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ABSTRACT

Secondary flows were studied experimentally in a diffusing
cascade. A family of screens weyre installed ahead of the blade row
at the midspan position to produce a controlled distortion of the up-
stream velocity profile. In this way it was possible to focus atten-
tion on those regions of the flow field which were distant from the
tunnel walle and to thereby restrict the investigation to a study of
small disturbance phenomena.

It was found that the general behavior of the flow at the cascade
exit plane was satisfactorily described by a modified channel-theory
analysis in which a simple iterative correction was included to account
for the spanwise self-transport effects of the induced secondary flows.

Two methods are proposed for evaluating the spanwise distribu-
tion of blade loading when the approach velocity into the cascade is
non-~uniform; thess methods were tested experimentally and were
found to give results which were in good agreement with measured

data.
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SUMMARY

In early experimental investigations dealing with axial flow
compressors, it was found that performance could be significantly
influenced by the boundary layers along the internal surfaces of the
inlet flow passages. More specifically, it was cbserved that low
energy boundary layer fluild in moving through a blade row tended to
cause flow distortions which were not necessarily confined to the
boundary layers themselves. To study these effects experimentally,
a two-dimensional cascade of airfolls was used to simulate a row of
compressor blades. The particular problem of interest ig to at-
tempt to predict the flow perturbations which occur in and downstream
of the cascade when the velocity profile ahead of the blades is dis~
torted by a shear disturbance from its normal pattern. These flow
perturbations emanating from upstream velocity disturbances are
referred to as ''secondary flows’’, and it is with their determination
that the thesis deals.

Although the detailed guantitative heha
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gsecondary flows
can best be studied by weorking directly with the vorticity equations,
the general physical inferpretation of these flows can be visualized
raost readily from the following simplified analysis. Consider a
given cascade of airf{oile and assume that the upstream flow field is
initially uniform, i.e., that the velocity profile is not distoried by
boundary layers or by external disturbances.

As this flow pasgsses through the blade row and is turned, a
pressure field is established in accordance with the condition for ir-
rotational motion; for example, the pressure gradient necessary to

balance the centrifugal force set up by the cascade turning is given



by -g%% = %% where "n’” is the direction normal to the streamline, gV
is the magnitude of the velocity, and "R is the local streamline radius
of curvature. Suppose now that the velocily is reduced upstrearm over
a small fraction of the blade height, butl that the extent and magnitude
of the change are not sufficient to substantially alter the pressure
distribution that was establiashed previously. As a2 rnassg of this low
velocity fluid moves through the cascade vanes, its response to the
prescribed pressure gradient is such that it is turned through a larger
angle than is the surrounding flow. Consequently, the streamlines of
the restricted flow may be significanily different from those of the
undisturbed flow; the corresponding perturbations which are super-
posed on the original fluid motion represent an example of secondary
flows.

Secondary flows in cascades have been investigated experimen-~
tally in the last two decades by studying the flow perturbations which
result when boundary layers {rom the tunnel walls pass through the
turning vanes. Early attempts to analyze these effects dealt pri-
marily with the so-called "airfoil-theory" approach in which the
individual blades of the cascade were treated as isolated airfcils
represented by lifting lines, This procedure was not satisfactory,
and little success was achieved in predicting the quantitative behav-
ior of the induced secondary motion prior to the introduction of the
‘'channel~-theory' model by Squire and Winter in 1948, In this approach
the authors chose to treat each blade passage as an independent
channel by supposing that the turning vane surfaces were extended
downstream of the actual trailing edge plane. Attention was then
focused on the distribution of vorticity in the straight channel far

downstream of the blale row; in particular, when the fiow ahead of
P



the cascade has a component of vorticity normal to the mainstream
direction, such as might be found along the upstream tunnel wall
boundary layers, then a streamwise component of vorticity is pro-
duced as the flow passes through the turning vanes., It is this gen-
erated vorticity which is regponsible in the channel-theory model for
the existence of the induced secondary flows.

Squire and Winter used linearized techniques to determine the
magnitude of the distributed sireamwise component of vorticity; they
subsegnently found approximate solutions for the corresponding in«
duced velocity fleld and then carried out experimental studies to test
the validity of the propoesed model. The secondary {lows that were ine
vestigated in this program were those emanating from boundary layer
distortions of the upstream velocity profile, and, while sufficient
agreement was achieved hetween theoretical and experirmental results
to indicate that the analysis was indeed useful, the method was never-
theless not entirely satisfactory from a quantitative point of view, A
primary oljoction to the experimental work of Squire and Winter, and
later Hawthorne and Armstrong, is that their investigations wers re-
stricted to studies of boundary laver flows. Because the non-uniform-
ities in the upsiream velocity profile are generally quite severe in the
bmmdﬁry layers along the tunnel walls, the resultant induced flows
tend to be congiderably larger than perturbation quantities and, as such,
are not directly amenable to analysis by a linearized theory.

In the current investigation, the secondary flows were deliber-
ately isolated from the large disturbance boundary layer effects by

using a family of screens to produce distortions in the upstream veloc-

ity profile at the mid-span position. By varyiag the density and



the size of the screen obstruction elements, it was possible to produce
controlled variations in the approach flow and to thereby obtain an
important degree of {lexibility which was not previocusly available.

The screen strips which were used in these studies extended com-
pletely across the tunnel and covered approximately the center ten per ‘
cent of the blade height. Extensive tesiz were made for screen con-
figurations which produced maximum velocity deficiencies at the cen-
ter of the wake equal to 11, 31, and 53 per cent respectively of the
undisturbed freestream velocgity.

The usefulness of the channel-theory model as a means for
predicting the behavior of small disturbance secondary flows was
studied by comparing the measured and the calculated distributions
of the induced spanwise component of velocity downstream of the cas-
cade. It was found that good agreement was achieved between theory
and experiment only when the self-transport properties of the second-
ary flows were included in the analysis. A simple iterative method
of incorporating these effecis is proposed; this suggested approach
was found to be adequate as long as the induced velocities remained
small,

An important assumption in the linearized channel-theory analy-
8is is that upstream fluid surfiaces which are originally perpendicular
to the spanwise direction tend to remain horizontal planes as they
move through the blade row. This hypothesis was tested and was
found to be valid when the secondary velocities were amall; for those
cases in which the induced velocities become somewhat larger than
perturbation quantities, a simple method is given for predicting the

amount of streamsurface warpage.



The good agreement found between the experimental and the
theoretical results indicates that the channel-theory model is indeed
a useful concept for the quantitative study of secondary {lows. More-
over, because the behavior of the induced flow wasg described satis-
factorily by the lincarized analysis, it is possible to derive two meth-
ods for predicting the spanwise variation in blade loading when the
approach velocity upstream of the cascade is non-uniform.

In the first derivation, the distribution i:. bound circulation is
ezvaluated and the blade lift is then calculated by assuming that the
flow is locally two-dimensional along the span. This approach was
found to be somewhat sensgitive to the self-transport effects of the
secondary flows; however, comparison of experimental and thecreti~
cal results shows that it is a useful analvsis if the induced velocities
arc sufficiently amall. In the second derivation, the linearized chan-
nel-theory analysis is first used to define the velocity field downstream
of the cascade, and the variation in blade loading ig then calculated
by finding the change in momentum of the fluid as it moves through
the turning vanes. This method was also tested experimentally, and
good agreement was again found between the measured and the pre-

dicted results.
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SYMBOLS

Blade chord

Blade force

Blade gap

Spanwige half-width of screen element
Static pressurs

Atmospheric pressure

Total pressure

Velocity magnitude

Minimum value of the upstream velocity in the wake of
the screen

Streamline radius of curvature
Primary flow velocity

Orthonormal coordinates in the streamwise, radial, and
spanwise divections respeciively

Secondary velocity components in the 8, n, z directions
respectively

Coordinate directions perpendicular and parallel to the
cascade axis respectively

Components of total velocity in the x, y directions
regpectively

Components of total velogity in the 8, n divections
respectively

Dimensionless coordinates parallel to the 8, n, ¥ axes
respectively

Angle that the velocity vector makes with the x-axis
Circulation

Bound circulation along the cascade vanes

Alr density

Velocity potential
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Bubscripts

Crthoginal coordinates parallel to the 8, n, = axes

Components of vorticity in the s, n, z directions
raspectively

Vorticity vector
Velocity vector

Unit vectors in the s, n, » gysteam

Upstream refersnce station
Upstream point

Downstream reference station



L INTRODUCTION

1:1 DEFINITION OF SECONDARY FLOW

In the literature dealing with the flow of fluids around bends
and through blade rows, the term "secondary flow' has been uged
extensively to describe the flow perturbationg whick result from such
diversified phenomena as viscous and non-viscous boundary layers,
moving walls, non-uniform temperature and entropy distributions,

separation, and tip clearance flows. Therefore, it is desirable to
indicate exactly how this term will be employed in the following dis-
cussion,

In this report, the term “gecondary flow" will be used in con~
nection with the flow of air through a subsonic, rectangular, diffusing
cascade; in particular, it will be used to describe the changes which |
occur in the cascade flow field when the velocity profile upstream of
the blade row is distorted from its normal shape by installing strips
of screening shead of the turning vanes. In keeping with this definition,
the term Yprimary flow" will be introduced to describe the flow field
that exists in the absence of all externally produced upstream velocity
distortions.

1:2 ORIGIN OF SECONDARY FLOWS

The origin of secondary flows can be shown qualitatively as fol-
lows: consider first the two«dimenstional flow of an incompressible,
non-viscous fluid through the rectangular cascade illustrated in figure
1. Suppose that the velocity profile far upstream {s initially uniform
and that 4 mean streamline is turned by the cascade through some flow
angle 6~ , (figure 2). In accordance with the condition for equi-
librium in the "n" direction, there then exists & pressure gradient




e
perpendicular to the mean streamline given by:

Q
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where R¥% is the radius of curvaiure of the streamline.

Suppose that the velocity profile far upstream ie then distorted
to the form shown in figure 3 by installing a strip of screening which
extends parallel to the cascade; here it is assumed for simplicity that
this profile shape is functionally dependent only on 2", and does not
vary at successive stationg in the '"n' direction. Let it further be
assumed that both the magnitude and the spanwise extent of the velocity
distortion is small enough so that the pressure field remains every-
where independent of Yz". Conaider then a slug of fluid from the wake
region as it passes through the cascade. The normal equilibrium con-
dition for this flow is given by:

370 ‘Z _ €9

=2 | (1. 2)
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But % = %%‘ by assumption; thus

7°_ 2 (1.3)

~ ok
from equations 1.1 and 1. 2,
Moreover, since S —E _gg' in the wake, equation 1.3 implies that the
radius of curvature of a typical wake mean streamline is less than that
of & streamline in the two-dimensional flow, and,therefore, that the
flow in the wake region tends to be turned more than the two-dimensional
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flow {figure 4). TFurthermore, this “overturning' of the wake flow as
it passes through the cascads tends to produce a circulatory type of
motion because of the wall-like boundary restrictions of the blade
elements, Viewed from a station just aft of the trailing edge and
looking upstream, the nature of this motion is shown in figure 5.

The eirculatory flow sketched in figure 5 is characteristic of the
fluid motion that is superposed on the éw@»dimansimax cascade flow as
& repult of the upstream velocity profile distortion, (figure 3). This
induced motion is, therefore, the sscondary flow which corresponds
to the simplified gqualitative model under consideration.

1:3 ANALYTIC MODELS FOR S8ECONDARY FLOW STUDIES

In examining the work which has been done in the study of
sscondary flows, it ls convenient to discuss sepavately those analyses
which deal with real fluid theory and those which are based on perfect
fluid models. In the real fluid category, the contributions of Herzig

and Hansen (1) and Mager (2) are noteworthy; here, attention is focused
on the role of viscous effects in the boundary layer regimes of the flow
field s the fluid is turned by the cascade. In the second category, a
flow with a non-uniform upstream velocity field is assumed to proceed
through the turning vanes in accordance with non-viscous perfect fluld
theory. Here the problem of secondary flows has been studied on the
basis of both airfoil-theory and channel-theory; the characteristics of
these two conceptually different models are descyribed in the following

paragraphs.

