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Abstract

To understand the basic contribution of vortex motion in the transport and mixing
of passive fluid, we study a system of N discrete vortices. With variation of N
and 6 (a vorticity distribution parameter), we are able to experiment with a range
of vortex dynamics sufficient to capture many of the features of two-dimensional
turbulence in their elementary form - such as vortex merging (inverse cascade of
energy), filamentation (enstrophy cascade), etc. With this model the mixing of the
fluid is numerically studied via stretch statistics and the spatial distribution of a
non-diffusive scalar interface. The spectrum of spatial distribution of scalars as a
result of the stirring motion of the N vortices is particularly important in view
of the recent (as well as historical) interest in the characterization of the scalar
distribution in turbulence. We also examine the velocity field statistics and the
Lagrangian motion of fluid particles. It is also instructive to look at the kinematic
causes behind the types of statistics that are obtained for the velocity structure
functions. A ‘building block’ approach to understanding these effects in turbulence
may lie in building up from a collection of discrete vortices, as done in this thesis,
to adding vortices of different scales and the three-dimensional effects. It is in the

context of these wider issues that we study the N-vortex problem.

In the final part of this thesis we investigate the two-dimensional mixing pro-

duced by large scale vortical structures during the evolution of a spatially developing



mixing layer. Although the advent of three-dimensionality and fully developed tur-
bulence are essential features of mixing layers, it is still dominated by the large scale

two-dimensional structures and its effect on the mixing is illustrated here.
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Chapter 1

Introduction

1.1 General introduction and motivation

The central theme of this thesis is the role played by vorticity in the stirring and
mixing of a passive scalar in an incompressible fluid. Because of its complexity
turbulent flow is often assumed to be homogeneous, isotropic and random. Although
this helps greatly in analyzing the problem, it is not always a good representation
of the physical problem at hand. Our approach consists of treating vorticity as the
primary dynamic agent. By varying the vorticity distribution, we believe that we
can simulate the different regimes of laminar and turbulent flows. We emphasize
the common mechanism of vortex-stirring, whether this occurs in the Stokes flow
regime or in the infinite Reynolds number limit of Euler flows. When the stirring
problem is viewed with this in mind, spatial distribution of scalars can look similar
for vastly different flow regimes when examined at the proper scales (see for example
Dahm et al. [29], Brachet et al. [18], Dimotakis et al. [32], and Ottino [92] where
the pictures of isoscalar lines in experimental turbulent jets, 1sovorticity lines in

numerical simulations of two-dimensional turbulence, and scalar distributions in



two-dimensional, non-turbulent, chaotic flows show distinct similarities).

The physical flows that motivate our concern for the fluid mixing and vortex
motion are turbulent shear layers and planetary atmospheric flows that are dom-
inated by large scale two-dimensional vortices. We use the N-vortex system in
two-dimensions, as well as the vortex sheet model and a new kinematic map to

study the issues of transport, stirring and mixing.

Recent numerical studies by McWilliams [78] and Babiano et al. [10, 1] have
shown the similarity between the coherent structures occurring in two-dimensional
turbulence and the discrete vortex models. These coherent structures appear to be
a consequence of the energy cascade in two-dimensions in which the vorticity tends
towards the larger scales through mergings, and can be modeled by a single vortex
blob. This type of evidence is important for showing the relevance and validity
of representing two-dimensional turbulence through the interaction of discrete vor-
tices. Maximum entropy analyses of two-dimensional vortex systems (see [105] for
example) have also resulted in vorticity distributions similar to the vortex blobs to

be discussed in the next section.

1.2 Equations of motion, vortex configurations

1.2.1 Equations of motion

The role of vorticity in shaping the flow is clear from the vorticity form of the Navier-
Stokes equation. For two-dimensional, inviscid flow, this equation for the dynamics

of vorticity appears especially simple, viz,

Dw Ow
E_51;+u'vw_0 (1.1)



The solution to this equation is of course, not so easily available for arbitrary vor-

ticity distributions. The same is true for determining the motion of passive fluid

particles

— = u(x,1). (1.2)

Vortex method of flow computation involves keeping track of the vorticity w (see
[68] or [69] for the more general three-dimensional case). The calculation of velocity

is done by the Biot-Savart law, which for two-dimensions is

dx 1 / (X —x') x w(x’,t)dx, + V. (13)

u(xat) = :lt_(x, t) = _é; |X —_ X,P

This is the solution to the Poisson equation describing the relationship between the

velocity u and the vorticity w
Viu = -V xw. (1.4)

The boundary conditions for our problem (infinite with no solid boundaries and no
flow at infinity) dictates that V¢ = 0. In two dimensions the vorticity is w = w8,

and for the point vortex case the scalar field w is represented by
N
w(x,t) = Y Tib[x — x;(t)] (1.5)
=1

where § is the Dirac delta function, and I'; is the strength of the ith vortex. This

gives a system of 2N nonlinear ODEs for the positions of the N vortices:

d i 1 N r'; i T Aj Az
X _ 1 3 i (% — x;) ;< € (1.6)
dit 27 =1, Ixi - le

Because of the singularity at the core of the vortices, vortex blob methods are
often used to simulate vortical flows. There are several ways to de-singularize the

vorticity [68], but we use the simple algebraic core method with the parameter §.



The vorticity distribution is now given by

1 X ;62
w(x,t) = Z &+ x= lez)

1—1

and the velocity of each vortex blob evaluated at the center is

dXi _ 1 f: I‘J-(xi - Xj) X éz
dt 2 Py |x; —x;[2 4+ 82 °

For passive fluid particle motion we must integrate

dx %P(x X;) X &,
|x — x;|2 + 82

(1.7)

(1.8)

(1.9)

also for each particle. The parameter § can then be conveniently used to vary

the vorticity distribution from isolated point vortices (§ = 0) to vortices having

significant overlap (6 = large). Along with the parameter N, this allows us to

explore the consequences of different vorticity distributions in terms of the velocity

statistics and transport of scalars. Figures 1.1,1.2, 1.3,and 1.4 illustrates the different

types of vorticity distribution that can be achieved with the parameters § and N.

There are four known invariants for the vortex system [68],

z-linear impulse I, = Z I';z; = const.,
i=1

y-linear impulse I, = ZF iyi = const.,
i=1

angular impulse I,. = L? =Y I;r? = const.
g p H 7
=1

and
1] NN

energy Ig=H=——> > TIT';log|r; — r;| = const.

AT i i

(1.10)

(1.11)

(1.12)

(1.13)



Solutions of the vortex motion must observe the invariance of these quantities.

In chapters 2, 3, and 4 of this thesis, we use the discrete vortex system described

here to study the effects on the transport of passive fluid particles.

1.2.2 Hamiltonian vortex mechanics

It is sometimes instructive to view the discrete vortex system in two-dimensions as an
N-degree-of-freedom Hamiltonian system. This allows one the use of existing tools
and theorems of dynamical systems to gain additional insights into the problem.
See Aref [2, 6, 4] for detailed exposition on this topic and Wiggins [116, 115] or
Lichtenberg and Lieberman [74] for a broader background on dynamical systems.

The interaction energy H serves as the Hamiltonian function, with the conjugate

variables I';z; and v;.

1] N N
H(z,y) = —7— 3. Y TT; log (o — 25)* + (i - v;)?] (1.14)
i#j J#
. 0H
I‘,ix, = —ayi (115)
. OH
Liyi = e (1.16)

The invariants of Eq. (1.10 - 1.13) serve as the integrals of motion, however, they
are not in involution with each other (meaning their Poisson bracket with each
other are not all zero [I,I,] # 0,[L2,I,) # 0,[I,2,1,] # 0). There are in fact
only three quantities, H, I,>, and IZ + I? that are in involution with each other
(H, 12 + I7] = 0,[H,I2] = 0,[I,2,I2+ I?] = 0). Thus the vortex motion (Eq.
(1.15,1.16) or Eq. (1.6) ) for N < 3 is integrable. A vortex system with N > 3 can
be non-integrable, or chaotic (although special initial positions and/or circulation

values involving symmetry may produce an integrable system) [2, 6, 87]. As the



number of vortices N, increases, it becomes more difficult to make any statement
about the ensuing dynamics, but it may be possible, in reverse, to add to the
understanding of the behavior of large degree-of-freedom Hamiltonian systems by the
numerical simulations we perform. An example might be a study of the statistical
behavior of the fluctuations as N is varied. Another option for large N is to make
use of the statistical mechanics approach of Lundgren and Pointin [75] as discussed

in the next section.

The motion of a passive particle can always be viewed as the ‘reduced’ prob-
lem, where the particle can be represented by a vortex with vanishing circulation.
The trajectory of a passive particle in an N-vortex system then can be chaotic for
N > 2. A somewhat different point of view for the passive particle trajectory is
to regard the streamfunction (z,y,t) as the Hamiltonian, so that the fate of the
passive fluid is the subject of the dynamics of a one-degree-of-freedom system. In
all but the simplest cases, however, the time dependence due to the motion of the
vortices will be intractable and the benefits of this formulation are not so easily
reaped. Perhaps notable exceptions are the recent studies of oscillating vortex pairs
by Rom-Kedar et al. [102] and Beigie et al. [13], where a rich understanding of
the fluid transport is obtained through the use of invariant manifolds, horseshoes,
chaotic tangles, and KAM (Kolmogorov-Arnold-Moser) theorem. Beigie’s [12] de-
velopment of a technique for analyzing quasi-periodic and aperiodic flows represents
a significant advancement in terms of making use of the Hamiltonian formalism for

fluid flows.

1.2.3 Vortex configurations

For the most part, the N-vortex studies of Chapters 2, 3, and 4 are limited to
vortices of the same sign and circulation I'. The initial configurations are chosen
such that they match the equilibrium state for the vortices as derived by Lundgren

and Pointin [75]. The purpose of this is to obtain long term statistics (vortices of



different signs tend to pair up and move away).

Although we roughly sketch Lundgren and Pointin’s [75] equilibrium statistics
analysis of two-dimensional vortices below, it is recommended that the original
article [75] and other related papers by Montgomery and Joyce [82] or Kraichnan
and Montgomery [65] for example be consulted. The reduced probability density

function py(r;) can be defined through the expression
pi(ry)dry = Prob.{r, € dr,} (1.17)

and

/ pi(r1)dr; = 1 (1.18)

where r, is the position of a single vortex. It follows naturally then, that the average
vorticity, is given by

(w(r)) =T p(r). (1.19)

An equilibrium configuration based on a closure approximation for the one point
distribution is then proposed, which produces an integral equation for p; (ry) that
has the following Gaussian distribution as a solution for the parameter choice A = 0,
(where X is proportional to the inverse temperature, related to the energy H of the

system)

1 . ra /2
p(r) = me-«r-’rer’vev)/“ : (1.20)

Since we will be dealing mostly with vortex distributions that are symmetric about

the origin (in the mean), we will represent the one point distribution p;(r;) by (7).

The initial vortex positions chosen for the numerical simulations are such that

the invariants of motion are specified as follows (see Eq. (1.10 - 1.13)):
I,=0 (1.21)

I,=0 (1.22)



I-=L*=1 (1.23)
Ip = H = —.00461. (1.24)

This choice of the value for H (energy) corresponds to Lundgren and Pointin’s [75]
A = 0 state with p;(r) given by e~ /x. Since there are an infinite number of
possible configurations for a fixed H, we randomly generate large numbers of initial
configurations and pick one that is sufficiently close to the desired H. The H values
for the system can be ‘tweaked’ by moving adjacent vortices closer to or farther
away from each other (since the interaction energy is a function of the inter-vortex

distances).

The two conditions, I, = L* =1 and I' = "N T; = 1 together set the length
scale and the time scale for the N-vortex system ([I,2] = I*/t and [I'] = 2/t). All
the other parameters 6, z,y,t, u, v, ,w, H, X are scaled with respect to the parameters

ITzzlanszl.

In Chapter 5 we investigate stirring and mixing in a flow that is closer to an
experimental one; namely the mixing layer, and so we will delay a description of the

equations of motion for this flow until then.

1.3 Numerical method

The computations are performed using a fourth order Runge-Kutta integration
scheme for the Lagrangian motion of the vortices and passive fluid particles. The
time steps (At) are chosen such that the change in the invariant H (Eq.(1.13) is
maintained to within 1% of the initial value. The other invariants (Eq.(1.10-1.12))
are satisfied to much higher levels of accuracy. While there have been numerical
techniques developed (symplectic integrators, see [98] for example) specifically to
take advantage of the Hamiltonian structure of systems such as ours, they were

deemed computationally economic only for cases where extremely stringent require-



ments on the invariance of H were necessary.

1.3.1 Accuracy

Because of the chaotic nature of the vortex motion, error propagation during nu-
merical computation is inevitable. This is a clear manifestation of the ‘sensitive
dependence on initial conditions’, and there is no way around it. It is of course,
helpful to maintain the known invariants of motion for vortex systems (see Eq.
(1.10 - 1.13)). In the following we take the position that while the exact position of
the vortices or passive fluid particles cannot be known, the overall properties remain

the same and correct in the statistical sense.

"The propagation of errors is best illustrated by the irreversibility of the compu-
tations. In Figure 1.5 we show the difference in position (|Xorwara(t) — Xpackward(t)])
between a particle integrated from ¢ = 0 to ¢ = 200 and a particle which is inte-
grated back from the position at ¢ = 200 to ¢t = 0. (This is done for both passive
particles and vortex particles.) The rate of error growth varies depending on the
parameters IV, d, and dt, but the error growth is always large after a sufficient time
span. Because the error is introduced from the limited number of digits used in the
computer’s memory, long time simulations will require an extraordinary amount of

precision to maintain absolute fidelity.

1.3.2 Passive fluid tracking

For tracking of passive fluid particle trajectories, Lagrangian schemes have an in-
herent advantage in that the velocity at any point in the domain can be evaluated
without having to interpolate from grid positions. A problem encountered in passive
fluid tracking is that unlike the vortices, there are no invariants of motion that we

can use to check the accuracy of the computation. This is especially important in
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the motion around a vortex, since too large a time step can make the particle appear
to “diffuse” out even when there is little or no radial velocity component. We treat
this problem by checking that the distance travelled by a particle for each time step

does not exceed some maximum value.

1.3.3 Line tracking

Line tracking is done similar to the particle tracking, except that particles are in-
serted to maintain a minimum distance between neighboring points. The stretching
of lines are also measured from the distances between adjacent points on the line.
The maximum distance maintained before insertion of new points is empirically de-
termined depending on the run, but it was usually around a non-dimensional length

value of .03.

1.4 Transport, stirring and mixing

Transport, stirring and mixing of fluid in chaotic flows have been a subject of focus
in recent years [3, 92, 93, 71, 12, 102, 116]. In this thesis we address the transport
and mixing associated with the dynamics of N vortices. We believe the study
of the N-vortex system introduces the next level of complexity to the two-vortex
systems mentioned in section 1.2.2. The long-term agenda of achieving a better
understanding of the mixing mechanism involved in turbulent flows is implicit in
this. Aref et al. [5] visually compared the scalar stirred by N vortices with the
image produced from an experimental jet and commented on the similarity of the
geometrical outline. Although the similarity may be purely superficial, we pursue
this line of thought further — by measuring other aspects of the scalar transport,
such as the line stretching, scalar spectra, and velocity statistics, he idea being

that dissimilar flows share at the core a basic stirring mechanism. There are many
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important issues such as diffusion and three-dimensionality that are not addressed

in this thesis, but we consider this work to be a reasonable starting point for future

investigations.

