of equation (4.59) to zero such that the desired form of (4.35)
will be achieved via the global circuit.

The dynamics of the global circuit (Figure 4.25) is initiated by the voltage source denoted
by Xo, which keeps the capacitor voltage X constant at the initial level X, (i.e., X = Xo)
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for time ¢ < 0. This effect is due to the transistor @; which is shorted when Vo is set to
5V. Switching Voo to OV turns Q; off and disconnects voltage source Xo from the rest of
the circuit, thereby initiating the dynamics of (4.59) at ¢ = 0.

Next we discuss the simulated performance of the global optimization circuit on the
internally produced test function of Figure 4.26. The idea behind the simulation was to
demonstrate the global ascent property of the circuit, by letting the circuit locate the
global maximum of the objective function after being initiated with a small perturbation
from the local maximum at X = 2.2V. Adjusting the necessary circuit parameters before
the simulation was of primary importance. We set the voltage source X™* to 2.2V, thereby
placing a terminal repeller at the predetermined local maximum. The starting point for the
optimization was established by setting the voltage source Xo to 2.231 value. Additional
parameters were the gain factors and the bias voltage of the terminal repeller circuit which
were adjusted as follows: V3 = 0.50V, V3 = 0.54V and V}, = 0.85V. These parameters,
as discussed earlier on page 63, determined the power of the repeller. Finally, the bias
voltage Vj_y, of the modified winner-take-all circuit was set to 1V for proper biasing and
both threshold voltages Vi were fixed to 4V.

Figures 4.28 — 4.33 show the results of a simulation (denoted by S1).

As mentioned earlier, the simulation is performed on the objective function F(X), whose
inverted value was shown in Figure 4.26. In order to demonstrate the global ascent property
of the global optimization circuit of Figure 4.25, we chose the domain of interest for opti-
mization to be the region displayed by Figure 4.26 (i.e., 2.0V < X < 3.0V), and assumed
that the position of the local maximum is predetermined and known (i.e., X = 2.2V). That
is, we assumed that the local maximum had been found by a previous maximization process.
The circuit simulation was initiated with a small perturbation from the local maximum at
X = Xo = 2.231 so as to perturb the system into the domain of interest via right flow.
Hence the circuit was expected to escape the basin of attraction of the local maxima and
converge to global maximum of the test function via subsequent repelling and gradient as-

cent properties of the TRUST dynamics of equation (4.35). Although the circuit at this
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level exhibited the approximate dynamics of (4.59), the claim was that this dynamics did

not differ from the ideal (4.35) under a broad range of parameters.
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The simulation is initiated at ¢ = 0 by switching Vo from 5V to 0V. Figure 4.28 shows
this step-like behavior of the Vyo switch. Note that although the x-axis of most of the
graphs displayed here show the actual time, the word “time” will be used to denote the
reference time, which has its origin (i.e., ¢ = 0) at the instant when Voo = OV (i.e., when
the dynamics of the circuit becomes active).

Figure 4.29 displays the variation of the function value F(X) vs. time. Note that for
t < 0, F(X) is constant at F(Xo) = 24.907n A, since during this time the state voltage X is
set to Xg = 2.231V. The functional value of the the terminal repeller X*, placed at the local
maximum X = 2.2V, can also be seen in Figure 4.29 as F(X) = F(X*) = 28.281nA. At
¢t = 0, since F(X) (i.e.,F(Xp)) is smaller than F(X™), the circuit enters the repelling phase
as discussed earlier and in accordance with the first line of the equations (4.57) and (4.59).
The activation of the repeller current I ., during this phase can be seen in Figure 4.30,
which shows the time variation of the repeller current I,.,. The winner-take-all circuit,
while letting the repeller current I, freely flow, blocks the gradient current Ij.. This
can be seen as zero I, current in Figure 4.31, which presents the time variation of I,,.
The output current, I,,;, which is integrated at the terminals of the capacitor C, therefore
is equivalent only to the repeller current I,., during the repelling phase, as Figure 4.32
suggests.

