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Abstract

A general recognition framework is presented that consists of multi-resolution pyramidal
feature-extraction and learning paradigms for classification. The system is presented in
the context of the texture recognition task.

In the feature extraction part of the system, an oriented Laplacian pyramid is used as
an efficient filtering scheme to transform the input image to a more robust representation
in the frequency and orientation space. An optimal technique is presented for computing
a steerable representation of the pyramid. Steerability is used to generate a rotation-
invariant input representation.

In the learning stage of the system we focus on a rule-based probabilistic learning
scheme. This information-theoretic technique is utilized to find the most informative
correlations between the attributes and the output classes while producing probability
estimates for the outputs. Both unsupervised and supervised learning are utilized. Apart
from the rule-based approach we experiment with other non-parametric classifiers, such
as the k-nearest neighbor classifier and the Backprop neural-network.

We demonstrate experimentally that our scheme improves significantly upon the state-
of-the-art both in rotation-invariant classification and in orientation estimation. A variety
of applications are presented, including autonomous navigation scenarios and remote-
sensing, as possible extensions for the texture recognition system. A generalization of the
system to face-recognition is discussed.

In the latter part of the thesis, a procedure for creating images with higher resolution
than the sampling rate would allow is described. The enhancement algorithm augments
the frequency content of the image by using a non-linearity that generates phase-coherent
higher harmonics. The procedure utilizes the Laplacian pyramid image representation.
Results are presented depicting the power-spectra augmentation and the visual enhance-
ment of several images. Simplicity of computations and ease of implementation allow for
real-time applications such as high-definition television (HDTV). An initial investigation

is pursued to combine the enhancement scheme with pyramid coding schemes.
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Chapter 1
Introduction

MULTI-RESOLUTION image processing, specifically the pyramid image representation,
is proving to be valuable to the image processing community, with applications in a wide
variety of domains, such as edge-detection [PM90], texture recognition [Tur86, ACBG90,
KG83], motion [AB85, Hee87], stereo and more. Two major advantages can be associated

with the pyramid representation:

e The pyramid provides for an hierarchical image processing scheme which enables the
image analysis to be pursued sequentially from low to high-resolution versions of the

image. This enables efficient image analysis systems. !

e The pyramid can be used as a computationally efficient filtering mechanism to shift
the input representation (of pixels) to a representation in frequency and orientation
space. There is both biological and computational evidence supporting the use of a
bank of orientation-selective bandpass filters to achieve this shift as the front end of

many image-processing tasks.

The multiresolution analysis of images is the common theme throughout this thesis.
In the major part of the work we utilize the pyramid as an efficient filtering scheme and
investigate the pyramid filters characteristics as related to image analysis tasks; specifically
the texture recognition task. In the latter part of the thesis we use the multiresolution
representation to investigate the behavior of images features (specifically image edges)

across scale. We use this to an advantage in a new image-enhancement algorithm.

LEARNING in computer-vision and image-understanding has gained an increasing amount
of interest recently, both from researchers in the learning community and from researchers
involved with the computer vision world. The field is characterized by a shift away from
the classical, purely model-based computer vision techniques, towards data-driven learn-
ing paradigms for solving real-world vision problems. Classical computer-vision techniques
have, to a large extent, neglected learning, which is an important component for robust

and flexible vision systems. Meanwhile, there is real-world demand for automated image

!Real-time implementations are now starting to emerge [van91].
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Figure 1.1: A general recognition framework

handling for scientific and commercial purposes, and a growing need for automated image
understanding and recognition, in which learning can play a key role. Some of the ap-
plications include difficult recognition tasks, remote-sensing imagery analysis, automated
inspection, autonomous navigation systems which use vision as part of their sensors, and

the field of automated imagery data-base analysis.

In the major part of the thesis we concentrate on a general recognition system which
combines pyramid filtering of the input image with learning schemes for classification.
These two building blocks are presented in Fig. 1.1. We are interested in both a good

preprocessing stage and in the following up classification schemes.

IMAGE CODING is just recently being combined with image processing for advanced
image compression schemes (so called “second generation” image coding). This is a second
research topic which is shortly discussed in this thesis. In the growing field of multimedia
applications, image coding is shifting from classical compression schemes, which are based
on sampling the image on fixed tiling, to adaptive coding where coding schemes and image
partition is done locally with the help of a first stage of image analysis (see Fig. 1.2).

In the latter part of the thesis we use the pyramid concepts to an advantage in an
image enhancement scheme. An investigation into combining the enhancement scheme

with pyramid coding schemes is initiated.

Due to the variety of topics covered in this work, we choose to introduce the underlying

concepts and related literature, within each chapter, as we go along. A brief outline of

the thesis chapters follows.
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Figure 1.2: Combining image processing with image compression

1.1 Thesis Outline

In the main part of the thesis we present a general recognition framework that combines
multiresolution pyramidal feature-extraction with learning techniques. The system is pre-
sented in the context of the texture recognition task. In Chapter 2 the multiresolution
pyramid filtering scheme is introduced, and extended, to include an oriented pyramid.
This pyramid allows for a computationally efficient filtering scheme to transform the in-
put image (pixels) to a more robust representation in the orientation and frequency space.
We prove that the defined oriented pyramid spans the orientation space. The recognition
system is described in Chapter 3, within the context of the texture recognition task. We
start by introducing the texture analysis challenge, together with reviewing some of the
many texture classification approaches available in the literature. We then introduce a
rule-based probabilistic learning scheme. This information-theoretic technique is utilized
to find the most informative correlations between the attributes and the output classes (in
the form of “readable” rules) while producing probability estimates for the outputs. We fo-
cus on the rule-based approach and investigate some of its characteristics as well as utilize
other non-parametric classifiers, including the k-nearest neighbor classifier and the Back-
prop neural-network. The recognition system is described and analyzed. State-of-the-art
texture classification results on large texture databases are shown. The texture recogni-
tion system is extended upon in the following chapters. In Chapter 4 we prove that
the oriented pyramid is steerable. We present an optimal technique for deriving the set of
interpolation functions (“steering coefficients”) for a given overcomplete discrete represen-

tation, which enable the shift to a steerable representation. We then show how the oriented
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pyramid, which is 8/3 redundant (and thus more compact than other pyramids previously
used in the literature) can have the property of steerability. The steerability characteristic
enables a transition to a rotation-invariant input representation. State-of-the-art results
for Totation-invariant recognition, as well as high-accuracy results in detecting the ori-
entation angle are presented in Chapter 5. Finally, Chapter 6 presents a collection of
possible future applications for the texture recognition system. These include autonomous
navigation scenarios and remote-sensing imagery analysis. Texture is shown to have a role
in these application domains. Learning is also advantageous, as it provides an adaptive
system, which is robust to noise and changing environments, as well as provides a means
for automated rule generation in the classification tasks. Additionally, we propose that the
recognition system can be generalized to other recognition domains. Initial experiments
in the shape-recognition arena, specifically face-recognition, are presented.

We conclude the thesis with an additional field of image-processing in which we have
found the pyramid representation to be advantageous. The application of the multireso-
lution image representation to image enhancement and coding is covered in Chapter 7.
First, a new enhancement scheme is described, which is based on the Laplacian pyramid.
We conclude with an attempt to combine the enhancement scheme with pyramid coding

schemes and present some initial results in this challenging new field.
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Chapter 2
Multiresolution Image Processing

2.1 Introduction

Multiresolution image representations based on pyramid or wavelet representations are
the topic of much recent research, towards a compact image representation space and
an efficient basis for image analysis schemes. Wavelets are complete and orthonormal
representations, and thus can be advantageous in image data compression [Mal89]. The
pyramid representation, which is a more redundant representation within the wavelet
family, allows for a computationally efficient filtering scheme and provides a framework
for fast computation of image measures, and for implementing coarse-to-fine analysis in
many application domains, including motion, stereo, pattern-matching and more.

In this work, the pyramid filtering scheme is utilized to shift from the pixel representa-
tion of the input image to a more informative and robust representation in the orientation
and frequency space. There is both biological and computational evidence supporting the
use of a bank of orientation-selective bandpass filters, such as the Gabor filters, to achieve
this shift as an initial phase of many image-processing tasks. These tasks include edge-
detection [Can86, PM90], texture recognition [Tur86, ACBG90, KG83], motion-detection
[AB85, Hee87] and more. Orientation and frequency responses are extracted from local
windows of the input image and the statistics of the coefficients characterizing each win-
dow form a local representative feature vector. In the application domains listed above,
we are interested in utilizing the extracted feature vectors as an intermediate step to-
wards orientation analysis, or other higher-level analysis. Our constraints are therefore
in computational efficiency and memory requirements (especially important for real-world
applications), as opposed to achieving a complete self-inverting representation which is
important for coding and reconstruction purposes. It is this distinction which motivates
us into using the Oriented Laplacian pyramid, described below, which is computationally
efficient and compact.

We start this chapter with a short review of the log-Gabor filters (Section 2.2). We then
proceed to describe the pyramid scheme, as a computationally efficient filtering strategy

(Section 2.3). We teview the classical Burt pyramid, and its variation, the FSD pyramid,
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Figure 2.1: log-Gabor filters

in sections 2.3.1 and 2.3.2, respectively. We extend on the classical pyramids to incorporate
oriented filtering, in what we term the Oriented Laplacian pyramid. This is presented in
Section 2.3.3. Finally, we review some of the oriented pyramid characteristics in Section
2.3.4. These include good low-band rejection and computational efficiency. In our final
analysis we use the singular-value decomposition to prove that the oriented pyramid that
we have defined, with 4 oriented components per scale, spans the orientation space. Section
2.4 summarizes this chapter and motivates the use of the pyramid as a filtering strategy,
to shift an input pixel representation to a more robust representation, in the orientation

and frequency domains. This preprocessing step will be utilized in the following chapters.

2.2 The Log-Gabor Filters

Gabor functions are Gaussians modulated by complex sinusoids. In its general form the

2-D Gabor function and its Fourler transform can be written as:

g(gj, Y; Uo, 7-70) — e—($2/2‘7:2:+y2/2‘75)+27"i(u0$+’00y) ; G(’U., 'U) — 6—271'2(di(u—uo)z—kag(u—uo)?) (2.1)
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where 0, and o, define the widths of the Gaussian in the spatial domain and (uo,20)
is the frequency of the complex sinusoid. The above functions are schematically shown in
Fig. 2.1.

The biological motivation for these filters lies in their goodness of fit to the receptive-
field profiles of simple cells in the striate cortex. Computationally, the Gabor filters have
received much attention as they achieve optimal joint resolution in both space and spatial
frequency [Dau85]. The Gabor functions from a complete but non-orthogonal basis set and
any given function can be expanded in terms of these basis functions. Such an expansion
provides a localized frequency description and has been used in image compression.

In order to optimally detect and localize features at various scales, filters with varying
support rather than a fixed one are required. The log-Gabor functions are complex sinu-
soidal gratings modulated by 2-D Gaussian functions in the space domain, and shifted
Gaussians in the spatial frequency domain, where the variance of the Gaussian scales with
the spatial frequency of the sine wave. The orientation space is discretized into equidistant
intervals while the frequency bands are distributed in octave steps, such that the radial
bandwidth doubles for each next high-frequency band. This octave-like organization is
advocated in the case of natural images [Fie87].

The log-Gabor filters form a family of self-similar filter profiles. In this respect they
are related to the wavelet representation. Wavelets are families of basis functions obtained
through dilations and translations of a basic wavelet and such a decomposition provides
a compact data structure for representing information. Here the basic wavelet is a Gabor
function and hence we refer to this decomposition as the Gabor wavelet decomposition.
The log-Gabor filters form a complete but non-orthogonal basis set for the wavelet de-

composition [Woo91].

2.3 The Pyramid Scheme

The use of multiresolution pyramid techniques is rapidly becoming a standard in many
areas of image processing and computer vision. The pyramid provides both a compact
image representation and a structure in which to implement efficient analysis algorithms.

In a pyramid representation the original image is decomposed into sets of low-pass and
band-pass components via Gaussian and Laplacian pyramids, respectively. The Gaussian

pyramid consists of low-pass filtered (LPF) versions of the input image, with each stage
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of the pyramid computed by low-pass filtering of the previous stage and corresponding
subsampling of the filtered output. The Laplacian pyramid consists of band-pass filtered
(BPF) versions of the input image, with each stage of the pyramid constructed by the
subtraction of two corresponding adjacent levels of the Gaussian pyramid.

The history of multiresolution representations of images began in a serious manner
with Burt and Adelson [BA83]. Several variations have been introduced to the Burt and
Adelson pyramid in the last several years. In this work we introduce one such variation
(the F'SD pyramid [And87]), extend to form an oriented pyramid (so called the Oriented

Laplacian pyramid) and investigate this pyramid filters’ characteristics.

2.3.1 The Burt and Adelson Pyramid

The Burt and Adelson pyramid (otherwise termed Reduce Ezpand pyramid) consists of
the following set of operations (Figure 2.2):

Gn+1 = Reduce(Gr)
L, = G,— Ezpand(Gpi1)- (2.2)

The Reduce operation consists of low-pass filtering followed by subsampling the filtered
image (removing every other pixel and every other line to produce an image half as big
as the original in each dimension). The Ezpand operation involves creating from the
reduced image an image the size of the original via interpolation. (e.g., reinserting the
missing pixels with zeroes, multiplying by four and then low-pass filtering). The above
loop continues until a final image G41 is created which is nominally around 8 by 8 pixels
in size.

The sequence of low-pass images, G, is called the Gaussian Pyramid and the se-
quence of bandpass images, L, is called the Laplacian Pyramid. The final lowpass image,
Grna1, plus the set of bandpass images L, form an overcomplete representation of the im-

age. The pyramid is complete as it allows for an exact reconstruction of the original image:

Gpn = Lp + Ezpand(Gp41)- (2.3)
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Figure 2.2: The Burt and Adelson pyramid

The pyramids are overcomplete in the sense that the total number of stored values is 4/3

the number of pixels in the original image (see Section 2.3.4).
2.3.2 The FSD Pyramid

A modified form of the Burt and Adelson pyramid, the FSD (Filter Subtract and Deci-
mate) pyramid, was suggested by Anderson [And87]. It follows the following set of oper-

ations (see Figure 2.3):

Gpi1 = Subsampled GY ;. (2.4)

The low-pass filter (LPF), W, is Gaussian in shape, normalized to have its coefficients
sum to 1. The values used in this work for W, which is a 5-sample separable filter, are
(1/16,1/4,3/8,1/4, 1/16).

The slight modification in the pyramid generation allows for several interesting filtering
characteristics. First, the order of operations is such that the subtraction occurs before

the decimation step, ensuring that aliasing does not get incorporated into the mid-band
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regions of the bandpass images, Ly, and overall providing narrower bandpass character-
istics. Second, the hardware implementation of the Gaussian and Laplacian pyramids is
simplified since the data flow is simpler in a pipeline architecture and only one convolution
element is required [And87]. In the remainder of this work the FSD pyramid is used as
the initial image representation.

In order to extract the orientationally tuned bandpass filtering responses, the oriented
pyramid is formed next. A computationally efficient scheme allows for the generation of
the oriented pyramid based on the already existing Laplacian pyramid. In the remainder

of this chapter, the generation of the oriented pyramid and its characteristics will be

addressed.

2.3.3 The Oriented Laplacian Pyramid

The Oriented pyramid ! is the result of modulating each level of the Laplacian pyramid
with a set of oriented sine waves, followed by another LPF operation using a separable

filter, and corresponding subsampling, as defined in equation 2.5:

Ono = LPF[e@ ML, [z, 4], (2.5)

where O, is the oriented image at scale n and orientation «, ¥ = 27+ y7 (¢ and y
are the spatial coordinates of the Laplacian image), ko = (7/2)[cos8,7 + sin 8,]] and
6, = (r/N)(@—1); (a = 1..N). For future reference, we term the pyramid an ori5
pyramid when using a 5-tap filter as the LPF in (2.5). Using a 3-tap filter (1/4,1/2,1/4)
or a 7-tap filter
(1/64,6/64,15/64,20/64,15/64,6/64,1/64), we get orid and ori7 pyramids, respectively.
Unless otherwise noted we use the 5-tap LPF case.

In this work we use 4 oriented components (N = 4) . From equation 2.5, each level
(n) of the pyramid is thus modulated by the following complex sinusoids where z and y

are indices of the Laplacian image to be modulated:

ml(iE, y) = ei(ﬁ/z)m 3 7n2(;c, y) = ei(wﬁ/4)(1’+y)

ma(z,y) = e /2y ma(z,y) = ei{mV2/4)(v-2) (2.6)

Throughout the thesis we will use the terms Oriented pyramid and Oriented Laplacian pyramid
interchangeably.
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Figure 2.4: Block diagram of the oriented pyramid generation. The input image is repre-
sented via the Gaussian, Laplacian, and Oriented pyramids. The power maps represent
the local statistics of the oriented pyramid’s coefficients, which characterize the image
local-area response to the different orientations and frequencies (see Section 3.3.2).
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Figure 2.5: A set of oriented pyramid filters, O,. Real and imaginary components are
presented, top and bottom, respectively, for n = 0 and o = 1..4.

These four modulators differ only in their orientations, which are 0°,45°,90° or 135°
for mq through ma, respectively. The origin of z and y is taken to be the center of the
image being modulated. Note that the modulating frequency remains constant for each
level of the pyramid.

After modulation, the Laplacian images are lowpass filtered and subsampled. At this

point, the Laplacian images have effectively been filtered by the following set of log-Gabor
filters:

1 .
Ya(a,9) = eI

¢2($ y) = —}—e-(mz+y2)/2+’£(7r\/§/4)(1‘+y)
’ 21

1 . ;
ale,g) = oe” B/

a(e, )= ooV (2.7)

and then subsampled. Fig. 2.4 shows a block-diagram of the orientation-pyramid gener-

ation. A set of oriented-pyramid filters are displayed in Fig. 2.5

2.3.4 The Pyramid Filters’ Characteristics

The filtering operation in equation 2.5 is not the standard one found in the literature.
Usually, the original image is filtered with a set of oriented sinewave modulated Gaussian
filters (as in equation 2.1). This straightforward approach, which is most commonly used,

has two main problems. First, the real, or cosine component of each filter has a nonzero
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value at 0 in the frequency domain. Given the (1/f)? power spectrum of natural images
[Fie87], even a slight DC component can bias all filter outputs. In equation 2.5 the oriented
filters are applied to the bandpass images of the pyramid, L. This ensures good low-
frequency rejection. The second problem is a computational one. The diagonally oriented
filters are non-separable (computational complexity scales as the filter size squared rather
than linearly). In order to accomplish filtering at diagonal directions using separable
filters, a reversal in the order of operations is performed (the image is first modulated
by a sinewave and then LPFed, rather than modulating the LPF prior to convolving
with the image). This reversal gives us separable filters, and it therefore allows for a

computationally efficient filtering scheme.

We next investigate the redundancy of the generated pyramid. The redundancy in the
nonoriented Laplacian pyramid representation is 4/3 . The sizes of the Laplacian bands
go as N2, N2/4, N?/16... The sum of the series is 4/3N2. In the pyramid scheme defined
above, we use four complex oriented filters to create eight oriented bandpass components
from each nonoriented Laplacian level. The eight include the real and imaginary response
maps from each complex oriented filter modulation. Since this involves lowpass filtering
after the modulation, it is possible to subsample these oriented bands by a factor of 2 in
each dimension. We thus create eight bands, each 1/4 of the size of the original nonori-
ented Laplacian. From each band of size M x M, we hold 8 bands of size M 2/4. The total
pumber of pixels at each level therefore increases from M2 to (M2 x8)/4 = M? x 2 leading
to an increase of redundancy by a factor of two. Overall, the redundancy of our oriented
pyramid is 4/3 x 2 = 8/3. This pyramid is more compact than other oriented pyramids
described in the literature which usually exhibit 16/3 redundancy [FA91, SFAH92, Per91].
The tradeoff to the above savings is that the pyramid formation is not self inverting due
to the decimation which allows us to decrease the redundancy. Also, the filter kernels are
not designed to guarantee a perfectly flat power spectrum across orientation. However, as
we shall show in a later chapter (see Chapter 4), the pyramid can be shown to be steer-
able to a good approximation and good results are achieved for rotation invariant texture
recognition. The lack of self inversion is not a problem since these oriented pyramids are

utilized for information processing rather than image coding.

We conclude this chapter with an investigation into the independence characteristics
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of the pyramid filter set. We show that the oriented pyramid as defined in the preceding
section, with the selected oriented components of 45° bandwidth, spans the orientation
space.

Following the work of Perona [Per91], we make use of the singular-value decomposi-
tion (SVD) to investigate the independence of the set of oriented pyramid kernels (as in

equation 2.5). This procedure consists of the following steps:

o Generate 360 oriented pyramid kernels (at a single scale) via equation 2.5 with

N = 360.

o Concatenate each of these 360 kernel matrices into column vectors, and combine

these column vectors to form a large matrix, A.

o Perform the SVD by finding the matrices U, V, and diagonal matrix ¥ such that

A =UxvT, (2.8)

The diagonal matrix ¥ contains the square roots of the positive eigenvalues of ATA. The
number of nonzero eigenvalues in Z is equal to the number of linearly independent column
vectors in A. Upon inspecting the results of the SVD, the first seven singular values, 0y..07,
in ¥ contain approximately 99.5% of the sum of all the singular values (3 o;). This is
shown in Fig. 2.6. The above result indicates that a set of eight filters, i.e., an orientation
bandwidth of 45°, is sufficient to span the 360° of orientation space with more than 99%
accuracy. The four filters, O,; through O,,4, and their conjugate counterparts, which we
hereon term O,s through O, satisfy this requirement. The chosen set of kernels are

shown in Fig. 2.5. The filters’ combined power spectra covers the 360° orientation space,

as can be seen in Fig. 2.7.

2.4 Summary

In this chapter we have reviewed the concepts behind the pyramid multi-resolution image
representation and processing. We extended on the Gaussian and Laplacian pyramids to
define an Oriented Laplacian pyramid which allows for a computationally efficient log-
Gabor filtering scheme. We have analyzed the defined set of 8 oriented filters per scale,

to show that they span the orientation space with more than 99% accuracy.



16

Cumulative sum of singular values

Percent of total sum

; i ; ; ;
2 3 4 5 6 7 8 9 10
Index of Singular Value

601

Figure 2.6: SVD decomposition for the oriented pyramid kernels. The first seven singular
values contain approx. 99.5% of the sum of all the singular values.

Figure 2.7: Power spectra characteristics for the chosen filter set (4 conjugate counter-
parts).
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The set of 15 filters: 3 scales and 4 orientations per scale, together with the non-
oriented Laplacian component, L,, form our image representation space, which will be
utilized in the following chapters. In Chapter 3 power maps are defined from the oriented
pyramid maps. These power maps form the feature space for a texture recognition system.
In Chapter 4 we extend the analysis of the pyramid filters and show that they form a
steerable set of filters. This characteristic enables a rotationally invariant representation.
Finally, in Chapter 7 we will revisit the pyramid as a multiresolution image representation

scheme, for image enhancement and coding.
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Chapter 3
Learning Texture Discrimination Rules
in a Multiresolution System

3.1 Imntroduction

In this chapter we focus our interest on the texture analysis task and within the context of
this task we present a recognition framework in which informative discrimination rules are
learned from a multiresolution representation of the textured input [GGC92, GGCA94].
Our goal is to combine our knowledge about a good image representation space, using
the multiresolution oriented pyramid (as described in Chapter 2), with the advantages of
learning paradigms which will be introduced here.

Texture is one of the major modalities which help us understand the visual environ-
ment. Image texture, defined as a function of the spatial variation in pixel intensities (gray
values), is useful in many application domains and has been a subject of intense study by
many researchers. In the texture analysis field are included several different objectives.
Texture recognition (or classification) is the task of correctly labeling homogeneous tex-
tured regions in an input image, thus producing a classification map of the input image,
with each uniform region identified with the texture class it belongs to. The goal of texture
segmentation is to obtain a boundary map of the textures present in the input (not nec-
essarily identifying the textured surfaces). An additional interest is in texture synthesis.
This is often used for image compression and for rendering object surfaces which are as
realistic looking as possible. Finally, texture can be used in the problem domain of shape
from texture in which texture features provide information about surface orientation and
shape.