Mixing can be introduced by referring to it as the general notion of how different
parts of the fluid become distributed. As simple as this sounds, there are some points
that need to be clarified due to the many existing uses of the word mixing. Aref
[7, 6] presents a detailed analysis of this problem, and we discuss some main points
here. In fluid mechanics, mizing often refers only to molecular mixing that occurs
through diffusion, and non-diffusive transport is termed stirring. In the study of
the transport of scalars in non-diffusive systems, it is often the case that stirring of
particles is reached to as small a scale as desired, essentially achieving mixing. This
idea is expressed in the field of dynamical systems, where mixing is rigorously defined
in the non-diffusive, stirring sense. It basically requires that a good “sharing” of
the space down to the smallest scales is present as ¢ — oo. Although the proper
definition is a bit problematic in its use of the infinite time concept, it is this aspect
of the scalar transport that we concentrate on in this thesis. Furthermore, in terms
of the mixing properties and mechanisms (such as the stretching and folding), what
we see in our N-vortex systems is similar to that observed in simple dynamical

system models such as the Baker’s map (see Chapters 3 and 5).

In Chapter 2 the velocity statistics associated with a vortex system is analyzed.
We place a special emphasis on the role of the spatial distribution of the vorticity,
and how it affects the statistics. The transport of passive particles is of course

closely tied to these velocity statistics, and we examine these issues as well.

In Chapter 3 we deal with stretching, which is indirectly related to, but is crucial
for mixing. This is done by examining the stretch statistics in a fluid that is stirred
by N vortices. The spatial distribution of interfacial lines as they are stirred by the
vortices, an important aspect of mixing, is studied in Chapter 4. Finally, in Chapter

5, we quantify the amount of mixing (including diffusion) that can be produced
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in two-dimensional models of the shear layer. Although one could question the
usefulness of studying a purely two-dimensional flow, its value lies precisely in the
fact that numerical simulations can separate out the two and three dimensional
effects — something that cannot be done in experiments. We also emphasize the
elucidation of the mixing mechanism which appears to be ubiquitous in vortical

flows; namely the rollup and pairing of vortical structures.
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Figure 1.1: Vorticity distribution w(z,y) for parameters N = 150, 6 = .1

Figure 1.2: Vorticity distribution w(z,y) for parameters N = 150,86 = 1.0
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Figure 1.3: Vorticity distribution w(z,y) for parameters N = 3, §

Figure 1.4: Vorticity distribution w(z,y) for parameters N = 3,6 = 1.0
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Chapter 2

Velocity Field Statistics of the

N-vortex Problem

The work in this chapter was developed with Igor Mezié.

2.1 Introduction

One way to characterize a turbulent flow is through its velocity probability density
function (PDF) p(u;r). Normal or Gaussian statistics are usually considered to be
an indicator of randomness of the flow, but it is an assumption that is often made
a priori. Turbulence is often synonymous with random, homogeneous flows, but
we believe it to be too narrow a focus. A good example is the planar mixing layer
in which the large scale, mostly two-dimensional structures that are clearly not of
a uniform distribution, dominate the flow. In this chapter we study the velocity
statistics associated with a discrete, deterministic vortex system, and show how

different statistics arise for different spatial arrangements of the vorticity.

In view of the increasing use of vortez methods [68, 69] of flow computation where
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discrete, Lagrangian vortex elements are used to simulate turbulent flows, we hope
to provide an understanding of the range of validity of these models for gathering

statistics.

We have found an earlier work by Takayasu [108] who had taken a similar ap-
proach to the problem. We will discuss the similarities and disagreements with those

results.

In section 2.2, a key idea in our analysis — that of the decomposition of the
velocity field into the contributions of each of the N vortices, is described. The
construction of the probability density functions (PDFs) for the velocity at a fixed
location r due to a single vortex, p;(u;;r) is then presented. The PDF associated with
the velocity due to all the vortices, p(u;r) follows from the use of limit distribution
theorems. The same construction is used to analyze three-dimensional as well as
velocity difference ps(éu(r; dr)) (structure function) statistics. In section 2.5, the
numerical simulations with N-vortices are described, and the results are compared
with the analytical predictions. The different statistical properties observed for
various parameter values are discussed. A brief section on the Lagrangian statistics
is then presented, and we close with a discussion of the implications for physically

relevant flow problems.

2.2 The probability density of the velocity field

Consider the following decomposition of the two-dimensional point vortex velocity

field:

N
ulr) = — 217r Zl zr(y rj/; ;u (2.1)
v(r) = 217r }; Flfw r,|2 Z;v,(r) (2.2)
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where the r; are the vortex positions and u;(r) is that portion of the x component

of velocity induced by the ¢th vortex:

i(r) = — - 2.3
ui(r) 2 |r—r;|? 2r  p; (23)
pi=le—ri (24)

6; =t _1(y—y;> 2
z—z;)’ (2:5)

and similarly, the ¥ component induced by vortex 7 is
I'i(z —=z;) TIcosd;

(r) = @) 1 2.

vi(r 2r|r—r;]2 27 p; (26)

2.2.1 Probability density of velocity due to a single vortex

We will confine our analysis to the z-component of the velocity; the y-component
results follow trivially. Let us define p;(u;;r|pi(r)) as probability density of the

z-component of the velocity due to a single vortex, measured at r, i.e.,

Prob. {u,- - —A—,fi <ul<u;+ %ﬂ}

pi(us tlpa(+) = lim T 27

This expresses the distribution of the velocity at r as the ith vortex moves about in
its trajectory, and thus implies an average over the vortex location given by py(r)
(see section 1.2.3 of chapter 1); however, we are interested only in the high u; tails
of pi(us;r|pi(r)), for which we assume a locally uniform density of the vorticity.
Therefore, for notational convenience we will henceforth denote p;(u;;r|pi(r)) by
pi(us;r). The probability density associated with the velocity due to all N vortices
at r is denoted p(u;r).

Now consider lines of constant u; = U near r. (We drop the subscript with the

understanding that we are dealing with the velocity contribution of a single vortex.)
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Then these iso-U lines are given by

in 0
U~ 222 = constant. (2.8)
p
It is clear that U is a monotonic function of p and that constant U lines close
upon each other (see Figure 2.1). The probability of the vortex inducing a velocity

greater than U is proportional to the area enclosed by the constant U curve i.e.,

A~ P(u>Uj;r).

dA = p? cos 0d9 (2.9)
and from Eq.(2.8)
U
df = p— dp (2.10)
and
U
= [dA = 2U 2d 2.
A / A = 2 /0 pdp (2.11)
2
= U2 2.12
: (2.19)
~ P(u>U;r). (2.13)
And since
Plu > U; ~ * i id i 2.14
(u>Uir) ~ [ pilus)du (2.14)
it follows that
pi(ui;r) ~u;®  for large positive u;. (2.15)
Similarly, for large, negative u;
U
P(u < Usr) ~ / pi(us)du; (2.16)
and
pi(ui;r) ~ —uis. (2.17)

Since the probability distribution of the vortices is not necessarily uniform, this will
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hold for sufficiently small regions around r, which then correspond to the high u tail

of the velocity distribution.

For the non-singular case, the velocity induced at r by a vortex at a distance

p=|r—r;is
I'ipsind
2r(p? + 8%

and there is clearly a maximum bound to the value of u given by tme, = T /(4mé)

ui(r) = (2.18)

at r = 6. So the finite core parameter § acts as a cutoff such that pi(us; r) is zero for
Ui > Umaz. We Wwill see later that this has significant consequences for the velocity

statistics for the entire field.

The mean for the velocity contribution of each vortex is given by
(ui(r)) = [ wipi s ) (2.19)

which exists for both finite and zero é for our vortex problem. The variance

(bur) = (W) = [ wpiCuss ) (2.20)

on the other hand, does not exist for the § = 0 case. Simply, this is because the
integral in Eq. (2.20) diverges as the upper limit — oo because of the u7> power-law
tail of p;(u;). We can see however, that Eq. (2.20) converges for the de-singularized
(6 # 0) case because p;(u;;r) = 0 for u; > Upas, and pi(us;r) = 0 for u; < Upin,
where Umae = ['/476 and upin, = —I'/4w6. The existence of the variance is an
important factor in the use of the central limit theorem to construct the PDF for

the total velocity, u(r), as shown in the next section.
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2.2.2 Limit distributions: central limit theorem and stable

distributions

In the study of sums of independent random variables of the form
X=X (2.21)

where X; have a common distribution p;(X;), the central limit theorem establishes
the conditions under which X is asymptotically normally distributed. In its simplest
form, the the central limit theorem states [41] that for a system with mean E(X) = 0

and variance 02 = 1, as N — oo the distribution of the normalized sum

1 N
Xyv== Y X (2.22)
N i=1

tends to the normal distribution with the density

p(X) = 7%5”” . (2.23)

As applied to our N-vortex problem, if the velocity contribution of each vortex
u;(r) can be considered an independent, identically distributed random variable,
then as N — oo, p(u;r) approaches a normal distribution regardless of the shape
of the individual density function p;(u;), provided the mean and the variance exists.
However, it was shown above that for the singular core (6§ = 0), a finite variance does
not exist, and so when we compute p(u;r), we expect a non-Gaussian distribution.
On the other hand, we do expect a Gaussian p(u;r) for the de-singularized case
(6 # 0) since the variance is finite. However, there are the important conditions of
large N and identical p;(u;) distributions that need to be satisfied. Deviation from
Gaussian behavior is also expected even for large N, if the vortices are grouped in
a small number of clusters, such that the the large scale dynamics are similar to a

small V case.
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For the singular case, it will be useful to bring up the topic of Lévy stable dis-
tributions which arise in the study of sums of identically distributed, independent,
random variables. Essentially, these are p;(u;) that have the same form as the dis-
tribution of the sum w, p(u) [83, 41]. Such distributions can be found by considering
the relationship between a probability density function p(u) and its characteristic

function ¢(k) :

B(k) = () = [ e*up(u)du (2.24)
plu) = % 7 emiteg k). (2.25)
And defining
8ilk) = (&) = [ eupy(us)dus, (2.26)
it is seen that
N
$(k) = 1_]1 i(k). (2.27)

It is then clear that characteristic functions of the form
gi(k) =e=H* 0<a<2 (2.28)

produce

(k) =e* 0<a<? (2.29)

where a = 37 a;. These have been found to be the general form of the Lévy sta-
ble distributions. The conditions on the range of « is imposed by the fact that
S p(u)du = 1. The o’s are known as the characteristic exponents, with a = 2 being
the Gaussian distribution and a = 1 being the Cauchy distribution. In regard to
the central limit theorem, for o # 2, the distributions p;(u;) associated with Eq.
(2.28) do not have second moments (variance) and thus do not produce a normal

distribution p(u).

For large u and 0 < a < 2, Eq. (2.29) gives us the asymptotic form [83] for the
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probability density function

I'(a)sin tra

T lal 0<a<?2. (2.30)

p(u) ~

This has a power-law tail similar to that derived in section 2.2.1 for our N-vortex
system, suggesting the possibility that the PDF of the velocities in the N-vortex
system follows a Lévy stable distribution with the characteristic exponent o = 2.
However, since Eq. (2.30) is valid only in the range 0 < a < 2, the a = 2 power-
law association with the stable distribution is not quite correct (also see below in
reference to Takayasu’s paper). At any rate, the match in the PDFs Eq. (2.30) and
(2.15) holds true only for the tails, and so the vortex system is most likely not a
strictly stable distribution. What this connection to stable distributions illustrates
though, is that the same mechanism that leads all stable distributions other than
the Gaussian to not fall under the domain of attraction of the Gaussian is at work
for our point vortex system as well — namely the non-existence of the variance that

follows from the power-law tails.

The physical reason for the property of velocity probability density dué to all
vortices approaching that due to each single vortex, is clear if we consider the fact
that the closest vortex always dominates the shape of the high u tails. In fact, as
discussed by Chandrasekhar [22] in the context of stellar dynamics, the analysis
above could have been done on the basis of the nearest neighbor estimate. It is also
then clear why p(u;r) moves towards the Gaussian as N is increased — the more

densely packed the vortices are, the less a single vortex dominates.

Because vorticity is more likely to be encountered in non-singular, blob form
rather than in point vortex singularities, the conditions stated here for the obser-
vation of Gaussian statistics are quite favorable. However, the condition of having
identically distributed vorticity may be difficult to meet in a more general physical
situation, since vortices of different sizes may be found in a given flow. And as men-

tioned earlier, departure from Gaussian behavior is also expected for small N, or
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large N cases when the vortices form a small number of distinct clusters, mimicking

the behavior of small N dynamics.

An approach similar to that discussed above has been previously put forth by
Takayasu [108], who adopts the analysis of the Holtzmark distribution [22] for the
gravitational force field around a star for the velocity field around a vortex. The sim-
ilarity lies in the fact that the vortex-velocity relationship is given by the Biot-Savart
law with its 7~ dependence (in three-dimensions) and the star-force relationship is
given by the r~2 inverse gravitational law. In [108] it is taken as a given that the
spatial distribution of point vortices is fractal (what he terms “fractal turbulence”).
To highlight the differences with our study, we point out that [108] deals exclusively
with the point vortex model (as opposed to non-singular vortex blob type models).
This has serious consequences, as discussed earlier — non-singular vortices tend to
produce Gaussian statistics, while point vortices do not. Our model provides an un-
derstanding of how the statistics change as the vorticity distribution is changed. We
believe that in most physical flows (especially two-dimensional flows), the vorticity
distribution is not singular, and that the vortex blob model provides a better phys-
ical representation. Takayasu also argues that for the two-dimensional case, p(u) is
a stable distribution with o = 2, and thus that p(u) must be Gaussian. We disagree
on the grounds that for this to be true, p;(u;) must also be a Gaussian, which is
false since we know it to have a -2 exponent power-law tail. For the point vortex,

p(u) is not Gaussian (though it cannot strictly be a stable distribution either).

2.3 PDF of the velocity difference

The probability distribution for the velocity difference ps(6u(r;dr)) is examined,
where du(r; dr) = u(r+dr) —u(r). We apply the same method used in constructing
the velocity field based on the sum of the contributions of the individual vortices to

study the PDF of the velocity difference measured at a fixed point r. Decomposing
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the velocity difference,

N
du(r,dr) =) Su,(r,dr),

=1

where the contribution of each vortex is

(r—r)xé, (r+dr—r;)xé,

du;(r;dr) = —

Now assuming that

ldr| < |r =1, [r+dr—ri]?~|r—r?,

or r—r|2 |r+dr—rf?

du;(r;dr) = ——

27 |r — r;|?

bu,(r; dr) ~ -2Il [dr X ez]
™

v — ;2]

The z and y components are

I'; drsing
6U,(I‘, 61‘) E;Ir-—— rilz
I'; drcos 8
bufrior) ~ — L0
vi(r; ér) or fr— rif?

where

5
Y dr = dod, + dys,

tan 8 = 5

and

(r,dr) = Zéu,(r dr),

N
bv(r,dr) =) bvi(r, dr).

=1

Using derivation similar to section 2.2.1 it can be shown that

ps: (6u;) ~ 6u;?  for large Su; .

