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Abstract

This thesis 1s divided in two parts: in Part I, using a time-periodic pertur-
bation of a two-dimensional steady separation bubble on a plane no-slip bound-
ary to generate chaotic particle trajectories in a localized region of an unbounded
boundary-layer flow, we study the impact of various geometrical structures that
arise naturally in chaotic advection fields on the transport of a passive scalar from
a local “hot spot” on the no-slip boundary. We consider here the full advection-
diffusion problem, though attention is restricted to the case of small scalar diffusion,
or large Peclet number. In this regime, a certain one-dimensional unstable manifold
is shown to be the dominant organizing structure in the distribution of the passive
scalar. In general, it is found that the chaotic structures in the flow strongly influ-
ence the scalar distribution while, in contrast, the flux of passive scalar from the
localized active no-slip surface is, to dominant order, independent of the overlying
chaotic advection. Increasing the intensity of the chaotic advection by perturb-
ing the velocity field further away from integrability results in more non-uniform
scalar distributions, unlike the case in bounded flows where the chaotic advection
leads to rapid homogenization of diffusive tracer. In the region of chaotic particle
motion the scalar distribution attains an asymptotic state which is time-periodic,
with the period same as that of the time-dependent advection field. Some of these
results are understood by using the shadowing property from dynamical systems
theory. The shadowing property allows us to relate the advection-diffusion solution
at large Peclet numbers to a fictitious zero-diffusivity or frozen-field solution - the
so-called stirring solution — corresponding to infinitely large Peclet number. The
zero-diffusivity solution is an unphysical quantity, but it is found to be a powerful

heuristic tool in understanding the role of small scalar diffusion. A novel feature in
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this problem is that the chaotic advection field is adjacent to a no-slip boundary.
The interaction between the necessarily non-hyperbolic particle dynamics in a thin
near-wall region with the strongly hyperbolic dynamics in the overlying chaotic ad-
vection field is found to have important consequences on the scalar distribution; that
this is indeed the case is shown using shadowing. Comparisons are made throughout
with the flux and the distributions of the passive scalar for the advection-diffusion
problem corresponding to the steady, unperturbed, integrable advection field.

In Part II, the transport of a passive scalar from a no-slip boundary into a
two-dimensional steady boundary-layer flow is studied in the vicinity of a laminar
separation point, where the dividing streamline — which is also a one-dimensional
unstable manifold — is assumed to be normal to the boundary locally near the
separation point. The novelty of the ensuing convection-diffusion process derives
from the convective transport normal to the active boundary resulting from con-
vection along the dividing streamline, and because of which the standard thermal
boundary-layer approximations become invalid near the separation point. Using
only the topology of the laminar, incompressible separated flow, a local solution of
the Navier-Stokes equations is constructed in the form of a Taylor-series expansion
from the separation point. The representation is universal, without regard to the
outer inviscid flow and it is used in obtaining an asymptotically exact solution for
the steady scalar distribution near the separation point at large Peclet number,
using matched asymptotic expansions. The method demonstrates the application
of local solutions of the Navier-Stokes equations in seeking asymptotic solutions to
convection-diffusion problems. Verification of the asymptotic result is obtained from
numerical computations based on the Wiener bundle solution — which is particularly

well-suited to the large-Peclet-number transport problem.
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PART 1

Diffusion of a passive scalar from
a no-slip boundary into a two-dimensional

chaotic advection field



Chapter 1

Introduction

The kinematics of a perfect or non-diffusive tracer is purely advective. In other
words, perfect tracer particles will follow the pathlines of the flow. The disper-
sion of these particles is then directly related to the fluid particle trajectories and,
in Eckart’s terminology (see Eckart 1948), is called “stirring.” Given some initial
distribution of perfect tracer particles, how this distribution evolves in time is en-
tirely dependent on the dynamics of particle motion in the flow, and therefore the
associated transport issues are often best understood using the global geometri-
cal viewpoint of dynamical systems theory. In stirring by chaotic advection (Aref
1984), the individual particle trajectories might be very complicated, but the under-
lying geometrical structures such as invariant manifolds and homoclinic/heteroclinic
tangles provide a dynamical template that in certain cases considerably simplifies
questions related to the transport or dispersion of particles (e.g., see Wiggins 1992).
A more realistic scalar impurity will, however, undergo both advection and diffu-
sion. Thus the time-evolution of some given initial scalar field will be dictated not
only by the purely fluid-mechanical stirring process but also by the generally slower

