Analog VLSI Autonomous Systems for

Learning and Optimization

Dissertation by
Gert Cauwenberghs

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology

- Pasadena, California

1994
(Defended December 8, 1993)

ii

© 1994
Gert Cauwenberghs
All rights reserved

Acknowledgments

The California Institute of Technology has been an especially exciting and stimulating
environment to me. During the five years of my Caltech experience I have had the
privilege to interact with many fine individuals who directly and indirectly contributed to
the success of my dissertation work presented here, and more importantly provided me
the opportunity for growth and expanding my knowledge.

It was during the early years at Caltech that I initially developed a strong interest in
analog VLSI and neural systems, in particular under the stimulus of Carver Mead. Ever
since, the work done by him and his co-workers has strongly inspired mine, and I have
been so fortunate to interact with them and exchange ideas on many occasions. Also, with
the encouragement and appreciation Carver extended to me, the pursuit of my work has
been increasingly rewarding and enjoyable.

Ican hardly imagine completing the work without the constant source of support which
my adviser, Amnon Yariv, has generously provided me in many ways. His genuine interest
in my research and his care for my professional growth have been a pleasant experience
to me. Other members in his group have extended me much cordiality and support as
well. I especially enjoyed working together with Chuck Neugebauer and Volnei Pedroni
on several related projects, gaining me valuable experience which proved very useful in
carrying out the experimental work.

While the Caltech of academic excellence has provided me a stimulating environment
to pursue my work, it also brought me a treasure of human nature. At Caltech I was
fortunate to meet Langche Zeng, whose love and warm care for me has always been a
unique source of happiness. She motivates the perspective of my work and has constantly
stimulated me in pursuing higher standards in life in general. My deep gratitude also goes
to my parents for having given me the indispensable warmth and care of a loving family.

Finally, I wish to express thanks for various ways of feedback on the presented work
I received from Josh Alspector, Pierre Baldi, Bhusan Gupta, Marwan Jabri, David Kirk,

Maurice van Putten, Jim Spall, Volnei Pedroni, and others whose names I mentioned

iv

above or I forgot to include. I also thank my committee members for their commitment
and their interest in my work, and certainly for their flexibility in arranging a time for the
Ph.D. exam despite their busy schedules. A Francqui fellowship of the Belgian American
Education Foundation provided financial support for the first year of graduate study
at Caltech, and the prompt ARPA/NSF MOSIS fabrication service was instrumental in
obtaining the VLSI chips for the experiments.

Analog VLSI Autonomous Systems for
Learning and Optimization

Gert Cauwenberghs

Abstract

The integration of adaptive functions within analog neural hardware, while certainly
promising to enhance system performance, has for long been hindered by technological
difficulties due to the complexity and sensitivity of standard adaptive algorithms. We
present a general framework for self-contained adaptation in analog VLSI supporting a
broad class of supervised learning and optimization tasks, which largely alleviates the
implementation problems by virtue of a robust system approach exploiting statistics and
redundancy in stochastic processes. Specifically, the framework includes: i) a perturba-
tive algorithm based on stochastic approximation to optimize a set of parameters in an
arbitrary deterministic system, these parameters being adjusted according to global per-
formance evaluations rather than using explicit knowledge about the internal structure
of the system; and ii) a scalable and modular CMOS architecture that implements this
algorithm, and that additionally provides for embedded long-term dynamic storage of
the volatile analog parameter values, quantized locally and refreshed autonomously on
capacitors with direct external access in both digital and analog formats. We analyze the
convergence and scaling properties of the stochastic algorithm, present on-line versions
of the algorithm for supervised learning in dynamical systems, and provide experimental
results demonstrating real-time trajectory learning on an analog CMOS chip containing a
network of six fully recurrent dynamical neurons. We also include results demonstrating
robust long-term retention of locally stored volatile information in analog VLSI using the

autonomous refresh technique.

vi

Contents

Acknowledgments

...................................

Abstract

...

Contents

..

List of Figures

.....................................

List of Tables

......................................

1 Introduction

1.1 Overview

.....................................

1.2 Optimization in Dynamical Systems

......................

1.2.1 Parameter-Driven Dynamical Systems

.................

1.2.2 Supervised Learning

1.2.3 Trajectory Learning and Teacher Forcing
1.3 Analog VLSI Implementation

..........................

1.3.1 Learning in Neural Hardware

.....................

1.3.2 Analog Volatile Storage

.........................

..................

1.3.3 A Unified Analog VLSI Framework

2 Supervised Learning and Optimization

2.1 Gradient-Based Supervised Learning

.....................

2.1.1 Algorithmic Complexity

........................

2.1.2 Dependence on Structural Model Specification

2.2 Stochastic Error-Descent Optimization

N b W

10
13
13
14
17

221 Formulation oo
222 ConvergencePropertieso L.
223 Complexity and ScalingIssues
2.3 On-Line Schemes for Real-TimeLearning
23.1 Optimal Partitioning of the Error Functional
23.2 Gradient-Free Implementations
233 Simulations. L e

Implementation Architectures

3.1 On-Line Error-Descent Learning
3.1.1 General Architecture. oL
3.1.2 Concurrent On-Line Implementation
3.1.3 Time-Interlaced On-Line Implementation

3.2 Fault-Tolerant Dynamic Multi-Level Storage
3.2.1 Partial IncrementalRefresh
3.22 ImplementationStructure L L.

Analog VLSI Systems

4.1 System Architecture

42 Analog VLSI Implementation

421
4.2.2
423
424
425
4.2.6

4.3 Experimental Learning Results

44 Autonomous Dynamic Analog Storage

...............................

..........................

ImplementationFloorPlan
NetworkCircuitry,
Learning Circuitry
Local Generation of Random Perturbations

Long-Term VolatileStorage

Global Supervision of Learning and Storage Functions

.........................

....................

29
43
47
49
59
74

83
84
85
90
91
96
96
99

viii

5 Conclusions

5.1 Stochastic Error Descent Optimization

5.2 On-Line Learning in Dynamical Systems
5.3 Analog VLSI Implementation
5.4 Experimental Verification

5.5 Efficiency and Complexity

...................

..........................

............................

...........................

A Bit-serial A/D/A Conversion

A.1 Conversion Algorithm

A.2 A/D/A Converter Block Diagram
A.3 Detailed Circuit Structure

A.4 Results and Discussion

References

..............................

.......................

............................

.............................

147
147
148
149
151
151

153
154
155
157
158

165

List of Figures

1.1
1.2
1.3

2.1

22

23

24

25

2.6

27

2.8

General form of the dynamical system under optimization.
Configurations for supervised learning on the dynamical system.

Benchmark learning example for the simulations: a “Figure 8" dynamical

trajectory. e

Error descent profiles for trajectory learning sessions with gradient descent
and several runs of the stochasticmethod.

Frequency distribution of the error decrements under updates with the

...............

stochastic method, relative to gradient descent.

Update efficiency as a function of effective learning rate, for three incre-

mental optimization methods.

.........................

Error descent profiles of four sessions with the stochastic method using the

concurrent format for the error observations.

.................

Free-running network dynamics obtained from four sessions of the stochas-
tic method using the concurrent format: transient output waveforms.

Free-running network dynamics obtained from four sessions of the stochas-
tic method using the concurrent format: limit-cycle trajectory phase dia-

grams.

......................................

Error descent profiles of four sessions with the stochastic method using the
time-interlaced format for the error observations.

Free-running network dynamics obtained from four sessions of the stochas-

tic method using the time-interlaced format: transient output waveforms.

ix

11

32

37

78

79

80

81

29

3.1
32
33
3.4
3.5
3.6
3.7

4.1

4.2

43

4.4

4.5

4.6

4.7

4.8
49

4.10

411

Free-running network dynamics obtained from four sessions of the stochas-
tic method using the time-interlaced format: limit-cycle trajectory phase

diagrams. e 82

General architecture implementing the stochastic method. 86

Analog-binary time-interlaced implementation of the stochastic method. 95

Example illustrating the binary quantization function Q(.). 98
Functional diagram of the partial refresh method. 100
Architectures implementing the partial incremental refresh method. . . . 101
A CMOS charge-pump implementation of the I/D device. 102
Binary quantizer comprising a bit-serial A/D/A converter. 105

Array structure of the network, containing parameter cells with integrated

learning and storage functions.o oo 113

Wide range CMOS triode transconductance element with regulated cascode

high impedanceoutput., 115
Wide range active CMOS resistiveelement. 117
Schematics of synapse and neuron network circuitry. 118
Measured static synapse and neuron characteristics, for various values of

the connection strength W;; and the threshold ;. 121
Learning cell circuitry. (a) Simplified schematics. (b) Waveform and timing

diagrams. e 122
Multi-channel pseudo-random bit generation using linear feedback shift

TegISters. 126
Simplified schematics of the storage cell circuitry. 128
Complete schematics of the synapse cell including learning and storage

functions. 129
Physical layout of synapse cell with integrated learning and storage func-

tions. e e e 130
Chipmicrograph. 131

4.12

413
4.14

4.15
4.16

Al
A2
A3
A4
A5
A6
A7
A8

Recorded evolution of the error during learning, for four different sessions
onthenetworkchip. 136
Oscillograms of the target signals and network outputs after training. . . 138

Recorded evolution of the network parameters during learning, for four

different sessions on the network chip.) 139
Chip micrograph of the 128-element integrated analog memory. 143
Experimental observation of quantization and autonomous refresh. . . . 145
D/A conversionalgorithm. 155
A/D/A converter blockdiagram. 156
Detailed schematics of the A/D/A analog circuitry. 158
I/O connection configurations. 160
Format of clock waveformsand I/O timing. 160
Layout of the A/D/Aconvertercell. 162
Recorded algorithmic D/A conversiontree. 163

Differential and integral nonlinearity of D/A and A/D conversion by the
A/D/AcOnverter. e 164

List of Tables

2.1 Scaling properties of gradient descent methods for supervised learning in

dynamical recurrent neuralnetworks. Lo L., 22
4.1 Chip features of the implemented learning network. 130
4.2 Parameter values observed at convergence, for four different sessions. . . 141

A.1 A/D/A cell characteristics.

A2 A/D/A cell performance at various conversionspeeds. 163

Chapter 1

Introduction

1.1 Overview

Most on-line adaptive algorithms for training dynamic recurrent neural networks use ex-
plicit gradient information on the network dynamics to perform on-line steepest descent
of the observed training error in the parameter space. Since the calculation of the error
gradient at a given instant needs to account for the accumulated error dynamics over an
extended time span, gradient descent methods are rather computationally complex. For
real-time implementations, they require extensive provisions for storage and interconnec-

tivity which scale disproportionally with the dimension of the system.

Chapter 2 investigates a stochastic approximation technique for error-descent super-
vised learning in nonlinear dynamical systems, using global performance evaluations
on the physical network under parallel stochastic perturbations of the parameters rather
than calculating gradients from an assumed internal structural model. The stochastic me-
thod applies to general parameter-driven dynamical systems with arbitrary continuous
characteristics, of which neither the functional form nor the internal structure need to be
known. Two practical on-line schemes are presented that implement the learning method
in two different modes of operation under real-time conditions, for analysis and predic-

tion of time-varying processes, and for identification and control of unknown dynamical

2 CHAPTER 1. INTRODUCTION

systems. Simulation results validating both schemes are included.

Chapter 3 covers architecture and implementation issues regarding the integration of
the learning method in real-time hardware. Scalable and modular VLSI architectures are
presented which implement the two on-line schemes of the stochastic method outlined
in Chapter 2. Of both schemes, the second one is particularly amenable for integration
in faulty analog environments, as it reflects and preserves the model-independent nature
of the stochastic learning algorithm. Other than discussing accuracy issues related to the
analog VLSI implementation, Chapter 3 also describes a technique for long-term local
storage of the analog parameters in capacitive format, which can be directly embedded
in the learning architecture using available resources already provided by the learning
update units. The technique repetitively quantizes and refreshes the volatile analog pa-
rameter values, incorporating redundancy and statistical averaging to avoid catastrophic
loss of information triggered by occasional quantization errors. The description of a com-
pact and fault-tolerant circuit implementing a quantization element, which comprises a
bi-directional A/D (analog-to-digital) and D/A (digital-to-analog) converter, is given in

Appendix A, together with measurements on the characteristics of the device.

Chapter 4 describes the analog VLSI implementation of the integrated learning and
storage architecture, and presents experimental results obtained from two chips, one in-
corporating refresh and quantization portions of the architecture and the other comprising
the full functionality of the learning and storage system embedded in ananalog VLSI neural
network. The network contains six fully recurrent neurons with continuous-time dynam-
ics, providing 42 free parameters which include connection strengths and thresholds, and is
trained to generate two neuron output signals following a trajectory of prescribed periodic
waveforms. The chip implementing the network includeslocal provisions supporting both
the learning and storage of the parameters, and can be readily expanded for applications
of learning recurrent dynamical networks requiring larger dimensionality. The chapter de-
scribes and characterizes the functional elements comprising the implemented recurrent

network and integrated learning system, and includes experimental results obtained from

1.2. OPTIMIZATION IN DYNAMICAL SYSTEMS 3

training the network to produce two outputs following a circular trajectory, representing a
quadrature-phase oscillator. The robust and autonomous operation of the refresh scheme
is verified on a separate chip containing a 128-element array of capacitive storage cells
with integrated quantization elements, demonstrating long-term analog storage in excess

of 8 bit resolution.

Finally, Chapter 5 concludes the findings and marks areas for further investigation.

1.2 Optimization in Dynamical Systems

Dynamic recurrent neural networks have become a powerful tool for the analysis and
prediction of time-varying processes [Sompolinsky 86], [Sato 90b], [Lopez 93] and for the
modelling and control of unknown dynamical systems [Narendra 90], [Narendra 93]. In ef-
fect, the dynamic behavior of any deterministic system with continuous characteristics can
be approximated by means of an appropriately sized recurrent neural network, exploiting
the vast degree of freedom constituted by the free parameters of the network to capture
the underlying dynamics of the unknown system [Funahashi 93]. To assign optimal values
for the parameters of the network—connection strengths, thresholds and time constants,
and possibly others depending on the network model, a variety of learning algorithms
have been derived. Supervised learning algorithms, which steer the response of the net-
work towards an exemplary training signal by adjusting the parameters accordingly, are
preferred when training signal and performance evaluation are continuously available.
The complexity of current supervised learning algorithms limits the practical use of re-
current neural nets as generalized dynamical systems. The computational requirements
tend to increase strongly with the size of the network, especially for real-time supervised
learning, where the parameters of the network need to be adjusted on-line according to
a continuous stream of data obtained from the instantaneous network response and the
training signal [Williams 89]. Additionally, implementation of these learning algorithms
requires considerable accuracy in the computation and the modelling, and the learning

performance is quite sensitive to errors and model mismatches which frequently arise in

4 CHAPTER 1. INTRODUCTION
hardware implementations.

In the following chapter, we investigate a simple method which significantly reduces
the computation complexity and sensitivity of supervised learning in dynamical systems
at little or no cost in performance over alternative, mostly gradient-based approaches. The
learning architecture employs a stochastic perturbative algorithm which probes the depen-
dence of the network error on the parameters directly, rather than deriving an estimate of
the gradient based on an explicit model of the network dynamics [Cauwenberghs 93a]. The
direct approach of observing the error gradient on the physical network relates to tech-
niques of stochastic approximation [Robins 51], [Kushner 78] and finds parallels in other
recent algorithmic developments [Styblinski 90], [Spall 92a] and hardware learning archi-
tectures as well [Dembo 90], [Kirk 93], [Alspector 93], [Flower 93]. We address practical issues
that arise for implementation of the learning method in real-time environments and with
special-purpose hardware, especially concerning the scaling of the learning architecture
with the dimension of the dynamical system, and the natural causality constraints imposed
by real-time hardware on the time-domain computations. The algorithmic framework of
the method assumes no predefined structure or functional form for the network, and is

applicable to general parameter-driven structures other than recurrent neural networks as

well.

1.2.1 Parameter-Driven Dynamical Systems

The dynamics of the general class of network structures under consideration can be cast

in the general abstract form

dx
'a—i' - F(p,X,Y) 9 (11)

where x represents the vector of state variables of the network, p denotes the vector of
adjustable parameters, and the vector y corresponds to the inputs external to the network.

The functional form of (1.1) complies with that of dynamical recurrent neural networks,

1.2. OPTIMIZATION IN DYNAMICAL SYSTEMS 5

e -

| DYNAMICAL SYSTEM |

‘ !

63) | z(})

YO | = Fpxy) e 2z=GK)

| dt !

| |

| I

1 I

L o o i

Figure 1.1: General form of the dynamical system under optimization.

typically defined by
dz;
gy = ot o (D Wisz; + 0; + :) (1.2)
j
with a parameter vector given by the combined weights W;;, thresholds 6; and time
constants 7; of the network. The nonlinear activation ¢ in (1.2) is usually specified as a
sigmoidal function, such as o(x) = tanh(z). The network output vector z(t) is obtained

indirectly from the state variables x; governing the network dynamics (1.1), through a

transformation

2(t) = G(x(t)) . (1.3)

The configuration of the functional elements F and G, comprising the dynamical system,

is illustrated symbolically in Figure 1.1.

The additional transformation G accounts for a diversity of network configurations,
specific to the application of interest. Similar to (1.1), neither assumptions on the functional
form nor explicit knowledge of (1.3) are necessary to support the learning method. The
instantaneous transformation (1.3) can be further generalized to include dynamic features.

As an example, the operator G may include the response of an unknown dynamical system

t
2(t) = / 9(x(6),1,6)d8 (1.35)

6 CHAPTER 1. INTRODUCTION

driven by the network, such as a nonlinear plant under control by the network. In a
different context, more typical in applications for identification of dynamical systems and
prediction of time-varying sequences, the transformation G conforms to the instantaneous
format (1.3) and accounts for a projection of the internal dynamics onto the output, usually
contracting towards lower dimensionality. Such is useful to generate complex dynamical
systems of higher internal dimensionality than what can be obtained externally through
straight projection of the time derivatives of the visible units on their present states, there-
fore encompassing a potentially richer spectrum of dynamical characteristics. Additional
degrees of freedom in the optimization can be obtained by allowing for extra parameters in
the functional from of (1.3) as well. In the case of the dynamical recurrent neural networks
considered under (1.2), the outputs z; may be obtained through an additional layer of
weighted sums and sigmoids, or alternatively may simply consist of a select subset of the
network states z;.

For the optimization method under study, no particular assumptions on the functional
form and the physical configuration of F and G are needed, other than their combination
produces a dynamical response at the outputs z(t) to a time-varying stimulus y(t) at the
inputs, in a consistent manner as determined by a set of continuous and constant parame-
ters {p;} which can be tuned to optimize performance. The details of the internal structure
comprising the functional blocks F'and G merely relate to specific configurations suppbrt-
ing different applications. For simplicity, the dynamical system under optimization can
be considered as an integrated entity, and a clear distinction between the network and the

surrounding environment participating in the dynamical process is not needed.

1.2.2 Supervised Learning

In the context of supervised learning, the system is presented a training signal 27 (t), en-
coding the desired outputs in response to the supplied inputs y(t). The origin of the
training signals, supplied externally to the network, depends on the specific application.

Two typical configurations of the dynamical system, in relation to the reference supplying

1.2. OPTIMIZATION IN DYNAMICAL SYSTEMS 7

the target signals, are given in Figure 1.2. The first configuration, shown in Figure 1.2 (a),
features a reference source which generates both input and output training signals y(t)
and 27 (t), as given by time-varying signals extracted from an external process with causal
dynamical characteristics. Conversely, the alternative configuration of Figure 1.2 (b) em-
ploys a reference system which embodies the target dynamical response of the system
under optimization, whereby the input training sequence y(t) is chosen as to represent the
complete range of inputs under typical operating conditions. The distinction between both
configurations and their corresponding application domains forms the basis of the two dis-
tinct real-time realizations of the stochastic method and their implementation architectures

presented in Sections 2.3 and 3.1.

An error functional £(p) is constructed on the system outputs z to quantify the global
performance of the system in tracking the training signal z7 (t). As with other approaches
for supervised learning, the method aims at decreasing the error measure with respect to
the parameters, with the optimum state of the system defined as that corresponding to the
absolute minimum of the error. The error functional can be constructed freely, provided
it satisfies obvious continuity and consistency conditions. Typically, an error measure

satisfies the format

Em)= [elalv A W) (1.4

with a distance metric e(z(t), z” (t)) which usually takes the form of a mean-square error

(MSE)
e(n(t), 27 (1) = 3 3 (a(t) = T () - (15)

Besides network outputs z(t) and training signals 27 (¢), the error functional may include
other factors which contribute to the “performance” in other ways, provided the thus

constructed error measure can be directly observed on the network.

The infinite horizon of the formulation in (1.4) hinders implementation, since the
observed or supplied values of z(t) and z7(t) are available over a limited time range only.

Often a truncated error measure is used in practice, defined over a finite observation time

8 CHAPTER 1. INTRODUCTION

S

DYNAMICAL
SYS%EM z()
bﬂiﬁ

y(®) AN &p)

REFERENCE r
SOURCE z ()

(a)

B

DYNAMICAL
3,

y(t) — Qi:%»oam-a:.:~:¢:-:~:.:~:.:-a<.:-:-:~:<,->o=:4:~:~:-:o: g(p)

REFERENCE
SYSTEM

— Z'(1)

b

Figure 1.2: Configurations for supervised learning on the dynamical system. (a) Con-
figuration with reference source. (b) Alternative configuration with reference system and
externally supplied training input sequence.

1.2. OPTIMIZATION IN DYNAMICAL SYSTEMS 9

interval [tg, 4]

ty
£(p; x0; o, 1) = /to e(z(t), 27 (£))dt . (1.6)

Obviously, minimization of the truncated error measure (1.6), at given values for to and
t7, will generally not yield the same set of parameters as the optimum values obtained
by minimizing the theoretical measure (1.4). Furthermore, the value of the error measure
(1.6) depends on the initial state of the network xy = x(to), which needs to be specified
explicitly for the error measure to be uniquely defined. These issues are the subject of the
analysis in Section 2.3. Another more basic issue, related to the integration time intervals,
is the timing organization of the computations during learning with regard to the timing of
the network dynamics. This issue distinguishes on-line methods from off-line methods for
supervised learning. Off-line methods, while generally computationally efficient, require
extensive access to the history of network variables for the computation of the parameter
updates, implying provisions for large memory storage proportional to the integration
time interval of (1.6). Typically, off-line methods consider a fixed time interval [to, /]
and given initial conditions xg for the error functional (1.6), forcing a reset of time on the
network for every new learning iteration. They effectively perform batch-mode learning,
repetitively circulating the given “data-set" constituted by the training signals (y(t), zT (t))
over the interval [to, /], for every “epoch” of the learning session. In contrast, on-line
schemes construct values for the parameter updates through a sequence of operations
which proceed exclusively in forward-time, synchronously with the network dynamics.
As a consequence, on-line methods are able to operate on the network and update its
parameters while it runs continuously, without the need to reset time and control initial
conditions for the state variables. This makes on-line methods far more suitable than off-
line methods for real-time applications, under a continuous stream of incoming learning

and network signals y(t), z7 (¢), and z(t).

10 CHAPTER 1. INTRODUCTION

1.2.3 Trajectory Learning and Teacher Forcing

The following chapter also includes simulation results to experimentally confirm the anal-
ysis carried out there, and in particular to assess the performance of the stochastic method
relative to gradient descent and to demonstrate the real-time embodiments of the method.
All simulations are performed on the same learning example, which consists of a Lissajous
dynamic trajectory defined by a pair of sinusoidal target output signals
() = sin(t) a7)
4 (t) = sin(2)
with periodicity T = 27, in the absence of externally supplied inputs, y(t) = 0 [Pearlmut-
ter 89]. The periodic waveforms of the target training signal and the corresponding phase
diagram representation are depicted in Figure 1.3. A similar but less complex periodic
trajectory, comprising a quadrature-phase oscillator, is used for the experimental learning

sessions on the analog neural network chip as described in Chapter 4.

The motivation for choosing the particular form of training signals in (1.7) follows
from the complex nonlinear dynamics needed to generate the trajectory without external
stimulus, constituting a non-trivial learning problem. In particular, the trajectory phase
diagram of Figure 1.3 (b) contains a singularity in the direction of motion at the origin, in-
dicating that the two state variables comprising the outputs of the system are not sufficient
to completely model the underlying dynamics generating the waveforms (1.7). As a con-
sequence, learning methods merely relating the time derivative of the output vector to its
state directly, through a nonlinear transformation such as a feedforward neural network,
fail to reproduce the desired trajectory. The waveforms (1.7) can be successfully generated
by training a six-neuron dynamic recurrent network (1.3) through gradient descent on the
error (1.6) over an integration interval including a couple of periods of (1.7) [Toomarian 92].
For the simulations we use the same network structure and learning parameters as in
[Toomarian 92]. The network contains six neurons according to (1.2), with fixed time con-

stants 7; set to unity. The output z is represented by two selected neuron state variables,

1.2. OPTIMIZATION IN DYNAMICAL SYSTEMS 11

T T T L] T ¥ 1
1
Time t (units)

(a)

— 1 T s T “ L AL e | Y
05

00

ZZT(t)

05 b=

Figure 1.3: Benchmark learning example for the simulations: a “Figure 8" dynamical
trajectory. (a) Training signals. (b) Phase diagram representation.

12 CHAPTER 1. INTRODUCTION

zi(t) =xi(t); i=1,2

As in [Toomarian 92], a teacher forcing signal is applied during learning in the form of

an external input y, according to

wu® =2 (FO) 7 (FO - a0) (18)
for i = 1,2 and with A = 1 and 3 = 7/9. This signal serves the purpose of a feedback
mechanism, terminally attracting the network outputs towards the training signal z7 (2) to
facilitate the learning [Toomarian 92], [Zak 89]. The amplitude of the teacher forcing signal
(1.8) decreases gradually as the network outputs approach the target output sequence,
practically vanishing at convergence such that the bias introduced by the forcing signal is
eventually almost removed!. The feedback mechanism of teacher forcing is quite essential
for trajectory learning in general, to provide an external stimulus that synchronizes the
network dynamics with the training signal. We note that in the general learning case an
externalinput y(t) is supplied with the training signal, in addition to the target output z7 (¢).
The training input y(t) then naturally serves as a reference to the target outputs for the
network under learning, since obviously both signals are related and synchronized through
the inherent dynamics represented by the training data. In most practical situations this
reference provides sufficient stimulus to guide the learning process in absence of explicit
learning feedback in the network through teacher forcing. Therefore, the example case of
trajectory learning considered in the simulations is expected to provide a proper benchmark
platform to test the stochastic learning method under more general operating conditions,
representative of a much wider spectrum of training signals for a variety of different

applications.

'For complete removal of the bias due to residual errors at convergence, the teacher forcing constant A
needs to be gradually attenuated along the learning process [Toomarian 92].

1.3. ANALOG VLSI IMPLEMENTATION 13

1.3 Analog VLSI Implementation

1.3.1 Learning in Neural Hardware

Analog VLSI implementation of neural networks with learning capabilities have received
much attention lately, and several working analog chips or systems employing analog
chips incorporating learning have been reported: [Furman 88], [Vittoz 89], [Alspector 89]
among others. The advantages of using analog VLSI as technology medium for special-
purpose neural network implementations include the inherent parallelism of the summing
operations [Graf 89] and the compact size and low power consumption of the elements
performing the local processing functions [Mead 89], [Andreou 91]. Some disadvantages at-
tributed to analog VLS, in general, are the limited available dynamic range and the strong
requirements on precise matching between components in order to achieve a reasonable
degree of accuracy. However, the sensitivity to precision of implementation depends
strongly on the system-level specifications, and one of the intended properties of artifi-
cial neural networks is exactly “graceful" degradation of performance under errors in the
implementation, such as offsets in a typical analog VLSI process, through redundancy in
distributed representation [Rumelhart 86a]. For learning neural networks, in particular, the
effects of offsets and mismatches in analog hardware implementations can be significantly
reduced by “learning" the set of parameters directly on the implemented network, rather
than programming the network with the parameter values obtained from learning off-line
using a model of the implemented network [Smith 90], [Frye 91]. Parallel architectures for
fast and efficient learning, embedded with the implemented network, can be obtained for
certain classes of learning algorithms, mostly those based on incremental outer-product
rules [Furman 88], [Cauwenberghs 92], [Donald 93], [Benson 93] and other local update algo-
rithms [Vittoz 89], [Alspector 89], [Hochet 91], [Cohen 92], [Linares-Barranco 93]. On the other
hand, the learning performance of such integrated learning networks may still be affected
by the analog precision of the implemented learning functions themselves, depending on

the nature of the algorithm used.

Virtually all of the learning hardware implementations of neural networks which have

14 CHAPTER 1. INTRODUCTION

been developed so far exclude dynamical effects in the inputs and outputs, basically for ap-
plications of pattern recognition and association of input-output pairs. Such applications
typically deal with feedforward networks, for which the learning is fairly standardized
[Rumelhart 86b] and easy to implement in VLSI. A few exceptions of VLSI learning archi-
tectures, capable of training recurrent networks as well, have been reported [Alspector 89],
[Benson 93], [Jabri 92] though for learning fixed point attractors discarding transient re-
sponse. While analog recurrent networks learning time-varying features offer a wide
range of attractive applications, e.g., for process control and identification of dynamical
systems [Narendra 90], their implementation in special-purpose hardware has currently
not been demonstrated. One factor seriously inhibiting implementation is the complexity
of the available learning algorithms in a dynamic setting. Several versions of gradient
descent algorithms for supervised learning in dynamical recurrent neural networks exist
[Williams 89], [Pearlmutter 89], [Toomarian 92], [Schmidhuber 92], [Sun 92], [Baldi 93]. How-
ever, none of those support a scalable implementation for on-line (real-time) operation
in a two-dimensional arrangement, as required for a typical VLSI process technology. In
contrast, the perturbative stochastic algorithm studied in the next chapter provides a scal-
able and modular on-line implementation, described in further detail in Chapter 3 and

demonstrated experimentally in Chapter 4.

1.3.2 Analog Volatile Storage

One of the most challenging problems faced by massively parallel analog information and
signal processing in VLSI is the local storage of analog information, preferably in analog
format. In particular for analog VLSI implementations of neural networks and other
parameter-driven systems for signal processing, an integrated analog storage medium is
desirable to locally represent the parameters p; at the appropriate positions in the network
architecture, and to retain their values over an extended period of time after last being

written externally or updated by the adaptive scheme.

Unlike well developed methods for digital programmable storage using SRAM and

1.3. ANALOG VLSI IMPLEMENTATION 15

DRAM technology, the random-access long-term storage of analog information in VLSI
has known significantly less progress in the past. Similar to digital memory storage, a
voltage level on a capacitor encodes an analog memory value. However, the drift of that
voltage due to leakage and noise affects the analog representation much more drastically
than for a binary representation. The drift due to leakage is unavoidable if the storage
capacitor is to be directly accessible for writing, in ohmic contact with surrounding cir-
cuitry. In contrast, a floating-gate storage capacitor, completely insulated by a surrounding
oxide, avoids memory degradation due to leakage, but precludes direct write access for
programming except by slow electron transport through the oxide. Most applications re-
quiring direct write-access to analog voltages stored on an array of capacitors in VLSI have
rather used off-chip digital storage and external D/A conversion to periodically refresh
the programmed voltages. For large-scale storage, this method requires high-bandwidth

off-chip communication and extra external components.

Local storage mechanisms for large-scale integrated programmable analog memories,
that avoid the need of external storage and off-chip communication, have been explored
recently [Terman 81], [Hochet 91]. The basic principle here is to effectively quantize the
values stored in the memory, restricting their analog range to a finite set of discrete levels,
and to periodically refresh the drifting values to the nearest discrete level. Therefore
the analog values encode digital information while no explicit digital storage is required.
Instead, the inherent digital information is stored in analog format on a memory capacitor
and is repeatedly retrieved from the identified nearest discrete level. The quantization
provides a certain excursion margin for the memory values between consecutive refresh
operations, which retrieve the correct discrete level as long as the refresh rate is fast
enough to counteract the effect of the drift. Basically, to ensure the stored value never
escapes from one memory level toward another, the expected drift accumulated over one
refresh interval should be considerably smaller than the separation between neighboring
quantization levels. Therefore the maximum number of quantization levels that can be

resolved by the analog memory depends on the time scale of the refresh intervals relative

16 CHAPTER 1. INTRODUCTION

to that of the nominal voltage drift.

Implementation of the quantization and refresh functions in VLSI basically involves
activation of an A/D/A (analog-to-digital and digital-to-analog) conversion loop [Ter-
man 81], which may be shared in sequence by multiple storage devices. Variants on this
mode of implementation [Hochet 89], [Hochet 91], [Vittoz 91] provide a periodic signal which
sequences through the complete set of discrete memory levels for direct comparison with
the stored value in memory, identifying and copying the nearest level in a manner some-
what related to dual-slope A/D conversion. While either configuration is able to store an
analog value over an extended period of time, occasional errors in the quantization and
refresh, occurring in practice due to noise and analog VLSI imprecisions, have a catas-
trophic impact on the data retention of the memory. Indeed, a wrong classification of the
nearest discrete analog level at quantization causes a complete loss of the stored infor-
mation at the successive refresh operation. Furthermore, offsets occurring at refresh, due
to incorrect replication of the identified level onto the storage device, increase the likeli-
hood of a subsequent error in the quantization. The stringent requirements on precision
in the implementation severely limit the analog resolution practically attainable with the
dynamic storage method. An alternative realization, which incorporates error correction
at the LSB level to mask quantization errors of limited magnitude, has been proposed
recently [Lee 91]. However, the modified scheme involves extra resources for local storage

and handling of one bit of information.