1:3.1 THE AIRFOIL THEORY
Consider again the rectangular cascade of figuve 1, and suppose




wdo
that the velocity profile far upstream is of the type illustrated in fig.
ure 3. In the girfoil-theory model, the individual vanes of the cascade
ars treated as isolated aizrfoils and a trailing vortex lattice gorrespond.

ing to n spanwise variation in blade circulation is assumed to be shed
in accordance with classical lifting line theory. The secondary flow is
then regarded as the velocity field which is induced by this vortex ar«
ray. The fundamental disadvantage with this approach is that neither
the blade circulation nor loading is known a prioxi, and that the contri~
bution to the trailing vertex sheet from this source ig therefore unde-
termined. Also significant is the iact that this method fails to give
guantitative information about the details of the flow in the cascade

passages.

1:3. 2 THE CHANNEL THECRY

The channel-theory model for the determination of secondary
flowe was first introduced by Squire and Winter (3) in 1948. Because
of the fact that the fundamental ideas presented in their paper have
been used extensively by various authors in attempting to predict the
quantitative behavioy of gecondary flows, it is worthwhile to discuss
the important features of this model. In the channel-theory approach,
the boundary of the passage which is formed by two adjacent blades is
thought of as being extended both upstream and downstream of the vanes
along mean streamlinegs of the primary flow ae iz shown in figure 6.
The problem is to determine the velocity field throughout this hypo-
thetical channel when the upstream flow is prescribed and when the
extended walls, which are defined by the streameurfaces of the pri-

mary flow, are also assumed {o be streamsuriaces for the secondary



motion., Two basic methods of solving this problern have been pro-
posed: the first of these was given by Squire and Winter (3} and wasg
based on a perturbation scheme utilizing the linearized vorticity equa-
tions; the second approach was introduced by Preston and involved
{ollowing a vortex fllament kinematlcally through the blade row. The
egsential features of these two methods of solution are described in
the following paragraphs; also induded are pertinent remarks con-
cerning some particular modifications which have been advanced by

other authors.

1:3. 2.1 Solution by linearized Vorticity Equations

Consider the hypothetical channels shown in figure 6 and assume
that the ugmtmm flow contains a velocity gradient in the spanwige di-
roction only. Squire and Winter fixst wrote the vorticity equations in
linearized form and then integrated along streamlines to find expres-
gions for the campcmenm of vorticity as functions of the turning angle
and the upstream rotation. The secondary flow vgiéciﬁ@& were 28~
sumed to be 5o small that they did not influence the primary flow, and
the undisturbed streamlines were assumed to be ¢oncentric circular
arcs which remained paralliel to the plane of the channel. Under these
restrictions, it was found that the streamwise component of vorticity
at the exit of the cascade was equal to ~2 € %%L-‘le? » where "¢ " is the
turning angle of the vanes and %gi is the strength of the upstream |
vorticity. Squire and Winter assumed that the streamwise vortex lines
werxe carried down the extended channel by the primary flow, and the
aunthors subsequenily determined an approximate solution for the

secondary Qow from this distributed vortex array.
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Hawthorne (8} later employed the linearized vorticity equations
to give g three~dimensional theory which was applicable to isolated
airfoils and curved channels as well as to cascades,

Loos (6) presented a modified version of the Squire and Winter
type of lineavized channel theory by incorporating seli~-transport effects
of the perturbation velocities into the model; this approach was made in
an attempt to describe an anslytical system which accounted for the so«
ealled ''vortex roll-up" which was often found in conjunction with the
boundary layer regimes of cascade flows.

1:3. 2. 2 Solution by Vortex Filament Kinematics
A gsecond method of solution of the channel-theory problem wae
introduced by Preston {4) and is digcussed extengively by Hawthorue

{5), Soundranayagan {9), and Smith {10). In these snalyses, the up~
stveam flow is again aseumed to have a velocity gradient only in the
spanwige direction and ¢onsequently to have vortex lines extending
perpendicular to the mainstream flow as is shown in figure 7. The
movement of a particular vortex fllament is then followed kinemati-
cally through the blade row under the assumption that the perturbation
velocities do not affect the mainstream flow., Preston observed that
the magnitude of the velocity along the outer "pressure surface! wall
was less than that along the inner "suction surface' wall and thereby
reasoned that the vortex-filament is distorted as it is carried through
the channel, {figure 7). Because of this distortion which accompanies
a turning of the primary Ilow, a component of vorticity is generated in
the strearawige direction. It has been shown that the magnitude of this
vorticity is approximately the same as {s its value when computed by
the Squire and Winter type of channel analysis which was digscussed
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previously; the secondary velocities which correspond to the distributed
vorticity in this extended channel are, therefore, the same in both cases.

An additional significant feature of the kinematical analysis ie

that it provides & mm of obtaining information about the vortex
shoet which exists Just downstream of the cascade trailing edge. In
pariieuniar, it is poasibie to sstimate, under certain rather stringent
restrictions, the contribution to the vortex sheet which is due to s
shedding of bound vorticity from the blades and also the contribution
which arises from the distortion of the vortex filament (see b'b in
figare 7)., This feature of the snalyeis is considered further in a later

section.

1:4 RESULTS OF PREVIOUS EXPERIMENTAL INVESTIGATIONS

Although the effecis of sscondary flows have been ohserved for
many vears in both cascades and compressors, very little systematic
experimental data was published prior to the report of Squive and Win~
ter {3) in 1948. Bince that time, numerous other authors have carried
out extenaive investigations in attempting to verify particular secondary
flow theories and hypotheses. Before cutlining the objectives of the
present paper, a partial review of the results of past experimental
studies will be given.

Squire and Wioter tested the basic channel-theory model by com-
paring the magnitudes of the measured and the analytically caleulated
spanwise components of velocity near the exit of a rectangular cascade.
The upstream vorticity was first evaluated from velocity measurements
in the boundary layer of the approach flow, and the streamwise com-
ponent of vorticity at the trailing edge was determined {rom the theory;
the spanwise velocity corresponding to this vorticity was then computed,
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The velocity field so determined was compared with the measured span-
wise 'wlm:ity near the trailing edge; while not completely satisfactory,
the agreement between theory and experiment appeared to be sufficient-
1y adequate to verify the validity of the linearized analysis.

Hawthorne and Armstrong (5) also considered the validity of
the chananel-theory model by carrying cut an investigation using a tar~
bine nozzle cascade. Here the secondary flows corresponding fo both
a thin and an artificially thickened boundary layer were studied. As
in the earlior Squire and Winter experiments, Hawthorne and Armsirong
tested the channel-theory model by comparing the computed values of
gpanwise velocity with the values which were measured experimentally.
In addition, the authors used the previously cutlined kinematical ap-
proach of Freston to determine the contribution to the trailing edge
vortex sheet which regulted from distortions of the upgiream vortex
filaments. They then estimated the variation of shed bound vorticity
along the span and theveby attempted to calculate the distribution of
blade loading on the basis of two-dimensional lifiing line principies.

In thelr work with a thin upstream boundary layer, Hawthorne and
Armstrong found no agreement between the results of theory and ex-
periment. Here it was digcovered that the channel boundary layer
flow was swept onto the guction surface of the adjacent wall where it
rolled up into a concentrated vortex core.

In thelr investigations with the artificially thickened wall bound-
ary layer, the authors found only moderate agreerment between theory
and experiment. One difficulty which was encountered in this work,
however, was that the "boundary laver' of the approach flow extended

all the way to the centey of the span, and hence there was no region of
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strictly two-dimensional motion; consequently, the authors had no zone
of primary flow which could be used as a reference plane for distinguish.
ing between the induced and the undisturbed flow flelds.

Hangen, Heyzig, and Costello (11) and Kofsky and Allen (12)
carried out a series of experiments desigued to furnish qualitative in«
formation about the behavior of secondary flows. These authors made
extensive studies using smoke injection methods to observe the char-
acteristics of boundary layer flows in both compressors and cascades.
Many ingtances of severe primary flow distortion and vortex core roll-
up were recovrded; the reader is referred to reference (11) for photo-

graphs of these phenomena.

1:5 OBJECTIVES OF THE CURRENT STUDY

Although modevate correlation batween theoretical and experi-
mental results has been achieved in gome instancas, attempts to pre-
dict the behavior of secondary flows have generally been quite
unsatiefactory. In fact, the linearized chamnel-theory model has
often falled to indicate correctly even the qualitative nature of the
disturbance flow. The reason for this lack of agreement appears to
be that the assumptions inherent in a perfect fluid perturbation analysis
are actually often not applicable to the type of experiment which has
been carried out to test the validity of the theory. For example, the
induced secondary flow velocities are assumed to be perturbation
quantities relative to the priraary flow; this assumption is not sub-
stantiated in the experimental investigations of references (5) and (7),
and there is a corresponding invalidation of the hypotheses regarding
the distortion of the maln flow fisld and also the self-transport of
vortex filaments.
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One objective of the current investigation was, therefore, io
evaluate experimentally the lnearized, perfect fluid, channel-theory
model by conducting a series of teais which did not violate any of the
fundamental hypotheses upon which the theory itself wae based. A
second eqgually important goal of this investigation was to study the
nature of the trailing edge vortex sheet and atiempt to predict the span-
wige variation of cascade loading when the approach flow was non-uniform.
As was previously indicated, the secondary flows which have heen
studied experimentally in the past have been those that were cauged
by boundary layer distortions in the upstream velocity field. In con-
trast to this, the secondary flows observed in the current tests were
those vesulting from upsiveam velocity gradients which were concen-
trated approximately midway between the fioor and the top of the cas~
cade tunnel and which were, therefore, wholly independent of the
natural boundary layer profile, {figure 3). Moreover, both the magni~
tude and the spanwise extent of the approach velocity non~uniformity
were easily varied, thus permiiiing, in these experiments, an import-
ant degree of control which was not previously available tociher inves-

tigators.
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1. THEQRETICAL PREDICTION OF SECONDARY
FLOWS

Two theovetical methods dealing with the pamdiétiw of secondary
flows in cascades are discussed in this section. The first procedure
to be described i & form of the channel-theory analysis similar to
that which was outlined in veference {13); the channel model was used
in the current study for quantitatively calculating the induced veloci~
ties corresponding to a prescribed upstream flow field and a given
cascade geometry.

In contrast to the first approach,which deals with finding the
secondary flows resulting from a distributed vortex array in a hypo-
thetical downsiream ghaansl, the second method consists of formu-
lating the exact linearised problem and focusing attention on the flow
within the turning vane paesages. Although no explicit solutions for
the induced vélofzity distributions were obtained by this procedure, the
analysis {s significant nevertheless in that it gives 2 system of equa-

tiome which define tha loeal behavior of the perturbed flow field.

AR He R

2:1 THE CHANNEL -~ THEORY MODEL
The channel-theory method for predicting the quantitative behaviox
of secondary flows was outlined in the Introduction. A modified ver-

sion of the original Squire and Winter approach is used extensively in
this report; however, before examining the details of the method, con~
sider again the general characteristices of the model. Basically, the
analysis can be divided into the following thres parts:
& The three dimensional study of secondary flows is first
reduced from an alrfoll problem to a channel problem by
extending the blade surfaces downstream of the trailing
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edge plane.
b. The downstream vorticity distribution is then evalusted for
a given cascade geometry and a specified inlet flow field.
¢. Finally, the pecondary velocities are determined in the ex-
tended channels for the vorticity distyibution which is defined
in the preceding steps. - '

In step one above, a series of channels is asubstituted for the
infinite vrow of airfoils by supposing that each of the blade surfaces is
extended downsgtream of the actual &ailing edge plane; for simplicity
in the analyasis, it is sufficient to assume that each sireamtube of the
undigturbed flow field undergoes the same amount of turning and that
the hypothetical blade surfaces are continued downstream of the cas-
cade along the meain streamlines of the two-dimensional flow,

In the second step, the distortion of the inlet veloeity profile is
regarded as a prescribed vorticity distribution ahead of the blade row,
and a channel-theory analysis is then used to evaluate the downstream
vorticity fleld which is generated as this disturbance flow passes
through the turning vanes. The vorticity equations for an inviscid,
incompressible fluid are written in linearized form and are integrated
along the streamlines of the two-dimensional flow; it is assumed in
this procedure that the secondary flows act as perturbatione to the
undisturbed motion and that the self-transport properties of the second-
ary velocities may be neglectsd,

In the final step, the velocity field downstream of the cascade
iz evaluated from the previously determined vorticity distribution;
here the hypothetical channel walla are treated as solid boundaries and

the vortex filaments are assumed {o be carried directly by the primary
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flow without considering the self-transport of the induced velocities.