T; [(r—ri)xéz — (r4dr—r;) x &,

|

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)
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An interesting feature develops in comparing the PDFs of u and §u constructed
as sums of the above individual contributions for the de-singularized case. Letting
p = |r —ri|, u is a sum of terms that are proportional to 1/p, while §u is a sum
of terms that are proportional to 1/p®. This results in a flatter tail for ps,(6u;)
as compared to p;(u;), as seen by Egs. (2.41) and (2.15). In terms of ps(éu) and
p(u), because of the N dependence of the central limit theorem, for a fixed N, p(u)
will be much closer to a Gaussian distribution than ps{6u). This retention of the
power-law form for ps(éu) is a reflection of the fact that the influence of a single
vortex at r decays more rapidly for the velocity difference as opposed to the velocity
itself. This is in agreement with experiments and direct simulations of turbulence
([113, for example]) where the probability distribution of the velocity is normally
distributed while the PDF for the gradient of the velocity either tends more towards
an exponential or power law tail. The structure function F,, = ([6u(dr)]") for this
simple two-dimensional model displays a (dr)* dependence (for small dr). This
follows from Eq(2.35) which shows that §u ~ dr. In fact, it is easy to show that

this must hold true for small dr for any flow, by linearizing « about r.

2.4 PDF of the three-dimensional vorticity dis-

tribution

Although we have been dealing entirely with vortex distributions in two dimensions,
it is possible to extend the results to three dimensions. We must however discuss an
appropriate form for the spatial distribution of the vorticity. Just as the vorticity
in two dimensions was discretized to a collection of N delta functions or smooth
core structures, the vorticity in three dimensions is often discretized in the form of

vector valued vortex particles (vortons) or vortex filaments [69]. Considering the
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vector particle approach, the vorticity is given by [70]

N
w(x,t) = Zary,-(x —x;(t)) (2.42)

where a; has the units of circulation times length, and the spatial distribution for

each vortex is given by some function y(x)

3#(0) = —plxl/o:) (243)

with an effective core radius ;. This can in turn be substituted into the Biot-Savart

equation for three dimensions

i) = - [ B i 4 v, (2.44)

to obtain a discrete form the velocities of the N vortex elements.

Consider a situation where the vector vortex elements are randomly (uniformly)
distributed in space. This is of course a condition that may or may not be dynami-
cally realizable, possibly due to the clustering and alignment of the vortex elements.
For our current purposes we limit ourselves to kinematically examining the results

of a random distribution.

Following a derivation similar to section 2.2.1, we provide a rough heuristic
sketch leading to the result p;(u;) ~ u; 52 The induced velocity component in the

z direction due to a single vortex element is given by

U; ~ F (245)

where p = |x — ;| as before. The probability of having u; larger than a given value

U is
1

P(ui>U)~p3~U—3ﬁ

(2.46)
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Therefore,
pi(w) ~ 7% (2.47)

As in the two-dimensional case, the mean exists but the variance does not. Of
course, the conditions under which the vortex motion can be considered random and
independent are quite different from the two-dimensional case, and require further

investigation.

2.5 Numerical simulations

The velocity field due to N vortices in the stationary configuration discussed in
Chapter 1 was numerically studied. Figure 2.2 shows typical probability densities
pi(r) (defined in section 1.2.3 of Chapter 1) at the beginning and end of the sim-
ulations with the predicted equilibrium curve. Our numerical simulations provide
a limited validation of the closure scheme proposed by Lundgren and Pointin [75]
for the equilibrium vortex state, at least for initial configurations that start off
with the predicted solution. We believe the equilibrium state of other initial vortex

configurations that are more clustered, is an open question.

Assuming there is no 6 dependence in the mean, the mean velocity can be eval-

uated by using Stokes’ theorem

/c u-dl = /A wdA (2.48)

and averaging over an ensemble of possible configurations,
(ug(r)2mr) = </ w27rr'dr'> (2.49)
0

2mr(ug(r)) = /Or(w)27rr’dr'. (2.50)
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Making use of
(w(r)) =Tm(r) (2.51)

and

r2

n(r) =" (2.52)

as described in section 1.2.3 of Chapter 1,

2mr(ug(r)) = F/Orpl(r')27rr’dr' (2.53)
(ug(r)) = ;; OT e rldr’ = —2—71”—_ [e"’2 - 1}. (2.54)

This average tangential velocity profile, (up(r)) is compared with the results of a

typical numerical simulation in Figure 2.3.

For large N and finite 6, we can summarize the velocity field as consisting of a
distinct large scale mean field, with statistical fluctuations about it. By statistical,
we mean roughly that the law of large numbers is followed, which states that if the
mean exists and the variance o7 (due to each vortex) is finite, then o2 ~ o?/N. This

implies that as N — oo, the fluctuations die out. This is seen in our simulations.

The PDF p;(ui;r) is plotted in Figure 2.4, along with a u;® power-law function
for comparison. The normalized PDF p(u;r) of u = Y u; at r = .4, computed from
a simulation with § # 0 is shown in Figure 2.5, along with a Gaussian curve. The
fit is quite good, in contrast to the § = 0 case shown in F igure 2.6 where the fit is to
a power law curve. Another demonstration of the statistical behavior of the § #0
case is the 1/N dependence of the variance on N. This is shown in F igure 2.7. It is
not possible to plot a similar curve for the § = 0 case because a finite variance does

not exist.

For the velocity difference, Figure 2.8 shows the PDF of §u compared to PDF of
u, both from a numerical simulation of 422 vortex blobs. The distribution for the

velocity approaches Gaussian, while that of the velocity difference is clearly not so.
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The Gaussian behavior is expected to breakdown as N is made smaller.
This trend is shown in Figure 2.9 in which the flatness (fourth moment/(second
moment)?) of p(u;r) is plotted versus N. Only for relatively large N does the flat-
ness reach the value three corresponding to a Gaussian distribution. The PDF for
a simulation with N = 6 and 6§ = .0033 shows normalized pi(ui; ) compared with
p(u;r). It can be seen that both curves have the same power-law tail profile, quite

far from Gaussian, as displayed in Figure 2.10.

2.6 Lagrangian statistics

For homogeneous turbulence the Lagrangian velocity probability densities are iden-
tical to the Eulerian velocity statistics [109]. For our vortex configuration which
is not homogeneous (average velocity is a function of r), the Lagrangian velocity
statistics are quite different from the Eulerian ones. Based on our knowledge of the
Eulerian mean velocity and the additional finding that the Eulerian velocity fluctu-
ations are proportional to p;(r), we are able to analytically compute the Lagrangian

velocity PDF that compares well to the data obtained from numerical simulations.

2.6.1 Velocity fluctuation dependence on r

The Eulerian velocity fluctuation measured at a fixed r is proportional to the den-
sity of the vortex population p;(r). Figure 2.11 compares the result of numerical
computations of the variance o?(r) as a function of r with the known profile for
the density of the vortices p;(r). Viewing the fluctuations as being caused by the
passage of vortices during their trajectory, closer encounters are made for denser

vortex populations, resulting in larger deviations from the mean.
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2.6.2 PDF of Lagrangian velocity

The PDF of the Lagrangian velocity sampled by a passive particle p(|ug]) is shown
in Figure 2.12 for a typical case, along with a curve constructed from the model to
be discussed below. The notable feature is that it has a long low lug| tail, similar
to a (negative) log-normal distribution, and distinctly different from the Eulerian
distributions we have observed thus far in this study. This difference is a consequence
of the fact that the velocity distributions are not spatially uniform, so as a particle
moves about, it samples different statistics, and since the PDF at various r do not
share the same mean or variance, it is not possible to apply a central limit theorem

type of analysis.

An analytical estimate of the Lagrangian statistics from the Eulerian ones can

be computed from the equation

pr(jug]) ~ /Ooo p(u; r)p1(r)2nrdr (2.55)

and assuming

1 brd 2 2
) ~fu(r)]2/20%(r) 2.56
p(u; ) o : (2.56)

o?(r) is obtained from section 2.6.1, and %(r) and p1(r) are analytically known. As
shown in Figure 2.12 this provides quite a good estimate when compared to the

values from the simulation.

2.6.3 Integral time scales

The integral time scale is defined as the area under the autocorrelation coefficient

curve

T= /0 ~ (r)dr (2.57)
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where the autocorrelation coeflicient

O |

ofr) = (2.58)

And because of stationarity, w = u(t) = u(t — 7). A typical plot of the autocorre-
lation function for the Eulerian and Lagrangian velocity |u| and |ur| is shown in
Figure 2.13. The time scales are quite different, as is also apparent from Figure
2.14 which show the velocities themselves. For the same simulation, (N = 270 and
§ = .1), Tg =~ 10 while 77, = 50. The reason for the difference is the ‘sweeping’
effect of the vortices on a stationary observer (Eulerian viewpoint), and the absence

of such an effect on a moving observer (Lagrangian viewpoint).

2.7 Summary

We have described the velocity field statistics for the N vortex problem, using a
decomposition of the Eulerian velocity at a fixed point into a sum of N individual
components whose contributions are supplied by the velocity induced by a single
vortex. This allows us to make use of limit distribution theorems to describe the
velocity at the fixed point, based on the spatial distribution of vorticity. In par-
ticular, the tails of the velocity distribution of individual vortices have been used
to show that there is a qualitative difference in the passive field statistics for the
singular and the non-singular vortices. The kinematics behind the non-Gaussian
form of the velocity difference distribution was determined, which is related to the

relative flatness of ps(6u;) tail compared to that of p;(u;).

We believe the N vortex system addresses two aspects of vortical flows. One is
the coherent, large scale organized motion of many vortices (of the same sign), and
the other is the interaction between these coherent vortex blobs. We show here that

the two cases demonstrate distinct statistical properties.
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Vortex methods are also often used in modeling turbulent flows such as the mix-
ing layer. The statistics collected from such simulations have to carefully considered

in light of the above discussion on the existence of the variance and the dependence

of the variance on the value of §.
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Chapter 3

Stretch Statistics of the N-vortex

Problem

3.1 Introduction

Why is stretching in the N-vortex problem of interest? We have already discussed
in Chapter 1 the importance of studying the N-vortex problem in fluid mechanics
and dynamical systems. Stretching of fluid is related to stirring and mixing via
the increase of interfacial areas, which brings different fluids together and allows
for local diffusion to take place. The relevance of line stretching to fluid mixing is
best illustrated by considering an interfacial line that divides two fluids (of scalar
value ¢ = 1 and ¢ = 0). For low diffusion flows, we can assume that mixing takes
place in thin diffusive layers near the interface and mixing between two fluids can be
quantified by the length of the interfacial line. In dynamical systems, the divergence
of nearby trajectories in phase space is measured by the Lyapunov exponent, which
is often seen as an indicator of chaotic particle trajectories. This exponent is the

measure of exponential stretch of infinitesimal ‘fluid’ elements in physical space.
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To characterize the stretching, the probability density function (PDF) p()) are
computed, where ] is the finite-time Lyapunov exponent (i.e. the finite time average
of the strain experienced by an infinitesimal line segment along its trajectory). In
Section 3.3 we present the results obtained from numerical computations of p(}) for
various values of the parameters N and 6. The purpose of this is to demonstrate the
different types of stretching (and hence mixing) that can result from the interaction
of N vortices. As will be discussed in Section 4, p(A) and its high stretch tails are

extremely important in the evolution of line stretching in the flow.

Stretching and mixing properties of two-dimensional flows and maps [86, 92, 95,
107, 111], as well as in simple vortex flows in particular [12, 14, 92, 102] have pre-
viously been investigated. We apply the study of stretching and mixing to vortical
flows that embody the complex nonlinear inter-vortex relationships that are present
in high Reynolds number turbulent flows. On the other hand the system is simple
enough so that we are able to discern the basic mechanism behind statistics that we

observe.

The spatial distribution of this stretched interface is of course important as well,
since we want mixing to involve all fluids and not the same ones over and over again
— this becomes especially important in the presence of molecular diffusion when
some of the small scales are wiped out and stirring beyond a certain scale does not

increase mixing. This issue is addressed in Chapters 4 and 5.

In the next section the definitions and the general properties of stretching pro-
cesses are discussed. As described in Chapter 1, the numerical simulations were
performed from equilibrium initial conditions for the vortices such that we have a
stationary process. The results of these simulation are presented in Section 3.3, and

the discussion of the results in terms of some models in Section 3.4.
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3.2 Stretch distributions

The equation of motion of an infinitesimal line segment 61 is

d
Z61= (8- V)u, (3.1)

where u is the velocity field, provided in this case by the instantaneous position of the
N-vortices. The corresponding equation in tensor form for the stretch experienced

by this line segment in the time interval dt is

6lz(dt) = 6uzdt e %613(0)dt (32)
J

Let

81 = |81.

Define the instantaneous stretch exponent p as

_ . 6l(dt)
p=In HIOR (3.3)

Note that p = p(x,t) and depends on how 61(0) is aligned with respect to the

eigenvectors of the velocity gradient tensor du;/dz;.

The Lyapunov exponent is defined as follows [74, 107]

(3.4)

where 61(0) is the initial infinitesimal line segment length and §I(t) is the segment
length after it has been stretched by the flow. The finite-time version of this expo-

nent is
1. 61 (dt)

A(t) = Zln 51(0) (3.5)

This is evaluated through the Lagrangian trajectory of particles, and at a finite time
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¢, we can expect a distribution of these finite-time Lyapunov exponent values from

an ensemble of particles.

3.2.1 Point collection and line collection

The fluid stretch statistics are evaluated using two techniques. One involves com-
puting the finite-time lyapunov exponents of a fixed number of particles in the usual
way. (We will refer to this as point collection.) Line collection involves tracking the
evolution of a line segment (which is approximated by closely spaced particles) as
it is stretched by the flow. Particles are inserted during the simulation when the
distance between adjacent points exceeds a certain length (dsmin). The addition of
points allow a better probe of the high stretch regions. Another attribute of line
collection is that a spatial distribution of the line is obtained, which gives us a better

understanding of the stretching mechanism involved, as shown in Figure 3.1.

We show that by appropriate normalization the two methods provide similar
statistics, while both methods retain their advantages and disadvantages depending
on the situation. Namely, point collection may fail to provide sufficient resolution
for high stretch statistics, while line collection cannot be simulated for long times
because the computational requirements simply become too great for even the fastest

supercomputers of today (see for example [42]).

Let us define the stretch exponent on an interfacial line to be (Ar). This is just
the Lyapunov exponent as computed for the point collection, except that we have
as our set of points a highly selectively chosen set — i.e. those points that have
undergone stretching along the line. Because of this weighting, the relationship
between the PDF of the finite time Lyapunov exponents A and the PDF of stretch

exponents A on a material line is approximately

p(A)e (3.6)

Prsit) = 7= % D)




45

or to compute the Lyapunov exponent distribution from the line stretch statistics,

pr(Ap;t)e=™
I2, (A t)e=>dA’

p(A) = (3.7)

In confining ourselves to the interfacial line of small but finite thickness, there is
equal probability of encountering a thin section as it is a thick section. Therefore, due
to the fact that there is bound to be more of the highly stretched lines (due precisely
to the high stretching), pr(AL;t) is weighted more towards the high stretch side. On
the other hand, p(A) is based on the probability of A in the entire (two-dimensional)
domain. As lines get stretched the width of the line is inversely proportional to the
stretch experienced by that part of the line, so that the measure of the line remains

constant, as does the stretch distribution p(}).

Figures 3.2 and 3.3 show plots of p()) and pr(Ar) for the same run which show
a good match considering that they are for arbitrary initial conditions run for a

relatively short time.

3.2.2 The importance of tails

Beigie [14, 12] demonstrated the significant role that non-Gaussian high stretch
tails play in the evolution of lines by performing numerical experiments to compare
the lengths of the portions of the interfacial line corresponding to the Gaussian
component to those corresponding to the non-Gaussian component. It was found
that the relative contribution due to the Gaussian statistics decreases exponentially
with time. In this section we will generalize this concept to show the dominating

role that non-Gaussian high stretch tails play in the line evolution.

