Characterization of the
Auditory Thalamic Nucleus of
the Barn Owl

Thesis by

Larry Proctor

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology
Pasadena, California

1995
(Submitted June 7, 1994)

11

©1995
Larry Proctor

All rights reserved

ACKNOWLEDGEMENTS

A number of people made valuable contributions to the specific work
contained herein as well as the general research atmosphere which goes beyond
the particular results of this thesis. Foremost, | would like to thank Dr. Mark
Konishi for his guidance, support and patience. Mark allowed me to explore
several facets of neurophysiology in his laboratory while deftly managing to keep
me on track. His discussions have always helped me to see the big picture
despite the fact that | was looking at it in 30 um sections. Gene Akutagawa
provided valuable expertise on histochemistry as well as getting me to set high
standards for the quality of my histological material. Early in my graduate career,
| benefited greatly from working with Drs. Catherine Carr, Hermann Wagner and
Terry Takahashi, then post-doctoral fellows in the Konishi lab. Much of my
understanding of auditory physiology resulted from listening to their boisterous
arguments. Dr. Georg Striedter provided valuable advice on matters of anatomy,
microscopy and displaying histological data. Georg also introduced me to the
method of using biotinylated dextran-amine as a tracer, thereby saving me from
the capriciousness of free HRP. Dr. Allison Doupe was instrumental in
maintaining my sanity over the last four years, generously taking time to listen to
both triumphs and tribulations and making specific suggestions which improved
the quality of my research. Roian Egnor allowed me to examine the pattern of
nucleus ovoidalis cell bodies which were retrogradely labelled from a BDA
injection which she placed in Field L2a. Roian also provided a critical reading of
portions of a draft of this thesis. | would like to thank all members of the Konishi
lab (even the birdsong people) for providing a lively and interesting work
environment. Finally, | would like to pay my special thanks to my wife, Patti, for
seeing to it that the comparatively simple task of completing my doctorate was

truly a challenge.

ABSTRACT

The barn owl has the remarkable ability to accurately localize a target on
the basis of auditory cues alone. The investigation of the central nervous system
mechanisms underlying the sensory aspect of this behavior led to the discovery
of neurons which have auditory receptive fields restricted to small regions of the
acoustic environment. Neurons with these characteristics were found both in the
forebrain and in the inferior colliculus. In the inferior colliculus, neurons which
were near one another had receptive fields which were near one another in the
sound field; there was a physiological map of auditory space. No such
organization was observed in the forebrain. The auditory map of space in the
inferior colliculus projects to the optic tectum where it is preserved and placed in
register with a visual map of space. The auditory space map in the inferior
colliculus and optic tectum have been functionally related to sound localization in
a behavioral assay. Recent experiments have demonstrated that the thalamo-
telencephalic auditory pathway is sufficient for localization of sound sources,
despite the fact that a topographic map of auditory space has not been
demonstrated in this neural pathway. The purpose of the work reported upon
here was to examine the manner in which the auditory thalamus, nucleus
ovoidalis (N.Ov), transforms the neural code which represents the auditory
environment. Neurons in nucleus ovoidalis were characterized with respect to
their responses to stimulation with sounds presented through earphones. This
dichotic stimulation allowed for the independent control of the amplitude,
frequency and temporal structure of the sounds delivered to the ear. The
anatomy of the afferent and efferent pathways to the auditory thalamus were also

investigated.

The activity of extracellularly isolated single-neurons was recorded in the
nucleus ovoidalis of the anesthetized barn owl. This nucleus contains two
subdivisions based on tonotopic organization. The central and medial portion of
the nucleus is organized such that neurons responding well to high frequencies
tend to be located dorsally while neurons which respond well to lower
frequencies are located progressively more ventral. In the lateral portion of the
nucleus, neurons in a dorsoventral electrode penetration have the same best
frequency, between 4.5 and 5.0 kHz. Of 114 neurons whose best frequency
tuning curves were characterized completely, 14 had two or three clearly
distinguishable peaks. The response to sound localization cues at one of the
frequency peaks was different from those at the other frequency peak(s). Of 207
neurons which were recorded within N.Ov, all responded to auditory stimulation
with broad band noise and all were sensitive to at least one sound localization
parameter. In contrast to previously studied auditory nuclei in the medulla and
mesencephalon of the barn owl, there was no apparent systematic mapping of
either sound localization cue in the dorsoventral, mediolateral or rostrocaudal

axes.

Neurons within N.Ov had response tuning curves to interaural time
difference (ITD), interaural intensity difference (IID) and frequency which were
most similar to those found in the lateral shell and core subdivisions of the central
nucleus of the inferior colliculus (ICc). However, neurons were found in ovoidalis
which had combinations of response tuning curve types not previously observed
in the auditory system of the barn owl. Thirteen neurons were classified as
space-specific, although their response properties were not always similar to

neurons in the space maps of ICx or optic tectum. Six neurons were found which

Vi

had broad frequency tuning curves but which also had ambiguous ITD or IID

tuning curves in response to white noise.

Injections of retrograde tracers into N.Ov resulted in stained cell bodies in
ICc that were sparsely distributed across the three subdivisions of the nucleus.
Labeled neurons were located in various positions along the dorsoventral axis of
ICc, along which frequency is mapped. Retrogradely labeled somata were found
bilaterally in ICc, though the number of labeled cells was higher in inferior
colliculus ipsilateral to the injection site. The widely distributed pattern of
retrograde staining in ICc was obtained irrespective of the location of the tracer
injection within N.Ov. Anterograde tracers injected into the core/medial shell
region of ICc resulted in a pattern of stained axonal terminals in the centromedial
N.Ov that was relatively focal and which corresponded well with the tonotopic
organization of this region of the nucleus. Injection of anterograde tracers into
the lateral shell subdivision of 1Cc yielded labeled axon terminals in the lateral
portion of N.Ov in caudal sections, while the heaviest staining was located along
the dorsal aspect in the most rostral sections. Anterograde tracer studies
revealed that N.Ov efferents originating from the medial portion of the nucleus
have a restricted terminal field in the most medial region of the forebrain area
Field L2a. The ventrolateral region of N.Ov, however, sends a wide projection
pattern of efferent terminations across the mediolateral extent of caudal Field L2.
Labeled axon terminals are quite dense in the lateral portion of Field L2 and

rather diffuse in the medial aspect.

The unigue combinations of physiological responses found in N.Ov as well
as its patterns of afferent and efferent connectivity suggest that ovoidalis is
reorganizing the neural information concerning acoustic stimuli. While tuning to

sound localization cues is maintained, it is possible that such coding may be of

vii

secondary consideration in the thalamo-telencephalic pathway. The foundation
for the neural representation of auditory recognition may well begin at the level of

the auditory thalamus.

viii

TABLE OF CONTENTS:

ACKNOWLEDGMENTS......ceeeeeeee et e e i
ABSTRACT .. iv
Chapter 1. General Introduction..............cooviiiiciiiieneniiiieeeee e 1

Chapter 2. Responses of Neurons in Nucleus Ovoidalis

to Dichotic Auditory Stimulation in the

Anesthetized OWL.. ... 25
1 1= { g Yo Yo [T 26
R Y] U] [T T 30

Chapter 3. Anatomy and Connectivity of Nucleus Ovoidalis in

the Barn OWL.......ooooiii e 67

MELhOAS..... e e 68
RESUIS. ettt 70
Chapter 4. Summary and DiScuSSioN.........cccccccvvvivennniiiccciiiieen. 96
BIBLIOGRAPHY ...t 104

APPENDIX: Source code for OASys, the X11 based Owl Auditory

System data acquisition and analysis software....... 116

Chapter 1: General Introduction

The ability to localize sound sources is a critical component of many
adaptive behaviors across species. Sound localization can be used to find prey,
to avoid predators or to locate conspecific individuals. Auditory cues provide
information beyond the often restricted field of view provided by the visual
system, and are particularly useful under environmental conditions that hinder
vision. The stimulus cues that indicate the position of a sound source are not
directly mapped onto the sensory epithelium of the ear. Consequently, the
vertebrate nervous system has evolved mechanisms by which to transform
sound localization cues into an orderly representation of space. Some species
have become specialists at using sound localization to gain a selective
advantage over other species over the course of evolution. The barn owl, Tyto
alba (figure 1.1), is able to locate targets accurately using passive auditory cues
exclusively (Payne, 1971). The investigation of the central nervous system
mechanisms underlying the sensory aspect of this behavior led to the discovery
of a map of auditory space in the inferior colliculus of the owl (Knudsen and
Konishi, 1978). Following a “top-down” experimental approach, Konishi and
colleagues have been working to describe the neural transformations that
ultimately lead to the formation of the space map in the auditory system. The owl
uses interaural time difference (ITD) to determine the horizontal coordinate of a
sound source, and the interaural intensity difference (1ID) to ascertain the vertical
coordinate (Moiseff and Konishi, 1981a). The time and intensity cues contained
in the acoustic signal are processed separately in parallel neural pathways in the

brainstem (Takahashi et al., 1984).

Figure 1.1 Portrait of a barn owl (Tyto alba).

Early Processing

The initial stages of processing in the auditory system are very similar
across all avian species (Sachs and Sinnott, 1978; Warchol and Dallos, 1990;
Sullivan and Konishi, 1984). The cochlea of birds (which is straight, rather than
coiled as in mammals) has sensory receptors called hair cells which respond to
narrow frequency bands of complex sound stimuli. The cochlea decomposes the
acoustic signal into its component frequencies. In the cochlea, hair cells with
similar frequency response characteristics are situated near one another. This
tonotopic organization is maintained in the auditory nerve and the central auditory
system of the brainstem. Each auditory nerve fiber codes the amplitude and
timing information contained in its frequency component of the acoustic stimulus
with its spike rate and pattern. Stimulus intensity is encoded via a sigmoid
shaped amplitude vs. spike rate curve. Time information is coded with a phase-
locked pattern of action potentials. Phase-locking refers to the high probability of
a neural spike to occur near a particular phase angle of a tonal signal (Rose et
al., 1967). Period histograms are used to determine the phase angle at which a
neuron is most responsive. The degree of tuning of the neuron to that phase

angle is called the vector strength (Goldberg and Brown, 1969).

The auditory nerve bifurcates and innervates two distinct cochlear nuclei in
the brainstem of birds; nucleus angularis (NA) and nucleus magnocellularis (NM)
(Boord, 1969; Carr and Boudreau, 1991). These cochlear nuclei receive auditory
nerve input from the ipsilateral ear only. The neurons of nucleus angularis filter
the timing information from their auditory nerve input while preserving the
amplitude information. Conversely, neurons within nucleus magnocellularis
preserve and enhance the phase-locked response of their afferents while

discarding intensity information (Sachs and Sinnott, 1978; Sullivan and Konishi,

1984; Warchol and Dallos, 1990). This dichotomy in information processing is
subserved by differences in synaptic and cellular morphology between the two
nuclei. Neurons of nucleus angularis have extensive dendritic arborizations
which receive “bouton-type” synaptic endings from their branch of the auditory
nerve. Neurons in nucleus magnocellularis have few or no dendrites, and their
cell bodies are covered with fine membrane protrusions similar to dendritic spines
(Jhaveri and Morest, 1982; Carr and Boudreau, 1993). These neurons receive a
large “calyx” synapse from auditory nerve afferents, called the endbulb of Held
(Carr and Boudreau, 1991; Boord, 1969). Specializations in membrane
physiology and cellular chemistry probably also play a major role in determining
the response differences between these two nuclei which receive their input from

a common source (Raman and Trussell, 1992; Takahashi et al., 1987).

The Time Pathway

To obtain the interaural time difference which is used to determine the
azimuthal coordinate of a sound source, timing information from the two ears
must be compared. Two timing cues are available from a particular sound
source: the difference in the time of arrival of the first wave of sound at the two
ears, and the ongoing difference in the phase relationship of the spectral
components of sound in each ear for the duration of the acoustic stimulus. Barn
owls do not use the transient onset time difference of a sound to determine its
horizontal coordinate (Moiseff and Konishi, 1981a). Instead, their peripheral
auditory nervous system encodes the phase of the frequency components of a
sound, and the central auditory system extracts timing information by comparing
the phase information from each ear. This comparison is performed in nucleus
laminaris, which receives bilateral input from nucleus magnocellularis (Parks and

Rubel, 1975; Carr and Boudreau, 1993). Phase-locked action potentials from

nucleus magnocellularis travel along axons which act as physical delay lines
(Carr and Konishi, 1990), much like those hypothesized to be involved in the
processing of interaural time delays (Jeffress, 1948). When the time delay
between phase-locked neural spikes arriving from the left and right inputs is
offset by an equivalent amount by the delay line on the earlier input, action
potentials from left and right NM inputs will arrive at a particular laminaris neuron
simultaneously. When activity from the afferents coincide in this manner, the
response of an NL neuron is maximal. When the inputs from both sides are 180°
out of phase, activity levels in laminaris neurons are minimal. Intermediate levels
of activity are obtained when the inputs have intermediate phase relationships, or
when phase-locked activity is received from one side only. Like their afferents,
nucleus laminaris cells respond to auditory stimulation in a phase-locked manner.
When stimulated monaurally, laminaris neurons phase-lock at the same mean
phase as the efferents from the active nucleus magnocellularis. The arrival time
of phase-locked spikes in many laminaris neurons differs between the ipsi- and
contralateral inputs. When this difference is offset by an appropriate interaural
time difference, the laminaris neurons respond maximally, phase-lock at a mean
phase angle between those of the ipsilateral and contralateral inputs, and have a
large vector strength. When this difference is offset by an unfavorable ITD, the
laminaris neurons have a minimal response, a very low vector strength, and
phase-lock (weakly) at the mean phase of both the ipsilateral and contralateral
inputs (Carr and Konishi, 1990). This sensitivity to the relative timing of inputs
from left and right sides is remarkable, given that, for a 2 kHz stimulus the
difference in arrival time between in-phase and out-of-phase spikes is only 250
microseconds. While 2 kHz is the upper limit for phase-locking in the chick
(Warchol and Dallos, 1990), the barn owl maintains phase-locking (and ITD

tuning) up to 9 kHz (Sullivan, 1985). At this extreme, laminaris neurons are

discriminating time differences of less than 55 microseconds (5-7% of the

duration of incoming action potentials)!

Nucleus laminaris apparently contains only one morphological cell type
(Carr and Boudreau, 1993). Physiologically, these cells are distinguished by the
frequency to which they respond and the interaural phase difference that they
prefer. In the chick and pigeon, laminaris cell bodies are arranged in a
monolayer running mediolaterally with bipolar dendrites extending dorsally and
ventrally. These dendrites are of equal length. The axonal delay lines in the
chick are believed to be formed by the distance ipsi- and contralateral afferents
must travel along the mediolateral extent of the nucleus before making synaptic
contact on the dendrites of their target cell (Parks and Rubel, 1975). The barn
owl has evolved unique specializations in the anatomy of nucleus laminaris and
the morphology of its constituent cells. Barn owl nucleus laminaris neurons are
sparsely arrayed in a matrix-like configuration across the nucleus. These cell
bodies lack dendrites, but are covered with spine-like protrusions. Afferents from
nucleus magnocellularis form delay lines as the ipsilateral axons cross the
nucleus from the dorsal to the ventral aspect while the contralateral axons project
from the dorsal to the ventral border of the nucleus. The magnocellular afferents
make synaptic contacts on laminaris cell bodies with no spatial segregation of
ipsi- and contralateral inputs across the soma (Carr et al., 1989). Inputs from
approximately 100 nucleus magnocellularis neurons converge upon each
laminaris neuron cell body (Carr and Boudreau, 1993). Glutamic acid
decarboxylase (GAD) positive synaptic terminals have been observed on
laminaris cell bodies, but no GAD positive cell bodies themselves are present in
the nucleus (Carr et al., 1989). The origin of these presumably inhibitory inputs

to nucleus laminaris has not yet been determined. The possibility that glycinergic

inhibition is supplied to laminaris neurons has not yet been investigated. Fujita
and Konishi (1991) demonstrated that GABA-mediated inhibition plays a role in
interaural phase-difference processing at higher levels in the auditory system of
the barn owl, and mention preliminary experiments which suggest that the same
is true in nucleus laminaris. The difficulty of obtaining extracellular recordings
from laminaris neurons in vivo, however, precluded these investigators from

pursuing this topic.

Currently, the standard model for the formation of time difference tuning in
nucleus laminaris asserts that the laminaris cell bodies act as coincidence
detectors for the simultaneous arrival of action potentials from the axonal delay
lines formed by magnocellular efferents (Jeffress, 1948). This model accounts
for the fact that when the phase-locked inputs from the two magnocellular nuclei
arrive at a particular laminaris neuron at the same time, then that neuron is driven
maximally. However, the simple coincidence detection model is unable to
account for the following aspects of interaural time difference tuning in nucleus

laminaris:

* Input from one side only results in an intermediate level of activity

in these neurons.

¢ Should the inputs from each magnocellularis arrive out-of-phase,
then the activity of the laminaris neuron is less than it is when it is
stimulated with input from one side alone. That is, the response of
laminaris cells to binaural out-of-phase stimulation is suppressed
relative to that to monaural stimulation (which, in turn, is less than

the response to binaural in-phase stimulation).

10

There are currently two hypotheses to explain the response of nucleus
laminaris neurons to out-of-phase binaural stimulation. The inhibition
hypothesis asserts that inhibitory inputs suppress the activity of laminaris
neurons when the phase relationship of the inputs from the two sides is not
optimal. In order for the inhibitory inputs to suppress the activity specifically only
at non-optimal interaural time differences in nucleus laminaris, the inhibitory
neurons themselves would have to discriminate phase difference values as well
as calibrate the timing of their action potentials to account for the distances their
axons travel. An alternative hypothesis does not invoke a time-difference specific
inhibition. The resonance hypothesis suggests that incoming synaptic
depolarizations set off an inherent electrical membrane resonance similar to that
demonstrated in saccular hair-cells (Hudspeth and Lewis, 1988). When inputs
from both sides arrive simultaneously, the resonant potentials from the inputs
would be in-phase and their addition would increase the total resonant amplitude
in the cell, thereby increasing the probability of crossing threshold. Out-of-phase
inputs would set up sinusoidal potentials that tend to cancel each other and
therefore reduce the probability of crossing the spiking threshold. This scheme
would require extremely short membrane time constants as well as unusually fast
ion channel kinetics. Excitatory post-synaptic potentials would need to have
quite short durations, perhaps being repolarized by active currents and thereby
increasing the time window available for temporal summation. Raman and
Trussell (1993) have demonstrated that cells in the auditory brainstem of the
chick express glutamate receptors with unusually rapid kinetics of

desensitization.

As previously stated, the cochlea decomposes a sound stimulus into its

component frequencies. As a result, individual hair cells and their afferent

11

targets are effectively responding to sinusoidal stimuli. For complex or wideband
acoustic input, the frequency of this sinusoid corresponds to the cell’s best (or
characteristic) frequency--the frequency to which the cell is most sensitive. For
pure tones, the frequency of the sine wave corresponds to that of the stimulating
tone, provided that it falls within the range of frequencies that the cell is capable
of responding to. Neurons in the auditory nerve and nucleus magnocellularis
tend to respond when the sine wave is at a particular phase. However, these
cells have no way of conveying information about which cycle of the sine wave
that phase is in. Consequently, in nucleus laminaris phase-locked spikes from
one ear can coincide with phase-locked spikes generated by different cycles of
the sinusoid in the other ear. The result is an ITD tuning curve which has
multiple peaks. The distance between these peaks corresponds to the period of
the laminaris neuron’s characteristic frequency, or the period of the stimulating
tone if a single frequency other than that of the neuron’s characteristic frequency
is used. An ITD tuning curve which contains multiple peaks is incapable of
signaling the horizontal coordinate of a sound source unambiguously; at least
one “phantom” target location will be perceived. ITD tuning curves of this type
are called phase ambiguous. Although phase ambiguous, ITD is systematically
mapped across the dorso-ventral dimension of nucleus laminaris (Sullivan and

Konishi, 1986; Carr and Konishi, 1990).