process of molecular diffusion of the now diffusive tracer, which is called “mixing”
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(Eckart 1948). In the Lagrangian framework, the kinematics of a diffusive tracer has
a Brownian-motion-component in addition to the advective component due to the
fluid motion, and tracer particles no longer follow the pathlines of the flow. That
raises several fundamental questions regarding the role of the underlying geomet-
rical structures in the transport of a passive scalar and the manner in which they
influence the time-evolution of a scalar field, particularly at small scalar diffusivi-
ties. Moreover, scalar advection in chaotic flows creates fine-scale structure since
the attendant strong stretching and folding operations result in arbitrarily small
striation thicknesses (Aref & Jones 1989, Jones 1991), so that even asymptotically
small diffusivity cannot be ignored. It is therefore also a matter of considerable
practical importance to incorporate small scalar diffusion. Among other considera-
tions are the relationship between the stirring and mixing processes, in particular
how small scalar diffusion affects the zero-diffusivity solution corresponding to pure

advection.

An important isssue which has been mostly ignored in the existing literature
is the transport of a passive scalar from an active no-slip boundary into a chaotic
advection field, even though heat and mass transfer from stationary surfaces is
common in engineering applications. A stagnation point (or, fixed point) is called
hyperbolic if the velocity field expanded about the stagnation point has no eigen
values with zero real part. The linear part of the velocity field expanded about
any stagnation point on the no-slip boundary has zero eigen-values, and therefore
every point on the no-slip boundary is non-hyperbolic. The non-hyperbolicity of the
stagnation points on a no-slip boundary makes analysis difficult. Further, stirring,
by itself, becomes meaningless since diffusion is essential for “lifting” heat or a
passive impurity from the active no-slip surface. Given these complications, it is

not clear how the geometrical structures in a chaotic advection field adjacent to an
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active no-slip surface can influence the time-dependent distribution of the scalar
field as the scalar impurity diffuses into the flow. Our objective is to investigate
some of these issues using a simple two-dimensional time-periodic separation bubble

with chaotic particle trajectories, over a plane stationary surface.

We use a method devised by Perry & Chong (1986a) to obtain a simple Taylor-
series representation of a chaotic separation bubble which is also an asymptotically
exact solution of the Navier-Stokes and continuity equations, close to the origin of
the series-expansion. The method relies on the availability of sufficient number of
topological constraints (Perry & Chong 1986a) and is therefore particularly well-
suited to study steady two- and three-dimensional separated flows (Perry & Chong
1986a, Tobak & Peake 1982, Dallmann 1988) on account of their readily available
topological features such as location and stability-type of stagnation points, loca-
tion of points of zero shear-stress on the no-slip boundary, angles of separation and
attachment, etc. Our scheme is to construct a low-order series-representation of a
steady two-dimensional separation bubble at a plane wall and then introduce time-
periodic terms to obtain an unsteady bubble with chaotic particle trajectories, such
that the representation satisfies incompressibility and remains an asymptotically
exact solution of the now time-dependent Navier-Stokes equations. The truncated
series-solution constitutes a simple time-periodic perturbation of an integrable dy-
namical system. There are methods (Perry & Chong 1986a) for testing the accuracy
of a truncated series-solution over any given region of the flow, but we will not con-
cern ourselves with identifying a domain of applicability of the series-solution since
attention will be mostly confined to regions close to the origin of the expansion.
Only a localized portion of the plane wall is considered as an active surface such

that finite-time distributions of the scalar field remain confined near the origin of

the series-expansion.
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The relative importance of advection versus diffusion is measured by the Peclet
number, which is the ratio of the diffusion and advection time-scales. We are in-
terested in the regime of small scalar diffusion, or more precisely, the regime where
the diffusion time-scale is much greater than the advection time-scale, which means
large Peclet numbers. At large Peclet numbers, the scalar advection-diffusion prob-
lem is best tackled by random-walk methods based on the theory of Brownian
motion (Wang & Uhlenbeck 1945), and we develop numerical implementations of
these methods to solve for the time-dependent scalar field. We introduce a ficti-
tious “zero-diffusivity” solution as a heuristic tool in demonstrating the role of the
underlying geometrical structures in the flow and in interpreting the role of slow
mixing as a local smoothing of fine-scale structure in the scalar field, created by the

stirring process.