We have developed an alternative technique for dynamic multi-level storage, which
avoids the sensitivity to quantization errors by specifying partial updates for the analog
value, with small fixed size increments in the direction of the nearest discrete level, rather
than completely substituting the current analog valueat refresh [Cauwenberghs 93c]. Hence
occasional errors in the quantization merely cause a small increment in the wrong direc-
tion, which is likely removed in subsequent cycles unless errors occur rather frequently.
The modified refresh scheme therefore allows for reliable long-term storage at increased

analog resolution. The details and further characteristics of the technique are described in

1.3. ANALOG VLSI IMPLEMENTATION 17

Section 3.2, and the description of a compact quantization element supporting fairly high
resolution and bandwidth, using a bi-directional A/D and D/ A converter, is presented in

Appendix A.

1.3.3 A Unified Analog VLSI Framework

While the learning and the refresh of the parameter values p; are two distinct processes
which each address the system from a different perspective, the implementation of their
functions needs to be coordinated since both interface with the same parameter storage
medium. Essentially, both processes need to alternate, with the refresh activated when the
learning is disabled, and the refresh disabled when the learning is activated. The need
for switching between learning and retention phases of operation in an adaptive network
arises since a constant source of training data for supervised learning cannot always be
guaranteed. In particular, whenever on-line target signals are not available or the system
is in an idle state, continued adaptation is detrimental to the performance of the network,
and the parameter values need to be retained.

Since the learning and refresh processes alternate and both access the same storage
device, it is not only possible but furthermore desirable to combine the local parameter
update functions for both in one implementation architecture, partly sharing the same
hardware. Fortunately, both the stochastic learning algorithm and the partial refresh
method mentioned above specify the same type of incremental updates in the parameters,
such that an efficient time-sharing of the update hardware is indeed feasible.

In Chapter 3, we present a simple scalable architecture implementing the stochastic
perturbative algorithm for on-line supervised learning in dynamical recurrent neural net-
works, which includes integrated provisions for partial refresh of the parameter storage.
The local functions of both learning and refresh are combined in a unified cell structure,
of which instances are locally replicated in direct contact with the respective parameter
storage devices, one for every parameter value in the network structure.

The scalable and modular architecture of the learning architecture owes largely to the

18 CHAPTER 1. INTRODUCTION

simple form of the stochastic perturbative algorithm, avoiding the complexity of on-line
gradient-descent methods. In addition to the significant reduction in implementation
complexity, the direct observation of the gradient avoids the offsets which may arise in a
derived gradient estimate, due to mismatches between the assumed network model and
its physical implementation. In fact, the direct approach further extends directly towards
optimization of arbitrary parameter-driven dynamical systems, of which the dependence
of the error index on the parameters and a model of the network does not need to be
known or specified [Dembo 90].

As a demonstration of principle, we have implemented a small recurrent neural net-
work with continuous-time dynamics, integrated with the learning circuitry on a CMOS
chip, and have experimentally verified its learning performance with a simple trajectory
learning task, representative of more general and useful applications for system identifi-
cation and adaptive control. The structure of the learning network and its experimental
performance are described in Chapter 4, which also includes test results obtained on a
related chip with integrated quantization functions, demonstrating the robustness of the
partial refresh method to attain long-term data retention at high analog resolution. By
virtue of the scalable and modular architecture of the integrated learning and storage
functions, the combination of the two chips presented here can be extended, with minor
modifications to the internal structure of the cells, to accommodate applications of adaptive

autonomous dynamical recurrent systems of very large dimensionality.

19

Chapter 2

Supervised Learning and

Optimization

The scope of the present chapter is to explore functionally simple and robust, yet com-
putationally efficient techniques for error-descent supervised learning and optimization
in dynamical systems of which the characteristics are not necessarily known a priori. The
study is motivated by experience gained from practical analog hardware implementa-
tions, and particularly addresses the limitations of analog VLSI systems in terms of the

implementation accuracy and the strict causality of time-domain operations.

Section 2.1 briefly analyzes the shortcomings of gradient descent methods for real-
time supervised learning in terms of computational complexity and sensitivity to model
mismatches, motivating gradient-free alternatives. Section 2.2 investigates a stochastic
parallel perturbation technique for supervised learning in dynamical systems, probing the
dependence of the error functional (1.6) on the parameters on the network directly rather
than calculating the components of the gradient from an assumed structural model of
the network. The learning performance of the stochastic method is compared with that of
standard gradient descent methods, in terms of convergence behavior, learning speed, and
scaling properties. Finally, practical on-line schemes for real-time implementation of the

stochastic method are presented in Section 2.3, for two distinct classes of applications each

20 CHAPTER 2. SUPERVISED LEARNING AND OPTIMIZATION

with a different mode of operation. The first scheme aims at applications for analysis and
prediction of time-varying sequences, and the second scheme applies to identification and
control of unknown continuously running dynamical systems. Simulation results on the

trajectory learning example of Section 1.2 are included to illustrate the statements made.

2.1 Gradient-Based Supervised Learning

The standard methods for supervised learning in dynamical neural networks minimize
an MSE functional of the form (1.6) with error specification (1.5), by gradient descent of
the error in the parameter space [Williams 89], [Pearlmutter 89], [Toomarian 92], [Baldi 93].
Gradient descent is an iterative method of function optimization, by means of incremental
updates in the parameter values according to the locally steepest direction of error descent,

given by the opposite direction of the gradient vector:

plE+1) — p(k) _ ng-‘g(k) , 21)
Under reasonable assumptions on the continuity of £ and at sufficiently small learning rate
7, the sequence {p*)} converges to a local minimum of the error functional £. Usually,
with appropriate sizing of the network and a thoughtful formulation of the learning
task, the existence of multiple minima can be avoided, and the found local minimum
coincides with the desired global minimum. The issue of dealing with local minima falls
beyond the scope here, rather we include practical guidelines to avoid those in dynamical
systems and suggest a simple scheme to circumvent them in case their existence persists
nevertheless. Instead, we address the computational complexity of supervised learning
and the sensitivity of learning performance under poor conditions common in real-world

environments, with regard to gradient-descent methods.

2.1. GRADIENT-BASED SUPERVISED LEARNING 21

2.1.1 Algorithmic Complexity

Several versions of gradient-descent algorithms based on the error formulation (1.6) and
the recurrent neural network structure (1.2) have been developed, each calculating the
gradient in (2.1) from a different computational perspective. The different approaches,
each arriving at the same value of the gradient, can roughly be divided in three categories,
depending on the functionality of the learning procedure in terms of the timing of the
computation and the required access to the network and training data. Off-line methods,
such as error back-propagation through time [Werbos 90] and related variational methods
[Pearlmutter 89], [Sato 90a], have superior computational efficiency. However, they need
a backward integration pass to construct the gradient, which assumes a reversal of the
time dimension during the learning process. Real-time implementation of these methods
requires the storage of the intermediate values of the state variables, cumulative over the
complete integration interval [tp,ts]. On-line methods significantly reduce the storage
requirement by avoiding the backward integration step altogether. A matrix sensitivity
formalism is used in [Williams 89] that allows all calculations to be performed in forward
time with minimal storage; however, the computation complexity, in terms of number of
operations required per gradient result, rises sharply with the dimension of the network.
On-line alternatives that reduce the amount of computation to obtain the gradient have
been proposed recently [Toomarian 92], [Schmidhuber 92], [Sun 92], which all lead to an
equivalent improvement in computation efficiency over the latter method, at approxi-
mately equal levels of storage required. The performance of the various gradient descent
methods in the three categories is summarized in table 2.1. In the scaling formulas, N
denotes the number of neural state variables in the recurrent network, and L is defined as
the interval length of the error functional (1.6) in terms of the number of integration time

steps. An extensive review, comparing and analyzing the different methods, can be found

in [Baldi 93].

For the purpose of the investigation here, in the context of real-time integration of

learning methods in VLSI hardware and related implementation environments, we note

CHAPTER 2. SUPERVISED LEARNING AND OPTIMIZATION

Table 2.1: Scaling properties of gradient descent methods for supervised
learning in dynamical recurrent neural networks.

Method Computaﬁional Memory
Complexity * Requirement **
Off-Line
Pearlmutter (1989) 9 9
Sato (1990) O(LN"9) O(LN®)
Werbos (1990)
On-Line
Williams & Zipser (1989) O(LNY O (N?®
Narendra & Parthasarathy (1991))
Toomarian & Barhen (1992) 3 3
Schmidhuber (1992) O(LN”) O (N°)
Sun, Chen & Lee (1992)

*

Number of operations per update, in batch-mode.

Number of state variables used in the calculations.

N = Number of fully interconnected dynamical neurons in the network.
L = Integration length of the error functional, in number of time steps.

E2 3

2.1. GRADIENT-BASED SUPERVISED LEARNING 23

that the best on-line gradient descent method still implies an O(N?) storage requirement,
which is hard to realize in a scalable architecture given the intrinsic 2-D nature of a typical

VLSI wafer fabrication process’.

2.1.2 Dependence on Structural Model Specification

Other than the issue of scalable implementation, there are more disadvantages specific
to the nature of gradient-descent in general, which motivate the search for a gradient-
free alternative. The procedure to obtain the gradient from the network and training
data assumes an explicit structural model for the network dynamics and the output filter,
represented by F(p, x,y) in (1.1)and G(x) in (1.3) or (3b). If the topological structure of the
implemented network does not exactly reflect the functional form assumed by the gradient
formula, a bias will result in the learning process. The amplitude of this bias is difficult to
estimate. Since the long-term dynamics of a recurrent network generally depends strongly
on the parameter settings, the effect of the bias may be severe to the learning performance
in certain cases, even if the mismatch between the network structure and the assumed
model is relatively small. Such mismatch is unavoidable in analog implementations of the
network structure and the learning circuitry, due to random offset and gain errors induced
by impurities in the fabrication process. Digital implementations are usually robust to
errors of this kind. Nevertheless, the functional implementation of the derivatives of F
and G and integration of the error dynamics becomes demanding in order to satisfy the
accuracy requirements.

Regardless of the issue of the bias due to model mismatches, the fact that the derivatives
of F and G need to be known analytically to construct the gradient precludes applications
where the inherent dynamical structure of the network F and the output filter G is not
known a priori to the user. One example already mentioned is the case of direct adaptive

control, for which the operator G can be considered to represent the dynamics of an un-

't is unlikely that further developments will bring about an on-line, full-gradient method with a simple,
scalable O(N?) storage architecture. This is because the calculation of the gradient needs to account for the

extended effect of the parameters over a long time range, involving in principle the complete history of the
error propagation dynamics.

24 CHAPTER 2. SUPERVISED LEARNING AND OPTIMIZATION

known plant driven by the state variables of the recurrent network. A more general case
concerns the optimization of unknown (though observable) dynamical systems whose
behavior is governed by a set of adjustable parameters, which need to be programmed
to appropriate constant levels to establish a given desired dynamic response. For these
important classes of generic optimization and control problems, gradient-descent meth-
ods are inadequate and an alternative, gradient-free technique is needed which minimizes
the error through direct evaluations of the error on the physical network. Gradient-free
methods also offer an attractive alternative for gradient-based methods in certain classes of
optimization problems, where the structure of the dynamical system under optimization
is well known and the derivatives can be derived to compute the gradient. The benefits of
a gradient-free, model-independent method when explicit model knowledge is available
include the robustness of learning performance in the presence of model mismatches in the
physical network [Jabri92], and the increased flexibility to rearrange the network structure,
e.g., when training modular systems of reconfigurable neural networks [Satyanarayana 92].
Obviously, the increased fault-tolerance and flexibility of a direct evaluation method nec-
essarily comes at the expense of a loss in learning efficiency, since several evaluations
on the network are required to extract the equivalent amount of information contained
in the error gradient, which otherwise is constructed from a single network observation
and prior knowledge on the network structure. Nevertheless, as will be demonstrated in
the section below, a high degree of efficiency can still be maintained with a gradient-free
method, when the samples of network performance evaluations are selected according to

a random distribution of parallel perturbations in the parameters.

2.2 Stochastic Error-Descent Optimization

The gradient-free method we investigate for supervised learning in dynamical systems
complies in format and in scope with stochastic approximation methods, for optimization
of a scalar performance index in an unknown process by means of noisy observations of

the performance in the parameter space [Robins 51], [Kushner 78]. The method applies to

2.2. STOCHASTIC ERROR-DESCENT OPTIMIZATION 25

a broad class of optimization problems, of which the origin and functional dependence
of the performance index in the context of the application need not to be specified. In
particular, the method applies to the performance index identified by the error functional
(1.6), of which the internal dynamics of the network producing the observed error value
is irrelevant to the optimization process itself [Cauwenberghs 93a]. Consequently, the
analysis of the stochastic method and its convergence and scaling properties in this section
can proceed mostly without further reference to the dynamics of the network and the form
of the error functional, which we specify conform to (1.6) with given values for t, t; and
fixed initial conditions xg. The restrictive batch-mode format that this error specification
implies on the timing of the network dynamics under learning, in accordance with the
discussion in Section 1.2, will be relaxed in Section 2.3 where we will present on-line

variants of the training method for real-time implementations.

2.2.1 Formulation

Let £(p) be a scalar error functional to be minimized, defined at any point p in the
parameter space as the result of direct observation of an error measure on the physical
system of interest, under application of the corresponding parameter values to that system.

The stochastic method specifies incremental updates in the parameter values according to
pktD) = pk)) £k) (k) (2.2)
with the constant p defining the learning rate, and with the scalar quantity

E®) = 5 (e(3*®) - £(p~®)) (2.3)

PO

obtained from two observations of the error measure £ under complementary two-sided

activation of a parallel perturbation 7(¥) onto the parameter vector p(*),

ptE) = plk) 4 (k) (2.4)

26 CHAPTER 2. SUPERVISED LEARNING AND OPTIMIZATION

5= = p®) _ 0

The perturbation values 7;¥) are selected at random from a given distribution, syn-
chronously for all components i in parallel, and once for every iteration k. For optimal
performance, we assume the components i of the perturbation vector, as well as different
instances k of any single component, are mutually uncorrelated. In terms of the expectation

value, this translates into the condition
E(r{? 7)) = 0 85 6 (2.5)

with é the Kronecker delta symbol (1 if both arguments are equal; 0 otherwise), and with

o representing the strength of the perturbation.

The observed differential error (2.3) yields an estimate for the derivative of the error
function with respect to the parameters in the neighborhood of p*), along a single direction
in parameter space given by the perturbation vector w(*). Accordingly, the incremental
update specified in (2.2) adjusts the parameter vector along that direction. In essence, the
method implements a random-direction extension to the finite difference Kiefer-Wolfowitz
algorithm for multivariate stochastic approximation [Kushner 78]. The key factor which
contributes the relative increase in speed of the method over finite difference stochastic
methods is the parallelism in the statistics (2.5) of the perturbations, which by uniformly
exciting the system in all dimensions simultaneously allow for an accurate and com-
plete estimate of gradient information through significantly less observations. Parallel
stochastic perturbation methods more or less conform with the functional form outlined in
Eqns. (2.2)-{(2.4), have been investigated in a variety of different contexts. A simultaneous
perturbation stochastic approximation (SPSA) method, for optimization in noisy settings
for the observations, was analyzed in [Spall 92a] and showed a significant improvement
in efficiency and quality of approximation over sequential perturbation finite difference
methods. Recently, much attention was devoted to development and application of related

model-independent algorithms for supervised learning in neural networks, under paral-

2.2. STOCHASTIC ERROR-DESCENT OPTIMIZATION 27

lel perturbation of the network parameters, mostly inspired by arguments of efficiency
and fault-tolerance in practical hardware-oriented learning systems [Cauwenberghs 93a],
[Alspector 93], [Flower 93]. Directly related to these methods are continuous-time learning
variants, which use injection of white noise signals onto the parameters and time-averaged
correlations between the performance index and the noise signals to continuously update
the parameters [Dembo 90]. The continuous-time version supports fairly elegant analog
VLSl architectures [Kirk 93], but is limited to steady-state optimization problems, since the
underlying assumption on the correlations for the construction of the updates necessitates
an instantaneous response of the network performance index to the time-varying pertur-
bation signals [Dembo 90]. For optimization of dynamical systems, as considered here, the
dynamics of the network response and the learning system assigning parameter values
need to be decoupled. The discrete-time formulation of the updates (2.2), independent of
the internal network dynamics giving rise to the observed values of the error under the
specified parameter settings, satisfies this requirement. Issues of continuity in the real-time
process of learning, in contrast with the discrete nature of the observations (1.6), will be

covered in Section 2.3.

The differences in functional form between the various parallel perturbation methods
for optimization and learning are quite subtle, mainly concerning the format in which
the perturbations contribute to the values of the parameter updates in (2.2), which in
turn varies the regularity conditions on the statistics of the stochastic perturbation vector.
Unlike the random-direction format with multiplicative contribution of the perturbation
components in (2.2) and in [Cauwenberghs 93al, most of the related methods [Spall 92a],
[Alspector 93], [Flower 93] specify a component-wise division by the respective perturba-
tions in the construction of the parameter updates instead, resembling a finite-difference
gradient approximation when considering the components individually. The divisive for-
mats places special requirements on the statistical distribution for the perturbations near
the origin, to avoid potential singularities arising from contributions dividing by small

values for the perturbation components. In particular, the distribution for the pertur-

28 CHAPTER 2. SUPERVISED LEARNING AND OPTIMIZATION

bation components used in SPSA and related algorithms needs to contain finite inverse
moments [Spall 92a]. In a comparative study of perturbative stochastic approximation
methods [Chin 93], the divisive version of SPSA is found to be more efficient than the
random-direction multiplicative version (2.2), but the difference in performance appears
to depend on the form specified for the statistical distribution of the perturbations. For
practical purposes, we specify a symmetric binary distribution 7;¥) = +o with equal
probability for both polarities, in which case the distinction between multiplicative and
divisive contributions of the perturbation in the updates disappears completely (except for
a trivial uniform scalar factor ¢2). The symmetric binary distribution is easy to implement,

and seems to offer optimal performance for either divisive and multiplicative variants of

(2.2).

The multiplicative version furthermore allows for a direct extension of the method
to global optimization tasks, using uniformly distributed random perturbations of larger
size to sample distant points in the parameter space. A random-direction method similar
to (2.2)-(2.5) was proposed in [Styblinski 90] for global non-convex function optimization,
with an annealing cooling scheme controlling the amplitude of the perturbations to obtain
a gradually decreasing convolutive smoothing effect on the error functional. This global
optimization scheme was found to be significantly more effective than simulated annealing
methods [Kirkpatrick 83], [Szu 87] in terms of speed of convergence as well as quality of the
asymptotic results, for a broad class of multi-extremal functions. Therefore, the method as
it is used here for optimization in dynamical systems holds a potential to deal with difficult
learning problems beyond what is achievable with gradient-descent methods, by manip-
ulating the amplitude of the perturbations applied to the parameters along the learning
process. Hard optimization error functionals, contaminated by spurious local minima or
abrupt discontinuities due to bifurcations, are common in learning tasks involving com-
plex oscillatory trajectories [Baldi 92). In such cases the effective smoothing of the error
functional through large-amplitude perturbations may serve to mask these irregularities

in the minimization process. Nevertheless, some of the convergence problems due to the

2.2. STOCHASTIC ERROR-DESCENT OPTIMIZATION 29

structure of the error surface can be avoided from the start, through proper choice of the

timing in the error specification as will be shown in Section 2.3.

2.2.2 Convergence Properties

We present some important convergence properties of the stochastic method (2.2)-(2.4)
below, with reference to gradient descent methods. For brevity, we adopt the formalism of
the analysis in [Cauwenberghs 93a], augmented to account for the symmetrical two-sided
activation by the perturbations in (2.3). A thorough mathematical analysis of related con-
vergence properties of parallel perturbation, random-direction, and component-wise finite
difference methods for stochastic approximation can be found in [Spall 92a] and [Chin 93].
The stochastic approximation methods considered therein specify a decaying sequence
for the gain y in the parameter updates, to gradually remove residual fluctuations in the
parameter values due to the observation noise near convergence. In contrast, we consider
a constant value for the learning rate y in (2.2), which is more appropriate for real-time
adaptive implementations continuously updating the parameters, where most recent in-
formation on the performance error £ is more relevant than distant information in the
past. Especially in non-stationary environments, fast adaptation to structural changes in
the dynamics of the system is often a requirement. In principle, the amplitude of the learn-
ing rate p can be set accordingly to that purpose, with a greater value of x corresponding
to a faster response to changing conditions. However, an increased level of the learning
rate p increases the amplitude of the parameter fluctuations due to the observation noise
in £ causing a residual error persisting at convergence, such that the chosen level for p
needs to compromise both considerations. In the convergence analysis below, we assume
a stationary process at sufficiently low levels of observation noise, such that the value for
¢ can be freely chosen over a wide range according to other considerations. An important
additional factor in the choice of p is the stability of the parameter update process with
regard to the structure of the error surface, defining a limit on the convergence speed as will

be shown below. Similar stability considerations apply to any other incremental update

30 CHAPTER 2. SUPERVISED LEARNING AND OPTIMIZATION

method as well, allowing a comparison of relative performance between the stochastic

method and other methods, including gradient descent.

Mean Path of Error Descent in Parameter Space

2 s

Under small uncorrelated perturbations with uniform variance ¢ in accordance with (2.5),

the stochastic method performs steepest descent of the error in the parameter space on
average. Formally, for small perturbations 7;(*) we expand the differential observed error

in a Taylor series around p(*):2
£) = Z 7 4 o(x @) 4+ n® (2.6)

with P the number of parameters, 9£(¥) /9p; the components of the error gradient evaluated
at p(*), and n{*) the observation noise corresponding to the error evaluations £(p**)) and
E(P~®)). Substituting (2.6) into (2.2), the incremental parameter updates can be expressed

as:
Apgk) _ (k+1) (k)

_ _ uZ (k> (k) (2.7)

—MO((""(k)l)t = pn®r®)

On average and under the orthogonality conditions of (2.5) for the perturbation statistics,

the increment in the parameter vector (2.7) reduces to

de
E(Ap®)) = —po? el o(c?) . (2.8)

*The 0(.) terms denote the nonlinear components of the Taylor expansion. In general, the definition of the
0(.) symbol in (2.6) and in subsequent formulas is as follows: for every x > 0 there exists a constant & > 0
such that |0(f(z))| < a|f(z)] for |z] < x.

2.2. STOCHASTIC ERROR-DESCENT OPTIMIZATION 31

The absence of noise-related terms in (2.8) follows from the statistics of the observation
noise n*) in (2.7) which is assumed uncorrelated with the applied perturbations 7;(¥),
that is E(n®)7;(¥)) = 0. The expression for the incremental update (2.8) asymptotically
approaches that for gradient descent as the perturbation strength o decreases, with an
effective gradient descent learning rate of ¢ = po? in accordance with (2.1). Hence, on
average the path of the parameter vector under iteration of the stochastic updates follows
the steepest path of error descent in parameter space, as with a strict gradient descent
method. The fluctuations of the parameter updates (2.7) with respect to their average
(2.8), due to the observation noise and the randomness of the perturbations, give rise to

diffusion in the error descent process around the mean path of steepest descent.

Figure 2.1 illustrates the similarity in error descent profile on a macroscopic scale
between the stochastic method and gradient descent, showing the simulated error profile
under training of the network with the stochastic method for different values of x and o, in
comparison to gradient descent under equivalent conditions (3 = puo?). The simulations
here and in the rest of the section use the network structure and the training signal from
the Lissajous dynamic trajectory example defined in Section 1.2, for an error functional
(1.6) with tg = 0, ¢ty = T =2, and fixed initial conditions xg; in the [-0.1, 0.1] interval. The
resemblance between the stochastic and the gradient descent error profiles in Figure 2.1 is
particularly clear at low values for o and 7e¢. The degradation of convergence at larger
values of 7 for the stochastic method relative to gradient descent is caused by diffusion

and local instabilities in the update process, as will be evident from the analysis below.

The above conditions imposed on the statistics and amplitude of the perturbations,
under which the stochastic method closely follows a gradient descent characteristic, are
not essential to warrant convergence. Relaxation of these conditions does not necessarily
cause a loss in performance. The stochastic method is still guaranteed to converge towards
local minima in the more general case of cross-coupled and non-uniform statistics in the
perturbations, violating condition (2.5). Strictly, for convergence it is only required that the

components of the perturbation vector be linearly independent. Stated otherwise, none of

32 CHAPTER 2. SUPERVISED LEARNING AND OPTIMIZATION

1 :l i i 1 i l_=

C:] e Gradient Descent 3

i —— Stochastic Method; o= 0.001 1

i - — Stochastic Method; o=0.01]

01 -

5 5

t‘(- n = O-Ol -

m B 4

0.01 i 3

E =

[)

0.001 | .

£l | 1 i | 13

0 5000 10000 15000 20000 25000

Number of Updates
(a)

1 é__I i 1 I i l__:

o e Gradient Descent 3

B —— Stochastic Method; o =0.001 1

3 - — Stochastic Method; 6=0.01 b

01k 3

C b

5 f]

= L n=005
=

S - 4

0.01 = -

F 3

0.001 -

E 1l | A I 1 13

0 1000 2000 3000 4000 5000

Number of Updates

(b)

Figure 2.1: Error descent profiles for trajectory learning sessions with gradient descent
and several runs of the stochastic method. (a) Effective learning rate = 0.01. (b) = 0.05.

2.2. STOCHASTIC ERROR-DESCENT OPTIMIZATION 33

the components are allowed to depend on other components in deterministic fashion. For-
mally, with the matrix ¢;; = E(m;*) ;")) representing the expected correlations between
simultaneous perturbation components, the expression for the mean incremental updates

(2.8) transforms into:

E(ApH*) = —pc g—‘;-:’- + po(c?) . (2.9)

If the perturbation components are linearly independent, the matrix c is non-singular and
consequently is also strictly positive-definite. Then iteration of (2.9) leads to a local mini-
mum of &, albeit not necessarily along the steepest path of descent. The pre-conditioning
of the gradient by the correlation matrix ¢ slows down convergence in general, though it
may actually prove beneficial in certain cases®.

The restrictive condition on the size of the perturbations can be relaxed as well. A
larger perturbation amplitude, as mentioned earlier, effects a virtual smoothing of the
error functional [Styblinski 90], offering a convenient means of escaping local minima,
discontinuities and other singularities in the error surface. An annealing scheme as in
[Styblinski 90], gradually decreasing the perturbation amplitude along the optimization

process, is then necessary to remove the residual bias near convergence.

Error Descent Fluctuations

The stochastic nature of the parameter updates under learning causes the parameter values
to fluctuate around the mean path of steepest error descent. Of the two main contributive
factors inducing these fluctuations, the randomness of the perturbations and the noise in
the network observations, only the latter really affects the learning accuracy, provided the
perturbation amplitude and learning rate are reasonably small. The random perturbations,
on the other hand, bias the statistics of the parameter updates strictly in favor of a decrease
in error. In particular, for small perturbations, for a small learning rate, and in absence of

observation noise, the error £) always decreases under an update (2.2) regardless of the

3For instance, in analogy with second-order Newton methods for gradient descent learning, a correlation
matrix € proportional to the inverse of the local Hessian 8¢ / dp:8p; would lead to a more uniform and
superior convergence behavior provided the optimization error functional is convex-shaped.

34 CHAPTER 2. SUPERVISED LEARNING AND OPTIMIZATION

particular instance of the perturbation vector used in the update. Formally, the incremental

error between consecutive parameter updates can be written as

AEK) = g(p(k+1))__g(p(k))

= Z) 1 o(jap® (2.10)

and, with the aid of (2.7), further expanded into

P P
O vy OE 2
880 = —p3 3 pem g + ol T)
1—1] 1 Pi
'/‘Z 5 “"(lﬂ(kl)-l—n(k)) : (2.11)

The nonlinear terms in (2.11) depend on the perturbation strength, the learning rate and the
structure of the error profile in the parameter space. In the limitof ¢ — 0 and p — 0 (hence
7%} — 0 and Ap®) — 0), and in absence of observation noise n¥) — 0, the expression for

the incremental error (2.11) reduces to a quadratic form

AE®) (Z oE SO S j‘; (k){ <0 (2.12)
yielding a decrease in error for every learning update*. Under finite non-zero values
for the perturbation strength ¢ and the learning rate u, the residual error terms in (2.11)
account for persistent fluctuations in the parameter updates. However, the amplitude of
the effective “perturbation noise" remaining at convergence depends strongly on the value
chosen for o, and can be significantly reduced by decreasing the value of o to the extent
allowed by the intensity level of the observation noise n{¥). In particular, from expression
(2.7) it can be observed that the portion of the parameter fluctuations at convergence due

to the finite perturbation amplitude o scales as o(c*).

*We note that the property of a decrease in error under individual updates does not hold in case a divisive
formula is specified for the updates (2.2) as discussed earlier, unless a binary symmetric distribution is used
for the perturbations (m;*) = %0).

2.2. STOCHASTIC ERROR-DESCENT OPTIMIZATION 35

The effective decrease of the value for the error functional under any single (sufficiently
small) instance of the perturbation vector comes at little surprise, since it is programmed
to that purpose in the formula for the updates (2.2). Indeed, the algorithm iteratively
updates the parameters in a single random direction of the parameter space, after probing
the dependence of the error on the parameters in that particular direction and adjusting
the size of the update vector accordingly. Consequently, the effective decrease in error
achieved by anupdate in a given direction depends on the degree of alignment between the
chosen direction and the local error gradient, as can be verified from (2.12). In particular,
the most efficient updates are obtained along the direction of steepest descent, parallel
to the gradient. In contrast, updates along directions orthogonal to the gradient fail to
contribute a decrease in error. Nevertheless, since an increase in error cannot occur and
not all instances of the perturbation vector can possibly be orthogonal to the gradient®, the
iteration of the learning updates gives rise to a strict decrease of the error on a global scale,
and hence the algorithm converges towards a local minimum of the error function just like
a gradient descent method.

Figure 2.2 illustrates the statistics of the error fluctuations, obtained from simulations
of training sessions on the network with the dynamic trajectory, using the same network
settings as before. The graph in Figure 2.2 shows the frequency distribution of the er-
ror decrements for different values of the perturbation strength ¢ and the learning rate
i, in absence of observation noise. The error decrements in the simulated distribution
are normalized relative to their corresponding expected values, which from (2.10) and
(2.8) are obtained as —po? |[d€/dp|? and therefore conform to the values of the equivalent
decrements under gradient descent®. As expected from the above arguments, the error

decreases in most of the instances. In addition, the shape of the distributions in Figure 2.2

*If statistically all instances of the perturbation vector are orthogonal to one or more directions in the vector
space, then the perturbation components are not linearly independent. Formally, the correlation matrix ¢
becomes singular, and (2.9) will not converge to a minimum of the error. The minimization of the error is then
effectively restricted to the subspace excluding the “dead" dimensions in parameter space.

The purpose of the normalization is to isolate the effect of the perturbation statistics in the distribution,
avoiding interference from the structure of the error surface. Under normalization, the profile of the frequency

distribution is to a large extent independent of the location in parameter space, as verified through simulations
and confirmed by theory.

36 CHAPTER 2. SUPERVISED LEARNING AND OPTIMIZATION

clearly shows a dominant concentration for particularly small values of the error decre-
ment, with a sharp edge at the origin where the distribution vanishes. The asymmetry of
the distribution around the expected value of error decrements is a direct consequence of
the geometrical distribution of random directions in the parameter space, with reference
to the gradient vector. Since most random directions are nearly orthogonal to the gradient,
the largest fraction of updates contribute rather little decrease in error. The specification
of random directions for the updates by the stochastic method may seem particularly in-
efficient. Nevertheless, as will be shown later below, the method achieves a fair degree
of efficiency through other factors relevant to optimization in dynamical systems, in par-
ticular the low computational complexity of constructing the updates without explicit use
of gradient information. In fact, the method can be augmented with features to boost the
update efficiency as well’, at the expense of an increase in implementation complexity.
At higher levels of the perturbation strength or the learning rate, the error undergoes
occasional upward transitions in the error, as testified in Figure 2.2 by the smearing of the
distribution around the origin under an increasing value of ;1. The upward transitions are
caused by strong nonlinearities in certain areas of the parameter space. Upward transitions
in the error, when induced by a large value of the learning rate, may trigger instabilities
in the error descent minimization process. The impact of the learning rate on the intensity
of the instabilities and the corresponding limits imposed on the learning speed form the

subject of the analysis below.

Relative Convergence Rate

A simple derivation of the optimal convergence rate by the stochastic learning method,
based on physical arguments, follows below. The derivation allows to formulate a fair
estimate of the maximum attainable speed of the stochastic method, relative to that of

gradient descent and other incremental update methods, at low levels of observation

"Possible extensions include the addition of a momentum term in (2.2) [Styblinsky 83], [Styblinski 90], or
an adaptive biasing of the statistics of the perturbation components towards the direction of the local gradient.

2.2. STOCHASTIC ERROR-DESCENT OPTIMIZATION 37

]
‘ —_ 5 =0.01
- ---0=002 T
H
10} i

Frequency (%)

1 I 1 | 1 |

0 1 2 3 4 5

Normalized Error Decrement

Figure 2.2: Frequency distribution of the error decrements under updates with the
stochastic method, relative to gradient descent.

38 CHAPTER 2. SUPERVISED LEARNING AND OPTIMIZATION

noise®.