Efferent fibers from nucleus laminaris decussate and synapse on two
contralateral targets (figure 1.2): nucleus ventralis lemnisci lateralis, pars anterior
(VLVa) and the core subdivision of the central nucleus of the inferior colliculus
(ICc core) (Takahashi and Konishi, 1988a,b). NL also sends a projection to the
medial portion of the ipsilateral nucleus of the superior olive (SO). These

terminal fields of nucleus laminaris all display calcium binding protein-like

12

Figure 1.2 Schematic diagram of the time pathway in the barn owl and
the ITD response tuning curves characteristic of the nuclei in the time pathway

which have been investigated.

13

The Time Pathway

ICc ICc

14

immunoreactivity (Takahashi et al., 1987). Neurons in VLVa and ICc core have
ITD tuning curves which are phase ambiguous, though these cells do not display
phase-locking. Cells in these nuclei have narrow frequency tuning curves and
are tonotopically organized. The frequency tuning characteristics of their

afferents correspond to the frequency responses of the target neurons.

Neurons in ICc core are arranged in arrays perpendicular to the
isofrequency laminae of this region according to their response to ITD (Wagner et
al., 1987). Only one ITD (the “array-specific ITD”) is capable of activating all
neurons in an array to the same relative level. That is, at the array-specific ITD,
all neurons in a particular dorso-ventral region of ICc core have the same level of
activity despite being tuned to different frequencies. Conversely, at all other
ITDs, neurons in different frequency laminae will have disparate activity levels.
This is similar to the observation that when a single, phase-ambiguous neuron is
stimulated with tones of different frequencies, there will be one ITD at which its
response is independent of frequency. This frequency independent ITD is called
the characteristic delay of that neuron (Rose et al., 1966). An array-specific
ITD in ICc core is equivalent to the characteristic delay of that array of neurons.
Array-specific ITDs are mapped across the medio-lateral aspect of ICc core; at
any particular ITD only one array is maximally activated, and different arrays are
maximally excited at different ITDs. The neurons which are members of an
array, though individually phase-ambiguous, are collectively capable of

unambiguously representing a single ITD.

ICc core and VLVa project to the contralateral lateral shell subdivision of
ICc (Takahashi et al., 1989; Mazer and Adolphs, 1991). In ICc lateral shell, ITD
responses begin to be integrated across frequency channels (as well as with

intensity information). 1Cc lateral shell sends its output to the ipsilateral external

15

nucleus of the inferior colliculus (ICx), which is the location where the map of
auditory space is synthesized (Knudsen and Konishi, 1978). ICx cells do not
respond to monaural stimuli. Their frequency tuning curves are generally broad
and they are not tonotopically organized (Knudsen and Konishi, 1978c). Neurons
in ICx do not change their selectivity for one sound localization cue with changes
in the other cue--there is no trading between time and intensity (Moiseff and
Konishi, 1981a; Takahashi et al., 1984). In ICx, the side peaks of phase-
ambiguous ITD tuning curves are suppressed, yielding tuning curves which have
a large primary peak and smaller or no secondary peaks. The sizes of the
secondary peaks relative to the height of the primary peak vary; secondary peaks
roughly half the height of the primary peak are the most usual, though secondary
peaks may be non-existent or up to 90% of the height of the primary peak
(Takahashi and Konishi, 1986). Side-peak suppression equivalent to that
obtained with noise stimuli can be achieved in ICx by presenting sound (via
earphones) consisting of the sum of the neuron’s best frequency and one other
frequency. The neuron’s response to such 2-tone stimuli is neither the sum nor
the average of the neuron’s response to either tone alone, suggesting that some
type of nonlinear processing is involved (Takahashi and Konishi, 1986). Fujita
and Konishi (1991) demonstrated that GABAergic inhibition may be largely
responsible for the nonlinearity inherent in side-peak suppression. These
investigators applied a selective antagonist of GABA, bicuculline methiodide
(BMI), iontophoretically in ICx and found that side-peak suppression in response
to noise stimuli gave way to phase-ambiguous responses under the influence of
the drug. Mazer and Adolphs (1991) found that applying BMI to VLVa resulted in
a decreased response to ITD in ICx, while applying GABA in VLVa caused an
increase in ITD responsiveness in ICx as well as the elimination of side-peak

suppression in some cases. This suggests that VLVa provides the inhibition

16

necessary for the resolution of phase-ambiguity in ICx. The current hypothesis
for the generation of unambiguous ITD tuning is that neurons from several
frequency laminae which are members of an array with an array-specific ITD
converge upon a cell. Inhibitory input reduces the activity levels caused by

integrating ITD excitation across frequencies.

The Intensity Pathway

Having extracted intensity information from the auditory nerve, nucleus
angularis relays these data to the inferior colliculus both directly and indirectly.
Angularis projects bilaterally to the lateral aspect of the nucleus of the superior
olive (SO), as well as to the nucleus lemnisci lateralis, pars ventralis (LLv)
(Takahashi and Konishi, 1988b). NA sends efferents contralaterally to the
nucleus ventralis lemnisci lateralis, pars posterior (VLVp) and both the medial
and lateral shell subdivisions of the ICc (Takahashi and Konishi, 1988a; Adolphs,
1993b). The efferent projections of SO have yet to be identified. LLv projects to
the ipsilateral lateral shell subdivision of ICc (Adolphs, 1993b) as well as the
medial shell subdivision (unpublished personal observation). In pigeons, LLv
also sends a direct projection to a subdivision of the auditory thalamus called

nucleus semilunaris parovoidalis (SPO) (Wild, 1987).

Comparison of the sound levels in the two ears takes place in VLVp (figure
1.3). Nucleus angularis provides a direct, excitatory input to the contralateral
VLVp (Takahashi and Konishi, 1988b; Takahashi and Keller, 1992), which also
receives an inhibitory input from the opposite VLVp (Adolphs, 1993b; Manley et
al., 1988; Takahashi and Keller, 1992; Mogdans and Knudsen, 1994). VLVp is
the first binaural station in the intensity pathway; neurons in this nucleus are

excited by contralaterally loud stimuli, inhibited by ipsilateral stimuli (El), and their

17

Figure 1.3 Schematic diagram of the intensity pathway and the
characteristic 1ID response tuning curves of those nuclei in this pathway which

have been described.

18

The Intensity Pathway

Peaked

ICc

Left =R Right
Loud Loud

Left L=R Right
Loud Loud

Left L=R Right
Loud Loud

! D
Left Midline Right

19

response to systematic variation in IID is a monotonic, sigmoid shaped function
(Moiseff and Konishi, 1983; Manley et al., 1988). There is a gradient of inhibitory
input across the nucleus, with neurons which are strongly inhibited by ipsilaterally
loud stimuli located dorsally and neurons weakly inhibited by loud sounds to the
ipsilateral ear located ventrally (Manley et al., 1988). Immunocytochemical
staining for GAD mirrors this distribution, with dense staining present dorsally and
gradually declining towards the ventral aspect of the nucleus (Carr et al., 1989).
Intensity differences are organized topographically across the nucleus, in the

anterior-posterior dimension (Manley et al., 1988).

VLVp projects bilaterally to the lateral shell subdivision of ICc, as well as
contralaterally to ICc medial shell. In ICc lateral shell the VLVp efferents provide
GABAergic inhibition directly at large interaural intensity differences (Adolphs,
1993b). Adolphs (1993b) proposed a model in which excitation (which does not
have to be IID tuned) is combined with bilateral inhibition from VLVp to yield
neurons which have a peaked IID tuning curve. This type of tuning is
characteristic of units with receptive fields that are restricted in elevation (Olsen
et al., 1989). The location of the peak in the IID tuning curve could be
determined by the relative amount of inhibition arriving from each VLVp. Adolphs
(1993b) also found several examples of neurons in the lateral shell whose
inhibitory response to ipsilaterally loud sounds could not be blocked by local
application of BMI. This suggests that inhibition due to ipsilateral sounds arrives
at these cells indirectly, via a polysynaptic pathway. Indeed, it appears that
neurons located medially in lateral shell respond to IID in the same manner as
neurons in VLVp while cells located at more lateral positions have IID responses
similar to those in ICx (Adolphs, 1993b; J. Mazer, personal communication). Like

the elimination of ambiguity in the time pathway, the mechanism for the

20

elimination of ambiguity in the intensity pathway has yet to be elucidated
unequivocally. Unlike the model for the resolution of phase-ambiguity, however,
Adolph’s model does not address the role of the integration of information across
frequencies in the resolution of spatial ambiguity inherent in intensity difference

cues at the periphery (Brainard et al., 1992).

The processing of auditory information in the medial shell subdivision of
ICc remains largely unexplored, primarily due to the existence of a large plexus
of arteries in the IVth ventricle overlying this brain region; repeated electrode
penetrations in this area put the animal’s life at risk. The medial shell apparently
lacks ITD tuning (R. Adolphs, personal communication) and its efferent

projections have been heretofore unknown.

In the lateral shell of ICc, the time and intensity pathways converge for the
first time since they were separated at the cochlear nuclei. The responses of
neurons become more space-specific progressing from the medial to the lateral
aspect of the subdivision, and many combinations of IID and ITD tuning types are
found there (J. Mazer, personal communication). The ICc lateral shell projects to
the ICx on the same side (Takahashi et al., 1989), where the responses are
organized according to the position in space of sound sources in the contralateral
hemifield with respect to the head. ICx, in turn, projects to the superficial layers
of the optic tectum where the auditory map of space is aligned with a visual map
of space (Knudsen, 1982; Knudsen and Knudsen, 1983). The superficial layers
of the optic tectum, containing the sensory maps, sends efferents to the deep
layers of the optic tectum which contains a motor map. This motor map is used
to drive the head turning movements which the owl uses to direct its gaze (du
Lac and Knudsen, 1990), since the owl’s eyes are fixed in position in the eye

sockets.

21

Plasticity in the Auditory Space Map

As a barn owl grows from a hatchling, the size of its head changes,
increasing the distance between the ears and therefore changing the location in
space that a particular interaural time difference signals. Also, the facial ruff,
which serves to amplify and direct sounds as they reach the face (Konishi,
1973a), does not grow in until the owl is several weeks old. Despite these
changes, owls are able to localize sounds fairly accurately as they mature.
Consequently, the spatial locations that the owl associates with particular sound
localization cues are altered during development. Barn owls which have their
normal sound localization cues altered by chronic occlusion of one ear with an
earplug make systematic errors in localizing sound sources. If the earplug is
inserted before the owl is 60 days old, then, after a few weeks, these birds
recover the ability to accurately localize sounds (Knudsen et al., 1984a). When
owls older than 60 days have one of their ears plugged, they are unable to
readjust their interpretation of the sound localization cues to match the correct
position of a sound source. This early period of plasticity is called the sensitive
period. Another plastic period, called the critical period, occurs between 60 and
200 days of age. Owls which have one ear plugged during the sensitive period
accomodate for the change in localization cues, and then have the plug removed
during the critical period are able to regain normal sound localization (Knudsen et
al., 1984b). During the critical period owls are able to adjust the association
between sound localization cue values and sound locations, but only towards a
normal correspondence; the auditory system can no longer compensate for

abnormal cues.

The visual space map in the optic tectum is responsible for directing the

plastic changes in the auditory space map during the sensitive and critical

22

periods (Knudsen and Brainard, 1991; Knudsen and Knudsen, 1985, 1989,
1990). Barn owls which have one ear plugged during the sensitive period make
no corrections in orienting to sound sources if they are unable to see. Young
owls fitted with goggles which alter their perception of visual space adjust their
auditory localization to match the deviation produced by their eyewear. Knudsen
et al. (1991) demonstrated that the auditory space map can be generated in the
absence of instruction from the visual system, although the topography of these
maps is abnormal. Blind-reared owls have space maps in the optic tectum which
are stretched out in the dorso-ventral direction, the plane in which elevation is
mapped, or the representation of elevation is inverted from that observed in
sighted birds. Interestingly, the mapping of the horizontal coordinate of space in

the optic tectum was unaffected by blind-rearing.

Visually instructed calibration of the auditory space map in the optic
tectum is effected by reorganization of the space map in ICx (Brainard and
Knudsen, 1993). In owls raised wearing prismatic goggles which shift the visual
field in azimuth only, ITD values in the auditory space map in the optic tectum
were shifted to agree with the neurons’ optically displaced visual receptive fields.
The representation of ITD in ICx was similarly adjusted, but no shift was
observed in ITD representations in ICc lateral shell or core. In ICx, the altered
ITD values were apparent at short latencies (7-8 msec) suggesting that the
adjustment in the space map is a result of plastic change in ICx itself rather than

descending activity from telencephalic auditory areas.

Currently, it is unknown how the error signal coding the disparity between
the visual receptive fields and the auditory receptive fields in the optic tectum are
relayed to the inferior colliculus. Although the optic tectum would logically be the

originator of such a signal, Knudsen and co-workers have been unable to

23

demonstrate a feedback pathway from the optic tectum to ICx. The optic tectum
projects to the telencephalon via nucleus rotundus, but rotundus responds only to
visual stimulation and is unresponsive to auditory stimuli (Knudsen, personal
communication). The auditory forebrain areas remain as the most likely
candidates to provide the instructive signal for plasticity in the inferior colliculus,

though this possibility has yet to be demonstrated experimentally.

The Colliculo-thalamo-telencephalic Pathway

In the barn owl, the central nucleus of the inferior colliculus provides the
input to the space map in ICx (Knudsen, 1983). In other species of birds the
central nucleus of the inferior colliculus is known as the nucleus
mesencephalicus lateralis, pars dorsalis, or MLd. In pigeons (Karten, 1967) and
ring doves (Durand et al., 1992), MLd projects to the auditory thalamus, nucleus
ovoidalis (N.Ov). All auditory input to the telencephalon is provided via N.Ov.,
which projects to the forebrain area Field L (Karten, 1968; Wild et al., 1993).
Neurons recorded in Field L of the barn owl have receptive fields restricted both
in elevation and azimuth and have broad frequency tuning curves (Knudsen et
al., 1977). However, no systematic organization of these space-specific neurons
have been found in Field L. In a more recent study, the optic tectum and the
auditory thalamus were lesioned either independently or together in order to
assess the relative contribution that tectum and forebrain make to sound
localizing behavior (Knudsen et al., 1993). These investigators obtained
evidence suggesting that sound localization and gaze control can be mediated
through either the optic tectum or the thalamo-telencephalic auditory pathway.
They present the hypothesis that sound localization is mediated in parallel

pathways in the midbrain and forebrain of the owl, similar to the parallel neural

24

pathways of the retino-tectal and retino-thalamo-cortical pathways in the visual

system.

Specific Aims of the Present Work

This thesis examines the possible role that N.Ov plays in transforming the
neural code which represents the auditory environment. The physiological
responses of N.Ov neurons to frequency and sound localization parameters are
examined with respect to the response types described in the brainstem and
mesencephalic auditory nuclei. The anatomy of the afferent and efferent
pathways to N.Ov are also described. Taken together, the input/output
connectivity and the characteristic response functions suggest that N.Ov is
involved in reorganizing the auditory code, and that perhaps sound source

location is not the primary feature of the stimulus which it is involved in extracting.

25

Chapter 2: Responses of Neurons in Nucleus Ovoidalis to
Dichotic Auditory Stimulation in the Anesthetized
Owl

“If your experiment needs statistics, you ought to have done a
better experiment.”

- Lord Ernest Rutherford, in The Mathematical Approach to Biology
and Medicine, N.T.J. Bailey, 1967.

26

Methods

Adult barn owls (Tyto alba) were anesthetized with intramuscular
injections of ketamine hydrochloride (Ketaset, Aveco; 10 mg/hr) and an initial
supplemental dose of diazepam (Diazepam Injection, Steris Labs; 0.25 mg).
Anesthetized owls were placed into a stereotaxic device that held the head tilted
downward at an angle of 45° from the horizontal plane, a stainless steel plate
was attached to the rostral portion of the cranium with dental cement and a
reference pin was glued to the cranium on the midline in the plane between the
two ears. A hole approximately 1.0 cm2 was opened in the skull with rongeurs
and mineral oil was applied to the exposed dura to prevent it from drying out over
the course of the experiment. Body temperature was maintained between 38°
and 39° C with a circulating-water heating pad. After the experiment, the
exposed dura was coated with a topical antibiotic ointment (Neosporin,
Burroughs Wellcome Co.) and the craniotomy closed with dental cement. The
scalp was sutured and the incision line covered with more topical antibiotic. The
owl was returned to its recovery cage and monitored until the anesthetic had
worn off. Owls usually ate 1-2 mice the following morning, but those who refused
food were administered 10 to 20 ml of 5% dextrose in lactated Ringer's solution
intravenously and 10,000 units of penicillin by intramuscular injection. All birds

treated in this manner resumed normal feeding within 24 hours.

The activity of single neurons was recorded extracellularly with glass
electrodes filled with either Woods Alloy metal plated with gold and platinum or
0.5 M sodium acetate containing 2% pontamine sky blue. Electrode impedances

were between 2 and 5 MQ. Electrodes were placed in a holder which was

attached to a mechanical microdrive capable of advancing the electrode in

27

discrete steps of from 1 to 200 um. The microdrive was held by a manipulator
which allowed the electrode to be positioned with micrometer accuracy with
respect to the reference pin in both the medio-lateral and rostro-caudal
dimensions. Electrodes were usually lowered through the intact dura in order to
minimize edema, though on very few occasions the dura was resected over a
very limited area after the target nucleus had been located. Action potentials
were amplified, filtered (300 Hz high pass, 10 kHz low pass) and sent to both an
analog oscilloscope and an audio monitor. The criteria for single neuron isolation
were that action potentials not occur within 1 msec of each other, and that the
amplitude of all discriminated action potentials was very nearly constant. Under
these conditions the output from the audio monitor consisted of distinct "pops"
with practically no background broadband noise responding to the stimulus.
Level-discriminated action potentials were converted into 5 V TTL pulses whose
times of occurrence were recorded with microsecond resolution by a custom
made event timer board (Beckman Electronic Shop) on the STD bus of a
Masscomp 5600 minicomputer. Custom software (see Appendix) delivered
stimuli and synchronously acquired spike timing data in real time. Data analysis
was carried out separately (though not in real time) during the course of the
experiment. Neural spikes were recorded for 100 msec prior to the stimulus, for
the duration of the stimulus and for 100 msec after the stimulus was complete.
Information about spontaneous activity was obtained on each repetition from the
100 msecs preceding the stimulus. The number of stimulus repetitions at each
point in the tuning curve was selectable, although in the majority of cases 5
repetitions with a given set of parameters was used. At each point in the tuning
curve, the number of spikes was averaged over the number of stimulus
repetitions and the mean and standard error was calculated and plotted for the

evoked activity and the mean was plotted for the spontaneous activity. Electrode

28

tracks were histologically verified and recording sites were marked with either
electrolytic lesions when Woods Alloy metal was used (5 pA DC current for 10
sec) or by electrophoresing pontamine sky blue when NaOAc electrodes were

used (-10 pA DC current pulsed 7 sec on/7 sec off for 5 min).

Stimulus Generation. In a soundproof chamber, stimuli were delivered
through calibrated earphones (Takahashi and Konishi, 1986; Wagner et al.,
1987) that provided power over the frequency range used by barn owls for sound
localization (1-10 kHz). Auditory stimuli were digitally synthesized tone, pseudo-
random noise, and narrow band noise of various pass band and center
frequencies. Two channels of output from a 12 bit D/A converter (EF12M,
Masscomp) were passed through a digital reconstruction filter, amplified and sent
to a pair of 16 bit digital attenuators (Beckman Electronic Shop) which controlled
the intensity level at each earphone. Bandpass noise was obtained by filtering
the pseudo-random noise in the frequency domain to avoid phase distortion. The
D/A conversion rate was 100 kHz allowing for a minimum ITD between the two
channels of 10 psec. The beginning, ending and incremental step parameters for
frequency and sound localization cues were selectable by the investigator.
Stimuli were 100 msec in duration, had 5 msec linear rise/fall times, and were

presented every 1-2 seconds.