As pointed out by Beigie [12], the high stretch tails are important because though
they correspond to small integrated probability values, they play a significant role

in interfacial line stretching and, for incompressible flows, high stretch statistics
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correspond to thin striation widths so that they are important in the distribution

of small scales.

As we showed in the previous section the stretch distributions on the interfacial
lines favor the high stretch side with increasing t. And depending on whether p(})
is Gaussian or not, pr(Ar;¢) can have very different character. This is because for
the Gaussian p()\), pr(Ar;t) remains Gaussian and maintains the same variance,
whereas for deviations from the Gaussian, the slope of pr(Ar;t) keeps growing with
¢t. And since the line width is related to the stretch distribution by § ~ e™*', the

effect on the makeup of the material line is clear.
For the case where p()) is Gaussian

\ e~ (=2 /20%(2) -
;1) = . .
Pt = = (38)

Then using Eq. (3.6),

(202 (D)M=(A=(X)2)/25%(¢)

V27ra(t)

p(X;t)e = (3.9)

and the condition that

/ °:o prOAn)dA = 1 (3.10)

e—(A-a1)?/20?
p(Ar;t) = ~Joroll) (3.11)
which is still a Gaussian with a different mean iy, = () + 0%, but the same variance
o} = 0% The PDF just gets shifted to the right (higher stretch values). For the

case where p()) is non-Gaussian, consider the following exponential PDF":
p(A) = ge"“’\ for A>0 (3.12)

p()) = %ea* for A<0. (3.13)
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Then

a2_t2
pr(Arit) = > e for A>0 (3.14)

a2__t2
reit) = — e for A< 0 (3.15)

with ¢ < a, which has the mean

2t(a? — 2)

in= [ pOuArdr, = TP (3.16)
~ ast —a
a—1
which blows up in finite time as ¢+ — a. The variance is
o0 2~ 1?)[26® + 6at? — 2a%t + 44’3 — 215]
2 — 0 2d)\, = (a .
oy, /_oo pr(AL)( AL —fip)dAg a(a— 1% a + 1) (3.17)
1
~ m ast — a

which increases with ¢. This is due to the fact that the slope of the high stretch tail
increases by e* and decreases by e* for the low stretch side as shown in Figures 3.4
and 3.5. Although the pure exponential function is rather an idealized situation,
the trend of the non-Gaussian high stretch tails’ increasing contribution to pr,(Ar)
in contrast to a stationary pr()\) for the Gaussian PDF is clear. This explains the
growing dominance of non-Gaussian tails in the stretch distribution of interfacial

lines.

3.2.3 Normalization schemes

Since p(A;t) varies with time, we ask whether p(}A) can be renormalized to an in-
variant form independent of ¢ as t — oco. Scaling is usually done in two ways —

Beigie [14] has referred to these as horizontal and vertical scaling (see also [111]).
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Horizontal scaling involves normalizing A by

_A=)
=5 (3.18)

where (A(t)) is the mean, and o?(t) is the variance. This form of scaling is useful
for examining the central, high probability regions of the distribution. Since we are
normalizing with the variance which nominally decreases with ¢, this has the effect
of zooming into the central region. So as ¢ gets larger we tend to see narrower and
narrower band around the central region, and thus the tendency towards Gaussian

distributions.

Vertical scaling involves normalizing p(A) by
1
Pa(A) = = log(p(V)/ V). (3.19)

This type of scaling often holds for temporally chaotic flows, and has the opposite

effect of shrinking the tails in towards the central region as t increases.

We use both forms of scalings to track the evolution of p(A). We will show in
Section 3.3 that there is a slow convergence to an invariant distribution for both
scalings. This being the case, each can be used selectively to emphasize or view the
high probability or low probability regions as needed. In what follows, normalization

will imply horizontal normalization, unless stated otherwise.

3.3 Numerical results

Stretch statistics ranging from Gaussian to exponential were obtained by Beigie et
al. [14] for near-integrable, chaotic two-vortex problems. The existence of non-
Gaussian high stretch tails and the significance of their role in interfacial stretching

were shown in that study. By varying N and §, we study the types of stretch
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statistics obtained in a more general setting of N vortex interactions. In particular,
we find that the statistics range from Gaussian for vortices that overlap to strongly

non-Gaussian for isolated vortices.

For flow around a single vortex, it is clear that the stretching is linear. This is
because the flow direction is always tangential, and depends only on the distance r
from the center. Therefore any line segment becomes aligned with this tangential
flow direction, and after the initial r differences have been stretched out, there ceases
to be any stretching, and after long enough time the Lyapunov exponent goes to
zero. (It must be remembered however that, near the vortex, the velocity values
tend to be much larger than farther away, so that the stretch rate due to the initial

non-alignment will be large.)

For the case of two vortices, the situation does not change near the vortex, and
the steady flow (in a translating or rotating frame of reference) in general prevents
exponential line stretching. Fluid particles are either trapped by one or the other
vortex, or by neither, and this status doesn’t change over time. It is easy to see how
the stretching properties are changed when external perturbation is introduced. It
has the effect of realigning the line segments from time to time so that exponential
line growth is possible. In the study by Rom-Kedar et al. [102] and Beigie et al.
[14] a sinusoidal straining to a two-vortex system was externally introduced. For the
present study, the perturbation to the motion of a passive particle around a vortex is
provided by the other vortices when the number of vortices is greater than two. This
provides us with a situation different from the near-integrable two-vortex problem
in that the perturbation is of order one (far from integrable), and it is precisely the

effect of this difference that we wish to explore.

There are three known constants of motion that are in involution with each
other for the NV vortex problem, so that the particle motion (the restricted problem)
of a N > 3 system can have chaotic particle trajectories [2, 4, 87]. The chaotic

nature of the Lagrangian particle trajectories and the stretching of material lines
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are closely related. But a rigorous connection has not been found between the
stretch statistics and what we know of the velocity field statistics. This is because
stretching involves both spatial and temporal velocity variations. In what follows,

we numerically examine several different cases involving the parameters N and é.

We first concentrate on the stirring induced by three vortices as it represents the
type of action typical of a small number of interacting vortices. Figure 3.6 shows
a line that has been advected by the three vortices with 6 = .1. A blow-up of the
region around one vortex is shown in Figure 3.7. One clear feature of this type of flow
is the existence of an island around each vortex. The azimuthal flow near a vortex
blob is given roughly by the Lorentzian profile (~ r/(r? + d?)) and the boundary
between the chaotic region and the core region forms where the 1/r (tangential)
velocity dependence due to a vortex is reduced sufficiently to be influenced by the
effect of the other vortices. Using a fixed number of passive particles to track the
flow for longer times, two more large islands are visible, as seen in Figure 3.8. It is
possible that higher resolution computations may yield smaller island regions as well.
The initial placement of the particles are chosen such that they lie in the ‘chaotic’
zone. Figures 3.9 and 3.10 shows the evolution of a group of points initially placed
completely within one of the islands. The points do not move outside the island,
and the statistics collected for these are quite different from those collected in the

chaotic region, as we shall see below.

Figure 3.11 shows the PDF of the Lyapunov exponents obtained from the advec-
tion of the points in a simulation similar to those of Figure 3.8. Most of the A values
are positive, indicating the exponential stretch experienced by the particles through
their trajectories. Figure 3.12 shows the horizontally-scaled log-plot of p(A,). There
are deviations from a Gaussian PDF that has the same mean and variance. This
shape appears to be generic for the class of problems that we study here, with the
maximum value being different from the mean, always on the low stretch side. The

high stretch tails tend somewhat towards the exponential, (although not quite) and
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have higher probability values than the Gaussian, while the low stretch tail tends
to dip below it. In applying the vertical scaling at various times, we see a slow
convergence towards an invariant function p,()) as shown in Figure 3.13. For the
distribution of A obtained from an interfacial line, the results are similar, but sharper
(more non-Gaussian) due to the fact that line simulations are run for much shorter

times.

The PDF associated with the particles confined in the island of Figure 3.9 and
3.10, is shown in Figure 3.14, and it is clearly quite different in shape and value from
the PDF of the chaotic region. Most notably, about half of the probability values

are in the negative ) region (with more expected for increasing t).

In comparing the results of the three-vortex problem to the perturbed two-vortex
problem of Beigie [12] we observe that in that study the statistics were collected
from a part of the unstable manifold only, while the results presented so far in this
study have been for the entire ergodic region. (The distinction could be important,
because the stretch statistics depend strongly on how the stretchings are spatially
distributed, and how different stretching values are “shared” over the finite time ¢.)
Because of the ‘template’ property of the unstable manifold, a line segment that
is advected by the flow eventually follows the unstable manifold quite closely. See
Beigie [12] or Beigie et al. [15] for a thorough exposition, especially pertaining to
situations where the system is aperiodic. Non-periodic flows are no longer amenable
to simplified analyses involving Poincaré sections, but the unstable manifolds are
nonetheless present and dominate the topology of the flow. In the present three-
vortex problem we find that stable and unstable manifolds exist and determine the
stretching of line elements in the flow. The problem is best thought of as a three-
dimensional problem, with the third dimension being time; the manifolds are two-
dimensional sheets and the invariant hyperbolic set is a one-dimensional line. The
location and shape of these structures are determined by the vortices, and therefore

follow them in a Lagrangian manner as they wind about. In Figure 3.15 we show
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the evolution of an unstable manifold emanating from a hyperbolic set between two
vortices. The geometry of the lines shown in Figure 3.6 is clearly similar to the
unstable manifold shown in Figure 3.15. As discussed in Section 3.2.2, p()) can
also be obtained from the line stretching simulations such as shown in Figure 3.6
by the formula p(A) = pr(Ar)e **. This is shown in Figure 3.16 where we see the
characteristic non-Gaussian features we discussed earlier — we note that the features

are sharper here.

The core parameter § plays the role of distributing the vorticity more uniformly.
So for large values of é such that there is an overlap of the vortex blobs, the islands
around the vortices disappear, and the stretch statistics become closer to Gaussian.
The advected lines and points are displayed in Figures 3.17, 3.18, and 3.19 with the
corresponding stretch statistics shown in Figures 3.20 and 3.21. In comparison to

the 6 = .02 or § = .1 cases, p(A) for § = 1.0 is more or less Gaussian.

We turn now to flows with a relatively larger number (N ~0(100)) of vortices.
Figure 3.22 shows a line segment that has been stretched by the action of N = 150
vortices, with § = 0.1. Figure 3.23 shows a similar vortex configuration advecting a
fixed number of passive particles (after long times). The horizontally-scaled stretch
statistics from this simulation is shown compared to a Gaussian curve in Figure
3.24. As the core parameter ¢ is varied we observe a similar trend as in the three-
vortex case; namely the statistics moving progressively away from Gaussian as the
vortex cores get more and more isolated from each other. This is similar to the
findings in Chapter 2 for the Eulerian velocity statistics, and it is also useful to refer
back to the vorticity distribution plots shown in Figures 1.1-1.4. See Figures 3.25
and 3.26 for the line distribution and PDF for é = .5.

For both the large and small N cases, the non-Gaussian stretch distribution
is due to the slow transport of particles between two distinct regions of the flow
(note: we are not concerned with the islands here). The slow and fast regions

are created because the vortices are confined to a smaller region than the passive
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particles, as seen in Figure 3.23. Numerically, the outer bounds of the vortex and
passive particle motion appear stable, for the time scales considered. However,
their absolute boundedness is still an open question (except for that imposed by the
invariants of motion). If the statistics were collected from within the well-stirred
inner region only (i.e. the region that is ‘swept’ by the vortices), the stretch can be
considered Gaussian for larger values of §. However, the ergodic region (in the two-
dimensional physical space for the passive particles) extends beyond this well-stirred
region and consists of a larger, outer region. The reason for the poor stretching in
the outer region is because the fluctuations due to the vortex interactions die out
quickly with r (~ ™™, see section 2.6.1 in chapter 2). This, and the fact that the
mean velocity in the outer region is also decaying with r, keeps the statistics from
being collected from a randomly mixed set. For large values of §, the vorticity is
better distributed, so that the velocities in the inner region are not much greater
than that in the outer region. This results in a much more uniform sharing of the

stretch values by the particles, and hence the trend towards Gaussian statistics.

In comparison to the closed oscillating vortex pair (OVP) problem [14], the
underlying mechanism of non-uniform stretchings being the cause of non-Gaussian
PDF is the same, but the details are different. In the closed OVP flow, there were
some isolated points that were continually exposed to very strong stretches (due to
isolated intersections with the stable manifold and hence being brought towards the
hyperbolic point). In the current case, the non-uniform stretchings arise from the
fact that particles (or line segments) are located in two distinct regions that are open
for transport, but over a long time scale. In fact, for the N = 150 case, the inter-
region transport time is so long compared to the ‘mixing’ time within the regions,
that non-Gaussian PDF is evident even under horizontal scaling. For small N, the
transport between regions is much less marked, and the non-Gaussian components
disappear under horizontal scaling. There is another point of comparison to this
phenomena, and that is the evidence of sharp peaks in the PDF of finite time

Lyapunov exponents for two-dimensional chaotic flows that have KAM tori. The
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‘stickiness’ of the tori ensures that a small group of particles experience stretching

that is quite different from that of the rest of the ergodic region.

3.4 Discussion

To summarize the findings of the previous section, the distribution of finite-time
Lyapunov exponents in the N-vortex flows range from Gaussian to strongly non-
Gaussian depending on the parameter values. The PDF p(A) has a characteristic
non-Gaussian shape for small § and approaches the Gaussian distribution as § in-
creases. The ‘smallness’ of é is of course scaled with respect to the inter-vortex
distance. The non-Gaussian statistics are caused by the non-uniform sampling of
stretching by the particles, which is due to the sufficiently slow transport between

the fast-stirred inner region and the slow-stirred outer region.

3.4.1 Multinomial multiplicative process model

We now present a model that illustrates the mechanism responsible for the data
presented in the previous section. Beigie [12] has previously examined the binomial
and trinomial multiplicative process in an attempt to demonstrate the exponential
high stretch tails of the stretch distributions of chaotic tangles in perturbed two
vortex systems. The so called open flow (two vortices of the opposite sign that
are perturbed) produces stretch statistics that are Gaussian, while the closed flow
(perturbed two vortices of the same sign that are perturbed) produces non-Gaussian
high stretch tails. These models did not exactly duplicate the closed flow PDF , but
served their purpose in illustrating the mechanism that lead to high stretch (nearly

exponential) tails (which is caused by the non-uniform distribution of the stretches).

We develop a generalized version of this model and use it to illustrate the stretch-

ing mechanism that occurs in the N-vortex systems. The model is constructed as
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follows: An initial domain extending from 0 to 1 is sectioned into m segments, each
of width a;, and each segment is stretched by an amount 1/a;. Each of the resulting
segments is then sectioned into m new segments, and the process is repeated for the
second step, etc. Using the generalized Bernoulli trials [94], at the nth step the set

of stretches are

{f{ai—ki; ki € [0,n], 7 € [1,m], ik; =n} (3.20)

with each of these stretches having a PDF of

p(k) o 1(k)' H aff (3.21)

where k refers to any particular configuration of k;’s such that Yizq ki = n. There

are M of these different stretches at any n,

M H (n+z) (n+m—1)! . (3.22)

The stretch exponent A associated with each of these stretches are

Nk g = —log I_Il ok = %é ~k;log a; ; (3.23)
ken] , Shk=n. (3.24)
=1
Using Stirling’s formula, as n — oo
~ logp(k) ~log(n) — 1 + = Z[k log o — (1/2 + k) log ki + k] | (3.25)
n o
and
%logp(k) ~ i log p(k) . (3.26)

A(K)=A(k)

For the m = 2 (two-stretch) system, it is easy to show that under the horizontal

scaling the p()) approaches the Gaussian distribution as shown by Farmer et al. [39]
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for the baker’s transformation. On the other hand, vertical scaling has the effect
of driving A to the fringes (away from A = ())), and so deviates from Gaussian,
Therefore, depending on whether the interest is on the PDF of the Lyapunov expo-
nents over the entire domain, or just along an interfacial line, different results are

possible.