We start this chapter with an introduction to the texture analysis field. We review
some of the many different approaches that have been used in the literature, specifi-
cally in the texture recognition and segmentation tasks. In Section 3.3.1 we present our
texture recognition (and segmentation) system, which combines the multi-resolution im-
age representation with probabilistic learning. The textured input is represented in the
frequency-orientation space via the oriented Laplacian pyramid. In this chapter we focus

our attention on the classification part of the system in which we associate a class label



19

to the extracted features. We are interested in probabilistic learning of the input domain.
Within this learning paradigm we present the concept of a rule-based network and inves-
tigate its applicability in an imaging analysis task. Both unsupervised and supervised
learning are utilized. In an unsupervised learning stage a statistical clustering scheme is
used for the quantization of the feature-vector attributes. A supervised stage follows in
which labeling of the textured map is achieved using the rule-based network. This infor-
mation theoretic technique is utilized to find the most informative correlations between
the attributes and the texture class specification while producing probability estimates for
the output classes.

State-of-the-art results for the texture classification task and image segmentation re-
sults will be presented in Section 3.4. The generalization capability of the system to
the identification of an unknown class, so called “pattern discovery”, will also be shown.
A summary of the system characteristics and its classification capability is the topic of

Section 3.5.

3.2 The Texture Analysis Task

Visual texture is one of the most fundamental properties of a visible surface. It participates
as one of the major modalities that help us in the understanding of our visual environment.
As such it takes part in lower-level to higher-level tasks, from scene segmentation to object
recognition. Texture-analysis methods can be utilized in a variety of application domains,
such as remote sensing, automated inspection, medical image processing and advanced
image-compression schemes. For an overview of the different application domains see
[TJ92]. The different textures in an image are usually very apparent to a human observer
(for example see Fig. 3.10), but no good mathematical definition can encapture the very
diverse texture family. The difficulty in defining texture can be demonstrated by the

number of different texture definitions attempted by vision researchers. A few examples

are given next:

e “Aregion in an image has a constant texture if a set of local statistics or other local properties
of the picture function are constant, slowly varying, or approximately periodic.” [Sk178]

e “The image texture we consider is nonfigurative and cellular... An image texture is described
by the number and types of its (tonal) primitives and the spatial organization or layout of its
(tonal) primitives... A fundamental characteristic of texture: it cannot be analyzed without
a frame of reference of tonal primitive heing stated or implied. For any smooth gray-tome
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surface, there exists a scale such that when the surface is examined, it has no texture. Then
as resolution increases, it takes on a fine texture and then a coarse texture.” [Har79]

o “Texture is an apparently paradoxical notion. On the one hand it is commonly used in the
early processing of visual information, especially for practical classification purposes. On the
other hand, no one has succeeded in producing a commonly accepted definition of texture.
The resolution of this paradox, we feel, will depend on a richer, more developed model
for early visual information processing, a central aspect of which will be representational
systems at many different levels of abstraction.” [ZK81]

e “The notion of texture appears to depend upon three ingredients: (i) some local ‘order’ is
repeated over a region which is large in comparison to the order’s size, (ii) the order consists
in the nonrandom arrangement of elementary parts, and (iii) the parts are roughly uniform

entities having approximately the same dimensions everywhere within the textured region.”
[Haw69]

The above collection of definitions demonstrates that there is no general agreed upon
definition. Some are perceptually motivated, and others are driven by the application at
hand. It is this lack of definition that makes automatic description or recognition of these
patterns a very complex and as yet an unsolved problem.

Recognition and segmentation schemes

Much effort has been expended to automatically segment and recognize different types
of texture. A variety of methods exists in the literature. We briefly go over a few of
the classical computer-vision approaches, following [TJ92], and give references for further
review. We should stress that it is not our intention to cover the entire texture literature,
but rather to indicate its variety through the more classical and well-known schemes.
Co-occurrence Matrices

Gray-level co-occurrence matrices (GLCM) have become one of the most well-known and
widely used methods. In this method, the characterizing quality of texture is taken as
the spatial distribution of gray values. These matrices encapture a full representation
of the second-order gray-level statistics. The gray level co-occurrence matrix Py for a
displacement vector d = (dz,dy) is defined as follows. The entry (i,j) of Py is the number
of occurrences of the pair of gray levels ¢ and j which are a distance d apart. Formally, it
is given as

Fa(t,7) = |((r,8),(4,2)) : I(r,8) = 4, 1(2,0) = 4, 3.1)

where (7, 8),(t,v) € N X N, (t,v) = (r + dx,s+ dy), and |.| is the cardinality of a set.
Haralick [Har79] has proposed a number of useful texture features that can be computed

from the co-occurrence matrix. These include properties such as energy , eniropy, corre-
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lation and more. Many additional properties have since been introduced in the literature

(for a review see [Car92]).

The co-occurrence matrix features suffer from a number of difficulties. There is no well
established method of selecting the displacement vector d and computing co-occurrence
matrices for different values of d is not feasible. In addition, for a given d, a large number
of features can be computed from the matrix, requiring an additional, usually ad-hoc,
feature selection method to select the most relevant features.

Structural Methods

Although researchers approach texture differently, most would agree that the texture
family can be categorized into two main categories - structured and unstructured, more
stochastic textures. Methods that can handle the more structured textures use structural
models of texture which assume that textures are composed of texture primitives. The
texture is produced by the placement of these primitives according to certain placement
rules [VNP86],[LF79]. One needs to be able to define a priori a good set of primitives and
placement rules (a tree grammar is commonly used) in order to characterize the textured
input. This approach can handle very regular patterns. Some textures which can be
handled in this manner are shown in Fig. 3.10 (top row).

Model Based Methods

Model based texture analysis methods are based on the construction of an image model
that can be used not only to describe texture but also to synthesize it. Markov random
fields (MRFs) have been popular for modeling images. These models capture the local
(spatial) contextual information in an image. They assume that the intensity at each pixel
in the image depends on the intensities of only the neighboring pixels. MRF models have
been applied to various image processing applications such as texture synthesis [CJ83],
texture classification [CC85, KK86] image segmentation, image restoration and image

compression.

Stochastic models, such as the Markov Random Field (MRF) models, can be used
as methods to handle unstructured or stochastic textures. Here the image is seen as an
instance of a random process, defined via the model parameters [CC85},[CJ83]. The model
parameters need to be estimated in order to define adequately the perceived qualities of the
texture. Synthetic textures can then be gencrated and compared to the original images.

This model-based technique can capture certain textures very well (see bottom row of Fig.
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3.10), but they fail with the more regular textures as well as inhomogeneous ones [CJ83].
Signal Processing Methods

The methods discussed above use the pixel-based domain as their input space. Other
methods exist in the literature which compute texture features from filtered images, and

use these filtered characteristics in the classification or segmentation tasks.

e Spatial domain filters - These include simple edge masks and more complicated masks
which are based on spatial moments. The (p + ¢)th moments over an image region

R are given by the formula:

Mpg = Z ePylI(z,y). (3.2)
(r,y)ER

If the region R is a local rectangular area and the moments are computed around
each pixel in the image, then this is equivalent to filtering the image by a set of local
masks. The resulting filtered images that correspond to the moments are then used

as texture features.

o Fourier domain filtering - Psychophysical results indicate that the human visual
system analyzes the textured images by decomposing the image into its frequency
and orientation components. Along these lines, texture analysis systems have been

developed that perform filtering in the Fourier domain to obtain feature images.

o Gabor and Wavelet models - The concept of using multi-resolution processing (chan-
nels tuned to different frequencies), has been extended further, to include localization
in space and orientation selectivity. This can be found in the wavelet model, and

specifically in the use of Gabor filtering (see Chapter 2).

Further review of the texture analysis field, its applications and the different methods
available in the literature, can be found in [TJ92]. Although texture analysis has been a
subject of intense study by many researchers, it is as yet an open challenge to achieve a
high percentage classification rate on the varied texture family within a single framework.
Fulfilling this challenge is our ultimate goal. In this chapter we will present a texture
fecognition system which is based on extracting features in the orientation and frequency
domains together with using learning schemes for the recognition task. In this approach,

the important characteristics of the input domain are learned from examples, rather than
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specified a priori via model-based schemes such as the structured or stochastic models
mentioned above.
Before describing our system we first review one particular work in the literature which

had a strong motivation for this research.

3.2.1 Motivating Work

Malik and Perona proposed spatial filtering to model the preattentive texture perception
in the human visual system. Their model consists of processing the input data through
a bank of even symmetric filters followed by half-wave rectification and local interactions.
The 3 stage model is depicted in Fig. 3.1. The image is first convolved with a bank of 96
even-symmetric linear filters (oriented Gaussian, Gabor-like filters), followed by half-wave
rectification, to produce 192 “response” maps or “feature maps” (modeling outputs of V1
simple cells). A nonlinear inhibition stage, localized in space, within and among the fea-
ture maps follows, which suppresses the weak responses and strengthens the strong ones
at nearby locations, to give an additional layer of 192 “post-inhibitory” response maps.
Finally, at the third level of analysis, a texture gradient is defined by taking a maximum
over the gradients of all smoothed post-inhibitory response maps. The texture bound-
aries are defined as corresponding to local peaks of the texture gradient magnitude. The
proposed system was shown to match closely psychophysical experiments in preattentive
texture discrimination. Quantitative predictions about the degree of discriminability of
different texture pairs match very well with experimental measurements of discriminability
of human observers.

Malik and Perona’s work is biologically plausible and computationally attractive. Sev-
eral open issues remain unanswered in the above described model, and these motivate the

recognition system which will be described next.

e First, the initial representation of the input domain. Can we define a finite set
of filters that are representative of the general textured input domain?
In the literature we see extreme cases such as 96 filters acting in parallel (produc-
ing close to 200 filter response maps) and in a multi-level scheme [MP90], to the
selection of 1 filter per texture based on its Fourier spectrum analysis [ACBG90].
We are interested in defining a set of filters which is global enough to represent

the general input image domain (without specific input parameter “tweaking”), is
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Figure 3.1: A model for preattentive texture discrimination
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computationally plausible (can be used in real-time vision systems) and has desired
characteristics in shifting the input pixel representation to a more robust, noise

immune and invariant representation.

e Second, once we have all the information available (in the different processing lay-
ers) - How can we utilize the existing information in the feature maps for
higher-level analysis?

In addition to boundary finding, the visual system is able to discriminate and rec-
ognize the input domain. This higher-level processing is based on the information
present in the extracted feature maps. We are interested in using information theo-
retic tools to extract the most relevant features (or filters) for discriminating between

input textures while recognizing the different textures present in the input.

These two issues are the building blocks of the presented texture-recognition system.
As introduced in Chapter 2 we have chosen the oriented Laplacian pyramid as the basis
multi-resolution filter set. In this chapter we will discuss the set of 15 filters and their
characteristics as applicable to the texture recognition task. Further analysis of the filter
set characteristics for invariant recognition will be the topic of Chapter 4. Starting with the
multiscale image representation we follow the multi-layered processing scheme (see Fig 3.4)
and incorporate information-theoretic learning schemes to utilize the information present
in the feature maps for the task of recognition. We should stress here that our interest
is in the recognition of the input image, thus differing from the preattentive segmentation

system of Malik and Perona.

3.3 A Texture-Recognition System

3.3.1 Introduction

We describe a hybrid texture analysis system that incorporates the advantages of learning
paradigms, including statistical machine learning, knowledge-based systems and neural
networks, in the context of multi-resolution feature extraction techniques. The main goal
of the system is to learn a minimal representation for a given library of textures, based on
which one can successfully classify and segment new mosaic test images into homogeneous

textured regions. Of particular interest is to apply the system to noisy images arising in

real-world computer-vision problems.
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The system is composed of two main stages: a feature extraction stage followed by
a learning stage. In the feature extraction stage we use the multi-resolution oriented
pyramid to provide us with a computationally efficient filtering scheme and transform the
input space into a set of 15 feature (filter) maps. In the next stage of the recognition
system we learn a mapping between the extracted features and the output texture classes.
The important characteristics of the input domain are learned from examples (rather than

“hardcoded” via parametric modelling schemes).

Many techniques exist in the literature for analyzing sample spaces [DH73]. Each
classification scheme has its own advantages and disadvantages, but on most problems
one or more of these methods will prove successful in predicting the class output at a
performance approaching the Bayes rate. Choosing a classifier is therefore based both
on its performance and its special characteristics. In this part of the system we focus on
an information based rule-based learning scheme (ITRULE). Some of the features of this
learning paradigm, as will be described in this chapter, are the following:

- Both unsupervised and supervised learning are utilized.

- An information theoretic technique enables the characterization of the most informative
correlations between the input features and the texture class specification.

- These learned correlations are specified as discrimination rules which are available to the
user and can enhance his or her knowledge of the input domain and the classification task
at hand.

- The learned rules can be mapped onto a rule-based neural network and thus the clas-
sification scheme is parallelizable and suitable for implementation using special purpose
neural-network hardware.

- The rule-based network provides probability estimates for the output classes rather than
just a hard-decision label as its output. These probability estimates can be used for higher-
level analysis, such as feedback for smoothing and the learning of an unknown class, the

so called “pattern discovery” problem.

We will demonstrate the use of the rule-bhased learning in the texture-analysis task.
Two additional, more standard, non-parametric classifiers will be used along with the
rule-based network (sometimes interchangeably). These include the k-nearest neighbor

classifier andthe Backpropagation neural-network.

The two building blocks of the recognition system are described in more detail next.
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3.3.2 The Feature Extraction Stage

The initial stage for a classification system is the feature extraction phase through which
the attributes of the input domain are extracted and presented for further processing.
The chosen attributes form a representation of the input domain, which encompasses

information that should be useful in future tasks.

In the texture-analysis task there is both biological and computational evidence sup-
porting the use of a bank of orientation-selective bandpass filters for the feature extraction
phase [MP90, ACBG90, MC93, Fie87, PZ88]. Studies in neurophysiology [DAT82, CR68]
have suggested that a multi-channel frequency and orientation analysis of the visual image
formed on the retina is performed by the retina, LGN and the primary visual cortex. Neu-
ronal responses of simple cells in the visual cortex of the macaque monkey to sinusoidal
gratings of various frequencies and orientations have shown that the cells are tuned to
narrow ranges of frequency and orientation [DAT82]. Psychophysical experiments [CR68]
also support the conclusion that the visual system decomposes the image into filtered im-
ages of various frequencies and orientations. These studies have motivated multi-channel
approaches to texture analysis. An open issue is the decision regarding the appropriate
number of frequencies and orientations required for the representation of the input do-
main. As we have seen in the previous section, the literature presents for the filtering
stage, extreme cases such as close to two hundred filters acting in parallel and in a multi-
level scheme [MP90], to the selection of one filter per texture based on its Fourier spectrum
analysis [ACBG90]. A systematic way to extract initial features is needed. In this work,
we use the oriented Laplacian pyramid (a version of the Gabor wavelet decomposition),
to define the initial finite set of 15 filters. The definition of the filters and their proper-
ties were discussed in Chapter 2. A computationally efficient filtering scheme using the

Oriented Laplacian pyramid can also be found in the earlier chapter.

It is the local statistics of the oriented pyramid’s coefficients which characterize the
image local-area response to the different orientations and frequencies. The first order
statistic is zeroed out because the filters have a zero-mean response. A non-linearity is
thus needed to reach higher-order statistics. This non-linearity was found to be important
in order to discriminate texture pairs with identical mean brightness and identical second-

order statistics [MP90]. A measure of power or energy associated with each filtered map



28

can be defined as the nonlinear operation given below:
P =|0nl,n=0,1,2 a=1,2,3,4. (3.3)

The power maps form a pyramid of the local statistics of the oriented pyramid’s coeffi-
cients, which characterize the image local-area response to the different orientations and
frequencies. Levels 0 and 1 of the power-pyramid are lowpassed and subsampled to be the
size of the smallest level of the pyramid (see Fig. 2.4). Each pixel in the resultant power

maps thus represents an 8 x 8 window in the original image.

15 dimensional feature-vectors are formed from the extracted power maps. The 15
vector components represent the response at a particular location (z,y) across the 15
corresponding power maps. These vectors consist of the 4 oriented components per scale
together with a non-oriented component extracted from the Laplacian pyramid. The

resulting feature-vector is of the following form:

f=[Pu Po2 Pos Pous Lo Piu Pz Pz Py Ly Poy Pro P3s Pu L]

(3.4)

To illustrate the feature-representation space, an example of power maps extracted
for the French-canvas (“frcanv”) texture are shown in Fig. 3.2, followed by a display
of a random feature vector which was extracted from the power maps in Iig. 3.3. In
the presented power maps stronger responses are indicated in brighter regions (the Log
of the power response is displayed). We first notice that most power is allocated to
the highest resolution scale, (scale 0). This corresponds to the high-resolution nature of
the input texture. Looking across the oriented components, we see that in the highest
resolution scale most of the power is detected in the vertical direction (Fp1). In the lower
resolution scale (scale 1) the power shifts to indicate a strong horizontal direction in the
" texture. These characteristics are reflected in the displayed feature vector of Figure 3.3.
In general, in the database of textures which we are interested in for this work, we will find
one dominant oriented component per scale for the more “structured” (oriented) textures.
A more uniform distribution of power across the oriented components is a characteristic
of the “nonstructured” (non-oriented) textures. Examples of characteristic feature vectors

for these two families of textures can be found in Fig. 3.11.
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Figure 3.2: Power maps for the French Canvas (“frcanv”) texture.
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Figure 3.4: System Block Diagram

3.3.3 The Learning Stage

The Rule-Based Network Classifier

Two building blocks compose the learning phase of the rule-based classifier, as shown in
Fig. 3.4 and as operationally outlined in Fig. 3.5. These consist of an unsupervised
clustering stage followed by a supervised classification stage. The learning mechanism
derives a minimal subset of the input feature maps (or filters) which conveys sufficient
information about the visual input for its differentiation and labeling. The feature space
is teduced in both unsupervised and supervised stages of analysis. In the unsupervised
stage a machine-learning clustering algorithm is used to quantize the continuous input
features. In the supervised stage the existing information in the feature maps is utilized for
higher-level analysis, such as input labeling and classification, while providing probability
estimates for the output classes. The two stages of the learning phase of the system are

described next.

Unsupervised Clustering
The unsupervised learning stage can be viewed as a preprocessing stage for achieving a
more compact representation of the filtered input. The goal is to quantize the continuous

valued features which are the result of the initial filtering. The need for discretization
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becomes evident when trying to learn associations between attributes in a symbolic rep-

resentation, such as rules. Moreover, in an extended framework, the dimensionality of the

feature domain can be reduced.

The output of the filtering stage consists of 15 continuous-valued feature maps. Thus,
each (8 #8) window in the input image is represented via a 15-dimensional feature vector.
An array of such vectors, viewed across the input image, is the input to the learning
stage (see Fig. 3.5). We wish to detect characteristic behavior, across the 15-dimensional

feature space, for the family of textures to be learned.

In this work, each dimension, out of the 15-dimensional attribute vector, is individually
clustered. All samples are thus projected onto each axis of the 15-dimensional space
and one-dimensional clusters are found using the K-means clustering algorithm [DHT73].
The K-means algorithm is a statistical clustering technique which consists of an iterative
procedure of finding K means in the sample space, following which each input sample
is associated with the closest mean in Euclidean distance. For details on the algorithm
implemented see Appendix A. The found means, labeled 0 thru K minus 1 arbitrarily,
correspond to discrete codewords. Each continuous-valued input sample gets mapped to
the discrete codeword representing its associated mean. The output of this preprocessing
stage is a 15-dimensional quantized vector of attributes which is the result of concatenating

the discrete-valued codewords of the individual dimensions.

As some of the dimensions are more representative than others, it is the goal of the
supervised stage to find the most informative dimensions for the desired task (with the

higher differentiation capability) and to label the combined clustered domain.

Supervised Learning via the Rule-Based Network

The goal of the supervised stage is to classify the input image, while finding the most
informative input dimensions, or attributes, for the desired task, thus reducing the di-
mensionality of the representation. We wish to learn a classifier which maps the output
features of the unsupervised stage to the texture class labels. Using the rule-based net-
work for this task, we have a probabilistic framework for the classification as well as the
advantage of the “readability” of the extracted rules. The rule-based classifier defines

correlations between input features and output classes as probabilistic rules of the form:
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IfY = y then X = z with probability P.

Here, Y = (Y3, ..., Yn) represents the attribute vector and X is the set (21,...,2p) of
m possible output classes. In this work, N=15 and m is the number of texture classes
learned. Given an initial labeled training set of examples, where each example is of the
form (Y7 = y1,., YN = Yn, X = 2;), the system is to learn a classifier such that when
presented with future test attribute vectors, it will estimate the posterior probability of
each class.

Information Theoretic Measure of Rule-Value

A data-driven supervised learning approach utilizes an information theoretic measure to
learn the most informative links or rules between features and class labels. Such a measure

was introduced by Smyth and Goodman [GS89] as the J measure, defined as follows:

J(X =aiy) = p(y)(p(mily) 10g(p£?;lf;)> +(1- p(xiiy))logC(ll—_——l;T((%l)_)))'

Here, the information content of a rule is represented as the average amount of infor-
mation that attribute values y give about the class X. The J measure has several desirable
properties as a rule information measure. It is comprised of two main terms. The first is
p(Y = y), the probability that the particular set of attribute values will occur. The second
term is a measure of the average change in bits necessary to specify X between the a pri-
ori distribution p(X ) and the a posteriori p( X |y) distribution. Smyth and Goodman have
shown that this measure can be interpreted as a special case of the cross entropy of the two
distributions and satisfies all the properties of an information measure. Maximizing the
product of the two terms is equivalent to simultaneously maximizing both the simplicity
of the specific correlation vector, Y, and the goodness of fit to the perfect predictor of X.
The simplicity of the rule, or the correlation vector Y, corresponds directly to the number
of attribute-value conjunctions, the so-termed rule order. Lower-order rules have fewer
conditions and thus have a higher probability of occurring. Higher-order rules are more
specialized and are therefore better predictors. Maximizing the J measure results, there-
fore, in a tradeoff between accuracy and generality (higher-order and lower-order rules,
respectively) in the prediction process.

The J-measure is next used in a search algorithm to search the space of all possible rules

relating the attributes to the class, X, and produce a ranked set of the most informative
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rules which classify X. For details about the rule-extraction algorithm refer to Appendix

B.

Probabilistic Classification

The most informative set of rules via the J measure is learned in a training stage. Once
the rule set is constructed, the rules may be used in parallel to compute the posterior
probability of each class [GHMS92]. When presented with a new input evidence vector, Y,
a set of rules can be considered to “fire.” These are a subset of the correlations learned
which the input attribute vector matches. Using Bayes’ rule, the classifier estimates the
log posterior probability of each class given the rules that fire. Let F' be the set of rules
which fire and sy, ..., 5|7 be the actual attribute-value conjunctions corresponding to the
fired rules. We get (for a derivation see Appendix B.2):

|71

log p(x;]s1, - - ., 817)) = log p(z:) + > Wi, (3.5)
j=1

with

Wij = log (%) ;

where p(z;) is the prior probability of the class z;, and W;; represents the evidential
support for the class as provided by rule j. In the absence of any rules firing, the estimate
éf each class is given by the bias value, namely the log of the prior probability of the class.
Given a set of rules which fire, each rule contributes a weight to its corresponding output
class. A positive weight implies that the class is true, while a negative weight implies it is
false. The W;;s provide the user with a direct explanation of how the classification decision
was arrived at. Fach class estimate can now be computed by accumulating the “weights
of evidence” incident on it from the rules that fire. This can be done in a parallel manner.
The largest estimate is chosen as the initial class label decision. The probability estimates
for the output classes can now be used for feedback purposes for spatial smoothing and
further higher-level processing.

The rule-based classification system can next be mapped into a three-layer feed-forward
architecture as shown in Fig. 3.6. The input layer contains a node for each attribute except
the class attribute. The hidden layer contains a node for each rule and the output layer
contains a node for each class. Each rule (second layer node 7) is connected to a class ¢ via

the multiplicative weight of evidence W;;. The bias of each output node is —log(p(z;)).
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Figure 3.6: Rule-based network

Each output node sums its inputs subtracts the bias and exponentiates the result. Thus
the output of each third-layer node is the posterior probability of the class it represents.
A winner-take-all stage can be added to decide upon the most likely class. This hybrid
rule-based neural model combines the explicit knowledge representation in the form of

rules with the parallel implementation of neural-network architectures.

Additional Classifiers

Throughout the remainder of this chapter we will investigate into characteristics of the
rule-based network to verify its effectiveness as a classifier and demonstrate its interesting
characteristics in the image-analysis domain. We will also exemplify the classification
performance of a few other, more standard classifiers, such as the k-nearest-neighbor
classifier (k-nn) and the Back-Propagation neural-network classifier (Backprop). We next
briefly describe each of the classification algorithms used.

The k-Nearest Neighbor Classifier

The nearest-neighbor classifier is one of the simplest learning methods. It is completely
non-parametric, as nothing is apriori assumed about the population. Geometrically, the
nearest-neighbor method can produce any arbitrary complex surface to separate the classes
based only on the configuration of the sample points and their metric.