Definition of Terms. Interaural intensity difference (lID) is defined to be the
sound intensity in the right ear minus the sound intensity in the left ear (in dB).
The average binaural intensity (ABI) is the mean of the sound intensity in the two
ears. Thus, at zero lID the sound intensity in both ears is the same and equal to
the ABI. 1ID can be varied either by holding the ABI constant, or by holding the
intensity to one ear constant while varying the intensity to the other ear. In the

former case, as the intensity to one ear increases, the intensity to the other ear

29

decreases by the same amount. In the other case, the ABI varies with the IID.

IID at constant ABI was used unless otherwise noted.

Interaural time difference (ITD) is the temporal offset between identical
portions of the stimulus being delivered to the two ears. Negative values mean
that the left stimulus precedes the right by the ITD value, while positive values

indicate that the right stimulus leads the left.

30

Results

A total of 207 neurons from 18 owls of both sexes were recorded in
nucleus ovoidalis over the course of these investigations. Of these neurons, 153
(74%) were chosen for inclusion into the data set presented here on the bases of
high quality single-neuron isolations, significant responses (enough spikes for
statistics to be meaningful) and histological localization to the nucleus. Neurons
were obtained from both the left and right N.Ov, though the majority of
physiologically characterized neurons were isolated on the left side. Of the
recorded neurons 100% responded to auditory stimulation with white noise.
Furthermore, all isolated neurons displayed selective tuning to at least one sound

localization cue (interaural time difference and/or interaural intensity difference).

Responses to Tone

The central and medial portions of N.Ov contained neurons which were
tonotopically organized, with neurons having high best frequencies located
dorsally while those with decreasing best frequencies were located progressively
more ventral (Figure 2.1a), as has been reported in the starling (Bigalke-Kunz et
al., 1987) and the zebra finch (Diekamp and Margoliash, 1991). This tonotopic
organization is inverted from the map of frequency occurring in the inferior
colliculus (Wagner et al., 1987; Takahashi et al., 1989; Fujita and Konishi, 1992).
The frequency representations in the centro-medial portion of N.Ov of the barn
owl consist of isofrequency laminae which extend mediolaterally and
rostrocaudally, lying roughly perpendicular to the dorso-ventral plane of electrode
penetration (figure 2.1b). Auditory nuclei in the brainstem and midbrain of the
owl have a tonotopic organization which is best fit by regression lines of different

slope, with frequencies between 4 and 8 kHz being overrepresented in the

31

Figure 2.1 Frequency organization of centro-medial portion of nucleus ovoidalis.

A) Plot of neuronal best frequency vs. the location of the neuron in the
nucleus along the dorso-ventral axis. Positions along the x-axis are relative to
the dorsal border of the nucleus as determined by the location where auditory
activity was first discernible. Data for this figure were compiled from four
different owls: Owl #395 (open triangles) - 2 penetrations; Owl #415 (open
squares) - 2 penetrations; Owl #440 (closed triangles) - 3 penetrations; Owl #449
(closed squares) - 2 penetrations. Electrode penetrations from a given owl may
have occurred during one experiment or during separate experiments. The
criterion for inclusion into this data set was that at least 4 neurons were isolated

in different frequency regions during a single electrode penetration.

B) Coronal section showing fiducial marks in the centro-medial portion of
N.Ov. Three locations across the mediolateral extent of the nucleus were
marked in the 4.5 kHz frequency lamina. Each mark is approximately 200 um
apart. The leftmost mark borders closely on the lateral portion of the nucleus
which has a different frequency organization. Dorsal is towards the top and

medial is to the right. Scale bar = 500 um.

32

10

o)
-
=

(zHY) Aduanbaig

400 600 800 1000 1200

200

Relative Depth (um)

=&
ke

P L e
Mde . 27
)&@ﬂ b

b hx Y

33

nucleus while frequencies less than about 3 kHz are relegated to narrow regions
of the nucleus (Wagner et al., 1987; personal observation). In nucleus ovoidalis,
however, all frequencies between 500 Hz and 9 kHz are represented by
approximately equal areas of the centro-medial portion of the nucleus. The
frequency organization was not absolutely strict, however. On occasion a neuron
with a low best frequency would be isolated in a high frequency region, or a
neuron with a high best frequency would be isolated in a low frequency region.
Thereafter, the predominant tonotopic trend would resume. The extracellular
recording techniques employed in this study preclude identifying the type of these
neurons with best frequencies that are "out of order," and they could be either
inhibitory interneurons, primary projection neurons, or (less likely) fibers of

passage.

The organization of best frequency in the lateral portion of the nucleus was
quite different. In a relatively narrow portion of the nucleus on the lateral aspect,
neurons in a given dorso-ventral penetration have the same best frequency. This
region corresponds with that portion of the nucleus which contains distinctly
larger cell bodies when viewed in Nissl stained sections (figure 3.1), and which
also receives a characteristic input from the inferior colliculus (see Chapter 3).
All of the physiologically characterized neurons which were localized to this
region had best frequencies between 4.5 and 5.0 kHz. Although it is possible
that this region has a tonotopic organization in the rostro-caudal dimension, | was
unable to demonstrate such a mapping. Anteriorly, this lateral portion of the
nucleus runs into the fasciculus presencephali lateralis (FPL) (Karten, 1968)
which carries the efferent axons from nucleus ovoidalis to the forebrain. The FPL
fiber bundle is not tonotopically organized. Posteriorly N.Ov becomes quite small

and the frequency representation in the centro-medial portion is compressed. |

34

was unable to obtain multiple single-neuron isolations in the caudal N.Ov which

could be unambiguously assigned to the lateral division of the nucleus.

In the lateral shell of ICc, multiple ITD peaks are suppressed as ITD
information is integrated across several frequencies and combined with inhibitory
input. While phase ambiguous neurons in ICc core have narrow frequency
tuning curves, neurons which respond specifically to a single ITD tend to have
relatively broad frequency tuning curves. Some space-specific neurons in 1Cx
cannot be driven by single tones at all, but require broad band stimuli. In order to
determine the amount of possible cross-frequency integration occurring in N.Ov
as well as to compare with processing occurring in the subdivisions of the inferior
colliculus, the width of the frequency tuning curves at one-half the peak value
were measured in cells from N.Ov (figure 2.2). The majority of cells had narrow
frequency tuning curves, comparable to those obtained in the core of ICc or the
cochlear nuclei (Carr and Konishi, 1990; Wagner et al., 1987). While some
neurons were found with very broad frequency tuning curves, this characteristic
did not necessarily correlate with the elimination of phase ambiguity in the ITD
tuning curve, or specificity in the IID tuning curve (see Response to Sound
Localization Cues below). Of neurons with a single peak in the best frequency
tuning curve 18% exhibited a pronounced inhibition below spontaneous levels at
frequencies flanking the best frequency (figure 2.3), which has also been
reported in the N.Ov of starlings (Bigalke-Kunz et al., 1987) and zebra finches

(Diekamp and Margoliash, 1991).

A number of cells in N.Ov (12.3%) had frequency tuning curves with
multiple distinct peaks (Figure 2.4). The location of these peaks varied between
neurons, with one peak corresponding to the tonotopic organization of the

nucleus. Usually, one peak was quite narrow and the other peak relatively broad.

35

Figure 2.2 Distribution of width of frequency tuning curves measured at
half of the peak value (best frequency). Neurons which had more than one peak
in their frequency tuning curve did not have their widths measured and are tallied
separately. The great majority of neurons were narrowly tuned to frequency or
were tuned to more than one frequency, although cells that were broadly tuned

were fairly common as a group (3-7 kHz wide at half peak).

% of Neurons

301

20+

0 -

kHz

36

37

Figure 2.3 Examples of neurons whose frequency tuning curves
consisted of an excitatory peak flanked by regions of inhibition (below the
spontaneous rate). Symbols used for all response tuning curves contained
herein: boxes indicate data points consisting of the mean of 5 stimulus
repetitions at a particular frequency; error bars indicate standard error. Solid line
is the cubic spline interpolation between data points. Dashed line indicates

spontaneous activity level in the 100 msec preceding the stimulus.

Average Number

Average Number

38

ITB: -30 IID: 10 ABI: 50

16.2‘—\

of Spikes

ITD:

of Spikes

Ffequency (kHz)

o 1ID: ~10 ABIl: 50
30—1

20

10

Frequency (kHz)

39

Figure 2.4 Examples of neurons whose frequency tuning curves
contained more than one peak, or best frequency. Each curve shown was taken
at the values of ITD and IID which elicited the maximal response; the location of
the peaks did not vary with ITD and IID but the size of the peaks did. As seen in
A-C, the peaks could be located anywhere in the frequency range investigated
(1-10 kHz). In some cases the peaks were separated by an inhibitory frequency
region (A). The distance between peaks varied from as much as 3.5 kHz as in
(B) to as little as 1 kHz (data not shown). Frequency tuning curves with multiple

peaks separate by more than 3.5 kHz were not observed.

40

A

ITD: -390 1{o: o ABL: S0
21,8
.
[+
Q
(%2}
E¢
=z X
o
L
2l
S35
s
P
3.2
R S S SR S B me s S e e e
10 2,0 3.0 40 S50 6,0 7.0 80 9,0 10.0
Frequency (kHz)
B ITD: 60 11D -10 ABI: 50
15
.
[
-‘é’m 10 -
S
z X
Q.
)
8%
g 5
<
o Y T T T Y T Y T T T T T Y T T T T]

Frequency (kHz)

17D: © [§8: 2 aBI: 50
15
.
@
-g 10 H
w
5 Q
z =
a.
)
o)
] 5 -
>
<
¢ T

1,0 2.0 3.0 4.0 5.0 6.0 7.0 8,0 2.0 10.0

Frequency (kHz)

41

The narrow peak could be above (Figure 2.4¢) or below (Figure 2.4a,b) the broad
peak. Two of these neurons had two peaks that were the same width (data not
shown). In this study, the neurons with multiple frequency peaks were isolated in
the centro-medial portion of the nucleus which had the dorso-ventral tonotopic
organization. Variations in ITD and IID had no effect on the location of these
multiple peaks. The location of the peaks could be anywhere in the range of
frequencies tested (1-10 kHz). The distance between peaks could be as small as
1 kHz or as much as 3.5 kHz (figure 2.4b). In two cases the peaks were
separated by a frequency region in which tones inhibited the neuron below
spontaneous rates. In all but one case (a space-specific neuron), cells which had
more than one peak had phase-ambiguous ITD tuning curves in response to
white noise. When the peaks were located within approximately 2 kHz of each
other, ITD tuning was obtained in response to tones with frequencies located at
either peak. The distance between peaks in the ITD tuning curves in response to
noise, however, corresponded to the period of the frequency of only one of the
peaks. In those cases where the peaks in the frequency tuning curves were
more than 2 kHz apart, ITD tuning could be obtained at one of the best
frequencies but not the other. Futhermore, the distance between peaks in the
ITD tuning curve in response to noise corresponded to the period of that
frequency to which the neuron had an ITD response. Interaural intensity
difference responses in neurons with multiple best frequencies was variable. In
several cases, IID tuning did not change significantly in response to stimulation
with different frequencies corresponding to multiple peaks in the frequency tuning
curve. One neuron, however, had an lID tuning curve which had a peak at 0 dB
IID when stimulated with tone corresponding to one peak in the frequency tuning
curve, and had an IID tuning curve with the maximum value at +50 dB [ID when

stimulated with tone corresponding to the other peak in the frequency tuning

42

curve. The IID tuning curve in response to noise for this neuron displayed two
maxima - one at 0 dB |ID and one at +55 dB lID. Another neuron had one best
frequency at 3.0 kHz and a second best frequency at 6.0 kHz (figure 2.5). At 3.0
kHz the IID tuning was monotonic while at 6.0 kHz the cell had a narrowly
peaked IID tuning curve. The lID tuning curve of this cell in response to noise
appeared to approximate the sum of the responses at the two frequency peaks.
Several of these neurons with multiple frequency peaks had different response
latencies for tone stimuli with frequencies located at the different peaks. Many of
these neurons had an onset response for one best frequency but lacked an onset
response at the other best frequency. Bigalke-Kunz et al. (1991) did not report
finding neurons which had frequency tuning curves with multiple peaks in the
N.Ov of the starling, but Banks and Margoliash (1993) mention finding such

neurons in the N.Ov of zebra finches.

Approximately 3% of the neurons responded to pure tone with an inhibition
below spontaneous activity levels despite having a vigorous excitatory response
to white noise. Rarely did a neuron show no deviation from background activity

in response to tone while still responding well to white noise.

Response to Sound Localization Cues

All cells obtained in N.Ov responded in a tuned manner to at least one
sound localization cue. In contrast to all midbrain and brainstem auditory nuclei
studied thus far in the barn owl, N.Ov has no apparent topographic organization
of either sound localization cue in the dorso-ventral, rostro-caudal or medio-
lateral planes. Furthermore, there is no apparent clustering or grouping of
neurons with similar responses to sound localization cues in nucleus ovoidalis.

Most neurons (62%) responded in a tuned manner to both ITD and IID, but a

43

Figure 2.5 Response tuning curves from an isolated neuron in N.Ov
which displayed different types of 1ID tuning at each of two best frequencies

contained in its frequency tuning curve.

A) Frequency tuning curve displaying two maxima; one peak occurs at 3.5

kHz and the other occurs at 6.0 kHz.

B) IID tuning curve in response to noise; this type of curve is classified as
peaked (or IID specific). This curve is roughly the sum of those contained in (C)

and (D).

C) Monotonic tuning curve obtained with a stimulating tone of 3.5 kHz,
corresponding to the lower peak of the two contained in the frequency tuning

curve.

D) Narrowly peaked 11D tuning curve obtained by stimulating with a tone
of 6.0 kHz (the location of the second peak in the frequency tuning curve) at

various [ID values.

44

ITD: © 1p: © RBL; 50 Hoise 1Te, 2 ABI: 50
17.67 . . B3.82

e T
B 2
Ea Ea
38 32
P4 5. P4 =
L]
o? Sw
g5 &%
@ 5°
e)
< 3.4~ z
P4
5.6
i S . -
LA B SE B S L SR R R S L R B LA B B SR S S s m S S s S S S S S St Buth S S Sush BN SN AMR Bn e
1.0 2.0 3.0 4,0 5.0 6.0 7.0 8.0 9.0 10,0 %0 ~60 —40 =30 =20 -10 © 10 20 30 40 50 60
Frequency in kHz D indB
3500 Hx Tone 1D © ABl: 60 6000 Hz Tone 1TD: © RB1: 90
1’.6-‘ 15,64
-
L oos
3 3
Eg Eg
Zz X ¥
o & a
N7 X7
o %= =
= O 8
< 5°
g [
b= >
<
2.6
1,04
—— T T T T T T T T T
60 -50 ~40 -30 -20 =10 © 10 20 36 40 5O 60 -60 -50 -40 -30 -20 -10 ©O© 40 20 30 40 50 60

liDindB IID in dB

45

large number (36.6%) of cells were unresponsive to ITD (figure 2.6a - IID tuned

only). Only 4 neurons were found which were tuned to ITD but not IID.

Of the neurons which were tuned to IID, nearly half (49.7%) had a tuning
curve which was specific for a particular 1ID (peaked lID tuning curves, figure
2.7a). Slightly more than half of the neurons which were tuned to IID had
monotonic, sigmoid type response functions when stimulated with noise. The
distinction between peaked and sigmoid IID tuning curves was not always
absolutely clear. Many neurons in N.Ov exhibited |ID tuning curves which
displayed a distinct maximal peak, but which had significantly elevated activity
levels on one side of the peak in response to broadband stimuli. Cells which had
such a “shoulder” in their 1ID tuning curves appear to be composites of the
sigmoid and peaked IID tuning curve types. Such IID tuning curves possibly
represent intermediate processing stages in the transformation from ambiguous
to unambiguous sound elevation coding. Although Adolphs (1993b) makes no
mention of this type of IID tuning, it has been observed repeatedly in ICc lateral
shell (Jamie Mazer, personal communication). No observation of this type of
tuning has been made in ICx. For the purposes of this study, 1ID response types
which had a peak with a shoulder when stimulated with noise were classified as
peaked if the height of the shoulder was less than 75% of the value of the peak.
Those which had a shoulder with an amplitude 75% or more of the value of the

peak were classified as monotonic.

Of the neurons which had peaked IID tuning curves, 69.3% (52/75) also
responded to varying ITD in a phase-ambiguous manner when stimulated with
noise. Neurons with this combination of IID and ITD tuning curves have been
previously observed only in the lateral shell subdivision of the ICc (Jamie Mazer,

personal communication). Of the neurons with peaked IID tuning

46

Figure 2.6 A) Distribution of responses to sound localization cues
recorded in nucleus ovoidalis. B) Distribution of combinations of response types
from among all neurons recorded in N.Ov which responded in a tuned manner to
both interaural time and intensity differences. All possible combinations of 11D
and ITD tuning are found in N.Ov with the exception of El and side peak

suppressed.

47

60 -

% of All Neurons

ITD & IID lID Tuned Space- ITD Tuned
Tuned Only Specific Only

W

% of IID and ITD
Tuned Neurons

48

Figure 2.7 A) Distribution of 1ID tuning curve types among all neurons
which responded to interaural intensity differences in a tuned manner
(includeding those which responed to ITD as well). B) Summary of IID response
types among neurons which were unresponsive to ITD. While a neuron which is
tuned to intensity differences is most likely to have a peaked IID tuning curve, if
that neuron is unresponsive to ITD it is very likely that it has a monotonic,

sigmoid type IID tuning curve.

49

T
o
1

I 1 1
o =]
] ® 8

SUOINaN paung]
ait e jo 9,

IE

El

Peaked

50 -

40

i 1
o (=]
o0] N

suoJnapN Ajuo
paunt qii J0 %

10 _

o |

IE

El

Peaked

50

curves 17.3% (13/75) had ITD tuning curves which had a prominent central peak
and suppressed side peaks. These are characteristics of neurons which respond
selectively to unique combinations of interaural time and level differences -
space-specific neurons. Finally, 13.3% (10/75) of IID specific neurons had no
tuned response to ITD; the ITD response curves for these cells were essentially
flat at a given level above the spontaneous background activity. Neurons which
have peaked IID tuning curves yet are insensitive to variations in ITD have not

previously been described at any level of the barn owl's auditory system.

Of the neurons which were tuned to interaural intensity differences 50.3%
were catagorized as having monotonic, sigmoid type response functions. These
neurons were either excited by stimulation of the contralateral ear and inhibited
by stimulation of the ipsilateral ear (El cells), or they were inhibited by
contralateral stimulation and excited by ipsilateral stimulation (IE cells). Neurons
which have IE type IID tuning curves are quite rare in the barn owl's auditory
system, although some have been observed in the ICc lateral shell (Jamie
Mazer, personal communication). Of the El cells, 51.2% were tuned to ITD in a
phase ambiguous manner while 48.8% were not responsive to ITD variations.
Conversely, 75.8% of the IE cells displayed no ITD tuning while 21.2% had
phase ambiguous ITD tuning curves. One IE neuron was specific for a single
ITD - its ITD tuning curve had a single large peak with suppressed side peaks.
This particular combination of 1ID and ITD characteristics has not been described

in any other auditory nuclei of the barn owl.

Of the neurons which responded to ITD, 85.6% did so in a phase
ambiguous manner while the remainder (14.4%) were classified as having side
peak suppression (figure 2.8a). Only one neuron was found which displayed the

nearly complete lack of side peaks as is commonly found in ICx. The remainder

51

of the cells which exhibited side peak suppression in their ITD tuning curves in
response to noise had incomplete suppression of the secondary peaks, as is
commonly found in ICc lateral shell. Takahashi and Konishi (1986) surveyed
neurons in ICx and found that the degree of side peak suppression varied widely.
These investigators found that the distribution of the ratio of side peaks to main
peak in ICx was roughly gaussian with a mean of 0.47. Neurons with ratios of 0
(complete lack of side peaks) and 100% (fully phase-ambiguous) were reported
in ICx. The criteria that was employed to ascertain that the neurons recorded
from were confined to ICx, however, was not discussed. Furthermore, this paper
predates the finding that ICc contains a lateral shell subdivision, so it is possible
that a number of the neurons in the sample were in fact in the central nucleus.
Neurons in the optic tectum are commonly found which have only 50% side peak
suppression (Eric Knudsen, personal communication). Since it has yet to be
ascertained what degree of side peak suppression is necessary in order to
render a neuron "space-specific," all neurons which had side peaks smaller than
75% of the main peak were classified as space-specific for the purposes of this

study.