The maximum attainable learning speed is achieved at the highest value for the learning
rate still supporting stable dynamics of the parameter increments. The error descent
process AE¥) becomes unstable, causing an increase in error and possibly a runaway
condition, when the amplitude of the parameter updates Ap®) in (2.10) exceeds a certain
value. The physical limit on | Ap{¥)| depends mainly on the nonlinearity of error functional
in the neighborhood of p(*), and not as much on the specifics of the algorithm used to
generate the increments. Since the increment amplitude can be controlled directly by the
value for the learning rate, which in turn determines the speed of convergence, the limit
on the increment amplitude lAp(’C)|max defines the maximum attainable learning speed
supported by the algorithm. The optimal value for the learning rate, through |AP™ | maxs
strongly depends on the nonlinear shape of the error functional £(p) and the location of the
parameter vector p(*) on the error surface®. Nevertheless, since the maximum value for the
increment amplitude | Ap¥)|max applies as well to other minimization methods specifying
incremental updates in the parameters, the performance of the stochastic method can be
compared, in relative terms, to that of other incremental methods applied to minimizing

the same error functional £(p).

For gradient descent (GD), the intensity of the incremental updates is obtained from

(2.1) as

2
e (2.13)

2
LpBep = 7P

The corresponding intensity for the stochastic error descent (SD) method is derived from
(2.2), yielding

2 —~
IAp(k)lSD = u? |ﬂ.(k)|2 (g(k))2 . (2.14)

Under mutually uncorrelated and uniform perturbation statistics (2.5), the intensity of the

8 An elaborate treatment of the performance of similar parallel methods for stochastic approximation under
noisy conditions can be found in [Chin 93].

9The variation of optimal learning rate across the parameter space suggests an adaptive setting of the learn-
ing rate u®) = pu(p*)), locally optimized for maximum efficiency along the learning process [Styblinsky 83},
[Yu 93].

2.2. STOCHASTIC ERROR-DESCENT OPTIMIZATION 39

perturbation vector |w(*)|2 in (2.14) reaches toward the central limit

|2 = f: ¥ po? (2.15)

i=1
as P — o000, The other term in (2.14), corresponding to the differential perturbed error
£ *) is specific to the instance of the perturbation. More relevant than the stochastic
fluctuations of (£())2 in (2.14) are its statistical properties. For a meaningful comparison
with gradient descent, we therefore consider the expected value of (2.14). Substituting the

expansion (2.6) and the limit (2.15) in (2.14), and using the expectation value for (2.5),

df,'
E([Ap(k)lsn) ~ P p?o

(2.16)

The similarity between (2.13) and (2.16) is not surprising, since on average the stochastic
method performs gradient descent with an effective learning rate 7,¢°° = po?. The optimal
values for the learning rates of both methods can be compared directly by combining (2.13)

and (2.16)!!, yielding to first order

Nmax & VP pmax0® = VP 13 Pngg max (2.17)

Hence the convergence speed of the parallel stochastic method, under optimal settings, is
about a factor v/P slower than that of optimally tuned gradient descent.

Judging merely by considerations of raw speed in the context of (2.17), in terms of
the number of updates needed to reach convergence, the stochastic method performs
rather poorly in comparison to rigorous gradient descent methods. There are however
other considerations which, depending on the application environment, may dominate
the comparison of performance in favor of the stochastic method. An important factor

therein, as mentioned before, is the complexity of the computations involved in obtaining

"The approximate hrrut (2.15) becomes exact, regardless of the size of P, for a symmetric binary distribution
of the perturbations 7;¥) = +o.

"For simplicity, the spread of the distribution of |Ap*)|%, around its mean is not considered in the
derivation of the optimal learning rates.

40 CHAPTER 2. SUPERVISED LEARNING AND OPTIMIZATION

values for the incremental parameter updates, affecting the learning speed as well. In
particular, for applications in real-time environments with recurrent dynamics as in (1.1),
the stochastic method offers a net computational speed comparable to that of gradient
descent?, in addition to the advantages specific to the model-free nature of the method
outlined in Section 2.1. The reason behind the favorable net efficiency of the stochastic
method, despite the reduction factor in (2.17), follows from the simple requirements on the
amount of information needed from the network to generate the updates (2.2). According
to (2.3) and (2.4), the algorithm only needs two evaluations of the scalar error index £(p)
on the network per update. On the contrary, complete information about the local gradient
of the error d£/dp(*) needs to be supplied for every update with gradient descent. In this
context, the scaling factor v/P in relative speed can be interpreted as follows: the stochastic
method only requires 2+/P scalar observations (two error evaluations per update) to obtain
the necessary information to construct a parameter update of equivalent quality as that
of an update constructed using full gradient information with gradient descent. Since
direct observation of the full gradient on the network would require at least P + 1 scalar
observations of the error’?, the stochastic method is fairly efficient in that respect. In fact,
finite difference (FD) methods [Kushner 78], [Jabri 92] effectively perform gradient descent
in a cyclic sequence comprising P steps, in each step perturbing a single parameter which
is then updated according to the probed gradient component. Formally, finite difference
methods comply to expressions (2.2)-(2.4) for the stochastic method, but instead of 2.5
specify perturbations m;(¥) = o 6;;) with j*¥) = k modulo P. Since a full effective gradient

cycle using finite differences spans P iterations, the finite difference method is in principle

2The scaling mechanism causing a comparable net efficiency for both methods will be demonstrated in
detail further below.

BClearly, gradient descent methods derive the value of the gradient assuming a given network model using
vectorial information gathered from a single network evaluation, rather than probing the gradient components
directly on the network. See the discussion regarding model dependence in Section 2.1.

2.2. STOCHASTIC ERROR-DESCENT OPTIMIZATION 41

a factor P slower than gradient descent under optimal tuning of the learning rates'?,
Tmax & P 158 . - (2.18)

Therefore, the parallel stochastic method gains in speed over finite difference methods (in
principle by a factor v/P) by specifying uniform, mutually uncorrelated random compo-
nents (2.5) for the perturbations rather than a sequential activation of individual perturba-
tion components.

A few simplifying assumptions were made in the above analysis, ignoring second-order
effects specific to the shape of the error functional. In practice, to some extent the relative
learning performance of the different incremental methods is expected to vary with the
particular application, beyond the simple dependence on the dimensionality P. To validate
the analysis in the context of learning in dynamical recurrent systems, we verified the
relationship between optimal learning rates, on the same trajectory learning example used
before, for simulation runs on the network with gradient descent, the parallel stochastic
error-descent method, and the sequential finite-difference method. The values used for
the learning rates with the stochastic and finite-difference methods are given in terms of
the corresponding effective rates 7.4 in the mean-path gradient descent approximation
(2.8), therefore encoding a measure for the learning speed consistent for all three methods.
To provide a quantitative measure for the degree of instability in the updates at a given
learning speed, the update efficiency is recorded as a function of the effective learning
rate, shown in Figure 2.3 for the three incremental methods. The update efficiency at
a given point p is defined as the ratio of the effective decrease in error AE®) over its
anticipated value AE(*)_, obtained by ignoring the nonlinearities in the error surface.
The approximate linear projection AE®),_, is derived from (2.10) in conjunction with (2.1)

and (2.2), by ignoring the nonlinear terms in £(p) corresponding to the nested Taylor

“Unlike GD, the FD method produces an individual update for every component of Ap‘*) in sequence.
Therefore, the optimal learning rate for the FD method may be effectively higher than that for GD, and
consequently the speed reduction factor may be less than P. The factor P remains in effect if one may assume
that the stability limit on the increment amplitude in (2.10) applies to the components of the update vector
individually, that is |Ap;®)| < |Api™®) |max, Vi to ensure stability.

42 CHAPTER 2. SUPERVISED LEARNING AND OPTIMIZATION

expansions with respect to the perturbations ;%) and the parameter updates Ap;*).
For consistency in the results, the update efficiency for the stochastic method and the
sequential method is averaged over several incremental updates with different instances
of the perturbation vector. Figure 2.3 (a) contains a recording of the global update efficiency,
obtained by averaging contributions from random samples of p across the parameter space
(-1 < p; £ 1). Likewise, a local recording of the update efficiency, obtained using the
parameter values at convergence which correspond to a minimum of the error, is given
in Figure 2.3 (b). As expected, the efficiency degrades for all methods under an increase
in the learning rate, with the highest effective rate achievable by the gradient descent
method, and the lowest rate by the finite-difference method. Since at the location of a
minimum the linear terms (i.e., the first-order derivatives) in the error vanish and the
nonlinear terms are relatively more significant, the degradation of the update efficiency
at convergence in Figure 2.3 (b) is more severe than the global average in Figure 2.3 (a).
While the region near the convergence values for the parameters is obviously important for
practical purposes, there are in general other regions in the parameter space with relatively
strong nonlinearities as well, with a stronger than average effect of the learning rate on the
frequency and intensity of the update instabilities. Despite the local variations in instability
levels, the relative scaling of the critical learning rates between different methods at equal
levels of the update efficiency seems to be rather constant. From the uniform displacement
(on a logarithmic scale) of the curves in Figure 2.3 (b), an estimate of the relative factors
for critical learning rate with gradient descent, the parallel stochastic method, and the
sequential finite-difference method, 7™® : 70 : 7°P, yields 0.08 : 0.4 : 1. The obtained
numbers do not quite match the theoretical predictions in (2.17) and (2.18) which for
P = 42 yield 0.024 : 0.15 : 1. The discrepancy reflects the simplifying assumptions in the
above analysis regarding the statistics and directionality of the incremental updates by the

different methods, and suggests that in practice the relative performance of the stochastic

15An additional effect of the dominating nonlinearities in the error at the location of a minimum is the further
degradation of the update efficiency at higher values of the perturbation amplitude o for the stochastic and
sequential methods, as demonstrated in Figure 2.3 (b).

2.2. STOCHASTIC ERROR-DESCENT OPTIMIZATION 43

and finite-difference methods is actually better than that predicted by the initial estimate
using simple scaling arguments in (2.17) and (2.18)'°.

2.2.3 Complexity and Scaling Issues

The above analysis of the convergence properties of the stochastic algorithm, in relation
with other incremental methods, is general in scope and does notaccount for factors specific
to the system under optimization. In the following, we investigate the net computational
complexity of the stochastic method, specifically for optimization in dynamical recurrent
systems. By comparing the complexity of the stochastic method with that for the most
efficient on-line gradient descent implementation under equivalent conditions, it will be
shown that computationally the stochastic method, while functionally quite simpler, scales
with the network size P equally well and possibly better than on-line gradient descent.
The computational complexity of an algorithm can be generally defined as the number
of elementary operations required to complete the computational task. In the context
of the stochastic algorithm and other incremental optimization methods, the number of
operations is ill-defined since the iterative process towards convergence takes in principle
an infinite number of steps to achieve the result at unlimited precision. Therefore, the
complexity of the stochastic method cannot be defined without specifying a level of ac-
curacy, unless relative to another method under identical conditions. The analysis of the
convergence properties above provides a relationship between the stochastic algorithm
and other incremental optimization methods!”. In particular, expressions (2.17) and (2.18)
formulate the convergence speed of the parallel stochastic method and the finite-difference
method relative to gradient descent. The relative measure of speed as used in (2.17) and
(2.18) refers to the number of updates required for a given decrease in error, and does

not account for the amount of computation needed to obtain the values of the update

1$Since the empirical observation of the relative performance for the different methods in Figure 2.3 is
conducted on a particular network with fixed size P, technically no conclusion can be drawn with regard to
the scaling with P.

In comparing different incremental methods for optimization in dynamical systems, we so far assumed

a batch format for the error functional (1.6), identical for all methods. The natural extension to real-time
implementations follows in the next section.

44 CHAPTER 2. SUPERVISED LEARNING AND OPTIMIZATION

T 1 4

-
=}

e
n

Update Efficiency A€/A4€,,

0.0 S
~o- Gradient Descent
05}~ |—=— Stochastic Method; o= 0.001 -
-a~ Stochastic Method; 6 =0.01
— Finite Differences; o =0.001
-4 - Finite Differences; ¢=0.01
10 b= -
SN S . 1 g 1 L 1 i | 20 O |] i 1 i 4
T 6 7 89 p) 34 5 6789 R S
0.01 0.1
Learning Rate 7
(a)
1 LI B I T k] L L T f 1 1 I L) L) L) T
1 40 SanCet - TYREP, SUN, Osmere e
< 0o, At Convergence
%ﬂ!
~ 05 %" -
W U N
<
,
@ "__h
g 0.0 -
2
bre N
= %
L 05} SO
[t 5
£
5
-1.0 -
L L K S . | l L L 1 L1 IAL M —r i L L
LI A] r R S AN 3 T4
0.01 0.1

Learning Rate 1
(b)

Figure 2.3: Update efficiency as a function of effective learning rate, for three incremental
optimization methods. (a) Global averaged recording. (b) Local recording at convergence.

2.2. STOCHASTIC ERROR-DESCENT OPTIMIZATION 45

increments. A complete evaluation of the computational complexity for the three methods
therefore needs to include the number of operations per update for each method, as well

as the relative convergence factors in (2.17) and (2.18).

For gradient descent, the computational complexity per update depends on the model
of the network. For dynamical recurrent systems, the complexity becomes obviously more
elaborate than that for model-free methods. This is because for dynamical recurrent sys-
tems extensive operations are required to calculate the gradient vector from the network
outputs and the given model information, whereas for model-free methods the update -
vector can be constructed from a few direct observations of the error on the network, by
means a formula independent of the internal model specifics. Different approaches to cal-
culate the gradient of the error (1.6), each with a different computational complexity, were
discussed in Section 2.1 and summarized in table 2.1. As stated before, off-line variational
methods to construct the gradient offer the lowest complexity, but are not practical for
real-time implementation. Among several versions of on-line gradient methods, the best
complexity achieved so far scales as O(N?®) for a fully connected recurrent network with
N neurons. The corresponding implementation requires at least O(N?) storage as well,

and the instructions are functionally fairly complex, involving inverse matrix operations.

The computational complexity per update for the parallel stochastic method and the
sequential finite-difference method can be derived without reference to the model of the
network and embedded system, since both methods are model-free. For a system contain-
ing P parameters being adjusted by either of the two model-free methods, the operations
required for every update basically consist of two global error evaluations (2.3) on the
system, and P scalar updates according to (2.2). Additionally, the stochastic method
requires the generation of P random perturbation components, while the sequential finite-
difference method activates a single perturbation component at a time in deterministic
fashion. Each observation of the error (2.3) on the system, which implicitly depends on

the P parameters through the network outputs, usually involves a computational effort of

46 CHAPTER 2. SUPERVISED LEARNING AND OPTIMIZATION

order O(P) in P8, Likewise, the remaining operations for constructing the updates and
generating the perturbation scale linearly with the parameter count P as well. The total
computational complexity per update for both stochastic and finite-difference methods
therefore scales as O(P), linear in the number of parameters.

In a dynamical, fully interconnected recurrent network with N neurons as defined in
(1.2), the dominant fraction of parameters consist of the N2 connection strengths between
neurons. The remaining parameters consist of the thresholds and time constants in the
network, and account for a fraction linear in the number of neurons N. Hence, the number
of parameters P for recurrent dynamical networks scales predominantly as O(N?). With
reference to the formalismused for the gradient descent methods in the context of table 2.1,
the computational complexity per update for the stochastic and finite-difference methods
then transforms into O(N?), in contrast with the O(N3) scaling for the most efficient on-line
gradient calculation.

The net computational complexity of either method is obtained in relative terms by
multiplying the complexity per update by the relative convergence factor of the method,
which defines a measure for the minimum number of updates required to achieve a given
decrease in error. By normalizing this convergence factor to unity for gradient descent,
the corresponding values of this factor for the stochastic and finite-difference methods are
obtained directly from (2.17) and (2.18) as approximately /P and P respectively’. With
inclusion of the relative convergence factors (1, N and N?), the net computational complex-
ities of the three methods comparatively scale as O(N®), O(N®) and O(N*), for gradient
descent, the parallel stochastic method, and the sequential finite-difference method, re-
spectively. Therefore, the stochastic method applied to dynamical recurrent networks
scales equally well or even slightly better than gradient descent in terms of computational
efficiency, in spite of the model-free algorithmic form of the stochastic method with the

associated benefits in accordance with the discussion in Section 2.1. The simple model-

"8This is certainly true for conventional neural networks, and includes dynamical recurrent networks of the
generalized functional form (1.1), provided every parameter p; enters only once in the equations of motion
(1.1) unless the parameter count P is incremented once for every extra occurrence.

PThese relative factors are actually quite smaller in practice, as suggested by the empirical study in Figure 2.3.

2.3. ON-LINE SCHEMES FOR REAL-TIME LEARNING 47

free format of the stochastic algorithm also provides for a fairly modular, scalable and
general-purpose architecture for hardware implementation, as will be demonstrated in
Section 3.1.

The favorable efficiency of the stochastic method relative to gradient descent owes
to the relative inefficiency of gradient descent methods specifically for dynamical recur-
rent systems. In contrast, for network structures with a simple model specification, the
complexity of calculating the gradient usually becomes relatively smaller, while the corre-
sponding complexity of the stochastic method is mostly invariant to the network model.
In particular, the back-propagation algorithm [Rumelhart 86b], which directly implements
gradient descent in feedforward networks, is computationally more efficient than the
stochastic method applied to the same network structure. In fact, the relative popular-
ity of feedforward networks, void of recurrent connections supplying continuous-time
dynamical features, may partly be attributed to the computational efficiency of the back-
propagation algorithm, which only requires one additional computational evaluation on
the network (propagating through the network structure in the reverse direction) to con-
struct the gradient. Recurrent networks, on the other hand, are quite broader in scope
and more generally applicable than feedforward multi-layered structures, by virtue of the
arbitrary connectivity and the potential to generate complex dynamics. With the stochastic
method, the advantages of using a recurrent dynamical network instead of a feedforward
structure come at basically no extra computational cost. The only complication with apply-
ing the stochastic method to learning in dynamical systems concerns the timing constraints

with an on-line implementation in real-time settings, which constitute the subject of the

section below.

2.3 On-Line Schemes for Real-Time Learning

In the analysis of the stochastic method and its comparative performance in the previous
section, aspects related to the timing of the learning process with regard to the dynamics

of the system were not considered. Implicitly, a batch format was assumed for the error

48 CHAPTER 2. SUPERVISED LEARNING AND OPTIMIZATION

functional as in (1.6), with given integration boundaries [ty,] and initial conditions xg
implying an effective reset of the system time at every “epoch” when evaluating the error
(1.6). Below we investigate on-line variants of the stochastic method, which adjust the
parameters while the system runs continuously, from observations of the error on the
system without interrupting the continuous flow of time or forcing values for the state
variables. To relax the batch format of the error functional, an attempt is initially made to
approximate the theoretical error measure (1.4) by partitioning the infinite time horizon into
finite time observation intervals, each of a form similar to (1.6). Conceptually, expression
(1.4) can be expanded into an infinite sum of contributions from adjacent integration

intervals (1.6) as

+00
EP)= D E(piXpith,ths1) (2.19)

k=—00
with a monotonically increasing sequence of time instances {i;} at the boundaries between
consecutive integration intervals, and with corresponding boundary values for the state
variables x; = x(#;). An on-line version of the stochastic method is obtained, in principle,
by iteratively decreasing the error in individual intervals, one at a time in the natural
consecutive sequence increasing with time and synchronous with the network dynamics,
rather than including the complete ensemble (2.19) at every update. Such iterative on-line
process is therefore similar to stochastic gradient techniques?®, which continuously update
the parameters with partial knowledge of the error gradient obtained from instantaneous
data samples on the network, rather than using the accumulated gradient over the complete
data set. The analogy with stochastic gradient descent is limited, since the effect of the
partitioning of the integration interval reaches further than merely inflicting stochastic
fluctuations in the direction of the updates. The motivation for the partitioning and the

validity of the suggested on-line variant of the stochastic method is elaborated next.

PThe term “stochastic” here refers to the construction of the error functional with regard to the training
data, and should not be confused with the context of the stochastic method in the remainder of the text, which
relates to the functional form of the algorithm itself.

2.3. ON-LINE SCHEMES FOR REAL-TIME LEARNING 49

2.3.1 Optimal Partitioning of the Error Functional

The effect of the partitioning of the error functional on the error descent process, with
regard to the incremental updates under gradient descent or any related optimization
method, can be best described by analyzing the gradient of the partitioned error. Since
the incremental decrease of the error under the parameter updates, for any of the three
incremental methods considered here, is directly related to the local gradient of the error,
either explicitly through expression (2.1) or implicitly through direct observation on the
network as approximated by (2.12), the error gradient is indeed a representative indicator
applicable to all three methods. From (2.19), the gradient of the partitioned error is then
obtained as

d =™ d
ES(P) = k___z_:oo@g(f),xk/tk,tk+l)
“+00
= Z (_8_‘51c_+§¢9_kc2c_£) (2.20)
i \Op Ox; dp

where &, denotes £(p; xi; tx,tkr1).- Evidently, for every partition k of the error in the
sum (2.19), the corresponding contribution to the error gradient in (2.20) consists of two
distinct parts, each with a different origin. The first term O£, /0p represents the gradient
of the error partition £ with respect to the parameters explicitly, and therefore encodes
the isolated contribution directly from the partition interval [tx, tx41] discarding external
factors which implicitly depend on the parameters. The second part accounts for the
indirect contribution by a change in the parameter values to the error £ through a change
in the initial state x4, due to the propagation of the network dynamics prior to #;. In
other words, the first part corresponds to the direct contribution to £ by a change in the
parameters, originating exclusively from within the time interval of the partition, while
the second part accounts for the remaining indirect contributions to the present interval
&y, originating from previous time intervals. The indirect contributions from the past to
the present error interval are due to the long-ranging effect of the network dynamics, and

reflect the conceptual result of a change in parameters applied on the network well in

50 CHAPTER 2. SUPERVISED LEARNING AND OPTIMIZATION

advance of the present time interval, in principle reaching infinitely far back in the past.

From a practical perspective, the long-ranging indirect terms in (2.20), while certainly
significant for a correct representation of the complete error gradient in correspondence
with (2.19), are not guaranteed to converge properly under general conditions for the
network and target signals, leading to singularities in the gradient and corresponding
discontinuities in the error. In particular, singularities are caused by the factors dx; /dp
in (2.20), which denote the dependence of the state variables at certain instances in time
on a change in parameters in the past. In network configurations which display persistent
transients or instabilities in the dynamics of the state variables, as is not uncommonly the
case due to the recurrence of the network connections, the sensitivity of the network state
with respect to the parameters dx(t)/dp grows steadily in amplitude as time increases due
to the cumulative effect of the network dynamics?!.

The discontinuities on the error surface in parameter space can be understood as well
from simple intuitive considerations of the network dynamics. A relatively small change
in the parameters can cause a drastic change in the long-term asymptotics of the network
dynamics, beyond the short-term transients. Abrupt changes in the long-term dynam-
ics under small changes in the parameters result from the transition between slightly
damped and amplified small-signal dynamics of the state variables around stationary
points, defining sharp boundaries separating stable from unstable regions in the param-
eter space. In contrast, the short-term transient behavior from given initial conditions
for the state variables does not depend quite as strongly on the parameters, even at the
instability boundaries of the long-term asymptotics. By specifying an infinite time win-
dow for the observation of the error, the transients are effectively eliminated and the error
undergoes the same discontinuities in parameter space as the asymptotic long-term dy-
namics. Discontinuities in the error surface due to the sensitivity to the parameters and its
implication on gradient descent learning were suggested in [Baldi 92]. Similarly, the dete-

riorating effect of a long time window for the error gradient on the quality of the learning

ZThe term “sensitivity" here refers to the same context as that in which the original on-line gradient descent
algorithm for recurrent dynamical neural networks {Williams 89] was introduced.

2.3. ON-LINE SCHEMES FOR REAL-TIME LEARNING 51

process with gradient descent was noted in [Williams 90]. Beside the discontinuities in
the error surface, additional factors that lead to a degraded learning performance, due to
the increased parameter sensitivity under large time windows for the error, include the
presence of local minima in the error and a strong disparity in the size of the gradient

across different regions in parameter space.

The partitioning of the integrated error over finite time intervals offers an attractive
alternative for on-line incremental learning, which both avoids the ill-conditioning of the
error descent process due to large integration times and in addition provides for a simple
implementation compatible with the stochastic method. The conventional methodology
for on-line learning with gradient descent, on the contrary, aims at establishing the infinite
horizon of the error measure in (1.4), by accumulating instantaneous contributions to the
error gradient obtained from the network outputs and training signals. In effect, such on-
line methods define the error gradient over a gradually expanding time window [tp, t¢],
whereby the upper time limit ¢; of the integrated gradient expands synchronously with
the network dynamics. Since the growing integration interval includes all history of the
network dynamics, the recursive scheme to obtain the gradient needs to account for the
long-term contributions to the gradient, corresponding to the equivalent of the indirect part
in (2.20). In fact, most of the computational burden with on-line algorithms for gradient
descent learning in recurrent dynamical systems arises exactly because of these indirect
long-term contributions, which are relatively difficult to obtain through on-line operations

with no direct access to prior history of the state variables.

A tempting solution to the problems associated with the long-term indirect contribu-
tions is to do away with them completely, and construct simple on-line methods which
only employ instantaneous information on the error while discarding any long-term ef-
fects. Such short-cut solution may work satisfactorily in some situations, but will as well
fail miserably in other cases. The reason of failure is quite obvious, since the complete
spectrum of the internal dynamics within the network cannot be fully addressed when

only the instantaneous response of the network outputs is evaluated. Such causes a bias

52 CHAPTER 2. SUPERVISED LEARNING AND OPTIMIZATION

in the learning process favoring solutions which map the dynamics exclusively onto state
variables directly feeding into the output units, ignoring the potential of internal dynamics
involving internally coupled state variables whose response to external stimuli requires
a longer time to reach the network outputs. A viable compromise, therefore, consists of
schemes which allow for a certain finite time window in the evaluation of the network
output response to a change in parameters, including only the most recent history of the

network dynamics.

On-line schemes which sequentially observe the parameter dependence of the error
over successive time windows, and which construct incremental updates in the parameter
values correspondingly, can be derived directly in relation to the partitioning of the error
over adjacent intervals in (2.19), and the corresponding partitioned representation of the
error gradient in (2.20). From the arguments stated above, it is clear that the indirect
terms in (2.20), corresponding to the long-term dependence on prior history through
the dynamics of the network sensitivity dx,/dp, are undesirable regarding both the ill-
conditioning of the error descent process and the increased computational burden caused
by these terms. For practical purposes, therefore, the indirect terms can as well be discarded
from the error gradient in (2.20). The remaining terms in (2.20), retained in the conceptual
representation of the “desirable” gradient of the error, encode the partial gradients of the
individual errors £ with respect to the parameters directly. Formally, the term 9&;/8p
is equivalent to the parameter dependence of the error measure (1.6), defined over the
interval [y, tx+1] with initial conditions determined by the history of the network dynamics,
xo = x(tx)2. Therefore, on-line versions of the incremental methods outlined in the
previous section can be obtained directly, by reformulating the error measure used in the
incremental updates. In particular, the rigid batch-mode formulation of the error measure

in (1.6), with given time boundaries ¢ and ¢ and initial conditions xg fixed for all updates

Zstrictly speaking, the initial values x(tx) are obtained from the evolution of the network state variables
generated under constant parameter values p;. In a practical on-line implementation, the parameter values
change incrementally under activation of the updates at the end of every interval, affecting all subsequent

initial states x(¢x). The impact of the changing parameters on the learning process is a minor issue, typical for
other on-line situations as well.

2.3. ON-LINE SCHEMES FOR REAL-TIME LEARNING 53

alike, can be freely extended into on-line format by continuously adapting the time window
and initial conditions at every new update, to reflect the time lapse which occurred in the
last step and the corresponding evolution of the network dynamics. By specifying ¢y = #,
ty = tgy1, and Xp = x(t) for the construction of the update AptF), continuity in time is
enforced for the values of the network state variables in between consecutive updates of
the parameters. Consequently, it is no longer necessary to reset the time and state variables
on the network to obtain a new update, and the learning can proceed truly on-line, without

interruption of the network dynamics.

On-line methods obtained in this way effectively perform error descent optimization
directly on the individual error intervals in sequence, rather than over the complete time
horizon at once for every update, as with off-line implementations. In the formalism of
the error partitioning in (2.19) and (2.20), each of the individual parameter updates with
the above on-line variant accounts only for the parameter dependence of the error over
the corresponding interval [t,t;+1], excluding all contributions from the history of the
network dynamics but those originating from within the particular interval itself. With
reference to the above discussions, the finite time window used in the simple on-line
formulation based on the error partitioning therefore avoids the problems associated with
both the infinite window for the corresponding on-line formulation with accumulated
dynamics, and the instantaneous (empty window) format for the error functional which

was suggested earlier as a preliminary alternative.

The finite time window format, on the other hand, introduces some degrees of free-
dom in the error formulation which need to be tuned for optimal learning performance.
Obviously, the values obtained for the updates depend on the positioning and size of
the partition intervals in time with respect to the evolution of the network error. For a
better understanding of the effect of the interval geometry on the error descent process
under learning, it proves instructive, as before, to evaluate the gradient of the partitioned

error measure specified by the on-line format. The direct gradient of the error within each

54 CHAPTER 2. SUPERVISED LEARNING AND OPTIMIZATION

interval [¢k, tx41] can be further expanded to read

ng 8 tk‘H T
= = = t
Sy = 5. D)4
be+1 Je Ox
= == 2.21
/tk 5% 9o de , (2.21)

where the term 9e/9x encodes the instantaneous contribution from the state of the net-
work variables to the output error, and 9x/9p denotes the partial parameter sensitivity of
the network variables, under the restriction imposed by the initial condition x(t;) = xx=.
Unlike the complete derivative format used for the parameter sensitivity in expression
(2.20), which includes the entire history of the network dynamics in the account of the pa-
rameter dependence, the partial format expressed in (2.21) only accounts for contributions
from the network dynamics originating after the initial time ¢; of the interval. Specifically,
the value of the sensitivity term 0x/0p at time ¢ in (2.21) corresponds to the change in
the network state z(t) at time ¢ caused by a unit step change on the parameter vector
p introduced at time ¢;. Obviously, the sensitivity vanishes at the origin of the interval
t = tx, where no time is available to propagate the parameter change through the network
towards the outputs. On the other hand, the sensitivity at the end of the interval ¢t = ¢
is significant, containing the cumulative contributions from the parameter change as those
propagate through the network over the complete interval [ty ¢x+1]. Consequently, contri-
butions from the instantaneous network error e(z(t), z” (t)) to the error gradient (2.21) are

weighted unequally, with a strong bias obstructing earlier error contributions and inflating

later ones.

The asymmetry in the weighting of the error contributions to the gradient is intrinsic
to the causality of the dynamical system, and of course reaches back to the same origins
as those causing the indirect terms from the network history in expression (2.20) for the

gradient of the partitioned error. Rather than trying to avoid this asymmetry through dif-

BA direct implementation of (2.21), employing coupled differential equations to derive the time evolution
of the sensitivities Ox/0p, leads to one of the on-line algorithms for gradient descent learning in recurrent
dynamical networks, as presented in [Williams 89}.

2.3. ON-LINE SCHEMES FOR REAL-TIME LEARNING 55

ferent schemes, we retain the simple on-line format of the error measure, compatible with
the stochastic method, but seek to optimize the error formulation by applying simple prin-
ciples regarding the structure of (2.21). Little can be said in general about the long-range
time dependence of the parameter sensitivity dx/dp over the partition interval, beyond
its vanishing initial state at time ¢;. Nevertheless, the time dependence of the sensitivity
contains dynamical characteristics similar to those for the network state variables them-
selves, as can be verified by straight differentiation of the evolution equations governing
the network dynamics [Williams 89]. Therefore, the effective time range, over which the
effect of the sensitivity is expected to prevail within the partition interval, can be directly
related to the characteristic time of the network dynamics. Correspondingly, a choice of

the length of the interval At = tx41 — ¢ can be made to accommodate timing constraints

expressed earlier above.

One such constraint follows directly from the earlier requirement of a finite time win-
dow for the error observations, to avoid the disadvantages associated with the sharp
parameter dependence of the error measure due to long-range effects in the dynamics.
The extent of this effect is represented explicitly by the sensitivity term in (2.21), since it
exactly accounts for the cumulative effect of a prolonged initial change in the parameters
on the state of the network at later times. The long-range contributions can therefore be
avoided by limiting the length of the partition intervals At below a certain critical level,
as determined by the characteristic time for the evolution of the parameter sensitivity,
which in turn is given by the typical time range of the network dynamics itself. The other
timing constraint complements the other, expressing a lower limit on the length of the
partition intervals. As stated before, an instantaneous format used for the error measure
to generate the parameter updates generally does not yield satisfactory results, due to
the bias introduced in the learning by neglecting the internal dynamics of the network.
Again, the cause for this bias can be attributed to the structure of (2.21), as affected by
the properties of the sensitivity term. In particular, for times close to the origin t;, of the

interval, the sensitivity remains near zero while growing slowly. The initial phase of the

56 CHAPTER 2. SUPERVISED LEARNING AND OPTIMIZATION

growth proceeds approximately with a linear time dependence, whereby the individual
parameters contribute almost exclusively to those network state variables to which they
are directly connected [Williams 89]. Since the instantaneous error e(z(t),z” (t)) is con-
structed explicitly on the states of the observable output units, parameters interconnecting
internal nodes within the network are not represented in the initial contributions to the
integral (2.21). Hence an instantaneous format of the error measure, with a short length
At for the partition intervals, would exclude all internal network parameters from the
learning process. This forces learning solutions where only the state variables directly
connected to the outside actively participate in the network dynamics, as obtained by
straight mapping of the time derivatives of the external units onto their instantaneous
states. Obviously, such phase diagram representation of the dynamics, directly onto the
observable state variables, has generally much poorer approximation capability than a
representation of higher dimensionality, including the additional internal state variables
to enrich the potential complexity of the dynamics. To fully exploit the internal dynamics
of the network, including active participation of the hidden network variables, the inter-
val length At must exceed the time necessary for the parameter sensitivity to develop all
components equally, including those referring to interaction between internal nodes. The
amount of time needed again depends on the dynamical characteristics of the network,
and a lower bound on the interval length At can be formulated with regard to the typical

time range of the network dynamics as well.