Let x1,...,Xn be a set of n labelled samples, and let x;; be the sample nearest to x

(we will be using the Euclidean distance); i.e.,

X — x|| = min;||x; — x|, i =1, ..,n. (3.6)
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Then the nearest-neighbor rule for classifying x is to assign it the label associated with
Xm. An immediate extension of the nearest-neighbor rule is the k-nearest-neighbor rule.
This rule classifies x by assigning it the label most frequently represented among the k

nearest samples. In other words, a decision is made by examining the labels on the k

nearest neighbors and taking a vote.

The neighborhood size (k) has to be smaller than the size of the feature space occupied
by the smallest of the classes in the problem domain under consideration. If p = minimum
number of samples from each of the training set classes, then k has to be in the range
1 < k << p. [Das91] In our implementation, the algorithm is run with a variety of k
values: k = 1,5,10,20,50,100 (for N training samples per class, the maximum k value
was taken to be £ < 0.25N). In the results presented the classification rates for several k
values will be presented as well as the average over the percentage accuracy.

In its standard form, the nearest-neighbor method involves no effort in learning from
the samples. The tradeoff is the computational load in predicting the classification of a

new case. Fach new input sample must be compared with every sample in the prestored

sample space.

The Backpropagation Neural-Network Classifier

The Backpropagation algorithm is well known in the neural-network literature [RHWS86].
It has been successfully used in a variety of application domains. We are therefore mo-
tivated to check its performance in the texture recognition task. We use a three-layer
network with the first layer containing a single node for each attribute (in our case = 15),
the third layer containing a node for each class and the center layer containing hidden
units that connect between the input and output units. A known problem associated with
neural-network techniques is the definition of the network architecture. If one chooses too
few hidden units, the network may have too limited a hypothesis space to learn the re-
quired concepts, while with too many it may overfit the training data. In the experiments
of the following section we average over three runs. For the 15-dimensional input space

that we have, we average over the cases of 30, 60 and 90 hidden units.

FEarlier work by Goodman et al. [GHMS92] has demonstrated that the rule-based

network is competitive in terms of classification accuracy when compared with alterna-
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tive approaches, while achieving useful explicit rule sets about the task at hand. In the
following section we apply the rule-based scheme to the texture recognition task, analyze
its behavior with changing parameters and demonstrate some of its characteristics. We
show that the extracted rules can extract an informative set of filters of the input repre-
sentation, which are the more important ones for the classification task at hand. We use
the probabilistic classification to an advantage in labeling noisy real-world scenes, and in

determining what we define as “unknown” classes.

3.4 System Performance

3.4.1 Introduction

We present the results of applying the above-described system to textured images. The
system’s characteristics are demonstrated and the classification capabilities on large image
databases are shown.

The database we use throughout the work consists of both unstructured and struc-
tured textures. Most of it consists of images taken from the Brodatz library of natural
textures [Bro66] ! which is the main source for textures in the literature. This set is
augmented with miscellaneous textures that we scanned in, including jeans, newsprint,
check-book cover and others (scanning resolution is 100 pixels/inch). We collected a large
set of 30 such textures. The complete database is presented in Figure 3.8 followed by a
corresponding label chart in Figure 3.9. Note that the Brodatz textures are labeled with
their corresponding plate number from the original Brodatz book.

The experimental setup

In most of the following experiments the input to the system is taken as a 256 * 256 size
texture patch. The original image of size 256 x 256 is input to the pyramid, resulting
in feature maps (power maps) of size 32 x 32 (refer to Figure 3.5). Feature vectors are
extracted from the feature maps and are the input to the classification system. For a
classification resolution of 8 *x 8 windows in the original image, we utilize the feature maps
directly. Boundary effects are eliminated by extracting a 30 # 30 patch from the feature
maps (see Figure 3.7). We thus have a set of 900 feature vectors for the classification task.
We use 300 vectors for training and 100 different ones for testing. These are chosen from

small disjoint patches (chosen to be as far away as possible).

ldatabase taken from a USC source {[Web83]
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Figure 3.7: Experiment setup

window size | # training vectors/class # testing vectors/class
8*8 300 100

16*16 125 100

32*32 40 9

64*64 12 4

Table 3.1: Training and testing sets for different classification windows

It is interesting to note the increase in classification accuracy as we vary the classi-
fication resolution. Different size windows in the feature maps are averaged to produce
representative feature vectors corresponding to 16 x 16,32+ 32 and 64 + 64 windows of the
original image. To get the 16 % 16 classification resolution we average over 2 * 2 neighbor-
hood blocks. Ignoring the boundary we have 15 % 15 = 225 feature vectors. 125 are used
for training and 100 disjoint ones are used for testing. Similarly, for 32 * 32 resolution,
4 % 4 windows are averaged over to give 7 * 7 = 49 feature vectors. 40 are used in training
and 9 are used for testing. Finally, for the 64 % 64 resolution we need to average 8 8
windows. Here, 12 feature vectors are used for training and 4 are used for testing. The

above mentioned figures are summarized in Table 3.1.

In all the above cases no overlap exists between the training and testing sets. Moreover,

no overlap exists amongst the training windows or the testing windows. In cases of limited
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data (such as the 32 x 32 and 64 * 64 cases) 4 different runs are made (interchanging the
testing vectors) and the average result is the one presented.

Comparing to the literature

There is a large variability in the experimental setups presented in the literature, which

makes a comparison a very difficult task. The variety one finds includes the following:

e The data-set size and complexity. This issue includes the relative sizes of the training
and testing sets and their relationship to each other (overlap etc). A database size
of less than or equal to 10 textures has been the common ground for comparison for
many years now, with no attempt to check the scalability of the presented systems
with increasing the input space. The literature which we look at covers the wide
range of methods, including Gabor filtering schemes, MRF schemes, co-occurrence
matrices and others. In this variety of schemes we find databases of 5 [JF91, Car92],
8 [CJ85], 9 [CFPI1] and 12 [Uns86] as the more common ones in the literature. It

is only recently that we start to see an increase in the database size.

e Preprocessing of the data. There are many methods that use the raw input (e.g.,
[JF91]) while others use a variety of preprocessing methods. A common scheme
is histogram equalization [Car92, Uns86]. In [Car92] it is claimed that histogram
equalization has a significant impact on the performance of co-occurrence matrices,
as it greatly reduces the results compared to the raw images. One should then note

the effect of the input format on the classification results.

e Classification window size. Window sizes vary in the literature from 16+ 16 to 128 *
128. In some cases an overlap exists between the training and the testing windows.
This parameter is of great significance in the classification results, with a substantial

improvement usually evident as we increase the window size [HO88, Uns86].

Due to this large variability in experimental setups an exact comparison between dif-
ferent reported results is difficult. In the following set of experiments we address some of

these experimental issues directly and we will point out relevant results for comparison as

we go along.

List of experiments

In Experiment 1. we start our analysis on a 10 texture subset which is composed of
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Figure 3.8: 30 texture database
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bark calf cloth crdbrd jeans
(D12) (D24) (D19)
grass pig raffia water wood
DY) (D92) (D84) (D38) (D68)
backpack | bookbox | brownbag | chbkcover cork
(D32)
cotcanv frcanv fur hmpaper napkin
(D77) (D20) (D93) (D57)
prtboard reptile straw text towel
D3) (D15)
vinyl herringbon¢f  sand wire strawmat
(D16) (D29) (D6) (D55)

Figure 3.9: 30 texture database - labels. Textures taken from the Brodatz book are
labeled with the corresponding plate number. Others have been scanned in from natural
objects. crdbrd = cardboard; chbkcover = check-book cover; hmpaper = handmade paper;
prtboard = particle board.
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both structured and unstructured textures, as shown in Figure 3.10. The difference in
performance for the 2 sets of structured and unstructured textures is shown in Experiment
2. In Experiment 3 we look into the behavior of the rule-based network in detail on
2 texture pairs, one pair representing an easy discrimination task and the other pair
representing a difficult task. In Experiment 4 we analyze the different system parameters
on the 10 texture dataset. We demonstrate the system’s sensitivity to increasing the
number of input textures (so called “scalability”), and demonstrate high classification
accuracy for the entire 30 texture database of Figure 3.8. In our results we compare
several classification schemes to demonstrate the consistency across the schemes, while
identifying some of the interesting features of the rule-based approach. The probability
maps which we extract from the rule-based scheme are utilized in Experiments 5 and 6:
image mosaic labeling and segmentation and the pattern discovery task.

Relevant Parameters

For each classification scheme we will list the set of parameters which determine its per-
formance. In the rule-based network these include the following:

- K - The number of clusters in the unsupervised clustering stage.

- N - The maximum number of rules allocated.

- n - The maximum number of rules allocated per class.

- O - The maximum order of the rules. This parameter refers to the number of attribute
conjunctions extracted in forming the rules.

Unless otherwise noted, we use the following default values:

K = 10; N = 10,000; O = 3; No pruning.

The default values were chosen based on experience. We allow for a large number of rules
as our initial starting point. It is usually the case that the lower order rules (O = 1,2,3)
are the most informative ones. As an increase in the order substantia,]ly'effects the rule-
extraction search, we limit the maximum order to 3. The sensitivity to the parameter

K will later be shown to be low, thus allowing for a fixed default value over most of the

experiments presented.

In the k-nearest neighbor scheme the relevant parameter is k - The number of

neighbors used in the voting scheme. If not otherwise specified, the result presented is the

average over k = 1,5,10 and 50.

In the Backprop network the relevant parameter is b - The number of hidden units



Figure 3.10: Structured and unstructured textures (top and bottom, respectively) - 10
texture case

in the network. Default is the average over h = 30,60,90. We use the conjugate gradient
scheme. 500 training epochs are used with a threshold set at 107¢. Each run is averaged

over 5 different random seed values.

3.4.2 Results

Experiment 1: Classification of a 10 texture set

In this experiment we look at an 8*8 classification resolution for a 10 texture discrimination
task. In the training phase, 300 training examples are given per texture class. The
classification result given is based on labeling correctly a disjoint set of 100 8 x8 windows.
Table 3.2 presents the class-confusion matrix for the 10 textures of Figure 3.10, using the

rule-based network classification scheme.

The overall classification rate is 94.3%. Very high percentage classification rates are
achieved for both the structured and the unstructured textures which compose the set.

In Table 3.3 we summarize the classification results of the rule-based network, the
k-nearest neighbor scheme and the Backprop network on the 10 texture case. We note
the comparable high-performance across the 3 classifiers. These results compare favorably
with the literature (e.g., [CC85, Uns86, CJ85]).

The classification resolution of 8 * 8 is very high (as compared with the literature).
The advantage of this high-resolution classification scheme is that we can achieve image

segmentation via the recognition process (see Experiment 5).
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Table 3.2: Class confusion matrix for a 10 texture case

10 TEXTURE CASE - 8*8 window

Classification scheme

Classification accuracy

k-nn

Rule-based network
K=10, N=10000, O=3

Backprop

average result

k=100
average result

h=30
h=60
h=90

94.3%

86%
86.4%
87.3%
87.2%
87.7%
85.3%

86.65%

94.56%
94.78%
94.50%
94.6%

Table 3.3: Classification results for 10 texture case

raffia  herring frcanv cotcanv jeans grass cork hmpaper  pig cloth
raflia 91.02 0 0 0 0 0 0 0 8.98 0
herr 13.28 84.76 0 1.95 0 0 0 0 0 0
frcanv 0 0 100 0 0 0 0 0 0 0
cotcanv 0 0 0 100 0 0 0 0 0
jeans 0 0 0 0 100 0 0 0 0 0
grass 0 0 0 0 0 100 0 0 0 0
cork 0 0 0 0 0 7.03 92.58 0.39 0 0
hmpaper || 4.68 0 0 0 0 0 4.29 91.02 0 0
pig 3.52 0 0 0 2.34 0 0 0 86.72 7.42
cloth 1.17 0 0 0 0 0 0 0 1.66 97.26
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5 TEXTURE CASE
rule-based network
structured set: 97%
unstructured set: 81.8%

Table 3.4: Comparing classification results for a structured set of textures (top row of 10
texture set) and an unstructured set of textures (bottom row)

Experiment 2: Structured vs. Unstructured Textures

Structured textures are usually more easily discriminable than unstructured (or stochastic)
textures, due to strong orientation components and regular arrangement of primitives.
This can be seen in Fig. 3.10, in which the top row consists of structured textures and
the bottom row is a set of unstructured textures.

Running the classification scheme on these two sets of textures separately exemplifies
the difference in the task difficulty. We run the system on the 5-structured textures,
consisting of: raffia, herringbone, frcanv, cotcanv and jeans (fig 3.10 top) , and a second,
unstructured set of: grass, cork, hmpaper, pig and cloth (fig 3.10 bottom). In table 3.4
are the classification results using the rule-based network. As expected, the system has
an easier time with distinguishing between the structured textures than the unstructured

ones. We note the possible variability in classification results, as dependent on the actual

textures used in the database.

Experiment 3: More Insight into the Rule-Based System Operation

To achieve a better understanding of the system operation we look at the discrimination
of two pairs of textures. A simple case (oriented textures) will be chosen as the raffia and
wood pair. A more difficult case (nonoriented) will be shown using the pig and cloth pair
2, The texture pairs together with a corresponding set of feature vectors are shown in Fig.
3.11.

We note that the more difficult case of the pig and cloth discrimination task corre-
sponds to visually similar textures. This difficulty is reflected in the feature space as well.
Looking at the examples of feature vectors we note that the oriented textures have a dom-

inant feature representing the preferred orientation of the texture, while the nonoriented

?Note that we have simplified the world by looking at only a pair of textures at a time. In this case, it
suffices to characterize one class well. We will therefore see high classification results in both cases.
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Ralfia texiure Wood texture
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12 T T

Megnitude

H H
0O 10 1S
Index of feature vector

Pig fexture

12

10

Magnitude

1S
Index of feature vector

Figure 3.11: top: The raffia and wood texture pair with a corresponding set of feature
vectors. bottom: Similarly for the cloth and pig textures.
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1. IF f2:1.09- 2.08 THEN  class = wood; p=10; J=0.281
2. IF f7:0.99 - 1.87 THEN  class = wood; p=1.0; J=0.231
3. IF f7:3.54—-4.383 THEN class=raffia; p=10; J=0.217
4. IF f2<1.09 THEN  class = wood; p=10; J=0.199
1. IFfi<1.9 THEN class = pig; p=097; J=0.115
2. IF f5<5.0 THEN class = ptg; p=0.99; J =0.0818
3. IF f2<191 THEN class = pig; p=0.96; J = 0.0816
4. IF f1<1.90and f15>4.96 THEN class = pig; p=0.96; J =10.0722

Figure 3.12: Set of most informative rules for raffia and wood discrimination (top). Simi-
larly for the cloth and pig textures (bottom set).

textures have more uniform curves across orientation space which are less distinct.

A large set of feature vectors per class are presented to the system in the training
mode and the most informative set of rules for the discrimination task are extracted (see
Section 3.3.3). A set of the top most informative rules is presented (for each case) in Fig.
3.12. Shown (from left to right) is the rule, the probability p(class|attribute vector) and

the corresponding J measure, with the strength of the rule (via the J measure) decreasing

with rule number.

It is interesting to see if the extracted rules match our understanding of the task at
hand. In the case of the raffia and wood textures we note that the most informative
rule identifies the wood texture based on attribute 3 of the feature vector which indicates
a low response in the horizontal direction. For raffia the most informative rule identifies
attribute 8, which is detecting a strong response in the horizontal direction. This is a main
distinguishing characteristic across these 2 textures, as we see by examining the texture
feature-vector curves. > In the case of the cloth and pig textures we see that the first 4
rules all relate to the pig class. Examining the feature vectors of Fig. 3.11 we see that the
rules do not reflect the shown values (either they don’t cover the example curves at all or
they match both classes). Note the lower J measure values as compared to the structured
case.

Using the extracted set of rules the raffia and wood pair are classified with 100%
accuracy. The cloth and pig pair are classified with 90% accuracy. The system is able to

cope with both the structured and unstructured pairs, but with reduced accuracy in the

latter case.

Sattributes are numbered in accordance to the index shown in the Figure.
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input format K-nn Backprop
Taw 87% 94.5%
histogram equalization || 79% 91.4%

Table 3.5: Classification results with histogram equalization

The relative difficulty of the classification task can be detected via the number of rules
which are required to cover the training sample space. We preserve the n most informative
rules per class, with n varying (n = 1,2, ...), and check classification results on the ¢raining
set. In the raffia-wood case, 10 rules per class suffice to cover the space of examples with
100% accuracy. in the case of the pig and cloth texture pair 430 rules are needed per
class, and these are only able to correctly label 546 out of 600 training set examples at
91% accuracy.

Experiment 4. System Analysis

¢ Sensitivity to the Input Image Format

In the literature one finds a variety of preprocessing steps which are performed on the
input image prior to its analysis. The most common one is histogram equalization. In
this preprocessing step one tries to eliminate the influence of first-order statistics in
the texture analysis task (these statistics are derived from the gray-level histogram),

by making the gray-level histogram match a uniform distribution.

Using a set of histogram-equalized images is considered to be a more challenging
task for a classification system. In one particular recent work [Car92] it is claimed
that using a set of 15 Gray-level Co-occurrence matrices (GLCM) features can dis-
criminate among 15 Brodatz textures with close to 0% error rate. Using the same
set of features on the set of 15 histogram equalized textures, Carstensen achieves an
accuracy rating of 74.3%. Carstensen concludes that histogram matching of textures

has a significant effect on the discriminatory performance of GLCM features.

We wish to check the sensitivity of our system to the input representation. In
Table 3.5 we compare classification results on the 10 texture set, with and without

histogram equalization.

Only a small decrease in performance of 3% is seen with the Backprop network.

A larger decrease is evident with the k-nearest neighbor classifier. The range of
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window size | #train/class #test/class K-nn Backprop Rule network
8*8 300 100 87% 94.5% 94.3%
16*16 125 100 93% 96.1% 95%
32*32 40 9 99% 100% 97.78%

Table 3.6: Classification results on different window sizes

3% decrease in performance will reappear as we increase our testing to a 30 texture
case. These results suggest that the feature-space representation of the system is only
minimally sensitive to the 1st-order statistics of the image, and that the combination

with the learning schemes preserves the high-classification results.

Sensitivity to Window Size

Experiments presented in the literature differ in several of their parameters, one
important one being the classification window size. The classification results are
very much dependent on the classification window size and therefore care should be
taken when judging across results. Larger windows produce a more homogeneous
feature set (better SNR) and thus result in an easier classification task. To illustrate
this point, the following experiment was run on the 10 texture database. Different
size windows in the feature (filter) maps were averaged over to produce representative
feature vectors corresponding to 8*8, 16%¥16 and 32*32 windows in the original input
image (as explained in the introduction to this section). Table 3.6 presents the
corresponding results. We see the increase in classification performance for the

larger windows.

The presented results compete with quoted results in the literature. We will quote a
few. In [CC85] GMRF models are used on a set of 7 textures. Several features sets
are used. Results presented are in the range of 93 —99% for 64 %64 window sizes, with
two cases of 82% and 93% given for the 32 x 32 window case. In [Uns86) sums and
differences of histograms are used and compared to co-occurrence matrices on a set
of 12 textures. Results include 88.2%(86.7%) for 16+ 16 windows, 96.8%(93.23%) for
32 * 32 windows and 97.92%(95.83%) on 64 * 64 windows. (Figures in brackets are
co-occurrence classification results quoted in [Uns86]). Finally, quoting one work

which uses Gabor filters for the classification task we cite results from [CJ85] in
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window size | standard deviation
8*8 1.86
16*16 0.08

Table 3.7: Sensitivity to the number of clusters for different window sizes

which a set of 8 textures are used with results of 98% for 64 * 64 windows reducing

to 91% for 32 * 32 windows.

Sensitivity to the Number of Clusters

In this experiment we wish to check on the sensitivity of the rule-based system to
the parameter K of the Clustering stage. We use the 10 texture database keeping
constant the maximum number of rules (N = 10,000) and the maximum rule-order,
O = 3. 5 runs were made with K = 5,7,10,15,20. The standard-deviation of the
results is tabulated in Table 3.7.

We note the small variation as we vary K, especially with the larger classification
window sizes. This is related to the fact that as we increase the window sizes the
feature set is more homogeneous, making the clustering an easier step and resulting

in as easier classification task overall (as demonstrated above).

Sensitivity to Number of Rules

We next investigate the performance of the rule-based system as the number of
rules per class is increased. The number of rules used in the classification task is a
variable (V) of the system. Experience has shown that when the system is given
a set of N rules to learn, dominant classes, which are easily distinguishable, have
many rules associated with them, while the more problematic and difficult texture
classes, have very few rules and sometimes are not included in the learned rule
set at all. This leads to a problem since any class that is not represented by at
least one rule can not be identified. It will be classified incorrectly or labeled as an
unknown class (see pattern-discovery case at the end of this section). Following this
observation, we define a modified parameter, n, to reflect the number of rules per
class; i.e., the n most informative rules per class are saved in the learned rule set.

We next check on the classification performance based on the parameter n. Fig. 3.13
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Figure 3.13: Classification performance with increasing the number of rules per class.
Shown are classification curves for three 6 texture runs. The “smooth” curve is the result
of first smoothing over the output maps of each 6 texture classification case and then
averaging over the three cases.

displays 3 six-texture classification performance curves, with increasing the number
of rules allocated per class. The fourth curve, labeled “smooth”, is the result of first
smoothing over the output maps of each 6 texture classification case (a majority
vote is taken at a 3*3 window around each output map pixel), and then averaging

over the three cases.

In all the curves plotted we get a high classification rate between 200 rules/class and
around 750 rules/class. The numbers themselves are not strict, in the sense that
there are many prunning techniques possible, which reduce the number of actual
rules used. Some of these techniques are summarized in Appendix B.1.1. The
general characteristics shown in the plot are the following:

- As long as there are a few rules per class there is already a strong jump towards
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the high-performance rates.
- The performance is stable at a very wide range of rule numbers, thus the system
is not overly sensitive to this parameter.

- If too many rules are allocated per class, we reach the point of overfitting the

training set, and thus the reduced performance with the testing set.

Sensitivity to Number of Input Textures - Scaling Up to 30

An interesting and important test of a system’s performance is the scalability of the
system with increasing the number of inputs. As mentioned in the introduction to
this section, the literature of the past 10 to 20 years had mainly concentrated on the
range of 10 texture classification. It is only in the past year that results on larger
databases have been reported. We extend the results in the literature and check
the scalability of the system’s performance as we increase the input number to 30
textures.

In the following we present corresponding results to the ones described earlier for
the 10 texture case, on the entire database of 30 textures, of Fig. 3.8. Three tables
are presented: In Table 3.8 the classification performance for the 8 x 8 resolution is
given, for all the classification schemes we consider. In Table 3.9 the effect of the
classification window size is shown. In Table 3.10 the effect of changing the input

representation space via histogram equalization is shown,

Several things can be noted from the presented results.

1. There is a decrease in performance as we shift from the 10 texture case to the
larger set of 30 textures.

2. The decrease in performance is reduced substantially (to less than 3%) as we
increase the classification window size to 32 x 32 and more so to 64 * 64.

3. The results across the three classifiers are similar, especially with the 32+ 32 and
64 * 64 size windows.

4. Looking at the histogram equalization results we note the small reduction of

1 — 4%. This reinforces our earlier observation in the 10 texture case.

We have highlighted the result for the 64 * 64 case which is the standard window
size in the literature. As mentioned in the introduction, very few results can be

found in the literature which deal with large size databases. A 25 texture case
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30 TEXTURE CASE - 8*8 window
Classification scheme | Classification accuracy
Rule-based network 80%
k-nn

k=1 80.77%

k=5 81.4%

k=10 82.5%

k=20 83.3%

k=50 82.7%

k=100 82%
average result 82.12%
Backprop

h=30 89.29%

h=60 89.57%

h=90 89.9%

average result 89.58%

Table 3.8: Classification results for 30 textures

30 TEXTURE CASE

window-size | k-nn  Backprop Rule-based network
8*8 82.12%  89.58% 80%

16*16 88% 93.4% 84%

32%32 96.6% 98.15% 94.4%
64%64 95%  97.25% 97.5%

Table 3.9: Changing window sizes

30 TEXTURE CASE - histogram equalization
window-size | k-nn Backprop

16*16 84% 91.27%

32*32 95% 97.4%

Table 3.10: Changing the input representation
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can be found in [HO88| in which information trees are used for classification. The
results quoted there vary from 70% on 20 * 20 window sizes to 87% on 40 * 40
size windows. The more recent results are related to the wavelet representation
of textures. In [LF93] 25 textures are classified. Classification windows of size
128+ 128 are used with an overlap between the extracted windows. High classification
results are achieved. Another recent wavelet work is [CK93] in which 30 textures
are classified. 256 * 256 size windows are used in one experiment, 64 * 64 windows
with strong overlap are used in another. Our results compare favorably to the last
two works mentioned. We cannot compare the higher-resolution classification results
which we have. In addition, the proposed wavelet schemes can not be generalized to
be rotation invariant. This is a major feature of our system which will be introduced

in Chapters 4 and 5.