Neurons which had phase ambiguous ITD tuning curves could have either
monotonic or peaked IID curves (Figure 2.8b). The two neurons which were
tuned only to ITD and not 1ID had phase ambiguous tuning curves. Of the 83
neurons which responded to ITD variations in a phase ambiguous manner, 51
(61.4%) had the trough of the ITD curve well above the spontaneous activity
level. The remaining 32 (38.6%) had troughs in their ITD curves at or below the
spontaneous activity level. Fujita and Konishi (1991) observed both types of ITD
tuning curves in ICc core. Additionally, they demonstrated that neurons which

had troughs in their ITD curves at or below the spontaneous activity level could

52

Figure 2.8 A) Distribution of the types of interaural time difference tuning
curves among all neurons in N.Ov which responded to ITD in a tuned manner.
B) Distribution of combinations of ITD and IID tuning from among those neurons

whose ITD tuning curves were phase ambiguous.

53

100

SuoInNaN pauny ail jo %

Side Peak
Suppressed

Phase - | -
Ambiguous

suoJnapN snonBiquiy aseud 0 %

ITD

Only

Peaked
[10]

54

have those troughs raised well above spontaneous activity by the iontophoretic
application of the GABAergic antagonist BMI in ICc core. It is possible that ITD
tuning curves which have troughs above or below the spontaneous activity level

represent successive processing stages in the time pathway.

The presence of space-specific neurons in Field L, the efferent target of
N.Ov, raises the question of whether this response type is synthesized de novo in
the thalamus or forebrain, or is relayed via N.Ov from ICx or the optic tectum.
Space-specific neurons in ICx and optic tectum typically have very broad
frequency tuning curves (or are unresponsive to tones and require broad band
stimuli), have peaked IID tuning curves and ITD tuning curves with a single,
dominating peak (Takahashi and Konishi, 1986; Wagner et al., 1987; Olsen et al.,
1989; Fujita and Konishi, 1991). In the N.Ov, neurons were classified as space-
specific if they had a peaked IID tuning curve and their ITD tuning curve in
response to noise showed a single large peak with smaller sides peaks. Some
such space-specific neurons in N.Ov had frequency tuning characteristics not
found in neurons with similar 11D and ITD responses in the midbrain. The neuron
in figure 2.9a, for example, had a quite narrow frequency tuning curve with the
best frequency at a relatively low value of 1.5 kHz. Despite the fact that barn
owls are unable to use frequencies lower than about 3.0 kHz for sound
localization in the vertical plane (Payne, 1971; Moiseff and Konishi, 1981b), this
neuron displays 11D and ITD tuning typical of space-specific neurons. Figure 2.9b
shows a neuron which also had fairly narrow frequency tuning, although the
degree of side peak suppression in the ITD tuning curve in response to noise
was fairly small and the IID tuning curve was quite broad. The cell documented
in figure 2.10a displayed IID and ITD tuning curves which are typical of neurons

in the space map in ICx, yet this neuron had two peaks in its frequency tuning

55

Figure 2.9 Frequency and sound localization cue tuning curves from

“space-specific” neurons in N.Ov.

>

1to: %0
20 4
o
-
«
g
zx
=)
EX7)
2%
@
z s

{to: o asl: S0

Haise
<0 o

4

Average Number
of Splkes
3

Hoise

of Splkes

Average Number
“w

Frequency in kHz

1h: o ast: 40

{TD in psec

1h: o ARL: S0

flDindB

56

110;

Average Number
of Spikes

Hoise

Average Number
of Spikes

30 {to: ~10 akl: so
40 4
30
20 4
10
o s e
Mg e s £
1.0 2.0 30 <o s &0 %0 100
Frequency in kHz
1p; ~10 LITEN)

450 -270 90 o 90 270 450
ITD in usec
Holse 1Tp: © ABL: SO
30 -
=
S £
o
E «v 20
2£
Q.
N7
& —
a-’- Q 10
g /
<
O Ty T

iDindB

57

Figure 2.10 Additional tuning curve responses from space-specific

neurons in N.Ov.

>

1TD: =% 110: o
21,6~

Average Number
of Splkes

ABI: SO

58

{To: o 19 10 AkL: S50
.2

Average Number
of Spikes

3.2
——r
1.6 2.0
Hoise o -5

10,24

Average Number
of Spikes
iy

3.0 s.0

Frequ

Al 50

e A S S 0.0+
8,0 6.0 7.0 €,0 9.0 10.0 1.0 2.0 3.0 4,0 $,0 6.0 7.0 a0 9.0 10,0
ency in kHz ' Frequency In kHz
Hoise 110 10 ARl: S0

Average Number
of Spikes

v
300 -240

Hoise 17D: -%0

12.21

Average Number
of Splkes

v
-180

=120

ABI: SO

L S A S St S S S S s S

%0 o (24 120 160 240
ITD in pusec

§J

Average Number
of Splkes

{IDindB o in ds

59

curve - a narrow peak centered at 1.5 kHz, and broad peak from 3.5-7.0 kHz.
This neuron showed no ITD response at all when stimulated with a 1.5 kHz tone,
but displayed a typical phase ambiguous ITD tuning curve when stimulated with a
4.0 kHz tone. The IID tuning curve was peaked in either case. Figure 2.10b
shows a neuron very similar to that of figure 2.9b, though its best frequency was
at 2.5 kHz. The remainder of the space-specific neurons had frequency tuning
curves which were 3 to 4 kHz wide at half of the peak value. Interestingly, none
of the neurons which had very broad frequency tuning curves (5-7 kHz wide at
half-peak) were space-specific. Furthermore, none of the space-specific neurons

were unresponsive to tones, as is frequently seen in ICx.

In contrast to the neurons described above which displayed side peak
suppression and yet had narrow frequency tuning curves, three neurons were
found in N.Ov which had broad frequency tuning curves but responded to white
noise with a phase ambiguous ITD tuning curve (figure 2.11). All three such
neurons had peaked [ID tuning curves. Such neurons may be integrating
information across frequency channels, but ITD information may be carried on
only one of those channels. Alternatively, ITD information at various frequencies
might be summed by these neurons which then lack the specific inhibition
necessary to suppress the ITD side peaks. Fujita and Konishi (1991) showed
that blocking GABAergic inhibition in ICx resulted in ICx neurons responding to
noise in a phase ambiguous manner. This type of neural processing may also
explain those phase ambiguous neurons in N.Ov which have the troughs in their
ITD curves well above the spontaneous activity levels. Three other neurons
isolated in N.Ov had ambiguous (monotonic) HD tuning curves in response to
noise despite having very broad frequency tuning curves (figure 2.12). Two of

these three had flat ITD tuning curves, while the third had a phase-ambiguous

60

Figure 2.11 Response tuning curves from an N.Ov neuron which
displayed phase-ambiguous ITD tuning in response to white noise despite having
a broad frequency tuning curve. The IID tuning is specific (peaked) as is usual
for cells in the inferior colliculus which integrate sound localization cue

information over several frequencies.

61

1TD: © 11D: S ABLI: 50
20

Average Number
of Spikes

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

Frequency in kHz

Noise 11D: 5 ABI: SO
30

t)
13
a
£ @ 20
Z X

[o 3
N7
Q
5 © 10
>
<

ko PEN _———e—a P AaiN v —_——

P i AR -~ etk ohd
o+ 7T 7T T
~-300 -240 -180 -120 ~6O [60 12¢ 180 240 300

ITD in usec
Noise ITy: o ABI: SO
30 ~

n
<o
1

Average Number
of Spikes
5

-60 -50 40 -30 -20 -10 O 10 20 I 40 S0 60

iIDindB

62

Figure 2.12 Response tuning curves from an N.Ov neuron which
displayed ambiguous IID tuning in response to white noise despite having a
broad frequency tuning curve. This particular cell also showed no modulation in

its activity level in response to varying interaural time differences.

63

17D © 11D: -20 ABI: S0
30
B
2
E‘n 20
=3]
Z <
Q.
X7
—
go 10 -
>
<
O+ T T T T T T T T T T

1,0 2.0 3.0 4.0 5,0 6.0 7.0 8,0 9.0 10,0
Frequency in kHz

Hoise 1TD: © ABI: 50

Average Number
of Spikes

30 4

20 4§

'S
o
1

T
60 -50 -40 -30 -20 ~-10 ¢ 10 20 30 40 SO0 60

11D in dB
Noise Itp: -20 ABI: S0
30
[
.Q
8.,
723
s QO
=z X
- Q.
S0
@ =
- O .,
& 10
>
<L
0 A et

=300 -240 ~180 -120 =60] (] 120 180 240 300

ITD in ysec

64

response to ITD when stimulated with noise. Such neurons must be receiving
very similar (ambiguous) localization cue coding from across a wide range of

frequencies.

Latency

The latency of isolated neurons in N.Ov was measured at the neuron's
best (or one of the best) IID and ITD with noise as the stimulus. It was readily
apparent from a neuron's raster plot that the response latency varied with tone
frequency as well as with [ID and ITD. Figure 2.11 shows that the response
latency histogram contains one large peak centered around 10 msec, which is
consistent with neurons located one to two synapses from ICc. There are a
considerable number of neurons with much longer response latencies, however.
Some of these are attributable to neurons with delayed onset responses, but a
relatively rapid return to spontaneous activity levels when the stimulus ends
(pauser neurons). The remainder may indicate neurons which are integrating
descending information from the forebrain. Neurons which have response

latencies of 6-8 msec could well be the targets of neurons located in LLv.

65

Figure 2.13 Distribution of response latencies measured from neurons in
N.Ov in response to white noise stimulation at the best (or one of the best) values

of ITD and 1ID.

% of Neurons

30 4

66

Response Latency

6 7 8 91011121314151617 18192021 2223 24 2526 27 28 29
msec

67

Chapter 3: Anatomy and Connectivity of Nucleus Ovoidalis in
the Barn Owl

68

Methods

Normal Histology. Following physiological experiments, owls were
overdosed with pentobarbital (8 ml i.m. Nembutal, Abbot Laboratories, 50 mg/ml)
and perfused through the heart with 0.1 M phosphate buffer (pH 7.4) followed by
a solution of 1% paraformaldehyde and 1.25% glutaraldehyde (in 0.1 M
phosphate buffer, pH 7.4). The brains were blocked stereotaxically in a
transverse plane parallel to that of the electrode penetrations, removed from the
skull and sunk in 30% sucrose for cryoprotection. A sliding microtome was used
to cut frozen sections 30 um thick which were then cleared, dehydrated, stained

with cresyl violet and examined for electrode tracks and fiducial marks.

Tracer Studies. Free HRP. A 2.5% solution of HRP in 0.9% NaCl was
iontophoresed into nucleus ovoidalis in five owls. The target was physiologically
identified and then a non-capillary glass electrode with a tip of approximately 10
um o.d. was filled with the HRP solution and lowered into the nucleus. HRP was
iontophoresed with 7-10 pA positive DC current pulsed 7 sec on/7 sec off for 15-
30 minutes. Following iontophoresis the electrode was held in place for an
additional 30 minutes before being withdrawn. After a five day survival period,
owls were overdosed with pentobarbital, perfused through the heart with 0.1 M
phosphate buffer (pH 7.4) followed by a cold (15° C) solution of 1 %
paraformaldehyde and 1.25% glutaraldehyde (in 0.1 M phosphate buffer, pH 7.4).
Following fixation the owl was perfused with a cold 10% sucrose solution and
then a cold 20% sucrose solution. The brain was blocked, removed, sunk in cold
30% sucrose (0.025 M PB) and cut into 30 um sections on a freezing microtome.
Sections were rinsed in cold acetate buffer (pH 3.3), incubated with

tetramethylbenzidine (Mesulam, 1978), reacted with 0.3% H202, rinsed three

69

times with acetate buffer, mounted and counterstained with neutral red.

Dextran-Amines. Biotinylated (M.W. 10,000) or fluorescent (M.W. 3000) dextran-
amines were iontophoresed into the central nucleus of the inferior colliculus (ICc)
or N.Ov. A solution of 10% dextran-amine in 0.2 M KCI with 0.1% Triton X-100
was loaded into a capillary glass electrode with a tip size of 7-10 um, which was
then lowered into the physiologically identified target. Positive, pulsed (7 sec
on/7 sec off) DC current 5-8 uA was used to electrophorese the tracer for a
period of 30 minutes. Following electrophoresis the electrode was held in place
for an additional 30 minutes. After a survival period of two to eight days
(depending on the M.W. of the tracer and the estimated distance of transport),
the owls were exsanguinated with 0.1 M PB and perfused with a fixative solution
of 4% paraformaldehyde, 0.1 M lysine and 0.01 M Na-periodate in 0.1 M PB (pH
7.4). Brains were blocked, removed, post-fixed for one day and sunk in 30%
sucrose, 10% PLP fix in 0.1 M PB. Sections were cut on the freezing microtome
into 0.1 M PB. For fluorescent dextran-amine injections, sections were mounted,
cleared, coverslipped and viewed with a fluorescent microscope with the proper
filters. Sections containing biotinylated dextran-amine (BDA) were processed
with a Vectastain ABC Elite kit (Vector Laboratories) (Leonardus Veenman et al.,

1992), incubated with a nickel/cobalt/DAB solution and reacted with 0.3% H202.

Sections were then mounted and counterstained with neutral red.

70

Results

Figure 3.1 is a Nissl stained transverse section through the diencephalon
which shows the relationship of nucleus ovoidalis to other diencephalic
structures. N.Ov is a large, distinct cell group encapsulated by fibers and lying
lateral to the third ventricle and medial to the dorsolateral thalamic nucleus (DL).
In the barn owl, N.Ov is approximately 1.2 mm in diameter, stereotaxically
located roughly 2.0 mm anterior and 2.0 mm lateral of the reference pin. The
afferent fiber bundle from the inferior colliculus, the tractus nucleus ovoidalis
(TOv), enters the ventral aspect of the nucleus from a ventrolateral projection,
passing medial to the nucleus rotundus (Rot) and extending down along the
lateral border of the lateral hypothalamus. The nucleus subrotundus is a narrow
layer of cell bodies just ventromedial to N.Ov which separates ovoidalis from the
occipitomesencephalic fiber tract. Figure 3.2 shows higher power
photomicrographs of coronal sections through nucleus ovoidalis at three
rostrocaudal positions. At the caudal levels, neurons of average size are tightly
packed ventrally but become more widely separated and interspersed with
smaller neurons dorsally. At middle and more rostral levels, the large cell bodies
tend to be located in a fairly distinct region of the lateral nucleus, running from the
dorsal border down into the ventral aspect of the nucleus and into the TOv. In
the central and medial portions of the nucleus, the cell bodies tend to be smaller
and oriented to follow the convex curve of the nucleus. Anteriorly, the efferents
exit nucleus ovoidalis in a large fiber bundle lateral to the nucleus, which Karten
(1968) called the fasciculus prosencephali lateralis (FPL). At the rostral end of
N.Ov, cell bodies from the nucleus extend laterally to form a narrow cap over the
dorsal aspect of the efferent fiber bundle, giving the nucleus the shape of an

inverted comma. The neuronal cell bodies at these levels are of the larger

71

Figure 3.1 Low power photomicrograph of the left side of a Nissl-stained
transverse section through the diencephalon at the level of nucleus ovoidalis.

Dorsal is towards the top and lateral is to the left.

Abbreviations:
DL - nucleus dorsalis lateralis thalami
DM - nucleus dorsalis medialis thalami
N.Ov - nucleus ovoidalis
OM - occipitomesencephalic fiber tract
OT - optic tectum
PV - nucleus posteroventralis
Rot - nucleus rotundus
SGC - stratum griseum centrale
T - nucleus triangularis
TIO - tractus isthmo-opticus

TOv - tractus nucleus ovoidalis

72

73

Figure 3.2 A-C: Normal Nissl-stained transverse sections through the left
nucleus ovoidalis and corresponding camera lucida drawings identifying the
visible structures. A is rostral, C is caudal and B is roughly half-way between A
and C. Note particularly the lateral extension of cell bodies dorsally and the large
cell bodies imbedded in the tractus nucleus ovoidalis ventrally in A, the
subdivisions of the nucleus based on cell size and orientation in B, and the

gradient of cell density across the dorsovental extent of the nucleus in C.
Abbreviations:
FPL - fasciculus prosencephali lateralis
OM - occipitomesencephalic fiber tract
N.Ov - nucleus ovoidalis
SRt - nucleus subrotundus

TOv - tractus nucleus ovoidalis

74

1.0 mm

75

variety and again are densely packed ventromedially and more spread out
dorsolaterally. In the pigeon (Wild, 1987; Wild et al., 1993) and ring dove
(Durand et al., 1992) nucleus ovoidalis contains a subnucleus called the nucleus
semilunaris parovoidalis (SPO) which is readily apparent in normal, Nissl-stained
transverse sections. In these species, SPO stands out as the medial two-thirds
of this region are separated from N.Ov by a fibrous lamina running horizontally.
The lateral portion of SPO extends through the axonal fibers of TOv. In the barn
owl, no such ventromedial subdivision corresponding to SPO is discernible in
Nissl-stained sections through ovoidalis. There are, however, a set of large cell

bodies imbedded in the TOv just ventral to the nucleus at rostral levels.
Connectivity

Projections from the midbrain.

In order to determine the pattern of input to nucleus ovoidalis from the
inferior colliculus, a number of small retrograde tracer injections were made in
various locations throughout N.Ov. Figure 3.3 shows the results from a free HRP
injection placed anteriorly in the dorsolateral portion of the nucleus. Retrogradely
labeled cell bodies were sparsely located across the dorsoventral extent of all
three subdivisions of the ipsilateral central nucleus of the inferior colliculus.
Labeled neurons were evident across all frequency laminae of ICc. The
distribution of these labeled cells was so sparse that adequate visualization of
these HRP filled neurons required the highly sensitive TMB development
technique (Mesulam, 1978) and sections had to be left uncounterstained in order
to avoid obscuring the cells containing tracer (figure 3.3c). Labeled neurons
were also found in the contralateral ICc, with the same sparse distribution though

far fewer cells were labeled. Localized HRP injections placed caudally, medially

76

Figure 3.3 Pattern of retrograde labeled neurons in the inferior colliculus
following tracer injection in N.Ov. Dorsal is up and lateral is to the left in all

photographs.

A) Free HRP injection site in the dorsolateral portion of the rostral end of
nucleus ovoidalis. Filled axons can be seen exiting the nucleus anterogradely in

the FPL and retrogradely in the TOv. Scale bar = 500 um.

B) Low power photomicrograph of the inferior colliculus ipsilateral to the
injection site in N.Ov. HRP fillled neurons are scattered widely across the
mediolateral and dorsoventral extent of the nucleus. Arrows within the box point

to neurons seen more clearly in (C). OT - optic tectum. Scale bar =1 mm.

C) High power photomicrograph of the area contained within the box in
(B). Five retrogradely labeled neurons can be discerned (arrows - the topmost
neuron has its neuritic extensions located out of the plane of focus). The

smallest distance between the labeled neurons is well over 100 um.

7

78

and centrally yielded similar results. Figure 3.4 is a camera lucida drawing of the
distribution of cell bodies in the inferior colliculus retrogradely labeled from an
injection of biotinylated dextran-amine in the dorsomedial portion of the ipsilateral
N.Ov. The number of neurons containing tracer in ICc is quite low. Labeled
somata were located in the lateral, central and medial portions of 1ICc, though the
medial aspect contained the most such cells. An injection of fluoroscein-
conjugated dextran-amine was placed in the dorsolateral portion of N.Ov
(approximately at the midpoint of the rostrocaudal extent of the nucleus) together
with an injection of rhodamine-conjugated dextran-amine placed approximately
500 pum more ventral. Both red and yellow fluorescent cell bodies were sparsely
distributed across ICc, but only two cells were double labeled. An injection of
BDA into the ventrolateral portion of N.Ov labeled a small population of cells in
ipsilateral (but not contralateral) LLv in addition to the widespread pattern of

neurons in ICc (figure 3.5).