As a practical guideline, the two above timing constraints can be reasonably satisfied
by specifying an interval length At somewhat larger than the dominant characteristic time
Tmax i the dynamical system, say larger by a factor of three. Such provides ample time for
the internal state variables to produce an observable response to a change in parameters,
therefore actively contributing in the observations of the network error used to construct
the parameter updates. On the other hand, since the integration time At for the network
dynamics in the error measure spans a few multiples of the largest time constant 7yax in

the system, the integrated error still contains a significant fraction of transients which are

2.3. ON-LINE SCHEMES FOR REAL-TIME LEARNING 57

needed to assist in damping the sharp features of the error functional in parameter space.
The particular choice of the interval length, in relation to the network dynamics, may
prove difficult in practice, especially since the characteristic time scale of the dynamics
changes constantly as the network adapts to the training sequence. Fortunately, the choice
of the interval length is not quite as critical to the learning performance, provided the
length At is larger but not too much larger than the typical time scale 7iax of the network
dynamics. If no information about the timing of the dynamics can be obtained from the
network or projected from the training signals, the best way to circumvent the choice
of the interval length would be to start with initially short intervals, and to gradually
increase the length along the learning until the rough dynamical features of the network
outputs fairly resemble that of the training signals. Doing so, the learning process initially
explores solutions making exclusive use of the external units, thereafter slowly involving
the internal nodes into the network dynamics until the interval is long enough to include
all of those equally. Such approach may as well prove useful in avoiding potential over-
fitting of the noise in the training data, by only incorporating as many internal parameters
into the dynamics of the network as needed to smoothly approximate the dynamics of the

training signal.

The particular choice for the length of the time intervals aside, there is one further
geometrical consideration in the error partitioning of some importance to on-line learn-
ing. Specifying a fixed length At may cause interference of the error observations with
the spectral content of the training signals, due to the regular periodical spacing of the
intervals. This particularly applies to periodic training sequences, with periodicity equal
to or very close to the interval length At. The risk of interference, affecting the uniformity
of approximation in the learned network output signals, arises from the above-mentioned
asymmetry of the observed parameter dependence of the error across the time interval
of the partitions. Since the earlier contributions to the error within the intervals carry
relatively little weight in the constructed parameter updates, the corresponding repeti-

tive components in the training signals, positioned in time just after the boundaries of

58 CHAPTER 2. SUPERVISED LEARNING AND OPTIMIZATION

the partition, are expected to yield relatively poor approximation quality in the network
outputs after learning. This problem can simply be alleviated through dithering of the
partitioning structure, by selecting for each update a different value for the interval length
Aty = tg41 — tr, say from a random distribution with given spread around the optimal
length Af. Since under the random partitioning every time instance of the training se-
quence is positioned equally likely near the beginning or the end of one of the intervals, a

fairly uniform representation of the training data in the error measure is hence guaranteed.

The above line of thoughts involved some level of complication in considering several
issues, each related to a different aspect of learning in dynamical systems under real-
time requirements. Altogether, the above material served to bring forth a rather simple
technique which extends the batch-like format of the error, implicitly considered in the
previous section, directly into an on-line formulation suitable for real-time learning. The
technique simply substitutes the fixed batch-like format of the error measure (1.6) by one
which for every update Ap(*) adjusts its timing boundaries and network initialization to

reflect the actual state of the network as it evolves with time,

Ee(p) = E(p; Xk thytrst)
- /t"“ e(z(t), 27 (1)) dt |, 2.22)
b

with the initial states x; = x(t;) as determined by the actual dynamics of the network.
Stated otherwise, the adjusted error measure (2.22) corresponds to the conceptual parti-
tioning of the infinite integrated error (1.4) over successive non-overlapping intervals in
time, whereby every parameter update attempts to minimize the individual error con-
tained within the corresponding partition interval only. Simplistically, the partitioning of
the error for on-line learning can thus be viewed as a means for distributing the parameter
update process over the time domain of the training sequence, in a way quite similar
to stochastic gradient techniques. However, due to the long-range time dependence of
the observed output error on a previous change in parameters, inherent to the recurrent

dynamics in the network, the expectation value for the partitioned error metric (2.22) does

2.3. ON-LINE SCHEMES FOR REAL-TIME LEARNING 59

not quite follow the same parameter dependence as the complete integrated error measure
(1.4). Nevertheless, the above timing analysis shows that with an appropriate range chosen
for the interval length Aty, just sufficiently exceeding the characteristic time scale Tmax of
the network dynamics as to include the relevant time range of the parameter dependence
in the error observations, the on-line partitioned error measure actually yields a superior
learning performance.

In principle, on-line variants based on time partitioning of the error can be constructed,
through the above procedure, for any incremental optimization method which mini-
mizes an error functional of the type (1.6), including various implementations of gradient
descent?, and the gradient-free methods studied in the last section. Below, we apply the
on-line error formulation specifically to the parallel stochastic optimization method for
real-time learning in recurrent dynamical systems, and discuss two practical implementa-
tions which each address different requirements on the timing organization of the training

sequence and the configuration of the network within the system under optimization.

2.3.2 Gradient-Free Implementations

Like with other incremental error descent methods, the extended on-line format for the
error measure &£(p) in (2.22) can be directly used with the parallel stochastic error descent
method, outlined in equations (2.2)-(2.4). In doing so, there is one potential source of
concern, depending on the application domain the method is targeted to, which follows
from the requirement of two complementary error observations to construct the parameter
updates. In principle, both observations should be carried out simultaneously and inde-
pendently on the system, under application of two different sets of parameters. Strictly,
such is not possible in a physical implementation, since only one instance of the parameter
vector can be supplied to the network at any given time.

In principle, the dilemma of simultaneous error observations can be partially avoided

#Incidentally, a partitioning of the total error integration interval over smaller subintervals was recently
proposed in [Lopez 93] for gradient-based learning of coupled time series in recurrent polynomial networks,

and in [Catfolis 93] for an improved convergence of the original real-time recurrent network algorithm
[Williams 89].

60 CHAPTER 2. SUPERVISED LEARNING AND OPTIMIZATION

by applying perturbations and performing error observations on the system at a rate
much faster than the characteristic time scale of the system dynamics and the training
signals. Therefore, successive error observations are expected to yield approximately the
same results as obtained by simultaneous observations. In fact, an on-line gradient-free
realization based on this principle, using a one-step-ahead error measure, was recently
reported in [Spall 92b] for direct adaptive control of discrete-time dynamical systems.
While functionally quite elegant and easy to implement, this approach may in certain
cases suffer from the problems mentioned earlier concerning a short time interval for the
on-line error measure in (2.22). With the time interval At for the error observations chosen
much shorter than the time scale of the system dynamics 7mayx, the parameters relating to
the internal state variables are effectively masked in the optimization process, with the

consequences of potentially poor learning quality stated before®.

To circumvent the timing problem, we suggest and analyze two alternative realizations
below, based on the on-line error measure defined in (2.22) without making assumptions
on the relative time scale of the observations. One realization employs several identical
replicas of the same dynamical system, for synchronous observation of the error under
different instances of the parameter vector. The other makes use of time-multiplexed
repetitive error observations on the same system, under different parameter settings but
otherwise under identical circumstances, thus assuming a periodical sequence for the
training signals. While neither of the two realizations is perfectly suitable under the most
general real-time operating conditions, they are complementary in nature and each address
one specific class of applications. The consequences of the different assumptions on the
network configuration and timing of the training signal are discussed below, along with

the details of the two realizations.

*The masking of the internally coupled parameters biases the learned solution towards a mere mapping of
the dynamics of the training signal exclusively onto the output units. This yields acceptable results only if the
set of output units represents the full dimensionality of the internal dynamics of the system.

2.3. ON-LINE SCHEMES FOR REAL-TIME LEARNING 61

Concurrent Realization Using System Replicas

In case exact copies of the dynamical system under optimization can be provided along
with the original system, the error observations under the complementary perturbed states
of the parameter vector can be performed concurrently on two separate replicas, sharing
the same input and target training signals in time as those supplied to the master system.
For a correct and consistent observation of the perturbed error on each of the two replicas,
conform to the format in (2.22), both replica systems need to be periodically reset to the
unperturbed state x; = x(t;) at the beginning of every observation interval. To this pur-
pose, the master continuously tracks the system dynamics under unperturbed activation
of the parameter vector, thereby serving as a reference for the periodic initialization of the
replica system variables. In particular, let A, N, and N~ denote the master system, the
first replica, and the second replica, respectively. During the interval [t;, t;11], the master
is supplied with parameters p(*) while the replicas are assigned corresponding perturbed
values pt*) and p~*), according to (2.4). Then observation of the interval error (2.22) on

the perturbed replica systems N'* and '~ yields

En+® = £® 4 7 ®); x4t ter)

SN_(") = S(P(k)—‘rr(k);xk;tmtkH)) 2.23)

withx; = xar(tx) as observed on the master system. The remaining operations to construct
the parameter update further proceed as before in (2.3) and (2.2), with £(B+*®)) = £+ ®)
and £(p~*)) = £,-®).

For proper functioning of this realization, the replica systems must resemble the orig-
inal system almost exactly, and need to provide the capability of setting values for the
parameters independently of those supplied to the master system. Furthermore, explicit
read access to the internal state x of the master system is required, and the states x,/+
and x,- of the replica systems need to be reinitialized accordingly at the beginning of

every update cycle. These stringent requirements on the nature of the system obviously

62 CHAPTER 2. SUPERVISED LEARNING AND OPTIMIZATION

restrict the practical scope of the concurrent realization, which thus excludes optimization
of “black-box" dynamical systems otherwise fully supported by the model-free approach
of the stochastic method. The second alternative realization, described next, supports
optimization of such black-box systems, by means of a time-interlaced approach not re-
quiring any explicit knowledge about the structure and functional parameter dependence
of the dynamical system. On the whole, the virtue of the concurrent realization with
system replication as just described is relatively limited. Nevertheless, the restrictions
on the system configuration imposed by the concurrent realization are usually satisfied

for those applications which cannot be supported by the second alternative realization,

further analyzed below.

Time-Interlaced Realization under Repetitive Training

Alternatively, in case the time sequence for the input and target training signals (y(t), z” (t))
canbe rendered in a strictly periodical format, then the error observations can be organized
in time-multiplexed fashion on the same system, without the need of replicas along with
the physical system. The realization proposed here does not assume any knowledge on the
model of the dynamical system under observation, nor does it interfere with the internal
dynamics of the system as it evolves in time. Therefore, the realization is well suited
for optimization of unknown dynamical systems, for which the parameter dependence

of the performance measure £(p) can only be obtained through direct observation on the

physical system.

In principle, the two complementary error observations required for the differential
perturbed error (2.3) can be obtained directly in sequence, under successive alternating
perturbation of the parameters according to (2.4), with each error observation interval
spanning one period of the training sequence. One problem with following this proce-
dure is the potential inconsistency in the initial state x; among both error observations,
with regard to the on-line format specified in (2.22). This inconsistency may arise since

no mechanism is available to enforce equal values for the internal state variables at dif-

2.3. ON-LINE SCHEMES FOR REAL-TIME LEARNING 63

ferent instances in time. Nevertheless, one may reasonably expect that, under constant
activation of fixed parameter values onto the system, the sequence of state variables x(t)
asymptotically approaches a limit cycle with same periodicity as the training signals?.
In other words, a fair consistency in the initial state variables, as needed for the error
observations, is intrinsically achieved under fixed parameter settings. The two perturbed

error observations in (2.3), on the other hand, require each different parameter settings.

In an attempt to undo the disturbance in the periodicity of the state variables, caused
by activation of alternating parameter perturbations in time, the procedure to obtain
the differential error measure (2.3) is extended to include two additional cycles of error
observations, each with the unperturbed settings for the parameter vector. Specifically, let
T be the period of the input and target training signals (y(t), z7 (t)). Then the perturbation

schedule for the parameter settings onto the system is given the time sequence

p®) ; th< t <tp+T
*) o (k)
p® 4 x® ;4T < t <tg+2T
p(t) = 4) (2.24)
p® s 42T < t <tp+3T

p®) —w®) s 4 43T < t <tp+4T
and the corresponding error observations yield

Es® = ge®; x(te); tr, tk +T)

e® = (" + 7 x(te + T); te + T, ti +27)

£5® = £(®; x(t +2T); ti +2T, t; +37) (2.25)

£~® = gp® — x®); x(ty +3T); tx + 3T, ti +4T) .

The differential perturbed error, corresponding to expression (2.3), is estimated from the

*In certain cases involving special memory effects in the dynamics, the state variables may not converge to a
periodic sequence, or the period of the limit cycle may exceed that for the training signals. Such exceptions are

not commonly encountered under “normal” conditions, and can usually be avoided by proper initialization of
the parameters prior to learning.

64 CHAPTER 2. SUPERVISED LEARNING AND OPTIMIZATION

four above error observations as

O (g+(k) —gb_gth g 55<’°>) : (2.26)

(SRR

and subsequently the value for the parameter increment is derived as before, using (2.2).

The extra terms in (2.26), corresponding to the intermediate unperturbed error obser-
vations &) and £,=®), relate to the disturbance of the error measure caused by the drift
in initial conditions xi. In principle, this drift could be reduced to arbitrary small levels, by
letting the unperturbed intermissions between the perturbed observations span over a suf-
ficient number of training cycles. This would allow the system dynamics to settle towards
the unperturbed limit cycle, providing consistent initial conditions x, for the subsequent
perturbed error observations. To minimize the number of cycles needed in every update
of the parameters, only one cycle of the training signal is allowed for the unperturbed in-
termissions in (2.25), leaving a residual drift in the initial conditions x; due to incomplete
settling of the dynamics. Nevertheless, the information gained from observations of the
error during the intermediate unperturbed cycles can be used to indirectly compensate the
disturbance due to the drift. The unperturbed error terms £**) and £~*) included in
(2.26) serve this purpose, though the amount of compensation provided usually exceeds
what is strictly needed, as will be clarified below. The over-compensation by the included
unperturbed terms in (2.26) actually proves beneficial to the learning process, by favoring
parameter solutions which enhance the stability of the system dynamics, as shown below

as well.

For simplicity of notation, define ¢’ as the initial times ¢ + iT of the error observation
intervals, ¢ = 0,...3. Similarly, let x;’ denote the initial states x(t;*) for the error observa-
tions (2.25), and let x; represent the asymptotic initial state under unperturbed parameter
settings p(t) = p®). Under ideal circumstances, the initial states would not be affected
by the alternating perturbations, x;* = x, and each of the error observations in (2.26)
would faithfully correspond to the on-line error measure as defined in (2.22), whereby

conceptually the partition interval length spans one training period, Aty = T. Under

2.3. ON-LINE SCHEMES FOR REAL-TIME LEARNING 65

such conditions, the unperturbed error terms are obviously redundant, and expression
(2.26) simply reduces to the original formulation of the differential perturbed error in (2.3).
In practice, the limit cycle cannot be maintained under activation of the perturbations in
(2.25), and at least some of the x;* are expected to deviate from x,. The corresponding
deviation in the error observations (2.26), relative to the conceptual on-line error measure

(2.22), can be expanded to first order as

O (xk — %) (2.27)
k

E(psxis i) e £ ok
(P Xk iy) k(p)+8x

whereby the parameter dependence of the latter term can be discarded in the further

analysis. Thus, expression (2.26) transforms into

O&x

~ 1
RN > (gk(p(k) + 70— g (p® - ,,(k)))
+ - == (—xy+x} +x2 —x3) , (2.28)
k

of which the first part is directly identified as the equivalent of (2.3). The second part,

therefore, corresponds to the impact of the variation in the initial states Xkt

The sequence of initial states is hard to predict in general and depends on the specific
details of the system dynamics (1.1) and (1.3). Rather than attempting to derive the
dependence of the sequence {x;'} in exact functional form, some immediate quantitative
insight can be gained by applying simple concepts from qualitative arguments. First, it
is postulated that, for fixed unperturbed parameter settings, the sequence of successive
initial states {x,'} asymptotically converges to x; for i — oo, assuming a globally stable
limit cycle for the dynamics of the system in response to the periodic inputs, with the same
periodicity. To first order, the relaxation of the initial states towards the asymptote can
be approximated by damped linear recurrence relations. Next, it is reasonable to assume
that small perturbations in the parameters give rise to linear increments in the relaxation
of the initial states, driving the states x;* away from the asymptote xx. Let m;! be the

perturbation applied to the parameter vector in the interval [t;*, '™}, as given in the

66 CHAPTER 2. SUPERVISED LEARNING AND OPTIMIZATION

timing schedule of (2.25). Then the above arguments can be combined in the recurrence

relation

R =5 R
Axp = x7 — X}

~ —o(xb —xi) + 47t (2.29)

where the matrix o characterizes the relaxation dynamics of the sequence of initial states,
and the matrix 8 defines the disturbance caused by the perturbation 7}. From (2.29),
the relaxation sequence of the states {x;'} towards their asymptote x, in absence of

perturbations, undergoes the recurrence
xi —xp = (1 - a) (x§ — %) (2.30)

with the dominant terms in the matrix o defining the time scale of the relaxation
dynamics®”. Obviously, the relaxation time scale for the sampled states x;* corresponds
to that for the continuous-time dynamics of the system. In particular, with 7. the char-
acteristic time in the dynamics of the state variables x(t) and T the interval length of the
error observations, the attenuation matrix 1 — « in (2.30) contains dominant eigenvalues

of approximate amplitude exp(—7max/T).

For a systematic understanding of the purpose of the unperturbed error terms &**)
and £~ ® included in (2.26), we first consider the specific case a = 0, corresponding to
a characteristic time scale Tmax much larger than the interval length 7. In this limit, the
change in state x;' over one cycle for the intermediate unperturbed intervals &) and
£o~*) becomes negligible, and approximately x;! = x;° and x;® = x;2. Then according
to (2.28) the estimate of the differential perturbed error (2.26) reduces to the intended
on-line variant of (2.3), and the compensation of the drift in initial states is complete.

Effectively, the unperturbed error observations £(¥) and £,~(*) then serve as a reference

ZStable relaxation requires that all eigenvalues of 1 — & be enclosed within the circle with unit radius
centered around the origin in the complex plane.

2.3. ON-LINE SCHEMES FOR REAL-TIME LEARNING 67

to the subsequent perturbed error observations £+(*) and £~®*), sharing common initial

states.

In the general case, for arbitrary time scales of the dynamics 7max relative to the interval
length 7, the initial state is no longer retained after one unperturbed cycle, but rather
relaxes towards the asymptote x; according to (2.30). Directly applying the recurrence
relation (2.29) to the states x;* for i = 0 and 2 with m;* = 0, the second part Sdk) of
expression (2.28), representing the disturbance in the differential perturbed error due to
the drift in initial states, transforms into

Bl =

-6—’201(;:%c x9) . (2.31)

Nl'—‘

The residuals present in the term gdr&t, beyond the intended first part of (2.28) accord-
ing to expression (2.3), affect the error descent process under iteration of the stochastic
incremental updates (2.2) with the values for £*) obtained from (2.26).

According to (2.31), the impact of the drift in initial states on the estimate (2.26) of the
differential perturbed error grows with the size of the matrix o, which becomes larger
as the dominant time constant in the dynamics of the system decreases. Regardless, the
extra term of (2.31) tends to enhance the stability of the system dynamics under learning,
biasing the convergence towards solutions with reduced sensitivity to variations in the
parameters and to perturbations in the state variables. To understand the stabilizing effect
of the extra term (2.31) inciuded in the parameter updates (2.2), the following intuitive
reasoning is conducted. For simplicity, the matrix o will first be treated as a positive scalar,
which then can be extended to the general case using similar principles. With o being
a positive scalar quantity, the expression (2.31) for £ "k) can be interpreted, except for a
positive scaling factor, as the change in error £ corresponding to a change in initial states
from x;0 to xx2. On the other hand, this change in initial states is caused by activation

of the perturbation vector (*) during one cycle, preceded by one unperturbed cycle. 2

BFor a meaningful inter 1prehatlon it is implicitly assumed that the first initial state xi” coincides with the
asymptote X, such that x,' = xx° and (2.31) truly represents the parameter dependence of the error through

68 CHAPTER 2. SUPERVISED LEARNING AND OPTIMIZATION

Therefore, the term (2.31) represents the indirect effect of the parameter perturbation 7(¥)
on the error &; through a change in initial states, unlike the first term in (2.28) which
encodes the direct dependence of the error & on a change in parameters under fixed
initial settings for the state variables. Analogous to the error descent property obtained
by the updates (2.2) with regard to the direct part (2.3) of the differential perturbed error,
the indirect part (2.31) biases the parameter updates towards minimal sensitivity of the
system dynamics x(t) to changes in the parameters. Specifically, in case the perturbation
7(¥) applied onto the parameters affects a change in initial states causing an increase in
error &, the indirect term (2.31) biases the parameter update towards the direction opposite
to that perturbation vector. Likewise, perturbation directions yielding a decrease in error
under the change caused to the initial states are partially reinforced by the updates through
the indirect term (2.31). Therefore, the presence of the indirect term (2.31) in the estimate of
£®) used for the parameter updates biases the convergence in favor of parameter settings
supporting invariance in the error measure £ under any change of state variables caused
by perturbing the parameters. In practice, this bias in the learning process provides for
an enhanced stability of the system dynamics under perturbations of the state variables,

whether originating from variations in the parameters or from other sources.

The above reasoning still approximately holds in case the matrix o does not reduce
to a scalar, provided the response of the dynamical system to the periodic input signals
follows a stable limit cycle with same periodicity as that of the inputs. Then all eigenvalues
necessarily contain positive real components?®, and any vector x points in approximately
the same direction as the corresponding vector ax under the transformation o. Therefore,
the term (2.31) still more or less corresponds to the change in error & caused by a change
in initial states from x;° to x;2, and the above arguments extend to the general case,
though with limited validity. In case the spread in amplitude of the eigenvalues |);| is

not too large, the approximation is generally fair for most random directions selected

a change in initial states.

PIn particular, as follows directly from the observation made in the second previous footnote, the eigenvalues
A; of a are contained within the circle with radius one centered around the point 1 +0 - i in the complex plane.

2.3. ON-LINE SCHEMES FOR REAL-TIME LEARNING 69

for the perturbations, and on average the parameter updates still assist in decreasing the

sensitivity of the dynamics x(t) under perturbation of the parameters.

The tendency to stabilize the dynamics can be taken as a fortunate side effect of the
added unperturbed terms in (2.26), in an attempt to completely compensate for the drift in
initial state for the error observations. As a matter of fact, the extra terms added in (2.26)
normally tend to compensate more than is strictly necessary, thereby reversing the natural
tendency to create instability in absence of the compensating terms. To exactly assess
the degree of compensation offered by including the unperturbed terms, it is instructive
to compare the above findings with those obtained in the case where the compensating
terms &1 and € ~®) are deleted from the estimate of £*) in (2.26). Such corresponds to
omitting the terms x;° and x;? from expression (2.28), thereby transforming the residual

part (2.31) into

arift = ~5 Fo- (x3 —x1) . (2.32)

The most significant difference between the compensated and uncompensated versions of
the residual part, in (2.31) and (2.32) respectively, concerns the polarity. The expression
(2.32) can be directly interpreted as the negative of the change in error & due to a change
in initial states, from x;! to x;3. In turn, this change in states is accomplished by activating
a perturbation 7(*) onto the parameters during one cycle. From a similar perspective as
used in the interpretation of (2.31), the term (2.32) again corresponds to the indirect effect of
the perturbation 7r(¥) on the error £ through a change in initial states, though including an
inversion of polarity and excluding the scaling performed by the transformation « in (2.31).
Consequently, the uncompensated indirect part (2.32) has an averse effect on the stability
of the system dynamics during learning, since it biases the parameter updates towards
directions of greater variability in initial states under perturbation of the parameters.
The inversion of the sign in (2.31) with respect to (2.32) indicates over-compensation of the
residual indirect part E':(ifi)ﬁ of the estimate (2.26) through inclusion of the unperturbed error
terms, thereby reversing the destabilizing effect of the parameter updates beyond what

is necessary to provide regenerative dynamics of the initial states x;* during learning.

70 CHAPTER 2. SUPERVISED LEARNING AND OPTIMIZATION

In the limit o — 0, corresponding to a slow dynamical system response, the degree of
compensation achieved is complete, as noted before. Only then does the error descent
learning process not interfere, neither stabilizing nor destabilizing, with the dynamical
characteristics of the system, other than to the extent of the dynamics implicitly suggested

by the time evolution of the training signals.

A practical timing arrangement for the above formulated on-line realization of the
stochastic method is obtained directly with regard to the perturbation schedule in (2.24),
by a proper choice of the separation Aty = tx41 ~ t; between consecutive updates in
relation to the period of the training signal T', which also defines the interval length of
the error observations in (2.25). Since four error observations are required to construct
every parameter update, the separation between updates needs to exceed four training
cycles, Aty > 4T. Beyond this strict time margin, it is usually necessary to include a
few extra cycles between consecutive updates, in order to undo some of the transients
in the dynamics x(t) occurring immediately after the incremental change in parameters
under the last update. Stated alternately, with the updated parameters p*) valid over a
sufficiently long time interval [t;_ %, ;7] preceding the error observations (2.25), the initial

state x;? approaches the asymptote x;, to the extent necessary for proper compensation of

the drift in (2.26)%.

Rather than fixing a given value for the separation At, the amount of separation is
instead chosen randomly for every update iteration (k) individually, subject to the timing
constraint just mentioned. This achieves the same effect as the random partitioning of the
error observation intervals suggested before, to improve the uniformity of the quality of
approximation over the entire time interval of the training sequence. Since the training
signals are periodic, the spread of the random fluctuations in Aty can be constrained to

span exactly one period T. A practical rule for selecting the time separation between

3The excess spacing tx” — ti—1* can be safely chosen as short as a few cycles T, since the transients need not
be completely extinguished. Particularly, the case of a significant transient x;° — x; remaining at time ¢,° after
several cycles T indicates slow dynamics, hence a = 0 and the drift compensation in (2.26) becomes effective
regardless of the initial state x;’.

2.3. ON-LINE SCHEMES FOR REAL-TIME LEARNING 71

updates is then given by
Atp=(@+x+G)T , (2.33)

with x a fixed small positive integer (e.g., 2) defining the minimum excess spacing between
updates and successive error observations, and with ¢; a random fraction of one period as

chosen from a uniform distribution, 0 < {x < 1.

The above on-line realization of the stochastic method is particularly suited for opti-
mization of uncharacterized dynamical systems, whereby the parameter dependence of
a given error measure £(p), defined on the dynamical response of the outputs, can only
be obtained through direct observation on the system. In essence, the above procedure to
obtain the parameter updates only involves four error observations (2.25) on the system
under different parameter settings (2.24), carried out consecutively in time without inter-
fering with the internal state of the dynamical system. On the downside of this approach,
the input and target training signals supplied to the system during learning need to satisfy
stringent timing conditions, to warrant consistency in the error measure £(p) across subse-
quent observations of the error under different parameter settings. As stated before, both
y(t) and 27 (¢) are assumed periodic, with period T matching the interval length of the error
observations. This restriction obviously precludes applications where the training signals
are completely assigned by the learning problem, such as for prediction of time-varying
processes from recorded data sequences in time. The periodicity requirement for the train-
ing signals in the time-interlaced realization can be viewed as a necessary compromise to
avoid the problems with the previous concurrent realization, which allows arbitrary train-
ing signals but which requires an explicit model specification for the dynamical system,
in conjunction with two exact model replicas. The compromise reflects the fact that, in
real-time situations, several error observations under different parameter settings cannot

be performed simultaneously on the same dynamical system.

Rather than attempting to circumvent the dilemma of simultaneous error observations
and unify the concurrent and time-interlaced realizations into one form which is generally

valid, we elaborate below on the specific strengths of both alternative realizations for

72 CHAPTER 2. SUPERVISED LEARNING AND OPTIMIZATION

a given application environment. In particular, it will be shown that the two above
realizations support two distinct and mutually complementary classes of applications,
each assuming a different configuration for the dynamical system with regard to the

embedded network and the training signals.

System Configuration and Application Environment

Depending on the function to be performed by the dynamical system in relation to its
environment, the set of applications supported by supervised learning can be roughly
divided in two main classes. The first class covers applications for identification and
prediction of time-varying processes, from a set of representative signals extracted from
the environment. A recording of the observed time series then serves as a set of training
signals (y(t), 27 (¢)) supplied to a parameter-driven dynamical network, which is trained
to produce outputs z(t) regenerating the time series as it is observed from the process. In
effect, the network is trained to identify the quantitative causal relationship between the
signals y(t) and z(t). The second class of applications aims at training given dynamical
systems to exhibit pre-described dynamical characteristics, by adjusting a set of contin-
uous parameters governing the dynamics. The desired dynamical characteristics of the
system can then be represented by a target training sequence for the outputs z7 (t) in re-
sponse to an exemplary input sequence y(t) supplied to the system. Provided the input
sequence y(t) during training represents the typical spectrum of inputs under which the
system is intended to operate in practical situations, the desired dynamical response can
be established onto the system by supervised learning under the supplied training signals
(¥(®), 2" (1))-

While both classes make use of the same supervised learning mechanism, forcing the
outputs z(t) towards the target training signal 27 (t) by adjustment of the parameters, the
configuration of the system under optimization in relation to the environment supplying
the training signals is essentially different, and reflects the distinction made between the

two system configurations depicted in Figure 1.2. For the first class, the system under

2.3. ON-LINE SCHEMES FOR REAL-TIME LEARNING 73

optimization consists of a synthesized network which is intended to reproduce the time-
varying signals recorded from the process environment, thereby offering a versatile tool
for prediction independent of a physical context. The network is configured as shown in
Figure 1.2 (a), with both input and target output training signals being supplied by the
same reference source, representing the process data extracted from the environment. For
the second class, the system under optimization itself comprises an integral part of the
physical environment, and may consist of a parameter-driven dynamical network driving
a nonlinear plant, or any general dynamical system of which the functional parameter
dependence does not need to be known a priori. The sequence of training signals sup-
plied to the system is constructed externally, with reference to the pre-described response
characteristic. As illustrated in Figure 1.2 (b), the target outputs z7 (t) are obtained from
a reference system, representing the desired dynamical characteristics, in response to the
externally supplied inputs y(t).

In the context of the above on-line realizations of the stochastic optimization method,
the essential difference between both classes concerns the restrictions they implicitly as-
sume on either the access to the internal system dynamics or the timing of the training
signals. While the first class specifies a strict training signal as determined by the ob-
served process data, the second class allows for some structural freedom in formulating
the training sequence. On the other hand, the second class does not generally support full
knowledge of the system nor access to its internal dynamics, whereas for the first class the
system is constructed externally according to a prescribed model, therefore providing full
control over the internal state variables. Consequently, the concurrent and time-interlaced
on-line realizations presented above are specifically tuned to cover the first and the second
class of applications, respectively. In particular, the first class allows to duplicate the con-
structed dynamical system and control the internal states of its replicas, as required with
the concurrent realization3!. Likewise, the second class allows to specify a periodic input

sequence y(t) under training, thereby providing the periodicity in the training signals

3Exact replicas can be practically obtained if the implementation platform for the constructed systems is
digital with discrete-time dynamics.

74 CHAPTER 2. SUPERVISED LEARNING AND OPTIMIZATION

(y(t),2% (t)) required for the error observations in the time-interlaced realization32.

Usually, any given application of supervised learning in dynamical systems can be
classified under at least one of the two above categories, and an appropriate on-line real-
ization with corresponding system configuration can be formulated accordingly. Possible
exceptions, if any, would be found in situations both requiring a non-periodic format for
the training signals and denying access to the internal state of the system dynamics. A
hypothetical example would be a physical dynamical system trained to produce a certain
output sequence in response to a particular non-periodic input sequence. Practical ap-
plications of training the dynamical response of physical systems do not usually specify
particular inputs when defining the desired outputs, but rather formulate a conglomer-
ate output behavior in response to general inputs, analogous to the concept of a transfer
function for linear systems. The training input sequence can therefore be chosen periodic,
as long as its frequency content covers a sufficiently wide spectrum to guarantee proper
generalization of the training data under arbitrary inputs after learning.

Below, we present some simulations on the same Lissajous trajectory learning exam-
ple as studied before, to check different regimes explored by the on-line approach, and
to demonstrate the validity of the two alternative on-line realizations presented above.
Though technically this learning example belongs to the first class of applications, sup-
ported by the concurrent realization using system replicas, it also extends to the time-
interlaced approach since coincidentally the training sequence of the trajectory is periodic.
Using the same empirical example for both alternative realizations provides a common

base for direct comparison.

2.3.3 Simulations

A first series of simulations, on the trajectory learning example outlined in the introduction
section, was performed to verify the general approach followed in the on-line formulation,

in particular with regard to the choice of the interval length At for the error observations

*2Since the input sequence is periodic, in all situations of interest the corresponding desired response of the
system outputs is periodic as well, with same periodicity.

2.3. ON-LINE SCHEMES FOR REAL-TIME LEARNING 75

and its anticipated effect on the quality of learning. To test the validity of the general on-
line error measure formulated in (2.22), the initial learning simulations were performed
using exact gradient descent on the partitioned error (2.22), in three different regimes for

the length of the partition intervals relative to the time scale of the trajectory training signal.