2:1.1 DETERMINATION OF THE DOWNSTREAM VORTICITY FIELD

The procedure for evaluating the vorticity diatribuﬁm downstream
of the cascade is described in detall below. It is assumed in this analysis
that: (a) the flow is steady, incompressible, and inviscid; (b) the
secondary flows ave perturbations to the two-dimensional motion;

{¢) the vorticity seli-transport efiecis may be neglected; and {d) the
upstream flow field varies in the gpanwige direction only, The vorti.
city equation for the steady flow of an incompressible, inviscid fluid

may be written as;

(g-v) G -(Z-v)F=0 (2. 1)

where 7 and Q) ave the velocity and vorticity vectors respectively.
Consider the orthonormal coordinate system shown in figure 8; letting
LI(s yN) be the velocity of the two-dimensional primary flow and (&, w-
be the velocity components of the secondary flow, the vector Zf may

be expressed as:

?(S,ﬂ,z)=/2/(5,n)+ ulsnz)a™ + Ul nz) 3 + wis,nz) R (2.2)

where 4 , 3“ ) F are unit vectors in the 8, n, 2z gystem. Similarly,

the vorticity vector in component form becomes:

(5,77 = @, (5n,2) 3 +W:(5,0,2)T + ws(S,nz) B (2.3)



i
Substituting equations 2. 2 and 2. 3 into equation 2. 1 gives:

{UM/) +w-_<i][cu K Oy 3+ Wy ﬁ]+ (2. 4)

—/&), + Ean+®3 ][z/+u),<+(fj+w?j O

The {actor g% in equation 2. 4 may be evaluated in the following man-

ner. Consider the streamtube element shown in figure 8. From geometry,

d (an)
X . 95 .
The continuity equation for the element is given by:
_ U ), - 1)3(AN) QL
LJan= (U+§§ As)(A/H Q—S—AS)—Z/A/%- 35 As +§§A/745‘ (2 6)

Solving equation 2, 6 for —%‘s‘—?—’# and substituting into equation 2. 5 then
gives;

- .
=0 @

—

The correegponding expression for the term 8d in equation 2. 4 is
g n

similarly given by:

(2. 8)
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The factor ,g% in equation 2. 4 can be evaluated as follows. From the
geometry of figure 8,

N OIG 2.
55 = &ue) . TR =

Assuming no losses, the Bernoculli equation along a streamline may
be written:

P £+ _fo&)__{/_f = congtant (2. 10)
Differentiating equation 2. 10 with respect to " ané‘raplming 38;? by
2
%Li from the condition for radial equilibrium gives:

AV VY (2. 11)
A L/ 277

Substituting from equation 2. 11 intc equation 2. 9 then gives:

X/ M~ (2.12)

——— e e

35 7 37 1

In a similar fashion, the factor 58;2 in equation 2. 4 becomas:

29 _

oS

QJIQ/
NN

X7 (2. 13)

N

It is interesting to note that the differential equation for the
two-dimensional velocity L/(S,/7) can be derived from equations 2.7
and 2. 12; differentiating evuation Z. 7 with respect to "8' and equation
2. 12 with respect to 'n'' and subtracting gives:
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LI A -
L] 39S c)n Y (2. 14)

Expanding equation 2. 4 and substituting from equations 2.7, 2.8,
2. 12 and 2. 13 then gives the following relations corresponding to the
three component directions:

1/+u) dW3 (f3403+wc)a)3 OOW_ (o SW_ e dur
( )as + V55 =4 15T -0, agsgzo (2. 15)

(U'*C/) JWz 4 MWz Wz _ U e, L __ ) U
Ss 7 T SE T Y5s 357

— WHPU 0D 4 (lru) L QL
wzcm C‘)3¢Tz‘+( )/./ wZQENO (2. 16)

(U'*U)gt?a_)/ - U—éo)_/7@/+ W-Z)g/ (4/7‘0) 4 Q)Z ‘jU -+

) _@_(4/*0) wzjv(l/“’) W 7‘%5; + —géd/g’lé?/: O @2an

4

\)

The variables 8, n, z in the above system of equaﬁana may be replaced
by the dimensionless coordinates &, (3,7 according to the follow-
ing transformation:

8% e

n=gh

z2=hT
where "'¢" is the blade chord; "g" is the blade gap; and ''h" {s the span-

wise half-width of the upstream screen. The parameters “¢*, "g", and
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“h' have the dimensions of a length; the values of X, B, and 7" are
of order unity in the region of the flow field where the effects of the

socondary flows are concentrataed.

Assuming that the secondary flows are small perturbations to
the two-dimensional primary motion, the components of velocity may

be written as:

U(«)G)z L/O[L/ (O)(o() 6)]
UE,8,7)= L, Jeu?(ea,7) + oarv] (2. 19)
(=857 = U [ €0t 6, 7) # O]

w(,8,7) = L) €w(x6,7) + O]

where Z/o is the upsirearn primary velocity and the dimensionless
terms /J“)j 4/(”/ (/’{/)) w!") are of order unity. The factor " " is
used to indicate smaliness. The components of vorticity may like-

wise be writiten ir series form as follows:
(g’(
— ¢
= —F)"[wf (o7 + €q¥en ) + o)

(2. 20)

We = E; [ W o 8,7) + € 0,7, 87) + 0(6‘?7

*x
Wy — %‘1‘/@3@(% @)7)_/. e@j(/)(a(l B,7r) + 0(6‘1)7

> 2 2
where ?o = m{ is the magnitude of the maximum upstream
perturbation velocity vector and *h" is the screen half-width; the para-

>
meter 7, is, therefore, a measure of the vorticityin the approach
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flow. The dimensionless terms & (‘ m w3( ) are of order unity
and the factor "€ " is again used to indicate smallness. Substituting
from equations 2. 18, 2. 19, and 2. 20 into equations 2. 15 through 2. 17
then gives the following system of equations:

@ ] 5 @ )
[L/ +€U"[ L[ €W, +@U_Q
T3f :

+ewlc < &[ @, 5“7 [w(a) ew("? (gwm)+
— (o) () (/) (o) () )
[a)z ¢ (car /Zo ey’ = gr(cw +

-+~ 0/68) =

_i CQ(”_/_ e&) ()

(2 21)
ZZ/(O)+€U(/_)7 [wa")v#ea)(” +€V(')Cc) [w“#ea)(’)

; (U'(/} c 3 / CDU(O)
¢ h AT (O 6(10 U/o) [C‘)W €)'

_[co,(°’+5w,m5_(6(/”9&[602(0)* el < 9 (ev?) 4
Q(

g se
~ | e’ C & (cuf/y 7Y PHCH /./(0)
Wy +€cw /7+€W] L 00,0 +

L O(€3) =0 (2. 22)
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[U(")-f 60(1)7}5&?[‘“:”)4— ew”| + GU(/) [ 0% e
-fear(/)c‘c)[w(")-pea)(y [+ }] wfl, waj]c L
e
() () o, 0 (o), ) o
[ 6@7 [U eu] [ eco]g Ve, L +€u]+

S i/U;()E{ w(o) Ea)(/) f)%/() 0(6‘2):0

(2. 23)

An additional relation may be derived from the continuity equation;

this expression in texms of the above dimensionless parameters be-

sornes:
Sox \ 70 g AB\ Ly L)% /} CD\T {2. 24)

Equations 2. 21 through 2. 24 may be studied systematically for
various values of the geometric pammaters % and E'*-. For simplicity
it is mmmmd that the casea.de solidity is of order unity; the partic~
ular cases — B .o0) and -- =()(€) are dimunaed below in sections
2:1. 1,1 and 2:1. 1, 2. For -13 a() (—). the restriction that the induced
velocities remain perturbation quantities implies that the upstream
velocity gradienta are very small. This then suggests that the flow
may be treated in a two-dimensional manner locally along the span;

howaver, since % was not large in the current experimental tests,

this procedure is not considered further.
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21.1.1 Casel, € 2O

The restriction that % be of order unity is particularly signifi-
cant in connection with the current investigation becaunpe it is thie con-
dition which wae simulated experimentally in the cascade tunnel. Put-
ting % = % = 1 in equations 2. 21 through 2. 23 and collecting terms
of opdey unity gives:

Umgw?_.o (2. 25)

¢

2 WP =0 (2. 26)

ey e ’ '
@ 2 Wi /%

30(( L/(o)) U(o) z g@ = 0 (2. 27}

Integrating equations 2. 25 and 2. 26 along streamlines and applying
boundary conditions from the prescribed upstream flow field gives:

(o) (o)
upstream
W (o) - / D) (o)U(o)
"= g (V)
é/pﬂ’ reon {2, 29)

It is pssumed in equations 2. 28 and 2. 29 that the upstream flow varies
in the spanwise direction only. Substituting from equations 2, 28 and
2, 29 into equation 2. 27 and integrating along styeamlines then gives



the following integral representation for the streamwise component of

vorticity:

s
— 2 U Ulsn) das | L 24 ofs 1 K db ,;
W, =2 LU )5/2_ 773 37 7 77, pvae (2.30)

— QO

The variables o, (3,7 have been replaced by the more conventional
dimensional units 8, n, = and the superscripts have heen dropped for
simplicity. It is noted that equation Z. 30 represents the approximation
for ), toordexr € , t.e., &,¥  andthat U  ana O

2 odz
are dependent upon the particular streamline along which the inte-
gration is carried out. From equatiom 2. 11, Q;Q'TAyl = - /_é_/ . where

"R is the local streamline radius of curvature. Changing the variable
of integration in equation 2, 30 from "s' to "y, where " X" is the
flow angle measured from the axial direction, the expression for ),

becomes:
12
W =-2UUlsn) di [L & + oo U ‘
/ o a/z//Jz A (2.31)
o

Neglecting the streamsurface warpage due to the self-transport ef-
fects of the induced flows, the continuity equation is:

/)= L, cosd,

Cos & {2.32)

Substituting for [/ in equation 2, 31 and integrating gives the following
expression for the streamwise component of vorticity in terms of the

preacribed upstream vorticity and the mainstream turning angle:
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( /)z Cos &, Cos &, o’a/ff‘d; * Z/fm 28, — 5/ 302274.

cosds Jdus
Cos 2 522

The corresponding expressions imr(wz)a and ( @ )Efrom equations 2. 28
and 2. 29 are:

{2 33)

Lo u
( wz)z-:: 7 %/‘é- (2. 34)
(c‘)3)a = 0

(2. 35)

where W, ), , W3 are the first order approximations for the com-
ponents of vorticity in the 8, n, z directions respectively;

the subscripts o' and 2" refer to conditions upstream and down-
stream of the cascade reapectively;

L/(5,n) is the magnitude of the primary flow velocity;

# ¥ v is the angle that the primary flow velocity vector makes with the
x-axie; and

Uo and U, are the upstream velocity components of the prescribed
disturbance flow in the &' and “n' directions respectively.

h
21.1.2 Casen, ¢ “01€)

Assuming that % is of order "€ ' and that % is of order one in
squations 2. Z1 through 2. 24 and collecting terme of order unity gives:
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aw(”

aw ' _ O (2. 36)
T

U(o) éﬁ-o;o): o (2. 37)

S~

_S__[U””wf’ =0 (2. 38)

;

o (w0  p (o) (0

dex ( L/m’) "(’J—@)z C‘)e %_g- = O (2. 39)

Applying the boundary condition that w “.o as 7" becores large,
squation 2, 36 indicates that W2 O  throughout the flow field. Equa-
tions 2. 37 through 2. 39 are identical with equations 2, 25 through 2, 27,
and, therefore, the integrated forms of these expressions ave given as
before by equations 2. 33 through 2. 35. The restriction that the veloc-
ity component ¥ w * remains sverywhere equal to zero suggests that
the spanwige progsure gradient iz negligible and that the secondary
flow effects remain concentrated in a thin layer. It iz expected that
this analysis for «2 s (J{ €} should correctly define the flow field in
the central regions of the channel for the case of a narrow upstream
wake; neay the blade surfaces, however, the boundary restrictions that
the velocity component ‘'v'' goes to sero implies that the spanwise veloc~
ity "w " cannot also remain equal to zZero since this would mean that
fiuid muet accumulate within the two-dimenelional sheet.