Based upon the results of the retrograde labeling experiments, | expected
that anterograde tracers placed into ICc would yield a diffuse pattern of tracer
filled axon terminals throughout nucleus ovoidalis. This, however, was not the
case. Figure 3.6 shows the results of BDA injected into the 4.5 kHz region of ICc
physiologically identified as lateral shell. In caudal and middle sections of the
ipsilateral N.Ov, the anterogradely labeled terminals were largely restricted to the
lateral aspect of the nucleus, corresponding roughly to the region with constant
frequency in a dorsoventral electrode penetration and the region which contains
large cell bodies oriented vertically. At the rostral end of N.Ov, the pattern of
labeled terminals moved dorsally to form a cap on the nucleus, though here too
the heaviest label was located more laterally. The central and medial portions of

the nucleus were not devoid of labeled axon terminals (particularly noticeable in

79

Figure 3.4 Camera lucida drawings of transverse sections containing a
BDA injection site in N.Ov (topmost drawing) and retrogradely labeled cell bodies
in the ipsilateral inferior colliuculus. Dorsal is towards the top and lateral is to the
left. The numbers to the upper left of the sections indicate the normalized
anterior-posterior position of the section within the nucleus. The stipples lines
medial and ventral to ICc in sections 0.35-0.475 indicate the pathway of efferent
fibers projecting to N.Ov which contained tracer filled axons. The rostrocaudal
extent of labeled somata is seen to cover roughly the second quarter of the

inferior colliculus. Scale bars =1 mm.

81

Figure 3.5 Neurons in LLv which were retrogradely labeled by a BDA
injection in ventrolateral N.Ov. No labeled somata were observed in the

contralateral LLv.

82

83

Figure 3.6 Anterograde projection pattern from ICc lateral shell to N.Ov.

A) BDA injection site in the 4.5 kHz region of the left ICc lateral shell.
Labeled efferents course laterally towards their targets in ipsilateral ICx, and
medially to join the fiber tract which becomes the TOv at more rostral levels. In

all sections, dorsal is up and lateral is to the left. Scale bar = 1mm.

B) Transverse section through caudal ipsilateral N.Ov showing labeled
axon terminals along the lateral aspect of the nucleus, arcing medially along the

dorsal edge. Neutral red counterstain. Scale bar = 500 um.

C) Neutral red counterstained transverse section through the middle of
N.Ov ipsilateral to the injection site. Dense, labeled efferent terminations are
confined mostly to the lateral aspect of the nucleus though some labeled axon
terminals are found more medially. Particularly evident in this section is a small,
dense plexus of terminations almost exactly in the center of the nucleus. Scale

bar = 500 um.

D) Rostral transverse section through N.Ov ipsilateral to the BDA injection
site. Labeled efferent terminals are now mostly confined to the dorsal aspect of
the nucleus, although the amount of label medial is still smaller than that located
laterally. Labeled fibers can be seen coursing up through the nucleus from the
TOv. Some fibers make occasional terminations in the ventral portions of the

nucleus. Neutral red counterstain. Scale bar = 500 um.

84

85

figure 3.6¢), though such excursions were quite small compared to the main
pattern of efferent terminations. The contralateral N.Ov contained a mirror image
of the staining pattern, though the amount of label was much smaller. A similar
BDA injection placed in the 3.5 kHz region of physiologically identified ICc core is
displayed in figure 3.7a. Though no IID tuning was obtained at the site of the
injection, some tracer leaked into the medial shell subdivision from this injection
as evidenced by retrogradely labeled cell bodies in contralateral nucleus
angularis and contralateral VLVp (as well as contralateral nucleus laminaris).
The anterograde projection pattern was largely contained within the central and
medial portion of ipsilateral nucleus ovoidalis (figure 3.7b), with the axons
terminals having a horizontal staining pattern rather than the predominantly
vertical orientation as in the case of the projection from lateral shell. Again, the
contralateral N.Ov contained a nearly identical pattern of anterograde label with a

lower density.

The patterns of retrogradely labeled cell bodies in ICc resulting from tracer
injections in N.Ov and the patterns of anterogradely labeled axon terminals in
N.Ov arising from tracer injections in ICc at first appeared to be contradictory.
However, these results are consistent with the hypothesis that only a small
subpopulation of the neurons in the inferior colliculus project to ovoidalis. These
thalamic projection neurons diverge considerably upon reaching their target
nucleus in a manner which depends on their location within ICc. Efferents from
the lateral shell subdivision of ICc make considerable axon collateral terminations
along the dorsoventral and rostrocaudal axes of N.Ov, particularly along the
lateral aspect. Axons arriving from the core and medial shell subdivisions of ICc

diverge in the mediolateral and rostrocaudal axes of the auditory thalamus, with

86

Figure 3.7 Anterograde projection pattern from ICc core/medial shell to

nucleus ovoidalis.

A) BDA injection site into the 3.5 kHz region of 1Cc physiologically
characterized as core (phase-ambiguous ITD tuning with no 11D tuning). Leakage
of some tracer into medial shell was discovered by the appearance of
retrogradely labeled cell bodies in the contralateral nucleus angularis. Neutral

red counterstain. Scale bar=1 mm.

B) Tracer filled efferent terminations in the central portion of N.Ov. The
dorsoventral location and limit of the axon terminals corresponds well with the
tonotopic organization of N.Ov and ICc (which have their frequency
representations inverted from one another). In contrast to the more vertical
orientation of the efferent projections from lateral shell (figure 3.6), the

anterograde projection pattern from core/medial shell is oriented horizontally.

87

88

most of their terminations occurring in the central and medial portions of the

nucleus.

Comparison of the pattern and density of the anterograde label obtained
from tracer injections in the subdivisions of ICc, along with careful examination of
the pattern of retrogradely labeled cell bodies in ICc from several tracer injections
in various portions of N.Ov, strongly suggest that lateral shell makes the largest
contribution of efferents to the auditory thalamus. The medial shell subdivison of
ICc makes the second largest contribution of inputs while ICc core sends the
smallest number of axon terminals to N.Ov. Furthermore, the anatomical
segregation of sound localization cue processing which occurs in ICc is
somewhat maintained at the level of the thalamus; lateral shell projects most
heavily to lateral ovoidalis, and core and medial shell project most heavily to the
central and medial portion of the nucleus. However, it is also clear that this
segregation is not strictly maintained as the lateral shell does provide efferent
terminations in the central and medial portions of N.Ov and the core and medial
shell do send a small number of axonal terminals to the lateral portion of
ovoidalis. These projections patterns demonstrate the possible convergence of
efferents from different regions of the inferior colliculus (and LLV) and thereby
provide the anatomical support for the (sometimes unique) combinations of

physiological response types found in nucleus ovoidalis.

Of particular interest with respect to the observation of space-specific
neurons in N.Ov, as well as the findings of Knudsen and Knudsen (1993)
concerning parallel pathways for sound localization, is whether or not neurons of
the auditory space maps in either the optic tectum or ICx project to N.Ov. No
retrogradely labeled cell bodies were ever observed in the optic tectum for any

tracer injected into ovoidalis. In this study, no retrogradely labeled neurons were

89

unequivocally localized to 1Cx, though this observation is subject to considerable
interpretation. The border between ICx and the lateral shell of ICc is not clearly
defined. Histochemically, the subdivisions of ICc are visualized by differential
staining with either antibodies to vitamin D-dependent calcium binding protein
(Takahashi et al., 1987), or acetycholinesterase (Adolphs, 1993a). Visualization
of the retrogradely labeled cell bodies in ICc precluded counterstaining the tissue
sections with either of these agents. Furthermore, the pattern of retrogradely
labeled neurons varied between sections making the use of stained alternate
sections of dubious value. For these reasons, the unequivocal assignment of
retrogradely labeled neurons to particular subnuclei near the borders of the
subdivisions of ICc or near the border of lateral shell and ICx was not possible.
However, while the projection of an extremely small number of neurons along the
medial aspect of ICx to N.Ov cannot be ruled out with certainty, it is quite clear
that the auditory space map as a whole does not project to the auditory thalamus.
No retrogradely labeled cell bodies were ever located in the central or lateral
portions of ICx or in the most anterior sections of the inferior colliculus where the
extent of ICx is most predominant. The use of anterograde tracer injections in
ICx for demonstrating a projection to N.Ov is of questionable value, since most
tracers currently available for anterograde use are in fact bidirectional (PHAL,
BDA, HRP, cholera toxin B subunit) and neurons in lateral shell could pick up the
tracer retrogradely and have axon collaterals projecting to N.Ov filled, thereby
clouding the interpretation of the results. Tritiated proline is a strictly anterograde
tracer which couid be used, but since the results of this study indicate that any
projection of ICx to N.Ov is likely to be extremely small, the probability of
detecting such a projection autoradiographically is also small (i.e., a negative

result would not assure the absence of such a projection).

90

Ascending Projections to the Telencephalon

Biotinylated dextran-amine injections were placed in the dorsomedial and
ventrolateral portions of nucleus ovoidalis in order to determine the pattern of
projections to the auditory forebrain area, Field L. Figure 3.8 shows the results of
the BDA injection into the dorsomedial area of N.Ov. Labeled axonal fibers could
be seen leaving N.Ov laterally in the FPL. In the telencephalon, tracer filled
fibers passed through the paleostriatum primitivum and paleostriatum
augmentatum and crossed the lamina medullaris dorsalis which forms the
boundary between paleostriatum and neostriatum. In the neostriatum, stained
axon terminals were located most densely in the medial most aspect of Field L2a,
with a few fibers coursing dorsally towards the overlying hyperstriatum ventrale
(HV) (figure 3.8c). The topography of this projection is apparently in accord with
the tonotopic organization of Field L, in which high frequencies are represented
ventromedially with low frequencies and broadband responses being found

dorsolaterally (Wild et al., 1993).

Efferents labeled by the BDA injection in the ventrolateral portion of N.Ov
followed the same route to the neostriatum through the paleostriatum, but
terminated most densely in the caudolateral portion of Field L2. A smaller
number of axonal coursed medially in Field L, making relatively few terminations
across the extent of the area medial to the dense fiber terminations located
laterally (figure 3.9). The location of heaviest anterograde staining is consistent
with the tonotopic organizations of Field L and nucleus ovoidalis. The sparse
amount of labeled axons across the rest of Field L may indicate that a small
amount of tracer leaked into the efferent fiber bundle exiting N.Ov laterally.
Alternatively, this pattern of staining in the forebrain may indicate that the lateral

portion of N.Ov provides a more widespread input to Field L than the medial

91

portion of N.Ov. My colleague S.E. Roian Egnor placed a small BDA injection
into Field L2 at a position approximately 1 mm lateral of the location of stained
afferents displayed in figure 3.8 (considerably medial to the most densely labeled
fibers in figure 3.9) as well as slightly caudal to it. Of the neurons which were
retrogradely labeled in N.Ov, the highest percentage appeared in the lateral
portion of the nucleus (personal observation and interpretation of data collected

by S.E.R. Egnor).

92

Figure 3.8 Nucleus ovoidalis projects to the telencephalic area Field L.

A) BDA injection site in N.Ov (same as that drawn in figure 3.4). Neutral

red counterstain. Scale bar = 500 um.

B) Brightfield photomicrograph of tracer filled axon terminals in the medial

most portion of Field L2a. Scale bar = 500 um.

C) High power darkfield photomicrograph of the area outlined by the box
in (B) showing axon terminals with synaptic swellings more clearly. Notice the

fibers coursing dorsally towards HV in the upper righthand corner.

93

94

Figure 3.9 Anterograde label in caudal Field L resulting from a BDA
injection in ventrolateral N.Ov. Dense label is located laterally, but a small
amount of label is present across the mediolateral extent of the area. In this

section the medial staining is most apparent near the midline.

95

96

Chapter 4: Summary and Discussion

"What really makes science grow is new ideas, including false ideas."

-Karl Popper

97

This work was intended to examine the role of the auditory thalamus,
nucleus ovoidalis, in processing auditory information, with particular attention to
sound localization cues. All auditory input to the forebrain is received via
nucleus ovoidalis (Karten, 1968). Owls which have the auditory space map in
the optic tectum removed or inactivated have a diminished capacity for sound
localization, rather than the complete loss of localizing ability. The inactivation
of both the optic tectum and nucleus ovoidalis results in owls which are no
longer able to localize sound sources (Knudsen and Knudsen, 1993).
Additionally, deficits in head orienting behavior to free field sounds resulting
from restricted lesions in ICx usually disappear over a time course of several
hours (Wagner, 1993). These observations indicate that the thalamo-
telencephalic auditory pathway is capable of subserving at least some sound

localization ability.

The results of this work demonstrate that neurons in the auditory
thalamus of the barn owl respond to auditory stimulation, are organized
topographically with respect to sound frequency, and respond in a tuned
manner to at least one sound localization cue. All neurons investigated in
nucleus ovoidalis responded to stimulation with white noise. The nucleus
contains at least two parts based on tonotopic organization: the centromedial
portion of the nucleus has high frequencies mapped dorsally and low
frequencies located ventrally (figure 2.1) while neurons on the lateral aspect of
the nucleus have the same best frequency. The frequency tuning of most
neurons in N.Ov is rather narrow, though a significant number have more than

one peak in their frequency tuning curves (figure 2.2).

98

Although all ovoidalis neurons responded to at least one sound
localization cue, there was no apparent systematic mapping of sound
localization parameters in the nucleus. Furthermore, in contrast to the
organization of the central nucleus of the inferior colliculus, neurons with similar
response types were not segregated in distinct portions of the nucleus. All
possible combinations of response tuning curves to sound localization cues
were found in ovoidalis except one - neurons with EI lID tuning curves and side-
peak suppressed ITD tuning curves. Two of the combinations of IID and ITD
tuning observed in N.Ov have not been reported in other nuclei of the owl's
auditory system: neurons with peaked IID tuning curves and flat ITD tuning
curves, and neurons with El 1ID tuning and side-peak suppressed ITD tuning.
Additionally, neurons with IE IID tuning curves were quite common in N.Ov
though this type of IID tuning is rarely observed elsewhere in the auditory
system. Cells that had peaked IID tuning curves yet were unresponsive to
variations in ITD could be the result of inputs selectively restricted to ICc medial
shell. Whether such response types exist in medial shell has yet to be
determined. This type of response indicates that IID information can be
integrated across frequencies independently of the integration of ITD
information across frequencies. Alternatively, this type of processing could
arise from the convergence of inputs which cause a specific response to
stimulus parameters which were not investigated. The cell which had
ambiguous, IE IID tuning curves and side-peak suppressed ITD tuning indicates
that ITD information can be integrated across frequencies and then combined
with 11D information which is still ambiguous. The IE IID response category in
general could be the result of input from the contralateral medial or lateral

shells.

99

Thirteen neurons were found in N.Ov which responded to both ITD and
lID in an unambiguous manner. Such response properties are characteristic of
the space-specific neurons found in the space maps of ICx and the optic tectum,
though some neurons with these specific responses are also located in the
lateral shell subdivision of ICc. Anterograde and retrograde tracer injections in
ICc and N.Ov respectively demonstrated that a subset of ICc lateral shell
neurons sends a divergent projection of efferents to ovoidalis. Subsets of the
core and medial shell subdivisions of ICc also provide axon terminations across
broad regions of N.Ov. Efferent input to the auditory thalamus from the medial
aspect of ICx cannot be completely ruled out, though anterior and lateral
portions of ICx make no efferent contribution to N.Ov. No neurons were
retrogradely labeled in the optic tectum from any tracer injected in N.Ov.
Consequently, the space-specific neurons found in ovoidalis could simply
reflect activity from similarly tuned inputs from ICc lateral shell or (less likely)
ICx. Alternatively, these tuned responses could arise as the result of
independent integration of ITD and IID information from ICc medial shell, core
and lateral shell. The responses of space-specific neurons in Field L, in turn,
could be simply relayed from space-specific neurons in N.Ov or synthesized de
novo from the appropriate integration of the ambiguous information which is
maintained in the thalamus. There is some evidence that the space-specific
neurons isolated in N.Ov are not simply reflecting processes which have
occurred in the inferior colliculus. The neuron documented in figure 2.10a, for
example, has a frequency tuning curve with at least three peaks. This type of
frequency tuning has not been reported in either ICx or the optic tectum. This
neuron had different sound localization tuning depending on the frequency of
the stimulating tone: no response to ITD at the 1.5 kHz peak and phase

ambiguous ITD tuning at 4.0 kHz. Apparently, the frequency channels

100

converging upon this neuron are carrying different types of information
concerning sound localization cues. Since these properties have not been
described at the level of the inferior colliculus, it is quite likely that they reflect

transformations in the neural code that take place in ovoidalis.

As information from frequency channels converge in the inferior
colliculus, ambiguity in the response to sound localization cue tuning
diminishes. In the thalamus, neurons were found in which the breadth of
frequency tuning and resolution of ambiguity were not correlated in this manner.
These cells had quite broad frequency tuning and completely ambiguous ITD or
lID tuning. In the neuron documented in figure 2.11, it appears that the
ambiguous cue is arriving from only a limited number of frequency channels,
and that the remaining frequency channels contributing to the response of the
neuron are not tuned to that localization parameter. Another possibility is
indicated by figure 2.12, in which broad frequency tuning is accompanied by
ambiguous 1ID tuning and the complete lack of ITD tuning. In this case,
excitation due to intensity differences only must be responsible for the response
of the neuron across frequency channels. Consequently, very similar [ID

information must occur on each frequency channel.

A general characteristic of neurons that were found in N.Ov which had
tuning properties not previously observed in the auditory system was that
information concerning sound localization cues can be quite different
depending on the frequency tested. Cells which had monotonic IID curves at
one frequency had peaked IID curves at others (figure 2.5), or cells which had
phase-ambiguous ITD responses at one frequency and no response to ITD at
others were rather common. In some cases the integration of such information

resulted in responses to wide band stimuli which made little sense for localizing

101

sounds, such as having two peaks in the IID curve, phase-ambiguous ITD
curves (despite broad frequency tuning), or IID curves with a single trough near
zero IID. These types of auditory responses together with the lack of
topographic organization with respect to sound localization cues in nucleus
ovoidalis suggests that auditory information might possibly be reorganized in
the thalamus with respect to a behaviorally relevant feature of the stimulus other
than sound source location. However, information concerning sound
localization is clearly preserved in ovoidalis, and could be used to support
sound localizing behavior. The physiological and hodological results of this
study suggest that information concerning auditory space which is conveyed
from the inferior colliculus to N.Ov is incomplete. Consequently, sound
localization subserved only by the thalamo-telencephalic pathway would be
rather inaccurate and unreliable. This is in fact what Knudsen et al. (1993)
found when they lesioned the optic tectum of a barn owl. In such owils, both the
response probability and accuracy of sound localizing behavior (gaze orienting)
decreased significantly. Though response probability improved over a period of
weeks following the lesion, the accuracy of sound localization remained

impaired.
Comparison with other species

Physiological studies in nucleus ovoidalis are rare, and no previous work
has been published on sound localization responses in this nucleus. Diekamp
and Margoliash (1991) reported that neurons within N.Ov of the zebra finch
differ in their response strength to conspecific songs. These investigators also
found that the best frequencies at some recording sites differed by more than an
octave, which could be similar to the out-of-order neurons found in the tonotopic

organization of N.Ov in this study. Biederman-Thorson (1970) described

102

ovoidalis neurons that had "w-shaped" frequency tuning curves in the ring dove,
though Bigalke-Kunz et al. (1987) did not find any units with more than a single
excitatory frequency band in the starling. Bigalke-Kunz et al. (1987) tested the
latency to tonal stimuli (from a loudspeaker located at a fixed position) in 49
neurons of the N.Ov in the starling and found that 80% had latencies between
11 and 22 msec with an average of 13.5 msec (the values of the other 20%

were not reported).