We numerically compute a few cases with m = 5 to demonstrate the range of
behavior that is possible with this model. Figure 3.27 shows p(A) from a system
with a wide range of stretches (see caption for the parameters). The deviation from
Gaussian is evident, but the most significant feature is the similarity to the result
from the three-vortex system simulation. This illustrates the quite general form of
the PDF seen in the previous section. The trend for increasing ¢, of slow convergence
to a time-invariant curve is shown in Figures 3.28 and 3.29. For a system with a
much more narrow range of stretches, the results approach Gaussian, as expected

(see Figure 3.30).

The purpose of bringing in the extra stretchings in the multiplicative model is to
match the general behavior of complex systems in which there is almost always many
different stretches that are simultaneously applied to different parts of the flow, and
to show that they do not always mix uniformly to produce Gaussian statistics. And
in particular, the PDFs we have computed for the N-vortex flow can be explained
in terms of this many-stretch system — and that non-Gaussian tails especially can

exist for arbitrarily long times.

3.4.2 Gaussian and non-Gaussian stretch statistics

In this section we analyze the finite-time Lyapunov exponent distribution in terms
of the local, instantaneous stretch rates and explain the different types of statistics

we see In our numerical studies.

Line stretching is a multiplicative processes so it is natural to expect log-normal
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statistics of 6{(¢)/61(0) (or normal for the exponent )), depending on certain con-
ditions. The conditions for the existence of Gaussian stretch statistics can be con-

structed as follows: Let

p(x(t),dt) = log (%}2) (3.27)

represent the instantaneous stretch at some position x, at time ¢. The line segment

length after time dt is evaluated by

|61:(dt)| = ’a"f 51,-(0)' dt. (3.28)

dz;

Note that the stretch %ll%i)l depends on the velocity gradient tensor as well as the
alignment of the line segment vector |67;(0)| with respect to the velocity gradient
tensor at that particular location and time. This means the previous history may be
important for this instantaneous quantity as well. The average of the instantaneous

stretchings experienced during the Lagrangian trajectory of a passive fluid particle

forms the Lyapunov exponent

A= LS pe(t), d). (3.29)

1=1

If we consider the instantaneous local stretching as a random process, then there is
a probability density function (PDF) p,(x) associated with an ensemble of particles.
Furthermore, if p,(¢) has a mean and a variance, and the w’s are random and inde-
pendent, then by the central limit theorem, p()) for this ensemble will be normally
distributed. It is clear that much depends on how the local stretch statistics are
sampled as the fluid particle makes its Lagrangian trajectory, and it is difficult to
know a priori exactly under what conditions the fluid motion will be sufficiently

mixing to produce normal stretch statistics.

As a means of demonstrating the above mentioned decomposition, the PDF Pu(pt)
of the instantaneous stretch distribution p, for several different parameter values are

shown in Figures 3.31, 3.32, 3.33, and 3.34. The particle are initially sufficiently
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stirred to the point of uniform spatial distribution. Note that the distribution of
pu(p) can range from nearly power-law, to a flat constant. It is the shape of these
distributions, as well as how randomly these plots are sampled through a particle’s

trajectory that determines the resulting p(}).

A possible simplification in the evaluation of Eq. (3.28) is that 0l;(dt) and g—;‘;
are independent and random. While it is reasonable to assume that the tensor g—;‘j
has a stationary distribution (since the vortices are statistically stationary), the
orientation of the é/;(dt) vector depends on the degree of persistence of the strain
tensor, and is therefore not independent of it. This dependence of the orientation
of the vector él;(dt) on the gradient tensor is shown in the comparisons of p,(u)
computed for initially uniform orientations evaluated at short times (t =5 or 10).
and after the vectors have been allowed to be directed by the flow for long times. As
seen in some of the plots presented above, it is seen that the random approximation
for the orientation of §(0) is justified for some cases, but not for others. Thus, the

wide array of possibilities for the stretch distribution are such that we are thwarted

in applying even the simplest of approximations.
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Figure 3.1: Sequence of line evolution due to stirring by N-vortices for N = 150, 6 =
.5 at t = 100,200, 300,400, 500 and 600 (a),(b),(c),(d),(e),(f) left to right from top
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Figure 3.7: Line stirred by N-vortices, for N =3, § = .1 (detail)
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Figure 3.9: Particles within an island in the N-vortex system for N =3, § =.1 at
t=20
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Figure 3.10: Particles within an island in the N-vortex system for N = 3, 6 =1
at ¢ = 1000
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Figure 3.16: PDF pr (A1) vs A for the segment of the unstable manifold for N =
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Figure 3.18: Line stirred by N-vortices for N = 3, § = 1.0 (detail)
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Figure 3.24: Normalized PDF p()) vs A from particles stirred by N-vortices for
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Figure 3.28: Normalized PDF p()) vs A for 5-nomial stretch model, o =.01,0y =
.1,&3 = .2,@4 = .3, Qp = .39

1.2

p_N(lambda)
=)
~

0.2

-0.3 1 1 1 " 1
0.0 0.2 0.4 0.6 0.8 1.0

lambda

Figure 3.29: Vertically normalized PDF Pa(A) vs X for 5-nomial stretch model,
o] = .Ol,az = .1,C¥3 = .2,0[4 = .3,(,!5 =.39



75

10° . . .
—— n=20
---------- n=40
~-- n=60
— — n=80
— - — gaussian
10% |
3
5
=
10*
10 : ‘ :
-10.0 -5.0 0.0 5.0 10.0

lambda
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Chapter 4

The Geometry of Non-Diffusive

Interfaces in Vortex Flows

4.1 Introduction

We continue our study of flows induced by N vortices moving themselves under
self induction. In this chapter, we examine the stirring of an interfacial line by the

N-vortices.

An interesting observation of numerical simulations [78] and theoretical [64] stud-
ies of two-dimensional turbulence is that vorticity tends to form large scale coherent
structures (inverse energy cascade). This suggests that it may be possible to repre-
sent some aspects of the large scale two-dimensional turbulence with the N-vortex
model. On the other hand, there is also the formation of fine scales of vorticity (en-
strophy cascade) by filamentation which has been observed in many studies 79, 63]
and we believe it to be a common result of the vortex interaction. Although we
do not have the means of creating very fine scale vorticity due to this mechanism

(because we maintain a fixed number of discrete vortices), we are certainly capable
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of producing this effect on the passive fluid.

The implicit assumption in using the N vortex model then, is that the dynamical
effects due to the fine scale vorticity is ignored. The stirring observed in this flow

can be seen as that produced by the interaction of vortices of some minimum size.

The relevance of line stretching to fluid mixing is best illustrated by considering
an interfacial line that divides two fluids (of scalar value ¢ = 1 and ¢ = 0). In the
presence of low diffusion and in a bounded flow, one measure of the mixing between
the two fluids is the length of the interfacial line as it evolves, as discussed in
Chapter 3. However, the spatial distribution of the interfacial line is also important
in determining the mixing, and this spatial distribution can be characterized by
the spectra. The scalar spectrum is often measured in studies of turbulence, where
the results are compared to the theories by Obukhov, Corrsin, Batchelor [73] and

Saffman [104] which yield various power-law spectra.

4.2 Telegraph model

The spatial distribution of a scalar can be characterized by its spectrum, which is

the Fourier transform of the autocorrelation function

C(r) = ({(x)é(x +r)), (41)

S(k) = (—2717); |7 ctwyerdr. (4.2)

By the Wiener-Khintchin theorem, S(k) is also equal to |€(k)|2, where

£(k) = (Q—jr)—d 7 etoexax (4.3)

In the this section we analyze the spectrum of an interfacial line that is sliced by
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a one-dimensional cut. For our non-diffusive flow, we find it convenient to represent
the spatial distribution of the scalar £(z) by an ‘on-off’ telegraph signal that takes
on the values of either 1 or —1 as a function of the position z along the cut (we take
the value of 1 and -1 rather than 1 and 0 for convenience, since normalization by
(€) and (£?) will force these values anyway). The autocorrelation function can then

be expressed as

C(r) = E{¢(2)¢(z + 1)} = ; GP(G) O (44)

where (; are values associated with the possible states, which we will call odd or

even: The even state being given by
{(z) =14z +r)=1} or {{(z) =-1,¢(z+r)=~1}, (=1 (4.5)

and the odd state by
{tl@) = L&(e+r)=-1} or {{(z)=-Lé(z+r)=1}, G=-1.  (4.6)

Note that r = |r|, and the derivation of C(r) then only requires the evaluation of

the probabilities for each possible state ¢
P(¢1) = P(even number of transition points in r) (4.7)

P(¢2) = P(odd number of transition points in r) , (4.8)

and

C(r) = P(even) — P(odd) (4.9)
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4.2.1 Random distribution

Consider the case where the scalar ¢(z) is randomly distributed, such that the
locations of the transition points are given by the Poisson distribution.

(A,’,)ke—/\r

Pk ==

; k=0,1,2,3... (4.10)

where k refers to the number of ‘events’ or in our case the number of transition
points that occur in the interval [z, z+r]. Following the analysis of Rice or Papoulis
[100, 94], the probability of there being an even number of points in the interval r

1s

k ,—A\r
Pleven) = Y (A—’")k—f—; k=0,2,4.. (4.11)
k even *
= e * cosh(\r) (4.12)

and an odd number of points
P(odd) = e™*" sinh(\r) . (4.13)
Therefore, using Eq. (4.9),
Cry=e™ r>0 (4.14)

which is just the standard exponential decay of correlations. Taking the Fourier

transform of Eq. (4.14),
A

S~ me

(4.15)

so that S(k) ~ k72 for k > X. As a check we generate £é(x) assuming a Poisson
distribution as shown in Figure 4.1 and plot the autocorrelation function ¢ (r) and
the spectrum S(k) of this signal in Figures 4.2 and 4.3 respectively. For k < ),

S(k) ~ + ~ constant which is basically white noise.
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4.2.2 Fractal (power-law) distribution

For a fractal interface distribution, we perform a local geometric analysis similar to
that by Vassilicos and Hunt [112]. It must be noted that the question of exzistence of
fractal distribution of lines in fluid mechanics, and especially in turbulent flows is in
a state of debate (see [34, 80, 21, 106, 76] for interesting discussions and presentation

of experimental evidence).

For a fractal distribution with dimension D (0 < D < 1), the box counting

method is often used to characterize the geometry with the equation
N(r)~r=0 . (4.16)

Strictly speaking, N(r) is the minimum number of boxes of size r that will cover all
the (transition) points, but we approximate this by a uniform, side by side covering
of the domain by the boxes. Let Ng(r) be the number of empty boxes and Ny (r)

be the total number of boxes possible, so that over a unit domain

Ne(r) = % (4.17)

Ng(r) = Nr(r)— N(r) (4.18)
1 p l=—ert P

= i cr Y = — (4.19)

The probability of an empty box Pg(r) given that all boxes are size r is

=1—crt P (4.20)

and the probability of an occupied box is given by

N(r)
Np(r)

Pp(r) = =ertP(r). (4.21)
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We then decompose P(even) and P(odd) into contributions from the empty and
filled boxes

P(even) = P(even|empty)Pg(r) + P(even|filled) Pr(r) (4.22)

P(odd) = P(odd|empty)Pg(r) + P(odd|filled) Pr(r) (4.23)

and using Eq(4.9)

C(r) = Pg(r)[P(even|empty)— P(odd|empty)]+ Pr(r)[P(evenfilled)— P(odd|filled)] .

(4.24)
It is clear that within the empty boxes, P(even|empty) &~ 1 and P(odd|empty) = 0
since there are no transition points. We will now argue that in the filled boxes
[P(evenlfilled) — P(odd|filled)] is not a function of r. Consider the average number

of boxes of size ro within a filled box of size ry, with r; < ry.
N(r) =ery? (4.25)

N(ry) = ery? (4.26)

and assuming uniform distribution of the N(ry) boxes in the N(r;) boxes, (N.B.
this is a reasonable assumption, given that N(r) gives no additional weighting to
the different measures in the boxes anyway — if we construct a fractal distribution
with a non-uniform distribution of the boxes within the boxes, as will be the case if
we prescribe a fractal correlation dimension, the results of this section will change.
This point is brought up again later.) the average number of r; boxes per r; box
is (&) _D. Thus the geometry depends only on the ratio, and not on r. Therefore,

71

Eq.(4.24) becomes

C(r) =~ (1—er™P)+ const x r1-P (4.27)

~ 1—const x r17P (4.28)
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and
S(k) = FT{1 — cr*=P} ~ f~(-D)-1 . pD-2 (4.29)

As a check, we numerically generate some sample cases with various values of D
and plot {(z),C(r) and S(k) in Figures 4.4, 4.5, and 4.6 for D = .3, Figures 4.7,
4.8, and 4.9 for D = .5, and Figures 4.10, 4.11, and 4.12 for D = .75.

We must note however that merely assuming a fractal geometry with some di-
mension D does not sufficiently define the geometry to enable us to specify the
autocorrelation and the spectrum of ¢(z) fully. To illustrate, we bring up the idea
of a multifractal geometry (see for example [51, 49, 50, 40, 1, 111, 49, 76] and ref-
erences therein) and the accompanying concept of a spectrum of dimensions which

are defined as follows:

?
1 lim log zl :uz (T) (4.30)
g—1r-0 logr

D, =
where ¢ is an index taking the values between —oo and 400 and Ui 1s the measure of
box i. For our scalar interface application, we can think of i; as being proportional
to the number of transition points within the box i. The fractal dimension D that
we have been using thus far is just Eq.(4.30) with ¢ = 0 and it is easy to see that it
is equivalent to the box counting method we have been using. It is clear then that
the spectrum of dimensions D,, —co < ¢ < oo defines the geometry much more
fully than a single Dy = D. The physical significance of the various values of D, can
be seen when we consider that probability of transition points in different boxes are
likely to be different — varying the value of ¢ allows us to put different weighting on
the uneven measure of the boxes. Thus D,’s are all equal only if the measure p; of
the boxes are uniform. The point of this discussion is that as far as the specification
of the scalar interface geometry goes, some of the other dimensions, in particular
the correlation dimension D; may have a stronger link to the scalar autocorrelation

function and the power spectrum. We take up this issue later in this chapter when

we discuss the numerical results of the stirring by N vortices.
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We also note that the connection between the stretching properties (distribution
of Lyapunov exponents) and the spectrum of fractal dimensions (and the scalar spec-

trum, as mentioned above) for chaotic flows have been made by Ott and Antonsen

[90, 1].

Two special cases (k~! and £~?)

Batchelor predicted a £~! spectrum for the viscous convective subrange of three-
dimensional turbulence and in the inertial range for the enstrophy spectrum as well
in two-dimensional turbulence. The k=2 spectrum is also of interest, as Saffman
predicted such a spectrum (for enstrophy) for very discontinuous spatial distribu-
tions of vorticity. See Lesieur {73] for additional discussions and derivations. One
reason for the recent focus on the spectra of scalar distributions is that numerical
simulations have not been able to establish fully the type of spectra that should

exist for two dimensional turbulent flows.