The case of u narrow wake was not studied experimentally in the
current test program. Earlier investigators, however, have considered

the secondary {lows emanating from a thin boundary layer upstream of
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the blade row; attempts to predict the behavior of these flows by the
channel-theory analysis with %- 2 J(/), i.e., Case I, have met with
no success. The reason for this failure, however, is probably severely
influenced both by viscous effects in the boundary layer and by large
distortions of the upstream velocity profile; therefore, the applicability
of the channel analysis with % s (€), l.e., Case II, cannot be
tested directly from the published data.

2:1, 2 DETERMINATION OF THE SECONDARY VELOCITY FIELD

The procedure for finding the secondary velocity field iz out-
lined in Appendix 1. It is assumed that the vorticity distribution pre-
scribed in the previous section for the condition % = {1} is carried
downstream by the primary flow and that the induced velocities are
sufficiently emall to permit the streamwise vortex filaments to remain
parallel to the original two-dimensional stresmlines, The imaginary
chanuel boundaries that were foxmed by extending the blade surfaces
are taken as streamsurfaces for the perturbed motion, and the second-
ary fow flelds in adjacent Waagéa are assumed to be mutualiy inde-
pendent. It is further assumed that the velocity distribution just aft
of the trailing edge plane is the same as the velocity distribution which
iz induced far downstream by the two-dimensional voriex array.

The expressiong foxr the horizontal and the vertical components
of the induced secondary velocity fleld are given by equations 9 and 10
respoectively of Appendix L It is noted that these relations are derived
for a chaonnel of infinite spanwise extent; therefore, when computing
the velocity field for an actual cascade, it is necessary to satisfy ad-
ditional restrictions at the tunnel boundaries. In the current investi-
gation, ‘the induced velocities were very small at a dsatance > one chord-

length from the screen wake, and & correction term accounting for only
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the first image effect was found to be adeqguate for all configurations.

2:2 PORMULATION OF THE EMCT LINEARIZED PROBLEM

Consider agein the expressions which were derived in section
2:1, 1. 1 by integrating the linearized vorticity equation from a region
far upstream of the blade row to an arbitrary point in the flow field:

— M—-_a_g.———_ (s]
W= 37 53 = Uy OIUAH/UZ)C/S ogg (2. 40)
w._ = E_)_L_/___ C)('d-_—______. Uo O/Uo

27 2z s U Jz (2. 41)

i!. U
Wy = / Iy Q(u)] (2. 42)

where &, 0, ,w; (s,7,2) are the components of vorticity in the 8, n, 2
directions;
U\ Uy Wi(s,7,2) are the perturbed velocity components in the g, n, 2
dirvections;
L/(5,7) is the magnitude of the primary velocity vector; and
Uo)Us (Z) are the given perturbation velocities far upatream of the
blade row.

The cérreaponding continuity equation in the (s, n, z) coordinate

syetem may be written as:



%(%) “‘LSQE('L%—) +Z//—f—)'g: © (2. 43)

Differentiating equation 2. 42 with respect to "2 and substituting for
-gug and «g-g from equations 2. 40 and 2. 4] gives the following expression
for the spanwise component of velogity "w':

sw], 2M1aw] L L3y dufde, |
as uas Slbanl Td 0 =/ gean U? (2. 44)

- A second differentisl gquatim for "w* can be derived by taking the
partial derivative of equation 2. 40 with respect to "s" and the partial
of equation Z. 41 with respect to "n’ and adding; using equation 2. 42
to simplify then gives:

QU dw éUé__:__o (2. 45)
s 2N

oN OF

This expression may he regarded as a condition on "« " which the
sojution to equation 2. 44 must satisfy.

The corresponding relations for the remaining perturbation veloc-
ity components ¢an be derived from equations 2. 40, 2. 41, and 2, 42,
Differentiating equation 2. 40 with respect t0 "' and equation 2. 41
with respect to 'n" and adding gives:

‘[—'_ ‘5?27)] angzu/ c)sazu) - A 5n3) (2. 46)
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Lz anp :)S c)l’) L3

where /{/S)/?,) UOIU//JU JU /] /(DUO/U‘

Talking the partial derivative of equation 2. 42 with respect to "'z and
substituting from equation 2, 46 then gives the following differential

sxpressions for "o and Vv

LU =Y, f ()0 (=) _ D [ ]
5)5 uan U ds 0[55(“) E(D)]‘AS @-/t 4
£ (2. 47)

£)~ __Lé__w-..,./_c)(/* / /
ez{wuan UJ§+V/ L_Z/) /U}“ (gg//] (2. 48)
]

oL

a7 .

where o (5,7 )= *‘327 ancd "/ " ia given in equation 2. 46. The
of

boundary conditions for the above system of equations are as follows:

{a} the fow field far upstream of the blade row 5 a given function of
spanwise position only; (b) the static pressure is continuous both up-~
stream and downstream of the turning vanes; this condition, in cone
junction with the assumption that the total pressure i8 constant along
a streamline, implies that the induced secondary velocities may be
discontinuous only across the solid blade elements; and {¢) the
blades are themselves streamsurfaces of both the perturbed and the
unperturbed flows. The cascade geometry ig prescribed and the two-
dimensional flow is assumed to be known.

As was indicated earlier, no explicit solutions for the secondary
velocity distributions were obtained from the previous set of differen~
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tial equations. Some simplification can be made, however, by as-
suming that the solutions for "u", "v', and "w ' are of the following
form:
AZ

®© A
uisnz)= > U (57;3) g
7\:0

oo ,LAZ—
U(s,nz)= 2>_U(Sin:2) e
A= O
(2. 49)
% A D2
w(s,nz) = > wr(s)n;A) 2
P

Substituting from equation 2. 49 into equations 2. 44, 2. 47, and 2, 48

then gives:
/S
T ow; |y SfLawn |_ Xy o _24() <Al 497 | (L ds
ds| U s sh{ U an ! RARCINN AYS &nz\/uz {2. 50)
Ll = o [ O /el 9 [ AT
— Y _xX U Ly /) _ o)) _ & | —
4n T3s ™ ‘/m(ﬁ) &(U)/“ As/éi;/ B] (2. 51)
L o U—&_/_ﬁi(—// o /(3 2.52
3T Ss T splEm) Tas\T) = 5 )sa (2. 52)
37
oU
where 0({5,/7)::;[%- and
oS
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It is noted that if (U7 ('S)/7;))  can be found from equation 2. 50, then
"u'f and 'v' can be determined directly irom equations 2. 40, 2. 41, and
2. 49,

2:2.1 ALTERNATE FORMULATION OF THE EXACT LINEARIZED
PROBLEM

_ If a local coordinate change is made wherein the variables
{8, n, z)are replaced by {4, ¥ , B) according to the transformation
C7/¢=U0/5 )O/V7= LUdn s the expressions for the components of vor-
t:icit? become:

@
QW IU_ [ U
w’m’%’z)* Y55 Sy IF EU°UCQ//—LL 73 ou79- -Z—” (2.53)
- Qo
__ QU _Ldw_ Ly o
w(@%’z): IZ 0P T go (2. 54)

ws( O, 4y2)= Uz/-é%(—g) ~§4 [17(”)]—:: O (2. 55)

In these relations, the variables ave regarded as functions pf {ds Ay =)0

The transformed continuity equation becomes:

570(%7/} +§>@(U +1//2 3;” o (2. 56)



~30-
Following the procedure which was used earlier in connection with the
{s, n, 2z} coordinate system, it can be shown that the differential equa~

tions for the secondary velocity components are given by:

Rw , 2w s Qiw_ 1, a2
a@z'{_ o (h? +Uz d72 dzﬂ)wz é—— UZ {2. 57}

U _ ™M _ = [ g D /‘{T_U
92/;(/’ 90 20 oY a—i‘w/ (2. 58)

o[V _ -1 U‘Q(,/d* /{/L/

az[aw <X DY a@ au );‘O (2. 59)
QU

where q“(d),lﬁ)z% and
Ky

»4//@%2)—— A %jg

Some simplification of the above equations can be made by assuming
that the solutions for "u", "v", and “w" are of the following form:
2 { A=
Ul pz)= 2 el O#id) £ A
=0
oo A2z
U hz)=> Vz(omi)e

A=0 (2. 60)

oo Dz
w (O, yz)= > wz( O, ;) 2
AM=O
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Substituting from equation 2. 60 into equations 2. 57, 2. 58, and 2.59
then gives:

@
QU Ful '
So° S ~he 4 M"(a')/cb* 9#/] =0 e

e _ o™y 1y doc* _ we) o o /U
L "oy _ Pl (2. 62)
o oQ hY) A2k Op oW o«*)

(2. 63)

It is noted that if the solution for &, (¥ ;) can be found from
equation 2. 61, then the functional relations for (, and (7 canbe
determined directly from equations 2, 53, 2.54, and 2, 60.

Ap wé.a the case in dealing with the equations for the induced
velocities in the (8, n, z) system, no explicit solutions were obtained
for "a¥, v, and Yw from the analogous diffevential equations in
terms of {$, (4, B). These equivalent systems of equations are
significant, however, because they do give a correct representation
of the velocity perturbations which the solutions to the exact linearized
problem must satisfy.
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. EXPERIMENTAL APFARATUS

The cascade wind tunnel which was used in this test program is
fully described in reforence {13), and the reader is referyed to this
publication for a detailed description of the apparatus. For complete~
ness in this report, however, the important features of the equipment
are outlined below.

3:1 TUNNEL GEOMETRY

The general appearance of the cascade tunns] is shown in figures
% 10, 11 and 12, and the geometry of the turning vanes is shown in
figure 13. Five equally spaced diffusing blades having 8. 5 inch
chord, 0. 920 aolidity, and aspect ratio = 2. 82 were mountad in the
2' by 3' test section at a stagger angle of 46°13'. The design turning
of the vanes was 2159 at an angle of attack of 14959": however, to
reduce separation on the suction surfaces of the blades, the actual
angle of attack was maintained at 13, 5° and the resultant average
turning was approximately 19. 5°, The flexible side walls of the tun~-
nel were adjusted so that the static pressure was the same at corres-
ponding points in the four center passages. A fan speed was selected
so that the velocity ahead of the cascade was approximately 36 £, p. 8. ;
the corresponding Reynolds numbey based on choyd was 159, 000,

The approach flow into the cascade wae varied by installing the
strips of screening shown in figure 14; these obstruction elements were
mounted ahead of the blades at the mid-span position to give a controlled
distortion of the upsiream velocity profile.

3:2 PRESSURE AND VELOCITY MEASUREMENTS

Total pressure surveys were made with the Kiel and the pitot-
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static probes shown in figures 15-a and 15-b. The Kiél probe was
relatively insensitive to flow direction and was used primarily for col-
lecting preliminary data. The pitot-static probs was used for those
tests run in which both static and total pressure data were deaired;
this tobe was found to be Insengitive to flow direction for approach
angles of approximately only + 5 degrees {rom the probe axis; and it
wae necessary, therefore, to carry out lateral and vertical angle sur-
veys preparatory to using this apparatus. The magnitudes of all
pressure readings were determined by using the trangducer-bridge
eircuit which is described in reference 14; this equipment was stati-
cally calibrated by comparing indicated scale readings with direct
water manometer readings.