The hyperbolic invariant set (Smale 1967) associated with Smale horseshoes
(Smale 1967) is the prototype of a chaotic dynamical system, and the shadowing
lemma (Bowen 1975) from dynamical systems theory is one of the fundamental
results for the dynamics on a hyperbolic invariant set. Recent work of Klapper
(1992a) has used shadowing theory (Anosov 1967, Bowen 1975) to study the small-
diffusivity scalar advection-diffusion problem. Asymptotic results were obtained for
the restricted class of uniformly hyperbolic systems, and therefore apply to typi-
cal chaotic processes in only a non-rigorous sense. Justification (Klapper 1992a)
for its validity is based on existing numerical evidence (Hammel, Yorke & Grebogi
1987, 1988, Grebogi et al. 1990) that typical chaotic dynamical processes have the
shadowing property. In a rough sense, a dynamical system that has the shadow-
ing property is guaranteed to have a deterministic orbit that remains close to any
noisy orbit with bounded noise, where how “close” depends on the noise level. The

shadowing property has been used previously to reduce bounded additive noise in
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orbits generated by chaotic dynamical systems (Hammel 1990, Farmer & Sidorowich
1991). That the shadowing property can be used to treat scalar diffusion is not sur-
prising since diffusion can be regarded as a noisy component in the kinematics of a
diffusive tracer. We use these ideas to develop a qualitative understanding of our
random-walk solutions of the time-dependent scalar field and the interplay between
the stirring and mixing processes. It is found that increased chaotic advection pro-
duces more localized and non-uniform distributions, even in regions of the flow that
have no islands of stability bounded by invariant closed curves; near integrability,
such curves will be provided by Kolmogorov-Arnold-Moser (KAM) tori and island
bands, but as one perturbs the dynamical system further away from integrability
there are no surviving invariant closed curves, and we choose such a parameter-
regime to emphasize our result. The phenomenon contrasts sharply with that in
the case of chaotic advection in bounded domains where the chaotic particle mo-
tion promotes rapid homogenization (Jones 1991) of diffusive tracer, giving rise to
an asymptotically uniform scalar distribution. Reasons for this phenomenon are
sought using shadowing theory. For the sake of comparison we also present compu-
tations of the scalar field for a set of parameters at which islands bounded by KAM
tori occupy a significant portion of the flow region above the plane active surface,
though the presence of large islands of regular particle motion precludes the possi-
bility of applying shadowing theory. The form of the asymptotic distribution and
the time-scale over which it is attained is also intimately linked with the geometrical
structures in the flow, and the connection is made explicit by considering the details
of exact dynamical trajectories that “shadow” the “noisy” Wiener trajectories of a
diffusive tracer. We also show how the presence of the plane wall and the conse-
quent regular dynamics of particles in a narrow near-wall region strongly influences

the time-evolution of the scalar field, thus underlining the role of non-hyperbolicity
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at the wall. In engineering applications the flux of passive scalar, integrated over
the active surface, is a quantity of considerable practical importance; our computa-
tions show it is largely independent of the details of the chaotic advection-diffusion
phenomena above the wall. Dominant balance arguments in the thermal boundary-
layer adjacent to the active no-slip surface further clarify this issue.

Part I of this thesis is organized as follows. In Chapter 2 we construct an
approximate representation of a chaotic separation bubble over a plane wall. In
Chapter 3 we set up the scalar advection-diffusion problem. Numerical schemes
are developed to obtain finite-time solutions of the large-Peclet-number or small-
diffusivity advection-diffusion problem. In Chapter 4, a “zero-diffusivity” solution
is constructed by solving for the scalar field in the thermal boundary-layer at the
wall at small time and treating this as an “initial distribution” of perfect tracers
which is subsequently stirred but not mixed by chaotic advection. In Chapter 5 we
apply shadowing theory to our scalar advection-diffusion problem. We end with a

discussion and concluding remarks in Chapter 6.