Experiment 5: Segmentation via the Recognition Process

One advantage of a high-resolution classification scheme (in our case using the 8+8 window
resolution), is the ability to combine segmentation of input scenes with the recognition
process. This will be exemplified next using the rule-based network and will be extended

as we look into real-world applications of the system, such as automated scenery analysis,

in Chapter 6.
Experiment
In the training stage, a set of 6 textures was presented to the system, comprised of grass,
raffia, wood, sand, herringbone weave and wool. The training input consists of a 128*128
image patch per texture. (i.e., 256 feature vectors per texture). In the testing phase, a
256*256 image is input to the system, which is a mosaic of 5 of the above textures as
shown in Fig. 3.14 top left. The mosaic is comprised of grass, raffia, herringbone weave,
wood and wool (center square) textures. Note that the patches forming the mosaic are
different from the training patches, with no pixel overlap. The input poses a very difficult
task which is challenging even to humans.

The test mosaic is input to the pyramid and feature vectors are extracted, correspond-
ing to 8*8 windows in it. These vectors are quantized and labeled in the classification stage

of the system, to give an output label map. Note that the 8 * 8 classification windows are

allowed to overlap boundaries of the input mosaic.
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Results
In Fig. 3.14 we see the input test image (top left) followed by the labeled output map (top
right) and the corresponding probability maps for the prelearned library of six textures
(bottom). Based on the probability maps (with white indicating probability closer to 1)
the very satisfying result of the labeled output map is achieved. The five different regions
have been identified and labeled correctly (in different shades of gray) with the boundaries

between the regions very strongly evident. We have achieved a segmentation of the image

into homogeneous areas via the recognition process.

In this example no smoothing was performed on the output maps. This is evident
looking at the output label map with isolated errors found in the interior of the mosaic
and most errors located on the segmentation boundaries. The isolated errors can easily
be eliminated by incorporating the 2D nature of the problem as a smoothing operation

on the extracted probability maps or the final output maps.

Experiment 6: Pattern Discovery

We conclude this chapter with an additional result which demonstrates the capability of
the rule-based learning system to generalize to the identification of an unknown class.
In this task a presented pattern, which is not part of the prelearned library, is to be
recognized as such and labeled as an unknown area of interest. This task is termed
“pattern discovery” and its application is widespread, from identifying unexpected events
to the selection of areas of interest in scene exploration studies. Learning the unknown is
a difficult problem in which the probability estimates prove to be valuable. Qur criterion
for declaring an unknown class is when the sum of W;s (equation (4.5)) is negative for
each class; i.e. there is negative evidence for each prelearned class. In the presented
example, of Fig. 3.15, a three texture library was learned, consisting of the wood, raffia
and grass textures. The input consists of wood, raffia and sand (top left). The output
label map (top right) which is the result of the analysis of the respective probability maps
(bottom) exhibits the accurate detection of the known raffia and wood textures, with the
sand area labeled in black as an unknown class. This conclusion was based on the negative
weights of evidence for each of the prelearned classes - indicated as zero probability in the

corresponding probability maps. We have thus successfully analyzed the scene based on

the existing source of knowledge.
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Probability Maps

sand herring wool

Figure 3.14: Five class natural texture classification. Input mosaic is presented (top
left), followed by the labeled output map (top right) and probability maps (bottom). The
probability maps correspond to a 6 - texture prelearned library, comprised of the (from top
to bottom, left to right) grass, raffia, wood, sand, herringbone weave and wool textures.
White areas indicate high probability. In the label map the different grey levels correspond
to the 5 classes identified.
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Input

Probability Maps

wood V raffia R grass

Figure 3.15: Generalization to an unknown class. Presented is the input mosaic (top left)
which is comprised of the wood, raffia and sand textures, followed by the output labeled
map (top right) and the probability maps (bottom). The probability maps correspond to
a 3 - texture prelearned library, comprised of the (from left to right) wood, raffia and grass
textures. The sand area is detected as an unknown class (labeled in black in the output
labeled map) based on the negative weights of evidence for each of the prelearned classes
- indicated as zero probability in the corresponding probability maps.
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3.5 Summary and Discussion

We presented a texture recognition system which combines a strong input representation
space, via the pyramid filtering, with learning paradigms for classification. The first stage
of the system shifts the representation of the textured input from the pixel domain to
the frequency-orientation space, via the multi-resolution pyramid decomposition. In the
learning part of the system we focus on a rule-based classification network which we present
along with the non-parametric k-nearest neighbor and Backprop learning schemes.

We have shown high-percentage classification rates for a wide variety of both struc-
tured and unstructured textures. The robustness of the system to changes in the input
representation as well as the scalability of the system’s performance as we increase the
input space to a 30 texture database has been demonstrated. The classification results

presented in this work are competitive in performance with other techniques widely used

in the literature.

The strength of the system is largely due to the extracted feature set. One of the strong
characteristics of the system is that unlike some of the existing techniques, the pyramid
multi-resolution representation does not require a priori knowledge of the frequency con-
tent of the textures in the input image. We use the pre-defined set of 15 filters and are not
required to “tweak” any of the filter’s parameters in accordance with the specific inputs
presented to the system.

An important issue is the resolution of the classification process. Using the pyramid
representation is computationally efficient as the image is reduced in size by the filtering
process. Two such reductions are used in the three-scale representation, resulting in
reduced-size power maps which we classify. In our highest classification resolution each
pixel that we classify represents an 8*8 local window in the original input. This high-
resolution classification enables segmentation of mosaic images, where the segmentation is
achieved via the recognition process. We should note that for some segmentation tasks it
is sometimes desirable to increase the resolution even further (thus eliminating blockiness
effects). In order to achieve even better classification accuracy, we would need to remain
at the higher resolution levels of the pyramid (actually expanding the lower-resolution
levels “upward”). A tradeoff exists between computational efficiency, both timewise and

resourcewise, and achieving this high-accuracy performance.



59

Comparable results were presented across the three different classification schemes
used. Some of the interesting characteristics of the rule-based network include the follow-
ing: A minimal (most informative) feature set is learned. This provides a scheme to reduce
the dimensionality of a given task. The extracted set of classification rules are available
to the user. The system can thus enhance the user’s knowledge of the input domain via
its own extracted rule knowledge base. In addition, the number of rules required to cover
the input sample space is indicative of the difficulty of the task, and reflects the relative
difficulty of characterization among the texture classes. The output probability maps give
more information about the decision process than does a hard-decision output. We have
demonstrated the generalization capability of the system, based on the probability maps,
to the identification of an unknown class, so-called “pattern discovery.”

The rule-based network presented can require a long training time as it searches the
input space and looks for informative rules of varied orders. Smart search algorithms
and pruning algorithms are required in order to prevent the training time from growing
exponentially with the number of examples presented to the system. We assume that
this training phase can be done in a batch mode. The classification stage can then be
achieved in real time as portions of the system are parallelizable and can be implemented
in parallel hardware. We have thus automated the learning of a rule-based system while

the inferencing stage can be performed in parallel when implemented on neural-network

architectures.

Further investigation into the system’s characteristics, both its feature-space represen-
tation, and the advantages of learning schemes, will be pursued in the following chapters.
We start by proving that the pyramid filters form a steerable representation space. This
will allow us to extend the recognition system to handle rotation invariant texture recog-
nition (Chapters 4 and 5).

The application of the system to real-world problems (such as remote sensing) will be
demonstrated in Chapter 6. Along with our specific interest in texture, we believe that
the presented recognition system is a general one and could handle other visual modalities
as well. We will touch upon this claim briefly, in the context of shape recognition (in

particular, face recognition) in Chapter 6 as well.
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Chapter 4
Steerability of the Pyramid Filters and
Rotation Invariance

4.1 Introduction

In many image-processing tasks (such as the texture analysis, edge detection, and motion
analysis tasks) it is useful to apply filters of arbitrary orientation and to examine the filter
output as a function of orientation. One approach to finding the response of a filter at
many orientations is to apply many versions of the same filter, which are rotated copies
of each other. A more efficient approach is to apply a few filters corresponding to a
few angles and interpolate between the responses. With the correct filter set and the
correct interpolation rule it is possible to determine the response of a filter of arbitrary
orientation without explicitly applying that filter. The term “steerable filter” has been
defined in [FA91] to describe a class of filters in which a filter of arbitrary orientation is
synthesized as a linear combination of a set of “basis functions”. A function f(z,y) is

steerable when it can be written as a linear sum of rotated versions of itself:
M
f@(xa y) = Z/Hk(a)fek(wa y)? (41)
k=1

where fp(z,y) is f(z,y) rotated through an angle § about the origin and 3¢(8),k = 1..M
are the M interpolation functions needed.

In this chapter we extend our analysis of the Oriented Laplacian pyramid filters, to
show that the pyramid filters are a steerable set of filters [GBP194]. In previous work,
Freeman and Adelson [FA91] addressed the problem of synthesizing exactly steerable filters
(via equation 4.1). Perona [Per91] addressed the problem of calculating the best steerable
approximation to a given impulse response. We approach here a third related problem.
It is sometimes desirable to use a particular set of filters, due to certain desired filter
characteristics, computational complexity, existing hardware implementations or other
constraints. The question arises: what is the best way to interpolate a given set of
filters? In this chapter we present an optimal technique for deriving the set of interpolation
functions (steering coefficients) for a given overcomplete discrete representation, which

enable the shift to a steerable representation. We illustrate our technique using as a
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sample case the oriented Laplacian pyramid.

We show how the oriented pyramid, which has 8/3 redundancy (this is a more com-
pact Tepresentation than has previously been used in the literature [FA91], [SFAH92],
[BA83]), can be transformed into a steerable one. We present the procedure to calculate
the interpolation functions which give us a steerable representation.

We conclude this chapter by addressing the issue of a rotation invariant input repre-
sentation via the extracted steerable representation. We present a scheme for generating
rotationally-invariant feature-vectors for a given input, together with extracting the ac-
tual rotation information. Initial results for a variety of textured images will be shown
throughout. These results will be extended upon in Chapter 5 in which we will proceed
to use the steerability of the pyramid to achieve a large-scale rotation-invariant texture

recognition system.

4.2 Interpolating in Orientation Space

In Chapter 2 we have introduced the Oriented pyramid filters which we term Oy through
O.,s, and have shown that the chosen set of 4 oriented filters per scale (together with their
conjugate counterparts) span the 360° orientation space (see Fig. 2.7). In this chapter
we wish to use the finite set of oriented filters to calculate the output of filters at any
orientation in a continuum. We start by deriving the set of interpolation functions which
give us the steerable pyramid. We then investigate further into some of the interpolation

functions characteristics.

4.2.1 Interpolation Function Derivation

Having arrived at the set of oriented pyramid filters, On; through O,g, we next wish to
define interpolation functions (or steering coefficients) which allow us to use the finite
set of eight filters (per scale) to synthesize oriented filters across the entire orientation
space. Note that in this section we assume the input image to the pyramid to be a delta
function, Go(z,y) = 6(z,y). Let 8o x(8), k = 1..8, represent the interpolation coefficients
in orientation space. We wish to calculate the filter output for any given angle #, which

we define as Fy(z), via a linear interpolation scheme as follows:

Fro(z) = Bak(0)Oni(z). (4.2)

k=1



62

For clarity purposes we hereon avoid using the scale notation, with the understanding that
the following derivation is performed at each scale, n, independently.
Our goal is to minimize the error between the filter output, Fy(z), and the interpolated

output, Fy(z), (in space for a particular orientation ):

ming, , [|Fo(z) — Fo(e)||3e, (4.3)
We have
| Fo(z) — Fp(2)I1? = |1 Fa(@)|I* + | Fo(a)l|* — 2(Fo(2), Fo(2)), (4.4)
where
1 Ea(2)|1” = (Br(8)Ok(2), Br(0)On(2))
hk
=Y BrBe(On, Or)ge (4.5)
hok
and

(Fs(@), Fo(x)) = Y Br{On(z), Fo(2))

h

=Y Bu(Fy, On)ge
h

=Y Bn-Ta(0) (4.6)
h

with I‘h(a) = (F€70h>§fﬁ2-
Using (4.4-4.6), we need to minimize the following expression with respect to §:

> B Br{On, Okge =23 Bn-Tw(6). (4.7)

h,k h

7

e
a

b

The derivative with respect to 3, of the left term (a) gives : 23, 8x(0,, Ok).

The derivative of the right term (b) gives: —2I',(6).

Equating the sum of the above two terms to zero leads to the following equation for the
B’s:

> (0., 01)g2Br =T:(0) z=1.N,k=1.N. (4.8)
k

In matrix form we have:

04 =T, (4.9)
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with O = (O, Og)gz, B8 = a column of the B¢’s, k= 1.N,and I' = a column of the I',’s,
z=1..N.
In the orthonormal case, O is a diagonal (identity) matrix since (Op, Og) = Gn-

In that case from 4.8 we get:

Br(0) = Tw(8) = (Fo, On)ne. (4.10)

For the nonorthonormal case, the solution requires more computation — one method
would be Gauss elimination method, the other would be to decompose O by SVD to
UXVT and use this to calculate O~!. Here, UUT = I and VVT = 1. The inverse

matrix, O~', can be found as:

0~ ! = Vldiag(1/();)]U7. (4.11)

The solution for 8 can now be extracted as:
B = Vidiag(1/(X\;)]UT - T, (4.12)

where in the case of a zero eigenvalue, A; = 0, the corresponding 1/}; in 371 gets replaced
by a zero. The above scenario takes care of all possible O matrices, even if the matrix is
not full rank. Overall, if T is in the range of O then the extracted 3 functions are exact.
If T is not in the range then the B functions are the closest we can find in least-squares
sense; i.e., minimizing |0 - 8 — T'|.

Using the eight 45° bandwidth oriented filters, Oy through Og, we extract the eight
steering coefficients (8 for k& = 1..8), as outlined above. A plot of 3(6) over the range
0° — 360° is shown in Fig. 4.1. Note that at each 45° increment, one of the 3()’s peaks
at 1, and the rest of the 8,(8)’s pass through zero. The curves for each fj(0) are cyclicly
shifted copies of one another; for clarity, Fig. 4.1 bottom highlights the curve for k& = 5.

With the interpolation functions in hand, we can now go back and calculate the ori-

ented filters, Fg, from the finite set of oriented filters that we hold, Oy, as:
=" Bu(6)O% (4.13)
k

across the continuous orientation space, § = 0° — 360°. Fig. 4.2 shows the percent error,

E(6), in the reconstruction of the oriented filters, for = 0° —360° with steps of 5°. Here
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beta_k’s for pyramid basis

Value of beta_k

i i i i
0 45 90 135 180 225 270 315 360
Angle of oriented filter

Comparison of beta (solid) and sinc (dashed)

1 i 1 L i L
o 45 90 135 180 225 270 315 360
Angle in degrees

Figure 4.1: Top - Plot of the eight interpolation functions, 3¢, k = 1..8. Bottom - Highlight
of one characteristic interpolation function (solid), as compared with the Sinc function

(dashed).
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Percent error in oriented pyramid reconstruction

Percent error

135 180 225
Angle in degrees

Figure 4.2: Percent error in the reconstruction of oriented filters across the continuous
orientation space, § = 0 — 360 degrees, from the finite filter set, O, k = 1..8.

the interpolation error E is defined as:

x 100. (4.14)

Note that the peak error is less than 1% (around 0.5%). This is in agreement with the SVD
bound found in Chapter 2. We have thus completed the proof of the pyramid steerability.
An alternative scheme to the interpolation functions derivation of above, which does

not involve matrix inversions, uses the Gram-Schmidt orthogonalization process. This

scheme is outlined in Appendix C.1.

4.2.2 Steerability of the Filter Powers

We have so far shown the steerability of the oriented filters (equation 4.2). We next need to
shift to investigate the behavior of the oriented filter powers which form the actual input
representation. The power maps form a pyramid of the local statistics of the oriented

pyramid’s coefficients, which characterize the image local-area response to the different
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orientations and frequencies (see Chapter 3). The exact interpolation equation for the
filter powers is complex, and will not be derived here.
Given the fact that the energy is lowpass in orientation we hereon make the approxi-

mation that the filter output powers can be interpolated with the (sinc-like) 8 functions

(this is confirmed by empirical observations):

Pg ~ Z,@k(e)Pk (4.15)
k

Here, Pj,k = 1..4, are the 4 oriented power components, Pro,a = 1.4, and Py, k = 5..8
is the duplicate set representing the power components of the conjugate counterparts. Py
represents the estimated power map for the texture rotated at an arbitrary angle, 6.

We test the estimation accuracy on a few texture examples. Fig. 4.3 presents the

estimation error, E(#), across orientation space (steps of 5°), for a set of 5 textures. Here:

I~ 4

EO) = 5]

% 100. (4.16)

with Pj representing the actual power map extracted from the input texture rotated to
9, and Pj representing the estimated response based on the original, nonrotated power
maps. The error is less than 3%. These results demonstrate that the finite set of oriented
filters which we chose for our representation gives us a steerable pyramid and indicates
the validity of the interpolation functions in a real application. Moreover, the results

demonstrate that the power pyramid is steerable, thus validating equation 4.15.

4.3 Achieving a Rotation-Invariant Representation via the
Steerable Pyramid

For a given input (texture) we define a feature curve (per scale) across orientation space,
f-(8), as the texture’s response to any oriented filter in the 360° space (using symmetry
considerations we will concentrate on the 180° space). Using the steerability property we
note that the four components of the feature vector, i.e, Pp1, Pra, Prs and Pry4, allow us
to reconstruct the continuous curve with a 45° sampling period.

As an input texture is rotated, its feature curve, f.(#), shifts across the orientation

axis. Alternatively we can visualize the sample points cycling along the continuous curve.
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Figure 4.3: Percent error in the calculation of characteristic curves, 5 texture case.
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It is our goal to find a rotation-invariant representation for the sampled curve. We will

next describe how the Discrete Fourier Transform (DFT) can be used for this task.

4.3.1 Use of the DFT Representation for Rotation Invariance

Let f(n),n = 0..3, denote a sequence of four points taken from a single scale in a given
feature vector. We define a companion feature vector f(k) to be the Discrete Fourier

Transform of f(n) as follows *:

3
fky =3 f(m)e™™™*? £ =0,1,2,3. (4.17)

n=0

For illustrative purposes the above summation can be rewritten in the form of a matrix

product, as follows: X

1 1 1 fEO% ]iEO;

-3 =1 2 f@ f(1

-1 1 =1 |f@] " [f@) | (4.18)
1 i -1 —iJLlf@3) f(3)

In this form, it is clear that each term in the transformed sequence of points evaluates to:

= et e

f(0)=F0) + F(1) + £(2) + [(3) (4.19)
J@)=(£(0) = £(2)) +4(£(3) - £(1))

f@)=70) - F)+ £(2) - F(3)

F3)=(£(0) = £(2)) —i(f(3) = F(1)).

The four values of f(k) provide us the following information:
. f(()) is the DC component of f(n),ie., >, f(n),
o If(1)] = |f(3)] is the magnitude of the first harmonic,

o arg[f(1)] = —arg[f(3)] is the phase of the first harmonic, and

° f(?) is the Nyquist component 2

The complete feature vector includes the DF'T components for each scale together with the non-oriented
components, L.

?We use the term “Nyquist” component to refer to the component of the highest harmonic present in
a sequence, as dictated by the sampling rate.
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Using the extracted coefficients above, we can represent the original feature curve, f.0 as:

f(6)=A+ Bcos(0+C)+ D (4.20)

with the coefficients given by

A= f(o)vB: I.f(l)lvc: arg[f(l)]vD: .f(2) (4'21)

We note that A and B do not change as a result of rotation, while C'/2 is equal to the
rotation angle on the input (The division by two is necessary since f(n) goes through two
complete cycles during a rotation of the input image by 360°). In this case we do not have
a high-enough sampling rate to extract the phase component of the second harmonic. The
coefficient D is therefore not rotation invariant. It will tend be very small and does not
represent useful information with rotated inputs.

To begin investigating the prospect of an invariant feature waveform, the feature-
vectors for an ideal sinusoidal grating texture at orientations from 0° to 45° with steps of
5° were set aside, for a total of 10 feature-vectors. Then a companion set of 10 feature-
vectors was formed. Fig. 4.4 (top) shows magnitudes of the 10 DFT’s for the ideal
sinusoidal grating texture, and Fig. 4.4 (bottom) shows the phase of the DFT’s. The
magnitudes overlap onto a single characteristic curve. With regard to the phase, either
f(l) or f(3) can be inspected to determine the amount of rotation on the input, as shown
in Fig. 4.4. Only the positive and/or negative first harmonics f(1) and f(3) will lend
insight to occurrences of a shift in the feature waveform resulting from a rotation of the
input texture. Fig. 4.5 shows the DFT magnitudes for the denim texture. We note the

variation in the Nyquist component, f(?), with the rotation of the input texture.
4.3.2 Derotation of the Feature Vectors

Given the rotation/phase-shift of a given (test) feature vector, we will now describe how
to “derotate” the feature vector to approximate the response to the corresponding input
texture which was prelearned and stored in the database. We will first treat the general

case of a length-N bandlimited sequence z(n) and then consider the special case of N = 4.

The General Case

Consider an arbitrary bandlimited, real, positive signal z(¢) which has been sampled at

the Nyquist rate to yield a length N sequence z(n) (where N is even). In our case z(n)
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DFT magnitude for rotated sinusoidal grating (0:5:90)
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Figure 4.4: Top : DFT magnitudes for 10 rotated ideal sinusoidal-grating textures. Bot-
tom: DFT phase for 10 rotated ideal sinusoidal-grating textures.

DFT magnitude for rotated denim (0:5:45)
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Figure 4.5: DFT magnitudes for 10 rotated versions of the denim texture
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represents a sequence of oriented filter output powers for a local window in an input image.

This sequence can be expressed as

N-1
z(n) = —}V- ?: F(R)e?EIN p =0, N =1, (4.22)

=0
where Z(k) is the DFT of z(n). Since z(n) has N evenly spaced samples, we can regard
it to be samples of the curve z(¢) with a sampling period of 180°/N. Making use of the

conjugate-symmetry of &(k) (since z(n) is real), we can rewrite equation 4.22 as

. N/2—-1 n
o) = B4 25 ikl cos (2 4 angli(h)]) +
k=1
% z (%) cos(mn) n=0,...,N-1.

(4.23)

We will again consider what each component of Z(k) represents in terms of orientation
information. The (0) term is the DC component of z(n), i.e., ¥, z(r) (identical to f(0)
in equation 4.19). We should expect that the sum of the filter powers remain invariant to
rotations of input patterns. The terms that are of interest to us in terms of orientation
and rotation information, however, are the harmonic terms 2(k), k # 0.

&(1) represents the first harmonic. A rotation of an input pattern by 180° would result
in one full cycle of this harmonic. The next harmonic, k = 2, is tuned to patterns with
two perpendicular orientations, such a “+” symbol, and would go through one full cycle
during a 90° rotation of such a pattern. In general, the strength of the kth harmonic
indicates the presence of k simultaneous orientations (evenly spaced in angle) and cycles
once during each rotation of the input pattern by 180°/k. The phase of the kth harmonic,
meanwhile, indicates what the rotation of the pattern is, modulo 180°/k. For example,
the phase of the first harmonic for a wood texture (which is a single orientation pattern)
could be inspected to detect a rotation of the woodgrain relative to vertical.

The last harmonic (corresponding to the Nyquist frequency), & = N/2, does not have
useful phase information. A higher sampling rate would be necessary to obtain reliable
phase and magnitude information for this harmonic. (For this reason, the summation in

(4.23) can actually be written to only go from 1 to N/2 — 1 for tasks which involve rotated
inputs).
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As an example, consider the case for N = 8. Here we have

fe(0)=A+ Beos(+ C)+ Dcos(20 + E) + Fcos(30 +G) + H. (4.24)

For this choice of N, we can detect up to three multiple orientations. The first, second and
third harmonics would be tuned to the configurations “—”, “4+” and “*”, respectively. The
phases of these harmonics would indicate rotations of these multiple-orientation elements.