Stanford et al. (1992) compared the ITD responses of neurons in the
inferior colliculus and auditory thalamus (medial geniculate body) of the
unanesthetized rabbit and found that the location of characteristic delay was
more likely to be located at non-peak ITD values in the thalamus than in the
inferior colliculus. Olsen and Suga (1991) found that neurons within the MGB of
the mustached bat encode range information of echolocated targets. It is
unclear what acoustic cues the barn owl uses for range information, or whether
such information is mapped in any of the auditory nuclei. One possibility is that
the owl uses changes in the apparent location of a sound source at different
distances as it flies towards the target. Alternatively, the owl could disregard
long range information completely, simply making corrections to the internal
representation of the location of a target as it approaches until it is within striking
range. Payne (1971) produced some evidence for the latter case; owls which
flew from some distance to strike a target usually missed if that target (mice
running on leaves or mice with leaves attached to their tails) became silent
during the approach of the owl. One facet of the prey striking behavior that the
thalamo-telencephalic pathway may be particularly well suited to supporting is
the manner in which barn owls orient their talons to parallel the long axis of the

body of their prey just prior to striking.

103

The afferent and efferent pattern of connectivity described in this thesis is
consistent with the results of Karten (1967, 1968) obtained in the pigeon.
Durand et al. (1992) reported a dense projection from the laminaris input zone
of the mesencephalicus lateralis pars dorsalis (MLD) (equivalent to ICc core) to
a shell region surrounding nucleus ovoidalis in the ring dove. In the dove, the
laminaris input zone of MLD borders on a region medial to MLD called the
nucleus intercollicularis (ICo). No projections from the inferior colliculus (also
known as the MLD) to the regions surrounding the auditory thalamus were
observed in this study. None of the tracer injections, however, were placed
near 1Co. It is possible that the projections to the areas bordering nucleus
ovoidalis in the dove were the result of tracer leakage into ICo. Karten (1967),
using techniques to visualize degenerating axons from a lesion of the extent of
MLD in the pigeon described no projections to shell regions surrounding
nucleus ovoidalis. Wild (1987) found that nucleus LLv projects directly to
nucleus ovoidalis, and particularly to a ventrolateral subdivision called
semilunaris parovoidalis (SPO). Furthermore, Wild et al. (1993) found that SPO
projects preferentially to Field L2b, rather than Field L2a as the main portion of
N.Ov does. SPO is not apparent in Nissl-stained coronal sections through the
diencephalon in the barn owl, as it is in the pigeon. Injection of BDA into the
ventrolateral aspect of N.Ov retrogradely labeled some neurons in LLv and
anterogradely labeled efferent terminations heavily in the lateral aspect of Field
L (though more sparse anterograde labeling was observed in medial Field L).
This lateral portion of Field L could be Field L2b. These results indicate that
SPO is a less distinct subdivision of N.Ov in the barn owl than it is in the pigeon
or ring dove. The physiological role of this separate pathway from LLv through

the ventrolateral aspect of N.Ov to Field L2b has yet to be determined.

104

BIBLIOGRAPHY

Adolphs, R. (1993a). Acetylcholinesterase staining differentiates functionally

distinct auditory pathways in the barn owl. J. Comp. Neurol. 329:365-377.

Adolphs, R. (1993b). Bilateral inhibition generates neuronal responses tuned to
interaural level differences in the auditory brainstem of the barn owl. J. Neurosci.

13:3647-3668.

Banks, S.C. and Margoliash, D. (1993). Parametric modeling of the temporal
dynamics of neuronal responses using connectionist architectures. J.

Neurophysiol. 69:980-991.

Biederman-Thorson, M. (1970). Auditory responses of units in the ovoid nucleus

and cerebrum (Field L) of the ring dove. Brain Res. 24:247-256.

Bigalke-Kunz, B. Ribsamen, R., and Dérrscheidt, G. (1987). Tonotopic
organization and functional characterization of the auditory thalamus in a

songbird, the european starling. J. Comp. Physiol. A 161:255-265.

Boord, R.L. (1968). Ascending projections of the primary cochlear nuclei and

nucleus laminaris in the pigeon. J. Comp. Neurol. 133:523-542.

Boord, R. (1969). The anatomy of the avian auditory system. Ann. N.Y. Acad.
Sci. 167:186-198.

Boord, R.L. and Rasmussen, G.L. (1963). Projection of the cochlear and
lagenar nerves on the cochlear nuclei of the pigeon. J. Comp. Neurol. 120:463-

475.

105

Brainard, M.S., Knudsen, E.I., and Esterly, S.D. (1992). Neural derivation of
sound source location: resolution of spatial ambiguities in binaural cues. J.

Acoust. Soc. Am. 91:1015-1027.

Brainard, M.S. and Knudsen, E.I. (1993). Experience-dependent plasticity in the
inferior colliculus: a site for visual calibration of the neural representation of

auditory space in the barn owl. J. Neurosci. 13:4589-4608.

Braun, K., Scheich, H., Heizmann, C.W., and Hunziker, W. (1991). Parvalbumin
and calbindin-D28K immunoreactivity as developmental markers of auditory and

vocal motor nuclei of the zebra finch. Neuroscience 40:853-8609.

Carr, C.E. (1993a). Delay line models of sound localization in the barn owl.

Amer. Zool. 33:79-85.

Carr, C.E. (1993b). Processing of temporal information in the brain. Ann. Rev.

Neurosci. 16:223-243.

Carr, C.E. and Boudreau, R. (1991). Central projections of auditory nerve fibers

in the barn owl. J. Comp. Neurol. 314:306-318.

Carr, C.E. and Boudreau, R. (1993). Organization of the nucleus
magnocellularis and the nucleus laminaris in the barn owl - encoding and

measuring interaural time differences. J. Comp. Neurol. 334:337-355.

Carr, C., Fujita, I., and Konishi, M. (1989). Distribution of GABAergic neurons
and terminals in the auditory system of the barn owl. J. Comp. Neurol. 286:190-

207.

106

Carr, C.E. and Konishi, M. (1988). Axonal delay lines for time measurement in

the owl's brainstem. Proc. Natl. Acad. Sci. USA 85:8311-8315.

Carr, C.E. and Konishi, M. (1990). A circuit for detection of interaural time

differences in the brainstem of the barn owl. J. Neurosci. 10:3227-3246.

Diekamp, B. and Margoliash, D. (1991). Auditory responses in the nucleus

ovoidalis are not so simple. Soc. Neurosci. Abstr. 17:446.

du Lac, S. and Knudsen, E.l. (1990). Neural maps of head movement vector

and speed in the optic tectum of the barmn owl. J. Neurophysiol. 63:131-146.

Durand, S.E., Tepper, J.M., and Cheng, M-F. (1992). The shell region of the
nucleus ovoidalis: a subdivision of the avian auditory thalamus. J. Comp.

Neurol. 323:495-518.

Fujita, 1. and Konishi, M. (1991). The role of GABAergic inhibition in processing
of interaural time difference in the owl's auditory system. J. Neurosci. 11:722-

739.

Goldberg, J.M. and Brown, P.B. (1969). Response of binaural neurons of dog
superior olivary complex to dichotic tonal stimuli: some physiological

mechanisms of sound localization. J. Neurophysiol. 32:613-636.

Ivarsson, C., De Ribaupierre, Y., and De Ribaupierre, F. (1988). Influence of
auditory localization cues on neuronal activity in the auditory thalamus of the cat.

J. Neurophysiol. 59:586-606.

Jeffress, L. (1948). A place theory of sound localization. J. Comp. Physiol.
Psychol. 41:35-39.

107

Jhaveri, S. and Morest, D. (1982). Sequential alterations of neuronal
architecture in nucleus magnocellularis of the developing chicken: a golgi study.

Neuroscience 7:837-853.

Joseph, A. and Hyson, R. (1993). Coincidence detection by binaural neurons in

the chick brainstem. J. Neurophysiol. 69:1197-1211.

Karten, H. (1967). The organization of the ascending auditory pathway in the
pigeon (columbia livia) i. diencephalic projections of the inferior colliculus

(nucleus mesencephali lateralis pars dorsalis). Brain Res. 6:409-427.

Karten, H. (1968). The ascending auditory pathway in the pigeon (columbia
livia) ii. telencephalic projections of the nucleus ovoidalis thalami. Brain Res.

11:134-153.

Knudsen, E.I. (1982). Auditory and visual maps of space in the optic tectum of

the owl. J.Neurosci. 2:1177-1194.

Knudsen, E.I. (1983). Subdivisions of the inferior colliculus in the barn owl (Tyto

alba). J. Comp. Neurol. 218:174-186.

Knudsen, E.I. and Brainard, M.S. (1991). Visual instruction of the neural map of

auditory space in the developing optic tectum. Science 253:85-87.

Knudsen, E.l., Esterly, S.D., and du Lac, S. (1991). Stretched and Upside-down
maps of auditory space in the optic tectum of blind-reared owls; acoustic basis

and behavioral correlates. J. Neurosci. 11:1727-1747.

108

Knudsen, E.l., Esterly, S.D., and Knudsen, P.F. (1984a). Monaural occlusion
alters sound localization during a sensitive period in the barn owl. J. Neurosci.

4:1001-1011.

Knudsen, E.l., Esterly, S.D., and Olsen, J.F. (1994). Adaptive plasticity of the
auditory space map in the optic tectum of adult and baby barn owls in response

to external ear modification. J. Neurophysiol. 71:79-94.

Knudsen, E.I. and Knudsen, P.F. (1983). Space-mapped auditory projections
from the inferior colliculus to the optic tectum in the barn owl (Tyto alba). J.

Comp. Neurol. 218:187-196.

Knudsen, E.l. and Knudsen, P.F. (1985). Vision guides the adjustment of

auditory localization in young barn owls. Science 230:545-548.

Knudsen, E.l. and Knudsen, P.F. (1989). Vision calibrates sound localization in

developing barn owls. J. Neurosci. 9:3306-3313.

Knudsen, E.I. and Knudsen, P.F. (1990). Sensitive and critical periods for visual

calibration of sound localization by barn owls. J. Neurosci. 10:222-232.

Knudsen, E.l., Knudsen, P.F., and Esterly, S.D. (1984b). A critical period for the
recovery of sound localization accuracy following monaural occlusion in the barn

owl. J. Neurosci. 4:1012-1020.

Knudsen, E., Knudsen, P., and Masino, T. (1993). Parallel pathways mediating
both sound localization and gaze control in the forebrain and midbrain of the barn

owl. J. Neurosci.. 13:2837-2852.

109

Knudsen, E.I. and Konishi, M. (1978a). A neural map of auditory space in the

owl. Science 200:795-797.

Knudsen, E.l. and Konishi, M. (1978b). Center-surround organization of auditory

receptive fields in the owl. Science 202:778-780.

Knudsen, E.l. and Konishi, M. (1978c). Space and frequency are represented

separately in the auditory midbrain of the owl. J. Neurophysiol. 41:870-884.

Knudsen, E.I. and Konishi, M. (1979). Mechanisms of sound localization in the

barn owl. J. Comp. Physiol. 133:13-21.

Knudsen, E.I. and Konishi, M. (1980). Monaural occlusion shifts receptive-field

locations of auditory midbrain units in the owl. J. Neurophysiol.. 44:687-696.

Knudsen, E.l., Konishi, M., and Pettigrew, J.D. (1977). Receptive fields of

auditory neurons in the owl. Science 198:1278-1280.

Knudsen, E.l. and Mogdans, J. (1992). Vision-independent adjustment of unit
tuning to sound localization cues in response to monaural occlusion in

developing owl optic tectum. J. Neurosci. 12:3485-3493.
Konishi, M. (1973a). How the owl tracks its prey. Am. Sci. 61:414-424.

Konishi, M. (1973b). Locatable and nonlocatable acoustic signals for barn owls.

Am. Naturalist 107:775-785.

Konishi, M. (1986). Centrally synthesized maps of sensory space. Trends

Neurosci. 4:163-168.

110

Konishi, M. (1990). Similar algorithms in different sensory systems and animals.

Cold Spring Harbour Symp. Quant. Biol. 55:575-584.
Konishi, M. (1991). Deciphering the brain’s codes. Neural Computation 3:1-18.

Konishi, M., Sullivan, W.E., and Takahashi, T. (1985). The owl’s cochlear nuclei

process different sound localization cues. J. Acoust, Soc. Am. 78:360-364.

Konishi, M., Takahashi, T., Wagner, H., Sullivan, W.E., and Carr, C.E. (1987).
Neurophysiological and anatomical substrates of sound localization in the owl. In
Auditory Function, G.M. Edelman, W.E. Gall and W.M. Cowan, eds., John Wiley,
New York.

Leonardus Veenman, C., Reiner, A., and Honig, M.G. (1992). Biotinylated
dextran-amine as an anterograde tracer for single- and double-labeling studies.

J. Neurosci. Methods 41:239-254

Manley, G.A., Képpl, C., and Konishi, M. (1988). A neural map of interaural

intensity differences in the brain stem of the barn owl. J. Neurosci. 8:2665-2576.

Masino, T. and Knudsen, E.l. (1993). Orienting head movements resulting from
electrical microstimulation of the brainstem tegmentum in the barn owl. J.

Neurosci. 13:351-370.

Mazer, J.A. and Adolphs, R. (1991). Inhibition shapes response to interaural
time differences in the inferior colliculus of the barn owl. Soc. Neurosci. Abstr.

17:444.

111

Mesulam, M.-M. (1978). Tetramethyl benzidine for horseradish peroxidase
neurohistochemistry: a non-carcinogenic blue reaction-product with superior
sensitivity for visualizing neural afferents and efferents. J. Histochem. Cytochem.

26:106-117.

Mogdans, J. and Knudsen, E.I. (1992). Adaptive adjustment of unit tuning to
sound localization cues in response to monaural occlusion in developing owl

optic tectum. J. Neurosci. 12:3473-3484.

Mogdans, J. and Knudsen, E.I. (1994). Representation of interaural level
difference in the VLVp, the first site of binaural comparison in the barn owl's

auditory system. Hearing Res. 74:148-164.

Moiseff, A. and Konishi, M. (1981a). Neuronal and behavioral sensitivity to

binaural time differences in the owl. J. Neurosci. 1:40-48.

Moiseff, A. and Konishi, M. (1981b). The owl’s interaural pathway is not involved

in sound localization. J. Comp. Physiol. A. 144:299-304.

Moiseff, A. and Konishi, M. (1983). Binaural characteristics of units in the owl's
brainstem auditory pathway: precursors of restricted spatial receptive fields. J.

Neurosci. 3:2553-2562.

Moiseff, A. and Konishi, M. (1989a). Binaural disparity cues available to the

barn owl for sound localization. J. Comp. Physiol. A 164:629-636.

Moiseft, A. and Konishi, M. (1989b). Bi-coordinate sound localization by the
barn owl. J. Comp. Physiol. A 164:637-644.

112

Olsen, J.F., Knudsen, E.l., and Esterly, S.D. (1989). Neural maps of interaural
time and intensity differences in the optic tectum of the barn owl. J. Neurosci.

9:2591-2605.

Olsen, J.F. and Suga, N. (1991). Combination-sensitive neurons in the medial
geniculate body of the mustached bat: encoding of target range information. J.

Neurophysiol. 65:1275-1296.

Overholt, E.M., Rubel, E.W., and Hyson, R.L. (1992). A circuit for coding

interaural time differences in the chick brainstem. J. Neurosci. 12:1698-1708.

Parks, T. and Rubel, E. (1975). Organization of projections from n.

magnocellularis to n. laminaris. J. Comp. Neurol. 164:435-448.

Payne, R. (1962). How the barn owl locates prey by hearing. The Living Bird,
First Annual of the Comell Laboratory of Ornithology. Chapter 34, pp.151-159.

Payne, R. (1971). Acoustic location of prey by barn owls (tyto alba). J. Exp.
Biol. 54:535-573.

Proctor, L. and Konishi, M. (1992). Responses of cells in an auditory thalamic
nucleus of the barn owl to sound localization cues. Soc. Neurosci. Abstr.

18:840.

Raman, I.M. and Trussell, L.O. (1992). The kinetics of the response to
glutamate and kainate in neurons of the avian cochlear nucleus. Neuron 9:173-

186.

113

Raman, .M. and Trussell, L.O. (1993). Pathway specific variants of ampa
receptors may subserve physiological roles of auditory neurons. Soc. Neurosci.

Abstr. 297:3.

Rose, J.E., Brugge, J., Anderson, D., and Hind, J. (1967). Phase-locked
response to low-frequency tones in single auditory nerve fibers of the squirrel

monkey. J. Neurophysiol. 30:769-793.

Rose, J.E., Grass, N.G., Geisler, C.D., and Hind, J.E. (1966). Some neural
mechanisms in the inferior colliculus of the cat which may be relevant to

localization of a sound source. J. Neurophsyiol. 29:288-314.

Sachs, M. and Sinnott, J. (1978). Responses to tones of single cells in nucleus
magnocellularis and nucleus angularis of the redwing blackbird (agelaius

phoenicens). J. Comp. Physiol. 126:347-361.

Stanford, T.R., Kuwada, S., and Batra, R. (1992). A comparison of the interaural
time sensitivity of neurons in the inferior colliculus and thalamus of the

unanesthetized rabbit. J. Neurosci. 12:3200-3216.

Sullivan, W.E. (1985). Classification of response patterns in cochlear nucleus of
barn owl: correlation with functional response properties. J. Neurophysiol.

53:201-216.

Sullivan, W.E. and Konishi, M. (1984). Segregation of stimulus phase and
intensity coding in the cochlear nucleus of the barn owl. J. Neurosci. 4:1787-

1799.

Sullivan, W.E. and Konishi, M. (1986). Neural map of interaural phase
difference in the owl's brainstem. Proc. Nat. Acad. Sci. 83:8400-8404.

114

Takahashi, T., Carr, C.E., Brecha, N., and Konishi, M. (1987). Calcium binding
protein-like immunoreactivity labels the terminal field of nucleus laminaris of the

barn owl. J. Neurosci. 7:1843-1856.

Takahashi, T. and Keller, C. (1992). Commissural connections mediate
inhibition for the computation of interaural level difference in the barn owl. J.

Comp. Physiol. A 170:161-169.

Takahashi, T. and Konishi, M. (1986). Selectivity for interaural time difference in

the owl's midbrain. J. Neurosci. 6:3413-3422.

Takahashi, T. and Konishi, M. (1988a). Projections of the cochlear nuclei and
nucleus laminaris to the inferior colliculus of the barn owl. J. Comp. Neurol.

274:190-211.

Takahashi, T. and Konishi, M. (1988b). Projections of nucleus angularis and
nucleus laminaris to the lateral lemniscal nuclear complex of the barn owl. J.

Comp. Neurol. 274:212-238.

Takahashi, T., Moiseff, A., and Konishi, M. (1984). Time and intensity cues are
processed independently in the auditory system of the owl. J. Neurosci. 4:1781-

1786.

Takahashi, T., Wagner, H., and Konishi, M. (1989). Role of commissural
projections in the representation of bilateral auditory space in the barn owl's

inferior colliculus. J. Comp. Neurol. 281:545-554.

Wagner, H. (1993). Sound-localization deficits induced by lesions in the barn

owl's auditory space map. J. Neurosci. 13:371-386.

115

Wagner, H., Takahashi, T., and Konishi, M. (1987). Representation of interaural
time difference in the central nucleus of the barn owl's inferior colliculus. J.

Neurosci. 7:3105-3116.

Warchol, M.E. and Dallos, P. (1990). Neural coding in the chick cochlear
nucleus. J. Comp. Physiol. A. 166:721-734.

Wild, J.M. (1987). Nuclei of the lateral lemniscus project directly to the thalamic
auditory nuclei in the pigeon. Brain. Res. 408:303-307.

Wild, J.M., Karten, H.J., and Frost, B.J. (1993). Connections of the auditory
forebrain in the pigeon (columbia livia). J. Comp. Neurol. 337:32-62.

Yin, T.C. and Chan, J.C. (1990). Interaural time sensitivity in medial superior

olive of cat. J. Neurophysiol. 64:465-488.

116

APPENDIX: Source code for OASys, the X11 based Owl Auditory System

data acquisition and analysis software.

May 20 1994 11:47:37 Makefile Page 1

Makefile for oasys: Owl Auditory SYStem data acquisition & analysis program.