Chapter 2

Time-periodic separation bubble at a plane wall

We first construct a viscous, incompressible, two-dimensional flow that has the
topology of a steady separation bubble at a plane wall in the form of a Taylor-
series expansion from a point on the no-slip boundary. The construction suggests
ways in which time-dependent terms can be introduced in the vector field such
that one obtains an asymptotically exact representation of a time-periodic bubble
with chaotic particle trajectories. The advantage of the Taylor-series expansion
method (Perry & Chong 1986a) is that one can generate boundary-layer flows,
especially separation patterns with desired topological features, as local Taylor-
series expansions to arbitrary order, without regard to the outer inviscid low. The
method assumes the solutions of the continuity and Navier-Stokes equations for
incompressible flow are smooth. For considerations related to the existence and

uniqueness of smooth solutions, see Ladyzhenskaya (1975).

2.1 Construction of a local Taylor-series representation of
the flow field

A point on the plane wall is chosen to be the origin for two-dimensional rect-
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angular coordinates (z1, T ), where z; is a coordinate along the wall and z; is the
coordinate normal to the wall. The velocity vector u(z,t), = = (z1,z2) € R' x R¥,
u € R?, is written in the form of an asymptotic third-order expansion from the
origin

u; = A; + Az + Aijrzjee + Az + 0(4), (2.1)
where O(m) represents a homogeneous polynomial of degree n > m. The 1, j,k,..."s
can take values of 1 or 2, since the flow is two-dimensional. The coefficients A;,
A;j, etc. are functions of time if the flow is unsteady, and they are symmetric
tensors in all indices except the first. The number of independent coefficients, N,
in our two-dimensional third-order expansion is easily determined (Perry & Chong
1986a), N. = 20. The basic idea behind the method is to force the tensor coefficients
Ajjr..’s to satisfy the Navier-Stokes and continuity equations, as well as boundary
and symmetry conditions. The number of unknown independent tensor coefficients
is greater than the number of equations generated from the Navier-Stokes equations,
continuity equations and no-slip constraints, and the difference between the number
of unknown coefficients and the number of connecting relationships grows rapidly
with increasing order of the expansion. The “extra” coefficients are determined
using the topological constraints that are prescribed by the desired topology of the
separation pattern. The greater the order of the expansion, the more is the number
of topological constraints required to close the problem.

Applying the no-slip constraint at the wall (z; = 0) on the third-order expan-
sion of (2.1) specifies eight independent tensor coefficients to be identically zero.
The equation of continuity yields six relationships which, combined with the no-slip
constraint, forces yet another three coefficients to vanish, leaving the following three

relationships:

Ar12 + A2 =0, (2.2a)
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Arniz + A2212 =0, (2.20)

Aj122 + Ag22 = 0. (2.2¢)

Following Perry & Chong (1986a), we specify the boundary vorticity w(z, = 0) to

vary according to the equation

w(zy, =0) = _ou = —K(z} — 22), (2.3)

ax2 ro=0

with K > 0, thus generating two points of zero shear-stress on the wall at (—z,,0)
and (4z,,0), which act as a point of separation and a point of attachment, respec-
tively. We note that in the time-dependent flow the parameter K can be a function

of time. From (2.1) and (2.3) one obtains
A = “‘Kffz, A2 =0, A2 = K/31
and using (2.2a) and (2.2b) gives,
Agga =0, Ago1z = —K/3.

The time-dependent Navier-Stokes equations yields one ordinary differential equa-

tion (see Perry & Chong 1986b)

A = 6v[2A1112 + Ar222], (2.4)

where v is the kinematic viscosity of the fluid. Four independent coefficients are still
unspecified. Only two connecting relationships are available : (2.2¢) from continuity,
and (2.4) from the Navier-Stokes equations. Expressing the asymptotic expansion

of (2.1) in terms of the known and unknown coefficients gives

Uy = —I‘::Eimg + Alggzg + I\,$§$2 + 3A1122$1$3 + Alzggmg + 0(4)3

(2.5)
Ug = —-lexg + A2222£L‘g + 0(4)
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Consider first the time-independent problem. At steady-state, (2.4) yields
A1222 - —‘21\’/3