’ The distribution of static pressure on the surface of the center
cascade blade was measured using the specially tapped vane shown in
figure 16. A complete description of this apparatus is given in refer~

ence 13.

3:3 FPLOW ANGCLE MEASUREMENTS

The claw, the wedge, and the hot-wire probes shown in figures
15.¢, 16+d and 15.¢ wers used to measure the direction of flow in the
tunnel; additional surveys were algo made using tuft instrumentation,
but thias procedure was generally employed only for obtaining prelim-
inary qualitative data. The transducer-bridge éircuit was uged as a
null~gensing device when the flow angles were being measured with
the claw and the wedge probes; here the output from each paix of
preasure sensitive tubes was fed into opposite sides of the transducer,

snd the probe was then rofated until the bridge circuit was balanced.
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The hot-wire angle measuring apparatus is shown schematically
in figure 17. The current for the heater element wasg supplied by a
Variac rheostat; the sensing wire was connected to a constant temper-
ature hot-wize set. The voltage potential across the sensing wire was
kept very small so that this element would not respond o velocity
fluctuations. The current in the gensing wire was metered and the
probe head was rotated wntil the null polat was reached, thus indicat-
ing the angle setting at which the wire was in the wake of the hot
hester clement.

The angle measuring probaes were calibrated upstream of the
cascade. The directional steadiness of the flow was tested locally by
maldng a series of tuft obeeyrvations; the zero point for each of the de~
vices was then determined by carrying out angle surveys with the
probe first in a normal operating p&smm and then in an inverted po-
sition. As an additional check on the accuracy of the calibration pro-
cedure, the angle data from the different probes were compared at

corresponding points in the flow fleld,

3:4 STREAMLINE TRACING

The corresponding upstream and downstreawm points on the same
streamline were found by placing a small heater coil ahead of the cas-
cade and then uging bot wire instrumentation aft of the blade row to
determine the downstream location of the warmed filament of aje.

The heater coll is shown in figure 15-f; the current for this element
was supplied by the Variac vheostat. The hot-wire probe is shown in
figure 15-g; this probe was connected to the constant temperature hot-
wire set and the voltage potential was again kept very small so that



«35.

the element would not respond to local velocity fluctuations. The cur~
rent in the sensing wire was mumitored and the probe location was
varied until the minlmum reading was obtained, thereby indicating

the downstream position of the heated streamtube,

3:5 EXPERIMENTAL AGCCURACY

The accuracy of the total pressure data was tested by comparing
the results of Kiel probe surveys with the corresponding results of
surveys made using the pitot-static tube. It was found that excellent
correlation was achieved between the two sets of readings and that
maximum deviations were of the order of one percent. The accuracy
of the etatic pressure data was tested ‘f:ry mounting the pitot-static tube
fay upstream of the blade row and comparing the readings from this
probe with the readinge from a veference static pressure tap in the
tunnel wall. The maximum deviation between the data from these
methods was again approximately one percent. The transducer-bridge
system which was used in making preaauiw measurements was
checked pericdically, and no significant variations were detected dur-
ing the test program.

The calibration of the angle sensing probes was discussed in
section 3:3. The data from these devices was generally found to be
accurate to within 20, 25 degrees in regions of steady flow; in those
vegions of the flow field where angle gradients were large and where
appreciable turbulent fluctuations existed, the measured data are bee

lisved to be correct to within % 0, 75 degress.



«36-
IV, EXPERIMENTAL INVESTIGATIONS

A primary objective of the current investigation was to test
the usefuiness of the channel-theory medel of sscondary flowe by care
rying out a series of experiments which were compatible with the fun-
damental assumptions upon which the analysis itself was based. Teo
accomplish this goal, a family of écm%ms. each of which extended over
approximately ten percent of the blade height, were installed ahead of
the cascade to produce various desired amounts of distortion in the up.
stream velocity prodfile. These screen segments were positioned at
the center of the span so that the secondary flows induced by them
would be readily distinguishable from the effects of all other disturb.
ances, e.g., viscous losses, boundary layer effects, etc.

The general nature of the expeorimental test program is des-
cribed in section 4:1; the detalled results of the flow measurement

surveys are presented in section 4:2 for each of the four tunnel con.

4£:1 SCOPE OF THE EXPERIMENTAL INVESTIGATION

The experimental testing which was done in the cascade tunnel
was designed to furnish quantitative information about the secondary
flows which resulted when varicus chastructions were installed up-
stream of the blade row. In the following paragraphs, a brief dig~
cugsion is given vegarding the different tunnel arrangements which
were studled; dgo included iz a vegume of the type of experimental

data which were measured for each particulay configuration.
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4:1. 1 CONFIGURATION L

The tunnel was run in normal operating condition, i.e., without
any external sources of disturbances located upstream of the blade
row. For this and for all subsequent test runs, the blading angle of
attack was set at 13. 5° and the Reynolds number based on chord was
maintained at approximately 159, 000, The distributions of total pres-
sure, velocity head, and flow direction were measured both upstream
and downstyreamn of the cascade to determine the fluid mmm in these
regions. In addition, the distribution of static pressure was measured
on the surface of the center vane to determine the spanwise variation
i{n blade loading.

4:1. 2 CONFIGURATION 1L

A three-ply screen segment covering approximately 10 percent
of the floor-to-roof tunnel helght was installed at mid-span some 2, 5
chordliengths upstream of the turning venes. This obstruction, which
was mounted parallel to the leading edge plane, extended completely
across the cascade and produced a disturbance region in which the
minirmum wake velocity was 47 percent of the freestream velocity.
Asp in configuration I, the distributions of total pressure, velocity
head, and flow direction were measured at the upstream and down-
stream reference stations, and the variation of static preasure was
mesasured on the surfsce of the center blade. In addition, data was
taken to determine the amount of streamsurface displacement which
regulted from the gelf-transport effects of the induced secondary ve~
locities; this information was desired in order to test the validity of
the assumption that streamline distortion ie actually negligible in the
lincarised analysia.
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4:1.3 CONFIGURATION IIL

The tunnel ayrangerent for this configuration was the same as
in the foregoing case except that a single ply, rather than a three-ply,
strip of screen was installed upstream of the cascade; the correspond~
ing minimum wake velocity for this obstruction was 69 percent of the
freastream velocity. The variations of total pressure, velocity head,
and flow divection were measured fore and aft of the cascade, and the
static pressure distribution was evaluated as usual on the surface of
the center blade.

4:1. 4 CONFIGURATION IV.

In this configuration, a single ply screen was installed at mid-
span height approximately four chordlengths upstream of the leading
edge position; however, in contrast with the previous two cases, this
obstruction was placed perpendicular to the oncoming flow rather than
parallel to the cascade axis. This procedure was followed in an effort
to eliminate completely the slight cross-flow effects which were noted
in configurations II and III. The distributions of total pressure, velo-
city head, and flow direction were again measured upstream and
downstream of the cascade. The blade static pressure loading was
recorded but was subsequently found to be incorrect dus to equipment
malfunction.

4:2 EXPERIMENTAL RESULTS

4:2.1 CONFIGURATION L

In accordance with the definition given on page 1, the notation
“primary flow" refers to the flow field which exists when no external
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blogkage obstruction, i.e., screen segment, is placed upstream of
the blade row; consequently, it is this reference flow which is defined

by the "'no screen' arrangement of configuration L

Upstream Flow

The reference station at which the upstream flow field was de-
termined was spproximately two chord lengths ahead of the cascade.
The spanwise variations of the velocity head, the horizontal and ver-
tical flow angles, and the total and static pressures were measured
at this position and are shown in figure 18. It is seen from this plot
that the undisturbed upstream flow was very nearly two dimensional
outside the lower wall boundary-layer region.

Downstyeam Flow

The veference plane which was used for the determination of the
downstream flow field was 1. 5 inches aft of the cascade trailing edge
station; velocity, pressure and angle surveys were made at this po~
sition, and the results of these measurements are shown in figures 15
through 21. It is seen from the total pressure graphs of figures 19
and 20 that the thickness of the blade wake is approximately one inch;
in addition, comparison of these plots with figure 18-a indicates that
viscous losses through the blade row are negligible in the central re-
gions of the channel. The variations in the downstream flow angles
are shown in figures 19-b, 20.b, and 21; the contour map method of
presentation is used in figure 21 in order to permit easy comparison
with the corresponding data of later tunnel configurations.

The variation in static pressure on the surface of the center

cascade blade was meagured using the specially tapped vane which
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was described earlier. The blade-doading was found to be almost
wholly independent of spanwise position over the entire vertical
traverse range of the equipment; the recorded pressurve distribution
foy & = 3" jg shown in figure 22 mﬂ‘ia fully representiative of the anal-
ogous curves foy |z | £ 9 inches. The component of blade load
parallel to the cascade axis at each vertical station was computed by
integrating the corresponding measured vane pressure distribution.
The general two-dimensional character of the flow is particularly evi.
dent from the resultant curve of figure 23,

R was noted early in the experimental program that there was
aome tendency for the flow to separate from the suction surfaces of
the blades. Subsequent testing showed that this condition could be
substantially alleviated by reducing the blade angle of attack; this
form of corrective action was not practical in the present case, how-
ever, because the adjustability of the tunnel side walls was not suf-
ficient to permit simulation of flow through an infinite cascade when
the vane angle of attack was appreciably different from the deaignkva‘lma.
Therefore, as an alternative, a 0. 020 inch diameter turbulence wire
was permanently mounted on the suction surface of each blade just
aft of the leading edge position; it was found that the installation of
these “turbulators" caused the separation point to shift downstream,
thereby giving a blade wake of acceptable thickness.

4:2. 2 CONFIGURATION I

in this configuration, & 2. 4 inch strip of three-ply screening was
mounted at midspan approximately 2. 5 chord lengths upstream of the
cascade; s description of the obstruction element was given earlier in
section 3:1.
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Upstream Flow
To determine the nature of the flow fleld ahead of the cascade,

pressure, velocity, and angle surveys were carried out at the up-
siream reference plane. The results of these measurements are de-
scribed briefly below.

The spanwise variation in flow velocity at the upstream station
is shown in figure 24; it is seen from this plot that the minimum wake
velocity is approximately 47 percent of the free stream velocity and
that the influence of the screen is concentrated in the center ten per-
cent of the span Iwighz('-ansa |8

The spanwise variation in total and static pressure is gshown in
figures 25 and 26. The total pressure data is reduced to dimensionless
form by introducing the fictitious velocity head g_( ?:—- 7 fm,( e

o)
this particular parameter was used in order to normalize the pressurs

:

date in a consistent manner for all sc¢reen configurations.

The measured variation in the lateral flow angle is shown in
figure 27. It is seen that a component of velocity normal to the iree-
stream direction was induced by the oblique orientation of the screen
and that high local angles of attack existed in the mid-span portion of
the cascade. The magnitude of this distortion was sufficiently large
to cause some concern regarding the possibility of sericus flow sepa-
ration from the blades; however, the anticipated adverse effects did
not occur, probably because of the relatively strong overturning ten-
dencies of the fluid in this region.

Downstream Flow

The nature of the flow field downsetream of the cascade was de-

termined by making a series of velocity, pressure and angle surveys
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in the tralling edge reference plane. The variation in the downstream
total preseuve parameter is presented in the form of & contour map in
figure 28. The characteristic distortion of the ﬁm field in accordance
*mzh the qualitative secandary flow model ig at once apparent from this
plot. It is seen that the low energy fluid from the screen wake is swept
toward the suction side of the blade and that the “void" thus created
near the pressuve surface is filled with high energy air. 1t is also
acted that although there was some accumulation of low ensrgy flow
near the suction side of the vanss, there was no svidence of the ex-
ietsnce of 8 high loss vortex-core such as has been frequently observed
in gtudies of boundary layer overturaning.