Derotation of the feature vectors is described next. We know that shift of z(n) by an

integer amount n, (where |n,| < N) results in a modulation of Z(k):
2(n — ny) <= e~ 12mok/N g( ) (4.25)

that is, if we let z,(n) = z(n — n,),
1 = .
z:(n) = 3 emi2mok/Ng (k)2 N =0, N~ 1. (4.26)

n=0
In general, this property only holds for integer n,, but since z(n) is bandlimited, the
following relation correctly interpolates the samples of #(n) for any shift n,:

N/2

zy(n) = = Z e~ 12mnok/N g ()i k/N -y =0, N — 1. - (4.27)
n=—N/2+1

The length N interval of summation has heen changed here to be symmetric about zero
to maintain conjugate symmetry between the positive and negative harmonics.

The algorithm for derotation follows. One harmonic is chosen from which we extract
the phase. We then demodulate the phase components of all the harmonics present by
that phase. Inversing the DFT encoding, we get back the desired feature vector, which

can now be used in the classification task. The block-diagram for the derotation encoding

scheme is shown in Fig. 4.6.

The Case for N =4

Now consider the specific case when N = 4. Let fs(n) denote a prediction of f(n)
derotated by ¢. We can relate this to the general case by letting n, = ¢/45°, so that when

¢ is an integer multiple of 45°, n, will be an integer. We can then predict f; using the

formula .

1 . oy A .
fo(n) = 5 S em k@IS fk)eimmk/2 p = 0,1,2,3. (4.28)

n=-—1
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Figure 4.6: Block-diagram of the derotation-encoding scheme

Notice that ¢ appears multiplied by 2 here; this is again due to the fact that one entire

rotation of an input texture by 360° results in {wo complete cycles of the values in f(n).
p

Returning now to the task of derotation, any phase contained in the harmonics f (-=1)
and f(l) is zeroed by applying a modulator at a particular frequency. In this specific
case of N = 4, zeroing the phase using demodulation is equivalent to simply taking the
magnitude of each component in f(k) Recall that the DC component f(O) is necessarily

positive (zero phase) since f(n) > 0 for all n, so it is unchanged when its magnitude is

taken.

To summarize, in the case of N = 4, if we wish to predict the values of the zero-
phase/derotated feature vector fs(n) using the information provided f(n), we need only
DFT f(n), take its magnitude, and IDFT. Recall that the phase information is still avail-
able in arg[f(—1)] and arg[f(1)] should it be necessary to know the rotation angle of the

input texture.

Summarizing the number of informative parameters in the texture’s representation, we
note the following: For an original K-point representation we have K informative values.

In order to consider the rotation-invariance issue we lose 2 parameters, one is the Nyquist
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parameter and the second one is the phase of the harmonic we chose as our reference
harmonic - this phase is zeroed out via the modulation. We thus have K — 2 parameters.
Using the DFT magnitudes as the invariant representation we use: 1+ (K — 2)/2 param-
eters.
We note that for the K = 4 case, we get the same amount of information out from DFT
encoding as with the demodulation procedure. In general, for K > 4, more information is

preserved by demodulating the feature vectors, as described above.

4.4 Initial Rotation Invariant Texture Recognition Results

We present a sample of results to validate the above analysis in a real-world noisy domain.

A full-scope system will be presented in Chapter 5.

We present results of applying the above analysis to a 10-texture recognition task. The
test consists of presenting different 128 x 128 images from the input set, with each image
arbitrarily rotated at one of 5 angles: (0, 10, 20, 30, 40) degrees. In the recognition process,
feature-vectors are extracted and each component is averaged over the entire image, to
produce one representative feature-vector per input. The extracted feature-vector, f, is
next used to generate the companion feature-vector, f, via the DFT transformation of the
previous section (equation 4.17).

For each of the 10 textures we investigate the magnitude deviation of the representative
feature-vector, f, as the input texture is rotated. We compare the standard deviation
within each class, ¢; (in the 15 dimensional space), to the average (and minimum) distance
between the mean of class ¢; and the means of all other texture classes ¢;, j # i; i.e., the

average (/min) interclass distance. This is shown in the following table:

texture class | innerclass std. | avg. interclass distance | min. interclass distance
bark 0.99 10.89 5.92
calf 2.62 12.56 6.37
cloth 3.84 10.29 0.74
cardboard 2.76 12.67 6.45
denim 1.27 14.84 6.37
grass 1.33 18.17 7.86
pig 0.87 10.32 0.74
raffia 0.97 9.61 5.92
water 0.65 15.54 8.11
wood 0.96 10.59 6.08
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In the above results we observe more than a factor of 10 difference between the in-
nerclass and averdge interclass distances, for most textures. Looking at the minimum
interclass distance for each texture, we again see that it is much larger than the innerclass
standard deviation, except for the cloth and pig texture pair, for which the representative
feature-vector means are very close. This difficulty is inherent in the similarity of the
textures. The small innerclass standard-deviation strongly indicates the consistency of
the DFT magnitude representation; i.e., the invariance of the response with the rotation
of the input textures. To make this claim stronger, we next use the K-nearest-neighbor
classification scheme on the set of 10 textures above. In the training stage, we use 16
128 x 128 examples per texture class, with no rotation. The test set consists of a new set
of textures, which are rotated arbitrarily in one of the 5 angles: (0, 10,20, 30,40) degrees.

In this 10 texture recognition case we get 100% correct classification.

Once the identity is found we utilize the phase information from the DFT representa-
tion, to estimate the orientation of the test input, relative to the original texture from the
training set (as described in section 4.3.1). Here we are interested in the error, in degrees,
between the true rotation angle and the estimated orientation angle. The mean error,

across the 5 rotation angles and for each of the 10 textures, is depicted in the following

table:

texture class | mean error (in degrees)
bark 1.54
calf 0.57
cloth 1.56
cardboard 0.83
denim 0.76
grass 1.71
pig 0.46
raffia 0.37
water 0.26
wood 0.36

The average rotation-angle estimation error for the 10 textures is 0.84 degrees.

Both the perfect class identification and the high-resolution orientation estimation, as

presented above, are very encouraging results in the difficult domain of rotation invariant

natural texture identification.
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4.5 Discussions and Conclusions

In this chapter we have presented an optimal technique for deriving the set of interpolation
functions (or steering coefficients) which enable us to convert a given overcomplete oriented
filter set into a steerable representation. We have shown the general concepts in the
specific case of the Oriented Laplacian pyramid. We described the characteristics of the
8/3 redundant pyramid and have shown that the pyramid is steerable by defining a set of
eight 45° bandwidth oriented kernels and deriving the corresponding steering coefficients.
Properties of the kernels and interpolation functions have been investigated. Finally, we
demonstrated highly encouraging results in using the pyramid for defining a rotation-
invariant texture representation.

We have so far addressed the issue of one dominant orientation. In the case of multiple
orientations at a single location (such as in a cross pattern) we need additional harmonics
in our representation, or additional filters. Thus, to handle multiple orientations, we
extend the above analysis, with a larger set of (narrower frequency tuned) filters. A
similar framework to the one presented here can be applied next to scale invariance.
The combination with scale is currently being investigated. In the following chapter the

results presented here are utilized to achieve a state-of-the-art rotation-invariant texture

recognition system.
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Chapter 5
A Rotation-Invariant Texture

Recognition System and Orientation
Estimation

5.1 Introduction

We are now in the position to utilize the rotation-invariant representation of Chapter 4
to present state-of-the-art results on large database rotation-invariant texture recognition.
Here we are interested in learning a set of textured inputs, following which we would like
to recognize new test inputs as belonging to one of the prelearned classes, even if the new
input is rotated relative to the original input. Furthermore, we wish to state with high
accuracy the orientation of the test input relative to the original one [GBPG94].

We start by revisiting the texture recognition literature (and other general recogni-
tion literature), as we look for rotation-invariant recognition systems. In section 5.3 we
demonstrate the inadequacy of a non rotation-invariant recognition system to handle ro-
tated input data. We suggest the use of the steerable pyramid of oriented filters for
generating rotation-invariant features. We demonstrate our ideas with experiments on
rotation-invariant recognition (section 5.4) and on orientation estimation (section 5.5). A

summary of the presented results and discussion conclude this chapter.

5.2 Background and Motivation

A major challenge in the texture recognition arena is a shift to rotation and scale invari-
ant recognition systems. Having an invariant classifier is of great importance in object
recognition from texture and inspection applications, where controlling the environment
to ensure that the samples tested have the same orientation and scale as the training
samples is either costly, difficult or altogether impossible. In this work we concentrate on
the rotation invariance issue. Most of the methods presented in the literature address the
classification problem under the assumption that the test samples from a given texture
possess the same orientation as the training samples. Most methods therefore perform

poorly when the orientation is quite different from the orientation of the training samples



78

(as will be exemplified in section 5.3). We revisit the texture recognition literature, with

special attention to texture-invariant recognition.

In Chapter 3 we have reviewed the variety of structural and statistical approaches
which have been adopted in the texture recognition task. The structural approach assumes
the texture to be formed of primitives following a placement rule. This structural approach
suffers from the complications of determining the primitives and placement rules that
operate on these primitives. As a result, textures suitable for structural analysis have
been confined to quite regular textures. Some of the structural approaches are rotation-
invariant, especially with macrotextures [VNP86]. However, they are usually very complex
and do not perform well for unstructured random microtextures. In the statistical approach
the texture is regarded as a sample from a probability distribution on the image space
and defined by a stochastic model or characterized by a set of statistical features. The
most commonly used technique is the gray level co-occurence matrix and its variations
[Har79, DJAT9]. Some problems associated with the co-occurrences matrices and gray-
level run-length (GLRL) statistics [Gal74, CH80] are the following: 1) They require a
fair amount of computation - many co-occurence matrices need to be computed; 2) in
order to reduce the dimensionality of the feature vector detailed first-stage classification
experiments are to be performed to determine the best reduced set of features to use for
successful classification; 3) the features are not invariant to rotation (except to multiples
of 45° ) or scale change in the texture. There have been attempts at making rotation-
invariant features by averaging over directional matrices (such as the four GLCM matrices
computed for 0°,45°,90° and 135° [DJAT79]). In this case, in addition to the remaining
problems outlined above, we lose the orientation information, which is one of the major

features in the work presented here.

One model that has been well investigated for modeling the texture as a stochastic
process is the Markov random field model (MRF) (e.g., [CJ83, KCK82]). Here again,
although high classification results have been achieved on a large family of textures, most
of the works are not rotation or scale invariant. One work that s well known for handling
the rotation-invariance issue is [KK86]. In this work a new random field model model
called “circular autoregressive” is presented whose parameters could be taken as rotation-
invariant features for classification. A high-accuracy result is reported. The model however

suffers from several limitations: 1) Interpolation is required for values of the circular
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autoregressive field that do not fall on the rectangular grid. 2) A small database of
textures is used (9,12 Brodatz textures), with a small set of samples per texture. 3)
In several of the experiments the training actually includes all the rotations of the test
set. 4) There is no immediate generalization to scale invariance. Another, more recent
work that attempts to classify rotated and scaled textured images using Gaussian MRF
models is [CFP91]. Strong classification results are presented with high-accuracy in the
parameter estimation. Again, the results are shown on only a small database of 9 Brodatz
textures, with a single 64 * 64 image patch used for training and another single 64 * 64
image patch used in testing. The scalability of the system to a larger database is not
shown. In addition, only 2 orientations (0° and 60°) and 3 scales are actually used and
it is not clear how the system can cope with higher resolution of the rotation angles.
Classification of rotated and textured images based on Law’s texture masks [Law80], is
presented in [YC93]. Whereas Law’s masks are fixed and not invariant, the classifier used
in this work is the texture-energy associated with a mask that has been “tuned” to be
both discriminant between different textures and invariant to rotation and scale changes.
15 Brodatz textures are used in this work, with 45° steps in orientation, and the three
scales: (1:2),(1:1),(2:1) %

Rotation and scale-invariant pattern recognition systems can also be found in the
learning literature (e.g., [WWB88, P1.92, FOTK92]). Most of the works found in the
neural-network literature which try to “learn” the invariances, require special architectures
or special constraints on the weights of the networks. In [FOTK92] a circular array of input
neurons and corresponding weights is proposed. The responses of the cyclic-shifted input is
summed thus allowing for rotation-invariance, with a resolution depending on the number
of neurons in the input circular array (e.g., 12 neurons are needed for 30° resolution,24 for
15° and so forth). This architecture is applied successfully to coin recognition. A similar,
more primitive concept was proposed earlier in [WWBS88]. There, only 90° resolution
is actually detected. A different approach has the invariance built into the architecture
of the network through the imposition of appropriate constraints on the synaptic weights
(e.g., so-called “Higher-order neural-networks” [P1.92]). In these architectures special care

needs to be incorporated to reduce the size of the network and the number of required

'Note that 45° increments is a simple case of cyclic-shifting the attribute values across the feature
vector.
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weights. Common features in the above-mentioned works is that once a certain network
is formulated, it is restricted to recognize rotated input patterns at a specific rotation
resolution. In addition, the actual rotation-angle information of the input is lost.

Finally, some very recent published works which involve wavelet decomposition of
the input domain (e.g., [CK93, LF93]) have shown good classification results on large
databases of textures. These results are very encouraging in the field of large database
texture recognition. Still, one of the major drawbacks of the wavelet transforms (critically
sampled Subband transforms) is their lack of translation invariance and in the 2D domain,
their instability with regard to rotations of the input signal [SFAH92]. Overall, these works
can not be generalized to include rotation invariance.

Summarizing the above-presented diversity in the literature we note that most of the
results are given for a small set of input textures, and furthermore results are usually given
for a discrete set of rotation angles with no generalization capability to the continuum of
orientations. An additional important point is that many schemes shift to an invariant
representation domain in which rotation information is eliminated altogether in order
to achieve the rotation-invariance goal. In this chapter we show that our system can be
generalized to become a rotation-invariant texture recognition system. Via the steerability
characteristic we will demonstrate high classification rates on a large database of natural
textures. In addition, the recognition system extracts with high accuracy the rotation-

angle of the test image relative to the corresponding prelearned image in the database.

5.3 The Need for Rotation-Invariant Recognition

The need to accommodate rotation-invariance in a recognition system can be shown by
the decline in performance of a “classical” recognition framework, which is not designed
with rotation-invariance in mind. Fig. 5.1 shows a mis-classification curve for the texture
recognition system of Chapter 3. The classification results are averaged over the entire
30 texture database (see Fig. 3.8). The degradation in performance with increasing the
rotation angle of the input test images, is evident.

Although in general classification clearly declines with the deviation of the test inputs
from the training inputs, it is of interest to note that the behavior is related to the texture’s
orientational characteristics. Nonoriented or unstructured textures are less affected by

rotation. An example of a texture in this category is the pigskin texture, which is shown
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Figure 5.1: Average degradation in the classification performance of a non rotation-

invariant texture classifier with respect to rotation angle of the sample texture patch,
30 texture database.

rotated at 5 degree increments in the bottom of Fig. 5.2. The perceptual similarity of
the texture as it is rotated allows for high-accuracy in the classification process. The

mis-classification curve of the pigskin texture is therefore of uniform slope, as can be seen

at the bottom of Fig. 5.3.

Textures that exhibit strong orientation (such as the wood, canvas and herringbone
textures) are the most affected by the rotation. Rotated versions of the wood texture are
displayed at the top of Fig. 5.2. Here the rotation has a major effect on the perceived
texture. A characteristic mis-classification curve for the wood texture is presented at the

top of Fig. 5.3. The sharp decline in performance with rotation of the input is evident.

It is clear that rotation invariance is critical for a general texture recognition system.
Rotation invariance can be achieved in one of two ways, either by extracting rotation-
invariant features or by appropriate training of the classifier to make it ‘learn’ invariant
properties. Achieving rotation invariance in the classifier is extremely difficult (as indi-
cated by the limitations of the learning literature quoted above). In this work we use the
first approach. We use the rotationally-invariant representation via the steerable pyramid,

as introduced in the previous chapter, as the key element in the system in coping with the

invariance challenge.
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Successive 5-degres rotations of wood

Figure 5.2: Example of rotating textures by 5 degree increments. The wood texture
(top) is an example of an oriented texture. The pig texture (bottom) is an example of a
nonoriented texture.



83

5.4 The Rotation-Invariant Texture Recognition System
and Results

The recognition system we now hold is very much the same as the system we had presented
and analyzed in Chapter 3. Two major stages comprise the system - the feature extraction
stage and the classification stage. Feature vectors are extracted via the Oriented Pyra-
mid. Following the analysis of the previous chapter we know that this pyramid is steerable
and that a rotation-invariant representation for the feature vectors can be extracted via
DFT encoding. We add the DFT encoding step as part of the feature-extraction phase
of the system. In the classification part we continue to use the Rule-based learning algo-
rithm together with the Backprop neural-network algorithm and the K-nearest neighbor
algorithm. The updated system block diagram is depicted in Figure 5.4.

In order to visualize the effect of the DFT-encoding scheme we next revisit the example
textures of section 5.3. In Fig. 5.5 the classification curve for a rotated input pattern is
displayed for both textures. Using the DFT representation, the slope of the curve is
close to being uniform, for both the nonoriented (pig) as well as the oriented (wood)
texture, as the textures are rotated. This is in sharp contrast to the original classification
curve in Fig. 5.3 and strongly demonstrates the rotation-invariance of the DFT-encoding
representation.

The shift to the DFT encoded vectors is not without a price. It is interesting to note
that the actual classification results decrease for the pig texture, as the representation
is shifted to the DFT encoding (compare to Fig. 5.3 bottom). This representation is
very useful for handling rotated databases, yet, for non-rotated databases performance
can decrease relative to the nonDFT-encoding case. This issue will be addressed shortly
(see also Chapter 4).

We next demonstrate the performance of the rotation-invariant system on the difficult

30 texture database.

Experimental Setup

For each texture a 256 X 256 patch is used from which a set of 16 non-overlapping 64 x 64
size windows are extracted. 12 of the windows are used for training and 4 different ones

are used for testing. The test set consists of rotating each of the test windows by 5°
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Rotation angle vs. classification performance for wood (no DFT encoding)
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Figure 5.3: Degradation with rotation. The wood texture (top) is an example of an
oriented texture. The pig texture (bottom) is an example of a nonoriented texture.
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Figure 5.4: System Block Diagram

increments, between 5° and 50°; thus we have 40 test vectors per texture (For an example
of two rotated textures refer back to Fig. 5.2. Note that the training inputs are not

rotated.

The recognition process entails the following steps:
1. The 64 x 64 texture patch is passed through the steerable pyramid to result in a set of
15 8 x 8 filter maps.
2. The 8 x 8 filtermaps are averaged, to produce one representative feature vector per
64 x 64 input window.
3. The extracted feature vector, f, is DFT encoded to generate the companion feature
vector, f, of the previous chapter.
4. The magnitudes of the set of DFT-encoded feature-vectors are next presented to the
classification system for recognition. Three classifiers are used: the K-nearest neighbor

classifier (K-nn), the Back-Propagation (BackProp) classifier, and the Rule-based learning

system.

To augment the testing results 4 different runs are made, each with a different set of

4 testing windows, and the classification results are averaged over these runs.
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Rotation angle vs. classification performance for wood {with DFT encoding}
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Figure 5.5: Rotation with DFT encoding. The wood texture (top) is an example of

an oriented texture. The pig texture (bottom) is an example of a nonoriented texture.
Uniform classification curves are evident in both cases.
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Results

The results of classifying the 30 textures of Fig. 3.8 via the process outlined above, using
the rule-based network classifier as an example (following the process outlined above), are

depicted in the following table:

I 30 TEXTURE CLASSIFICATION - rule based network |

class correct classification confused with

1.bark 97.50% hmpaper

2.calf 100.00%

3.cloth 27.50% pig

4.crdbrd 100.00%

5.jeans 100.00%

6.grass 62.50% hmpaper,reptile

7.pig 97.50% cloth

8.raffia 77.50% sand

9.water 100.00%

10.wood 100.00%

il.backpack 100.00%

12.bookbox 100.00%

13.brownbag 100.00%

14.chbkcover 67.50% brownbag

15.cork 47.50% calf,grass,hmpaper,reptile

16.cotcanv 100.00%

17.frcanv 100.00%

18.fur 97.50% strawmat

19.hmpaper 67.50% bark,reptile,text

20.napkin 90.00% strawmat

21.prtboard 100.00%

22.reptile 97.50% grass

23.straw 35.00% calf,wood

24.text 100.00%

25.towel 60.00% grass

26.vinyl 100.00%

27.herring 100.00%

28.sand 77.50% bark,raffia,wire

29.wire 95.00% hmpaper
-30.strawmat 100.00%

An overall classification rate of 86.58% is achieved. The use of the steerable repre-
sentation for the input space has enabled us to enhance the recognition system to be

rotation-invariant.

Several interesting points can be seen in the above table. First, the more structured



88

textures, such as jeans(#5), wood(#10) and canvas(#17), are mostly classified at 100%
accuracy. Confusion occurs with the more unstructured textures, such as the cloth(#3)
and grass(#6) textures. Second, it can be seen that the classification errors occur with
what are visually similar (i.e., difficult to distinguish) textures. The cloth and pig textures
constitute an example of such a texture pair. In these results it seems that we have
successfully handled the rotation-invariance issues for the structured textures and we are
now left with the original difficulty of the unstructured data (see analysis in Chapter 3).

To illustrate the performance of the recognition system further, we next compare

results for 4 different classification scenarios, as given in the following table:

| 30 TEXTURE CLASSIFICATION - 4 cases |

rotation | DFT || Knn | Backprop network | Rule-based network
N N 95% 97.25% 97.5%
Y N 80% 67.5% 77.42%
N Y 90% 83% 85.83%
Y Y || 91.5% 84.67% 86.58%

The 4 cases reflect the performance of the system as related to the state of the input test
patterns (rotated vs. non-rotated), and the input representation space (rotation-invariant

(via DFT encoding) vs. non rotation-invariant).

o In case 1 the data is nonrotated and no DFT conversion is performed. High clas-
sification rates are achieved. These rates indicate the strength of the recognition

system on non-rotated inputs.

o In case 2 the test data is rotated and no DFT conversion is performed. Here the
strong decline in performance is evident, as is expected for a non rotation-invariant
system (see section 5.3). The result presented is averaged over both the oriented
and non-oriented textures in the database, with the non-oriented cases (which are
less affected by the rotation) actually augmenting the performance. In addition,
rotations of 5° — 50° were included. A more severe drop in performance would be

evident if only the large rotations were included.

o In case 3 the test data is nonrotated but a DFT representation is used. Here we get
high classification results, though somewhat reduced from case 1. This is the price
paid for shifting to a rotation-invariant representation which makes fewer assump-

tions about what is known. In using the magnitude of the DFT-encoded vectors for
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the classification task, we ignore the phase information. In the 4 dimensional case
we are actually left with only 2 invariant components (we zero out the single phase
component and we cannot rely on the Nyquist component - see analysis in Chapter

4). This loss of information results in the reduced performance.

o Finally, in case 4 we have a rotated test set analyzed by the rotation invariant
system. The increase in the results from case 2 are evident. As expected the results
are similar to case 3. We are able to classify the varied database of 30 textures

rotated at 5° resolution at an accuracy of close to 90%.

The above results represent state-of-the-art recognition results in the domain of large-

database rotation-invariant natural texture recognition.

5.5 Orientation Estimation

In this section we study a method for computing the rotation angle of a given test patch
relative to a reference texture in the database.

In the context of the recognition stage, only the magnitude of the DFT-encoded feature
vector is used. Upon identification, the phase of the DF'T can be inspected to determine
the amount of rotation of the input texture relative to a prestored sample of that texture
class. We find that general information about a texture’s behavior in orientation space
allows us to associate a certainty measure (or variance) to the extracted orientation. In
one extreme, the input texture is non-oriented in which case no meaningful rotation angle
can be detected.

The typical sequence of events in our system for the rotation-invariant texture recog-
nition and rotation detection is as follows:

Training stage

For each texture in the database (prelearned set) we find general characteristics in ori-
entation space. These include: defining a peak orientation (hereon called the “relative”
orientation) at the three scales of the system, choosing a “dominant” scale based on the
distribution of angles around the peak, looking at the behavior of the orientations across
scale thus defining the texture as either single-oriented, double-oriented or non-oriented.

Based on the above, a reliability measure for the texture’s orientation is extracted.

Production stage
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1. An input test image is classified as “wood”, for example, based on the magnitude of a
set of DFT encoded feature vectors.
2. The phase of the DFT-encoded feature vectors is inspected at the “dominant” scale
(predetermined for the “wood” texture), from which the relative rotation of the input
texture is determined.
3. A variance or reliability measure is assigned to the orientation calculation based on the
general characteristics extracted in the training stage.

We start with a description of our method for extracting general orientation charac-
teristics for the prelearned database of textures. We then proceed to use this information

as we estimate the rotation angles of new test patterns which are presented to the system.