The repeller is active and repels the state X (via positive flow) for all the region of the
objective function that lies below the initial local maximum (i.e., for F(X) < F(X*)). The
time evolution of the state voltage X is displayed in Figure 4.33. Note how the dynamics
of the circuit due to the repeller pushes the state X to increase during this phase. The
corresponding initial decrease and subsequent increase in the functional value of F(X)
(Figure 4.29) demonstrates that the circuit manages to escape the basin of attraction of the
local maximum and enters the basin of the global maximum during the repelling phase. It
is also important to remark that the repeller current I,., (which is a measure of the velocity
of the repelling state) does not increase continuously (Figure 4.30) during this phase, but

saturates by an upper limit, despite the fact that a real terminal repeller is expected to



increase in velocity, as X moves further away from X™* (see equation (4.59)).
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This behavior, which is due to the saturated nonlinear operation (for the region, where
X — X > 150mV’) of the wide-range amplifier employed in the terminal repeller circuit,
however, does not influence the normal repelling operation, since the state X will be repelled
as long as there exist a positive current I.p.

As discussed earlier, when X tunnels to the basin of attraction of the global maximum,
such that F(X) becomes equal to F(X™*) with X # X* (i.e., the point in the basin of
global maximum, which has the same functional value as the initial local maximum), the
transition from the repelling phase to the gradient phase is not sharp, as emphasized in the
second line of the equations (4.57) and (4.59).

For the region that corresponds to F(X*) — e < F(X) < F(X*) + ¢, the winner-take-all
circuit allows both currents I, (Figure 4.30) and I, (Figure 4.31) to pass freely, such
that the output current I,,; (Figure 4.32) is a summation of both currents. Thus, both the
gradient ascent and the repeller effect are imposed on the state voltage X for this small
region, and although the gradient ascent is desired to converge to the global maximum in
a stable manner, the yet unavoidable repelling effect is redundant and can cause instability
or avoidance of the global maximum if the repeller power K is too high. However, this
region, where both I, and I,., is active, is considerably small in time, and therefore if
K is chosen low enough, the repeller repels X in the direction of the gradient ascent and
merely enhances the convergence performed by the gradient ascent. Additionally, due to
low K, the repeller current I, is also small enough not to carry the state X beyond the
global maximum, and as soon as the system enters the region of F(X) > F(X*) + ¢, the
repeller current I,., becomes inactive such that the normal gradient ascent operation can
take over while the state of the circuit is still approaching the global maximum. Note that in
parallel with the above discussion, the repeller power K, as determined by the parameters
V1, Vo and V;, (set to 0.50V, 0.54V and 0.85V respectively for the current simulation), was
low enough, and did not in any way negatively influence the normal global optimization

operation.
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Finally, when the state voltage X enters the region of F(X) > F(X*) + ¢, the circuit
enters the gradient ascent phase, in accordance with third line the of equations (4.57)
and (4.59). The winner-take-all circuit blocks the repeller current by bringing it down
to zero (Figure 4.30), and lets only the gradient current flow (Figure 4.31), which is to
be integrated by the capacitor C as the output current I, (Figure 4.32). Noting that
the gradient ascent current I, is equal to C/\g-%%(—]- (which also equals to C dX/dt), the
spike seen in Figure 4.31 (and also in Figure 4.32) is due to the initially increasing and
subsequently decreasing slope of the objective function at the left side of the bump that
consists of the global maximum. The gradient ascent current I, asymptotically approaches
the 0A level because of the decreasing gradient in the neighborhood of the global maximum
(Figure 4.31). This enforces the output current to vanish also (Figure 4.32), such that the
state voltage X at the terminals of the capacitor ceases to integrate any current. X thus
converges to 2.77TV with only 30mV error from the global maximum located 2.80V, as seen
in Figure 4.33. The error, which was expected, is minimal and is due to the low accuracy
of local gradient ascent approximation on steep functions and is not related with the global
ascent property displayed by the circuit.