OBJECTS = main.o setup.o gui.o plotutils.o \
compress.o atten.o uhoh.o \
file.o plots.o loadstim.o \
sound.o fstnoise.o analysis.o

DSP = /usr/local/s56dsp

INCLUDES = includes.h defines.h globals.h

LIBS = -g -lnr -lm -1Xcu -lXaw -1Xmu -l1Xext -1Xt -1X11 -L$(DSP)/1ib -1ldrp -lgckMon

#LIBS = -1m -lnr -1lXcu -1Xaw -1Xmu -1Xext -1Xt -1X1l1 -LS$(DSP)/lib -1ldrp -lgckMon
CFLAGS = -g -I$(DSP)/include -IS$(DSP)/libdrp

#CFLAGS = -0 -I$(DSP)/include -I$(DSP)/libdrp

CC = cc

oasys: ${OBJECTS)
$(CC) S(OBJECTS) S$(LIBS) -o oasys

main.o: $(INCLUDES)
setup.o: $(INCLUDES)
gui.o: $(INCLUDES)
plotutils.o: $(INCLUDES)
compress.o: $(INCLUDES)
atten.o:

uhoh.o: $(INCLUDES)
file.o: $(INCLUDES)
plots.o: $(INCLUDES)
loadstim.o: $(INCLUDES)
sound.o: $(INCLUDES)
fstnoise.o:

analysis.o: $(INCLUDES)

clean:
rm -f $(OBJECTS) core

May 20 1994 11:45:07

analysis.c

#include "includes.h"
#include "defines.h"
#include "globals.h"

char description{80];
char stimparams[80];

void analyze_data()

{

FILE *readfile;
void plot_curve() ;

int slparam, i, j, k, index, size, num_pts, stimbegin, stimend;

int *count, *spont_count;

int total_spikes;

int start, stop, step, nreps, total_ duration;

float *abscissa, *ordinate, *standard_err, *vector();
float *spont, *spont_err, factor;

float variance, std_deviation;

unsigned int *event_list;

if ((readfile = fopen(datafilename, "r")) == NULL) {
uhoh ("Unable to fopen \"%s\" for reading.", datafilename);
return;

read_header (readfile) ;

stimbegin = Analysis.soundStim.prestim_delay*1000;
stimend = Analysis.soundStim.stim dur*1000 + stimbegin:

switch(Analysis.tuningCurve) {
case Iid:
start = Analysis.uval.iid_TC.start;

stop = Analysis.uval.iid TC.end;
step = Analysis.uval.iid_TC.step;
break;

case Itd:

start = Analysis.uval.itd_TC.start;

stop = Analysis.uval.itd_TC.end;
step = Analysis.uval.itd_TC.step:;
break;

case Fiid:
start = Analysis.uval.fiid_TC.start;

stop = Analysis.uval.fiid_TC.end;
step = Analysis.uval.fiid TC.step;
break:;

start = Analysis.uval.freq TC.start;
stop = Analysis.uval.freqg TC.end;
= Analysis.uval.freq TC.step;

}

num_pts = ((stop - start)/step)+l;

abscissa = vector (0, num_pts-1);

ordinate = vector (0, num_pts-1); /* y axis */
standard_err = vector (0, num pts-1); /* standard error */
spont vector (0, num pts-1); /* spontaneous rate */
nreps Analysis.soundStim.nreps;

count (int *)malloc ({(unsigned)nreps*sizeof (int));
spont_count = (int *)malloc((unsigned)nreps*sizeof (int));

1o

index = 0;
/* for each value */
for (slparam=start; slparam<=stop; slparam+=step) {
for (j=0; j<nreps; j++) spont_count[]j] = count[j] = 0;
for (j=1; Jj<=nreps; j++) {
fread((char *)&size, sizeof(int), 1, readfile);
i1f (size > 0) {

if ((event_list = (unsigned *)malloc(size)) == NULL)
uhoh("Out of core - Analysis()");
return;

}
if (fread((char *)event_list, size, 1, readfile) < 1)
free(event_list);
uhoh ("Error reading events.\n");
return;

{

{

Page 1

May 20 1994 11:45:07 analysis.c

}

/* use only events which occur during the stimulus */

for (i=1; i<=event_list{0]; i++) {
if ((event_time(event_list[i]) <= stimend) &&
(event_time (event_list[i]) >= stimbegin))
++count(j-17;
if (event_time(event_list[i]) < stimbegin)
++spont_count[j-1];
}
} else {
uvhoh("Size of event list = 0\n");
return;
}
}
total_spikes = 0;
for (i=0; i<nreps; 1i++) total_spikes += count[i];

abscissalindex] = (float)slparam;
/* calc the average */
ordinate[index] = (float)total_spikes/(float)nreps;

/* calc the std deviation */
std_deviation = variance = 0.0;
for (i=0; i<nreps; i++)

variance += SQR((float)count[i] - ordinate[index]);
variance /= (float) (nreps-1);
std_deviation = (float)sqgrt((double)variance);
standard_err[index] = std_deviation/(float)sqgrt((double)nreps);

total_spikes = 0;

for (i=0; i<nreps; i++) total_spikes += spont_count[i];
spont{index] = (float)total_spikes/(float)nreps;

if (Analysis.soundStim.prestim_delay > 0)

Page 2

factor = (float)Analysis.soundstim.stim_dur/(float)Analysis.soundStim.prestim_delay;

else factor = 0.0;

spont[index] *= factor;

index++;

free((char *)event_list);
}
/* for labeling the plot with the data file name */
sprintf (description, "File: %s", datafilename);

switch(Analysis.tuningCurve) ({

case Iid:
if (Analysis.soundStim.stimtype == WNoise)
sprintf (stimparams, "Noise ITD: %d ARI: %d
Analysis.uval.iid _TC.itd, Analysis.uval.iid_TC.abi):;
else if (Analysis.soundStim.stimtype == Tone)
sprintf (stimparams, "%d Hz Tone ITD: %d ABI:
Analysis.soundStim.freq, Analysis.uval.iid TC.itd,
Analysis.uval.iid_TC.abi);
break;

case Freq:

sprintf (stimparams, "ITD: %d IID: %d ABI: %d",
Analysis.uval.freq TC.itd, Analysis.uval.freq TC.iid,

Analysis.uval.freq TC.abi) ;

break;
case Itd:
if (Analysis.soundStim.stimtype == WNolse)
sprintf (stimparams, "Noise IID: 3d ABI: %d ",
Analysis.uval.itd_TC.iid, Analysis.uval.itd TC.abi);
else if (Analysis.soundsStim.stimtype == Tone)
sprintf (stimparams, "%d Hz Tone IID: %d ABI:
Analysis.soundStim. freq, Analysis.uval.itd TC.iid,
Analysis.uval.itd_TC.abi);
break;
case Fiid:
if (Analysis.soundStim.stimtype == WNoise)
sprintf (stimparams, "Noise ITD: %d Fixed:
Analysis.uval.fiid TC.itd, Analysis.uval.fild TC.fixed);
else if (Analysis.soundStim.stimtype == Tone)
sprintf (stimparams, "%d Hz Tone ITD: %d Fixed:
Analysis.soundStim.freq, Analysis.uval.fiid TC.itd,
Analysis.uval.fiid_TC.fixed);
break;

}

plot_curve(abscissa, ordinate, standard_err, spont, num_pts);

May 20 1994 11:45:07 analysis.c Page 3

free_vector (abscissa, 0, num pts-1);
free_vector {ordinate, 0, num pts-1);
free_vector(standard_err, 0, num_pts-1);
free((char *)count);

fclose(readfile);

}

void plot_curve(xvals, yvals, std_error, sr, numvals)
int numvals;
float xvals[], yvals[], std_error[];
float srl]; /* spontaneous rate */
{
register int 1i;
int x, y, x2, y2, n;
int textwidth;
int screen = DefaultScreen(display);
float min, max;
Drawable d;
Window window;
XWindowAttributes info;
WC_window canvas_wcC;
float x_value_min, y _value_min, xmin, ymin;
float x_value_max, y_value_max, Xmax, ymax;
float x_range, y_range;
float y_hash;
float loc, step, sy;
float *ddy; /* y’' - for cubic spline interpolation */
float *vector():;
void set_world coords();
void user_to_out();
void spline(), splint();
char buf[15];
char xtitle[64];

XRaiseWindow(display, XtWindow(XtParent (fregCanvas)));
switch(Analysis.tuningCurve) {
case Iid:
d = window = XtWindow(iidCanvas) ;
strepy(xtitle, "IID in dB\O");
break;
case Itd:
d = window = XtWindow (itdCanvas);
strepy(xtitle, "ITD in usec\0"):;
break;
case Fiid:
d = window = XtWindow(fiidCanvas) ;
strcpy (xtitle, "Fixed ILD in dB\O");
break;
case Freq:
d = window = XtWindow (freqgCanvas) ;
strcpy(xtitle, "Frequency in KHz\O0");
break;
}
/* erase the pixmap */
XSetForeground (display, plot_gc, WhitePixel (display, screen));
XFillRectangle(display, d, plot_gc, 0, 0, 400, 350);
XSetForeground(display, plot_gc, BlackPixel (display, screen));

XGetWindowAttributes (display, window, &info);

/* find the min & max */
max = 0.0;
for (i=0; i<numvals; i++)
if (max < yvals([i]) max = (float)yvals([i]:
min = max;
for (i=0; i<numvals; i++)
if (min > yvals[i]) min = (float)yvals[i];
x_value_min (float)xvals([0];
x_value_max (float)xvals[numvals-11;
y_value_min 0.0;
y_value_max max;
X_range = X _value_max - X value_min;
y_range = y_value_max - y_value_min;

o

/* scale window to the data */

May 20 1994 11:45:07 analysis.c Page 4

xmin = x value_min - 0.2*x_range; /* 20% space */
ymin = y_value_min - 0.2*y_range;
xmax = x_value_max + 0.2*X _range;
ymax = y_value_max + 0.2*y_range;

set_world_coords(&canvas_wc, xmin, ymin, xmax, ymax);

/* draw x and y axis */

user_to_out(canvas_wc, x value_min, y_value_min, &x, &y,
info.width, info.height);

user_to_out (canvas_wec, x_value_max, y_value_min, &x2, &y2,
info.width, info.height);

XDrawLine (display, d, plot_gc, x, v, %2, v2);

user_to_out(canvas_wc, x_value min, y_value_max, &X2, &y2,
info.width, info.height);

XDrawLine (display, 4, plot_gc, %, v, %2, ¥2);

/* put hash marks on the x axis */
for (i=0; i<numvals; i++) {
user_to_out(canvas_wc, (float)xvals[i]l, 0.0, &x, &y,
info.width, info.height);
user_to_out(canvas_wc, (float)xvals[i], -(y_value_max/50.0), &x2, &y2,
info.width, info.height);
XDrawLine(display, d, plot_gc, x, vy, x2, y2);
}

/* label hash marks */
switch(Analysis.tuningCurve) ({
case Iid:
if (Analysis.uval.iid_TC.step < 10)
n = 10/Analysis.uval.iid_TC.step;
else n = 1;
for (i=0; i<numvals; i+=n) {
user_to_out(canvas_wc, xvals[i], 0.0, &x, &y,
info.width, info.height);
sprintf (buf, "%4d", (int)xvals[il);
textwidth = XTextWidth(font_info, buf, strlen(buf));
XDrawString(display., 4, plot_gc, x-{(textwidth/2), vy+20,
buf, strlen(buf));
}
break;
case Itd:
if (Analysis.uval.itd_TC.step < 40)
/* label hash marks which are multiples of 60 */
n = 60/Analysis.uval.itd_TC.step;
elsen = 1;
for (i=0; i<numvals; i+=n) {
user_to_out(canvas_wc, xvals[i], 0.0, &x, &y,
info.width, info.height);
sprintf(buf, "%d", (int)xvals[il);
textwidth = XTextWidth (font_info, buf, strlen(buf)):;
XDrawString(display, d, plot_gc, x-(textwidth/2), y+20,
buf, strlen(buf));
}
break;
case Fiid:
n=1;
for (i=0; i<numvals; i+=n) {
user_to_out{canvas_wc, xvals[i], 0.0, &x, &y,
info.width, info.height);
sprintf (buf, "%d", (int)xvals[i]);
textwidth = XTextWidth(font_info, buf, strlen(buf));
XDrawString (display, d, plot_gc, x-(textwidth/2), y+20,
buf, strlen(buf));
}
break;
case Freq:
if (Analysis.uval.freq TC.step < 1000)
/* label hash marks that are multiples of 1000 */
n = 1000/Analysis.uval.freqg TC.step;
else
n=1;
for (i=0; i<numvals; i+=n) {
user_to_out({canvas_wc, xvals[il, 0.0, &x, &y,
info.width, info.height);
sprintf (buf, "$.1f", xvals[1]/1000.0);

May 20 1994 11:45:07 analysis.c Page 5

textwidth = XTextWidth(font_info, buf, strlen(buf));
XDrawString (display, d, plot_gc, x-(textwidth/2),
y+20, buf, strlen(buf));
}
break;
}

/* title the x-axis */
user_to_out (canvas_wc, (float)xvals[numvals/2], 0.0, &x, &y,
info.width, info.height);
textwidth = XTextWidth(font_info, xtitle, strlen(xtitle));
XDrawString(display, d, plot_gc, x-(textwidth/2),
y+40, xtitle, strlen(xtitle));

ddy = vector(l, numvals);
spline(xvals~1, yvals-1, numvals, 0.0, 0.0, ddy);
/* draw a cubic spline interpolated iid tuning curve */
step = 1.0;
loc = xvals[0];
while (loc < xvals[numvals-1]) {
splint(xvals-1, yvals-1l, ddy, numvals, loc, &sy);
user_to_out(canvas_wec, loc, sy, &x, &y, info.width, info.height);
loc += step;
splint(xvals-1, yvals-1, ddy, numvals, loc, &sy);
user_to_out(canvas_wc, loc, sy, &x2, &y2, info.width, info.height);
XDrawLine (display, d, plot_gec, x, vy, X2, y2);
/*loc += step; */
}
free_vector(l, numvals, ddy);
/* draw the data points */
for (i=0; i<numvals; i++) {
user_to_out(canvas_wc, xvals[i], yvals[i],
&x, &y, info.width, info.height);
XDrawRectangle (display, d, plot_gc, x-2, y-2, 4, 4);
}
/* draw the standard errors of the wvalues */
for (i=0; i<numvals; i++) ({
user_to_out{canvas_wc, xvals[i], yvals[i]+std_error[il, &x, &y,
info.width, info.height);
user_to_out(canvas_wc, xvals(i], yvals[i]-std_error[il, &x2, &y2,
info.width, info.height);

XDrawLine(display, d, plot_gc, x, v, X2, vy2);
XDrawlLine (display, d, plot_gc, x-2, vy, X+2, V);
XDrawLine (display, d, plot_gc, x-2, y2, X+2, v2);

}
/* draw the spontaneous rate line */
for (i=0; i<numvals-1; i++) {
user_to_out (canvas_wc, xvals[i], sr([i], &x, &y,
info.width, info.height);
user_to_out (canvas_wc, xvals([i+1], sr[i+l],
&x2, &y2, info.width, info.height);
XDrawLine(display, d, dashed_gc, x, y, X2, y2);
}

/* mark & label the v axis */
/* highest peak */
user_to_out (canvas_wc, (float)xvals([0], max, &x, &Yy,
info.width, info.height);
user_to_out(canvas_wc, (float)xvals[0]-(x value_max/50.0), max,
&x2, &y2, info.width, info.height);
XDrawLine (display, 4, plot_gc, X, y, %2, v2);
sprintf (buf, "%.1f", max);
textwidth = XTextWidth(font_info, buf, strlen(buf));
XDrawString (display, d, plot_gc, x2-(textwidth), y+4, buf, strlen(buf));

/* lowest trough */
user_to_out (canvas_wc, (float)xvals([0], min, &x, &y, info.width, info.height

user_to_out (canvas_wc, (float)xvals[0]-(x_value_max/50.0), min,
&x2, &y2, info.width, info.height);
XDrawLine (display, d, plot_gec, X, v, X2, vy2);
sprintf (buf, "%.1f", min);
textwidth = XTextWidth(font_info, buf, strlen(buf));
XDrawString (display, d, plot_gc, x2-textwidth, y+4, buf, strlen(buf)):

May 20 1994 11:45:07 analysis.c Page 6

XDrawString (display, d, plot_gc, 20, 20, description, strlen(description));
XDrawString (display, d, plot_gc, 20, 30, stimparams, strlen(stimparams));
XFlush{display);

}

void 1idExposed(w, event, params, numparams)
Widget w;
XEvent *event;
String *params;
Cardinal *numparams;
{
XCopyArea (display, iidPixmap, XtWindow(iidCanvas), plot_gc,
0, 0, 400, 350, 0, 0);
}

void 1tdExposed(w, event, params, numparams)
Widget w;
XEvent *event;
String *params;
Cardinal *numparams;
{
XCopyArea (display, itdPixmap, XtWindow(itdCanvas), plot_gc,
0, 0, 400, 350, 0, 0);
}

void fiidExposed(w, event, params, numparams)
Widget w;
XEvent *event;
String *params;
Cardinal *numparams;
{
XCopyArea (display, fiidPixmap, XtWindow(fiidCanvas), plot_gc,
0, 0, 400, 350, 0, 0):
}

void fregExposed(w, event, params, numparams)
Widget w;
XEvent *event;
String *params;
Cardinal *numparams;
{
XCopyArea(display, fregPixmap, XtWindow(fregCanvas), plot_gc,
0, 0, 400, 350, 0, 0);

May 20 1994 11:45:07 atten.c Page 1

#include "includes.h"
#include <sys/filio.h>
#include <fcntl.h>
#include <termios.h>

#define MAXATTEN 99
#define TTYDEV "/dev/ttya"
/* BAUDRATE can be B9600, B19200, B38400 etc.. */
#define BAUDRATE B38400
#define BAUDRATE_STR "38400"
static void xbl_sendstr(n, buf)
int n;

char *buf;

int f4;
static struct termios *t = NULL;

if ((£d = open(TTYDEV, O_RDWR, 0777)) < 0) {
perror (TTYDEV) ;
exit (1) ;

}
if (t == NULL) {

t = (struct termios *) malloc(sizeof (struct termios));
}
tcgetattr (£d, t);
t->c_oflag &= ~(OPOST OCRNL XTABS) ; /* clear */
t->c_cflag &= ~ (CBAUD CSIZE PARENR) ; /* clear */
t->c_cflag |= (BAUDRATE | CS8); /* set ¥/

tcsetattr (fd, TCSANOW, t);

if (write(fd, buf, n) < 0) {
perror (TTYDEV) ;
exit(1);

}
close(fd) ;
}

void PAdatten(id, atten)
int id; /* 0x04 - left; 0x05 - right */
float atten;
{
char buf(6];

int bitpat;

bitpat = (int) (atten * 10.0 + 0.05);

buf[0] = 0x7f & id; /* device address */
buf[l] = 0x44; /* instruction length */
bufl[2] = 0x20; /* PA4_ATT op code */
buf[3] = Oxff & (bitpat >> 8);

buff4] Oxff & bitpat;
buf([5] = Oxff & (bufl[2] + buf[3] + buf[4]);
xbl_sendstr(6, buf);

}

int setRack(freqg, latten, ratten)

int freq; /* hz */
int latten; /* db */
int ratten; /* db */

{
#ifndef STANDALONE

extern void label_ set();
#endif

static int disable = -1;

void PAdatten();

if (disable < 0) {
if (getenv ("ATTOFF") != 0) {
disable = 1;
fprintf(stderr, "setRack: attenuator’s disabled\n"):
} else {
disable = 0;
}

May 20 1994 11:45:07 atten.c Page 2

}

if (disable) {
PAdatten (0x04, (float)MAXATTEN) ;
PAdatten (0x05, (float)MAXATTEN) ;
} else {
if (latten < 0 || latten < 0)
return (True) ;

1f (freq != 0)
fprintf (stderr, "\007setRack: can’t set frequency!!i\n");
return (False) ;

}
if (latten > MAXATTEN) ({
fprintf(stderr, "\007setRack: %ddb on LEFT too big, using %ddB\n",
latten, MAXATTEN) ;
latten = MAXATTEN;