It has been suggested by Vassilicos and Hunt [112] that the spectra k=2 and
k~! are just the special cases related to the sparse (D = 0) and the space-filling
(D = 1) distribution of interfaces. Crisanti et al. [26] have also reported similar
results using different arguments. Our results of this section indicate a similar
conclusion is warranted. However, we must also point out that these are not the
exclusive sources of these spectrum. Antonsen and Ott [1] also arrive at the k~!
spectrum for the spectrum of passive scalars in chaotic flows. They find that in
the presence of KAM surfaces the initial value problem yields the k! spectrum
as t — oo, while they determine that the spectrum cannot be approximated as
a power law in k in the absence of KAM surfaces. In addition, they show that
for the steady state problem (with a scalar source term), where the measure was
found no to have fractal properties, the k=1 spectrum is also reached. In the next
section we show another type of scalar geometry that can produce the k™! spectrum.

Pierrehumbert [96] argues that the k~! spectrum derived through the space-filling
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fractal distribution is sensitive to the details of the geometry, and poses a ‘fragile’
limit. There is also experimental and theoretical evidence that point to discrepancies
with the £~! spectrum in its general form. In their measurement of the spectra of
high Schmidt number turbulent jets, Miller and Dimotakis [81] did not observe a
k~! spectrum. Dimotakis and Miller [33] have also expressed concerns about the
validity of Batchelor’s spectrum having to do with the divergence of the variance of

fluctuations

(€-¢872= -1—/00 S(k)dk . (4.31)

T Jo

It is clear that the relationship between the scalar spectrum and the scalar geom-
etry is still not fully resolved for general flows and that there are several possibilities
for the kinematic sources of the k=1, k=2, and even k~5/3 spectrum. Identifying the
link between the dynamic arguments (involving dimensional analysis and conserva-
tion laws) for the power law spectrum and their kinematic manifestation remains

an open task.

4.2.3 Large scale power-law, random small scales

The notion of 1/fY , (v near 1) spectra is well known in the study of electrical noise
and relaxation phenomena. Although there are many possible physical sources of
this spectra, one of the simplest is the idea of activated random processes [38, 83,
for example]. A random process with a characteristic relaxation length scale
or density A ~ 1/7 has an autocorrelation C(r) ~ exp(—Ar), and the Lorentzian
spectrum Eq. (4.15) derived above. We call the characteristic inverse length scale
A the density, because it can roughly be thought of as the density of the interfacial
lines per unit length. Imagine now a set of intervals, each with a different density A,

and autocorrelation within the interval, C(r; A). The autocorrelation function for
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the entire set is just the weighted average of each interval,

A771(1.‘F
o) = ¢ / ™ Cr; Np(N)dA (4.32)
Ama.r
. —Ar
= ¢ A e p()d (4.33)
The spectrum is then
_ _c_ > —ikr Amaz —-Ar
S(h) = o /_ e /,,. e~V p(A)dAdr (4.34)
— ¢ Amaz ) —ikr
= = /Mn 0 [ " Ve Hdrd) (4.35)
c Amaz A

Take the particular case of p(A) ~ 1/A: Then from Eq. (4.36)

c [Mmaz  dA
S0 = 5 ) wr (4.3)
A7"!(1.:5

(4.38)

— lt -1 .)l
- k - k Amin

= % [tan—l (A’Zw) — tan™" (A’]';i")} . (4.39)

Then for Amin <€ k < Anaz,

S(k) =~ %725 ~ kL. (4.40)

We point out that this provides a possible kinematic explanation for the k™' spec-
trum, one that is probably more robust than a fractal distribution. Locally, the
interfacial lines are randomly distributed, but there is a power law dependence for
the density of the lines. For the more general case of p(A) ~ 1/X7, (v = 1), integrat-
ing Eq. (4.36) gives us

S(k) ~ k™ (4.41)

fOI‘ /\mzn < k < )\max-
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In applying the above considerations to our scalar distribution £(z), we consider
an ensemble of local interfacial striations, each with a local density of A. If p(\) can
be represented by a power law, then we can expect a power law spectra of the same
power exponent as well. As for the physical mechanism that might create this sort
of a distribution, we conjecture that the stretch and fold action of the vortices on
the interfacial line may be locally random, but have different densities at different

locations, caused by the uneven distribution or alignment.

4.3 Spatial distribution of lines by vortex stir-
ring

We now turn to the spectra of interfaces advected by N-vortices. We shall examine
the one-dimensional spectra by taking a one-dimensional cut through interfacial
line structures such as shown in Figure 3.17 of chapter 3. Figure 4.13 shows the
construction of the one dimensional {(z) profile with a cut through y = 0 for the
simulation involving N = 3, § = 1.0. The scalar distribution {(z) itself is shown
in Figure 4.14. The autocorrelation C(r) and the spectrum S(k) are plotted in
Figure 4.15 and 4.16 respectively. An interesting feature of the spectrum is the
power-law form, with an exponent of around 1.7 (note that the linear fit in the
log-log spectrum plot is only approximate, and of a limited range). We show similar
results for the N = 150, § = .5 case in Figures 4.17, 4.18, 4.19, 4.20, and for the
N = 150, § = .1 case in Figures 4.21, 4.22, 4.23, and 4.24. These other cases
show slightly different exponents but otherwise show similar trends. The result of a
different cut at z = 0 through the interfacial structure associated with Figure 4.22 is
shown in Figures 4.25 and 4.26. The similarity of the results supports the argument

for isotropy.

There are two issues that arise with respect to the stirring of the interfacial lines
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by N-vortices: One is a characterization of the resulting spatial distribution £(z),

and the other is an understanding of the basic physical mechanism behind such a

distribution.

A box counting algorithm has been used on several one-dimensional cuts through
the interfacial line structure created from the stirring due to N vortices. This
method consists of finding the function N(r) which is the number of boxes of size
r required to cover all the transition points. If there is a power-law dependence on
r, then the geometry is said to be fractal where the dimension D (or Dy) is the
negative exponent of r. As a check, we first apply the box counting method to the
fractal distribution of points in Figure 4.4. The plot of log(r) vs log(r) shown in
Figure 4.27 shows an acceptable constant-slope range. The box counting is applied
to the structure shown in Figure 4.14 and the function N (r) is shown in Figure 4.28
as a log-log plot. The slope of this plot is not constant — in fact, the curve appears
nearly quadratic (it would have to be linear for fractal distributions). The ‘local
dimension’ D(r) = d[log(N(r))]/d[log(r)] then appears to be a linear function. We

can fit this curve to an equation of the form
N(r) — ar—(b+clogr) ) (4.42)

Although we have no physical motivation to suggest why this might be occuring,
we must also point out that it is a more general form of N (r) than a fractal dis-
tribution, for whose appearance there is also a lack of convincing argument for the
N-vortex problem. A two-dimensional box counting measurement of the same scalar
interface distribution gave us similar results (D(r) varying between 1 and 2 for two-
dimensions) as seen in Figure 4.29. Evaluation of N (r) for the N = 150,6 = .5
and N = 150,86 = .1 cases (one-dimensional cuts) are shown in Figures 4.30 and
4.31 which also show similar results. Whether this is due to the short time nature
of our simulations or whether this is a time invariant distribution caused by this

type of vortex flow is not certain. We note that a distribution similar to this is also
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seen in the experimental study of a turbulent jet by Miller and Dimotakis [80], and
they apply a log-normal stochastic model to achieve a good fit to their N(r) plot.
More recently, Catrakis and Dimotakis [21] have also obtained similar results for

the turbulent jet.

Using the method of section 4.2.2, the autocorrelation function corresponding to
Eq. (4.42) is
C(r) ~ 1 — art=(b+elosr) (4.43)

and the spectra is given by the Fourier Transform of Eq. (4.43). It may be convenient
to think of the (clogr) component of D(r) = (b+ clogr) as the ‘correction’ term to
the constant dimension D associated with a strictly power-law fractal distribution.
However, with the parameters a, b, and ¢, it is not difficult to fit this C(r) to other
convenient functions such as the stretched exponential function ~ exp(~a|r|?) which
also produces a power law spectrum [83] S(k) ~ k(-**"). Interestingly enough,
we encountered this same Fourier pair in the stable probability distribution law
of Chapter 2 (Egs. (2.29) and (2.30)). The stretched exponential autocorrelation
provides a better fit at large r than the local power-law (1 — a|r|”). However, noting

the relationship
(alr[)?
—T T oaee

e~ 1 —alr] +

(4.44)

both functions could provide adequate fit at small r.

In addition to the box counting to determine the function N(r), we have also
computed the correlation function H(r) for the one-dimensional interfacial transition
points (i.e., the derivative of {(z) for the scalar £(z), rather than ¢(z) itself). H(r)
is defined as the number of pairs of points that are separated by a distance less than
r [49, 96].

H(r) = lim 1 zn: 0(r — |x; — x;|) = /r C(r')dr' (4.45)

J=

where 0(z) is the Heaviside step function, n is the number of ‘particles’ making up

the set, and C(r) is the usual autocorrelation function. A log-log plots of H(r)
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is shown in Figure 4.32 for the scalar interface distribution of Figure 4.14 for the
N =3, 6 = 1.0 case. Figure 4.33 shows the result of a two-dimensional calculation of
the quantity log(3; uf(r)) versus log(r). Similarly, Figures 4.34 and 4.35 show H(r)
for the N =150, 6 = .5 and N = 150, § = .1 cases respectively. A reasonable linear
fit in the log-log plot can be seen in all plots indicating a power law function of the
form H(r) ~ rP2. The scaling dimension D, was introduced earlier in section 4.2.2 in
discussing the spectrum of multifractal distributions. The connection between H(r)
and D, was established by Grassberger and Proccacia [49, 50] when H(r) takes a
power-law form. Although they aimed their analysis towards the characterization
of strange attractors associated with dissipative dynamical systems, and used time
series measurements, we find the geometric characterizations useful in our spatial

context as well.

An interesting facet of all this is that the interfacial line stirred by the N vortices
can be described as possessing a nearly constant correlation dimension (at least over
a limited range) D, while not having a fractal dimension for the capacity Dy (or D).
This suggests that measuring the correlation dimension or the correlation function
H(r) may provide an independent useful characterization of the scalar geometry
apart from the usual box counting function N(r). This makes sense because these
are just two of an infinite number of parameter values describing the measure of a
geometric set. In fact, Dy probably has a weaker effect on the spectrum because it

does not account for the varying measures of each box.

Although we have devoted a large part of this chapter analyzing the spectrum,
we must stress the fact that the spectrum has a non-invertible relationship with
the physical distribution ¢(x). That is, identifying a spectrum does not tell us any-
thing specific about the spatial distribution of the scalar, because different types
of the scalar distribution can result in the same spectrum. We agree with Pier-
rehumbert [96] that more direct geometric characterizations such as H (r) provide

better description of the geometry than the power spectrum, and suggest further
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that evaluations of the functions N(r) and H(r) themselves may be useful, even

when the geometry does not adhere to a strict power-law form.
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Chapter 5

Two-Dimensional Mixing due to
Rollup and Pairing of Vortex

Structures in Shear Layers

5.1 Introduction

The planar shear layer has been the subject of extensive research in recent years,
due in large part to the discovery of large scale organized vortices [20, 117]. The
use of laser induced fluorescence in highlighting the scalar mixing has also brought
about increased understanding of the transport and mixing process that are involved
[61, 60]. The geometry of the entrainment, and subsequent stirring and mixing of
the high speed and low speed fluid in the shear layer have been discussed in several

papers (see [30, 45] for example).

Traditionally, the onset of turbulence is associated with an increase of the small
scales, three dimensionality, and the existence of an inertial subrange. The role that

the pairing of vortex structures plays in this development in the shear layer has been
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well studied [47, 84, 85, 72, 28]. This development of fully developed turbulence has
also been associated with the mixing transition, in which the molecular mixedness
of two fluids initially separated by a splitter plate is found to increase drastically
within some range of Reynolds numbers [62, 103]. The Reynolds number is defined
as Re = Aué/v, where § is the width of the layer (which grows linearly with z) and

Auw is the velocity difference across the splitter plate.

The role of pairing (merging) in mixing the fluid has been identified and tested
by Huang and Ho [47] in experiments in the mixing layer where the existence of
small scale turbulence and the accompanying -5/3 law region were correlated with
the location of the mergings. The merging locations were varied with the use of ex-
ternal forcing to support this hypothesis. Other recent experiments have also served
to highlight the development and evolution of the three-dimensional streamwise vor-
tices and small scale flow field with novel flow visualization and data collection tech-
niques [67, 88]. Numerically, Ashurst and Meiberg [8] have used three-dimensional
vortex dynamics to simulate a shear layer to study the onset of streamwise vortices
(no pairing though). Corcos and Lin [28], and more recently, Moser and Rogers
[84],(85] among others have used numerical simulation to further study the three-
dimensional evolution of the time developing shear layer, especially in regard to the
role of vortex pairing in the development of the three-dimensionality and the mixing
transition. The emphasis is on the breakdown of the organized three-dimensional
(streamwise ribs and spanwise rollers) structures; i.e., on the dynamical evolution

of vorticity and the creation of the small scales.

In this study we emphasize scalar mixing and show that it can reach significant
levels even in the absence of small scale dynamics or three dimensionality. That is,
mixing of the fluid can occur in the absence of what is traditionally thought of as

full turbulence, and we demonstrate here the mechanism by which this happens.

It is particularly useful to study this as applied to the mixing transition, be-

cause it is precisely at about the transition Reynolds numbers that the large
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scale two-dimensional vortical motions are dominant, before the advent of three-
dimensionality. However, we do not make the claim that this is a viable alternative

explanation for the mixing transition observed in experiments.

In this study we examine more closely the kinematic consequences of the mech-
anism of rollup and pairing of vortex structures on scalar mixing in two dimensions.
The absence of three dimensionality allows us to gauge at least the minimum amount
of mixing that can take place during pairing. Although previous studies have exam-
ined line stretching in chaotic flows (see Fung and Vassilicos [43, for example]), we
propose to show its role in the scalar mizing as it applies to the physical problem of

the shear layer by taking diffusion and diffusion layer overlap into consideration.

In his review of the mixing transition in shear layers, Roshko [103] has suggested
chaotic advection as a possible route to the mixing transition process. In the sense
that the eventual rapid increase of the interface is due to the vortex dynamics of
a few relatively large structures (what we would call a low-dimensional dynamical
system if we relate the number of vortex structures to the dimension of the system
as discussed in section 1.2.2 of chapter 1), we find this to be likely. A part of the
problem is that in the shear layer, we have to deal with a system that is dynamically
changing — i.e., the Reynolds number continuously increases with time (in the La-
grangian frame, or distance in the Eulerian frame). The significance of the increasing
Reynolds number being that the “dimensionality” of the problem changes with the
Reynolds number, because the vorticity distribution is becoming more complex due
to continuing vortex interactions. This makes connection to previous studies of

chaotic advection at least semantically difficult.