The distribution of lateral flow angle in the downstream refer~
ence plane is shown as a contour map in figare 29, These data were
measured using the hot wire instrumentation and were verified with
both tuft and claw probe surveys. The regions of overturning and
underturning are clearly outlined and are in agreement with the gquali-
tative channel~theory model which was described previously.

The variation of the vertical flow angle in the downstream refer-
ence plane is shown for variovus "z' i{n figure 30; comparison of these
results with the data of figures 19 and 20 shows the distinct cireulatory
motion which is produced by the secondary flows.

The variation in the spanwise component of velocity at specific
values of "'2" ls shown in figure 31; the variable "w ' is of particulay
significance in this investigation because it is used directly as & cor-
relation parameter in compaving the experimental and the theoretical
results. It is interesting to note that the magnitude of % is every-

Ly
wheve less than 0. 20, thia being substantially in agreement with the
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asgurnption that the induced velocities are indeed perturbation quan~
tities.

The amount of streamsurface warpage produced by the second-
wry flows is shown in figure 32. To obtain these data, a small heater
coll was placed at numerous positions along lines of constant "s" in the
upstream reference plane and the locations of the corresponding stream-
tubes in the trailing edge reference plane were then determined by

using hot wire instrumentation to detect temperature variations.

Blade Loading

The static pressure distribution on the surface of the center
blade was measured using the tapped vane and is shown plotted in
dimensionless form for various values of "z" in figure 33. The span-
wige varistion in the compoment of blade loading parallel to the cascade
was calculated from this data and is presented in figure 34, It is noted
from this graph that the magnitude of the blade force is strongly de-
pendent upon vertical position, this being in marked contrast with
the two-dimensional form of loading which was observed for the "no

screen’’ case of configuration I {figure 23).

4:2.3 CONFIGURATION Il

In this portion of the investigation, the relatively dense screen
of the previous configuration was replaced by a lighter single-ply ob-
struction element which ig shown in figure 14-b: no further changes

were made in the tunnel geometry.

Upstream Flow Field

A series of test surveys were again carried out in the upstream
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reference plane to determine the distributions of pressure, velocity,
and flow dirsction. The resuits of these measurements ars briefly
described below.

The spanwise varviation in flow velocity at the upstream station
iz shown in figure 35; it i observed that the minimum wake velocity
wag approximately 69 percent of the free siream velocity and that the
influence of the screen is once again concentrated in the centey ten
percant of the span height. |

The upstream total and static pressure disiributions are pre-
gented in dimensionless form in figures 36 and 37; the parameter
—g—[ ‘l:- q :,, kemwj has again been used in the normalization process
to give results which are congistent in form with the data from con-
figuration IX. ,

The measured variation in the lateral flow angle is shown in
figure 38. As wag the case with the heavier three-ply obatruction,

a component of velocity normal to the two-dimensional flow was in-

duced locally by the obligque orientation of the screen.

Dovwmstream Flow

For this configuvation, no attempt was made to deseribe the
flow field in the entire downstream reference plane., Insiead, the
only test surveys that were made were those which were required for
evaluating the strength of the tralling edge voriex sheet, i.e¢., velocity
and angle measurements in the neighborhood of the blade wake region.
This particular data was needed for comparing the results of theory
and experiment] the qualitative nature of the downstream flow field
was satisfactorily established in configuration II, and it was felt that
further extensive testing would not add materially to the general
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description of the induced secondary flows.

Blade Loading

The static pressure distribution was measured on the surface
of the center vane and is shown for various values of "g" in figure 39,
These data were used to determine the variation in cascade loading
which is plotted in figure éﬂ‘. It i seen from this graph that the mag~
nitude of the blade force ie once again functionally dependent on span~
wise position and ig subsgtantially diffevent {rom the characteristically
two-dimensgional plot of configuration L

4:2, ¢ CONFIGURATION IV.

In configuration IV, a single ply strip of screening was mounted
neayr the end of the convergent section of the upstream "bellmouth';
this cbsiruction element was mounted parpendicular to the tunnel side
walls rather than paraliel to the axis of the cascade. A series of test
surveys were made ahead of the turning vanes to determine the nature
of the approach flow; the results of these measuremaents are shown in
figures 41 through 44. It is scen from figure 44 that the diatinct
e¢ross-flows which existed in configurations Il and III were completsly
eliminated by the reorientation of the screen.

Az in configuration I, the only downstream flow data which were
recorded were those velocity and angle measurements that were needed
for caleulsting the strength of the tralling edge vortex sheet, The pres-
sure distribution on the surface of the center vane was recorded. but
was found to be {ncorrvect due to a manometer line break; the spanwise
variation in blade loading, therefore, was not calculated for this con-
figuration,
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V., DISCUSSION

Two methods dealing with the theoretical prediction of secondary
flows were discussed in section II. The details of the channel-theory
snalyeis were presented in connsction with the first method, and the
exact linearized problem was formulated in the second approach, It
is noted that whevess the second procedure gives a gvstem of dif-
ferential eguations which are a true representation of the three~dimen~
sional perturbed flow field, the method is m‘ present not quantitatively
useful since no explicit sclutions have been obtained for the derived
set of equations,

In eontrast to the exact formulation of the problem, the channel~
theory method does not consider the details of the flow in the turning
vane passagee and does not satisfy the correct boundary conditions
downstream of the cascade. This procedurs, therefore, is admitted.
1y not campletely satisfactory; it is, however, the only approach which
is now available for predicting the behavior of secondary flows, and
it haz been found in the current study that the channel model does give
results which are in surprisingly good agreement with the measured
data. The applicability of the channel-theory analysis to the study of
sacondary flows is considered in section 5:1 below: this is {ollowed
in section 5:2 by a comparison of theoretical and experimental regults.

5:1 APPLICABILITY OF THE LINEARIZED CHANNEL-THEORY
MODEL TO THE EXPERIMENTAL INVESTIGATION

In previous attempts to test the validity of linecarized secondary
flow theovies, investigators have often carried oul experimental pro-

grams which were distincily large disturbance in character aund
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which, therefore, were not readily amenable to study by a perturba.
tion type of analysis; it is believed that this factor has been a primary
canse for the overall lack of guantitative agreement between experi
mental and theoretical results, With this in mind, an important goal
of the presgent study was to conduct a series of tsets which were ba-
sically consistent with the fundamental hypotheses that were bullt into
the theory.

The applicability of the channel~theory model in the current ex-
perimental investigation can be examined by tegting $o see that the
nature of the meaaured dow actually is compatible with that which is
presceribed in the theoretical analysis. Comsider, for example, the
flow field of configuration I, this being the least linear, and hence the
moat resirictive, case studied. Here the maximum ratio of the
measured secondary velocity to the local primary flow velocity was
found to be approsimately 0, 56 in the downstream reference plane.

It is noted immediately that the assumption of perturbation velocity
distortion is, therefore, only approximately true: however, since no
vortex core roll-up was observed, and since the gualitative nature of
the flow field was everywhere compatible with that of the channel.
theory model, it is plausible fo empect the linearised analysis to give
& good first order solution, even in this limiting case,

A second basic assumption which is inherent in the linearized
theoxy is that fluid surfacges which ave originally horisontal upstream
of the cascade tend to remain level planes as they pass through the
blade row. The validity of this hypothesis was tested by following the
motion of fluid particles through the vanes. The measured amount of
level plane distortion is shown in figure 32, and it is seen that the ex.
perimental results agaln show only approximate agreement with the
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non~warpage assumpiion of the theory; this, of course, is due {o the
fact that the induced spanwise velocities were somewhat larger than
perturbation quantities. It was found, however, that a satisfactory
estimate of the level plane warpage could be easily determined by
considering the seli-transport effects of the induced gpanwise veloei-
ties whigh were predicted by the theory; this, therefore, implies that
a very simple iterative type of correction is probably adecuate for
computing the streamsurface distortion when the non-linearity of the
axperiment ig not too pevere.

A third assumption of the theory is that viscous losses in the
blade row are negligible. Thishypothesis was verified by measuring
the total pressure {ore and aft of the cascade snd then observing that,
cutside of the blade wake regions, no significant differences were noted
at corvesponding points upstrearn and downstream of the turning vanes
on the same streamline. It is important to point out that the assump-
tion of negligible viscosity was often, if not always, violated in those
studies of secondary flows which resulted from boundary-layer type
digtortions in the upstream velocity profile; hers it was found that
the high energy air which rooved in to replace the overturned boundary
flow was subsequently reduced to low energy fluid by viscous shear
losses at the zolid boundary,

The final basic assumption of the linearized theory is that the
componenis of vorticity may be treated as perturbation guantities in
the analysis. The validitv of this hypothesis can not be verified di-
rectly for a particular case because no exact reference lavel of vor-
ticlty iz available. However, it is sufficient to specify that the nagni-

tude of the vorticity must be such that the secondary flow velocities
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induced by it remain small; this then is equivalent to saying that the
product of the upstream vorticily times the amount of turning acts

effectively, as in the present case, as a perturbation quantity,

5:2 COMPARISON OF EXPERIMENTAL AND THECORETICAL
RESULTS

The brief discussion of the preceding paragraphs indicates
that the linearized channel-theory analysis should, even with the
existencs of a relatively large upstream disturbance, give a satis-
factery description of the secondary flows induced by the cascade
torning. In the remainder of this section, various gquantitatie com-
parisons of theoretical and experimental results are given; for sime
plieity, these comparisons are initially limited primarily to a
congideration of the measured date from configuration II. The cor-

responding results for configurations I and IV are discussed later.

5:2. 1 STREAMSURFACE DISTORTION

The concept of streamsurface distortion was intreduced in the
preceding section; there it was pointed out that an important as-

sumption of the linearized channel-theory model is that fluld surfaces
which are horizontal upstrearm of the cascade tend to remain level
planes as they pass through the blade row. This, of course, is equiv-
alent to specifying that the self-transport effects of the induced second-
ary velocities are sufficiently small to be negligible in the analysis.

To test the above assumption, the actual amount of level plane
warpage was determined experimentally for the "heavy screening®
case of configuration II. Here a small heater coil was moved along

iinsg of constant "z" in the upsiream reference plane, and the locations
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of the warmed stream fllaments were determined downstream of tha
blade row by hot wire measurements. A number of horizontal tra-~
verses were made at various spanwise positionz; the results of
these surveys are shown in figure 45. It is noted that becauae of the
turbulence level at the lower boundary of the screen wake, the data
points for the z = 1. 0" gest run were extremely difficult to obiain
and should, therefore, bs regarded as only gualitatively correct.

Also presented in figure 45 are curves which ahxﬁw the theo-
retically caleulnted variations in streamsurface distortion for the
above values of "2". These plots were obtained as follows (the par-
ticular case 2z = 3" is comsidered without loss of generality): the
variation in the spanwise component of velocity was first caleulated,
on the basis of no level plane distortion, for % = 3 in the down-
styeam reference planej this was done using the linearized channel-
theory analysis in conjunction with the known upsiveam flow conditions.
These results were then used in an iterative fashion in the following

equation to determine the ameunt of streamsuriace warpage.

A/;(/?;Z=3)i i (nN;2=3)
AL q.(z=3)

(5. 1)

wherve /A is the spanwise distance that a particle is shifted by the
self-transport effects of the induced secondayy flows;

AL is the streamwise distance that a particle travels in going
through the blade row;

(T is the average spanwise component of velocity which
exlats along the particle path {caloulated from theory), and

Z is the average strecamwise component of velocity which

exists along the particle path,
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Now AL is known from blade geometry;

. . / ‘
w (ry2=3)= 5> w(n;z =3 own from theoretical calculations);
dD wnsrream

and

?f”wégﬁ (2:3) + Z_C?=3) ] {known from the upstream flow and
, SU,DS‘ .  downstn the blade geometry)

Therefore, A rough estimate of the amount of streamsurface distortion
can be ealeulated from the above equation.

Comparison of the theoretical and the experimental curves of
figure 45 shows that the extremely simple approach of the previous
paragraph is probably satisfactory when the induced velocities are
small.