At first, the range of interval lengths At; was chosen much shorter than the time
scale of the target trajectory, Aty = 0.1 in comparison with the period T = 27 of the
trajectory cycle (1.7). Inall trial cases from different initial conditions for the parameters, the
training settled towards the same sub-optimal solution at convergence, with the network
regenerating only the first lowest-frequency sinusoid output of the target signal (1.7)
while failing to reproduce the other sinusoid target output at twice the fundamental
frequency. Instead, the second output exhibited low-amplitude sinusoidal oscillations
at the fundamental frequency, attempting to approximate the double-frequency target
component as closely as possible. This deficiency follows directly from the short interval
length Aty, which as seen before is inadequate to train internal dynamics of state variables
not directly represented in the output units of the system. Since the phase diagram of the
target outputs (z17 (t), 27 (t)) for the trajectory in Figure 1.3 (b) contains a singularity in the
derivative at the origin, the two output state variables z; and z; are clearly not sufficient
to generate the trajectory dynamics, and at least one or more internal state variables need
to be included in the dynamics along with the output units. These internal state variables
are masked in the evaluation of the parameter dependence and therefore are effectively

excluded in the error descent learning process, due to the short interval length At of the

error measure.

To test the other extreme for the range of the interval length, similar simulations
were performed with relatively long intervals At;, in excess of several periods of the
trajectory training signal. With a choice Aty = 2T or larger, the simulation runs indicated
the expected symptoms of a sharp and non-uniform parameter dependence of the error
measure. Depending on the initial conditions selected for the parameters, qualitatively

different solutions were obtained at convergence, quite frequently sub-optimal with similar

76 CHAPTER 2. SUPERVISED LEARNING AND OPTIMIZATION

deficiencies in the second output x(t) as encountered in the previous test case. The
teacher forcing mechanism (1.8) used throughout all the simulations, terminally attracting
the network dynamics towards that of the targets, did not prove successful in escaping
these local minima on the error surface. In addition, the error descent process proceeded in
rather non-uniform fashion, alternating between regions of fast and slow progress towards
lower error levels®.

Satisfactory and consistent learning results were obtained for simulations with interval
lengths chosen in close proximity of the trajectory period, Aty =~ T. This agrees with the
practical guideline formulated above for the choice of the interval length, Aty &~ Tmax, as the
characteristic time scale Tjax of the network dynamics under learning necessarily adapts
towards the time scale of the training signal, with period T. Accordingly, the remaining
simulations in this section specify a mean value for the interval lengths At = T, and cover
other aspects of the on-line learning methodology not yet empirically explored. Specifi-
cally, the simulations described below investigate the performance of the two presented
on-line realizations of the stochastic method.

The simulation results corresponding to the concurrent realization with system replicas
are presented in Figures 2.4 through 2.6. The simulation sessions were performed on
the trajectory learning example (1.7) for 10,000 stochastic update iterations using the
procedure (2.23), with perturbation strength ¢ = 0.001 and effective learning rate n = 0.02
(1 = 2x10%) 34, The interval lengths were selected randomly at every iteration, in the range
Aty = (1 £0.1) T. Figure 2.4 shows the evolution of the error during learning, for four
different sessions from identical initial conditions for the parameters. The free-running
network dynamics resulting at convergence, obtained from all four sessions, are illustrated
in Figures 2.5 and 2.6, showing the free-running trained output waveforms and the phase
diagram trajectories of the corresponding limit cycles, respectively.

For direct comparison, the corresponding simulations results for the time-interlaced

3Such can be partially alleviated by using an adaptive biasing of the learning rate.

¥Asin [Toomarian 92], the teacher forcing amplitude was gradually decreased towards convergence to
avoid a residual bias in the network dynamics, using the formula A = \o/(1 + £(p*))/Ec), with Ao = 1and
Eaie = 0.005. However, this did not prove very essential to obtain good results in this case.

2.3. ON-LINE SCHEMES FOR REAL-TIME LEARNING 77

1 T ! 1 1

Concurrent Format

1 lT““ll
s o tgul

u=0.02

0.1 =

9 F 3

o - -

) - 1

&5 i 4

0.01 | .

: :

- -1

0.001 1 1 ! 1 13

0 2000 4000 6000 8000 10000
Number of Updates

Figure 2.4: Error descent profiles of four sessions with the stochastic method using the
concurrent format for the error observations.

realization with repetitive training, under identical or otherwise equivalent conditions as
just specified for the concurrent case, are given in Figures 2.7 through 2.9. The parameter
updates were obtained from (2.26) using the procedure (2.25) under perturbation schedule
(2.24) and timing scheme (2.33), with T = 27 and x = 2. The other settings of learning
constants were retained from the previous case. In similar fashion, the error descent profile
and the free-running network dynamics at convergence, including output waveforms
and phase diagram trajectories, are illustrated in Figures 2.7, 2.8, and 2.9, respectively.
While the underlying mechanism and supporting network configuration to generate the
parameter updates is essentially different for both on-line realizations, the over-all error
descent profile and the network dynamics obtained at convergence are evidently quite
similar. One apparent difference between both concerns the relatively strong fluctuations
in the error descent profile for the concurrent realization in Figure 2.4. However, the
presumed discrepancy is merely an artifact in the formulation of the error functional. The

fluctuations in the concurrent format of the on-line error result from the random positioning

78 CHAPTER 2. SUPERVISED LEARNING AND OPTIMIZATION

05—

00 ;

xi(t)

.05 -

4
Time t (unitsT)

Figure 2.5: Free-running network dynamics obtained from four sessions of the stochastic
method using the concurrent format: transient output waveforms.

2.3. ON-LINE SCHEMES FOR REAL-TIME LEARNING 79

Xz(t)

XQ(f)

Figure 2.6: Free-running network dynamics obtained from four sessions of the stochastic
method using the concurrent format: limit-cycle trajectory phase diagrams.

80 CHAPTER 2. SUPERVISED LEARNING AND OPTIMIZATION

1B T L T | T
E 3
- Time-Interlaced Format .
i ©=0.02]
01k =0001 |
” s :
2 -]
a3 I 1
0.01 = E
: 3
- -
L -
0.001 = 1 1 1 ! 13
0 2000 4000 6000 8000 10000
Number of Updates

Figure 2.7: Error descent profiles of four sessions with the stochastic method using the
time-interlaced format for the error observations.

of the observation partition intervals relative to the training signal waveforms® and do
not affect the convergence process on a macroscbpic scale. Otherwise, the quantitative
agreement between both realizations indicates that the compensation mechanism used in
the time-interlaced realization, to undo the effect of the drift in initial states on the error

observations, is effective.

*The error measure displayed in Figure 2.4 is normalized to the length of the observation intervals Aty.
However, fluctuations still arise because of the non-uniformity of the error contributions in time.

2.3. ON-LINE SCHEMES FOR REAL-TIME LEARNING 81

T T T T T T T 1 T H T T —T T T T

4
Time t (units T)

Figure 2.8: Free-running network dynamics obtained from four sessions of the stochastic
method using the time-interlaced format: transient output waveforms.

82 CHAPTER 2. SUPERVISED LEARNING AND OPTIMIZATION

- ¥ 1 L] T i L ¥ L] I ﬁ
05k - - . @ e
\ *
e - L :Q .-‘. ...0 .
§ > $
H >, &
e - H =, 5 .
H % S 2
H P]
b - - H ., & 2 =
H y; :
H 7 :
~~ B . [~ H H
- B 4
& 00 :
= L 4 . -
b - o -
- . - =
~~
e
o
<!

Figure 2.9: Free-running network dynamics obtained from four sessions of the stochastic
method using the time-interlaced format: limit-cycle trajectory phase diagrams.

83

Chapter 3

Implementation Architectures

The simple structure and robust character of the stochastic method is particularly suited
for special-purpose analog hardware implementations. In this chapter, we show that the
method supports a modular and parallel implementation architecture with local units
serving the update and perturbation functions for the individual parameters, thereby
achieving a high computational efficiency for dedicated applications. Furthermore, we
show that for analog VLSI implementations the resources providing the local update
functions in the parallel structure can be used as well to dynamically store the volatile
parameter values whenever the learning is disabled, using an autonomous and fault-

tolerant refresh scheme which does not necessitate external storage.

Section 3.1 addresses architectural issues for the hardware implementation of the
stochastic learning method in real-time application environments, with a discussion of
design trade-offs arising in analog and digital implementation technologies. Of particular
interest to analog VLSI systems is the time-interlaced on-line realization, which unlike
the concurrent realization retains the model-independent nature of the stochastic method.
Section 3.2 describes the refresh technique for dynamic multi-valued storage of the volatile

parameter values.

84 CHAPTER 3. IMPLEMENTATION ARCHITECTURES

3.1 On-Line Error-Descent Learning

The on-line gradient-free optimization methodology for dynamical systems presented in
the previous chapter can be implemented on a variety of technology platforms, including
general-purpose processors and dedicated digital or analog hardware, depending on the
needs and the constraints of the application environment in which the system under opti-
mization is embedded. Strictly judging from the arguments of scaling and computational
complexity presented in Section 2.2, the stochastic method offers an efficient alternative
for gradient descent and other incremental optimization methods on any of the avail-
able platforms. On certain platforms, however, the anticipated efficiency of the stochastic
implementation may not necessarily be so obvious. On general-purpose processors, in
particular, the provision of large memory storage, if available, allows for alternative,
more computationally efficient off-line gradient descent implementations [Pearlmutter 89],
[Sato 90a], [Werbos 90], which otherwise would be prohibitive due to timing constraints im-
posed by the real-time application environment. Likewise, in case model independence is
essential for the application, more effective and intrinsically more sophisticated gradient-
free alternatives for the stochastic method could be developed on such flexible platforms,

involving specialized algorithms [Brent 73].

Consequently, the benefits of the stochastic method are utilized most on special-purpose
platforms which only provide for limited functionality, leading to simple but effective
low-cost implementations. Owing to their specialized nature, dedicated implementa-
tions tuned specifically to the application environment are intrinsically more efficient
than equivalent implementations on general-purpose platforms, and are therefore able to
achieve significantly higher bandwidths at modest levels of functional complexity. The
specific advantages offered by dedicated implementations of the stochastic method and
its on-line variants, in terms of functional simplicity, parallelism, and architectural modu-
larity, are analyzed below. The general architecture of the stochastic optimization method,

in relation to the configuration of the system and its parameters, is described first.

3.1. ON-LINE ERROR-DESCENT LEARNING 85

3.1.1 General Architecture

A simple and modular parallel architecture implementing the stochastic optimization
method is naturally obtained by identifying local and global operations needed to construct
and activate the incremental parameter updates!. A clear separation between both is
indeed feasible, since the global functions specified by the stochastic method only involve
a few scalar variables constructed from the error observations, contributing to all local
functions in exactly the same manner.

Global and local functions for the stochastic method can be readily identified from
the structure of expressions (2.2) through (2.5), and are symbolically represented in the
architecture of Figure 3.1. Global operations include the perturbed and unperturbed error
observations, and the corresponding estimate of the differential perturbed error E®) in
(2.3). They proceed at a level surpassing that of the individual parameters and their
location in the configuration of the system. Local operations then comprise the generation
of perturbation components 7;*) according to (2.5), and the construction and activation of
the incremental parameter update components Ap;¥) in (2.2). The local operations each
pertain to one particular value of the component index i, thus representing one single
parameter in the system and the corresponding provisions for constructing its update
increments from the global error signals.

With reference to the general learning architecture of Figure 3.1 and the formulas (2.2)
through (2.5), the alternating sequence of global and local operations implementing the
stochastic method proceeds as follows. Initially, local random values are generated for the
perturbation components 7;(¥), one for every parameter p;*) in the system. The obtained
perturbations ;%) are applied to the parameters p;(¥) of the system in complementary
format, p**) and p~*) respectively. Corresponding error observations on the outputs of

the system then yield the perturbed errors £(p**)) and £(p~*)) respectively® Next, the

Local operations are defined as functions implemented at the micro-level on a limited subset of variables,
without requiring communication with other variables at the same level, except in the immediate neighbor-
hood. Global operations interconnect the local functions at a higher level and involve communication across
the complete set of participating variables.

’The practical organization of the complementary perturbations and corresponding error observations,

86 CHAPTER 3. IMPLEMENTATION ARCHITECTURES

sysTeM GLOBAL

Figure 3.1: General architecture implementing the stochastic method.

obtained values for the complementary errors are combined to produce an estimate for
the differential perturbed error E(®), serving as a global signal used along with the local
perturbation component values 7;(%) to locally construct the update increment components
Ap;F). Subsequently, the parameter values are loéaﬂy updated according to the obtained
increment components. This sequence completes one update cycle, and the process is
repeated for the next updates.

Two main factors contribute to the particularly high degree of computational efficiency
and functional modularity of the implementation of the stochastic method and its corre-
sponding architecture. First, the local operations relating to the perturbation components
and parameter increments can proceed in full parallel fashion, by means of a set of inde-
pendent and identical functional units provided locally, one for each individual parameter
p:>. This is because the local component-wise operations specified in (2.2) and (2.5) are
functionally independent and identical for each of the parameter components, each in-

terfacing to the global signal E®) in exactly the same functional way. The independent

regarding the concurrent and time-interlaced on-line realizations, will be dealt with in more detail below.

*For simplicity, only one local processing unit corresponding to a single parameter is represented in the
architecture of Figure 3.1.

3.1. ON-LINE ERROR-DESCENT LEARNING 87

and identical format for the local update units supports a highly modular and integrated
structure for the learning architecture, wherein update units can be freely added and re-
moved in conjunction with adding and removing the corresponding parameters in the
system. The added update units can then be integrated locally, directly interfacing with
the embodiment of the corresponding parameter, into the physical system. In addition,
the parallelism of the operations provides a large bandwidth for high-speed operation,
unlike equivalent sequential implementations on general-purpose platforms.

The second factor relates to the simple implementation of the global functions. Usually,
global operations require extensive interconnections between functional blocks across the
structure, leading to scaling problems and a hardware overhead, typically causing exces-
sive wiring. The stochastic method does not suffer from this interconnect problem, owing
to the simple stochastic procedure to estimate the parameter dependence through scalar er-
ror observations on the system, in contrast to the elaborate calculations involving complex
multi-dimensional operations usually required when estimating the full error gradient
from a functional model. Instead, by using direct error observations on the system, as
specified with the stochastic method, no additional global interconnect structures are re-
quired other than that already provided by the system itself*. The hidden global character
effectively performed by the error observations follows from the underlying parameter
dependence of the error measure used in the observations, which implicitly includes the
combined effect of all individual parameters. The post-processing of the perturbed error
observations, constructing the estimate £*) according to (2.3) involving only a few scalar
variables, does not require significant functional resources in the implementation either.
Likewise, the subsequent distribution of the obtained value for £ to the entire set of
local units, performing the individual parameter updates (2.2), does not require special
provisions for interconnectivity in the implementation, since just one single signal line,
shared by all local units across the whole structure, suffices to serve the purpose.

Therefore, the computational efficiency and modularity offered by the parallel im-

*In the case of the concurrent on-line realization, however, an extra overhead is imposed due to the required
system replicas. See the further discussion in the text below.

88 CHAPTER 3. IMPLEMENTATION ARCHITECTURES

plementation of the stochastic method are attained at relatively low levels of functional
complexity, only involving simple operations with few operands in both local and global
functions. With regard to actual digital and analog hardware implementations, the func-
tional complexity of the implementation can be further reduced by simplifying the com-
putational operations to be performed by the local update units, comprising the core of
the implementation hardware. The computational ingredients required by the local op-
erations, with regard to (2.5) and (2.2), include random number generation, addition or
subtraction, and multiplication. Those are relatively easy to implement in general form;
furthermore, significant simplifications result in the specific case of a symmetric binary dis-
tribution for the perturbations, 7;(%) = +¢. While functionally very elegant, the symmetric
binary distribution, with equal probabilities for both polarities, offers optimal efficiency in
the stochastic updates among other distributions satisfying (2.5), complying to the divisive
format of related stochastic approximation methods covered in Section 2.1°. Sequences
of binary values with pseudo-random properties can be generated through elementary
deterministic operations involving binary shift registers [Golomb 67], and simple exten-
sions on this scheme offer a compact means of providing parallel multi-channel streams
of pseudo-random bit sequences in VLSI environments [Alspector 91]. Furthermore, the
binary format for the perturbations obliterates the need for full multiplication in the local
operations, since the size of the update increments is fixed and identical for all parameters,
determined exclusively by global factors and given by uo€*). By directly providing this
quantity globally to all local update units, instead of the global error signal £*), explicit
multiplicationis no longer needed in the local operations, and only addition or subtraction
remains to be performed locally to obtain the increment values. The polarity assigned to
the fixed-size update increments, representing what remains locally of the multiplications

in (2.2), is then obtained from the local value of the perturbation bit m; (k).

The amount of computational effort needed at the global level to obtain the size of

5 A binary format for the perturbations is not appropriate in case an annealing schedule of the perturbations

is used for non-convex global optimization, as presented in [Styblinski 90]. Then the simplifications regarding
binary perturbations do not apply.

3.1. ON-LINE ERROR-DESCENT LEARNING 89

the update increments uo€®) is to a large extent irrelevant, since the global operations
generating this quantity are performed strictly once, common for all local update units. In
fact, by providing some extra functionality and flexibility in the global operations, which
account for a small fraction of the total implementation complexity anyway, a significant
improvement in overall performance and efficiency of the optimization process may be
achieved. Examples of potential schemes to improve learning performance, through ad-
ditional complexity for the global operations, include adaptive biasing of the learning rate
u as determined by the estimated worst-case curvature of the error surface [LeCun 93],
efficient line-search techniques [Brent 73] to find the minimum of the error along the given
random direction of the perturbation, and one-dimensional extensions to second-order
methods for convex optimization functionals®. In addition, the global operations can be
extended to include measures guarding against instabilities in the error descent process,
identifying unlikely conditions for the updates and formulating safe actions accordingly
for recovery.

For practical implementation, the wide variety of the above procedures and other
global functions supervising the optimization process are most conveniently incorporated
on a separate general-purpose implementation platform, interfacing globally with the
dedicated parallel hardware implementing the local update operations. General-purpose
platforms, such as programmable micro-processors, offer the degree of flexibility and the
spectrum of complex instructions essential to implement global operations with advanced
high-level features, including e.g., conditional branching for event-driven control func-
tions. Since the global functions required for the stochastic method only involve a few
scalar variables, obtained from error observations on the system, the intrinsic sequential
nature of processing operations on a typical general-purpose platform does not create a
significant bottleneck in the performance bandwidth. On the other hand, a dedicated
parallel and scalable implementation for the local update units, integrated in the system

architecture, is essential for achieving an efficient and inherently fast throughput of the pro-

®For instance, p® = 2/(£(P+ ™) - 2£(p) + £(p~*))) approximating the inverse of the local second
derivative along the direction of the perturbation, as obtained from Newton’s method in one dimension.

90 CHAPTER 3. IMPLEMENTATION ARCHITECTURES

cessed information. Consequently, the split configuration of specialized and configurable
hardware for the local and global functions, respectively, establishes an optimal balance
between functional efficiency and quality of performance achieved by the implemented
architecture.

Implementation issues concerning on-line realizations of the stochastic method, specif-
ically for real-time supervised learning in dynamical systems, are covered next. Since the
concurrent and time-interlaced variants outlined above each support a different system
configuration and application environment, their implementation is essentially different.
The distinction between both is therefore carried through below, dealing with concurrent

and time-interlaced implementations separately.

3.1.2 Concurrent On-Line Implementation

The concurrent on-line realization of the stochastic method, as outlined and discussed
above, is aimed at applications where a well-defined dynamical system, in the form of
a synthesized network controlled by a set of parameters, is required to generate time-
varying outputs approximating given arbitrary signals, as those extracted from an external
unknown process. The concurrent realization requires two exact replicas of the constructed
network to be provided along with the original system, allowing independent settings for
the parameter values in the three networks, and supporting direct access to the internal
state variables. The latter is required to replicate the initial state x; of the master system

onto the replica systems, prior to the error observations (2.22).

Since the three networks need to be synthesized and considerable freedomis allowed in
their implementation, an efficient concurrent on-line implementation of the stochastic me-
thod is obtained by integrating the local learning functions along with the implementation
of the three networks, superimposed on the same substrate. As exact system replica are
required, the preferred technology of the implementation is digital, to completely avoid
imprecisions arising with analog-domain implementations. A fixed-point arithmetic is

appropriate for this purpose, simplifying the implementation complexity.

3.1. ON-LINE ERROR-DESCENT LEARNING 91

The triple network structure, including the master system as well as the replicas into
the same architecture, implies an overhead of roughly a factor two in the implementation,
beyond that of the actual network itself. For a practical arrangement supporting the local
format of the update and perturbation operations of the integrated learning functions, the
functional elements representing one particular parameter in the three networks need to
be physically adjacent to each other, near to the corresponding update unit. This is because
the values p*), p® + x(*) and p®) — #(¥) supplied to the three instances of the same pa-
rameter need to be obtained from the same local update and perturbation unit. In addition,
the functional elements corresponding to the same state variables in the three networks
need to be located at adjacent positions in the implemented architecture as well, providing
an efficient means for replicating the state of the master system onto the replica systems
when so required, thereby avoiding excessive communication across cells. To achieve the
closest possible distance between corresponding identical elements in the three networks,
the intended structure of the master network can be physically replicated twice and super-
imposed onto the original structure. In a two-dimensional implementation environment,
such as VLSI circuitry, the superposition of the three networks can be accomplished with-
out problems of interference, by carefully displacing the integrated identical cells of the
three structures relative to each other, and interlacing the corresponding interconnections.
The local update units are then integrated at appropriate positions in the intertwined struc-
ture, directly interfacing with the three cells representing the corresponding parameter in

the master and replica networks.

3.1.3 Time-Interlaced On-Line Implementation

The time-interlaced on-line realization of the stochastic method, in contrast, supports
optimization of arbitrary dynamical systems of which the parameter dependence is not
necessarily known from the start. By means of the four-fold alternating timing scheme for
the perturbations and error observations under periodic training signals, as outlined and

discussed above, the time-interlaced realization avoids the need for supplying separate

92 CHAPTER 3. IMPLEMENTATION ARCHITECTURES

identical replica systems and accessing internal state variables. As a result, this approach
is most suited for optimization of dynamical systems integrated in a physical environment,
which deny direct access to the internal structure and underlying state variables, except
implicitly through experimental observation of a dynamical performance index £(p) for
given parameter settings p supplied onto the system. Examples already mentioned in-
clude direct adaptive control of nonlinear plants by means of parameter-driven dynamical
networks, and more generally the optimization of a set of parameter values affecting the
dynamical characteristics of an unknown but observable physical system. The class of ap-
plicable systems supported by the time-interlaced approach also includes cases whereby
the model uncertainty does not arise from a lack of knowledge but rather from techni-
cal limitations in the implementation, such as mismatches found in analog electronic or

mechanical systems implementing a dynamical model of the type (1.1).

Since virtually no constraints and requirements are placed on the structure of the
system, the implementation of the learning functions supporting the physical system con-
figuration is fairly general and straightforward. At the local implementation level, the
update units each interface directly with the element representing the respective parame-
ter value activated onto the physical system. Depending on the internal system structure,
this parameter element may for example consist of a storage device containing a synaptic
strength interconnecting artificial neural nodes or a filter coefficient evoking a dynamical
response, or may supply a constant bias level interfacing with a general unspecified elec-
trical or mechanical circuit. The local update units, providing the incremental updates
and activating the perturbations to the corresponding parameter element, comply to the
general structure specified above for the implementation of the stochastic method. More
specifically, the unperturbed values p*) and complementary perturbed values p(® % =(*)
for the parameter settings are supplied through a single channel in alternating phases,
following the time-interlaced perturbation schedule (2.24). The timing of the perturbation
is controlled at the global level, together with the synchronization of the error observa-

tions (2.25) in relation to the periodic training sequence, and with the remaining global

3.1. ON-LINE ERROR-DESCENT LEARNING 93

operations to construct the global update increment amplitude for further distribution to
the local update units’.

The parameters provided by the update units need to be supplied in some analog for-
mat, compatible with the accepted input format for the parameter elements in the physical
system. A digital implementation of the local update units would therefore imply the need
of digital-to-analog conversion to interface between the two different parameter represen-
tations in the update units and in the corresponding parameter elements. Provisions for
data conversion at the local level are quite expensive, and can be avoided by implement-
ing the local update functions in the analog domain instead. An analog implementation
technology for the update units offers additional advantages, besides the matching format
at the interface between parameter representations. In order to perform simple functions
as those specified for the updates, analog implementations tend to require significantly
less device elements than equivalent digital implementations. While the increased im-
plementation efficiency of an analog representation necessarily comes at the expense of
a loss in precision, the inherent fault tolerance of the stochastic method allows to a large
extent for imperfections of various kinds in its implementation. Imperfections typically
encountered with analog implementations include systematic offsets arising from varia-
tions in the fabrication process and random fluctuations caused by noise. The tolerance to
random, non-repetitive errors is evident from the principles of stochastic approximation,
on which the method is based. Systematic errors in the update and perturbation functions
are recovered by the stochastic method as well, to an extent which depends on the specific
details of the implemented architecture.

A robust architecture, virtually immune to systematic offsets, is obtained by implement-
ing the update functions in hybrid analog-binary technology, owing to the simplifications
of the multiply operations by the binary format for the perturbations. The analog-binary
architecture for the update units is illustrated in Figure 3.2 (a), and the corresponding

“In case a binary format for the perturbation components is not admissible, the “stripped” global value

pE™ is distributed instead, and the update increments are constructed locally through multiplication with
the corresponding perturbation value.

94 CHAPTER 3. IMPLEMENTATION ARCHITECTURES

timing and waveform diagram, with time-interlaced activation of the perturbations and
observation of the error, is given in Figure 3.2 (b). Conceptually, the architecture performs
all local operations involving the perturbation values in rigorous binary format, while
retaining the full analog format for the parameter values and their increments. Corre-
spondingly, the value of the global increment size uo€*) is decomposed into its amplitude
1o|E®)| and polarity sign(£*)), which are distributed separately to the local update units
in the form of three global signals uolEl, —po|€| and sign(f). Therefore, the incremental
updates in the parameters p;*) are obtained by selecting the appropriate update value,
among the two global signals xo|€| and —po|€], for addition with the previous param-
eter value. As shown in Figure 3.2 (a), the selection between both is determined by an
exclusive-or (XOR) operation of the local binary perturbation 7;(*) and the global binary
signal sign(£), yielding the negative increment in case both polarities are identical, and the
positive increment otherwise. Likewise, the two possible instances for the time-varying
perturbation components 7;(t), according to (2.24) for either polarity of m(*), are pro-
vided separately in the form of two globally distributed signals, with waveforms o (t)
and o~ (t) of opposite polarity shown in Figure 3.2 (b). Consequently, the local parameter
values p;(t) supplied to the system are obtained by addition of the updated parameter
value p;*) and the perturbation signal ;(t), selected from the two global signals o (t) and
o~ (t) by the polarity of the local perturbation 7;(¥). The binary selection operations for
the local generation of the analog update and perturbation values significantly simplifies
the implementation structure, which beyond the analog multiplexers only requires simple

analog addition elements.

Besides simplifying the structure of the implementation, the binary format for the
perturbations improves the fault tolerance to systematic errors in the implementation,as a
result of carefully separating the binary and analog components in the representation of the
local variables affecting the parameter updates and error observations. The decomposition
of the operands into analog and binary parts obliterates the need for analog multiplication,

thereby avoiding potential sources of both systematic and random error due to analog

3.1. ON-LINE ERROR-DESCENT LEARNING 95

r— - - - 0 7 _"|
o) — 7~ |
| N
| o (f) |
0'-(t)"“i_o SEL & :
o
Slgn(s) } 4 s1gn(7£i(k)) CZ I Pi ®
I]
I
|
I *) :
+uclel —+I\siL |
> z! |
~uolel —= |
T N
(a)

o1 _ I R R
oc’(t) © i ' l —
-~ t+—--——+———|——— —_—-
i l | | | I
woot—"——+———|——— ——-
o) © : ' | -t
T T T N E R
| + () I;T(k)Jlk -~ k) 1 -*(k)JI
EE T
tx t+T th +2T 4+ 3T ty +4T

(b)‘

Figure 3.2: Analog-binary time-interlaced implementation of the stochastic method. (1)
Local cell structure. (b) Waveform and timing diagram.

96 CHAPTER 3. IMPLEMENTATION ARCHITECTURES

offsets and noise in the implementation. Systematic offsets are avoided in the analog-
binary implementation, since the binary variables are able to rigorously control the polarity
of the increments, regardless of the size of the differential observed error in (22)8. Asa
matter of fact, the rigor in the sign of the incremental updates is the main determining
factor in the quality of convergence for the implementation of the method, more important
than the exact analog amplitude of the update increments. This allows substantial room
for analog imprecision in the implementation without drastically affecting the learning
performance. In effect, the dual analog-binary implementation manages to combine the
advantages of efficiency and precision from both analog and digital worlds, resulting ina

simple and fault-tolerant architecture for the update units.

3.2 Fault-Tolerant Dynamic Multi-Level Storage

While the analog representation of the parameter values in the latter implementation
allows for a compact and simple structure of the update units, the volatile nature of
the capacitive medium used to locally store the parameters necessitates a mechanism to
counteract the spontaneous drift in the analog values due to junction leakage and other drift
phenomena. Below, we present a fault-tolerant refresh technique for dynamic multi-level
analog storage of the parameter values, which can be implemented locally using virtually

the same functional elements as needed for the above local learning update functions.

3.2.1 Partial Incremental Refresh

Methods for dynamic analog storage in VLSI essentially quantize a given stored analog
parameter value to one of a discrete set of voltage levels, and repeatedly refresh the analog
value towards the identified discrete level to counteract the drift of the volatile storage

medium. As covered before in Section 1.3, the typical scheme employed for refresh

8This assumes a proper circuit-level implementation of the update accumulation function in Figure 32. A
real-time learning system based on the time-interlaced approach, with specific analog VLSI implementation
of the update units, is described and demonstrated in the next chapter.

3.2. FAULT-TOLERANT DYNAMIC MULTI-LEVEL STORAGE 97

consists of identifying the discrete level closest to the stored analog parameter value, and
then updating the analog value by loading the identified discrete level onto the storage
device [Terman 81], [Hochet 89], [Hochet 91], [Vittoz 91]. The refresh scheme used here
[Cauwenberghs 93c] is more robust to random errors, by incorporating functions which
exploit redundancy and statistical averaging to overcome the sudden effect of random

errors in the quantization.

Specifically, the refresh method repeatedly applies small fixed-size increments in the
parameter values in the direction of the nearest discrete level, rather than completely sub-
stituting the stored analog value with the identified level. The degree of redundancy in the
refresh updates offered by the method depends on the amplitude of the fixed-size incre-
ments and decrements, which is specified to be much smaller than the separation between
adjacent discrete analog levels. For a small refresh step amplitude, the identification of
the exact nearest level on an individual base is not critical, which may even be strongly
erroneous as long as the fraction of occurring errors is small enough. Furthermore, the
information required from the analog value to define a refresh action is binary, since only
the polarity of the refresh action needs to be specified, and the nearest level is not explicitly
required in the refresh. The polarity to be determined depends uniquely on the position
of the analog parameter value relative to that of the nearest discrete value, and can be ren-
dered in the form of a binary quantization function defined on the analog input variable,
alternating between opposite polarities according to the distance of the analog value from

nearby discrete levels:

Q(): R — {-1,+1} . 3.1)

Essentially, the binary quantization function Q(.) encodes the direction of the analog
value towards the nearest discrete level, thoughin principle a general quantization function
can be specified for implementation without explicit reference to given discrete levels,
thereby defining rather than employing the set of discrete levels. An example illustrating
the general shape of the binary quantization function Q(.) is shown in Figure 3.3. The

arrows on the graph indicate the refresh action taken according to the polarity obtained

98 CHAPTER 3. IMPLEMENTATION ARCHITECTURES

B s L e T e
L |-
1 2 3 4 ,
Pd ra| |pa P4 Pi
8 T S NN VU A URONN AN NSO A
FA S

Figure 3.3: Example illustrating the binary quantization function Q(.). -

from the binary quantization. The analog value is decreased by an amount é for a positive

polarity of the quantization bit, and is increased by that amount otherwise. Formally,

p) =p® — 5 Q¥ , (32)

with pgk) the instance of the analog parameter value prior to the update cycle &, and

with § the amplitude of the refresh step. Under periodic iteration of this method, the
analog value p; undergoes strong attraction locaﬂy towards a nearby boundary region
where the quantization makes a positive transition, from a —1 to a +1 value. These
transition boundaries define the positions of the discrete memory levels p4’ asindicated in
Figure 3.3. The binary quantization and the incremental refresh hence define alternating
regions of attraction and repulsion, creating and isolating the discrete levels for stable

memory operation.