There are now only two independent unknown coefficients. These are specified
using the two topological constraints that (2.5) must satisfy in order that the steady
flow field has the topology of a symmetrical (about the origin) separation bubble,
and these are : (1) symmetry condition on uq, requiring ug(zy = 0,z2) = 0, (2)
elliptic stagnation point at (0,2%), 0 < 23 <« 1; a stagnation point on the plane is
called elliptic if the velocity field linearized about the stagnation point has a purely
imaginary pair of eigen values. Condition (1) specifies Ajg92 = 0, and it follows
from (2.2¢), A1122 = 0. Substituting these in (2.5) and applying condition (2) gives,
— K22 4 Ajgpal — 2—3596;2 =0,
— Ko 4+ 24,5508 — 2K} >0,
which yields an elliptic stagnation point on the z;-axis, located at z3 € (0, (3/2)%3:3)
for Ayas € ((8/3)3Kx,,00). As Ajgy — oo, the elliptic stagnation point approaches
the wall, i.e., z5 — 0, and the bubble shrinks closer to the wall. As Ay —
(8/3): Kz, from above, z§ — (3/2)%z, from below and the bubble grows in size.
For A2, < (8/3)%I{w37 there are no stagnation points in the entire domain of the
flow. We note that for Ajz; € ((8/3)2 Kz,,00) there is also a hyperbolic stagnation
point or saddle located at (0,Z2), and 7o € ((3/2)%1:3,00); as Ayop — 00, Tg —
oo and the separation between the two stagnation points is maximum, while as
A1ps — (8/3): Kz, from above, &y — (3/2)%z, from above, so that at Ajgy =
(8/ 3)%1'\’ z, the hyperbolic and elliptic stagnation points coalesce, and disappear as
A9 decreases below (8/3)151\’:1:3. At Ay92 = 3Kz, the elliptic stagnation point
is located at (0,0.3625). The hyperbolic stagnation point or saddle is located at

(0,4.1374). It is therefore sufficiently far away from the wall to have any bearing
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on passive scalar transport close to the wall, and is ignored hereafter. With this
choice of A;q9, the time-independent velocity field is completely specified
2 - 2 2 2 -3
uy = —Kzize +3Kz,25 + Kxjzg — 3Kz + 0(4),

(2.6)
Ug = -—I{CI)]S(I% + 0(4),

and is a low-order approximation of a steady two-dimensional separation bubble
at a plane wall. By varying the coefficient A;,,, the size of the steady separation
bubble can be varied with important consequences on the associated advection-
diffusion problem, and is the subject of §3.6. At present we continue with our
choice of Aj99 = 3Kz,. The streamlines (or pathlines) corresponding to the steady
velocity field of (2.6) are shown in figure 2.1. From a dynamical systems viewpoint,
the phase space of (2.6) has a heteroclinic connection %, between the point of
separation and the point of attachment, separating bounded and unbounded motion,
where 1y, is the value of the time-independent stream function (obtained below)
on the separatrix. Introducing a time-periodic perturbation in (2.6) is expected to
destroy this degenerate structure, giving rise to chaotic particle motion. An obvious
way is to break the symmetry in the steady state. We let Aqq192(t) = K sin(wt).
Continuity requires Agggq(t) = —K 3sin(wt). The remaining coefficients are left
unchanged. From (2.4), K remains independent of £ and hence all remaining tensor
coefficients are also time-independent. Nondimensionalising, u; — u;Kz3, z; —
Tz, t = t/K2?% w — wKz?, the time-dependent velocity field becomes
Uy = —xq9 + 373 + 2lzy — g-:cg + 3Bz, 22 sin(wt) + 0(4),

(2.7)
ug = —zy25 — B sin(wt) + O(4).

The stream function 1 is easily obtained,

2 2.2 4
1

P(zy,20,1) = ——3:2—2 + 25 + z ;32 - —1162 + Bz zy sin(wt) + O(5). (2.8)
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Truncated to third order, (2.7) can be expressed in the form
u(z,t) = f*(2) + Bg"(z) sin(wt), (29)

where f* = (ff,f3) = (22 + 32} + zlay — 32}, —zi2}), ¢* = (gf,9}) =
3z,z%, —z2), and B can be considered as the perturbation amplitude, while w
2 2 P p

is the frequency of the perturbation.