5:2, 2 DISTRIBUTION OF SPANWISE COMPONENT OF VELOCITY
The most direct method of comparing the analytic results of the
channel-theory approuch with the measured results of the experimen-

tal investigation is to test the agreement between the predicied and
actual digtributions of the spanwise component of velocity, Thise
method of comparison was made fov the “hoavy screening' case of
configuration I, and the rasulis thereof are discussed in the remainder
of this section,

The variation of the secondary veloeity component "W ' was come«
puted from the analytic channel-theory m;:dal by the method which was
outiined earlier. However, before attempting an immediate comparison
with the corresponding flow data, the following very important adjust-
ment was made: the calcunlated velocity vector at sach particulayr
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point in the flow fleld was locally displaced, in the spanwize direction,
a distance equal in value to the amount of streamsurface distortion
which was predicted from the theory to exist at that same respective
point. In othey words, the magnitude of the distribuied spanwise com.
pouent of velocity was computed directly from the theory; but the po-
gition at which sach vector of tlis field was aswméé to act was physi-
cally diaplaced, the amount of displacement at each polnt being set
equal to the amount of streamsurface distortion which was theoretical-
ly predicted at that point.

The meansured and the caleulated variations in the downatream
vertical component of velocity are shown for various values of "g8" in
figure 46, It is seen that theve is consistently geod agreement be-
tween expérimental and theoretical results only when suitable cor-
rection iz made for the seli-transport properties of the secondary
flow. This fact is particularly significant when it is noted that the
maximum value of —g— in the entive trailing edge reference
plane was approximately ooly 0. 20, thereby implying relatively small
amounts of streamsuriace distortion. I is not at all surprising, there-
fore, that the agreement between theory and experiment is poor for
those cases where —2‘7’— is of the order of 0, 50 to 0, 60 and where no
adjustment is made for level plane warpage. The data shown in figure
5 of reference (5) is & case in point; here it is seen that the shape of
the meagured spanwise velocity distribution is distinctly unsymmetric
and tends, at least qualitatively, toward that form which would be ex«
pected from theory if self-transport effects were included in the analysis.



5:2,3 DISTRIBUTION OF TRAILING EDGE CIRCULATION

The applicability of the channel-theory model ag a method foy
predicting secondary flows was studied in the preceding section by
comparing, in the entive downstream reference plane, the experimen-
tal and the analvtically calculated distributions of induced spanwise
velocity. In an effort to simplify this procedure, it was decided to
focus attention on the trailing edge vortex sheet and to test the agree-
ment between the measured and the theoretical distributions of shed
cireulation; the purpose of this analysis was to study the advisability
of using the magnitude of the shed vorticity as a second meaningful
parameter for testiang the predicted results of the channel.theory
model. This approach appeared to be especially attractive for two
reasons: firet, the nature of the analytic e:a.lc:ulaﬁiaﬁa wag such that
the strength of the theoretical vortex sheet was particularly easy to
evaluate; and secondly, experimental measurements were requirved
ouly in the vicinity of the trailing edge sheet and not over the entire
downstrearm chammel area, thus substantially reducing the amount of
flow distribution data which were needed. Furthermaore, there wasg
considerable interest at the onset of this lnvestigation as to the exact
composition of the trailing edge vortex sheet, and it was accordingly
felt that extensive experimental data should be collected in this parti~
cular region of the flow field,

In sxperimentally finding the distribution of vorticity down-
stream of the blade trailing edpge, it was necessary to compute the
circulation around a series of elemental paths of the type shown in
figure 47; this procedure was diclated because the lateral variation of

the apanwisge velocity Yw " was known to be relatively smooth across
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the blade wake rather than sharply discontinuous, (see figure 48). The
variation of the parameter -g-g was computed in the following manner:
consider the circulation around the incremental path ABCD in figure
47.

A 4
Alsco 95?'0//;— /“53"“{:0)43 “"‘/U,;o’// —/0;70//1 (5. 2)
o c

ABCO

A4 == -
L4680 (g~ o) 02 (5. 3)
since the net contribution from the two integral terms in equation 5. 2
was generally found to be negligible for amall values of Lz, Rewriting
equation 5.3 in differential form then gives

ar . ; (5. 4)

;)E) == wg.i("‘ a/;D*

Lyp,

here the subscripts e* and p® have been used to indicate that the

guantity "« is evaluated at points on the pressure and suction sides
of the finite blade wake rather than at points which are spaced an in-
finitesimal distance apart,

The variation of the parameter g—?/—v can similarly be
Theory
expressed as
§—§ = Wi—uj ; (5. B)
Theory

here it is not necessary to consider a finite blade wake, and the sub-
scripts "s" and Yp' refer to infinitesimally separated points on oppo~
site sides of the extended channel wall. The spanwise distributions
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of "w; " and " W, ‘' can be calculated directly from the channel.
theory model; however, because of the marked improvement that was
noted earlier when the self-transport effects of the induced velocity
fleld were included in the analysis, it was deemed advisable to again
make the same simplified correction before comparing the experimen-

tal and the theoretical resulis.

5:2. 3. 1 Comparison of Experimental and Theoretical Distributions
of Trailing Edge Girculation

The experimental variation of -g-g downstream of the trailing
edge was evaluated from the test data and is shown for configurations
II, III, and IV in figure 49; also presented in these plots is the theo-
retical variation of %g {for case Il the results are shown both with
and without compensation for the self-transport effects of the induced
gsecondary flow field). It is seen from figure 49-a that satisfactory
agreement for configuration II was obtained between the measured and
the caleulated results only when the simplified correction for stream-
surface warpage was included in the analysis., Here it is once again
emphasized that even in those cases where the relative magnitude of
the spanwise velocity field appears to be numerically quite small, the
level plane distortion which corresponds to the induced secondary
flows must not be arbitrarily neglected when comparing the experi-
mental and the theoretical results.

The curves from figure 49 show that the measured and the cal-
culated distributions of g—g in the trailing edge vortex sheet were in
good agreement; this then implies that the channel-theory model is
indeed expected to give a satisfactory description of the downatream

secondary flows for those cases in which acceptable correlation exists



between the theoretical and the experimental variations of shed cir-

culation.

$:12. 4 BLADE LOCADING

An important goal of the current study was to attempt to predict
the distribution of blade loading when the approach velocity into the
caseade was non-uniform along the span. In the remainder of this
gection, two new analytic methods for a.cmmplishing the above ob~
jective are outlined., In the first approach, the variation of bound
vorticity {s evaluated along the blade, and the cascade loading is then
determined from a sort of localized two-dimensional flow analvsis; in
the second approach, the blade loading is evaluated directly from com-
putation of momentum changes across the cascade. It will be seen
that the resulis of the previocusly discussed channel-theory study play

an important role in each of these two analyses.

5:2, 4.1 Method ]

In the first method, the cascade lift is functionally expressed
in terms of the known upstream velocity and the unknown bound c¢ir-
culation; a procedure is thengiven for estimating the spanwise vari-
ation in bound vorticity, thereby permitting a direct computation of
blade loading.

Consider the cascade shown in figure 50, Asguming that the
streameurface warpage may be neglected, the component of blade load

parallel to the cascade can be written from momentum principles as:

/E;:A(//‘?U)‘/):“C’SU;(Z)[U?(Z)‘0—)—/?(2)] (5. 6)
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whers F)? is the component of blade load parallel to the cascade;
g is the blade gap;
U is the axial velocity;
—(f;z is the value of Uy at station 2 averaged over a blade gap, and
U}I/ is the value of Uy at station 1 averaged over a blade gap.

Computing the circulation around path ABCD of figum 50 givea

jé'cz-a/_f r(2) +( w,dA :/2 o+ (5,04 /? (/p#/[,d/_a

ABCO
C
:étf),o/)/+ﬁ,o’ [(f — ] 7L/74/S
n(2) = C][z/_/;l(z)~a72/zy (5.7)

Substituting from equation 5.7 into equation 5. 6 then gives the stand.
ard cascade relation
z) = ey

/}() eG4 (2 12(z) (5. 8)
An expression for /|, (Z) can be determined as follows: the circulation
around path A'B'CD is given by

56?0’1 f’+/w3d/4 70"‘+ g_"c/f /? Sl +

A'8co A 8’60 (5. 9)

/ 3 oA + / 7 o+ /;*J

Using the stanéa.rd {8, n. z) aaer&lnaza system, egquation 5.9 can be
expanded as

8 —
:%:757/7074-/?‘-0/7—-0%95//70«2—#%‘29 Cosbs—/;rgj-a’i—(/bl 9(0&'0(/
? (5. 10)
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where o and o are the angles between the axial direction and the
mean velocity vectors of the primary flow at stations ! and 2 respec~
tively; and
Us and U5, are the components of velocity parallel and per-

pendicular respectively to the mean primary flow direction. Noting that
o

/ g dl=— ﬁ d4 in equation 5. 12 and simplifying gives
¢ A

/;’(z)= 9/%(2) Sieq— %,(a) Coser —~ (/5-;(3) S, + %z(z) CosuZ] (5.11)

Replacing = by s+Az in equation 5.11 then gives

i (2447) = _9/.%‘;(2"4?) S, — U3 (2147) COS= +

{5, 12)
— (/5-'2(2+Az) Sihss + Uﬁa(?v‘.d?) Cos'acc.j

Subtracting equation 5. 11 from equation 5. 12 and expreseing the result
in differential form gives |

dr o Ry a/(f‘/;) /Z’/LF /
v o = [AUs| S/t~ | LEA [COS x4 [Z 20 | COS =
dz 9/(7;75,5”7 / é’zz = ldz, ST o’z/z j/ (5.13)

Assuming that the axial velocity is a function of spanwise position only,
the continuity equation can be written as ({ (#)= ( ( Z) } expressing

Uy interms of (S and (; at the upstream and downstream sta-

tions and then solving for (5,

continuity equation can be derived:

s+ the following equivalent form of the

U5 (7)= S22 [ U + U5, tan o«]— T, tatr=,



“59
It is noted that Up, rather than U7, can be used in the last term of
equation 5. 14 without loss of generality by considering Us, to be
evaluated at the particular normal position at which Up,= Df;; .

Differentiating equation 5. 14 with respect to "' gives:
z)_ o105 . o 9%) [~ Lo i@/ (5. 15)
d? 2 COS°\’a dz i dz / dZ z

substituting equation 5. 15 into equation 5. 14 gives:

Jf C/Uﬁ
LIV— (25 [Sine— sine (OS5 —/Q/Lfﬂ Z_;/OO(Z/ o, + Cos»]+
dZ 7 dz/, ! ¢ Cos=/ [dz/, e /

(5. 16)
Lol 0/0;7/
coseel oz /2

All of the terms in equation 5. 16 are known except the final factor

( Q'_/_&_Q_ ; 2 method {s described below for evaluating this param«
gfr ii terms of quantities which are known from the results of the
channel-theory analyeis. Consider the flow cross-section in the (n, z)
plane at station 2 which is defined by the normal line B'C and ig of
height A (see figure 51). The circulation around this elemental area
is given by the following

2_73047—_:9(0:% U},‘;(z)—%fz»‘&‘)z—:igcwag(i@dz L
o=z (5. 17)
cc'g <

here it is noted that the contributions of the two vertical legs cancel.

The ¢irculation in this section B'CC'"B" can also be expressed as



f Tﬁ://(@)e dA + ACro'nceﬂfrdi‘ea’ -

Bcers Bccs
— @), g Coseg Az + (=) Az

(5. 18)

wheve both (W), , the distributed passage vorticity at station 2, and
- a/g-) » the jump in the spanwise component of velocity across

the extended trailing edge wall, are assumed to be known from channel-

theory caleulations. Equating equations 5. 17 and 5. 18 and solving for

@é@ . then gives
(el _ ;
Uﬂ) ?6050, (af "’) (@) (5. 19)

An expression for (CU/) > Wwas derived in Section I, (2.33)

— - cos = [oltp
(60,)2 COSo( Cos=, O/Z/fy +E 5111 2oty 511762 27 COS&( T (5. 20)

Substituting equations 5. 19 and 5. 20 into equation 5. 16 gives the fol-
lowing expression for g///;'/ in terms of known guantities.