Also note that the convergence is stable, which can also be seen from Figure 4.29 by the
saturation of F(X) in time due to the stable and constant state X.

Furthermore, the convergence time required for the circuit to start from the initial point
and to converge to the global maximum is about 10 micro-seconds (Figure 4.33), which we
believe to be remarkable.

Finally, we consider the drawback of the circuit due to the small region of operation in
which both the repeller current I, and the gradient current I, flow simultaneously via
the output current I,,;. We already saw the origin of such operation in the second line
of equations (4.56), (4.59), and discussed it in detail on pages 86, 91 and 96. Although
we concluded from the simulations that this drawback does not affect the efficiency of the
global optimization dynamics as long as the power of the repeller K is chosen sufficiently

low, below we present a solution that completely eliminates the problem regardless of the
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selection of K.

From Figures 4.23 and 4.24 we note that I, = Irep + Iy flows for the region which

correspond to the condition determined by,

Viw > b—=Vip=1V
and V,, > b—-Vu =1V

(4.60)

where, Vi3, is the threshold voltage set to 4V in the modified winner-take-all circuit shown
in Figures 4.22 and 4.25. It is clear that (see Figure 4.22) as F(X) initially increases, when
Vi_w reaches just above 1V, transistor ¢, turns on, which causes premature flow of I, (i.e.,
when F(X) < F(X*)) while I, is flowing. Similarly, as F(X) further increases above
F(X*), until V,_,, falls below 1V, transistor ) is on, which permits I,, to flow beyond the
desired time (i.e., while F(X) > F(X*)) in addition to the current I . Hence we see that
there exists an overlap between the currents I,., and I, whereas ideally a sharp transition
as given in equations (4.35) and (4.54) was desired.

Such desired sharp tramsition could be achieved if the circuit allowed only I, to flow
for F(X) less than F(X™), and Iy to flow otherwise. We found that this could be easily
achieved by reducing the threshold voltage V3, of the inverters from the originally set value
of 4V to the value given below,

Vih = 5=V, (4.61)

where V,, is as given in equation (4.44). It is important to note that (see Figure 4.22) V,,, is
the fixed voltage at the point where Vi ,, and V,_,, intersect and are therefore equal. This
point also corresponds to the condition of F(X) = F(X*). Setting V;; as in (4.61) will
result in the following circumstances.

As F(X) initially increases (i.e., when ¢, is a winner during the repelling phase with Q
on and Loyt = Irep), transistor @, will not turn on until the voltage V; , reached 5 -V}, due
to the operation of the inverter that involves transistors Q);, , and Qip_a. Furthermore, since
Vi is set to the value given by equation (4.61), it follows that 5 — V3, = V,,,. Consequently,
Q. will not turn on until Vi _, reached V;,. Therefore, as long as F(X) < F(X *) only the
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current I, flows and Iy, is blocked due to @, being off.

However, as soon as F(X) increases just above F(X*) such that V; ,, reaches just above
Vin, transistor @, turns on. At the same time V3 _,, falls just below V,,, (and hence 5 — V}3)
which forces @y to turn off instantanecusly due to the inverter that involves the transistors
Qin_p and Q,p . Hence the condition is reversed with I, flowing while I, is blocked.

In order to demonstrate this concept, we made another simulation using the modified
winner-take-all circuit of Figure 4.22 in parallel to the one shown in Figures 4.23 and
4.24. The only parameter that needed to be modified was the fixed voltage Vj;, which was
dependent on the value of V,,, as given in (4.61). V,,, can be calculated to be 1.734V either
by using equations (4.44) and (4.42) (with V3, = 0.7V, Iy ~ 0.068fA and I, = 70n4)
or via the simulation of Figure 4.23. This would require Vi, to be set to 3.266V, however,
since the inverters were operating at above-threshold ranges (i.e., due to high gate-to-source