2.2 The chaotic advection field

In the context of dynamical systems theory, the velocity field of (2.9) is a
time-periodic perturbation of a planar Hamiltonian vector field, where the stream
function of (2.8) plays the role of the Hamiltonian. The analysis of the global
structure of the flow is most clearly carried out by studying the associated Poincaré
map, which is the time-T map obtained by considering the discrete motion of points
in time-intervals of one period T of the perturbation, and since the perturbation
is also Hamiltonian the Poincaré map is area preserving. In this case one would
expect Smale horseshoes, resonance bands and KAM tori to arise in the phase space
of (2.9), which is also the physical space of the flow. The associated Poincaré map
or time-T map, T = 2n/w, shows highly irregular motion in the bubble-region
indicating chaotic particle trajectories: two Poincaré maps at two different values
of the perturbation amplitude, # = 0.6 and 0.2, but perturbation frequency fixed
at w = 0.72, are shown in figures 2.2(a) and (b) respectively. For the perturbation
parameters considered here there are clearly no surviving ICAM tori enclosing the
core-region of the bubble, where “core-region” refers to the circulation region or
region of closed streamlines in the steady, unperturbed bubble. Notice further that
the surviving KAM islands occupy a small fraction of the bubble-region; indeed,
none are detected in the Poincaré map for the case with § = 0.6 (figure 2.2a).

For certain values of the perturbation parameters there are surviving ICAM tori
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enclosing the core-region of the bubble as well as island bands, and one such case
will be considered in Chapter 3.

However, despite the numerical evidence in figures 2.2(a,b), the highly irregu-
lar particle motion does not amount to a mathematical proof of chaotic dynamics
of the Smale-horseshoe type. Owing to the non-generic nature of the stagnation
points on the no-slip boundary, a mathematical proof showing existence of chaotic
dynamics seems difficult. From the dynamical systems viewpoint, our problem is
non-generic because every point on the no-slip boundary is a non-hyperbolic stag-
nation point, despite the fact that it is a commonly encountered situation in fluid
flows. Consequently, the mathematical theorems (see Wiggins 1990, 1992) proving
existence of chaotic dynamics do not apply ; we will address these issues again in
Chapter 5.

For the case of hyperbolic stagnation points the existence of stable and unstable
manifolds is familiar, but the non-hyperbolic case requires special consideration. In
the unperturbed (f = 0) integrable system, the bubble has a point of separation,
denoted by p~, a point of attachment, denoted by p*, and a heteroclinic connection
¥y, between p~ and pt. The points p™ = (+1,0) and p~ = (—1,0), which are the
points of zero shear-stress on the wall, are non-hyperbolic stagnation points. The
standard scheme of introducing the phase of the periodic perturbation in (2.9) gives

an autonomous vector field

&= f*(z) + Bg"(x)sin(¢),

) (2.10)
¢ =w,

where the phase space of the autonomous system is now R? x §!. For 3 = 0, when

viewed in the three-dimensional phase space R? x S!, p* and p~ become periodic

orbits

YE() = (pT 9(2) = wi), (2.11)
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with a two-dimensional stable and two-dimensional unstable manifold respectively,
denoted by W*(yt(t)) and W*(y~(t)). Therefore, W*(y*(¢)) and W* (v~ (t)) coin-
cide along a two-dimensional heteroclinic manifold, I'y. We note that the invariant
manifold theorem (see Theorem 4.1, Hirsch, Pugh & Shub 1977) for the persistence
of normally hyperbolic invariant manifolds and the persistence and smoothness of
their stable and unstable manifolds (at sufficiently small 3) does not apply to v£(t);
in our problem, persistence of the invariant manifolds is decided by computation
of the corresponding invariant manifolds of the associated Poincaré map, which we
shall define momentarily. Assume for now that the periodic orbits y%(#) of the sus-
pended system (2.10) at 8 = 0, persist for 8 # 0. We denote the perturbed periodic
orbits as fyﬂi(t). It shall be seen in Appendix C that in fact vgz(t) = v%(t), and is
closely related to the fact that the points of zero shear-stress on the wall remain
fixed at pT at all times; it is easily verified from (2.9) that for 8 # 0, p* persist
as the points of zero shear stress on the wall. Assuming W*(y*(¢)) and W*(y™(¢))
persist for 3 s 0, the stable and unstable manifolds of 7;(15) and v4 (1), denoted by
we (7; (t)) and W*(y4 (%)) respectively, will generically not coincide. The Poincaré
map is defined as a global cross-section in the usual way,
P} :T? — £°,
(21(8), 22(8)) +— (z1(& +27), 22($ + 27)).
The intersection with £% of the stable and unstable manifolds of 73'(15) and 75 ()