5.5.1 Orientation Characteristics of Textures

We start with a general orientation analysis of a prestored library of textures. In this

analysis we wish to gain information about the following;:

o General category of the texture: non-oriented, one dominant orientation per scale,

two or more dominant orientations per scale.

e Defining one scale (out of the 3 scales in the system) to be a “dominant” scale — the

scale at which the rotation will be extracted.

e Extracting information about the dominant orientation(s) per scale and the reliabil-

ity of the orientation estimation.

The above goals are achieved using an histogram analysis scheme, as is described in

the following experiment.

Experimental setup

The 30 texture database is comprised of 256 X 256 size images. Each textured image is

run through the pyramid to produce a set of 32 x 32 = 1024 feature-vectors (i.e., each
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feature-vector represents an 8 X 8 block in the input image) which are subsequently DFT-
encoded. Only the core 30 x 30 = 900 feature-vectors are kept in the interest of avoiding
edge effects.

The phase of the first harmonic of the DFT components of each of the 900 feature-
vectors (namely, elements 2, 7, and 12) for each texture is next extracted, to produce a
total of 3 x 900 = 2700 phase estimates for each of the 30 textures. (We will refer to each
element of this collection of phase estimates as having the form pe®*, where py is the
response strength along a particular orientation 6y.)

We examine next the histograms of the phase estimates of each texture, at each of
the 3 scales of the system. Several histograms and plots were found informative for the
orientation analysis. Figs. 5.6, 5.7 and 5.8 show the plots for the wood, pig and herring
textures, respectively. A histogram of the phase estimates is presented top left, a second
“polar”-histogram is presented top right. In each of these representations only the f;’s
are taken into account while the p’s or “weightings” associated with these estimates
are ignored. For this reason, two alternate representations of the measured orientation
information which take both pj and 6 into account are of interest. The first of the two
alternate representations, shown bottom left, is a scatter plot of all of the prei®’s. The

second representation, shown bottom right, is a plot of log pre®®. Since

iy _

log pre log pi + 0% (5.1)

the log plot is essentially a rectangularized version of the polar plot. In this representation
the high-energy orientations are represented by the rightmost points in the plot. By

inspecting the plot it is possible to determine the peak angle in the strongest-power region.

Results

We investigate the above-described histograms for estimating general orientation charac-
teristics of the texture patches. We are looking for the following information:
- The number of peak orientations per scale
- A definition of the texture as a single-oriented, double-oriented or non-oriented texture.
- Extracting a reliability measure for the dominant orientation.

Three examples are presented. An example of a strongly (single) oriented texture is

the wood texture (see Fig. 5.6). We note the strong peak at 90° at all three scales. An
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example of a non-oriented texture is presented in the following figure (Fig. 5.7), for the
pigskin texture. Here we note the large variance in angles in each of the three scales.
Looking at the log plot we note the large variance in the power axis as well, with votes
for the angles spread out in the entire angle axis. Most of the textures in the 30 texture
database fall into one of the above categories. One extreme case of interest is the herring
texture which consists of two dominant orientations per scale. This case is presented in
Fig. 5.8. Scale 2 has in this case the most power in the oriented components, and the
least variance. It is also this scale in which we see two strong peaks in orientation, at
90° and 135°. The strongest of the two peaks is used as the “reference” peak. Still, the
information about the second peak is very important in the reliability of the estimated
rotation angles. With the 4-dimensional DFT representation we extract a single phase
component (as described in Chapter 4). In a single oriented texture, we are thus able to
retrieve rotations in the 180 degree range. In the case of two dominant orientations per
scale, our estimate can be accurate to +90 degrees. This reliability measure is valuable
information for the results as presented below.

Table 5.5.1 summarizes the orientation analysis for each of the 30 textures in our
database. For each texture is indicated:

- The dominant scale from which to determine orientation. This scale was chosen as the
one with smallest standard deviation around the peak.

- The mean angle (or peak) in that scale.

- The standard deviation of the angle distribution with a +40 degree span around the
peak.

- The number of points captured in the +£40 degree window around the peak.

- In cases where the number of points is less than 80% of the total (900), two possibilities
exist: the texture is nonoriented or the texture has two dominant orientations per scale.
A second mean is indicated in the table for those textures with multiple orientations in
the dominant scale.

In Table 5.1 we have incorporated the highest resolution information available on the
texture database. Table 5.2 presents a similar table for the case of averaging over the
filtermaps of 64 % 64 texture patches. Histogrammed are inputs from 64 such windows.
Due to the averaging step we reduce the noise in the phase estimation. This is evident in

the lower standard deviation results for each texture.
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5.5.2 Rotation Angle Estimation

The goal of the orientation analysis is to calculate the rotation angle of each rotated test
input texture. To each estimated rotation-angle we associate a reliability measure derived

from the tables of the previous section.

Texture patches of size 64 X 64 are presented to the system with each patch rotated
to ten different angles (5° to 50° with steps of 5°), as described in section 5.4. Here we
are averaging over the filtermaps to produce one representative feature vector per 64 * 64
window. The averaging step increases the reliability of our phase estimates, which we
compare to the results in Table 5.2. We investigate the accuracy of rotation estimation

for all 30 texture classes.

Three different methods are used for producing rotation error estimates. The three
methods differ only in the choice of reference angle from which all successive rotation
estimations are judged. In method 1 the reference phase for all test patches of a particular
texture is taken from one randomly chosen 5° rotated test patch in the set. In method
2 the reference phase for all test patches of a particular texture is taken to be the average
of the phases for all the 5° test patches of that texture. Method 3 uses the phase of
the 5° version of each texture patch as its reference phase for all rotations. In this case
the training and test patch are the same and thus the error measured is not affected by
changes in orientation across different patches of the same texture. Method 3 gives best

accuracy measurements, with methods 1 and 2 presenting more real-world like scenarios

to the system.

Experimental results are summarized in Table 5.3. In general we note that the rotation
angle estimations are highly accurate for oriented textures (e.g., wood, jeans), in all 3
methods and across all scales, with much lower accuracy evident for the non-oriented
textures (such as particle-board of brown bag). An interesting case is the herringbone
texture. In this case poor error measures are found for both methods 1 and 2 but not for
method 3. This is due to the fact that the texture has 2 dominant orientations 90° apart.
In this case methods 1 and 2 accumulate error (an average between approximately 45°
and 135°). In method 3 the rotation of each patch is found relative to its own 5° phase,

thus no averaging takes place and the rotation accuracy found is high.

The above rotation-angle estimation results are summarized in Figure 5.9. Data from
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Figure 5.6: Wood texture characteristics. At top left and top right we have the regular
and polar histograms, respectively. These consist of of 900 8)’s representing the local
orientations of 8 x 8 blocks in a 256 x 256 patch of the wood texture. In both histograms,
a strong peak is visible at 90° at all three scales. The smallest standard deviation is found
at scale 0 (as is typically the case). The bottom two plots incorporate both the angle
certainties (the pg’s) and the orientation angles. The left polar scatter plot is simply a
polar plot of pye’* for all k. In this representation, the strongest angles are furthest from
the origin. In the second, log scatter plot, we have plotted log pxe*®* = log pi + 6y for all
k, so that the strongest angles are the rightmost points on the plot.
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Figure 5.7: Pigskin texture characteristics. See description of plots intext and Fig.

Here we see an example of a non-oriented texture’s behavior in orientation space.

5.6.



96

herr, poler histogram - scele 0
9040

herr, angle histogram - scale &
T v T g

Figure 5.8: Herringbone texture characteristics. Similar plots are shown as in Fig. 5.6.
Note the strong bi-modal angle distribution at scale 1, indicating the presence of two
dominant orientations.
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dom. scale | mean | std. | num. points (out of 900) | mean2
1.bark 1 100.01 | 17.70 663
2.calf 0 81.70 | 10.71 900
3.cloth 0 70.15 | 17.71 794
4.crdbrd 1 91.37 | 5.26 896
5.jeans 0 86.54 | 1.86 900
6.grass 0 106.45 | 17.15 823
7.pig 0 178.23 | 17.62 756
8.raffia 0 176.34 | 11.34 832
9.water 0 92.36 | 3.40 898
10.wood 0 91.46 | 1.44 900
11.backpack 0 91.20 | 0.93 900
12.bookbox 0 179.34 | 5.65 900
13.brownbag 0 86.20 | 17.39 726
14.chbkcover 0 182.27 | 12.96 738
15.cork 0 62.95 | 9.43 900
16.cotcanv 0 132.81 | 5.71 900
17 frcanv 0 88.96 | 1.18 900
18.fur 0 110.76 | 7.78 900
19.hmpaper 0 60.92 | 18.38 734
20.napkin 2 135.73 | 11.80 867
21.prthoard 0 90.10 | 17.53 726
22.reptile 0 75.44 | 14.05 845
23.straw 0 143.66 | 11.66 892
24 .text 0 84.14 | 8.74 873
25.towel 0 145.05 | 21.64 765
26.vinyl 0 48.58 | 19.15 802
27.herring 1 135.01 | 8.80 507 46.94
28.sand 0 106.72 | 16.68 790
29.wire 0 94.60 | 2.58 899
30.strawmat 1 165.46 | 6.92 892

Table 5.1: Orientation characteristics of textures via a histogram analysis. Shown for
each texture are the dominant scale (0, 1 or 2), the mean (peak) orientation angle, the
standard deviation of the distribution around the peak angle within a +40° window, and
the number of estimates that fall inside that window. The dominant scale (which is 0 for
83% of the textures) is defined as the scale with the smallest standard deviation about
the measured mean. The standard deviations for highly structured textures such as wood
and jeans tend to be very small while those of unstructured textures such as particle-
board and handmade-paper are large. Note that in the chosen window span of +40°,
the max standard deviation is around 20. The herringbone texture (number 27) displays

orientation preference to two angles 90° apart; the second mean is indicated for this special
case.
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dom. scale | mean | std. | num. points (out of 64) | mean2
1.bark 0 116.68 | 12.23 64
2.calf 0 80.07 | 4.29 64
3.cloth 0 70.23 | 7.99 64
4.crdbrd 1 91.31 | 0.90 64
5.jeans 0 86.57 | 0.61 64
6.grass 0 96.07 | 11.87 64
7.pig 0 178.80 | 4.93 64
8.raffia 0 175.82 | 2.13 64
9.water 0 91.85 | 0.58 64
10.wood 0 90.68 | 0.68 64
11.backpack 0 91.27 | 0.65 64
12.bookbox 0 179.82 | 1.48 64
13.brownbag 0 85.08 | 8.56 64
14.chbkcover 0 182.52 | 2.77 64
15.cork 0 63.11 | 2.93 64
16.cotcanv 0 132.31 | 2.08 64
17 frcanv 0 88.94 | 0.38 64
18.fur 0 110.74 | 6.64 64
19.hmpaper 0 60.14 | 8.09 64
20.napkin 2 134.83 | 3.58 64
21.prthoard 0 90.85 | 8.27 64
22.reptile 0 78.48 | 5.89 64
23.straw 1 122.42 | 7.83 64
24.text 0 85.27 | 1.56 64
25.towel 1 139.22 | 19.87 53
26.vinyl 0 49.54 | 13.52 64
27.herring 2 135.90 | 7.63 40
28.sand 0 105.88 | 6.16 64
29.wire 1 91.16 | 0.54 64
30.strawmat 1 166.01 | 2.27 64

Table 5.2: Orientation characteristics of textures via a histogram analysis - 64*64 window
case.
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average error (in degrees)

method 1 method 2 method 3
s0 sl s2 s0 sl s2 s0 sl s2
1.bark 4.81 | 6.98 | 18.74 || 4.03 | 5.95 | 20.24 || 2.66 | 4.66 | 12.31
2.calf 2.56 | 3.19 | 3.75 2.32 | 3.00 | 3.88 || 0.58 | 1.07 | 2.47
3.cloth 15.74 | 16.04 | 16.98 || 8.47 | 7.04 | 13.75 || 2.46 | 4.81 | 18.30
4.crdbrd 0.66 | 0.40 | 1.36 0.66 | 0.52 | 0.63 |[0.30 | 0.44 | 1.06
5.jeans 0.24 | 1.26 | 27.88 | 0.23 | 1.37 | 60.04 || 0.10 | 1.29 | 23.66
6.grass 2.30 | 30.20 | 31.33 || 1.92 | 34.28 {1 62.91 || 0.85 | 5.66 | 21.01
7.pig 7.15 | 37.31 | 32.69 || 6.95 | 52.75 | 38.67 || 2.74 | 9.26 | 26.06
8.rafia 1.83 | 5.66 | 11.29 || 2.17 | 5.77 | 9.17 || 1.59 | 1.41 | 7.49
9.water 1.99 | 3.70 | 11.25 |} 1.47 | 3.41 | 12.06 || 0.25 | 0.57 | 6.37
10.wood 0.55 | 1.15 | 6.83 0.54 | 1.13 | 3.12 |} 0.27 | 0.24 | 2.60

11.backpack || 0.46 | 9.54 | 20.34 || 0.44 | 9.12 | 14.83 || 0.41 | 6.43 | 19.49
12.bookbox 2.86 | 4.97 | 37.17 || 1.62 | 4.55 | 53.38 || 1.17 | 2.95 | 12.71
13.brownbag || 15.57 | 11.93 | 35.78 || 7.44 | 8.70 | 37.32 || 1.84 | 6.67 | 20.66
14.chbkcover | 4.26 | 8.95 | 8.89 |l 45.45 | 42.81 | 14.75 | 1.81 | 3.62 | 13.70

15.cork 5.57 | 653 | 6.39 || 449 | 5.68 | 6.10 || 0.98 | 1.52 | 3.43
16.cotcanvas || 1.01 | 1.86 | 18.10 || 1.08 | 1.99 | 12.13 || 0.81 | 1.73 | 9.35
17.frecanv 0.97 | 140 | 13.66 | 0.92 | 1.35 | 12.17 || 0.78 | 1.34 | 9.88
18.fur 2.44 | 1.55 | 3.82 1.13 | 1.61 | 3.63 || 0.34 | 0.46 | 2.07
19.hmpaper 8.89 | 6.26 | 15.46 || 10.61 | 44.34 | 12.27 || 4.89 { 1.74 | 3.30
20.napkin 9.50 | 3.29 | 1.58 | 43.21| 231 | 0.90 |[2.71| 1.80 | 1.03
21.prtboard 5.50 | 12.29 | 32.81 || 5.46 | 13.66 | 34.51 || 2.38 | 9.57 | 12.60
22.reptile 1.21 | 12.68 | 20.76 |} 1.32 | 12.67 | 16.59 || 1.15 | 8.70 | 13.34
23.straw 7.79 | 952 | 13.11 || 6.02 | 6.87 | 8.47 || 0.44 | 0.45 | 3.36
24 text 1.18 | 1.25 | 2.51 1.15 | 099 | 1.44 |1 1.18 | 0.42 | 1.20
25.towel 23.62 | 26.21 | 32.07 || 13.86 | 13.46 | 22.96 || 3.90 | 3.24 | 14.49
26.vinyl 5.76 | 26.35 | 13.92 || 5.76 | 41.89 | 11.35 || 1.82 | 3.53 | 7.50
27 .herring 32.91 | 45.13 | 40.90 |} 28.08 | 44.94 | 39.26 || 1.66 | 1.94 | 8.63
28.sand 3.00 | 8.03 | 23.87 ) 2.30 | 7.73 | 39.78 || 1.12 | 3.02 | 9.02
29.wire 0.58 | 0.59 | 852 | 042 | 0.62 | 9.84 | 0.37 | 0.53 | 8.66

30.strawmat 6.83 | 2.29 | 5.72 6.76 | 1.19 | 5.57 11 4.30 ] 0.93 | 5.20

Table 5.3: Rotation angle estimation analysis. Shown are the calculated errors in orienta-
tion angle prediction for each of the 30 textures using the 3 methods outlined in section
5.5.2. The phase information from the DFT-encoded feature vectors for 10 different rota-

tions of each texture were compared against the ideal phase values and then averaged to
produce the above error measurements.
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Figure 5.9: Rotation Error Estimation - Predicted vs. Calculated error for three methods.
(solid:method1, dash:method2, dashdot:method3)

the three orientation estimation methods is plotted against the data of Table 5.2 which
corresponds to the predicted error per texture. The slopes of all three curves indicate that
the predicted error bound, which is based on the variability of the orientation within a
texture patch, gives an upper bound to the actual estimated rotation angle.

Our final result is the average rotation-estimation error across all 30 textures for each
of the three methods above. For each texture the dominant scale is read out from Table 5.2
and the corresponding rotation-estimation error is extracted from Table 5.3. The average

error (in degrees) is given in the following table:

method 1 | method 2 | method 3
5.7 6.0 1.5

The results of the above table reflect the average error over both oriented and nonoriented
textures.

We next look at the subset of textures for which the rotation angle estimate has the
most meaning. In the following table we present the same error measures for the subset of

the 30 texture database, which we have determined to have a single dominant orientation.
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The characterization of the textures, based on Table 5.1, was made as follows: Textures
with a standard deviation greater than 12 were considered to be “non-oriented.” The Her-
ring texture was also omitted due to its bimodal distribution. The remaining textures are

labeled as “oriented” (with one dominant orientation).

method 1 | method 2 | method 3
1.90 1.44 0.67

We note the high-accuracy in our rotation estimation across all three methods. The
results summarized in the above two tables demonstrate high accuracy orientation esti-

mation on the large database of all 30 textures, with even higher accuracy for the subset

of oriented textures.

5.6 Conclusions

We have presented a rotation-invariant texture recognition system together with a method
for estimating rotation of textures. The methods are novel in that features are obtained
from oriented pyramid filters which present particularly good properties of “discriminabil-
ity” for texture classification and are computationally efficient. The orientation estimation
method is particularly reliable in that confidence measures are estimated along with the
orientation. We have demonstrated state-of-the-art results both in classification and ori-

entation estimation on a set of 30 (natural and real-world) textures.
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Chapter 6

Future Extensions of the Texture
Recognition System

6.1 Introduction

In this chapter we suggest possible future extensions of the texture recognition system in
a variety of domains. First, we are interested to know if we can use the texture classi-
fication capability for natural scene analysis and segmentation. Fusing together several
visual modalities (such as intensity-based segmentation, texture, stereo and color), will be
required in real-world tasks such as automated scene analysis for autonomous navigation,
remote-sensing and more. In this chapter we consider the use of texture alone and its pos-
sible contribution in these domains. We conclude that texture can be a major contributor
and that the proposed system is robust in real-world noisy environments [GG93].

We also look upon some of the advantages of incorporating learning paradigms in
the classification process. These include learning from examples, rather than from the
human-experts, automated rule generation and more.

Finally, we suggest an extension to the texture recognition system and generalize to
the analysis of shape. We propose that the recognition framework is a general one and
suggest minor modifications for its use in the 2D, more object oriented domain. Initial

encouraging examples in the face recognition domain are given.

6.2 Natural Scene Analysis

An application of the texture discrimination system to natural scene analysis is given next.
In the remaining experiments, the training images are extracted as small subregions of the
test images. The classification results shown are therefore partly on the training data but
mostly exhibit generalization to new input. Larger data-bases will enable totally separate
training and testing images. Initial simulation results are presented in Fig. 6.1 which
presents a sand-rock scenario. The input images are photographs of the moon landscape,
taken from the Jet Propulsion Laboratory (JPL) image database. The training examples

are presented, followed by two input images and their corresponding output label maps,
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Training Set

Example 1

Example 2

Figure 6.1: Natural scene analysis - rock sand scenario

left to right, respectively. Here, white represents rock, gray represents sand and black
regions are classified as unknown. The probability maps are not displayed in this and the
following examples. The system copes successfully with this challenge. We can see that
a distinction between the regions has been made and for a possible mission such as rock
avoidance (landing, navigation etc.) reliable results were achieved.

Fig. 6.2 presents a more difficult task. Gravel, rock and wood were learned (top) and a
new mosaic test image was presented for recognition and labeling (bottom left). Note that
the test image differs (except in the top left corner) from the training image set. Here,
the images are very noisy, taken using a 35mm film camera at JPL. The input image
is successfully segmented and labeled as can be seen in the resulting label map (bottom
right). Note that black represents a class label in this figure. Generalization in a noisy
environment as well as an advantage over intensity-based schemes are demonstrated in

this example. Recall that the segmentation is based on classifying each 8 * 8 local window
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Training Set

Input Output

Figure 6.2: Natural scene analysis - 3 texture case
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of the input image. At this resolution, the differences between the rock and gravel are
subtle. Overall, these initial results are very encouraging and indicate the robustness of

the system to cope with difficult real-world cases.

6.3 Autonomous Navigation Scenario

Autonomous vehicles require an automated scene analysis system to avoid obstacles and
navigate through rough terrain. Fusion of several visual modalities, such as intensity-based
segmentation, texture, stereo, and color, together with other domain inputs, such as soil
spectral decomposition analysis, will likely be required for this challenging task. In Fig. 6.3
we present preliminary results on outdoor photographed scenes taken by an autonomous
vehicle at JPL. The presented scenes (left) are segmented into bush and gravel regions
(right). The training set consists of 4 64 * 64 image samples from each category. In the
top example (a 256*256 pixel image) light gray indicates gravel while black represents
bushy regions. We can see that intensity alone can not suffice in this task (for example,
top right corner). The system has learned some textural characteristics which guided the
segmentation in otherwise similar-intensity regions. Note that this is also probably the
cause for identifying the track-like region (e.g., center bottom) as bush regions. We could
learn track-like regions as a third category, or specifically include such examples as gravel
in our training set.

In the second example (a 400*400 input image, bottom) light gray indicates gravel,
dark gray represents a bush-like region, and black represents the unknown category. Here,
the top right region of the sky, is labeled correctly as an unknown, or new category. Note
that intensity alone would have confused that region as being gravel. Overall, the texture
classification system succeeds in achieving a correct, yet rough, segmentation of the scene
based on textural characteristics alone. These are encouraging results indicating that the

learning system has acquired informative characteristics of the domain.

6.4 Remote-Sensing Image Analysis

6.4.1 Introduction

Our most recent results pertain to the application of the system to the noisy environment

of satellite and airborne imagery. The goal is to segment the input image into homogeneous
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Figure 6.3: Image Analysis for Autonomous Navigation
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textured regions and identify each region as one of a prelearned library of textures, e.g., tree
area and urban area distinction. Classification of remote sensing imagery is of importance
in many applications, such as navigation, surveillance and exploration. It has become
a very complex task spanning a growing number of sensors and application domains.
The applications include: land-cover identification (with systems such as the AVIRIS and
SPOT), atmospheric analysis via cloud-coverage mapping (using the AVHRR sensor),
oceanographic exploration for sea/ice type classification (SAR input) and more.

Much attention has been given to the use of the spectral signature for the identification
of region types [Wha87, LP91]. Only recently has the idea of adding spatial information
been presented [TSJ91]. In this work we investigate the possibility of gaining information
from textural analysis. Texture can play a major role in segmenting the images into ho-
mogeneous areas and enhancing other sensors capabilities, such as multi-spectra analysis,
by indicating areas of interest in which further analysis can be pursued. Fusion of the spa-
tial information with the spectral signature will enhance the classification and the overall
automated analysis capabilities.

Most of the work in the literature focuses on human expert-based rules with specific
sensor data calibration. Some of the existing problems with this classic approach are the
following [TSJ91]:

- Experienced photo-interpreters are required to spend a considerable amount of time
generating rules.

- The rules need to be updated for different geographical regions.

- No spatial rules exist for the complex Landsat imagery.

An interesting question is if one can automate the rule generation. In this section we

demonstrate that the learning framework can automatically learn spatial rules from a

given database of examples.

6.4.2 Results

Initial results of applying the texture recognition system to remote-sensing images are
given next. Fig. 6.4 presents two such examples. The first example (top) is an image of
Pasadena, California, taken via the AVIRIS system (Airborne Visible/Infrared Imaging
Spectrometer). The AVIRIS system covers 224 contiguous spectral bands simultaneously,

at 20 meters per pixel resolution. The presented example is taken as an average of several
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bands in the visual range. In this input image we can see that a major distinguishing
characteristic is urban area vs. hilly surround. These are the two categories we set forth
tolearn. The training consists of a 128%128 image sample for each category. The test input
is a noisy 512*512 image. In the presented output (top right), the urban area is labeled in
white, the hillside in gray and unknown, undetermined areas are in darker gray. We see
that a rough segmentation into the desired regions has been achieved. The probabilistic
network’s output allows for the identification of unknown or unspecified regions, in which
more elaborate analysis can be pursued (see Section 3.4). The dark gray areas correspond
to such regions; one example is the hill and urban contact (bottom right) in which some
urban suburbs on the hill slopes form a mixture of the classes. Note that in the initial
results presented, the blockiness perceived is the result of the analysis resolution chosen.
Fusing into the system additional spectral bands as our input, would enable pixel resolution
as well as enable detecting additional classes (not visually detectable), such as concrete
material, a variety of vegetation etc.