voltages), reducing V;;, even further and setting it to
Vin = 2.435V (4.62)

gave the optimal results. The results of the simulation is shown in Figures 4.34 and 4.35.
Comparing Figure 4.35 with Figure 4.24 demonstrates that the undesired region‘, where I.cp
and I, overlaps, is completely eliminated and a sharp transition between repeller action
and gradient ascent action is achieved as was originally desired. We conclude that when V},
is set according to (4.62), € in the second line of equation (4.56) diminishes to zero, such
that equation (4.56) (or (4.57)) converges to the desired form of equation (4.54), which is
also repeated below
Iiep, for F(X) < F(X*) i.e., repelling phase,

Iout = (463)
I, for F(X)> F(X*) i.e., maximization phase.
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Similarly, when global optimization is performed with the global circuit of Figure 4.25
using (4.62), the dynamics of the circuit does not undergo the limitation imposed by equa-
tion (4.59), but instead performs the ideal form of (4.35), given below,

K(X —X*)'/3, F[X]- F[X*] <0 repelling phase

X = (4.64)

ds)g( ’ F[X] - F[X*] >0 maximization phase.

It is clear that this circuit with this new dynamics (which is obtained by a small modification
of V;1) is not limited by the conditions of the previous dynamics, where a reasonably low
value for the repeller power K had to be chosen in order to avoid instability (see discussion
on page 96). The new dynamics can perform reliable global optimization for ANY value of
the repeller power K due to the sharp transition achieved between I,, and I, currents.
As a last remark, one should also note that since the global optimization simulation
involved setting the winner-take-all bias voltage V;_,, to 1V instead of 0.7V; due to equa-
tion (4.44), V3, should be expected to be set to a lower value than the one given in (4.62)

for optimal global ascent performance.

4.4 Summary

In this chapter we have presented Analog VLSI circuits that implement the concepts of
terminal repeller and gradient descent. The performance of these circuits together with
the measured data from the chips we have built, are discussed. These two circuits and a
modified winner-take-all circuit have been employed to implement the TRUST algorithm
and consequently a global optimization circuit has been designed. The simulated results
demonstrate that hardware implementation of the TRUST formalism leads to dramatic

speed enhancement in the context of global optimization.
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Chapter 5

Conclusions

This thesis has introduced TRUST (Chapter 2 and [CBB93a}), a novel dynamical system
with global descent property. As a result of this property, the TRUST formulation is shown
to be very effective in globally optimizing energy or cost functions employed in global
optimization problems.

The TRUST methodology formulates optimization as the solution of a single vector dif-
ferential equation incorporating terminal repellers and a novel subenergy tunneling function.
The flow of this dynamical system leads to global optimization. The algorithm is shown to
be provably convergent to the global minimum in the one-dimensional case (Section 2.4).

Although convergence to a global minimum is not formally guaranteed in the multi-
dimensional case (Section 2.5), the TRUST formalism systematically converged to the global
minimum in all benchmark simulations (Section 2.6 and Appendix A), even in the multi-
dimensional case.

Benchmark comparisons (Section 2.6) with other global optimization procedures have
demonstrated that TRUST is significantly faster, as measured by the number of function
evaluations, than the best currently available methods for these standard functions.

The number of function evaluations is only one criterion to be used in comparing this
algorithm with other algorithms. It is important to emphasize that TRUST has a number
of other advantages. First, while the algorithm is not guaranteed to find the global min-
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na in multiple dimensions, it does have a global descent property. It is thus practically
iseful for multi-dimensional problems. For n-dimensional functions, the algorithm can be
.omputed as the parallel solution of n weakly coupled differential equations. Consequently,
he complexity and computational cost of the algorithm is not strongly dependent upon the
yroblem dimensionality. Second, this formulation naturally leads to a simple and compu-
ationally efficient stopping criterion. Finally, TRUST is robust with respect to the basic
dgorithm parameters. Necessary conditions on the algorithm parameters were derived in
Jubsection 2.3.4.