For a small refresh amplitude §, the strength of attraction and repulsion in the al-
ternating regions remains virtually unattenuated under noise contaminating the binary
quantization and causing occasional errors in Q(.). Stated differently, a large number of
consecutive erroneous quantization bit values, steering the analog value in the wrong di-
rection, are required to cause a transition from one stable state to another, such transition
becoming exponentially less likely to occur as the refresh amplitude 6 is decreased. A small

value for § is desirable as well to reduce the dynamic refresh noise due to the persistence of

3.2. FAULT-TOLERANT DYNAMIC MULTI-LEVEL STORAGE 99

the finite update increments at equilibrium, which ultimately limit the analog resolution
of the stored value. Nevertheless, the value for § cannot be decreased beyond the nominal
amplitude of the drift due to leakage over one refresh time interval, to avoid a runaway |
unstable condition for the stored value. Thus, an appropriate value for § needs to satisfy

the condition

T <86 <A (3.3)

with r4 the leakage drift rate, T' the refresh time interval, and A = min;(ps/*! ~ pg’) the
minimum separation between adjacent discrete memory levels. Because the leakage is
temperature dependent and is hardly expected to be uniform across different instances of
memory cells, a safety margin for the lower bound in (3.3) is advisable, such as § = 10|r4|T.
The time scale of refresh T in the latter then needs to be adjusted to accommodate the other
condition § < A. Clearly, the increased fault-tolerance of the modified refresh procedure
comes at the expense of an increase in the minimum refresh rate required to control the
drift of the volatile medium, with the amount of increase corresponding to the degree of
redundancy A /6. Nevertheless, in practical analog VLSI situations with modest leakage

rates of capacitive storage, the requirement (3.3) is still fairly easy to accommodate.

3.2.2 Implementation Structure

The functional diagram of the partial refresh method, corresponding to the binary quanti-
zation and incremental update operations of Eqns. (3.1) and (3.2), is shown in Figure 3.4.
The drift of the storage medium and the noise affecting the quantization are represented
symbolically as additive components, included in the dashed-line inset of Figure 3.4. The
structure of the diagram comprises a loop of quantizing and integrating elements some-
what reminiscent of the technique of delta-sigma modulation [Candy 92], which similarly
incorporates redundancy and statistical averaging to achieve high accuracy, mainly for
applications of data conversion. Obvious differences between the refresh method and
single-bit delta-sigma modulation concern the alternating format of the binary quantiza-

tion function of Figure 3.4 and the absence of a difference (“delta") unit.

100 CHAPTER 3. IMPLEMENTATION ARCHITECTURES

| DRIT |
Ay ——

QO e
L Nose

Figure 3.4: Functional diagram of the partial refresh method.

More relevant to the scope of this chapter is the similarity between the update functions
of the above on-line analog-binary learning architecture and the present refresh method,
both activating either increments or decrements of a fixed amplitude onto the parameter
values as determined from the polarity of a locally supplied binary value. Indeed, as
shown in Section 3.1 and illustrated in Figure 3.1, the learning increment amplitude is a
globally defined analog quantity, supplied mﬁoﬁnly to all update cells, and the polarity
of the learning increment is selected from a locally generated binary value. Therefore, the
implementation of the learning and refresh functions can be efficiently combined ina single
integrated architecture, with both functions sharing the same local elements supplying the

incremental parameter updates.

In the remaining of this chapter, we describe the system-level configuration and circuit-
level structure of the functional elements providing the binary quantizationand the update
increments, for realizing analog VLSI storage in general. The implementation of a recurrent
dynamical neural network with integrated learning and storage architecture, employing

the same incremental update elements, is described in the following chapter.

Two architectures for implementing the refresh procedure are given in Figure 3.5.
Both configurations comprise the same functional elements, a binary quantizer Q and an

increment/decrement device I/D, which interface with a capacitive storage device C to

3.2. FAULT-TOLERANT DYNAMIC MULTI-LEVEL STORAGE 101

EN SEL %

— —9- N\ Vo S
pi | j
Ner/oecr | VP pi
INCR/DECR i
F |
ol 2 T ’? T
Q™) p; Q e
Q(pgk) *)
1 H
(a) ®)

Figure 3.5: Architectures implementing the partial incremental refresh method. (a)
Standard configuration of the analog memory cell. (b) Array configuration of analog
memory cells with time-multiplexing of a common quantizer.

generate a binary quantization value and to produce the corresponding refresh increment,
respectively. The first configuration of Figure 3.5 (a) employs dedicated instances of
elements Q and I/D for every individual storage device C. In the second configuration
of Figure 3.5 (b), one binary quantizer Q is shared among several memory cells, each
containing a storage device C and an I/D element, in a multiplexed arrangement for
sequential refresh. The particular memory cell to be refreshed at a given moment is
identified by means of a select signal SEL, driving the output multiplexing and update
enabling circuitry schematically depicted in Figure 3.5 (b). In a practical multiplexed
arrangement, the select signal cycles through all connecting memory cells in sequence
for a uniform and periodic refresh cycle among all cells. While it requires a quantizer of
sufficient bandwidth to support the entire array of memory cells at the desired refresh rate,
the multiplexed configuration may result in a significant reduction of the cell complexity,
depending on the complexity of the circuitry implementing the binary quantizer.

102 CHAPTER 3. IMPLEMENTATION ARCHITECTURES

e D
MP
VbhINCR .
. pi
INCR/DECR % *—>
MN ‘EDECR —
e —] :

..

Figure 3.6: A CMOS charge-pump implementation of the I/D device.

Bipolar Incremental Update Element

Figure 3.6 shows a binary controlled analog CMOS charge pump, providing an incre-
ment/decrement device I/D offering a ﬁné resolution of the increment amplitude ranging
over several decades. The charge pump device, driving a capacitive storage device C at its
output, dumps either a positive or a negative update current, of equal amplitude, onto the
storage capacitor whenever it is activated, effecting either a given increment or decrement
on the parameter value p; respectively.

The positive and negative currents of the device are supplied by complementary MOS
transistors MP and MN, and their amplitudes are controlled by the bias voltage levels
Vs pecr and V;, Incr on the gates of the transistors, respectively. The particular transistor,
supplying the current for either increment or decrement action, is selected by the input bi-
nary signal INCR/DECR, obtained from the quantizer, and the selected current is activated
onto the storage capacitor at the output depending on the logic state of the complemen-
tary enable control signals EN and EN, respectively. For increment action, the injecting
current source MP is activated by driving EN active high and EN active low. Likewise,
for decrement action, the sinking current source MN is activated by driving both EN and
EN active high. The selection and activation of the currents from the logic control levels

is accomplished by means of NAND and NOR gates, which drive the sources of the MOS

3.2. FAULT-TOLERANT DYNAMIC MULTI-LEVEL STORAGE 103

transistors MN and MP.

Note that the switching of the current supplied by transistors MN and MP is controlled
by driving the source voltage on the transistors as opposed to driving the gate voltage. Such
strictly avoids switch injection noise, a typical phenomenon affecting switched capacitor
circuitry [Gregorian 86], resulting in unpredictable offsets induced on the voltage across
a capacitor when a switch coupled to it is opened. Because the gate voltages of MN and
MP are kept at constant bias, no such parasitic injection of charge can reach the storage
capacitor when either current is deactivated. By virtue of the clean switching transients,
the I/D device is therefore able to resolve reliable small size increments and decrements
+6.

To attain small values for the increment amplitude +6, the gate voltages of transistors
MN and MP are biased in the subthreshold range [Vittoz 77], [Mead 89], allowing for
exponential control of the current amplitude over several decades down to pA levels.
While a large dynamic range of +6 is not essential for the refresh increments, it is essential
for the implementation of the learning update increments as stipulated earlier in Section 3.1.
Furthermore, the subthreshold characteristics are desirable for a robust implementation of
the refresh method as well, for reasons of physical origin. Both the subthreshold current
across a MOS transistor and the leakage current across a reverse biased p-n junction follow
the same o Eexp(—1/kT) temperature dependence, such that the subthreshold refresh
amplitude and the spontaneous leakage of the storage capacitor exhibit matched thermal
characteristics. Therefore, in a practical analog VLSI context the requirement for stability

imposed by the left-hand side of (3.3) can be met over a wide temperature range.

A/D/A Binary Quantizer

In principle, any device constructing a binary output value from an analog input value
in fairly consistent manner can perform the function of binary quantizer Q, provided
the transfer characteristic contains sufficient and uniformly distributed bit transitions to

accommodate the desired analog resolution of the memory. Practical realizations can be

104 CHAPTER 3. IMPLEMENTATION ARCHITECTURES

obtained as direct extensions on the quantizers used with the previous refresh methods,

for identifying the discrete level closest to the analog value.

We describe one realization, based on the concept of combined dual A/D (analog-
to-digital) and D/A (digital-to-analog) conversion as explored for analog quantization
purposes in [Terman 81]. The A/D/A approach offers an attractive implementation for the
quantizing element in general, since it additionally provides digital access to the stored
analog parameter values in both read and write formats, owing to the available A/D
and D/A conversion functions. The particular bit-serial implementation of the A/D/A
converter, as specified below and described in detail in Appendix A, is especially attractive
for high-resolution dynamic analog storage, since it does not require resources to physically

supply or trace the complete set of discrete analog levels in the implementation.

The schematic representation of the bit-serial bi-directional A/D and D/A converter
used for binary quantization is depicted in Figure 3.7, conform to description of a practical
implementation in Appendix A. The core of the A/D/A converter comprises an algorith-
mic bit-serial D/A converter, processing the bit sequence of the digital word in the order
from most significant bit (MSB) to least significant bit (LSB), algorithmically generating
the analog output value from successive intermediate values corresponding to the partial
bit-accumulated conversion results. With the addition of a latched comparator, the device
furthermore operates as a successive approximation A/D converter which employs the
intermediate values of D/A conversion as successive approximations for comparison with
the analog input, to determine the bit sequence of the digital output in the order of MSB
to LSB. The combination of D/A and A/D conversion within a single device provides
a means of bi-directional access between the analog and digital domains, with matched
transfer characteristic in both directions of conversion by virtue of sharing the same hard-
ware. The implementation of the A/D/A converter as further specified in the Appendix A
additionally provides guaranteed monotonicity in the conversion characteristics regardless

of component mismatches and nonlinearities.

The A/D/ A converter performs binary quantization of the analog input in algorithmic

3.2. FAULT-TOLERANT DYNAMIC MULTI-LEVEL STORAGE 105

Figure 3.7: Binary quantizer comprising a bit-serial A/D/A converter.

fashion. For an analog memory supporting n-bit resolution, i.e., containing 2™ discrete
levels, the quantization bit is obtained from the least significant bit for (n + 1)-bit A/D
conversion, identified as the last bit in the bit-serial sequence of the digital output. The LSB
of the (n + 1)-bit conversion follows the desired regular profile of alternating polarities of
which the positive transitions, marking the positions of the equilibrium discrete memory
levels under periodic refresh, coincide with the 2" analog levels corresponding to the n-bit
partial D/A conversion. Therefore, the multi-valued state of the memory is uniquely
identified in digital format by the partial n-bit sequence preceding the LSB. While the
method of dynamic refresh only retains the LSB as information necessary for the binary
quantization, the remaining bits preceding the LSB provide the key to the digital access
to the stored parameter values, exploiting a different operation mode provided by the
A/D/A converter. Specifically, the following modes of operation are supported with the

A/D/A embodiment of the binary quantizer, for a 2"-level analog memory:

106 CHAPTER 3. IMPLEMENTATION ARCHITECTURES

a. partial refresh, by obtaining the quantization bit Q from the LSB of (n+1)-bit A/D

conversion and subsequently activating the I/D device with the polarity of Q;

b. read access in digital format, by obtaining the digital word identifying the memory
state by means of n-bit A/D conversion. Alternatively, to support uninterrupted
dynamic refresh in the background, the digital word can be derived from the partialn-
bit result obtained during the (n+1)-bit conversion needed for the binary quantization

in procedure g;

c. write access in digital format, by D/A conversion of the n-bit digital data to be
written into the analog memory, and by subsequently activating the comparator to
yield a binary value for Q, which reflects the result of comparing the analog memory
value with the constructed analog conversion value. The assignment procedure for
the binary value of Q is followed by activation of the I/D device with the polarity of
Q, in order to effect a partial update for the analog memory value in the direction of

the D/ A conversion result.

Periodic iteration of the update produced from the write procedure c establishes the de-
sired value, the discrete level corresponding to the digital word, onto the storage memory
element, in a fault-resistant and noise-tolerant manner similar to the mechanism of dy-
namic partial refresh. To speed up the writing process, the analog value on the storage
device can be preset to a coarse approximation to the desired value, prior to the fine-
tuning under the iterative process of the updates under procedure c. Such is achieved by
temporarily closing the WR switch in Figure 3.7 after the initial D/A conversion, which
forces the analog value of the D/A result onto the storage element by means of high-gain
negative feedback. To that purpose, an auxiliary inverted transconductance output is pro-
vided with the comparator circuitry, as indicated in Figure 3.7 and further documented in
Appendix A.

Test results obtained on an integrated array of storage devices containing the above

specified binary quantizers and I/D elements are included in the following chapter.

107

Chapter 4

Analog VLSI Systems

The present chapter describes the implementation and experimental performance of a
complete learning and storage system, integrated with a recurrent dynamical neural net-
work on a single analog VLSI chip. While the system incorporates all of the local functions
needed for the parameter updates and the perturbation values, the global functions and
higher-level instructions are performed off-chip to allow for a greater flexibility in the
experimental set-up, as needed to characterize the performance at different levels. Re-
sults obtained on a separate but compatible system are also included, to demonstrate

autonomous operation of dynamic storage using on-chip integrated A/D/A binary quan-

tizers.

Abrief specification of the implemented network model and learning algorithmis given
in the next section. Section 4.2 describes the architecture of the integrated network and
learning system, and the circuit implementation of its functional elements. Experimental
results on learning a periodical continuous-time trajectory are analyzed in Section 4.3. Re-

sults on the autonomous dynamic refresh system with integrated quantizers are presented

in Section 4.4.

108 CHAPTER 4. ANALOG VLSI SYSTEMS

4.1 System Architecture

While the implemented network and learning model follow the specific structure outlined
in Chapters 1 and 2 and used for the simulations in Chapter 2, there are some differences
mainly motivated by the resulting simplifications in the analog VLSI implementation. Ow-
ing to the model-independent nature of the implemented stochastic perturbative learning
algorithm, none of the applied network changes is expected to affect thé learning perfor-
mance. The impact of the functional simplifications carried out in the implementation of
the learning algorithm, especially regarding the timing of the error observations, will be
discussed further below. The modified structure and functionality of the network and the

learning algorithm are reformulated next.

The implemented network contains six fully interconnected recurrent neurons with

continuous-time dynamics,

6
T %xi = —xz; + ?:1 Wij o(z; — 6;) + v (4.1)
with ;(¢) the neuron state variables constituting the outputs of the network, y;(t) the ex-
ternal inputs to the network, and o(.) a sigmoidal activation function. The free parameters,
to be optimally adjusted by the learning process, constitute the 36 connection strengths W;;
and the 6 thresholds ;. The time constant 7 is kept fixed in the present implementation,
and has an identical value for all neurons. As in the previous chapters, the weights Wj;
and thresholds ¢; will be considered below as components of the same parameter vector
p.

The network output consists of the two neuron signals z;(t) and z(t), which are
trained in supervised mode with target output signals =7 (t) and z7 (¢) presented to the
network. For the specific trajectory learning example used in the experiments, no inputs
y;(t) are specified along with the target outputs =7 (t). However, the implemented archi-
tecture allows for more general learning tasks typical in applications of identification and

control, for which the training signals z7 (t) comprise the desired dynamical response of

4.1. SYSTEM ARCHITECTURE 109

the network under activation of inputs y;(t).

While the integrated learning system fully supports the on-line time-interlaced for-
mat of the error observations as described in Section 3.1, a modified on-line scheme is
used instead, significantly simplifying the timing organization of the experimental set-up.
Though a time-interlaced format would definitely have granted faster learning speed and
more uniform convergence behavior, the simplified version still allows to demonstrate
the general principle. Essentially, the modified format of the error functional used for

supervised learning consists of the long-term time average

()= Jim 5 [et (o) x(0)dt 42)

of the network output error

2
e(xT(t), x(t)) = Y |z (t) — 2z ()] (4.3)

k=1

with a distance metric of norm v. The infinite time window for integration of the network
error (4.2) is not practical for real-time implementation, but a fair practical approximation
to the error average is obtained by replacing the integral (4.2) by the output of a low-
pass filter operating on the instantaneous network error (4.3). The approximation is
particularly valid in case the training sequence of input and target signals is periodic, with
a repetition rate significantly higher than the cut-off frequency of the filter. The condition
of periodicity is needed to ensure consistency in the outcome of the error measure taken
at different instances in time, just as needed with the time-interlaced version as well. We

adopt a periodic format for the training signals in the learning experiment.

The stochastic perturbative method, conforming to the specifications (2.2)-(2.4) in Sec-
tion 2.2, is implemented for error descent learning. Specifically, the learning algorithm

iteratively specifies incremental updates in the parameter vector p as

p(k+1) — p(k) —u k) (k) (4.4)

110 CHAPTER 4. ANALOG VLSI SYSTEMS

with the differentially perturbed error

£lk) — (g(p(k) +7®)y —g(p® - ,r(k))) (4.5)

S R

obtained from a two-sided parallel activation of fixed-amplitude random perturbations
7;(%) onto the parameters p;(¥); 7;(¥) = +¢ with equal probabilities for both polarities. As
shown in Section 2.2, the update rule (4.4)-(4.5) of the stochastic method applied to on-line
learning in recurrent dynamical systems provides a net computational efficiency rivaling
that of alternative on-line techniques based on exact gradient descent, at a much reduced
complexity of implementation.

The teacher forcing signal, injected into the network as an external network input y, is

specified according to

yi(t) = Ay(af (t) —z(t), i=1,2, (4.6)

conforming to the general format of (1.8). As stated in Section 1.2, the teacher forcing is
needed to attract the network outputs towards the targets during learning in case external
synchronization between the network and the training signal is not available, such as for
the trajectory learning experiment conducted here. The teacher forcing amplitude A is
gradually attenuated along the learning process, as to suppress any bias in the network

outputs that might result from residual errors at convergence [Toomarian 92].

4.2 Analog VLSI Implementation

The network and learning circuitry are implemented on a single analog CMOS chip.
While most learning functions, including generation of the random perturbation bits,
are integrated on-chip along with the implemented network, some global and higher-
level learning functions of low dimensionality, such as the evaluation of the error (4.2)
and construction of the perturbed error (4.5), are performed outside the chip. The off-chip
implementation of the higher-level global functions allows for greater flexibility in tailoring

the learning process. Conversely, the lower-level learning functions involving the full

4.2. ANALOG VLSI IMPLEMENTATION 11

dimensionality of the parameter vector are implemented locally on-chip, where they are
performed in parallel for optimal efficiency. The implemented array structure of learning
cells, providing locally for the parameter updates, additionally serves to refresh the volatile
parameter values for long-term storage after learning is completed. The structure and

functionality of the implemented network and learning circuitry are described below.

4.2.1 Implementation Floor Plan

The floor plan of the VLSI network of synapses is organized in the usual two-dimensional
array configuration for interconnecting two layers of neurons, with input and output lines
running across the array of synapses in orthogonal directions, whereby two particular
input and output lines intersect at the location of the synapse cell interconnecting the
corresponding input and output neurons [Graf 89]. The 2-D array of synapses interfaces
at the outside boundary with a linear array of output neuron cells, collecting synaptic
contributions corresponding from the output lines for further processing to construct the
neuron outputs. With synapse cells supporting analog current-mode outputs, the synaptic
contributions are collected at the output simply by dumping the analog output currents
supplied by the synapse cells directly onto the output lines. This current-mode output
arrangement combined with the 2-D array configuration of synapse cells offer a simple,
modular and scalable VLSI architecture for implementing a fully interconnected neural
network, adopted here. Continuous-time recurrent dynamics in the neuron state variables
are obtained by feeding a smoothly delayed version of the neuron outputs back into the
neuron input layer [Cauwenberghs 90].

To maintain the scalable and modular architecture of the implemented network while
integrating local learning functions onto the chip, the added complexity of global on-
chip interconnects necessitated by the implemented learning algorithm cannot exceed
the N? limit imposed by the 2-D arrangement of cells. For feed-forward steady-state
neural networks, the typically used incremental outer-product learning rules, such as

the delta rule and back-propagation for supervised learning and Hebb-type rules for

112 CHAPTER 4. ANALOG VLSI SYSTEMS

unsupervised learning, supporta scalable and integrated 2-D architecture intertwined with
the implemented network [Cauwenberghs 92]. However, no scalable on-line extensions
to the outer-product rules are available for on-chip learning of time-varying features in

dynamical recurrent networks.

The stochastic perturbative algorithm, in contrast, supports a simple implementation
structure integrated locally with the network, with basically no requirements for global
interconnects other than those already supplied by the network itself. The implementa-
tion structure, which directly corresponds to the on-line time-interlaced realization of the
stochastic method outlined in Section 3.1, comprises an array of identical local learning cells
superimposed onto the array structure of network cells, each instance connecting locally
to the analog storage node of one particular parameter W;; or 6; in the network. Except for
a few global learning signals, distributed in identical format to all local learning cells, no
communication across different cells is needed to perform the learning functions, with the
learning cells basically operating autonomously to supply the parameters updates from
the locally generated parameter perturbations. Consequently, the implementation struc-
ture providing the learning functions extends directly to other parameter-driven networks,
say with non-standard or adjustable configuration of the processing cells and their inter-
connections [Satyanarayana 92], for which the implemented learning functions essentially

retain the complexity and adopt the structure of the implemented network.

Figure 4.1 shows the structural organization of the integrated network and learning
functions, comprising an array of synapse and threshold parameter cells each including lo-
callearning and storage facilities, and peripheral linear array interfaces comprising neuron
output cells. Auxiliary provisions to support local generation of the parameter perturba-
tions during learning mode, and to refresh the volatile parameters during storage mode,
are also indicated. Global connections for distributing certain scalar signals uniformly to
all cells in the array are omitted from Figure 4.1 for clarity. The functional specification
and circuit implementation of most of the elements in Figure 4.1 are further elaborated in

the text below.

4.2. ANALOG VLSI IMPLEMENTATION 113
_ ______ _BINARYQUANTIZATON
L o0 Q0 Q) Q) Q0 00 |
oo o mem
H ol L. L 1L ; bl L 1) Sl bl po— wro—
el = a — =] - | ()_1
] - -]] . x1(t
Wi] Wiz 1 Wiz || Wi = Wis [Wis o | T ;t)}
y L T - Tx‘(|
e] []] n
0 |WapgWapg -8 8 o [, j:xzw :
< — —] — — . T
5 y L | AT T o sz(t)l
S - H ——
S JwaH i H~H H ©
w = [— H - - X3
o} y LI T S -1+
g | mye] | - - - | T
] T wg H -] — -
<]]] -] 1 X3
o gy LI TITIT TTTT et e
N e - :
o 4 WSl . [- - .,] W56
Q — — — — " Xs
E . I It 11T TT7 [11
S | %] — — — o — K .
> 1 Wer [— — — Wes [Wee t
- | [- - Xg
y Lt T [T L T THH—
me He He He He SHe e
off |—] off | off [off [oit /W ot Tret
iV iV 1V IV :V) lV
o o) 3 7 7 g

Figure 4.1: Array structure of the network, containing parameter cells with integrated

learning and storage functions.

114 CHAPTER 4. ANALOG VLSI SYSTEMS

4.2.2 Network Circuitry

A transconductance current-mode approach is adopted for the implementation of the
network, allowing continuous-time evolution of the network state variables. Through
dedicated transconductance circuitry, which includes regulated cascode triode structures
and double-stack differential pairs described below, a wide dynamic range is achieved for

the neuron voltages and parameter values at relatively low levels of power dissipation.

A high-output impedance transconductance element with wide voltage range, which
is used in both the synapse and neuron cell circuitry, is shown in Figure 4.2 (a), together
with its symbolic representation for further reference in subsequent figures. The device
comprises a MOS transistor MT biased in the linear triode region, connected to a cascode
transistor MC which by means of a high-gain feedback circuit [Fattaruso 93] provides
high output impedance while forcing the drain of the triode transistor MT to a constant
voltage level. The triode drain voltage V;MT is primarily set by the control voltage V.
of the regulated cascode circuit, and is largely independent of the triode gate voltage
and cascode drain voltage. Therefore, the supplied output current Ioy: is proportional to
the input voltage Vin while invariant to the output voltage Vout, implementing a linear
transconductance element operating over a fairly wide voltage range of V. A bias circuit
to generate the control voltage V; from a desired level for V;7, specified by an externally
supplied voltage V;, is shown in Figure 4.2 (b). The bias circuit allows for approximately
linear control of the transconductance value of the element by means of the voltage V3.
Obviously, only one instance of the bias circuit needs to be provided for every family of

elements with a common transconductance value.

An active floating resistive element with wide voltage range is effectively obtained
by combining two instances of the triode transconductor with a current mirror, shown in
Figure 4.3 (a). The variable resistive element, injecting a current into the Vot terminal pro-
portional to the voltage difference Vi — Vo and the control voltage Vg, is used particularly
for conversion between voltage and current formats of the neuron state variables of the

network. The measured I-V characteristics of the implemented variable resistor are given

4.2. ANALOG VLSI IMPLEMENTATION 115

I out l Vout

e Ve

____————ﬁ————-—l Vm.—-i HVb

}—<>—> VC

()

Figure 4.2: Wide range CMOS triode transconductance element with regulated cascode
high impedance output. (a) Circuit diagram. (b) Bias generating circuit.

116 CHAPTER 4. ANALOG VLSI SYSTEMS

in Figure 4.3 (b), indicating fairly strong nonlinearities in the implemented resistance.
Certainly, other CMOS circuit implementations of variable transconductance and resistive
elements, with better linear I-V characteristics, are available, e.g., [Czarmul 86]. However,
linearity is not an absolute requirement in the implementation of an intrinsically nonlinear
system. Nonlinearities and other errors in the implemented network furthermore provide
an opportunity to experimentally verify the robustness of the learning performance in the
presence of model mismatches. A primary motivation for using the transconductance ele-
ment of Figure 4.2 (a), besides the high-impedance current output and the wide dynamic
range of the voltage input, is the ohmic and capacitive decoupling between the voltage
input and current output nodes, allowing for fairly insulated capacitive analog storage on

the ¥, terminal as needed to implement volatile adjustable parameters.

Figure 4.4 shows the schematics of the main synapse and neuron cell circuitry employed
in the network array and its peripherals. A synapse cell of single polarity is shown in
Figure 4.4 (a). A constant current I;;, linear in the voltage W;; over a wide range, is
provided by an instance of the triode multiplier of Figure 4.2 (a). The synaptic current
I;; feeds into a differential pair, injecting the current I;; o(x; — 6;) differentially into the
diode-connected I, and I, output lines. The double-stack transistor configuration of
the differential pair offers an expanded linear sigmoid range at modest I;; current levels

[Watts 92].

The summed output currents I, and I, of a row of synapses are collected in the
output cell of the corresponding neuron z;, Figure 4.4 (b). The diode connection of the
load transistors on the output lines of Figure 4.4 (a) provides normalization of the collected
output currents to an appropriate level, regardless of the number of participating synaptic
cells feeding into the neuron output, thereby supporting scalable expansion of the network
architecture [Satyanarayana89]. The neuron output cells also receive two common reference
currents I and I, obtained from one separate row of reference synapses, identical in

structure to the other synaptic cells. The reference synapses, represented in the bottom row

of the array of Figure 4.1, are supplied uniformly with a synaptic strength W, defining a

4.2. ANALOG VLSIIMPLEMENTATION 117

Ve

Vout l v
off
e

Iout 1A)
Tout (A)

| I 1 1
1 2 3 4

Vout (V)

®)

Figure 4.3: Wide range active CMOS resistive element. (a) Circuit diagram. (b) Measured
I — V characteristics.

118 CHAPTER 4. ANALOG VLSI SYSTEMS

Figure 4.4: Schematics of synapse and neuron network circuitry. (a) Synapse cell of single
polarity. (b) Neuron output cell with current-to-voltage converter.

4.2. ANALOG VLSI IMPLEMENTATION 119

common offset for the synaptic values W;; serving as an effective zero level reference for
four-quadrant operation of the synapses [Cauwenberghs 92]. By combining the currents

I I 15 and I through mirror and summing operations, the neuron cell constructs

the output current

Lot = (Ify-Ige) - (I —Ig) 4.7)
6 6
= 3 g Wiolz; —6;) =Y ge Woss o(zj — ;)
j=1 j=1
6
= g Y, (Wi — Wog) oz — ;) .
J=1

Apart from a factor g., which accounts for the triode element transconductance and current
scaling factors on the output line, the current (4.7) corresponds to the summed synaptic
contributions in (4.1). Additionally, the contribution of the external input y; to neuron x;
is included in (4.7) by injecting a current proportional to y; into the output node. With
the particular network configuration of the present implementation, for demonstration of
trajectory learning, the external inputs only contain the teacher forcing signals (4.6) applied
to the first two neurons, z1 and z;. A differential transconductance element with inputs
z; and x?, for forced teacher action in accordance with (4.6), is shown connected to the
neuron output in the dashed inset of Figure 4.4 (b), applicable to the forced neurons z;
and z; only. The transconductance element implements the teacher forcing characteristics
of (4.6), with the function 7(.) performed by the sigmoidal transfer function of the input
differential pair, and the amplitude A determined by the tail current of the device, equal to

the product of the triode transconductance g. out and the control voltage V.

The combined output current Iy, is converted to the neuron output voltage z; by
means of an active resistive element, as described above with reference to Figure 4.3 (a).
Besides serving to convert between current and voltage formats, the resistive element
also implements the dynamics for the neuron state variables, with the time constant 7
in (4.1) corresponding to the RC product of the resistance value 1/g. out and a parallel

capacitance Cout. With Cout = 5pF, the delay ranges between 20 and 200usec, adjustable

120 CHAPTER 4. ANALOG VLSI SYSTEMS

by the control voltage V, ou Of the regulated cascode defining the conductance ge ou of the
resistive element.

Figure 4.5 shows the measured static characteristics of the synapse and neuron functions
for different values of Wj;and 6, (i = j = 1), obtained by disabling the neuron feedback and
driving the neuron inputs of the synapse array externally. Effects of random and systematic
errors in the implementation on the shape of the curves are clearly visible. In particular, the
characteristics for different threshold values §; in Figure 4.5 (b) show a significant distortion
due to saturation effects at the boundaries of the synapse dynamic range. Nevertheless, the
discrepancy between expected and realized network characteristics is largely irrelevant,
since the stochastic perturbative learning process does not assume a particular form of the
network structure, or perfect model knowledge of the implemented structure. Significantly
more important than the shape of the implemented network characteristics is the analog
resolution it supports for the network parameters and state variables. As demonstrated
in Figure 4.5, the implemented network provides a dynamic range of 2 V for the neuron
voltages, and 3 V of fairly linear voltage range for programming of the synapse and

threshold parameters.

4.2.3 Learning Circuitry

Figure 4.6 (a) shows the simplified schematics of the learning cell circuitry, replicated
locally for every parameter W;; and 6, in the network array of Figure 4.1. The circuitry of
Figure 4.6 (a) directly implements the high-level schematic of the learning cell depicted in
Figure 3.2, and therefore complies with the system-level description regarding the on-line
time-interlaced architecture in Section 3.1. The description of the learning system therefore
proceeds with direct reference to the general architectural issues addressed in Section 3.1.

As indicated before, most of the variables relating to the operation of the learning cell
are local, with exception of a few global signals communicating to all cells. Global signals
include the sign and the amplitude of the perturbed error £ and predefined control signals.

The stored parameter p; and its binary perturbation =; are strictly local to the cell, in that

4.2. ANALOG VLSI IMPLEMENTATION

Output Voltage x; (V)

Output Voltage x; (V)

I 1 1 1
10 05 00 05 1.0
Input Voltage x; (V)
(a)
T l T T L

00k W,']' =16V

08V

08l 6=16V

1 I i 1

-1.0 -0.5 0.0 0.5 1.0

Input Voltage x; (V)

()

121

Figure 4.5: Measured static synapse and neuron characteristics, for various values of (a)
the connection strength W;;, and (b) the threshold 4;.

122 CHAPTER 4. ANALOG VLSI SYSTEMS

' NEERA
&p) &p+n) &p-n)

)

Figure 4.6: Learning cell circuitry. (a) Simplified schematics. (b) Waveform and timing
diagrams.

4.2. ANALOG VLSI IMPLEMENTATION 123

they do not need to communicate explicitly to outside circuitry, except trivially through the
neural network it drives. This simplifies the structural organization and interconnection of
the learning cells, which are integrated with the synapse and threshold cells in the network

array of Figure 4.1.

The parameter voltage p; is stored on the capacitor Csiore, and interfaces directly with
the corresponding network circuitry providing the synapse or threshold function. The
storage capacitor Csore furthermore couples to a second capacitor Cpert for activation of
the perturbation. Since the perturbation can only take one of two values %o, it is locally
represented and processed in binary format. The binary perturbation is generated locally,
once at the beginning of every update cycle, by means of a procedure described further
below. The perturbation bit 7; selects either of two complementary signals V., and
V_,, supplied globally to all learning cells, for driving the coupling capacitor Cpert. Vi is
selected for m; = 1,and V_, is selected otherwise. With the specific shape of the waveforms
V.- and V_, depicted in Figure 4.6 (b), the proper sequence of perturbations activated onto
the parameter is established, for successive observations of the complementary error terms
in (4.5). In particular, both V., and V_, represent the perturbation sequence 0, 7;, -7,
with m; = 40 for Vi, and m; = —o for V_,. Successive observations of the network
error, synchronized with the three phases of the perturbation sequence, yield estimates
of the unperturbed error £(p) and the complementary perturbed errors £(p + w) and
&(p — m), respectively. An estimate of the differential perturbed error £ is then constructed
externally by combining the obtained values for £(p + 7) and £(p — 7), in accordance
with (4.5). By virtue of the rigorous scheme used to activate the perturbations onto the
parameters, involving mainly binary selection operations at the local implementationlevel,
the perturbed error observations and the corresponding estimate of £ can be expected of
reasonably high quality, provided the outcomes of the error observations are systematic

and consistent in the respective parameter settings.