A higher resolution Airborne image is presented at the bottom of Fig. 6.4. The input
image (left) is of much higher resolution and it is evident that segmentation based on
texture is of importance. The classes learned are bush (output label dark gray), ground
(output label gray) and a structured area, such as a field or the man-made structures
(white). Here, the training was done on 128*128 image examples (one example per class).
The input image is 800*800. In the result shown (right) we see that the three classes
have been found and a rough segmentation into the three regions is achieved. Note in
particular the detection of the three main structured areas in the image, including the
man-made field, indicated in white. These results demonstrate the network’s capability

of generalization and robustness to noise in two complex real-world images.

6.5 Extension to Shape Recognition

6.5.1 Introduction

Classical computer vision techniques, although researched for many years, have not yet
proven successful in the shape recognition domain. Such techniques model the desired
shapes via predefined models (e.g. geometrical). These are very frequently computation-

ally intensive and are very sensitive to noise and changes in brightness or rotation of the
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Figure 6.4: Remote sensing image analysis results. The input test image is shown (left)
followed by the system output classification map (right). In the AVIRIS (top) input, white
indicates urban regions, gray is a hilly area and dark gray reflects undetermined or different
region types. In the Airborne output (bottom), dark gray indicates a bush area, light gray
is a ground cover region and white indicates man-made structures. Both robustness to
noise and generalization are demonstrated in these two challenging real-world problems.
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input. Moreover, the model chosen works on a predetermined family of 2D shapes and
usually cannot be generalized to any other input domain.

We are interested in learning the characteristics of the input domain from examples,
rather than using parametric modeling of the input. In this section we extend and gener-
alize the texture recognition system, to incorporate learning in more structured domains.
This requires the preservation of the 2D spatial information in the recognition process.
The proposed scheme is a general one which can adapt to different input domains. Initial

results on face recognition are presented.

6.5.2 The Generalized Recognition System

Fig. 6.5 displays the generalized recognition system. The three layers of processing corre-
spond to the original system processing stages (see Chapter 3). Parallel layers of processing
are incorporated, each one extracting a higher level symbolic representation of the input
domain. In the shift to a more symbolic representation we compress the amount of in-
formation that is encoded, while preserving the essential information for the classification
task.

The main difference from the texture recognition system is in the unsupervised clus-
tering and coding stage (center layer). Coding the input domain is the more data-driven
stage. In the texture recognition system we transformed the image space into an array of
15-dimensional feature vectors, each vector corresponding to a local window in the original
image. In the shape recognition task, the 2D spatial information within the filter maps is
a strong characteristic which we need to preserve and identify in the recognition process.

We preserve the output of the filtering stage as a set of 15 continuous valued feature
maps; each representing a filtered version of the original input. In this higher-level pro-
cessing stage, the filter responses are quantized into three categories: low, medium and
strong response. The K-means statistical clustering algorithm is utilized for this task, on
the entire data set and across all filter maps. The categories learned are therefore general
ones and will be appropriate for the testing data as well. Areas of strong response are
valuable in distinguishing among different classes. To efficiently compress the represen-
tation further, we next code 5*5 windows in each quantized filter map according to their
relative response strength. The number of strong response pixels (out of 25) are counted

and coded at 5 equally spaced levels. The original input image is now represented as a set
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Figure 6.5: System Block Diagram
of 15 6*6 codemaps.

6.5.3 Face Recognition Results

We present initial results of applying the recognition system to the task of face recogni-
tion. An example of the input domain is presented in Fig. 6.6. Three faces are shown
(left) followed by a subset of their corresponding filter response maps. Presented are the
non-oriented component, followed by a horizontal oriented filter which detects wvertical
information, a filter sensitive to 45 degree orientation and one sensitive to 135 degrees,
left to right, respectively. Stronger response is represented in black. The original image
size is 240%240. The subsampled filter maps are 30*30. We see that even in this reduced

resolution filter domain, distinguishing spatial response characteristics are present.
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The processing and learning stages follow next. First, a quantization of the filter
responses into the three categories of weak, moderate and strong response is enacted. This
is followed by coding of the residual response maps into corresponding 6*6 codemaps, as
depicted in Fig. 6.7 (left to right, respectively). In the above, unsupervised processing of
the feature maps is performed on the entire data-base of examples. As shown in Fig. 6.7,
the coding of the original image into a more symbolic representation via the codemaps
(right) entails sufficient information for the following stage of learning. Note that the
resultant code-maps are displayed in the original image size.

In the supervised learning stage, the rule-based network (see Chapter 3) is to learn
the spatial characteristics of the codemaps '. Examples of learned rules are shown in
Fig. 6.7. Here, the spatial differentiating characteristics across a specific filter map (the
non-oriented component) are learned. Second order rules are presented.

An initial simulation was run as follows. The training set consisted of 11 people with 2
images per face. The testing set consisted of 2 new images of each person. The data-set of
faces was taken in a lab setting with the people instructed to change their expressions and
appearances. Variations included hair styles, smile vs. nonsmile, orientation of head etc.
Note that no attempt was made to normalize or align the images via features, such as nose,
eyes etc. This reduces the computational complexity and produces a more noisy data base.
We have correctly labeled all faces of the training data and have 100% classification results

on the testing set. Some extreme cases which were successfully labeled are presented in

Fig. 6.8.

6.6 Summary and Discussion

In this chapter we have utilized the texture recognition system to an advantage in several
application domains. An application to natural scenery analysis, with initial attempts at
remote-sensing image analysis, are shown. These initial results are very encouraging and
indicate the robustness of the system in coping with noisy real-world applications.
Future work in this direction should include a larger database of examples with more
variability between the training and testing imnages; such as variability in the location and

time at which the images are taken. Also, ideally we would like to have several apriori-

*In the current implementation rules are learned within each codemap. A generalization would be to
learn rules across the codemaps as well.
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labeled images to which we could compare our results, thus getting a more quantitative
measure of success.

We have discussed a generalized recognition system and have demonstrated the learn-
ing system’s capability to handle the varied input domain (of texture and shape) within
a single framework. This is very different from the standard thought of specializing al-
gorithms to the specific tasks at hand, which leads to ad-hoc schemes that are tuned to
the specific task requirements. The learning scheme learns the most informative spatial
correlations within the filter maps, while indicating the most informative filters for the
task. The system is robust to the environinent in several aspects. The use of orientation
and frequency tuned maps (vs. original pixel values) allows for brightness invariance.
The multi-resolution approach and additional coding schemes allow for translation and
rotation invariance.

The areas of automated navigation, remote sensing and of-course, face recognition, are
each a whole separate field of research in its own right. In all these domains, much larger
databases are needed in order to achieve more conclusive results and identify the strengths
and weaknesses of the learning system. We have only touched upon the different topics

briefly and the presented results should be viewed mainly as encouraging and initiating

further research in each of the domains.
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Figure 6.6: Input images and corresponding filter maps. Shown are the input images
followed by the non-oriented filter response map, and response maps which are sensitive
to the vertical, 45 degrees and 135 degrees, left to right, respectively.
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240 30

it AT13°1.0 AND AT2672 THEN ILLIANA.

if AT22 2.0 AND ATT28 1.0 THEN THOMAS.

if AT15 3.0 AND ATT13 2.0 THEN ART.

Figure 6.7: Processing and learning stages. Presented are three input images and their
corresponding quantized filter response maps and codemaps, left to right, respectively.
The filter response maps and the codemaps are enlarged to match the original image size.
An example of a second order rule is presented following each example image. The rules

correlate spatially between pixels of the codemaps and vote to the corresponding output
classes.
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Training

Testing

Figure 6.8: Extreme cases in the training and testing data sets (top and bottom, respec-
tively).
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Chapter 7

The Multiresolution Representation for
Image Enhancement & Coding

In this chapter we investigate additional domains of image analysis, including image en-
hancement and image coding schemes. The underlying common theme is the use of the
multiresolution pyramid representation.

Image enhancement attempts to improve the quality of an image for human or machine
interpretability, where quality is measured subjectively. Most enhancement filters are
heuristic and problem oriented, and models of the degradation are generally not used in
deriving them. This differs from image reconstruction where the goal is to restore an
image based on some knowledge of the degradation it has undergone. The interest in
image enhancement schemes has resurged lately in the digital communication world of
HDTV (high-definition television) and Multimedia. In this market the challenging task is
to transfer imagery data in a constrained bandwidth (BW) environment, and the outcome
is judged subjectively by the human observer. Iinhancing the images following the various
compression schemes is a natural (though not always simple) road to take.

Enhancement algorithms have been around for many years and classically entail a linear
operation of adding power to the existing high-frequencies in the image. A brief descrip-
tion of several such algorithms will be given in Section 7.1. In this chapter we present
a new enhancement algorithm (sections 7.1 and 7.2) [GA94, GA]. This enhancement al-
gorithm augments the frequency content of the image using shape-invariant properties
of edges across scale, by using a non-linearity that generates phase-coherent higher har-
monics. The procedure utilizes the Laplacian pyramid image representation. Results are

presented depicting the power-spectra augmentation and the visual enhancement of several

images.

In the second part of this chapter (Section 7.3) we present an initial attempt to combine
the image enhancement scheme with existing image compression schemes [GL94]. This
idea is part of a new trend developing in the image processing and image compression
fields which has to do with the convergence of the two fields. The pyramid representation

as a means for image coding will be briefly described, followed by the combination with
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image enhancement for additional compression. The combination of image enhancement

with progressive transmission, for savings in analysis time, will be discussed as well.

7.1 Image Enhancement by Non-Linear Extrapolation in
Frequency Space

7.1.1 Introduction

We present a procedure for creating images with higher resolution than the sampling rate
would allow. The procedure outlined here is applicable in several domains. In one case
we assume that a given input image is blurred and no degradation model is known. If
the degradation model exists, restoration techniques can be applied, together with other
frequency enhancement techniques present in the literature (see below). The enhancement
scheme described here can then be applied as an additional enhancement utility. A second
application domain relates to expanding an image up by a factor of two in size ( so
called “zoom in”). This is desirable in many applications (e.g., HDTV, video-phone),
but generally results in an image which appears blurred because there is no power in the

highest spatial frequency band.

Classical enhancement algorithms usually add power to existing high frequency com-
ponents, i.e., the edges. We start by giving a brief review of some well known enhancement
filters. The presented scheme concentrates on creating new high-spatial frequencies and
thus can augment existing (linear) high-frequency enhancement techniques available in
the literature. In the proposed scheme the given frequency content is augmented using
shape-invariant properties of edges across scale. The augmentation procedure is based on
the pyramid image representation and can be described using the scale-space formalism
[Wit83, YP83b]. The edge properties across scale are described following which we for-
malize the enhancement procedure. This procedure includes a simple extrapolation across
scale representations using a non-linearity that generates phase coherent higher harmonics.
The enhancement algorithm is schematically summarized in I'ig. 7.1. It shares the basic
structure of other high-frequency enhancement methods, except that the linear filter is
replaced by a nonlinear filter operation. Experimental results depicting the power-spectra

angmentation and the visual enhancement of several images will be presented.
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Figure 7.1: Basic diagram of the image enhancement algorithm

7.1.2 The Image Enhancement Field - Background

Image enhancement (or “edge enhancement”) techniques focus on sharpening image edges.

Edge enhancement filters are high-pass filters and their effect is to boost edges. Examples

of edge enhancement filters include the following;:

1. Gradient operators. A simple way to use them is to keep only the magnitude.

Other methods keep both the magnitude and the angle. Moving across an edge, the
gradient will start at zero, increase to a maximum, and then decrease back to zero.

This produces a broad edge. Thinning methods are often used to thin down the

edges.

. Laplacian operators [MHS80].

. Adding a high-pass filtered image (such as the Laplacian) back to the original image
to boost edges yet maintain the underlying grey level information. This procedure
is analogous to the photographic process of “unsharp masking”. In this process, a
film is exposed through a negative superimposed on a slightly defocused positive
transparency, thus subtracting the local mean, and the result is an image with

improved edges.

. V2G operators (“Mexican hat” operators [Mar82]). V? is the Laplacian and G is
the two dimensional Gaussian distribution. The idea behind these filters is to first
smooth the image with a Gaussian shaped filter, and then find the edges (using the

Laplacian) in the smoothed image.
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5. Enhancement in the direction of the gradient. An example of this type of filter is
to compute the gradient at (i, ) and apply a one-dimensional Laplacian operator in

the direction of the gradient.

The previous filters are fairly simple. More complex methods are available which try
to handle the issue of noise (e.g., apply high-pass filters selectively to suppress noise).
Overall, we have a set of high-pass filters which boost up the existing high-frequencies
in the given image by concentrating on the image edges. In the proposed algorithm we
also concentrate on the image edges, but extend our interest to investigate the behavior
of edges across scale. We use the scale-space characteristics in augmenting the frequency

content of the given image. We next give a short background on the image representation

across scale.

Image Representation Across Scale

Edges are an important characteristic of images, since they correspond to object bound-
aries or to changes in surface orientation or material properties. An edge can be charac-
terized by a local peak in the first derivative of the image brightness function, or by a zero
in the second derivative, the so called zero crossings (ZC) [MH80]. An ideal edge (a step
function) is scale invariant in that no matter how much one increases the resolution, the
edge appears the same (i.e., remains a step function). This property provides a means for
identifying edges and a method for enhancing real edges.

We concentrate on the edge representation of an image across different image resolu-
tions. For this we view the image in a multi-resolution framework via the Gaussian and
Laplacian pyramids (see Chapter 2). The Laplacian pyramid preserves the shape and
phase of the edge maps across scale. An example is presented in Fig. 7.2.

The application of the Laplacian transform to an ideal edge transition results in a
series of self-similar transient structures as illustrated in Fig. 7.3 left. An edge of finite
resolution would produce a decrease in amplitude of these transients with increasing spatial
frequency, with the magnitude of the edge going to 0 at frequencies above the Nyquist
limit (see Fig. 7.3 right ). An edge of finite resolution can be created by starting with a
low resolution Gaussian image and then adding on all the bandpass transient structures.
To create an edge with twice the resolution requires the creation of a self-similar transient

at the next level, hereby referred to as L_1. The most essential features of these transient
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Figure 7.2: Multi-scale sequence of edge maps. Presented from left to right are the
Laplacian pyramid components: Lo, L1 and Ly respectively.

structures is that they are of the same sign at the same position in space, hence their
ZCs line up, and they all have roughly the same amplitude. The precise shape of the
structures need not necessarily be maintained so long as their scaled spatial frequency
response is similar. The simple procedure described next creates localized transients for
L_; that satisfy all these constraints except for the maintenance of constant amplitude.
While more complicated procedures could handle the amplitude constraint, it was found
that sharpening the stronger value edges produces in itself visually pleasing results.

The pyramid representation can be viewed as a discrete version of the scale-space
description of ZC which has been introduced in the literature [Wit83, YP83b, YP83al.
The scale-space formalism gives the position of the ZC across a continuum of scales. One
of the main theorems [Wit83] states that ZC of an image filtered through a Gaussian
filter have nice scaling properties, one of which is that ZC are not created as the scale
increases. If an edge appears at lower resolutions of the image it will consistently appear
as we shift to higher resolutions (see Fig. 7.3). Although theoretically defined, not much
work has yet taken advantage of the image representation across scale. In the algorithm
presented next we utilize the shape invariant properties of edges across scale based on
the pyramid representation and in agreement with the consistency characteristic of the

scale-space formalism.

7.1.3 The Enhancement Scheme

Our objective is to form the next higher harmonic of the given signal while maintaining

phase. Fig. 7.4. illustrates a 1-dimensional high-contrast edge scenario. The given input,
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Figure 7.3: Laplacian transform on an edge transition

Gl, is shown in (0), together with its pyramid components, Lo and Gy, shown in (1)
and (2) respectively. From the pyramid reconstruction process we know that adding the
high-frequency component Lg to the Gy component can sharpen Gy to produce the input
Go. Ideally, we would like to take this a step further. We would like to predict a higher-
frequency component, L_;, preserving the shape and phase of Ly, as shown in (3), so that
we can use the reconstruction process to produce an even sharper edge, which is closer
to the ideal-edge objective, as shown in (4). The L_; component can not be created by
a linear operation on the given Lo component; i.e., it is not possible to create a higher

frequency output by a linear enhancement technique.

It remains to be shown how the L_; component of the pyramid can be predicted. We
extrapolate to the new resolution (L_1) by preserving the Laplacian-filtering waveform
shape, together with sharpening via a non-linear operator. The waveform as in (5) is the
result of bounding the Ly response, multiplying the resultant waveform by a constant and
then removing the low-frequencies present in order to extract a high-frequency response.
It was found experimentally that clipping Lo with a threshold of 0.04 times the maximum
signal‘s amplitude (i.e., 10 out of 256), and then multiplying by a factor of 6 gives the clos-
est resemblance to the ideal-edge output without much ringing side-effect. The enhanced

edge output is presented in (6).
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Equation 7.1 formalizes the generation of L_;.
L_y = const(BOUN D(Ly)) (7.1)

where BOUN D(S) is the following function:

T ifS>T
BOUND(S)={ § #-T<S§<T
~T it §<-T.

Here, T = 0.04(Go)maz-

Generating the new output image entails taking the L_; image as the high-frequency
component of the pyramid representation. Based on the reconstruction capability of the
pyramid representation (see Chapter 2), the new output is generated next as the sum of

the given input, Gg, and L_q, as in equation 7.2.

QutputImage = L_1 + Gp. (7.2)

Using the above algorithm, a “zoom in” application includes the following 5 steps:
g g g

1. Extract the high frequency components of an image Ly = Fj, * Gg. We have used

Fyp =1 — W, as utilized in the formation of the Laplacian pyramid (Chapter 2).

2. Create a double sampled (along both dimensions) version, L, of Lo through an
interpolation procedure. The standard pyramid expand technique is to insert 0’s at
alternate pixels and lines, smooth the result with the lowpass filter, and then multiply

the result by a factor of 4, which can be combined in an efficient subroutine.

3. Clip L§, which amounts to setting the magnitude of the signal to a predetermined

level if it exceeds that value (equation 7.1).

4. Create L_; by bandpass filtering the clipped output to reshape the new transients
so they have the desired spatial frequency components. This was done using the
same bandpass filter as in step 1, but other variants are possible. It has been found

that this step can be eliminated and still produce pleasing results.
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5. Add a scaled version of L_; to an expanded version of G created in the same fashion

as L§ in step 2 (equation 7.2).

The approach as presented above, together with the non-linear operator characteristics
which were found for the high-contrast ideal edge scenario, are used in the examples which

follow.

7.1.4 Computational Cost

Specific consideration is given for simplicity of computations and ease of implementation.
In the following results, a 5*5 filter is used in the extraction of the Ly edge map. A
separable LPF is used of the form: [1/16,1/4, 3/8,1/4, 1/16]. The BPF is defined next as
(1- LPF). This initial BPF is part of any enhancement algorithm. If fewer multiplications
are required a 3*3 filter can be used. The non-linearity stage of the proposed algorithm
involves bounding the Lo map followed by scalar multiplication of the resultant image. The
scalar multiplication can be incorporated as a filter gain, or as part of the look-up table. It
is therefore the look-up table which is the core of the non-linearity operation. If resources
allow, a second filtering stage can be added at this time in order to remove any low-
{requencies present in the resultant L_; map, thus adding only the high-frequency response
to the given input Gp. Experiments have shown that the second filtering operation is not

critical for achieving good enhancement results. Thus, it can be ignored for real-time

application domains.

7.2 Enhancement Results

In this section we show experimental results which indicate that the enhancement routine
augments the frequency content of an input image achieving a visually enhanced output.

The first result exemplifies a zoom-in application. Here, an image is zoomed-up by
a 2 to 1 ratio using the expand operation described above (Section 3). The absence of
the high-spatial frequencies makes the image appear soft or blurry. We wish to see if the
system can enhance the image sufficiently, thus saving in the required bandwidth for the
transmission of a full resolution image. The zoomed-in input is shown in Fig. 7.5. This is
part of a monkey’s head. The output of the proposed enhancement technique is presented

in Fig. 7.6. We can see much more detail in the hair region and perceive more texture in
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the nose and eye regions. Fig. 7.7 presents the given and enhanced images, left to right
respectively, together with their corresponding power spectrum characteristics (bottom).
It is evident that the input power spectra is augmented. The enhancement process actually
extrapolates to higher frequencies, thus producing the enhanced result.

In the following result we wish to exemplify the difference between high-frequency
enhancement techniques available in the literature (sometimes referred to as the unsharp
masking method), and the nonlinear analysis scheme presented in this work. Fig. 7.8
exhibits the monkey image example (part of this image was used in Fig. 7.5). A blurred
input is presented at the top-left corner. Augmenting the high-frequency components
present in the given image results in an enhanced image, as shown top-right. The result of
applying the algorithm presented in this work is depicted in the bottom of the figure. We
get an overall enhancement perception. The differences are evident in the hair, whiskers
and eye regions. Fig. 7.9 displays the corresponding power-spectra characteristics. The
power spectra at the bottom of the figure has its higher frequencies augmented.

Our final example is a rockscene image displayed in Fig. 7.10. The top figure presents
the enhancement results. The bottom figure displays the corresponding power character-
istics. The blurred input, which can be the result of cutting-off high-frequencies due to
bandwidth considerations or a “zoom-in” application, is presented at the top-left corner.
The original image, which we are assuming is not available to the system and which we
wish to reproduce, is presented on the top right. The result of applying the algorithm
presented to the blurred input is depicted in the bottom of each figure. We get an overall
enhancement perception. The enhanced image very closely matches the original one and

the power spectra of the enhanced image is very close to the original power spectra.

7.2.1 Comparison With Other Work

In the described enhancement scheme the focus is on high-frequency augmentation with
phase-coherent characteristics. We are not aware of any other work in the literature that
follows similar objectives. A different nonlinear filter for image enhancement has been pro-
posed recently by Mitra [MLLY91]. The filter behaves like a local-mean-weighted highpass
filter. The basic diagram of the image enhancement algorithm is the same (see Fig. 7.1).
5till, the motivating background is very different resulting in interesting differences. In

our algorithm a homogeneous filter is used for the extraction of the high-frequency Lg
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Figure 7.5: Zoom-in application - the zoomed-in input
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Figure 7.6: Enhanced output
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Figure 7.7: Given and enhanced images, left to right respectively, together with their cor-
responding power spectrum characteristics (bottom). It is evident that the input power
spectra is augmented. The enhancement process actually extrapolates to higher frequen-

cies, thus producing the satisfying enhanced result.
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Figure 7.8: Enhancement algorithm results, monkey image. A blurred input is presented
at the top-left corner. Augmenting the high-frequency components present in the given
image results in an enhanced image, as shown top-right. The result of applying the
algorithm presented in this chapter is depicted in the bottom of the figure.
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Figure 7.9: Corresponding power spectra characteristics of the monkey image.
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Figure 7.10: Enhancement results (top figure). Corresponding power-spectrum character-
istics (bottom figure). In each of the above figures the blurred input and original image are
presented (top left and top right, respectively) followed by the enhanced output (bottom).
Both visual perception enhancement and power-spectrum augmentation are evident.
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map. This is part of the pyramid generation. In Mitra’s work, the filtering is biased either
in the vertical and horizontal directions or along the diagonal directions - with the latter
chosen as giving better performance. The difference between the 2 filter performances can
be detected in the example of Figure 7.11. The input image is presented in Fig. 7.11. The
enhanced output of Mitra’s algorithm is shown in Fig. 7.12. The output of our enhance-
ment algorithm is shown in Fig. 7.13. Both outputs are nice enhancement results. The
differences can mainly be detected in the pants region, where our algorithm has less alias-
ing effects, and in the scarf (ribbon area) - where an undesired zig-zag effect is detected
in Fig. 7.12. These, we believe, are directly related to the filtering characteristics.

The non-linearity of the enhancement process is introduced in Mitra’s work via a
multiplication of the highpass filter by the local mean. This has the effect of adding less of
the high-frequency components to the dark regions and more to the brighter ones, and can
be desirable for a smoother perception of the enhanced result. In our approach, the non-
linearity is introduced via a bounding function. This also has the effect of introducing
a stronger high-frequency component to brighter areas than to darker ones. A major
difference between the two non-linearities is that the phase of the edges is preserved in
our algorithm, following the scale-space formalism. The procedure outlined in Mitra’s
algorithm, however, has the effect of shifting the phase towards the brighter region. It
remains to be investigated if this might cause any undesired effects.