The TRUST algorithm has already been employed, with encouraging results, to robotics
applications [BCB91, CB92]. This thesis has introduced the adaptation of the TRUST
formalism to artificial neural networks in order to eliminate the local minima problem
during learning (Chapter 3 and [CBB93b]). Here, TRUST (or Global Descent) provides
a simple extension to the Backpropagation algorithm by replacing the gradient descent
method during training.

Testing Global Descent for common benchmark functions of the artificial neural net-
work literature demonstrate that Backpropagation associated with Global Descent escapes
encountered local minima, and in most cases converges to the globally minimal solution
(Section 3.3).

Furthermore, the structure of the TRUST formulation makes it suitable for implemen-
tation in parallel Analog VLSI circuits. We have designed, fabricated and tested analog
circuits for terminal repeller and gradient descent (Chapter 4), which are the main tools of
the TRUST dynamical system.

Finally, by employing additional control logic to these circuits, a global optimization cir-
cuit (Section 4.3) is designed that implements the one-dimensional TRUST algorithm. This
circuit, as demonstrated with the simulated experiments, can locate the global minimum of

arbitrary one-dimensional functions with substantial speed enhancement.
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Appendix A

Test Functions and Relevant
Parameters used in Benchmark

Studies

The functions used in the benchmark studies of Section 2.6 are listed below. For each
function, we also summarize in tabular form the relevant parameters used in the benchmark
simulations. In these tables, ; and Zy are respectively lower and upper bounds of the
domain of interest D; Z7 is the initial condition; € is the TRUST perturbation, At is the
Euler integration step size, and k is the repeller power. In all simulations, TRUST used the

same values for D, #1 and At, as the methods to which its performance is compared.

Function 1. Two-Dimensional 6-Hump CambelBack Function
flz1,29) = [4 — 212 + (21/3)]23 + 2122 + (-4 + 423)73.

Number of local minima : 6;

number of global minima: 2;
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global minimum found by TRUST:

(z160, T2m] = [0.08983, —0.71265],  for (i), (i),

[leM,(E2GM] = [——0.08983,0.71265], for (1), (41¢).

Table A.1: Benchmark parameters for Function 1.

Trial | 247, | Z1v | ToL | T2v | a1 | T2l €1 e | At] k
('L) -3 3| -2 2| -3.0}-2.0 0.01 0.01:0.01] 10
(Z’L) -3 3 -2 2 3.0 20! -0.01|-0.01{0.01]10
(7,’1,’1,) -3 3] ~2 21—-2.01|—-1.0 0.01 0.01 1 0.10 | 10
(Z"U) -3 31 =2 21 -1.6 0.9 0.01; -0.01(0.10 10

Function 2. Two-Dimensional Shubert Function

5 5
f(z1,z2) = {Zicos[(i + D)z + z]} {Zicos[(i + Dzs + z]}

=1 t==1

Table A.2: Benchmark parameters for Function 2.

Trial | 217, | Ziv | Tor | Zov | Z11 | T2l €1 €9 Atk
(’I,) -10 10| —10 10 -101| -10 0.1 0.0110.0004 | 100
(’I,’I,) -10 10| —10 10| -10{ —-10 0.1} 0.01 ] 0.0004 | 500
('I,Z’L) -10 10| —-10 10! 1.0 1.01—-0.01]| —-0.1]0.0004 | 500

Number of local minima : 760;
number of global minima: 18;

global minimum found by TRUST:

(#1600, T2am] = [—7.08351, —7.70831], for (i), (ii),

[z1aM, zagm] = [—0.80032, —1.42513], for (412).



Function 3. N-Dimensional Test Function

N
f(%) = %Z (zj. — 1625 + 5m3~) ,

Number of local minima : 2V ;

number of global minima: 1;

global minimum found by TRUST:

z= [1:13332, T PR 7$N]

=1

[Zom] = [—2.90354, —2.90354, - - -, —2.90354]

Table A.3: Benchmark parameters for Function 3.