respectively are denoted as

W5(8) = We(v (1)) N T°,

W§(6) = W*(v5 (1)) N 5%,
The unstable manifold of p~ for the Poincaré map corresponding to the cross-
section ¢ = 0, Py = Pg)zo, denoted W/’j‘ = IVE((;; = 0), is computed for two

different values of the perturbation amplitude, 5 = 0.2, 0.6, keeping the frequency
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of the perturbation fixed at w = 0.72, and these are shown in figure 2.3(a) and (b)

respectively.

In physical terms, the time-periodic perturbation in (2.9) that leads to bubble
break-up and chaotic trajectories in the viscous boundary-layer can be attributed
to an oscillatory outer inviscid flow. In particular, it should be noted that the
chaotic advection field of (2.9) does not arise from any inherent oscillatory instability
in the equations of motion at large Reynolds number but, instead, arises from
an external forcing presumably caused by the outer inviscid flow. The Reynolds
number, Re = Kz*/v, for our boundary-layer flow is arbitrary, though it must be
noted that the region of accuracy of the truncated series-solution shrinks as the

Reynolds number is increased (Perry & Chong 1986a).

Finally, there are alternative schemes of introducing a time-periodic perturba-
tion in (2.6) such that the time-dependent velocity field remains an asymptotically
exact solution of the Navier-Stokes and continuity equations, and again gives rise
to chaotic particle trajectories; there is of course no unique representation of a two-
dimensional chaotic advection field adjacent to a no-slip boundary. However we
shall show that the qualitative aspects of the associated passive scalar advection-
diffusion problem depends primarily on certain generic structures in these chaotic
advection fields, regardless of the specific form of the equations giving rise to the
chaotic particle motion. Section 3.5 deals with this issue by considering an alterna-

tive local representation of a chaotic advection field.

2.3 The Melnikov function

Both, for the Poincaré maps displayed in figure 2.2 and the unstable manifolds
displayed in figure 3.3, the frequency of the perturbation w was chosen to be 0.72.

This choice was based on the Melnikov function which gives some indication as to
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the value of the perturbation frequency at which the chaotic particle motion can
be expected to be the most widespread, albeit at small perturbation amplitudes.
Melnikov’s method is a global perturbation technique for showing the existence of
transverse homoclinic/heteroclinic orbits arising from the transversal intersection
of stable and unstable manifolds of certain normally hyperbolic invariant sets. The
method was originally (Melnikov 1963) developed for time-periodic perturbations
of an autonomous planar vector field having a homoclinic connection at a hyper-
bolic fixed point, in which case the existence of transverse homoclinic orbits implies
the complicated dynamics associated with Smale horseshoes. We use Melnikov’s
method below to show transversal intersection of W3(¢) and Wl‘;((j_)) However,
in our case this does not prove the existence of chaotic dynamics of the Smale-
horseshoe type owing both to the non-hyperbolicity of p* and p~, as well as the
invariance of the wall, the latter implying a non-transverse heteroclinic cycle. While
the numerical evidence suggests this type of chaos exists in this situation, there are
no mathematical theorems to this effect. For applications of the Melnikov function
in studies of chaotic dynamics in similar situations, see Weiss & Knobloch (1989),
Rom-Kedar, Leonard & Wiggins (1990), and Camassa & Wiggins (1991).