O/U_ (ot =g /
? ( ) /;m Tan [/m;a( tane, Cosq . oj—f
TP (roser 4apee “s-wp
E//;OS ’ Zzﬂﬁ 3//0/705~Z‘0/7°§‘)7 * Cos®ecs

(5. 21)
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Equation 5. 21 is the desired expression showiag the spanwise variation
in the bound circulation; the usual assumption has been made that U}/
and Up  are functions only of “z'. The distribution of blade loading
for a particular case can be calculated by integrating equation 5. 21
to find /() and then substituting the result into equation 5. 8.

An lnteresting feature of the foregoing analysis is that the so-
called component of "stretching cireulation”, which is discussed at
length in references (4), {5), (9), and {10}, can be divectly evaluated
from equation 5. 21. The toial strength per unit span of the e¢ircula-
tion in the concentrated trailing edge vortex sheet is equal to ~{w;-«5),
the minug sign being used to indicate clockwise rotation when looking
upstream. The contribution per unit span to this sheet due to the
shedding of bound vorticity is equal to g«?ﬂm?a = ;—’l——z& and 18 known
from equation 5. 21, The remaining circulation per unit epan in the
concentrated vortex sheet is called the stretching civeulation and is
equal to [ / W )+ « Substituting for gg‘i from equation 5, 21

a2

gives the following expression for o=

; the stretching circulation
per unit span:

[(wx 5)+ 9/70’0/;-//%:{ 1ateg (Tane- fgoo()+
C05°< Cos ] /EOSQ« z/a/;aé é{w?q Zza/)c})] (5. 22)

+ Fonte < (Ws-typ)

Hawthorne (5) used the kinematical method which was suggested

by Preston (4) to derive an expression for «g-@- for the restricted

case of o=~ and d UF?) O . One important assumption which
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was made in this work was that the portions of the vortex filaments
which do not come in contact with the blade surfaces are only slightly
deformed as they are carried through the cascade. It is shown below
that, for the case of very small turning, the resulis of the current
snalysis are identical with the results of reference (5); this, there-
{ore, implies, as perhaps might be sxpected, that the assumptions
which weare made in the kinematical approach concerning the shape of
the distorted vortex filament are in reality equivalent to specifying
small c:hangeﬂ; in flow angle across the blade row. Consider for exam-

ple equation 5. 14 and suppose that 072 fan=, << U; ggi—:l b

{ fane# <</ necessarily); imposing the condition that (7= O then

gives:

COS=
d (5. 14%)
CoOs=5 |

Us,(2) = & (%)

Replacing equation 5. 14 by equation 5. 14' in the analysis and solving
arlz

for e gives:

v.—.

SO o5y )/7‘””“8605"“‘25/”"’4” q] (5. 22')

It is noted that this expression reduces to the following form when

= —

O/ /'é ( ~ {5. 22)
C‘OSo(/ @(2 = )

Equation 5. 22" is idenﬁcal with the corresponding relation of refer-
ence (5), provided that equation 5. 20, rather than the result of Squire

and Winter, is used throughout for expressing the streamwise com-
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ponent of vorticity. It is also noted that equation 5. 22 reduces direct-
ly to equation 5. 22" if o, = O ; this particular reatﬁctimx, however,
was not built into the kinematical analysis and appears to be merely a
specific cascade configuration for which the two analyses give the same
expression for the “stretching circulation'. In the present study, equa-
tion 5. 22" is of no value since o, -~ | the more general expression

5. 22 is, however, valid within the limits of the linearized perturbation
analyasis.

5:2. 4 2 Method II
The second method which is presented for computing the distri-
bution of blade loading is conceptually a aimple application of the mo-
mentum principle applied to the results of the channel-theory analysis.
Coneider once again the cascade geometry shown in figure 51

and recall the expression for the blade loading per unit span given by

equation 5. 6:
I~ /=) A St ) i g — —_— 1
Fyleg) = A(NMYy] = C9JY R, (Z) - U‘(Zi/ {5. 23)
Yo/ g blade L7, %
where F;, ia the component of blade load parallel to the cascade;
9 is the blade gap;
Uy 1is the axial velocity;
© is the {luid density;
l_j;,; is the value of Uy at station 2 averaged over a blade gap;
—@ is the value of Uy at station 1 averaged over a blade gap.

It is noted here that streamsurisce warpage due to secondary flow
seli-transport effects has been neglected and also that U5 is assumed

to be a function of spanwise position alone. The only unknown in egua-



tion 5. 23 is the term U;ve ; the magnitude of this factor can be

determined as fonaws' C}/z
Ve (1= q / Wy, (1,2) dy = g [‘ff/?’f””“z 7 (Y)Z)]d/
_ q/2 {5. 24)
= ; (z)tan=, — T (2)
/ COS=2

Substituting 5)72 from equation 5. 24 into equation 5. 23 and simplifying
then gives the desired expression for the distribution of blade loading
per unit span:

/C;,(z?) = eqY (Z)/;},(z) cg(z)/aﬁeé, + Un, (2)] (5. 25)
blade COS =,

The quantiiies V{// (2) and U)}/ Z) are known from the given upstream
velocity field, The spanwise variation of Un, can be evalusted using
the channel-theory analysis; this was done earlier and the appropri-
ate velation is given by squation 1} of Appendix L,

5:2. 5 COMPARISON OF THEORETICAL AND EXPERIMENTAL DIS-
TRIBUTIONS OF BLADE LOADING

512. 5.1 Experimental Blade loading

The experimental spanwisge variation in blade loading was evalu~
ated {rom the measured distribution of static pressure on the surface
of the center cascade vane., The results of these calculations for con~
figurations I, I, and INl are shown in figure 52: it is seen that the
loading was approximately constant for case I {no screen), but was

digtinetly non-uniform for cases II and 101
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5:2. 5. 2 Theoretical Blade Loading for Configuration It

The predicted spanwise variation in blade loading was evaluated
for configuration II by the two theoretical methods which wevre described
in section 5:2. 4; the resulis of these computations are shown in figure
53. It is seen from this plot that the agreement between analysis and
experiment was generally quite good. Of special interest hare is the
fact that the results of method I (section 5:2. 4. 1) are considerably
batter than was originally anticipated; it was thought that this parti-
culay approach would be extremely sensitive to the warpage effects
of the induced secondary flowa, thus making it quantitatively less
accurate than the analytic procedure of method II (section 5:2. 4. 2).
The final curve which is shown in figure 53 is the variation of loading
that was calculated by asauming that the flow was locally two dimen-
sional along the span and left the cascade at a constant exit angle;
this curve is presented to show the serious error which is incurred
if the downstream overturning is neglected when computing the dis.
tribution of blade force,

5:2, 5.3 Theoretical Blade Loading for Configuration III
The theoretical distribution of cascade loading was computed
for configuration III by each of the two analytic methods of section

5:2. 4 and i shown plotted in dimensionless form in figure 54. It is
seen frorm this graph that excellent agreement was achieved between
the measured and the calculated spanwise variations in blade force.
Ag in the previous case, the loading was also determined on the basis
of sero overturning; it is seen from figure 54 that this method is once
again completely unsatisfactory.
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V. CONCLUDING REMARKS

The channel-theory analysis was found to be extremely useful
in theorvetically predicting the behavior of amall distarbance secondary
flows. B&caua# the extended blade suriaces do not actually exist and
because the true downstream boundary conditions should impose re-
girictions on the pressure fleld rather than on the normal component
of velocity, it would appear that the channel model might not give an
accurate representation of cascade flows. However, it has been
demonstrated in the current investigation that the predicted regults
from the channel-theory analysis arve in good agreement with the
measured results from experimental testing; this then suggests that
the important features of the assumed flow are actually simulated
downstream of the cascade and that the detalled nature of the fluid
mation within the turning vane passages is not a dominant factor in
the gensration of the induced flows.

A gimple iterative method is proposed for incorporating the
self-transport effects of the secondary flows into the theoretical anal-
ysis., It was shown that these self-transport effects must not arbi-
trarily be neglected when using the channel-theory model to calcuim
induced velocities, It was also shown that streamsurface warpage
resulting from small disturbance secondary flows can be satisfacto~
rily predicted. -

Two methods are presented for determining the spanwise distri-
bution in blade loading which results when the velocity profile far up-
stream of the cascade is non-uniform. These methods were testad
experimentally and were found to give good agreement with meagured
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m when the secondary flows were perturbation quantities.

The exact linearized problem wae formulated by deriving the
differential equations for the three-dimensional perturbed flow field,
Although not solved explicitly, this system of equations, in conjunction
with a set of prescribed boundary conditions, is a correct representa-
tlon for the secondary flow in a given cascade,
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APPENDIX 1

Let ¢ be the velocity potential for a concentrated two-dimen-
sional vortex in the infinite channel shown in figure 56. From the
Laplace equation in rectangular coordinates,

320 , R0 _ o o<hn< b 1
She T ozz = —oos =< o0 (1)

‘The restriction that the "a" component of velocity vanishes at the
channel walls gives:
3¢) — _&_@) _ o (2)

an d

The restriction that the "a" component of velocity vanishes far from
the voriex glvea:

20} o | (3)
oz lZI——vw

Separating variables in equation 1 and applying the boundary condi-
tions from equations 2 and 3 gives the following solution for ¢ :

@ T AT
O(1,2)= é/ﬁngn e’ FF 20 @

From symmetry considerations, the line z = o iz a potential line;
putting

(P(?sﬁsé,z:m):_—@ (5-a)

and solving for the corresponding values of the velocity potential on
the remainder of the line z = o gives:
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¢(o<n< 7) z=0)= £ (5-b)

¢(?<”Sé’) Z:O“):ﬁ (5-¢)

Substituting from equation 5 into equation 4 and solving for the un-

known constants gives the following expressions for ¢ :
_AT

H—

S 6=
Z>0: <P(m2)=£ 7+g~ﬁr sin 27 a7y 605377/7 o (6-a)

p-Yeg

z<0 : pinz)=L(z6 -9)- g Al S/MI cos%__ﬁ'ﬁ o % (6-b)

Replacing '"2' in equation 6 by "z -1 " to account for a concentrated
vortex at (7, f } rather than at (7, 0} and then differentiating with
respact to "z" to find the spanwise velocity distribution gives:

~}=‘
ATy, Cos AT .
57 o e 0

Replacing /7 by a distributed vortex of strength (J, at ( %) gives
an expressionfr the incremental contribution to W (7, Z) due to the
slement of area 0/? of
— AT (=
229 : dure -S> QU ooy sin 1Ty cos )Ty o 7;;2 ?
RV - OW= -2 —p= 9797 "G T ®)

Asgsume for simplicity that the strength of the distributed vorticity is
an odd function of [ alone and is not dependent on /] + substituting
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into equation 8 and integrating over the entire flow field gives the fol-
lowing expression for W on 2Z =0, the region of primary interest

in the current investigation:

_NT p)
w(n,z)z-_;m;cosmr/ /Co(f/ %’f’]{/fﬁ
Pz ATz “;z;f (%)
% ~e'-"/ e o lqp

A gimilar relation roay be derived for “v', the lateral compo-
nent of velocity. by differentiating the expression for ''$" with respect
to "n"; the resuliing expression for the restriction that the distributed

vorticity is again an odd function of " { ¥ alone is:
%77
03] = 2> sir . w%?’” s
Z20 >\ =/,3,5, 0o
ArT

A7r /"7‘ 7
o ]/af(ﬁé’ ¢

The mean value of v{n, z)is used in this report for finding the

b

average momentum change of the fluid as it pagses through the blade
row; the quantity U (Z/ can be calculated directly from equation 10
and is given by the fouawing relation:

(f(z /zfm =) 0//7:/2/2 .)é_
A=/ 35

Z>O

/

)\77‘ =z (11)

Z‘ ~Af7'2 ” -27p
-6 ° Cd(f/ ~e ]a/f+/ 6]/9(/’/@"4/0
=
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