Two models are used to illustrate the role of large scale two-dimensional struc-
tures in bringing about scalar mixing: the vortex sheet in a laterally periodic domain,
and a new kinematical map that models the type of vortex interaction observed in a
space developing shear layer. Using these models, the stretching and diffusion of the

interfacial line dividing two fluids is tracked. Although initial interfacial line stretch-
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ing is linear, we show exponential line stretching eventually occurs for more than
two mergings, and that this can result in significant contribution to the evolution of
the scalar mixing in the shear layer. In fact, the rapid increase of the computational
difficulty associated with tracking the problem as the number of mergings increases
should give us a hint as to the line stretching (interfacial area creation) properties of
these two-dimensional large scale motion. Despite the exponential line stretching,
good mixing requires a good spatial distribution of the interfacial line, otherwise
concentration of the interface in a restricted region will leave other areas unmixed.

This aspect of mixing, also known as mixing efficiency is also addressed.

5.2 The periodic vortex sheet

The equation of motion for the discretized periodic vortex sheet is as follows (see

[66] and references therein for example)

dx; _ “_1 f: sinh 27 (y; — ) -
dt 2N “ cosh 2r(y; — y;) — cos 2n(z; — ;) + 62 :
dt ~ 2N o cosh 27 (y; — y;) — cos 27 (z; — ;) + 62 )

where § is the de-singularizing vortex core parameter. The distances between the
points (z;,y;) are ‘small’ to simulate a continuous sheet. These equations are solved
using the Lagrangian vortex method. The evolution of the above equations depends
on the initial positions (z;,y;) and 6. The initial conditions are set with a sinusoidal
perturbation and as many of its subharmonics as the number of mergings. These
perturbations amplify, rollup, and then eventually merge. A drawback of this model
is that the problem is ill-posed without the de-singularizing factor §, and there is no
clear correspondence between the results of this model and the solutions of the Euler

or Navier-Stokes equations. Therefore it should be understood that this method is
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used as model, and not as a dynamically accurate solution of the fluid dynamics. The
type of systematic study by Tryggvason et al. [110] in relating the de-singularizing
parameter 6 with the initial thickness of the layer and the Reynolds number for
a Navier-Stokes solution is useful in the modeling regard, although establishing a
rigorous connection appears hopeless, since § dimensionally and dynamically does
not behave like viscosity. We chose this Lagrangian method because the vortex sheet
coincides with the material interface, and no separate computation is required for

the evolution of the interface between the two fluids.

The periodic vortex sheet has recently been extensively studied numerically by
Krasny [66] using the vortex method. Other numerical studies have been made of
this problem, many of them in three dimensions, including those by Sherman and
Corcos [27], Jacobs and Pullin [52], Riley and Metcalf [101], Lesieur et al. [72] and
Moser and Rogers [84](85]. It is popular as a model for the space developing shear
layer because of its simplified boundary conditions. Pairing between adjacent vortex
‘structures’ were observed in these simulations and related to similar occurrences in
the space developing case. With the current numerical experiments, we track the
increase of the two-dimensional interfacial length when the only significant dynamic
event occurring in the flow is the two-dimensional rollup and the merge process.
This is done up to three pairings which is sufficient to provide large increases in
the material interface. Thus we isolate the mechanism that is central to the two-

dimensional, large scale evolution of the shear layer.

For computational accuracy (and efficiency), vortex particles are inserted dur-
ing the simulation on an as-needed basis — that is, when the separation between
neighboring particles becomes greater than the parameter 65,45, a new particle is
inserted, with the appropriate sharing of the circulation strength and history of
stretching, etc. The parameters L and AU are used to to normalize the length and
the time (by L/AU) scales in this computation. As mentioned above, the vortex

sheet computation using Lagrangian vortex blob method does not solve the Navier-
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Stokes equation, but can be used as a model to match the NS solutions using the
appropriate value of § [110]. This requires a rather artificial matching of the Re
to the simulation, but can be managed by comparing vortex structure merging lo-
cations (times). The non-dimensionalized diffusivity D and stretch exponent A are

scaled as D* = D/(AUL) and X\* = AL/AU, but we drop the asterisk henceforth

for convenience.

5.2.1 Measuring mixing

Since the flow carries fluids A and B on either side of the interface, the mixing
between the two fluids can be characterized by the spatial distribution of the in-
terfacial layer across which molecular diffusion takes place. Assuming no overlap of
the diffusion layers, mixing can be quantified roughly by the fraction

Am L Li(t)di(2)
A A(t) (5:3)

where the interfacial line has been divided into N segments, with L; the length of
the ith segment and d; the thickness of its diffusion zone. We make use of a decom-
position and transformation often used in the past to compute d;(¢) — see Ottino
[91], Marble [77], Karagozian and Marble [56], Leonard et al. [71], Dimotakis [31],
and references therein. This method consists of approximating the two-dimensional
convection-diffusion equation by a one-dimensional, local, Lagrangian equation, and
then using a time-dependent transformation to arrive at a one-dimensional, local,
Lagrangian diffusion equation that depends on the local value of the strain and strain
history. The full two-dimensional convection-diffusion equation for the transport of
a scalar £ is
9

5 T Vé= DV?¢. (5.4)

This equation can be locally decomposed into z and y components, which are the

directions tangent to, and normal to the interfacial line respectively. Assuming that
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the local gradients are negligible in the tangential direction, we are left with a one-
dimensional approximation in the normal direction. This assumption breaks down
in regions of high curvature (the numerical data on the curvature of the vortex sheet
is presented in section 5.2.2). In this normal direction which is defined locally for
a material segment that is in a translating and rotating frame of reference, v can
be approximated by —ey (by keeping the first term of the Taylor series expansion),
where ¢ is the time dependent local strain dv/dy,

oc o _ 0%

5 eyay =Dga- (5.5)

Using the follbwing strain and time-dependent transformation (see references men-

tioned above),

y=>5y (5.6)
1
r= /0 S2(t")dt! (5.7)
_6L(Y) — o Jy e(t)dt!
we have the diffusion equation
0¢ 9%

with the well-known solution

ﬁ(y,t)=%[l+erf( \/j%)] | (5.10)

If we assume that a value of ¢ = .9 constitutes sufficient mixedness of the interfacial

zone (or the product zone if we consider the reaction between fluids A and B ), then

d, the thickness of this zone can be expressed as

d(t) = \/4D7'e‘:51:f' (.8) ~ \/‘%S’DT (5.11)

for each individual segment.
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As a check on the model, we can perform a rough estimate of the expected
thickness of the interfacial layer in the following way. If we assume that the straining

experienced by a Lagrangian point is constant, (e & constant)

S(t) ~ e (5.12)

eZet -1

2¢
D(e2¢t — 1
d(t;¢) =~ e_‘tﬂ4—(e—26——) (5.14)

d(t;€) ~ d(t) = V4Dt (5.15)

d(t;e) & doo(€) = \/éT5 (5.16)

for large t as expected [31],[53]. Note that for large t, the value of d = ds(€) is inde-

~ t2et’dl_ 5.13
T(t)NOe t' = (5.13)

expanding about ¢ = 0,

for small t, and

pendent of time and depends just on the strain € and the diffusivity D. So without
the overlap of diffusion layers, the mixed area fraction is given by L(t)duo(€)/A(t).
A rough numerical example is illustrative. Starting with an interfacial line of length
L(0) = 1, and assuming no overlap, A, (t) ~ \/2—1)—/66“. Then we assume € =~ 2
(based on humerical experiments to be discussed below), and if D = 1076, then
An(t) =1073e?. So at t ~ 3.5, A, = A = 1. This increase in mixed area is kept in
check by two factors — the overlap of mixed layers and the continual entrainment of
fresh fluid (A then grows with t), and hence the plateau or saturation of the mixed

fraction seen in Figure 2 of Roshko [103] beyond the mixing transition.

Accounting for the diffusion zone overlap is numerically more difficult in the
Lagrangian scheme. Beigie et al. [13] have considered a problem of this sort to
propose the idea of mixing efficiency, in which the idea that apart from the stretch
rates, the spatial distribution of the stretching is also important in measuring mixing.

This is particularly important in the problem of the shear layer at hand, where large
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amounts of fresh fluid is continuously entrained, squeezing the rest of the mixed
fluid together, until they too are brought together by even newer entrained fuid.
Computationally, the fraction of the mixed fluid may be measured by constructing an
Eulerian mesh on top of the Lagrangian interfacial layer, and counting the occupied
cells. The calculation of the fraction A,,(t)/A(t) must also take into consideration
the fact that A(t) also grows with time. In the space developing shear layer A(t)
is related to the ‘vertical’ and ‘lateral’ extent of the layer that grows linearly with
. In our computations we take A(2) ~ |ymaz(t)|?, where |ymaz(t)| is the maximum

width of the vortex structure at ¢.

5.2.2 Numerical results

We first demonstrate the numerical algorithm on a single rollup of the vortex sheet.
The state of the interfacial vortex sheet at ¢ = 3.0 is shown in Figure 5.1. Figure 5.2
shows the diffusion layer for D = 107%. The stretch rate for the entire sheet is
shown in Figure 5.3. Note the eventual linear growth of the line length. Figure 5.4
shows different stages of the evolution of the vortex sheet with one subharmonic
which results in one pairing. Similarly, Figure 5.5 shows a vortex sheet undergoing
two pairings, and Figure 5.6 three pairings. Figure 5.7 shows the vorticity sheet
evolution for three pairings with different initial perturbations. A visual comparison
of the state of the diffusive interface of experimental flow images from high Schmidt
number shear layers [60, 61] with Figures 5.6 and 5.13) hint at underlying similarities
in the generating mechanism. The relative vortex sheet lengths are compared in
Figure 5.8 for different pairings. The amount of rollup between pairings is controlled
by the amplitudes of the initial subharmonic perturbations, and the de-singularizing
parameter 6. It is clear that with more roll up the line stretching will increase, and
this is reflected in Figure 5.9 in which the line length of two runs with different

initial subharmonic perturbations (Figures 5.6 and 5.7) are plotted. If we express
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the exponential line length growth as
L(t) ~ Pt , (5.17)

then the line length exponent (8) for Figure 5.9 is around 1. When non-
dimensionalized, this translates to 8§/AU, although it is not certain whether the
quantity (3 is easily measurable in the laboratory. One obvious consequence of
exponential line growth is the increasing computational cost of maintaining the res-
olution. For example, for a line length L = 20, maintaining an inter-vortex distance
on the vortex sheet of 0.01 requires 2000 vortex elements, which is a sizeable com-
putational challenge in itself, but the situation rapidly becomes more difficult. If
we assume (3 = 1.0, then the number of vortices doubles after every At = .7, and
considering the N? algorithm we use, the simulation cannot be performed for very
long. Thus we have compromised the fine scale resolution of the vortex sheet evolu-
tion in our simulations in order to run to longer times and observe the exponential
line stretching. The details of the dynamics may suffer, and the stretching will be
undercounted somewhat, but we believe the overall behavior of the system has been
captured. In addition, the presence of diffusion ensures mixing of the smallest scales
so that the resolution of the vortex sheet for purposes of measuring mixing are not
critical. The computational problem is not quite as severe in the interfacial line
simulation of chapter 4 because the line elements are passive. This is one of the
reasons that has lead us to the developmen of the kinematic model described in the

next section.

As mentioned before, the mixedness is estimated by the area covered by the in-
terfacial layer, and to avoid double-counting when these layers overlap, the covered
area is calculated from an Eulerian grid. This saturation is demonstrated in Fig-
ure 5.10 which plots the mixed area measured from a Lagrangian viewpoint without
regard to overlap (by summing the length times the thickness of each line segment),

and from an Eulerian viewpoint (by summing the boxes that are covered). The mix-
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ing transition in shear layers is viewed by plotting the mixed area fraction (6,,/6)
against the Reynolds number (see Figure 2 of Roshko [103]). A comparable version
of that plot for the current problem is shown in Figures 5.11 and 5.12 where we
plot the mixed area fraction as a function of time instead of the Reynolds number .
(The evolution in time for our problem is similar to the downstream movement of
the vortex structures which results in approximately linear increase of the Reynolds
number). The mixed area at any time is normalized by the area of the local shear
layer at that time to calculate the mixed fraction. In the physical problem, we as-
sume this local area to be roughly determined by the maximum width (8,(z)) of

the shear layer.

Figure 5.12 is included to show that the ‘sudden’ increase in mixedness is a
relative thing due to the fact that on a log-linear plot, the x-axis can be compressed
quite a bit. In fact the transition Reynolds number ranges from around 3,000 -
10,000 during which the width of the shear layer can triple, from the beginning of
the transition to the end of the transition. However, as pointed out by Dimotakis
[35], our numerical simulation, and those by others involve looking at mixing for
a single vortex structure, while experimental measurements are performed over an
ensemble average of many vortex structures. This leads to a smoothing of the range
over which the transition appears to take place. Experimental observations show
that the mixing transition for individual vortices are quite sudden (due to three-

dimensionality and small scales).

Figure 5.13 shows the diffusive layer that defines the mixedness for Figures 5.11
and 5.12. Since each segment of the interfacial line undergoes different strain rates,
each segment ends up with a different diffusive layer thickness d(z). This is shown
in Figure 5.14 where the thickness (d;) distribution is plotted at two different times
during the sheet evolution (we have ignored thicknesses in the extremely high curva-
ture regions, since the one-dimensional model breaks down, and the thicknesses are

not accurately represented). For comparison, the dotted horizontal lines represent-
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ing the thickness that a sheet would achieve in the absence of strain (d = VADt) is
also plotted at each time. A similar plot of the distribution of the stretch exponent
values (\; = }log(L:/Li(0))) associated with each segment of the sheet is plotted in
Figure 5.15. These are just the finite time Lyapunov exponents for the particles on
the interfacial sheet, and the fact that they are mostly positive is an indicator of the
chaotic nature of the flow. The probability density function (PDF) for the distri-
bution of stretching is computed and plotted in Figure 5.16 along with a Gaussian
function. Although not directly germane to the issues raised in this chapter, this
information may be of interest in that some recent studies have tried to determine
whether the tails of the PDF of stretchings in turbulent and non-turbulent chaotic
flows are Gaussian or not. It is interesting to note that the shape of the PDF is

similar to that seen in chapter 3.

The curvature of a line at any point is defined to be

|d?y/da?|

" T (g /do TP (519)

This quantity is evaluated along the vortex sheet shown in Figure 5.6(f). Figure 5.17
shows « plotted as a function of the index i. Note that there are only a few points
at which & exceeds the value of 100. This is better illustrated in Figure 5.18 which
shows the probability density function of the curvature distribution. The radius of
curvature p = 1/« then gives us a length scale that we can compare to the diffusion
layer thickness of Figure 5.14, or the striation thickness between neighboring vortex

sheet lines.

5.3 The rollup-merge map

We introduce the rollup-merge (RM) map which exemplifies the type of large scale

two-dimensional behavior that occurs in the shear layer (namely the rollup - rep-
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resented by a twist map, and merging - represented by a shift map). These two
dynamic events form the main two-dimensional dynamics on the scalar interface,
and thus on mixing. In this regard, this model is similar to previously proposed
kinematic models such as the tendril-whorl flow or the blinking vortex map (see Ot-
tino [92] or Aref [3] for description). In dealing with fluid mixing by separating the
action of the large scale stirring and small scale diffusion, our model is also similar
in spirit to the work of Kerstein [57, 58] whose linear-eddy modeling of turbulent
transport was developed as a means of addressing flows where a wide range of scales
must be resolved. In this scheme, the spatial development of the flow (convection)
is represented by a stochastic simulation of a one-dimensional line element (random
rearrangement), and local molecular mixing by Fickian diffusion. In our model,
the large scale stirring is provided by the the rollup-merge mechanism rather than

random rearrangement.