The Melnikov function is a signed measure of the distance between Wg(gg)
and Wé‘(qg) Melnikov’s theory, however, requires not only persistence but also
smoothness of W g(gi;) and Wg(gg), for which we have no analytical verification.
Assuming smoothness of W;(&) and W;;(&), Melnikov’s theory can be used to

obtain the following Melnikov function for our problem,
M(7) = A(w) sin(wT), (2.12)
where 7 parametrizes the heteroclinic connection 3, and

“+ oo
Alw) = / gy = f291)(a (1)) cos(wt)dt, (2.13)
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where f* = (f¥, f&) and g* = (g}, g% ) are from the velocity field of (2.9), and ¢°(¢)
is the heteroclinic orbit. For A(w) # 0, it is a straightforward conclusion that W3
and W} do intersect transversely (Wiggins 1990). Details of the derivation of M(r)
can be found in Appendix A. We do remark that the derivation of the Melnikov
function requires careful consideration of boundary-terms that can arise due to the
non-hyperbolicity of p~ and pT (e.g., see Camassa & Wiggins 1991). The variation
of A(w) with w is shown in figure 2.4. We note that the perturbation frequency w
was chosen to be 0.72 in our computations since A(w) is maximum at w = 0.72; it
is desirable to have large A(w) since the width of the chaotic layer increases with
A(w) (Ghosh, Chang & Sen 1992). Moreover, it is evident from figure 2.4 that the
distance between the stable and unstable manifolds falls rapidly as w is increased
beyond 0.72 and for such w, Wb’(é) and W;,‘(&) do not sweep out the entire bubble-
region for any given cross-section ¢. This is certainly true for w = 2.0, which will
be our choice of the perturbation frequency to study the case with surviving KAM

tori enclosing the core-region of the bubble.
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FIGURES

Figure 2.1: Streamlines for the steady two-dimensional separation bubble at a plane

wall, obtained using (2.6).

Figure 2.2: Poincaré map Py for the advection field of (2.9) at w = 0.72 and (a)
B =06, (b) 3=0.2.

Figure 2.3: The unstable manifold W} at w = 0.72 and (a) 8 = 0.6, (b) 8 = 0.2,

Figure 2.4: Variation of amplitude A of the Melnikov function with perturbation

frequency w.
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Chapter 3

Advection-diffusion of a passive scalar at small dif-

fusivity or large Peclet number

A localized portion of the plane no-slip boundary is considered as an active
surface. In the case of heat transfer, the active surface can be considered as a local
“hot spot” at the wall and is modeled as a local step change in temperature with
the step placed symmetrically about the unperturbed bubble. At time t = 0 the
temperature has a dimensionless value of unity at the wall over the dimensionless
interval z; € [—1.5,1.5] and is zero everywhere else on the wall and in the fluid.
The temperature distribution at the wall is maintained externally and serves as a
time-independent boundary condition as heat diffuses from the wall and into the
fluid. Non-dimensionalising time ¢ using the advection time-scale 1/Kz? gives the
familiar evolution equation for the advection-diffusion of a scalar field 8(z,t), which

can be considered as temperature,

Qg——!—u-VG:: L

—V? )
ot Pe 6, (3.1)

where the Peclet number Pe = Kz*%/D, with D the scalar diffusivity. The advecting

two-dimensional velocity field u(z,t) is given by (2.9). The following initial and



boundary conditions
6(zy,29 > 0,0 =0)=0,
6(zy,7 =0,t) =1 — H(|z,| — 1.5),
6(|z1]| = o0, z2 > 0,t) =0,
6(zq1,z9 — 00,t) =0,

with (zy,z2) € R' x R', completely specifies the advection-diffusion problem.
H(-) is the Heaviside step function. In the absence of scalar diffusion the deter-
ministic Lagrangian motion of a passive scalar is described by the velocity field.
Two-dimensional time-periodic flows have been studied extensively using a dy-
namical systems approach (e.g., see Wiggins 1992) and the geometrical structures
that arise naturally in the domain of the flow, such as invariant manifolds, homo-
clinic/heteroclinic tangles, invariant hyperbolic sets and KAM tori are well known.
However, it is still far from clear how these structures influence the transport and
distribution of a passive scalar in the presence of scalar diffusion. Our model prob-
lem provides a convenient framework for understanding some of the transport issues
that arise naturally in such flows. The domain of interest is the flow region imme-
diately above the active portion of the wall and since we will be making frequent
reference to this region, we loosely term it as the “bubble-region.”

Rom-Kedar et al. (1990) considered the transport of a passive scalar in the
absence of scalar diffusion in a similar problem and found the unstable manifold, i.e.,
Wg(q;) as the dominant organizing structure. They considered the evolution of an
arbitrary blob of 