Trial | ¥V L | T [:?:'1] [é] At k
(%) 1} -5 5 (5] [-0.01] | 0.02 | 10
(i) | 2| -5| 5| [55]| [-0.01,-0.01]]0.02|10
(iii) | 4| -5 5] [5,..,5]| [-0.01,..,—0.01] | 0.02 | 10
(w) |10| =8| 5][5,...,5]| [-0.01,...,—0.01] | 0.02 | 10
Function 4. Two-Dimensional Test Function
f(z1,22) = 0.52% + 0.5[1 — cos(2z1)] + =3,

Table A.4: Benchmark parameters for Function 4.
Trial | z17 | Tww | ZoL | ZoUu | Z11 [ Z21 | @ €| At | k
(%) -3 3, -3 3| -3 010.01/0.0110.1]10
(22) -3 31 -3 31 -3, -310.01(0.01{0.1}10

Number of local minima : several;
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number of global minima: 1;

global minimum found by TRUST:

[z16Mm, T26M] = [0,0].

Function 5. Two-Dimensional Test Function

f(my,09) = 10722 + 25 — (2} + 23)* + 107 (2 + 23)", n=-m.

Number of local minima : > 3;
number of global minima: 2;

global minimum found by TRUST:

[Zem] = [0, 1.38695], forn =1,
[Zom] = [0,2.60891], forn =2,
[Zam] = {0,,4.70174], forn = 3,

[Fam] = [0,8.39401], forn = 4.

Table A.5: Benchmark parameters for Function 5.

Trial | n | z1 | Zor | Z2U | T11 | T21 €1 € At k
Gy 1] 0] —2| 2| o] 1[oo1]001| 01|10
(7,7,) 21 0| —4 4 0 110.01}0.01 0.01 110
(’1,7,'1,) 31 0 -5 5 0 110.010.01] 0.004}10
(i'v) 4|1 0| -10 10 0 110.01]0.01}0.0006 10

Function 6. The Two-Dimensional Rastrigin Function

f(z1,32) = 7 + 25 — cos(18z;) — cos(18z).
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Number of local minima : 50;

number of global minima: 1;

global minimum found by TRUST:

[Z1eM, z26Mm] = [0, 0].

Table A.6: Benchmark parameters for Function 6.

Trial

T1L

U

2L

TaU

T11

T2l

€1

€2

At

-1

1

-1

1

-1

-1

0.01

0.01

0.01

10

Function 7. Two-Dimensional Branin Function

f(z1,22) = (3?2 -

Number of local minima : 3;

number of global minima: 3;

global minimum found by TRUST:

5.1
472

[z16M, T = [3.14158,2.27505).

Table A.7: Benchmark parameters for Function 7.

) 5 2 1
._~$§ + ;fﬂl — 6) +10(1 — g) cos z1 + 10.

Trial

T1L

T1U

T2l

LU

1]

Tar

€1

€2

At

)

10

0

15

-5

0

0.01

0.01

0.1

10

Function 8. One-Dimensional Test Function

f(z) = sinz + sin(10z/3)z + logz — 0.84z
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Number of local minima : 3;
number of global minima: 1;

global minimum found by TRUST:

zapm = 5.19978.

Table A.8: Benchmark parameters for Function 8.

Trial | zp, {2y | 7| €| At] k
2717512710.1,0.16 |10

Function 9: One-Dimensional Test Function
5
f(z)=- {E sin[(¢ + 1)z + z]} .
=1

Number of local minima : 20;
number of global minima: 3;

global minimum found by TRUST:

zom = —6.72004, for (3),

Tem = 5.84633, for (4i).

Table A.9: Benchmark parameters for Function 9.

Trial Tp | Ty s €y At k
('L) —10| 10} -10 0.1]10.06|10
(’I,’I,) —-101} 10 10 —-0.1,0.04 110
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