The obtained global value for £ is then used, in conjunction with the local perturba-

tion bit 7;, to locally update the parameter value p; according to (4.4). As suggested in

124 CHAPTER 4. ANALOG VLSISYSTEMS

Section 3.1, the update increment in (4.4) is decomposed into its amplitude and polarity
components, each further being processed and activated independently. The motivation
for separating both follows from accuracy considerations applying to incremental update
learning rules in general. While the correct implementation of the polarity of the intended
learning increments is crucial to warrant proper convergence of the parameter values,
the amplitudes of the implemented increments or decrements are allowed relative errors
within certain margins. Incidentally, formula (4.4) reveals that the increment polarity can
be obtained from a binary exclusive-or operation on the polarities of the perturbed error £
and the perturbation bit 7;, with the parameter value being decremented if both polarities
are equal, and incremented otherwise. Likewise, the increment amplitude is given by
the amplitude of £. The binary operation to determine the increment polarity is imple-
mented virtually error-free with simple digital CMOS circuitry. The obtained value for the
polarity then activates either of a given analog increment or decrement, with amplitude
proportional to |£], onto the parameter value. The analog device serving the increments
and decrements does not need to be excessively precise, other than required to satisfy the
requested increment polarity. Requirements on relative accuracy of the increment size,
scaling with the amplitude, are therefore more stringent than requirements on absolute,

uniform accuracy.

The binary controlled charge pump described in Section 3.2, offering a fine resolution
of the charge increment amplitude ranging over several decades, is used for this purpose.
The charge pump circuitry of Figure 3.6 is shown essentially replicated in the dashed-line
inset of Figure 4.6 (a), interfacing with the storage capacitor Cyore to update the analog
parameter p; according to the supplied analog and binary signals deﬁhing the increment
amplitude and polarity. The polarity of the increment or decrement action is determined
by the control signal DECR/INCR, obtained from an exclusive-or gate operating on the
polarities of the perturbed error £ and the perturbation bit ;. The amplitude of the
incremental update, set proportionally to |£|, is controlled by the globally supplied Vipp »,
and Vypp , bias levels onto the gates of MN and MP, respectively. Both transistors MN

4.2. ANALOG VLSI IMPLEMENTATION 125

and MP are biased in the subthreshold region [Vittoz 77], [Mead 89], allowing exponential
control of the current amplitude ranging down to pA levels. Consequently, the charge
pump device is able to supply reliable increments and decrements of almost arbitrarily
small size, as needed in the final stages of the learning near convergence. The learning
cycle is completed by activating the update with a high pulse on the enable line EN_UPD.

The next learning cycle then starts with a new random bit value for the perturbation ;.

4.2.4 Local Generation of Random Perturbations

The random bit streams 7;*) are generated on-chip using a variant on the well-known
technique to obtain pseudo-random bit sequences by means of linear feedback shift reg-
isters [Golomb 67]. For optimal performance, the perturbations need to satisfy certain
statistical orthogonality conditions, and a rigorous but elaborate method to generate a
set of uncorrelated bit streams in VLSI has been derived [Alspector 91]. To preserve the
scalability of the learning architecture and the local nature of the perturbations, we have
chosen a simplified scheme which drastically reduces the implementation complexity but
which does not aversely affect the learning performance to first order, as verified experi-
mentally. The array of perturbation bits, configured in a two-dimensional arrangement as
prompted by the location of the learning cells near the parameters in the network array,
is constructed by an outer-product exclusive-or operation from two generating linear sets
of uncorrelated row and column bits, 7, (j = 0...6) and m¥ G = 1...6), shown in
Figure 4.1. In particular, the values of the perturbation bits are obtained locally, inside
the corresponding learning cells, by means of exclusive-or gates whose inputs connect to
the locally intersecting horizontal and vertical bit lines. While obviously deterministic
relationships exist among the thus constructed bit values, statistically the obtained bits are
mutually uncorrelated with equal probabilities for both binary outcomes, provided the
generating row and column bits «;! and 7,V are statistically uncorrelated and unbiased

as well.

The row and column bits themselves are obtained from exclusive-or combinations of

126 CHAPTER 4. ANALOG VLSISYSTEMS

AL ALAALL
I T

—

T
il s el

snnSNEEENNEE

rrrr.rorr +t_1® 11T 1T/
l A R et O T R A R

B i ey

.‘a7

big

N T

Figure 4.7: Multi-channel pseudo-random bit generation using linear feedback shift
registers.

the parallel outputs of two counter-propagating linear feedback shift registers, with poly-
nomial degrees six and seven respectively, generating two independent pseudo-random
bit sequences in time and space. The configuration of the two registers and the linear
array of exclusive or-gates, combining the register outputs into the row and column bits,
is shown in Figure 4.7. In principle, the row and column bits could have been obtained
from the parallel outputs of one single feedback register only, without the XOR operations,
though such would imply obvious correlations between the bit values over time, as any
two given taps of the parallel output of a shift register represent the same bit sequence
merely displaced in time. Since the parallel output bit sequences of the two registers
generating the row and column bits are mutually counter-propagating and independent,
propagation effects within the set of generated bits are avoided. With polynomial degrees
of sixand seven for the two shift register bit sequences, the combination of the register out-
puts delivers a periodicity of (2° — 1) x (2" = 1) = 8,001 [Golomb 67], which is appropriate
for the perturbative learning scheme. While longer random sequences could be obtained
by choosing higher degrees for the generating polynomials of the registers, the particular

choice was made to allow for a simple implementation of the linear feedback circuitry.

4.2. ANALOG VLSI IMPLEMENTATION 127

4.2.5 Long-Term Volatile Storage

After learning, it is desirable to retain the parameter settings established onto the network.
The implemented chip includes local provisions for refreshing the parameters, using the
dynamic analog storage technique described in Section 3.2 of the previous chapter, with
the function form of the updates specified by Eqns. (3.2) and (3.3). The parameter refresh
is performed in the background, and does not interfere with the continuous-time network

operation.

For practical reasons, the refresh circuitry implementing the above analog memory
technique is integrated with the learning circuitry driving the parameter storage capacitor.
As suggested before in Chapter 3, the charge pump used for the learning updates can serve
directly to supply the incremental updates in the parameter values for partial refresh as
well. To that purpose, probing and multiplexing circuitry are added to the learning cell
of Figure 4.6 (a), activated in the refresh mode of operation while the learning circuitry is
disabled, to access the stored parameter value for binary quantization and drive the charge
pump correspondingly. The simplified schematics of the refresh circuitry, discarding the
learning portion of the cell sharing the same charge pump, are shown in Figure 4.8. To
reduce the complexity of implementation, the binary quantization of the stored analog
values is performed sequentially outside the array of cells, in a multiplexed arrangement
along each of the columns in the array, as illustrated generally in Figure 3.5 (b) and more
specifically in Figure 4.1. Since the refresh rates required for the volatile storage medium
are rather modest, typically in the 100 Hz range, a small set of binary quantizers, one
per column in the array, provides sufficient bandwidth to accommodate multiplexing of
a fairly large number of storage cells. A binary SEL signal selects the particular row of
cells in the array to be refreshed at a given time, connecting the buffered stored value of
a selected cell to the binary quantizer on the corresponding column. A logic high pulse
on the EN_UPD line of the selected row finally establishes the partial increments (3.2),
activating the charge pumps of the selected storage cells with polarity DECR/INCR given

by the binary quantization values of the corresponding columns.

128 CHAPTER 4. ANALOG VLSI SYSTEMS

EN_UPD l'— Y
|
‘l MP
I
' MN
| -
l Y o W
I I
SEL INCR/DECR

Figure 4.8: Simplified schematics of the storage cell circuitry.

The complete circuit-level schematics of the synaptic cell Wj; used in the array of
Figure 4.1, including the local functions of synaptic contribution, generation of the pertur-
bations, stochastic error-descent learning, and long-term storage of the volatile parameters,
is given in Figure 4.9. The layout of the synapse éell, measuring 170um x 180pm in 2pm
CMOS technology, is depicted in Figure 4.10. The reference synaptic cells §;/Weg shown
in the bottom row of Figure 4.1, which supply the value of the locally stored threshold
parameter 6; to all synapses on the same column while providing the W synaptic contri-
butions on the reference row, follow a circuit and layout structure almost identical to that

of Figures 4.9 and 4.10. Table 4.1 summarizes the chip features, and a micrograph of the
implemented chip is shown in Figure 4.11.

4.2.6 Global Supervision of Learning and Storage Functions

Besides the local learning and storage functions, of which the implementation was de-
scribed in detail above, the coordination and supervision of those local functions requires
some global functions, which operate at a higher level surpassing the individual struc-

ture of parameter cells in the array. The global functions involve a dimensionality much

4.2. ANALOG VLSI IMPLEMENTATION 129

LEARN/REFR Lo we I -
| 7 Yy ~ Lot
SEL [EN_UPD

Figure 4.9: Complete schematics of the synapse cell including learning and storage
functions.

130 CHAPTER 4. ANALOG VLSISYSTEMS

Figure4.10: Physicallayout of synapse cell with integrated learning and storage functions.

Table 4.1: Chip features of the implemented learning network.

Technology 2 um p-well double-poly CMOS
Supply voltage +5V ‘
Power dissipation
total 1.2 mW
Area
active die 22mm X 2.2 mm
synapse cell 170 um X 182 pm

Transistor count

total 3885
synapse cell 56

4.2. ANALOG VLSI IMPLEMENTATION 131

Figure 4.11: Chip micrograph. Center: network array of synapse and neuron cells.
Bottom: multi-channel random bit generator.

132 CHAPTER 4. ANALOG VLSI SYSTEMS

smaller than that of the local functions, such that a dedicated hardware implementation
tuned towards optimal efficiency is not needed. As suggested in Section 3.1, the low-
dimensional global functions can instead be implemented on a general-purpose platform
such as a micro-controller, offering a wide spectrum of functionality which can be tuned
towards optimal performance at virtually no cost of hardware efficiency. For the stochastic
perturbative learning algorithm in particular, the global functions operate on scalar vari-
ables relating to error observations on the network, evaluating the network error under
complementary pertufbations, and combining the two results to construct an estimate of
the differential perturbed error (4.5). Possible functional extensions for increased perfor-
mance, which can easily be incorporated in a general-purpose implementation, include
adaptive biasing techniques for dynamically optimizing the learning rate, and conditional
tests on the range of unperturbed and perturbed error observations (or various combi-
nations of all three observed values £(p), £(p + w) and £(p — w)) to guard and remedy

against potential instabilities in the updates.

In the present implementation, all global learning functions are performed off-chip,
by means of analog and digital hardware interfacing with a general-purpose computer.
The evaluation of the error functional (4.2) on the network is performed with discrete
analog components, leaving some flexibility to experiment with different formulations of
error functionals that otherwise would have been hardwired. A mean absolute difference
(v = 1) norm is used for the metric distance, and the time-averaging of the error (4.3) is
achieved by a fourth-order Butterworth low-pass filter. The cut-off frequency is adjusted to
accommodate an AC ripple smaller than 0.1%, giving rise to a filter settling time extending
20 periods of the training signal. Since three observations of the error (4.2) on the network
are needed to obtain the unperturbed and complementary perturbed error estimates, a

single learning iteration spans at least 60 periods of the training signal.

In principle, the refresh of the parameters does not require higher-level global super-
vision at all, since the timing and multiplexing of local update and binary quantization

functions can be coordinated by means of predefined cyclic control sequences, which can

4.3. EXPERIMENTAL LEARNING RESULTS 133

be generated on-chip driven by a periodic clock signal. Such allows the refresh operations
to run autonomously in the background, transparent to the operation of the network. In the
present realization, the binary quantization functions are not included on the chip circuitry
and need to be performed externally. While the on-chip integration of appropriate quan-
tizer architectures is technically possible, the main focus in the experiment conducted here
is to characterize the learning performance of the network chip, to which the supporting
storage method is secondary. A second related chip, containing an isolated array structure
of storage cells incorporating on-chip which does incorporate binary A/D/A quantizers,
has been developed and tested separately. The results, demonstrating long-term dynamic

analog storage with autonomous operation, are reported in Section 4.4.

For simplicity of the conducted learning experiment, the parameters p; are stored ex-
ternally once the learning is completed, and thereafter refreshed sequentially by supplying
values for the quantization bits Q(p;*)) as defined by the polarity of the observed deviation
between internally probed p;(*) and externally stored p; parameters values. External stor-
age and generation of the binary quantization values are performed and controlled by the
computer supervising the experiment. The simplified refresh scheme with external stor-
age does not involve internal quantization feedback loops, and therefore allows error-free
operation at slower refresh rates. The parameter refresh is performed in the background

with a 100msec cycle, whenever the learning process is disabled or interrupted.

4.3 Experimental Learning Results

As a proof of principle, the network is trained to generate outputs following a circular

target trajectory, in absence of externally supplied inputs. The target output signals are

defined by the quadrature-phase oscillator

I (t) = Acos(2nft)

(4.8)
z3(t) = Asin (2nft)

134 CHAPTER 4. ANALOG VLSI SYSTEMS

with amplitude A = 0.8 V and frequency f = 1 kHz. In principle a recurrent network of
two neurons suffices to generate quadrature-phase oscillations, and the extra neurons in
the network serve to accommodate the particular amplitude and frequency requirements

and assist in reducing the nonlinear harmonic distortion.

Training a recurrent neural network to exhibit prescribed oscillatory behavior by means
of error descent in the parameter space is a harder problem than might be anticipated at first
thought. As indicated in the timing analysis of Section 2.3, the shape of the error surface
in parameter space, defined by the time-averaged format of (4.2) or its equivalent as im-
plemented by low-pass filtering of (4.3), contains local minima and abrupt discontinuities,
which lead to unpredictable learning results when the network is initialized arbitrarily.
Incidentally, we found that randomly initialized learning sessions usually fail to gener-
ate oscillatory behavior at convergence, the network being trapped in a local minimum
defined by a strong point attractor. Even with strong teacher forcing, these local minima
persist. As shown in Section 2.3, the sharp parameter dependence of the error functional,
fueling the convergence problems, can be mostly avoided by using shorter integration
time intervals for averaging of the error (4.2), matching the characteristic time scale of the
network dynamics and training signal. Such requires a modified scheme of coordinating
the perturbations and error observations to allow practical on-line implementation, which

could not be incorporated in the present experimental set-up.

The convergence problems due to the ill-shaped structure of the error functional can
be circumvented through a rational choice of the initial conditions. Clearly a particular
choice of initial conditions for the parameter values may artificially convert a hard learning
problem to a trivial one, and to warrant meaningful results we have derived initial condi-
tions based on physical considerations generally valid for other trajectory learning tasks
on recurrent neural networks as well. We obtained consistent and satisfactory results with
the following initialization of network parameters: strong positive diagonal connection
strengths W; = 1, zero off-diagonal terms W;; = 0; i # j and zero thresholds 6; = 0. The

positive diagonal connections W;; are needed to free the neuron state variables from the

4.3. EXPERIMENTAL LEARNING RESULTS 135

point attractor at the origin, corresponding to the spontaneous decay term —ux; in (4.1).
This allows the network outputs to better follow the target signals under strong initial
teacher forcing, for fast and robust learning. The zero initial values for the cross connec-
tions W;; ; i # j are required to avoid any bias in the dynamics, due to coupling between
neurons, during the inijtial phase of the learning. Gradual relaxation of the teacher forcing
strength afterwards allows to establish the desired coupling strengths needed to maintain

the neuron output waveforms closely near those of the target signals.

Figure 4.12 shows recorded error sequences under training of the network with the
target oscillator (4.8), for four different sessions of 1,500 learning iterations each starting
from the above initial conditions. The learning iterations span 60 msec each, for a total
of 100 sec per session. The teacher forcing amplitude) is set initially to V}, = 3 V,
and thereafter decays logarithmically over one order of magnitude towards the end of
the sessions. Fixed values of the learning rate and the perturbation amplitude are used
throughout the sessions, with 4 = 25.6 V-and ¢ = 12.5mV. All four sessionsshowa rapid
initial decrease in the error under stimulus of the strong teacher forcing, and thereafter
undergo a region of persistent flat error slowly tapering off towards convergence as the
teacher forcing is gradually released. Notice that this flat region does not imply slow
learning; instead the learning constantly removes error as additional error is adiabatically

injected by the relaxation of the teacher forcing.

Near convergence, the bias in the network error due to the residual teacher forcing
becomes small. Figure 4.13 shows the network outputs and target signals at convergence,
with the learning suspended and the parameter refresh activated, illustrating the minor
effect of the residual teacher forcing signal on the network dynamics. The oscillogram of
Figure 4.13 (a) is obtained under a weak teacher forcing signal, and that of Figure 4.13 (b)
is obtained with the same network parameters but with teacher forcing disabled. In
both cases the oscilloscope is triggered on the network output signals. Obviously, in
absence of teacher forcing, the network does no longer run synchronously with the target

signal. However, the discrepancy in frequency, amplitude and shape between either of the

136 CHAPTER 4. ANALOG VLSI SYSTEMS

Output Error (V)

Figure 4.12: Recorded evolution of the error during learning, for four different sessions
on the network chip.

4.3. EXPERIMENTAL LEARNING RESULTS 137

free-running and forced oscillatory output waveforms and the target signal waveforms is

evidently small.

It would have been instructive to observe the internal dynamics of the network other
than that of the two output neurons z; and z;. Unfortunately, the output voltages of
internal neurons z3 through z¢ are not accessible off-chip in the present chip implementa-
tion, due to pin-out limitations. Instead, we recorded the evolution of the complete set of
network parameters, which are accessible through the probing and multiplexing circuitry
supporting the binary quantization, during each of the above four learning sessions. The
recorded curves for the synapse and threshold parameters, sampled every 50 learning
update cycles, are shown separately for all four sessions in Figure 4.14. To ease interpre-
tation, the parameter curves relating to either of the four internal neurons are visually
distinguished from those pertaining exclusively to the two output neurons. Both fami-
lies of curves clearly display a significant change in the parameter values from the initial
settings occurring along the learning sessions, which testifies that all neurons, including
the internal neurons, are actively engaged in training the dynamics of the output neurons.
The strong similarity between sets of parameter curves across different learning sessions,
shown in the four separate plots of Figure 4.14, further indicates that the involvement of
the internal neurons during learning is a systematic rather than a purely diffusive process,
whereby the complete spectrum of dynamics achievable by the fully configured network

is explored to produce the desired output neuron waveforms.

Closer examination of the parameter values at convergence, given in Table 4.2, re-
veals that all four sessions actually result into approximately the same network, with the
neurons configured in a particular order. In principle, the outputs of the network are
invariant to topological interchanging of internal neurons, with corresponding permuta-
tions of rows and columns in the parameter matrix. Therefore, the learning task contains
multiple degenerate solutions, all of which should equally likely be obtained under learn-
ing from the unbiased initial values for the parameters. In practice, analog offsets and

mismatches in the implementation of the network break the symmetry existing among the

138 CHAPTER 4. ANALOG VLSISYSTEMS

Figure 4.13: Oscillograms of the target signals and network outputs after training, (a)
under weak teacher forcing, and (b) with teacher forcing disabled. Top traces: z;(t) and
z¥ (). Top traces: z,(t) and z3 (t).

4.3. EXPERIMENTAL LEARNING RESULTS 139

S
L 2]
&
=
3
>
E)
2
)
£
g
]
=
e
723
&
3
G
>
E ol
3]
L
3
&
g
jalt
)] 1 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 [20 40 60 86 100
Time (sec) Time (sec)

Figure 4.14: Recorded evolution of the network parameters during learning, for four
different sessions on the network chip. (Bold curves: external-related parameters; thin
curves: internal parameters. Solid curves: weight parameters; dashed curves: threshold
parameters.)

140 CHAPTER 4. ANALOG VLSI SYSTEMS

neurons, and introduce a bias in the network dynamics at the initial parameter settings,
favoring a particular solution. The fact that the implemented system is able to consis-
tently regenerate the same network solution from different learning sessions, following
more or less the same trajectory in parameter space despite different instances for the
random perturbation values, illustrates the global deterministic error descent property of
the stochastic scheme, resembling the characteristics of gradient descent on a macroscopic
scale. More importantly, learning sessions on different fabricated instances of the same
chip design all consistently converged to network solutions of comparable quality, de-
spite fairly large differences in the parameter values obtained at convergence due to the
randomness of the implementation errors. The robustness of the implemented learning
system to random offsets and nonlinearities induced at fabrication is a major advantage
of the model-independent approach followed here, using statistical techniques based on

direct observations of the error to obtain the gradient information needed for learning.

44 Autonomous Dynamic Analog Storage

Performance tests on the autonomous storage aspects of the described integrated archi-
tecture are carried out on a separate chip, implementing an array of 128 storage cells
interfacing with on-chip binary quantization elements configured for autonomous refresh
operation. Strictly speaking, experimental results obtained from the reduced chip im-
plementation cannot be directly extrapolated towards the original system with embedded
network and learning functions. We note that nevertheless both implemented architectures
are fully compatible, complying to the analog-binary structure outlined in Section 3.1, and
using topologically identical instances for the charge-pump incremental update elements.
Therefore, the experience gained from the experiments presented below is applicable to
future generations of learning chips incorporating on-chip binary quantization for au-
tonomous refresh operation. The reason for not integrating quantizing functions in the
present learning network implementation was partly driven by practical considerations of

pin count and die size, and was also partly intended to clearly separate different aspects

4.4. AUTONOMOUS DYNAMIC ANALOG STORAGE 141
Table 4.2: Parameter values observed at convergence, for four different sessions.
Session 1 Session 2

i 1 2 3 4 5 6 i 1 2 3 4 5 6
Wij 1.18 021 061 D68 -1.17 1.06 Wiy 1.17 024 048 069 -1.24 1.05
W2 | 044 1.80 047 079 1.86 -1.40 W2 | 040 180 034 084 186 -145
w3 | 016 029 1.18 015 026 0.06 w3 | -005 037 126 013 017 004
W4 | 161 016 -0.04 045 -0.12 0.19 W4 | 140 011 026 073 000 0.06
W sj 068 033 146 183 184 030 W 5j 069 019 156 182 185 040
We | 027 142 025 123 -1.02 0.15 We | 021 143 028 131 -1.08 024
8j 000 O51 099 078 0.18 0.16 0j 0.01 047 078 066 016 0.09

Session 3 Session 4

i 1 2 3 4 5 6 i 1 2 3 4 5 6
Wij 121 024 062 -066 -1.16 0.99 Wi 1.25 D20 054 061 -1.06 1.06
W2 | 039 176 045 090 186 -1.38 W2 | 049 179 047 098 186 -1.42
W3j 014 029 132 009 019 014 W 3j 005 021 124 032 015 017
Wy4j 154 031 011 054 -037 0.08 Wyj 146 025 016 070 -0.10 0.08
Wsi | 073 026 143 182 183 035 Wsi | 067 032 143 1.8 185 041
Wej 021 141 029 119 -102 020 Wej 020 144 021 131 -1.07 013
6j 002 -046 081 068 012 003 8j 0.08 057 096 064 035 0.06

142 CHAPTER 4. ANALOG VLSI SYSTEMS

of performance for systematic testing.

The array structure of storage cells contains four rows of 32 capacitive memory cells
each, every row driven by a single binary quantizer in a time-multiplexed configuration
conform to that of Figure 3.5 (b). A micrograph of the 4 mm? 2um double-poly CMOS
chip is shown in Figure 4.15. The incremental refresh device complies with the I/D circuit
structure of Figure 3.6. For the binary quantizers, the A/D/A architecture of Figure 3.7
was chosen, with specific circuit implementation described in Appendix A. The size of
the capacitive storage elements is 1 pF. With special care in the design to minimize the
parasitic junction leakage current induced by the MOS transistors coupled to the storage
capacitors, the drift rate of the stored voltages was reduced to typically less than 1 mV/sec

at room temperature.

Figure 4.16 shows the results of experiments conducted on the chip to demonstrate
the robustness of autonomous analog memory operation in especially noisy and imprecise
environments. While the embodiment of the A/D/A converter used for the quantization
was specifically designed and rated for a resolution of 8 bit, the device was required to
operate at 9-bit resolution in A/D conversion mode to support 8-bit effective quantization
(256 discrete levels) of the analog memory. Likewise, no precaution was taken to shield the
circuitry from noise originating in the power supply and from various other external noise
sources. This resulted into relatively poor accuracy and noise performance of the binary
quantization obtained from the LSB of the conversion. Figure 4.16 (a) shows the measured
probability distribution of the quantization bit as a function of input voltage, in the neigh-
borhood of the most critical bit-transition of the converter. The distribution, which ideally
follows sharp and regularly spaced transitions, shows signs of distortion due to noise and
conversion nonlinearities, giving rise to rather frequent errors in the individual updates
under refresh. Nevertheless, for a very small amplitude of the refresh updates (20 xV)
relative to the separation between the discrete levels (13 mV), the memory experimentally
demonstrated long-term storage with perfect data retention over time spans exceeding 10°

refresh cycles. This robustness was observed even for relatively “weak"” memory states

143

4.4. AUTONOMOUS DYNAMIC ANALOG STORAGE

Ao
] & ksns

arnpnbnwu u&sﬂ K4}

R R i

16 7 e s 33 i

integrated analog memory.

element

icrograph of the 128-

Chipm

Figure 4.15

144 CHAPTER 4. ANALOG VLSI SYSTEMS

such as the one corresponding to “10000000," for which Figure 4.16 (a) predicts an indi-
vidual error rate higher than 30% at its boundary toward the state “01111111." Even at an
elevated 30% error rate, it is quite unlikely that an ensemble of consecutive quantization
bits will produce a consistent drift away from the correct memory level, which intuitively
explains the long-term stability of the memory despite the high quantization error rate.
Figure 4.16 (b) shows the measured histogram distribution for the voltage level stored on
an analog memory cell, preset initially to either of four adjacent memory states, under pe-
riodic refresh at 5 msec intervals and with 20 pV update steps. By virtue of the redundant
refresh method of the invention, the excursion of the memory value is confined to a nar-
row band with observed width less than 2 mV (limited by the resolution of the voltmeter),
significantly better than the intrinsic voltage discrimination capability supported by the

quantizer due to the noise and the conversion nonlinearity.

4.4. AUTONOMOUS DYNAMIC ANALOG STORAGE 145

"1")

LSB Polarity P(LSB

Input Voltage (V)

(a)
o L P :
IOOL % -
S :
& -
§ 50 % : -
c e :
=) .
‘-g 0 = 4 J: _
e - {\ H
= oy :
9 5 |
Q wQ— : o~ e - —
> - .
e = :
o : o
& z :
{ [| | i

229 230 231 232 233

Capacitor Voltage (V)
®)

Figure 4.16: Experimental observation of quantization and autonomous refresh. (a)
Measured probability of LSB polarity at 9-bit quantization. (b) Voltage distribution of
quantized states observed under periodic refresh with parameters 6 = 20 uV; T' = 5 msec.

146 CHAPTER 4. ANALOG VLSI SYSTEMS

147

Chapter 5

Conclusions

5.1 Stochastic Error Descent Optimization

The parallel stochastic method for error-descent optimization offers an attractive gradient-
free alternative for gradient-based optimization, such as the widely used method of gra-
dient descent and its various derivates. In particular, the stochastic alternative does not
require explicit information about the functional dependence of the system under opti-
mization, unlike gradient-based methods which assume a given functional model for the
system to calculate the parameter updates. In contrast, the stochastic method obtains the
values for the updates from direct evaluation of the optimization error index at select values
for the parameters only. The method therefore supports optimization of physical systems
which lack explicit quantitative information about the internal structure with regard to the
parameters and their impact on the error measure, but which support direct observation
of the error under arbitrary settings of the parameters. Likewise, the stochastic method
avoids the usual degradation of optimization performance encountered in the presence
of mismatches between the conceptual and the true models of an otherwise well-defined

system, such as systematic errors in a constructed system arising from impurities in the

implementation.

From a computational perspective, the efficiency of the stochastic method for error-

148 CHAPTER 5. CONCLUSIONS

descent optimization is obviously hindered by the limited scalar information obtained
from the error observations, only revealing part of the full error gradient per iteration.
Nevertheless, owing to the uncorrelated statistics of the random parameter perturbations
used for the error observations, it was shown that the efficiency of the stochastic method
compares favorably to that of gradient descent which usually requires an extensiveamount
of computation to arrive at a value for the error gradient from the model information.
As a result, the method becomes computationally more efficient than gradient descent
for optimization in complex systems, for which the required computational resources to
obtain full gradient information usually scale strongly with the number of parameters to be
optimized. In addition, the favorable efficiency of the method is achieved using relatively
simple operations independent of the intricacies of the system model, which are therefore

more amenable to special-purpose hardware implementations.

5.2 On-Line Learning in Dynamical Systems

While the stochastic method can be generally applied to the optimization of a broad class
of parameter-driven systems, it is especially suited for applications of supervised learning
in recurrent dynamical systems, for which the model complexity of the system dynamics
leads to fairly elaborate schemes to compute the error gradient, especially when real-time
operation is required. On-line schemes for the stochastic method, supporting real-time
supervised learning, were derived through partitioning of the integrated optimization
error functional in successive non-overlapping time intervals. It was shown that optimal
convergence results are obtained when the time spacing between consecutive intervals
matches the typical time scale of the system dynamics and the training signals. Particularly
long time intervals for the error observations cause a strong and non-uniform parameter
dependence of the error functional. Likewise, very short time intervals lead to incomplete
activation of the internal system dynamics during learning, effectively only involving
parameters which relate to those state variables directly connected to the output units.

Practical on-line realization of the method in principle requires two error observations

5.3. ANALOG VLSI IMPLEMENTATION 149

be performed simultaneously on the system, for two different settings of the parameters.
A generally applicable realization, under arbitrary configurations of the system under op-
timization and the training signal, was not found feasible due to the relatively long time
spans required for the error observations. For practical purposes, two alternative on-line
realizations of the method, each supporting a distinct class of applications, were formu-
lated and analyzed with regard to the implied constraints on the system configuration and
training signals. One realization, for prediction of time-varying processes, employs repli-
cas of the system to perform the error observations concurrently, thereby requesting full
knowledge of the system model and requiring access to the internal state variables. The
other realization, for establishing a given dynamical response onto an arbitrary system,
basically unfolds the two error observations in time on the same system, and implies a
periodic format for the training signals without requiring any knowledge about the sys-
tem characteristics. While the first concurrent realization may allow for gradient-based
alternatives, the second time-interlaced realization truly reflects the model-free nature of
the stochastic method unattainable with gradient based methods, thereby supporting the
optimization of black-box dynamical systems for which the parameter dependence can

only be obtained through direct observation.

5.3 Analog VLSI Implementation

The model-free nature of the stochastic method, and its on-line time-interlaced variant, is
particularly suited for learning and optimization in analog VLSI systems, of which exact
models cannot be formulated due to analog imprecisions in the implementation. By virtue
of the simple functional form of the method, the learning functions themselves can be
efficiently implemented inanalog VLS], organized into a scalable and modular architecture,
whereby local units serving parameter updates and perturbations are replicated for every
parameter, and whereby global functions pertaining to the error observations coordinate
the local functions at a higher level. The resulting architecture supports full parallel and

mutually independent operation of the local functions to attain a large bandwidth, and

150 CHAPTER 5. CONCLUSIONS

implies a minimal activity of global interconnect signals across the local cells.

Considerations of accuracy in the implementation of the local learning functions have
prompted a hybrid analog-binary scheme for the activation of the perturbations and the
generation of the incremental parameter updates. The resulting analog-binary architecture
can essentially be used as well to periodically refresh the parameter values using a fault-
tolerant incremental scheme, for long-term dynamic multi-valued storage of the parameter
values whenever the learning is disabled. A practical and fairly accurate realization for
the learning and refresh increments is obtained using a binary controlled CMOS charge

pump circuit, supplying increments of reliable size over a large dynamic range.

Because of the common functional form of the incremental parameter updates under
both learning and refresh, it is tempting to look for deeper origins which connect both,
if any. Both the stochastic perturbative method for learning and the partial incremental
refresh method for learning and optimization can be viewed as belonging to a common
class of robust techniques, which exploit redundancy and statistical averaging to enhance
system performance in an otherwise imprecise and noisy analog VLSI implementation
medium. In particular, the redundancy in the partial incremental format of the refresh
updates, specifying small fixed-amplitude increments in the direction towards the nearest
discrete memory level, avoids the sensitivity to quantization errors typical of alternative
refresh techniques. Likewise, the statistical averaging of the linear gradient estimates of
the stochastic method under perturbations in random directions produces error descent
characteristics which resemble those of an error-free gradient descent implementation, at
a fraction of the implementation complexity. One standardized technique which can be
counted as belonging to the same robust class is the method of delta-sigma modulation,
exploiting redundancy and statistical averaging to extract high-resolution analog or digital

information of low frequency content.

5.4. EXPERIMENTAL VERIFICATION 151

5.4 Experimental Verification

We have implemented and characterized an analog recurrent neural network chip incor-
porating the integrated learning and storage architecture. Experimental tests on the chip,
trained with a circular dynamic trajectory, confirmed the robustness of learning perfor-
mance in the presence of analog offsets in the implementation due to imprecision in the
fabrication. While the time-averaged formulation of the functional used for error-descent
learning is known to cause convergence problems due to local minima and discontinu-
ities in the error surface, consistently successful results were obtained using strong initial
teacher forcing and unbiased initial settings for the parameters. The network repeatedly
succeeded to learn 1 kHz quadrature-phase oscillatory waveforms in 1,500 update cycles,
spanning 100 sec total. Tests on a related structure, comprising a 128- element array of
capacitive storage devices interfacing with integrated A/D/A quantizers, have demon-

strated stable and autonomous storage of analog volatile information at 8-bit effective

resolution.