The RM map consists of two mappings, one the (integrable) twist mapping

Tn4l = Tp (519)
Opi1 =0, +ar, (5.20)
and a shift mapping
Tny1 = Tntl (5.21)
Ynt1 = Ynt1 T Snp1 - (5.22)

The two parameters are the twist parameter a, and the shift parameter s which
varies with n in order to follow the spatial growth found in the space developing
shear layer. A necessary condition that the time scale also grow linearly with the
spatial scale is also imposed. This is so that the dynamics remain consistent and

self similar, as found approximately in the physical flow.

Figure 5.19 shows the sequence of effects that each step of the mapping has on a
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line of passive markers. Also included is a shear mapping (41 = Tn+ b5 Yny1 = ¥n)
that makes the modeling closer to that of a shear layer, but otherwise is not dynam-
ically significant. The twist map stretches the line out into the 6 direction, and if
the parameter a is large enough, turns it into a spiral (see Figure 5.19(b)). Then the
shear mapping skews it (Figure 5.19(c)), and in order to model the merging process,
the line is shifted up (Figure 5.19(d)). This is because during vortex mergings, it is
found that the center of rotation is shifted from the center of a single vortex to the
common point between the two vortices. There is a further action of duplicating the
existing structure and placing it shifted down as the ‘neighboring vortex structure’
is merged together (Figure 5.19(e)). The whole process is then repeated, the first
step of which is shown in Figure 5.19(f).

The generation of the interfacial line, diffusion layer, and measurements of mixing
are done in a manner similar to the periodic vortex model discussed in this chapter.
Since the current model is a kinematical mapping, the computational costs are far
lower and we have isolated the essential components of the vortical motion to its
simplest form. The map introduced in this study is quite similar to the many
predecessors such as the tendril-whorl map [92], the blinking vortex map [92, 3],
etc., and it is to be expected that the trajectory of a particle in this mapping
is also chaotic (for the proper parameters). This can be shown by the existence of
positive Lyapunov exponents, or by construction of a horseshoe generating sequence.
Another new aspect here is that the time scale is not constant. This is a requirement
levied by the geometry of the physical problem of the shear layer we are trying to

model.

5.3.1 Numerical results

Figure 5.20 shows the sequence of time evolution of an interfacial line through the
RM mapping for the parameter ¢ = 15. The duplication step has been left out

to illustrate the evolution of a single line segment. Figure 5.21 shows an interface
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produced with the duplication step. Physically, the duplication is needed because
a pairing involves two similar structures. The generation of fine scaled striations is
evident in these pictures. Figure 5.22 shows the line length increase as a function of
n. Note that the n steps are not linear, but double every step. In a manner similar
to the vortex sheet example, we also keep track of the stretch rates experienced
by individual line segments and use that to determine the diffusive layer thickness
to estimate mixing. An example of this is shown in Figure 5.23 for D = 1075.
Figure 5.24 shows the mixed area and Figures 5.25 and 5.26 show the mixed area
fraction. The mixed area fraction plots should be compared to the mixing transition
plot (Figure 2 of [103]). Figures 5.27,5.28, and 5.29 show the results of computations

for a much large value of D = 1073,

5.4 Discussion

5.4.1 Mixing transition and chaotic advection

Several models that produce chaotic particle motion [3][92][12] have been studied in
the past , and the connection to mixing of fluids has been made. The question of the
relationship between shear layer mixing and chaotic advection has also previously
been brought up by Broadwell and Mungal [19]. They point to the similarities in the
increased mixedness associated with non-integrable (chaotic) flows and in the shear
layer, and speculate that mixing transition occurs where the Taylor layers overlap.
(The Taylor layer refers to diffusive scalar thickness around the interface that must
scale as ~ §/(ReSc)/?). In this study we wish to clarify the connection between
chaotic advection and the physical problem of mixing in the shear layer. Because
of the continuous increase of the Reynolds number and the associated increase in
the small scale and three-dimensional activity in the developing region of the shear

layer, the assignment of a single ‘cause’ of mixing has been difficult. We will isolate
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and point out the role that chaotic advection plays through the two-dimensional

large scale motion described in previous sections.

Mixing is related to chaotic particle trajectories through the exponential stretch-
ing of interfacial lines. As discussed in section 2.3, the stretching exponent A for
each line segment is the finite time Lyapunov exponent. The variation seen in the
distribution of these values for line segments is reflective of different stretching that
each segment is subjected to. These values nonetheless are mostly positive for the
models under consideration, and indicate exponential separation of particles that are
close together. This is of course reflected in the nearly exponential line stretching
observed in Figures 5.8 and 5.9 The important role that exponential line stretching
plays in fluid mixing has already been made, so we will proceed to examine the

mechanism behind it.

The exponential stretching of the interfacial lines are produced only with the
presence of both the merging and the rollup. The rollup motion by itself cannot
sustain large stretching without realignment of the lines. That is, the rate of stretch-
ing in a purely rollup motion is linear. The reason why exponential stretching occurs
for the combination of the rollup and merge process can be illustrated by first ex-
amining the rollup process. Rollup occurs when ug = ug(r) (except for solid body
rotation), and u, = 0. Although there is rapid initial separation of particles that
have different r, this difference is not increased with time and so the stretching of
lines is soon linear. The role of the merging process is to shift the lines’ position
with respect to the center of rotation, so that there is effectively a reorientation of
the relative positions of the particles. This continual reorientation allows two nearby
particles to always experience a velocity difference, causing continual line growth.
This also highlights the fact that line length can grow exponentially even in a flow
that is not extentional (real eigenvalues for the velocity gradient tensor). Shear
dominated flows with sufficient perturbation provides ample means for exponential

line stretching. This is the key mechanism that occurs in the large scale for the
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shear layer (and more generally in other turbulent flows such as the round jet).

The realignment mechanisms in other chaotic models have been varied. They
include external perturbation (oscillating vortex-pair) and blinking (turning vortices
on and off) among others. The observation we make is that the natural motion
of vortices involves rotation about some common central point, and that there is
sufficient fluctuation of the flow field induced by the motion of these vortices such
that there is constant realignment. We propose that the distribution of vorticity
in the transition regime of the shear layer is such that it falls under this type of

stretching mechanism.

The exponential stretching of material lines resulting from the existence of
chaotic advection is quite clear. The mostly rotational behavior of vortical struc-
tures is easily observed, and the interaction of like-signed vortices resulting in rota-
tion about their common center is also evident. The effect of three-dimensional and
small scale motion within the large scale vortex structures would, of course greatly
affect the mixing situation so as to overtake the effect of the large scale motion.
This is why the role of the large scales in mixing is being discussed in the context of
the low Reynolds number regime where the three-dimensional, streamwise vortical
structures have not yet been fully developed. Indeed, it is likely that the large scale
motion under current discussion may have a lot to do with the ereation of the small

scales and three-dimensionality.

5.4.2 Comparison to experiments

As the Reynolds number increases downstream in experiments, turbulence is further
developed in the form of greater three-dimensional and small scale effects. At the
same time, two-dimensional mixing is aléo advancing in the form of rollup and
pairing of the spanwise large scale structures. So in a sense, it is a competitive

process between the different mechanisms. It is however, a competition that the large



128

scale, two-dimensional mechanism will very likely lose, because small scale, three
dimensional mixing is far more rapid, and the large scale motion is at least partly
responsible for the development of the small scales and the three-dimensionality.
However, in considering the problem of mixing of two fluids, it must be remembered
that the large scale motion plays the crucial role of transporting the interface around,
and bringing fresh fluid together. Without this, the small scales will cause lots
of mixing amongst fluid of the same kind, without necessarily promoting mixing

between the two fluids.

Therefore, associating the two-dimensional, large scale motion with chaotic ad-
vection, mixing transition can be thought of as being brought about by, or helped
along by chaotic advection. However, chaotic advection is usually associated with a
low order dynamical system that does not change its dimension. The shear layer is
far more complex, moving from low Reynolds number to turbulent regimes with very
high Reynolds number, so that the dimensionality (in the sense of n-dimensional dy-
namical system) of the problem changes with time. Even in the pre-transition regime
(perhaps especially in this regime), the dynamical system is changing, so while it is
the canonical stretch and fold chaos producing mechanism that may be responsible
for bringing about the mixing transition (and indeed the turbulent transition), it is
the rather more general transition from a low dimensional system to a higher one

that we see here.

In regards to whether it is possible to have the mixing transition occur in a purely
two-dimensional shear flow, taking into account the fact that mixing transition is
quite loosely defined, it certainly appears possible, as indicated in Figure 5.12. In
the non-ideal three-dimensional experiment though, mixing will develop faster with
the participation of the three dimensionality, and thus display a different character
in terms of the route to a mixed state. We note that Dimotakis [35] has conducted an
experimental investigation of a two-dimensional soap film shear layer, where a rapid

increase in the mixing was observed at some point in the evolution. One important
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aspect of the dynamics that is missing in our current studies is the mixing mechanism
due to the interaction of vortices of different signs. In addition to the rollup and
pairing, there can also be a translational movement that enhances transport in a

different way from that discussed in this thesis.

At about the transitional Reynolds numbers, the emergence of the small scales
and the three dimensionality coincide with the increasing mixing capabilities due
to the two-dimensional vorticity distribution becoming more complex. In the shear
layer, it is not possible to hold the flow at a fixed transition Reynolds number
because the Reynolds number grows continuously with z. However, if we envision a
situation (such as in a round jet, or a plane wake) where the Reynolds number can be
held fixed, we would be able to tell if full mixing can be achieved by turbulence that
is not fully developed. The flow in a round jet however, is more three-dimensional
than the shear layer to begin with, so the role of two-dimensional, large scale mixing

is even harder to detect.
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Figure 5.1: Periodic vortex sheet evolution for § = .2, at t = 3
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Figure 5.2: Periodic vortex sheet evolution with diffusion layer for § = .2, D = 10~°
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Figure 5.5: Periodic vortex sheet evolution at ¢t = 4, 8, 1.2, 1.6
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Figure 5.6: Periodic vortex sheet evolution at ¢t = 0, .4, .8, 1.2, 1.6 and 1.96
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Chapter 6

Summary

6.1 Summary

The major points of this thesis can be summarized as follows:

In Chapter 2 we reported a simple consequence of the Biot-Savart law for the
velocity induced by a vortex in N-vortex problems — that the probability density of
velocity in the two-dimensional case has an inverse power law tail of the form 3.
By decomposing the Eulerian velocity at a fixed point into a sum of N individual
components whose contributions are supplied by the velocity induced by a single
vortex, we made use of the limit distribution theorems to describe the velocity at
the fixed point, based on the spatial distribution of vorticity. For the problem
of N vortices of the same sign and strength we showed that in cases where the
vortex core is non-singular, the probability distribution for the velocity is Gaussian.
For the singular core case, the power-law tail distribution tends towards a Lévy
stable distribution. The distribution of the velocity difference was found to tend
towards non-Gaussian even for non-singular cores. The statistical implications of

the physical shape and form of the vorticity was made clear by varying N and the de-
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singularization parameter §. Possible consequences for vortex methods simulations
and insights into the character of large scale coherent structures were discussed. The
Lagrangian velocity statistics were also predicted based on the Eulerian statistics

and compared with numerical computations.

The probleril of non-diffusive stirring of incompressible fluid by N like-signed,
equal-strength vortices was considered. This flow is non-isotropic and non-
homogeneous in contrast to many studies of line stretching in turbulence. We believe
the vortex interaction feature also captures some of the key properties of real vortical
fluid flow that is often absent from simple, near-integrable dynamicél systems. The
stretching of interfacial lines and the finite time Lyapunov (stretch) exponents of a
set of points was computed in chapter 3. The probability density function (PDF) of
the stretch exponents was found to range from Gaussian to strongly non-Gaussian
depending on the parameter values. For the distribution of Lyapunov exponents
over the whole domain, the central part of the PDF becomes Gaussian with time
(due to central limit theorem type behavior), but we emphasize that for stretch
statistics on the interfacial line, the non-Gaussian high stretch tails dominate the
PDF distributions. The different types of stretching achieved for various values
of the parameters N and § were illustrated and explained in terms of the passive

particle transport and a multinomial multiplicative process model.

The spatial distribution of a non-diffusive scalar £{(z) was computed in a La-
grangian calculation of an interface that has the scalar value £ = 1 on one side and
£ = 0 on the other. This interface was advected by the flow produced by N vortices
in two-dimensional space. The spectra of the spatial distribution of the scalar ¢
was then measured for a one-dimensional cut. Several measurements were made,
and they showed an approximately power-law £~7 form (1 < v < 2). We examined
the fluid dynamics that lead to the particular interface distribution and discussed
some models that produce the power-law spectra. These models include random

telegraph, fractal and activated random processes. We have also characterized the
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geometry of the lines by evaluating the functions N(r) and H(r) using box counting

techniques.

The mixing of passive fluid by pairing (merging) of vortex structures was then
studied. The purpose was to specifically examine the role of the large scale two-
dimensional motion in bringing about mixing in the pre-turbulent shear layer. The
degree of mixedness brought on by this pre-turbulent motion was examined espe-
cially in the context of the idea of mixing transition that is observed in shear layers.
One purpose of this analysis was to quantify the relative contributions from the
effects of the large scale, two-dimensional mixing (chaotic advection) in contrast to
the turbulent mixing caused by three-dimensionality and small scales. Two models
were used: the periodic vortex sheet that undergoes up to three pairings and a new
kinematical map that models the behavior of the space developing mixing layer. It
was found from these that a mixing mechanism in the form of stretching and folding
of the interfacial line exists for the two-dimensional motion, and this can advance
rapidly due to the pairing, and can contribute significantly to the achievement of
a mixed state. The fluid mixing is quantified by keeping track of the interfacial
line stretch, the diffusion across this interface, as well as the overlap of the diffu-
sion layers. Although this mixing mechanism is overtaken in the shear layer by the
mixing caused by the small scale, three-dimensional vorticity (which are themselves
created by this motion), it is suggested that good mixing can occur without the
development of what is traditionally viewed as fully developed turbulence, and that
perhaps mizing transition and turbulence transition are not necessarily coincident.
We also highlighted the difference in the mechanism between turbulent mixing and
what might be termed chaotic advection type mixing and how they compete with
each other in this physical setting. The general applicability of this type of mixing
mechanism present in two-dimensional vortical flows that are not fully turbulent

was emphasized.



152

6.2 Future work

There are several avenues for follow-up work; for the most part it consists of extend-

ing the present models and simulations in three areas:

1. three-dimensional flows
2. viscosity and diffusivity effects on vorticity and scalars

3. allow different scales of vorticity

More specific work can be listed as follows (in no particular order):

For the velocity statistics work, we plan to follow-up with the study of structure

functions for various local distributions of vorticity in three-dimensions.

Perform analysis of spectra on problems that include diffusion as we have dealt
with non-diffusive interfaces in chapter 4 (although we have included diffusion in

the mixing studies of chapter 5).

In two-dimensional flows, the next level of complexity is to allow different signs for
the vortices. The major problem brought on by this is that the boundary conditions
will have to changed to ensure a statistically stationary situation. A doubly periodic
boundary condition could be acceptable, but unlike the single periodic boundary

case, we know of no derivation that formulates the problem in a calculable way.

Explore stretching and spatial distribution of passive lines and surfaces by three-
dimensional vortices. Apart from the increased computational requirements, an

issue is establishing a stationary configuration.

Although we have briefly touched on the Lagrangian transport properties in the N-
vortex flow, other studies are currently underway, that have not been reported in this

thesis, such as the difference between the transport properties of passive particles
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versus discrete vortices, the dispersion properties for various vortex distributions,

etc.
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