Computationally, the main difference between the approaches is in the chosen non-
linearities. Here, the core of our enhancement algorithm is the look-up table. This com-

petes with the multiplication of the highpass filter output with the local mean in Mitra’s

algorithm.

7.2.2 Summary of Results

The presented enhancement technique is only a first step towards what can be accom-
plished by extrapolation across scale. Fdges are only one major scale invariant features.
Lines and dots, for example, require additional analysis. It may be desirable to use an
adaptive threshold rather than the constant value used, although this has a side-effect
of introducing phase shifts whose effects on the perceived sharpness are unknown at the
present. As is always the case, a tradeoff exists between high-frequency enhancement and

noise generation. The enhancement scheme will work best on input images which have
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been previously processed for noise. One possibility is to use reconstruction schemes which
remove noise while unavoidably blurring the image, and then enhancing the resultant im-
age with the algorithm described in this work.

In conclusion, we have described a enhancement scheme that could very well address
the most important features required in producing visually pleasing enhanced resolution
versions of existing images. The simplicity of the computations involved and ease of im-
plementation enable it to be incorporated in real-time applications such as high-definition

television (HDTV).

7.3 Combining Image Enhancement with Pyramid Coding

In this section we present an initial attempt to combine the image enhancement scheme,
described in the preceding part of the chapter, with the pyramid coding scheme. The
convergence of the two fields of image processing and image compression (otherwise called
“second generation” image coding), is the result of a growing need to handle large amounts
of image data, be it in transmission or in automated image handling (such as image
database query and retrieval), with the classical compression schemes reaching their limits.
It is now accepted that in order to achieve more advanced compression schemes we need to

use our knowledge about images and about their characteristic behavior, to an advantage.

At the image processing end we use our knowledge about the behavior of edges across
scale (across different resolutions) in order to extrapolate in scale and increase the res-
olution of a blurred input image. The ability to extrapolate in scale is very useful for
compression. We can think about saving bandwidth by not transmitting certain frequen-
cies, and trying to reconstruct the information back at the receiver’s end; we can think
about combining the enhancement scheme with existing image compression schemes, such
as the pyramid coding schemes, to achieve additional savings; and finally, we can use
this ability in progressive transmission applications, whereby the lower resolution images
get enhanced and thus information can be extracted at earlier stages of the transmission,
saving in analysis time.

The pyramid representation as a means for compression will be briefly described, fol-
lowed by the combination with image enhancement for further coding. The combination

of image enhancement with progressive transimission will be suggested as well.
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Figure 7.11: Input image
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Figure 7.12: Enhanced output of Mitra’s algorithm
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Figure 7.13: Qutput of our enhancement algorithm
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7.3.1 Compression via the Pyramid Representation

The pyramid scheme codes an input image in a mutiresolution representation via the gen-
eration of subimages of various scales, as was shown in Fig. 2.2. Low-resolution subimages
G}, are created by passing G_y through a low-passed filter, which we will term H, and a
decimation box. In coding the input image we can use subimages {Lo, L1, -+, Lk, Gr+1}

which are obtained by

Ly = Go—é\ly
Ll = Gl—'@7

Lx = Gk -Gry1,

GK41- (7.3)

Here, Ly, is the difference subimage of the kth level, G}, is the low-resolution subimage of
the &kth level, and é\k is the interpolated version of G (using an interpolation filter F).
In order to reconstruct the original G image back we reverse (7.3).

The pyramid representation has been introduced in the literature for coding purposes
[BA83], as it was shown to be a complete representation. In the procedure outlined above,
perfect reconstruction is guaranteed if there is no quantization of the transmitted data,
regardless of the choice of filters If and F. Different quantization and encoding strategies
can be applied to the different subimages depending on the signal characteristics. For
example, in a linear (e.g., Laplacian) pyramid, the signal variance in different subimages
tends to be different. Usually, lower-frequency subimages have higher variance. Therefore,
we would allocate a different number of bits to the subimages (more bits per pixel for the
higher variance subimages).

Using the pyramid schemes for compression one should realize that the pyramid is
an oversampled system (An example a 4/3 overcomplete pyramid was shown in Section
2.3.4). Compared to subband and transform coding schemes which are critically sampled
systems, we expect lower compression rates due to the need to transmit more data. Still,
there is great interest in the literature in using the pyramids for compression and image
transmission purposes. Recent works have taken advantage of the fact that no matter how

one designs the decimation filter H and the interpolation filter F, perfect reconstruction
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is obtained. Therefore, specially tuned filters for H and F' can be incorporated such that
the signal characteristics in every level is better suited for compression. Examples include
the use of a nonlinear filter scheme for image compression and a motion-compensation
filter for video compression [Lee94]. This pyramid characteristic implies that we can take
advantage of some nonlinear characteristics of images to help the compression and the
results can be competitive with subband and transform coding, both of which have many

constraints on designing perfect-reconstruction systems.

7.3.2 Applying Image Enhancement to Pyramid Coding

In this section we combine the image enhancement scheme, described above, with the
pyramid coding scheme. We have shown the possibility of predicting the Lo level of
the Laplacian pyramid using lower-resolution edge maps. The next step is to code an
image with and without the Ly component and evaluate the corresponding rate-distortion
performance, i.e., investigate the compression savings vs. the output image quality that

we can achieve.

The Rate-Distortion Criteria

We decompose the original image, Go, into {Lo, L1, L2, G3}. We scalar quantize Lo, Ly,
and Lo and then compute the entropy of the quantized signals. For G, we first apply
differential Pulse-code modulation (PCM), then compute the entropy. The average entropy
of these subimages represents the rate (bits per pixel).

The most popular and widely used distortion criterion is the MSE (mean squared error)

or PSNR (peak signal-to-noise ratio), which is defined as:

2552

PSNR = 10logyq —x ¥ : (7.4)
v 2 2L = Iig)?
=1 j=1

where [;; is the original pixel value at position (¢, 5), Tij is the quantized pixel value, and
X and Y represent the horizontal and vertical dimensions of the input image, respectively.

The PSNR value is used to tell the quality of the quantized image compared to the
original one. Generally, this criterion does give us the desired measure. However, as we
will see later on in this chapter, not always does it match the human perception (and

subjective judgment). Two additional cases challenging the PSNR as a quality measure
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Figure 7.14: Rate distortion curve for Lenna image

(one in which two different image sets were generated by the same compression scheme and
compared, the other when comparing the same image set with two different compression
schemes), can also be found in [Lee94]. The PSNR distortion measure should overall be

used with caution for judging image quality.

Results

The Lenna image is used for this coding task. Fig. 7.14 presents the rate-distortion
curves for the pyramid coding of Lenna, with and without the Ly component. We note
that in using the Lo component we have all pyramid levels and thus the reconstruction
would be exact apart from the quantization errors induced. Using a predicted Lg (i.e., the
actual Lo component is not being used) we introduce additional noise in the reconstruction
process. In general, we note the slow degradation of the rate-distortion curve using the
enhancement scheme, as opposed to the almost linear drop of the original (non-enhanced)
curve. Even of more interest is that at very low bit-rates, the ability to estimate the Lg
component from the given L; component, or the ability to extrapolate in frequency space,

allows for better PSNR.
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An example of two images, with and without the Lo component (top left and top right,
respectively) is shown in Fig. 7.15, as compared to the original Lenna image (bottom).
Both images are coded with approximately 1 bit/pixel. We have 0.99 bits/pixel with
PSNR=34.77dB for the enhanced image and 1.053 bits/pixel with PSNR=33.54dB for
the image decompressed with all its L; components. In this case we get better PSNR, and
better perceived similarity to the original, for the enhanced image with the predicted Lo
component, than for the image with all components present. This is a very interesting
and encouraging result.

Next, we compare the pyramid compression with the discrete cosine transform (DCT).
Fig. 7.16 presents the rate-distortion curves including DCT. The DCT clearly “wins”
the PSNR comparison. We note that at the very low bit rates the differences are quite
minimal. In addition, we need to compare the actual images, as opposed to the PSNR
ratios, as is shown in Fig. 7.17. We note that the blockiness with the DCT is very
evident and possibly more distracting to the eye than the artifacts introduced by the
pyramid-+enhancement scheme. A zoom-in image taken from Fig. 7.17 is presented in
Fig. 7.18. In the DCT coding scheme we can see strong blocking effects in the quantized
image (this is the case especially when the bit rate is low or when we zoom the image up).
This phenomenon results from the independent quantization of blocks. This enforces the
claim that the PSNR does not in all instances match our visual perception.

A similar investigation is done on a moon image, whose rate distortion curves are
shown in Fig. 7.19.

As before, we note the slow degradation of the rate-distortion curve with the enhance-
ment. We see again that at low bit-rates, better PSNR is achieved by predicting the
Lo component via the enhancement processing stage. When comparing with the DCT
rate-distortion curve (Fig. 7.19 bottom) we notice that at very low bit rates we actually
achieve better performance than the DCT.

We conclude this section with a few of the moon images. Fig. 7.20 displays the slow
degradation phenomenon. Two images are displayed. The left one has 1.27 bits/pixel
with PSNR=31.69dB. The right image has almost kalf the bit rate, at 0.65 bits/pixel with
a very similar PSNR value of 31.1dB. The two images look identical. In Fig. 7.21 we
compare the pyramid scheme to DCT at the low bit rate of 0.47 bits/pixel. The PSNR
ratio is larger for the pyramid coding in this case, PSNR=30.53dB, where the DCT case
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T

Figure 7.15: Lenna image comparison, with and without Lg. Top left: Including Lg in the
compression, Top right: Using a predicted Lg, Bottom: Original Lenna image.
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Figure 7.16: Rate distortion curves for Lenna, including DCT
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Figure 7.17: Lenna image compressed with pyramid scheme + enhancement (top left) and
with DCT (top right). The original image is on the bottom.
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Figure 7.18: Pyramid vs. DCT

has PSNR=30.49dB. The blockiness of the DCT is certainly visible here. Note the blocks
on the main rocks which actually degrade the possibility of identifying rock boundaries

etc,

7.3.3 Image Enhancement and Progressive Transmission

An additional interest is the combination of image processing with progressive image trans-
mission schemes. Here, instead of looking for additional bit compression capabilities, we
are interested in achieving a compression in time. By this we are referring to progressively
transmitting information, from low resolution to high resolution, with the desire to extract
information during the transmission, without waiting to receive the high-resolution image.
More so, we would like to determine at an early stage of the transmission process if the
image is of interest, so as to determine if the high-resolution image is to be transmitted
at all.

In Fig. 7.22 we demonstrate the combination of an Integer Subband Coding (ISBC)
scheme of the GASPARA image, with the enhancement scheme. This result is part of
an image compression effort being pursued at JPL (Jet Propulsion Lab, NASA). We note
the possibility to detect craters and other points of interest much more clearly in the
enhanced images, even at extreme compression ratios. To the scientist this can be a tool
to determine his interest in the region. If it does look interesting, the full resolution image

can be transmitted, without any loss.
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COMBINED PROGRESSIYE TRANSMISSION AND ENHANCEMENT
GASPRA IMAGE

Enhanced
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Figure 7.22: Combining image enhancement with progressive transmission



149

7.3.4 Summary and Conclusions

We have done a preliminary analysis on the combination of image enhancement with image
compression schemes. Encouraging results have been achieved with the pyramid compres-
sion scheme, especially at low bit rates (which is the challenging frontier in the compression
field). Finally, the case for including enhancement in progressive image transmission was

made, with results indicating the enhanced visual perception at low resolutions.

Following are several issues which stem out of this work, for further exploration:

Extending the Enhancement scheme

e It is interesting to extend the prediction capability to lower-resolution scales (higher
levels of the pyramid). This will enable extending the compression from the Lg level
to Ly level etc. Initial investigation indicates that this is not a simple extension to the
existing algorithm. As the resolution is decreased substantially, it is more difficult to
locate the edges which are the important starting point in an enhancement scheme
(but see possible extensions to the pyramid below). In addition, the sharpening
process will require more investigation as to how to “fill-in” the regions in the image
which have been blurred and now have been sharpened. Overall, pursuing this idea

requires further research.

¢ In order for the enhancement scheme to take part in any real-time video application
several additional characteristics need to be added on. These include enhancing
color images, motion sequences, real time considerations etc. The simplicity of
the algorithm and its low computational cost (see Section 7.1) ensure that real-
time applications are possible. Colored images can be separated into three channels
termed YUV. We assert that enhancing the Luminance channel (Y) and adding it
back to the color-difference signals (U,V), will give the desired enhancement effect.

This claim still needs to be shown in practice.

e The initial motivation for the enhancement algorithm was a simple and effective
procedure. The final goal was the subjective human perception. When combining
with compression, we use the PSNR criterion which actually shifts the goal to one

of reconstruction, i.e., the comparison is to the original image pixel values. We
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have demonstrated that this criteria is not always in agreement with the human
perception. Still, if we do choose to use it, an additional step needs to be incorporated
into the enhancement algorithm to preserve the average amplitude of the original

image as it is being enhanced.
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Chapter 8
Conclusion

In this thesis we have shown a variety of uses for the multi-resolution pyramid, both in
the texture recognition task and in image enhancement and coding.

The usefulness of the oriented Laplacian pyramid as a feature extraction stage in a
recognition system was demonstrated. Additionally we proved that the pyramid spans
the orientation space and can be made steerable, thus allowing for a rotation-invariant
representation space. This part of the work has produced a computationally efficient

pyramid filtering scheme, as well as a more compact steerable pyramid than has previously

been shown in the literature.

A texture recognition system has been presented which combines the pyramid filtering
stage with learning for the classification stage of the system. We have focused on an
information theoretic rule-based scheme, which extracts probabilistic rules between the
attributes and the output classes. This framework combines the advantages of Baysian
probabilistic analysis and the parallel nature of neural-networks. State-of-the-art results
were presented for the texture recognition task. The generalization of the system to
rotation-invariant recognition as well as high-accuracy orientation angle detection were
demonstrated.

We have concentrated in this work on the texture classification application. Texture
is one of the main visual modules which help us analyze the 2D world around us. A
system that recognizes texture can take part in automated scene analysis, remote-sensing
applications, medical imagery analysis and more. The building blocks of the presented
system are general ones. Thus we feel that the system can be generalized to other domains,

such as shape recognition. The application to face recognition is suggested for future

research.

The use of the multi-resolution pyramid for image enhancement has been the topic of
the latter part of the thesis. The field of image enhancement is gaining renewed interest
in the communication community. As the industry is heading towards high-compression
digital systems the ability to augment the visual perception of images to the user is a very

important one. In this work we have utilized the pyramid concepts to an advantage in a
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new enhancement scheme. Caltech is currently patenting this system. The future work

in this domain can include short term goals, such as the application to color images and

video, as well as longer-term goals such as the combination with image-coding schemes.
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Appendix A
The K-Means Clustering Algorithm

The K-means algorithm is a statistical clustering technique which consists of an iterative
procedure of finding K means in the sample space, following which each input sample is
associated with the closest mean in Euclidean distance.

The iterative procedure:

1: Choose random initial values for the means, my, ..., mg.

2: Loop- Classify the given n samples by assigning them to the class of the closest

mean; i.e., for each sample x choose mean ¢ such that:
l|x — m;||? = ming||x — myi|%, k= 1..K. (A1)

3: Recompute the means as the average of the samples in their class.
4: If any mean changed value go to Loop; otherwise stop.

In our implementation, K means are independently extracted in each dimension of
the 15-dimensional space. Each floating point sample from the filter maps gets associated
with corresponding bins in each dimension, resulting in a 15 dimensional quantized feature
vector.

Picking the parameter K correctly is usually of great importance when clustering the
entire space. In our case, the fact that the clustering stage is a preprocessing step, prior to
the rule-based network classification, seems to reduce substantially the difficulty of picking
the appropriate number of clusters. The sensitivity of the system‘s performance on the

parameter K is shown in Experiment 4. of Section 3.4.
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Appendix B
More Details of the ITRULE Classifier

B.1 Finding the Initial Rule Set

The ITRULE classification algorithm takes sample data in the form of discrete attribute
vectors and generates a set of K rules, where K is a user-defined parameter. The set of
generated rules are the K most informative rules from the data which predict the class
variable as defined by the J-measure, i.e.,

1% = 253) = 2(0) (pteloog (B2 + (1 - ) tog (22D,
where y is the left-hand side value of the variable Y, and X is the class variable, where 2
is a particular class.

The algorithm proceeds by first finding K rules, calculating their J-measures, and then
placing these K rules in an ordered list. The smallest J-measure, that of theKth element
of the list, is then defined as the running minimum J,,;,. From that point onwards, new
rules which are candidates for inclusion in the rule set have their J-measure compared
with Jyin. If greater than J,,;, they are inserted in the list, the Kth rule is deleted,
and Jy,i, is updated with the value of the J-measure of whatever rule is now Kth on
the list. For each of m possible right-hand sides (corresponding to m possible output
classes), the algorithm employs depth-first search over possible left-hand sides, starting
with the first-order conditions and specializing from there. The algorithm systematically
tries to specialize all m x N * 2m first-order rules, with N = total number of attributes
(here N = 15), and terminates when it has determined that no more first-order rules exist
which can be specialized to achieve a higher J-measure than J,,;,. For details on the

various bounds used to constrain the search see [SG92].

B.1.1 Pruning the Rule Set

By using the J measure, ITRULE finds the best rules with each rule in isolation, not
necessarily the best rule set. Two pruning algorithms are mostly used for reducing the
extracted rule set while preserving high classification accuracy (for other pruning methods

see [GHMS92]). In the first, subsumption pruning, higher order rules that have lower
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information content than a corresponding lower order (more general) rule are omitted from
the rule list. The second, independence pruning, enforces the conditional independence
assumption (for a given class, the input attributes are independent). The algorithm starts
with all rules in the set and checks each pair with the same class output for dependence.

Dependence is defined as follows: if the two rules have condition sides y; and y,, the rules

are dependent if
Ip(y1,92) — p(y1)p(y2)]
P(ybyz)

where 0 < T < 11is a user-set threshold. The dependent rule with the lower J-measure is

>T (B.1)

removed from the rule set. This algorithm has proven to be computationally efficient and

has a high generalization performance.

B.2 Class Probability Estimation and Classification

Let | 7| be the set of rules which fire and sy,..., 5.7 be the actual attribute-value con-
junctions corresponding to the fired rules.
For any particular class z;, we have by Bayes’ rule:
p(slv sy slf”ml)p(xl)
p(Sl, e S]:)
H 1p('sjlxz) ( )
p(s1,-- ,Sm)
(assuming condltional independence given the class)
IL | p(s)) oz )H | p(ails))
p('sla . ’3[.7:‘) j=1 P(wz)
(by Bayes’ rule).

I

P(zils1,- 5 817)

Let us define the weights W;; as

Wi; = log ¥ (QE”S)J)

a bias term for each class as
t = log p(z;)
and an (as yet) undetermined constant

I7] .
C = log M
P(S1s-+ -, 517])



156

Hence, we get that
|71
log p(2i]s1, . . .,3‘}") =C+t+ ZVV%’
j=1

Classification occurs simply by picking the maximum over these estimates for all pos-
sible classes z;, while actual probability estimates are derived by normalizing these prob-
ability estimates to sum to 1, hence eliminating the constant C. Note that there is an

implicit assumption here that the constant C is the same for each class z;. For additional

details see [GHMS92].
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Appendix C
Derivation of the Interpolation
Functions via Gram-Shmidt

C.1 Steering the Pyramid Filters

Rather than using equation 4.8 directly, we first use a derivation based on Gram-Shmidt
and then show the compatibility of the two approaches. Our steps include finding the
steering coefficients after orthonormalizing the basis kernels via Gram-Shmidt, finding the
interpolation functions as the inner-product solution in equation 4.9 and then adjusting
back to the original basis set.

Let us term the extracted pyramid basis as the eight functions O thru Og. The first
step towards obtaining the steering coefficients is to employ the Gram-Schmidt process to
orthonormalize the O’s as follows:

01 =01, @rp1 = Opyq1 — i %fﬁ@k forr=1,2,....k—1 (C.1)
k=1 k

followed by the normalization step

_ o
P = lonl (C2)

It is desirable to express the orthonormalization process in terms of a single matrix trans-

formation, in the form

J
where 7 is the matrix of orthonormalized Gram-Schmidt coefficients acting on O. The
7 matrix can be arrived at by first forming a matrix of orthogonalized Gram-Schmidt
coefficients, which we will call {, and then normalizing each row of {. By itself, ¢ will
accomplish orthogonalization of the O’s as in Equation C.4:

k=3 (l0;. (C4)

j
The ¢ matrix is formed by filling the entries below the diagonal of a k X k identity matrix

with Gram-Schmidt coefficients given by the recursive formula:

m—2

(= Z ~ s hCnyp for m >, (C.5)
h=0
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where

m _ {Om,@n

fin' = ima*l (C.6)
llenll

The elements of kth row of ¢ are then each divided by ||¢g|| to result in v. As an example,

the 3 X 3 gamma matrix is:

1
ol 0 0
_ —u 1 C.7
7= Tl sl - (C.7)
—-pd(-u?) -l 1
Tl Teall  Toal

Having obtained a means of orthonormalization of the set of original functions Oy, we
can proceed to describe a method of obtaining the set of steering coefficients B¢(6) for Oy.
First we will consider a set of coeflicients a(6) for use with the orthonormalized basis
¢r. With Iy representing the ideal log-Gabor filter at angle 6, as given in Chapter 2, the

ag(0)’s will simply be given by the inner product of the ideal filter and each ¢ (equation
4.8):

ar(0) = (Fo, dx)
= (Fy, Y 7kOn)
h

=‘%75(F9,0h). (C.8)
Returning now to 8;(6), we can write:
> Be(0)0k=3" ar(6)éx
k =zi:ak(9);7x’$0h
= zh: (; ak(H)'y,}:) Oh,. (C.9)

For equality to hold, the quantity in parentheses in Equation C.9 must equalf(0):

Br(6) = Z ("m(o)%lja
=22 1l Fo, O3),
=D (F5,05) Y vk (C.10)

J
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We can simplify the expression for i further by observing that the summation over m

is the dot product of the jth and kth columns of ~:

Be(8) = Y (Fa,05)(v" - v*) (C.11)

J

C.2 Checking on the Equivalence Between the Two Ap-
proaches

We start with the following equations for ()
> " Br(6)(02, 0x) = (Fy,0,) k=1,.,N,z=1,..,N.
k

Let a;; = (O4,0;) and d;(0) = (Fy,0;). Then we can rewrite the above eqn. as

aix @12 - Qi ﬂ1(¢9) dy (9)
a1 G2 -+ A2y ,52(9) . d2(0)

For n = 2 we have
a11 412 [7’1(0) — dl(e) )
a1 9o B2(0) da(0)
For a11022 ?é 12091 We get

By = diazg — ayady (C.12)

11022 — A12021

_ daayy — agidy

(C.13)

a11a22 — 12091
This is the solution for 3 as given by Section 4.2.
We shall now use the Gram-Shmidt approach as above to formulate the problem in

terms of the orthogonal functions ¢, orthonormal function ¢y, and their steering functions
a(8).

e1=01 (C.14)
<O27991>
=0y -
T ey
<027()1>
=0y — 0
27 01,00y 7!
=0y 2 0,. (C.15)

11
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Normalizing these functions we get (using a2 = ag;)

0
@=ﬁ% (C.16)
0y — 21,0,
g = a1 L (C.17)
Qg9 — a12.a2]
aii
As in Eqn. C.3), let ¢ = Z%J()j
3
1/(111 0
= ’ym = —a21/a11 (018)

1
812921 @12921
gon— 12921 [, a1pasy
227 Tapy \/ 227 Tagy

Now we can solve for the steering coefficients of ¢; using Eqn. C.8 to evaluate the
a;(6)
Eq C8 ;= (Fy,¢:)
= a1(0)=di/y/a11 (C.19)

oy
= ay(f) =~ B (C.20)

a]2a2]
22 — 011

The 3;(0) as given above are solutions of Eqn. C.10, which for N = 2 is

— o Y115 Y12
[B1, B2] = [a1, 3] [ Va1 2 ] : (C.21)

Using Eqn. C.20 we get (where 8; and d; are functions of 6 and a;; = a;;)

d a a
B = — — (Z(dy — 22dy))/(ar1a22 — a12a21)
a1 a11 a1

diazy — daagy

110422 — Q12091

diagy — daary

= (C.22)
11623 — A12091
B = (dz - 021d1/a11)/(a'22 - a12(121/(111)
d —d
_ 2011 1021 ‘ (0'23)
11422 — 12031

Hence the 3;(0) as derived above ( Eqns. C.22 ) are identical to those derived in
Section 4.2. ( Eqn. C.12).
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