5.5 Efficiency and Complexity

A final remark to the gradient-free approach, as it was presented here by means of the
stochastic method, pertains to the trade-off between the implementation complexity and
the attainable over-all computational efficiency. Indeed, one may argue rightly that more
efficient methods can be derived to perform the same computational task through sig-
nificantly less iterations and consequently through less computational effort. The same
argument applies to ordinary gradient descent methods as well, for which significantly
more efficient extensions have been formulated in the past, most but not all of those im-
plying an increase in complexity for the functions to be performed. One of the important
advantages of the gradient-free and real-time methodology presented here for supervised
learning in dynamical systems is the simple and modular implementation structure that

it supports, for which presently no alternatives exist. On the contrary, extended variants

152 CHAPTER 5. CONCLUSIONS

of the stochastic method which incorporate a higher efficiency at the expense of increased
complexity may as well be substituted for even more efficient methods employing first or
higher derivatives in the parameters, in case model information on the system is available.

Nevertheless, the efficiency of the stochastic method can be improved almost without
affecting the implementation complexity by reorganizing the global functions only, which
supervise the error observations and corresponding parameter updates at a higher level
and thereby affect the error descent performance directly. Simple extensions for increased
efficiency directly supported at the global level can be obtained by adjusting the learning
rate according to second-order information gathered from the error observations, thereby
speeding the convergence process. Extensions for an increased functionality may include
safety measures in the updates to avoid breakdown of the method under ill-defined con-
ditions, and aspects of robustness and consistency in non-convex optimization may be
addressed through global adjustment of the perturbation amplitude. In principle, other
extensions at the global level yielding further improvements in efficiency or functionality
may be derived as well, possibly involving additional simple alterations in the structure
of the local update units. The degree of freedom provided in the organization of the
global and local operations leaves ample room for further exploration towards advanced
variations on the stochastic method, rivaling the performance of complex optimization

methods at a fraction of their implementation cost.

153

Appendix A

Bit-serial A/D/A Conversion

Below, we present a compact and fault-tolerant CMOS circuit implementing a bi-directional
bit-serial A/D/A (analog-to-digital and digital-to-analog) converter, which can be used to
perform the function of binary quantization for multi-valued dynamic analog storage while
allowing for additional read /write digital access as described in Section 3.2. Specifically,
the device comprises a monotonic algorithmic D/A converter which processes the MSB
first and the LSB last, and a successive approximation A/D converter employing the

intermediate conversion results of the D/ A converter.

The MSB-first approach for D/ A conversion has two distinct advantages for large-scale
integrated signal processing systems. First, it supports the bit sequence order necessary for
successive approximation A /D conversion, and hence allows the integration of both A/D
and D/A functions in a single bi-directional device with matched transfer characteristics
betweenanalog and digital formats in both directions. Second, the algorithm used for MSB-
first D/A conversion [Cauwenberghs 93b] warrants conversion monotonicity regardless
of component mismatches and nonlinearities, avoiding special compensation schemes
for traditional algorithmic converters to improve accuracy beyond the intrinsic precision

granted by the fabrication process [Shih 86].

154 APPENDIX A. BIT-SERIAL A/D/A CONVERSION

A.1 Conversion Algorithm

Figure A.1 schematically illustrates the MSB-first D/A conversion algorithm, in the case
of 4-bit conversion for an input code “1011." The intermediate states U; each correspond
to the partial conversion of the i most significant bits of the n-bit input code, and their
values are constructed from previous intermediate values conditional on the state of the
sequenced bit, leading to the final conversion value in n successive steps. Two reference
values, U ¢ and U™, define the analog conversion range and roughly correspond to the
upper and lower extremes of the analog spectrum respectively. The algorithm employs
two analog “registers” U+ s and U™ for storage and later recall of selected intermediate
conversion values, and one unit for averaging the two values contained in both registers
to construct the next intermediate conversion value. The following sequence of symbolic

instructions specifies the algorithm [Cauwenberghs 93b]:

a. Initialization(¢ = 0):
Preset Uy to U, and Ug to Uy ;
Set Up halfway in between Uy and Uy ;
b. Algorithmic iteration (; ~ 1to ¢, fromi = 1ton):
If bit i is “1": set U;" to UYy and U] to Uj_y;
“0": set U;" to U;_y and U] to U ;
Set U; halfway in between U;" and U;” ;

¢. Termination (¢ = n):

The final D/ A conversion result is given by U,.

Because this algorithm implements a tree structure for the intermediate values which nat-
urally preserves the order of the input codes, a monotonic conversion is warranted even
in the case of a bias or nonlinearity in the averaging. Nevertheless, errors in the recall
of the stored register values U*; and U~; distort the tree structure and affect the mono-
tonicity directly. The algorithm extends to successive approximation A/D conversion by
successively comparing an analog input with the intermediate conversion values, and if

the input is larger assigning a “1" to the succeeding bit to be converted, and otherwise

A.2. A/D/A CONVERTER BLOCK DIAGRAM 155

Figure A.1: D/A conversion algorithm.

assigning a “0." The digital output is then given by the sequence of bits obtained, from
MSB to LSB.

A.2 A/D/A Converter Block Diagram

The block diagram of the analog portion of the bi-directional A/D/A converter, imple-
menting the above algorithm with CMOS-C elements, is shown in Figure A.2. The analog
circuit comprises four capacitors C*, C~, Ct' and C~/, two differential transconduc-
tance amplifiers OTAT and OTA™ with both inverting and non-inverting outputs, one
latched comparator with additional inverting transconductance output, and a series of
switches [Cauwenberghs 93b]. Switch SH performs the averaging function by sharing and

redistributing charge preset on C* and C~. C*'and C~'represent the storage registers U+

156 APPENDIX A. BIT-SERIAL A/D/A CONVERSION

A.OUT T D.OUT
COMP
AN
OTA- OTA+
STO- RCL- RCL+ STO+
? o ®

] A
! N\ l
C- - C+ C+'
\
QDPRE PRE \ :L-: PRE PRE<>
I VI‘E; Vrei I hvd Vre}- Vre.; I

Figure A.2: A/D/A converter block diagram.

and U~ respectively. OTA* and OTA™, in conjunction with switches STO*, RCL*, STO™
and RCL™, direct the storage and recall operations by triggered non-destructive replication
of charge from one terminal to the other, in either direction. To implement offset-free reg-
isters, a zero replication error for successive store’and recall operation is required, which
is satisfied if the input-referred offsets for the inverting and non-inverting outputs of the
corresponding OTA are equal. Comparator COMP serves as a successive approximation
discriminator. The inverting output A.OUT of COMP is included to provide negative
feedback to the A.IN input, in order to construct a representative D/A output reflecting
the input offset of the comparator, thereby allowing close matching between A/D and

D/ A conversion transfer characteristics.

With this set of functional elements, the above conversion algorithm translates

as [Cauwenberghs 93b]:

a) Initialization:
Preset C~ and C~'to V,z;, and C* and C*' to VJ with V. < V3.
Then share the charge on C~ and C* (activate switch SH) .

b) Algorithmic iteration / Successive approximation:

A.3. DETAILED CIRCUIT STRUCTURE

For n successive steps, iterate:
If D/A conversion:
Obtain the next input bit (from MSB to LSB)
If A/D conversion:
Compare V* across C* (or V™ on C~) with A.IN
(Evaluate the output D.OUT from the comparator) ;
set the bit to D.OUT ;
If the bitis “1": Activate BRE™ in STO mode (activate STO™) and
activate BRE™ in RCL mode (activate RCL*) ;
“0": Activate BRE™ in RCL mode (activate RCL™) and
activate BRE' in STO mode (activate STO™);
then share the charge on C~ and C* (activate switch SH) .
¢) Termination:
If D/ A conversion:
The converted voltage is represented by either of
V'~ across C~ and V* across C*.
If A/D conversion:
The digital word is given by the sequence of the bits from b)
in the order processed, the MSB first and the LSB last.

A.3 Detailed Circuit Structure

157

The detailed structure of the analog portion of the A /D/A circuitis given in Figure A.3. The

circuit methodology has been derived as to reduce the circuit complexity and the sensitivity

to process variations to the absolute minimum, yielding a compact, process-robust and

low-power design. The OTA’s and the comparator use a standard cascoded current mirror

stage, rather than a folded cascode stage, for low-power operation and a reduced sensitivity

to transistor mismatches. The configuration of the switches internal to the OTA’s and the

comparator, for selection of the operational mode, has been chosen as to provide close

158 APPENDIX A. BIT-SERIAL A/D/A CONVERSION

AIN {

AD
COMP OUT } ',.L‘ » COMP OUT
ot M
T

QOTA- I I OTA~
PRE, A PRE PRE , rh, PRE PRE . m, PRE PRE | +h, PRE
. mvj; %1»;’ > m?@— 8 = vj? ib,m -

i
]

- :
L it 1 O 1
$ E:jlﬂ H , $ E_Q}— H {

D

al
=1

D

Figure A.3: Detailed schematics of the A/D/A analog circuitry.

matching between the input-referred offsets of the inverting and non-inverting outputs.
Dummy switches are added to the capacitors for differential compensation of the charge
injection due to clock feedthrough. Such, the switch injection noise appears as a common-
mode input component at the OTA’s, and disappears at both sides after deactivation of
the selected pair of functional and dummy switches. The comparator, when activated
in comparison mode (ENAD active), contains a cross-coupled output stage for latched
operation. An active-high pulse on RST triggers and fixes the binary output. A source
follower isolates the capacitor C* from the input of the comparator to avoid capacitive
coupling to the A.IN analog input. An additional source follower is added to C~ to
preserve symmetry for improved matching.

Logic circuitry is included in the converter, integrated along with the analog circuitry,

to control operation and drive the STO and RCL switch waveforms. The control signal

A.4. RESULTS AND DISCUSSION 159

ENAD selects the operational mode of the A/D/A converter. A/D conversion mode is
achieved with ENAD in a high state, and D/A conversion mode is established otherwise.
ENAD controls the tri-state D and D nodes, which serve as both digital input and output.
ENAD also selects the activation state of the inverting and non-inverting outputs of the
comparator. All STO and RCL switches, including the dummies, are disabled when SEN
is in a low state; otherwise the STO™ and RCL* switches are activated for a “1" state of the
converted bit, and the STOT and RCL~ switches are activated for a “0" bit. The STO and
RCL switching waveforms are slew-rate controlled for the switch-off transition to reduce
residual clock feedthrough.

The A/D/A converter interfaces with five individual terminals for operation control
and I/0: ENAD, A.IN, A.OUT, D and D. Figure A.4 shows some possible I/O connection
configurations of the A/D/ A converter, operating as a one-way or bi-directional converter
interfacing with a hybrid analog-digital VLSI system. In addition, the converter requires
13 global connections, common for all instances, to supply two reference sources (Vs T and
Vet), five bias levels (Vy, V4, Vip, SR, and SR,), and six clock waveform signals (PRE, SH,
RST, SEN and the complements of PRE and SH). The adjustable bias levels are provided to
accommodate diverse accuracy, power level and speed requirements. The required format

of the clock waveform signals for proper D/A and A/D conversion is given in Figure A.5.

A.4 Results and Discussion

An array of eight of the described A/D/A converters has been fabricated on a MOSIS
*Tiny’- chip in a 2um double-poly CMOS process. The layout of the converter cell is shown
in Figure A.6. The 11 common supply lines run across horizontally, to enable abutting of
the cell with neighboring cells for the compact construction of linear arrays. A scope-plot
displaying the binary tree of intermediate D/A conversion voltages captured from the
chip is given in Figure A.7. The devices were tested at 8-bit resolution for conversion cycle
speeds ranging from 20 psec to 2 msec. For each given conversion speed, the bias levels

were adjusted to obtain a global optimal A/D and D/A conversion performance (in terms

160 ' APPENDIX A. BIT-SERIAL A/D/A CONVERSION

A/D/A A/D/A
AIN ENAD j/ AN ENAD
A <4
/. D/A
D‘A D A / b
AOUT D;D AOUT D;D
(a) b)
< C‘_ D.WR
vf re— A TN/ D.IN
-—ci A/D/A ._.4 A/D/A
\%
f AIN ENAD AIN ENAD
4
] \arm b 1] D/A b
- ==
4 6:/5 [)
f F A.OUT D;D £ F_A A.OUT D;D
A A

(c) I (d)

Figure A.4: 1/0 connection configurations. (a) A/D converter; (b) Fast settling nonlinear
D/A converter; (c) D/A converter; (d) bi-directional A/D/A converter implementing
analog memory with A and D random access.

Analog Input Valid

. PRE ﬂ P
PRE ﬂ) Analog Output\?ili o [_\ ﬂ) f\ ﬂ
SO N I = T
SEN ﬂ ﬂ / ﬂ ﬂ SEN ﬂ ﬂ ﬂ
S 0 SN T S G
(ENAD ="0" (ENAD ="1"
D/A A/D

Figure A.5: Format of clock waveforms and I/O timing.

A.4. RESULTS AND DISCUSSION 161

of differential linearity). Subsequently, the bias currents were further decreased until the
point of perceptible performance degradation. Figure A.8 shows typical plots of A/D
and D/A conversion nonlinearities at 2 msec conversion cycle and 8-bit length. Whereas
a uniform, low (0.2 LSB) differential nonlinearity was observed for all converters under
equal biasing and timing conditions, the variance and typical amplitude of the integral
nonlinearity was recorded to be quite higher. This effect is attributed to the statistical
variations of capacitance ratios and comparator offsets across the chip, which by virtue of
the conversion algorithm do not affect the monotonicity, but distort the integral conversion
characteristic into a rather smoothly curved shape. The latter should not be considered
a disadvantage pef se; many signal acquisition applications only require monotonicity.
Furthermore, as Figure A.8 suggests, the integral nonlinearity for both A/D and D/A
conversion are closely matched because of the successive approximation A/D scheme,
and the integral nonlinearities in successive A/D and D/A conversions cancel out to yield
a near-identity characteristic. Such is useful, e.g., for the implementation of addressing
and auto-refresh schemes for random access capacitive analog memories.

The characteristics of the A/D/A converter and the performance results at different
cycle speeds are summarized in Table A.1 and A.2. As expected, speed can be traded for
power economy, but with better accuracy at lower speeds and higher processing efficiency
at higher speeds. The meaning of the term "efficiency" in this context relates to the number
of conversions per unit time and unit power. Interestingly, at 20 psec cycle speed, the
A/D/A converter performs the equivalent of 250 Msamples/sec at 1 W of power. Unlike
high-speed converters, an array of A/D/A converters achieves this bandwidth through
parallelism and distributed processing rather than through dedicated and localized high-

speed circuit techniques.

162 APPENDIX A. BIT-SERIAL A/D/A CONVERSION

Figure A.6: Layout of the A/D/A converter cell.

Table A.1: A/D/A cell characteristics.

Technology 2 pm p-well double-poly CMOS
Cell Size 216 pm X 315 ym

Transistor Count 114

Supply +5V

Analog Conversion Range 1V — 4V

Resolution 8 bits

Cycle Time 220 psec

A.4. RESULTS AND DISCUSSION 163

Figure A.7: Recorded algorithmicD/A conversion tree. Horizontal: 10 usec/div; vertical:
0.5V/div.

Table A.2: A/D/A cell performance at various conversion speeds.

Conversion Cycle Speed 20 psec 200 psec 2 msec
D/A Linearity
DNL 05LSB 0.4 LSB 02LSB
INL <2LSB <2LSB <215B
A/D Linearity
DNL 0.6 LSB 051SB 0.3 1SB
INL <2 LSB <2 LSB <2LSB
Supply Current 40 uA 25 pA 7.5 pA
Power Dissipation 200 pwW 125 yW 38 uW

164

APPENDIX A. BIT-SERIAL A/D/A CONVERSION

5 1 1 1 1 1 I i i i L
3 o4l 8bit 1 B o 8bi -
3‘ S
g -E‘ 02 -
£ 3
= g o0 A{“M—
5} =
= 2
b
& 4 - e V4l -
5 1 . 1 —1 i 1 i d 1 1

0 64 128 192 256 0 64 128 192 256

Input Code Input Code
D/A Conversion
- T T T T T T T T T T
m ~~
3 oal 8bit L -
‘->" S
T o2f 4 & o2t ~
g] g
E 0.0 “Hl(".‘ ‘ : H'.' i & oo 4
Z 1) ORI g
: 5
QD

& 04 — € 4 ~
A 1 1 J 1 1 1 1 i i

0 64 128 192 256 0 64 128 192 256

Output Code Output Code
A/D Conversion
Figure A.8: Differential and integral nonlinearity of D/A and A/D conversion by the

A/D/A converter, at 2 msec conversion cycle.

REFERENCES 165

References

[Alspector 911 J. Alspector, J.W. Gannett, S. Haber, M.B. Parker, and R. Chu, “A VLSI-
Efficient Technique for Generating Multiple Uncorrelated Noise Sources and Its
Application to Stochastic Neural Networks," IEEE T. Circuits and Systems, 38 (1),
pp 109-123, 1991.

[Alspector 89] J. Alspector, B. Gupta, and R.B. Allen, “Performance of a Stochastic Learn-
ing Microchip," in Advances in Neural Information Processing Systems, San Mateo, CA:

Morgan Kaufman, vol. 1, pp 748-760, 1989.

[Alspector 93] J. Alspector, R. Meir, B. Yuhas, and A. Jayakumar, “A Parallel Gradient De-
scent Method for Learning in Analog VLSI Neural Networks," in Advances in Neural
Information Processing Systems, San Mateo, CA: Morgan Kaufman, vol. 5, pp 836-844,
1993.

[Andreou91] A.G.Andreou, K.A. Boahen, P.O. Pouliquen, A. Pavasovic, R.E. Jenkins, and
K. Strohbehn, “Current-Mode Subthreshold MOS Circuits for Analog VLSI Neural
Systems," IEEE Transactions on Neural Networks, vol. 2 (2), pp 205-213, 1991.

[Baldi 93] P Baldi, “Gradient Descent Learning Algorithms: A General Dynamical Sys-

tems Perspective,” to appear in IEEE Transactions on Neural Networks.

[Baldi92] P. Baldi, “Learning in Dynamical Systems: Gradient Descent, Random Descent
and Modular Approaches," JPL Technical Report, California Institute of Technology,
1992.

166 ANALOG VLSI LEARNING AND OPTIMIZATION

[Benson 93] R.G. Benson, Ph.D. Dissertation, California Institute of Technology, 1993.

[Brent73] R.P. Brent, “Algorithms for Optimization without Derivatives," Englewood

Cliffs, NJ: Prentice Hall, 1973.

[Candy 92]].C. Candy and G.C. Temes, “Oversampled Methods for A/D and D/A Con-
version," in Oversampling Delta-Sigma Data Converters: Theory, Design and Simulation,

NJ: IEEE Press, pp 1-25, 1992.

[Catfolis 93] T. Catfolis, “A Method for Improving the Real-Time Recurrent Learning
Algorithm," Neural Networks, vol. 6 (6), pp 807-821, 1993.

[Cauwenberghs 901 G. Cauwenberghs, C.F. Neugebauer, A. Agranat, and A. Yariv, “Large
Scale Optoelectronic Integration of Asynchronous Analog Neural Networks,” in Dig.
Int. Neural Network Conf. (INNC-90 Paris), Kluwer Academic, vol. 2, pp 551-554,
1990.

[Cauwenberghs 92] ~ G. Cauwenberghs, C.F. Neugebauer, and A. Yariv, “Analysis and
Verification of an Analog VLSI Outer-Product Incremental Learning System," IEEE
Transactions on Neural Networks, vol. 3 (3), pp 488-497, 1992.

[Cauwenberghs 93a] G. Cauwenberghs, “A Fast Stochastic Error-Descent Algorithm for
Supervised Learning and Optimization," in Advances in Neural Information Processing

Systems, San Mateo, CA: Morgan Kaufman, vol. 5, pp 244-251, 1993.

[Cauwenberghs 93b] G. Cauwenberghs and A. Yariv, “Method and Apparatus for Mono-
tonic Algorithmic Digital-to-Analog and Analog-to-Digital Conversion,” U.S. patent
5,258,759, 1993.

[Cauwenberghs 93c] G. Cauwenberghs and A. Yariv, “Method and Apparatus for Long-
Term Multi-Valued Storage in Dynamic Analog Memory," U.S. patent pending, filed
1993.

REFERENCES 167

[Chin 93] D.C. Chin, “Performance of Several Stochastic Approximation Algorithms in
the Multivariate Kiefer-Wolfowitz Setting," in Proc. of the 25th Symp. on the Interface
Computing Science and Statistics, 1993.

[Cohen 92] M.H. Cohen and A.G. Andreou, “Current-Mode Subthreshold MOS Imple-
mentation of the Jutten-Herault Autoadaptive Network," IEEE |. Solid-State Circuits,
vol. 27 (5), pp 714-727, 1992.

[Czarnul 86] Z. Czarnul, “Modification of the Banu-Tsividis Continuous-Time Integrator
Structure," IEEE Transactions on Circuits and Systems, vol. 33 (7), pp 714-716, 1986.

[Dembo 90] A. Dembo and T. Kailath, “Model-Free Distributed Learning," IEEE Trans.
Neural Networks, vol. 1 (1), pp 58-70, 1990.

[Donald 93] J. Donald and L. Akers, “An Adaptive Neural Processor Node," IEEE Trans-
actions on Neural Networks, vol. 4 (3), pp 413-426, 1993.

[Fattaruso 93]]J.W. Fattaruso, S. Kiriaki, G. Warwar, and M. de Wit, “Self-Calibration
Techniques for a Second-Order Multibit Sigma-Delta Modulator," in ISSCC Technical
Digest, IEEE Press, vol. 36, pp 228-229, 1993.

[Flower 93] B. Flower and M. Jabri, “Summed Weight Neuron Perturbation: An O(n)
Improvement over Weight Perturbation,” in Advances in Neural Information Processing

Systems, San Mateo, CA: Morgan Kaufman, vol. 5, pp 212-219, 1993.

[Frye91] R.C. Frye, E.A. Rietman, and C.C. Wong, “Back-Propagation Learning and
Nonidealities in Analog Neural Network Hardware,” IEEE Transactions on Neural

Networks, vol. 2 (1), pp 110-117, 1991.

[Funahashi 93] K.-I. Funahashiand Y. Nakamura, “Approximation of Dynamical Systems
by Continuous Time Recurrent Neural Networks," Neural Networks, vol. 6 (6), pp 801-
806, 1993.

168 ANALOG VLSI LEARNING AND OPTIMIZATION

[Furman 88] B. Furman, J. White, and A.A. Abidi, “CMOS Analog IC Implementing the
Back Propagation Algorithm," in Abstracts 1st Annual INNS Meeting, vol. 1, p 381,
1988.

[Golomb 67] S.W. Golomb, “Shift Register Sequences," San Francisco, CA: Holden-Day,
o 1967.

[Graf89]1 H.P. Graf and L.D. Jackel, “Analog Electronic Neural Network Circuits," IEEE
Circuits and Devices Mag., vol. 5 (4), pp 44-49, 1989.

[Gregorian 86] R. Gregorian and G.C. Temes, “Analog MOS Integrated Circuits for Signal
Processing,” New York, NY: John Wiley, 1986.

[Hochet 89] B. Hochet, “Multivalued MOS Memory for Variable-Synapse Neural Net-
works," Electronic Letters, vol. 25 (10), pp 669-670, 1989.

[Hochet 911 B. Hochet, V. Peiris, S. Abdot, and M.J. Declercq, “Implementation of a
Learning Kohonen Neuron Based on a New Multilevel Storage Technique," IEEE].
Solid-State Circuits, vol. 26 (3), pp 262-267, 1991.

[Horio 92] Y. Horio, and S. Nakamura, “Analog Memories for VLSI Neurocomputing,"
in Artificial Neural Networks: Paradigms, Applications, and Hardware Implementations,

IEEE Press, pp 344-363, 1992.

Uabri92] M. Jabri and B. Flower, “Weight Perturbation: An Optimal Architecture and
Learning Technique for Analog VLSI Feedforward and Recurrent Multilayered Net-
works," IEEE Trans. Neural Networks, vol. 3 (1), pp 154-157, 1992.

[Kirk 93] D. Kirk, D. Kerns, K. Fleischer, and A. Barr, “Analog VLSI Implementation of
Gradient Descent," in Advances in Neural Information Processing Systems, San Mateo,

CA: Morgan Kaufman, vol. 5, pp 789-796, 1993.

[Kirkpatrick 83] S. Kirkpatrick, C.D. Gelatt, and M.P. Vechi, “Optimization by Simulated
Annealing," Science, vol. 220 (4598), pp 671-680, 1983.

REFERENCES 169

[Kushner 78] H.J. Kushner, and D.S. Clark, “Stochastic Approximation Methods for Con-
strained and Unconstrained Systems," New York, NY: Springer-Verlag, 1978.

[LeCun 93] Y. LeCun, PY. Simard, and B. Pearlmutter, “Automatic Learning Rate Maxi-
mization by On-Line Estimation of the Hessian’s Eigenvectors," in Advances in Neural
Information Processing Systems, San Mateo, CA: Morgan Kaufman, vol. 5, pp 156-163,
1993.

[Lee 91] E.KF. Lee, and P.G. Gulak, “Error Correction Technique for Multivalued MOS
Memory," Electronic Letters, vol. 27 (15), pp 1321-1323, 1991.

[Linares-Barranco 93] ~ B. Linares-Barranco, E. Sanchez-Sinencio, A. Rodriguez-Vazquez,
and J.L. Huertas, “A CMOS Analog Adaptive BAM with On-Chip Learning and
Weight Refreshing," IEEE Transactions on Neural Networks, vol. 4 (3), pp 445-455, 1993.

[Lopez 93] V. Lopez, R. Huerta, and J.R. Dorronsoro, “Recurrent and Feedforward Poly-
nomial Modelling of Coupled Time Series," Neural Computation, vol. 5 (5), pp 795-811,
1993.

[Mead 89] C.A. Mead, “Analog VLSI and Neural Systems,” Reading, MA: Addison-
Wesley, 1989.

[Narendra90] K.S.Narendraand K. Parthasarathy, “Identification and Control of Dynam-
ical Systems Using Neural Networks," IEEE Transactions on Neural Networks, vol. 1 (1),
pp 4-27, 1990.

[Narendra91] K.S. Narendra and K. Parthasarathy, “Gradient Methods for the Opti-
mization of Dynamical Systems Containing Neural Networks," IEEE Transactions on

Neural Networks, vol. 2 (2), pp 255-262, 1991.

[Narendra 93] K.S.Narendraand K. Parthasarathy, “Control of Nonlinear Dynamical Sys-
tems Using Neural Networks: Controllability and Stabilization," IEEE Transactions
on Neural Networks, vol. 4 (2), pp 192-206, 1993.

170 ANALOG VLSI LEARNING AND OPTIMIZATION

[Pearlmutter 89] B.A. Pearlmutter, “Learning State Space Trajectories in Recurrent Neural

Networks," Neural Computation, vol. 1 (2), pp 263-269, 1989.

[Robins 51] H. Robins and S. Monro, “A Stochastic Approximation Method," Annals of
Mathematical Statistics, vol. 22, pp 400-407, 1951.

[Rumelhart 86a] D.E. Rumelhartand J.L. McClelland, Eds., “Parallel Distributed Process-
ing, Explorations in the Microstructure of Cognition," vol. 1, Cambridge, MA: MIT
Press, 1986.

[Rumelhart 86b] D.E. Rumelhart, G.E. Hinton, and R.J. Williams, “Learning Internal
Representations by Error Propagation,” in Parallel Distributed Processing, Explorations
in the Microstructure of Cognition, vol. 1, D.E. Rumelhart and J.L. McClelland, eds.,
Cambridge, MA: MIT Press, 1986.

[Sato90a] M. Sato, “A Real Time Learning Algorithm for Recurrent Analog Neural
Networks," Biological Cybernetics, vol. 62, pp 237-241, 1990.

[Sato 90b] M. Sato, “A Learning Algorithm to Teach Spatiotemporal Patterns to Recurrent
Neural Networks," Biological Cybernetics, vol. 62, pp 259-263, 1990.

[Satyanarayana 89] S. Satyanarayana, Y.P. Tsividis, and H.P. Graf, “Analogue Neural
Networks with Distributed Neurons," Electronics Letters, vol. 25 (5), pp 302-303, 1989.

[Satyanarayana 92] S.Satyanarayana, Y.P. Tsividis,and H.P. Graf, “A Reconfigurable VLSI
Neural Network," IEEE Journal on Solid-State Circuits, vol. 27 (1), pp 67-81, 1992.

[Schmidhuber 92] J. Schmidhuber, “A Fixed Size Storage O(n?) Time Complexity Learning
Algorithm for Fully Recurrent Continually Running Networks," Neural Computation,

vol. 4 (2), pp 243-248, 1992.

[Shih86] C.-C. Shih, and PR. Gray, “Reference Refreshing Cyclic Analog-to-Digital and

Digital-to-Analog Converters," IEEE]. Solid-State Circuits, vol. 21 (4), pp 544-554,
1986.

REFERENCES 171

[Smith 90] M.].S. Smith, “An Analog Integrated Neural Network Capable of Learning
the Feigenbaum Logistic Map," IEEE Transactions on Circuits and Systems, vol. 37 (6),
pp 841-844, 1990.

[Sompolinsky 86] H. Sompolinsky and I. Kanter, “Temporal Association in Asymmetrical
Neural Networks," Phys. Rev. Letters, vol. 57 (22), pp 2861-2864, 1986.

[Spall92a]].C. Spall, “Multivariate Stochastic Approximation Using a Simultaneous
Perturbation Gradient Approximation," IEEE Trans. Automatic Control, vol. 37 (3),
pp 332-341, 1992.

[Spall 92b]].C. Spall, and J.A. Cristion, “Direct Adaptive Control of Nonlinear Systems
Using Neural Networks and Stochastic Approximation," in Proc. IEEE Conf. Dec.
Control, pp 878-883, 1992.

[Styblinsky 83] M.A. Styblinsky and A. Ruszcynski “Stochastic Approximation Approach
to Statistical Circuit Design," Electronics Letters, vol. 19 (8), pp 300-302, 1983.

[Styblinski 901 M.A. Styblinski and T.-5. Tang, “Experiments in Nonconvex Optimization:
Stochastic Approximation with Function Smoothing and Simulated Annealing," Neu-

ral Networks, vol. 3 (4), pp 467-483, 1990.

[Sun 92} G.-Z.Sun, H.-H. Chen, and Y.-C. Lee, “Green’s Function Method for Fast On-Line
Learning Algorithm of Recurrent Neural Networks," in Advances in Neural Information

Processing Systems, San Mateo, CA: Morgan Kaufman, vol. 4, pp 333-340, 1992.

[Szu87] H. Szu, “Nonconvex Optimization by Fast Simulated Annealing," IEEE Proceed-
ings, vol. 75 (11), pp 138-1400, 1987.

[Terman 81] L.M. Terman, Y.S. Yee, R.B. Merrill, L.G. Heller, and M.B. Pettigrew, “CCD

Memory Using Multilevel Storage,” IEEE]. Solid-State Circuits, vol. 16 (5), pp 472-
478, 1981.

[Toomarian 92] N.B. Toomarian and J. Barhen, “Learning a Trajectory using Adjoint

Functions and Teacher Forcing," Neural Networks, vol. 5 (3), pp 473-484, 1992.

172 ANALOG VLSI LEARNING AND OPTIMIZATION

[Vittoz 771 E. Vittoz and J. Fellrath, “CMOS Analog Integrated Circuits Based on Weak
Inversion Operation," IEEE Journal on Solid-State Circuits, vol. 12 (3), pp 224-231,1977.

[Vittoz 89] E. Vittoz and X. Arreguit, “CMOS Integration of Herault-Jutten Cells for
Separation of Sources,” in Analog VLSI Implementation of Neural Systems, Norwell,

MA: Kluwer, pp 57-83, 1989.

[Vittoz91] E. Vittoz, H. Oguey, M.A. Maher, O. Nys, E. Dijkstra, and M. Chevroulet,
“Analog Storage of Adjustable Synaptic Weights," in VLSI Design of Neural Networks,
Norwell MA: Kluwer Academic, pp 47-63, 1991.

[Watts 92] L. Watts, D.A. Kerns, and RF. Lyon, “Improved Implementation of the Silicon
Cochlea," IEEE Journal on Solid-State Circuits, vol. 27 (5), pp 692-700, 1992.

[Werbos 901 PJ. Werbos, “Backpropagation Through Time: What It Does and How to Do
It," IEEE Proceedings, vol. 87 (10), pp 1550-1560, 1990.

[Williams 89] R.J. Williams and D. Zipser, “A Learning Algorithm for Continually Run-

ning Fully Recurrent Neural Networks," Neural Computation, vol. 1 (2), pp 270-280,
1989.

[Williams 90] R.J. Williams and J. Peng, “An Efficient Gradient-Based Algorithm for
On-Line Training of Recurrent Network Trajectories," Neural Computation, vol. 2 (4),

pp 490-501, 1990.

[Yu93] X.-H.Yu, G.-A. Chen, and 5.-X. Cheng, “Acceleration of Backpropagation Learn-
ing Using Optimised Learning Rate and Momentum," Electronics Letters, vol. 29 (14),
pp 1288-1290, 1993.

[zak 89] M. Zak, “Terminal Attractors in Neural Networks," Neural Networks, vol. 2 (4),
pp 259-274, 1989.