}
if (ratten > MAXATTEN) {
fprintf (stderr, "\007setRack: %¥ddb on RIGHT too big, using %ddB\n",
ratten, MAXATTEN) ;
ratten = MAXATTEN;
}

PAdatten (0x04, (float)latten);
PAdatten (0x05, (float)ratten);
}
return (True) ;
}

May 20 1994 11:45:07 compress.cC

/* Deals with the back-asswards way the event timer board puts information
* into the data buffer. Blame Ted Sullivan, John Power or Jack Wathey.
*/

#include "includes.h"
#include "defines.h®
#include "globals.h"”

unsigned int *CompressEventBuffer(size)
int *size;
{
int i;
unsigned int Count, *CompBuffer, *event_ptr, *first_event;
unsigned int TriggerBug;
unsigned short low word, high word, *short_ptr;

TriggerBug = 100;

/* transpose low and high words in each event */
for (event_ptr = first_event =
(unsigned int *) (short_ptr = Events.list);
*event_ptr; event_ptr++) {
low_word = *short ptr++;
high_word = *short_ptr;
*((short *)event_ptr) = high_word;
*short_ptr++ = low_word;

}

Count = 0;
for (event_ptr = first_event; event_id(*event_ptr); event_ptr++) {
if (event_ptr != first_event
&&
event_id(*event_ptr) == event_id(*(event_ptr-1))
&&
(event_time (* (event_ptr)) - event_time(*(event_ptr-1))) < TriggerBug)
continue;
else
Count++;
}
*gize = (Count+l) * sizeof(unsigned int);
if ((CompBuffer = (unsigned int *)malloc(*size)) == NULL)
fprintf (stderr, "Out of memory in CompressEventBuffer()\n");
else {
CompBuffer[0] = Count;
Count = 0;
for (event_ptr = first_event; event_id(*event_ptr); event_ptr++) {
if (event_ptr != first_event &&
event_id(*event_ptr) == event_id(*(event_ptr-1)) &&
(event_time (*event_ptr)-event_time (* (event_ptr-1))) < TriggerBug)
continue;
else {
CompBuffer[l+Count] = *event_ptr;
Count++;
}
}

}

return (CompBuffer) ;

Page 1

May 20 1994 11:45:07 file.c Page 1

#include "includes.h"
#include "defines.h"
#include "globals.h"

#include <sys/types.h>
#ifdef mc700

#include <ndir.h>
#else

#include <sys/dir.h>
#endif

BOOLEAN FILECK = False;;

void getFilename(w, client, call)

Widget w; /* the begin data acquisition command widget */
caddr_t client, call;
{

XcuDeckRaliseWidget (acgDeck, XtNameToWidget (acgDeck, "file")):
}

getFile(widget, event, params, numparams)
Widget widget;
XEvent *event;
String *params;
Cardinal *numparams;
{
Widget dialog = XtParent(widget);
struct stat file_info;
char *filename;
char buf[80];
voilid start_run();

filename = XawDialogGetValueString(dialog) ;
if (stat(filename, &file info) == -1) {
if (errno == ENOENT) {
if ((datafile = fopen(filename, "w")) == NULL) {
sprintf (buf, "Unable to open file \"%s\".", filename);
uhoh (buf) ;
FILEOK = False;
}
else {
XcuDeckRailseWidget (acgDeck, begin);
strcepy (datafilename, filename) ;
start_run();
}
}
else {
sprintf (buf, *File stat error. Errno: %d", errno);
uhoh (buf) ;
FILEOK = False;
}
}
else if ((file_info.st_mode & S_IFMT) == S_IFDIR) {
uhoh ("Requested file is a subdirectory!");
FILEOK = False;
}
else
overwrite(filename) ;

}

overwrite(filename)

char *filename;

{
Widget OverwritePopup;
Widget owTbl, owLbl;
Widget vyes, no;
Position x, v;
char buf{80];
Arg argsl[5]:;
Cardinal i;
void yesCB(), noCB()};

i = 0;
XtSetArg(args([i], XtNinput, True); i++;
XtSetArg(args[i], XtNallowShellResize, True); i++;

May 20 1994 11:45:07

XtTranslateCoords (acgDeck, (Position)O0, (Position)0, &x, &y);

file.c

XtSetArglargs([i], XtNx, X); i++;

XtSetArg(args([i],
OverwritePopup = XtCreatePopupShell ("Overwrite?",

i

XtSetArg(args{i],

XtNy, v); i++;

toplevel, args, i)

0;

XtNformatString, "c\n ¢ c."); i++;

owTbl = XtCreateManagedWidget ("owTbl", xcuTblWidgetClass,
OverwritePopup, args, 1i);

0;

sprintf (buf, "File \"%s\" exists.\n Overwrite?", filename);
i_

XtSetArg(args[i], XtNlabel, buf); i++;

owLbl = XtCreateManagedWidget ("owLbl", xculabelWidgetClass,

owTbl, args, 1i);

i 0;
XtSetArg(args[i], XtNcursor, dot); i++;
XtSetArg(args[i], XtNlabel, "Yes"); i++;

ves

XtAddCallback (yes,

= XtCreateManagedWidget ("yes"

owTbl, args, 1);

xcuCommandWidgetClass,

XtNcallback, yesCB, (caddr_t)filename);

i 0;
XtSetArg(args[i]l, XtNcursor, dot); i++;
XtSetArg(args[i], XtNlabel, *No"); i++;

no

XtAddCallback (no,

= XtCreateManagedWidget ("no", xcuCommandWidgetClass,

owTbl, args, i);

XtNcallback, noCB, {(caddr_t)NULL) ;

XtPopup (OverwritePopup, XtGrabNonexclusive) ;

}

write_header ()

{

fprintf (datafile,
if

}

else if

}

else if

}

else 1if

}

fprintf (datafile,
fprintf (datafile,

"OASys Data File\n");

(curvetype == Freq) {

fprintf(datafile,
fprintf(datafile,
fprintf (datafile,
fprintf (datafile,
fprintf(datafile,
fprintf(datafile,
fprintf (datafile,

fprintf(datafile,
fprintf (datafile,
fprintf(datafile,
fprintf (datafile,
fprintf (datafile,
fprintf(datafile,
write_stimtype():

fprintf(datafile,
fprintf(datafile,
fprintf(datafile,
fprintf(datafile,
fprintf(datafile,
fprintf(datafile,
write_stimtype():

fprintf (datafile,
fprintf(datafile,
fprintf(datafile,
fprintf(datafile,
fprintf (datafile,
fprintf (datafile,
write_stimtype() ;

(curvetype ==

(curvetype ==

(curvetype ==

"Frequency Tuning Curve\n");
"Start: %d\n", FreqgCurve.start);
"End: %d\n", FreqCurve.end);
"Step: %$d\n', FregCurve.step);
"ITD: %d\n", FreqgCurve.itd);
"IID: %d\n", FregCurve.iid);
"ABI: %d\n", FregCurve.abi);

Itd) {

"ITD Tuning Curve\n");

"Start: %d\n", ItdCurve.start);
"End: %d\n", ItdCurve.end);
"Step: %d\n", ItdCurve.step);
"TID: %d\n", ItdCurve.iid);
"ABI: %d\n", ItdCurve.abi);

Iid) {

"IID Tuning Curve\n'");

"Start: %d\n", IidCurve.start);
"End: %d\n", IidCurve.end);
"Step: %d\n", IidCurve.step);
"ITD: %d\n", IidCurve.itd);
"ABI: %d\n", IidCurve.abi);

Fiid) {

"Fixed IID Tuning Curve\n");
"Start: %d\n", FiidCurve.start);
"End: %d\n", FiidCurve.end);
"Step: %d\n", FiidCurve.step);
"Fixed: %d\n", FiidCurve.fixed);
"ITD: %d\n", FiidCurve.itd);

"Reps: %d\n", stimulus.nreps);
"Recording duration: %d\n", stimulus.total_dur);

transientShellWidgetClass,

Page 2

May 20 1994 11:45:07 file.c Page 3

fprintf (datafile, "PreStimulus Delay: %d\n", stimulus.prestim_delay);
fprintf (datafile, "Stimulus duration: %d\n", stimulus.stim dur);
fprintf (datafile, "END HEADER\n") ;

write_stimtype ()
{

register int i;

if (stimulus.stimtype == Tone)

fprintf(datafile, "Tone: %d\n", stimulus.freq);
else if (stimulus.stimtype == WNoise)

fprintf (datafile, "WNoise\n");
else if (stimulus.stimtype == BPNoise) {

fprintf{(datafile, "BPNoise\n");

fprintf(datafile, "Low Freq: %d\n", stimulus.bpNoiseStim.startfreq);

fprintf(datafile, "High Freqg: %d\n", stimulus.bpNoiseStim.endfreq):;
}
else 1f (stimulus.stimtype == ToneCombo) {

fprintf (datafile, "ToneCombo\n");

fprintf (datafile, "Num Fregs: %d\n", stimulus.tcStim.numfregs);

for (i1=0; i<stimulus.tcStim.numfreqgs; i++)

fprintf (datafile, "Freq: %d\n", stimulus.tcStim.comp[i].freq):

}

read_header (readfile)
FILE *readfile;
{
register int i, Jj;
char casys([80];
char buf[80], ident[80], value[80];
int val;
int start, end, step, itd, iid, abi, fixed;

for (i=0; 1i<80; i++) buf[i] = "\0’;
fgets (oasys, 80, readfile);
if (strcmp("OASys Data File\n", oasys) != 0) {
uhoh("Specified file is not an OASys data file.");
return;
}
for (i=0; 1i<80; i++) buf[i] = "\0’;
fgets (buf, 80, readfile);
while (strcmp(buf, "END HEADER\n") != 0) {
/* parse the data file header info */
if (stremp("Frequency Tuning Curve\n', buf) == 0)
Analysis.tuningCurve = Freq;
else if (strcmp("ITD Tuning Curve\n", buf) == 0)
Analysis.tuningCurve = Itd;
else if (stremp("IID Tuning Curve\n", buf) == 0)
Analysis.tuningCurve = Iid;
else if (strcmp("Fixed IID Tuning Curve\n", buf) == 0)
Analysis.tuningCurve = Fiid;
else if (strcmp("WNoise\n", buf) == 0)
Analysis.soundStim.stimtype = WNoise;
else if (strcmp("BPNoise\n", buf) == 0)
Analysis.soundStim.stimtype = BPNoise:
else if (strcmp("ToneCombo\n", buf) == 0)
Analysis.soundStim.stimtype = ToneCombo;
else { /* field contains a value */

for (i=0; i<80; i++) ident[i] = value[i] = "\0’;
i = 0;
while (buf[i] !'= ":")

ident[i] = buf[i]; i++;

if (1 > 79) {
uhoh ("Error reading data file - no \‘':\'");
return(-1);
}
}
i++; /* skip the colon */
while (isspace(buflil) !'= 0) i++; /* skip to the number */
if (i > 79) {
uhoh ("Error reading data file - no value found");
return(-1);

May 20 1994 11:45:07

}

j = 0;
while (buf[i] != "\n’)
valuefj] = buf[i];

if (isdigit(valuel]j
if (valuel[j] !'=

file.c

{

1) == 0) |
=)

uhoh ("Error reading data file- digit expected");

return (1) ;
}
}

i++, J++;

val = atoi(value);

if (strcmp(ident, "Start") == 0) start = val;

else if (strcmp(ident,
else if (strcmp(ident,
else if (strcmp(ident,
else if (strcmp(ident,
else if (strcmp(ident,
else if (strcmp(ident,
else if (strcmp(ident,

Analysis.soundStim.

Analysis.soundStim.

else if (strcmp(ident,
Analysis.soundStim.
else 1if (strcmp(ident,
Analysis.soundStim.
else if (strcmp (ident,
Analysis.soundStim.
else if (strcmp(ident,
Analysis.soundStim.
else if (strcmp (ident,
Analysis.soundStim.
else if (strcmp(ident,
Analysis.soundStim.
}
/* read in next line */
for (i=0; 1<80; 1i++) bufl[
fgets (buf, 80, readfile);

/* end of header */
if (Analysis.tuningCurve ==

"End") == 0) end = val;
"Step") == 0) step = val;
"ITD") == 0) itd = val;
"IID") == 0) iid = val;
"ABI") == 0) abi = val;
"Fixed") == 0) fixed = val;
"Tone") == 0) {

stimtype = Tone;
freq = val;

"Low Freqg") == 0)
bpNoiseStim.startfreq = val;
"High Freg") == 0)

bpNoiseStim.endfreq = val;
"Reps") —= o)
nreps = val;

"Recording duration") == 0)
total_dur = val;

"PreStimulus Delay") == 0)
prestim delay = val;

"Stimulus duration") == 0)

stim _dur = val;

il = '\0’";

Freq) {

Analysis.uval.freq TC.start = start;
Analysis.uval.freqg TC.end = end;

Analysis.uval.freq TC.ste

p = step;

Analysis.uval.freg TC.itd = itd;
Analysis.uval.freq TC.iid = iid;
Analysis.uval.freg TC.abi = abi;

}

else if (Analysis.tuningCurve == Itd) {

Analysis.uval.itd_TC.start = start;

Analysis.uval.itd TC.end

= end;

Analysis.uval.itd_TC.step = step;

Analysis.uval.itd TC.iid = 1id;
Analysis.uval.itd _TC.abi = abi;

}

else 1if (Analysis.tuningCurve == Iid) ({
Analysis.uval.iid TC.start = start;
Analysis.uval.iid TC.end = end;
Analysis.uval.iid TC.step = step;
Analysis.uval.iid _TC.itd = itd;
Analysis.uval.iid TC.abi = abi;

}

else if (Analysis.tuningCurve == Fiid) {
Analysis.uval.fiid TC.start = start;
Analysis.uval.fiid_TC.end = end;
Analysis.uval.fiid TC.step = step;
Analysis.uval.fiid_TC.itd = itd;
Analysis.uval.fiid TC.fixed = fixed;

}

/* Callbacks of Yes and No response buttons of the overwrite

popup */

Page 4

May 20 1994 11:45:07 file.c Page 5

void yesCB(widget, name, call)
Widget widget;
caddr_t call, name;

{
Widget popup = XtParent (XtParent (widget)):

char buf{80];
void start_run();

if ((datafile = fopen{({char *)name, "w")) == NULL) {
sprintf(buf, "Unable to open file \"%s\".", {(char *)name);
uhoh (buf) ;

FILEOK = False;
}
else FILEOK = True;
XtPopdown {(popup) ;
XtDestroyWidget (popup) ;
XcuDeckRaiseWidget (acgDeck, begin);
strcpy(datafilename, (char *)name);
start_run{() ;
}

void noCB(widget, client, call)
Widget widget;
caddr_t client, call;

{
Widget popup = XtParent (XtParent(widget));

FILEOK = False;
XtPopdown (popup) ;
XtDestroyWidget (popup) ;

May 20 1994 11:45:07 fstnoise.c

PROGRAM: |
MODULE: fstnoise.c |

RELATED
MODULES: fstnoise.h]

MACHINE: Any unix machine with 32-bit word size |

STARTED: 24-AUG-89 BY: J.C. Wathey |

REVISED: 06-SEP-89 BY: JCW |
|

STATUS : incomplete or untested

compiles; partly tested |
runs; revisions in progress |
-> runs; stable version |

CONTAINS: routine fast_noise() for generating
Gaussian white noise with a binary search
look-up table algorithm developed by JCW;
also includes 2 initialization routines.

#include <stdio.h>
#include <math.h>

/* The noise values will vary between +/- MAX DA. */
#define MAX DA 8192

/* MAX_WIDTH_IN_SIGMAS is the maximum width bell curve which
can be represented in the Gaussian look-up table. It depends
upon MAX_DA and MAX RAND in a complex way and, as far as I
know, cannot be solved for analytically. The value 4.1608
was determined empirically (with a binary search) to be
appropriate for MAX DA = 2047 and MAX_RAND = 1771874. */

#define MAX_WIDTH_IN_SIGMAS 4.1608
void init_random_sequence();

#ifndef TRUE
#define TRUE 1
#endif

#ifndef FALSE
#define FALSE 0
#endif

#define UNIFORM TABLE_SIZE 100
#define GAUSSIAN_ TABLE_SIZE (MAX_DA+2)

/* The next four constants are appropriate for
machines using 32-bit integers. See Numerical
Recipes in C, section on portable random number
generators, for values appropriate to other word
gsizes. */

#define IA 2416

#define IC 374441

#define IM 1771875

#define MAX RAND (IM-1)

#define random() (uniform_deviate=(uniform deviate*IA+IC)%IM)
#define Int4 long

#define Int2 short

#define Intl char

#define Int4u unsigned long

Page 1

May 20 1994 11:45:07 fstnoise.c

#define Int2u unsigned short
#define Intlu unsigned char

———————————————————————————————— GLOBAL DECLARATIONS ———---———c—omux/

static Int4du gaussian_table[GAUSSIAN_TABLE_ SIZE],

uniform_table] UNIFORM_TABLE_SIZE 1,
uniform deviate = 0;

static int gaussian_table_initialized = FALSE,

uniform_table_initialized = FALSE;

int fast_noise(noise_buffer, num noise_pts, frame size)

/* On entry, noise buffer points to a buffer large enough to

contain num noise_pts short integers. This routine fills
that buffer with Gaussian white noise, varying between +/-
MAX_DA. The argument frame_size is the number of shorts per
frame and must be > 0. If frame_size = 1, every element of
noise_buffer is filled; if frame_size = 2, only elements
0,2,4... are filled; if frame_size = 3, only elements 0,3,6...
are filled, etc. For generating 2-channel interlaced noise,
call this routine with frame_size=2 and then copy the even-
index values to the odd-indexed values, shifting and

interpolating as necessary to create the desired interaural
time difference. The sequence of values is uniquely determined

by the arguments to the routines init_random sequence() and
init_gaussian_table(), both of which must be called before this
routine can be used. If either of these initialization

routines has not been called, this routine gives an error
message and returns TRUE without changing the contents of
noise_buffer. Returns FALSE if no error occurs. */

short * noise_buffer;
Int4u num_noise_pts;

register unsigned int frame_size;

[HEmm—— functions called ----- */
[F~——— extern variables ----- */
extern Int4u gaussian_ table[];
extern Intdu uniform_ deviate;
[F local variables ----- */
int error;
register Int4u low,
high,
middle,
target,
uniform_i;
register short * noise_ptr;
[F*m—— start function ------- */

if (error = (frame_size<=0)) {
fprintf (stderr,

"fast_noise: frame_size must be > 0\n");
return(error) ;

}

if (error = !gaussian_table_initialized) {

fprintf (stderr,

"fast_noise: init_gaussian_table() must be called first\n");
return(error) ;

}

if (error = !uniform_table_initialized) {

fprintf (stderr,

"fast_noise: init_random sequence() must be called first\n");
return (error) ;

Page 2

May 20 1994 11:45:07 fstnoise.c Page 3

}

for(noise_ptr = noise_buffer;
noise_ptr < noise_buffer + num _noise_pts;
noise_ptr += frame_size) {

low = 0;
high = GAUSSIAN_TABLE SIZE;
middle = (high + low) >> 1;

uniform_i = (UNIFORM_TABLE_SIZE-1)
* uniform_deviate / MAX RAND;

target = uniform_table[uniform_i];
uniform_table[uniform i] = random();

while (high-low > 1) {
if (target > gaussian_table[middle])
low = middle;
else
high = middle;
middle = (high + low) >> 1;
}

if (target & 1)
low = -low;

*noise_ptr = (short) low;
}

return (error) ;

void init_random_sequence(seed_ptr)

/* Initializes uniform_table[] using *seed_ptr as a seed if it
is between 0 and MAX RAND, inclusive. If *seed_ptr is out of
this range, the routine generates a seed using the time(2)
system call and copies that seed to *seed_ptr. */

Int4 * gseed_ptr;
{
[Fmm—— functions called ----- */
[F———— extern variables ----- */
extern Int4u uniform_tablel],
uniform_deviate;
extern int uniform table_initialized;
[Fmm——— local variables ----- */
long time_value;
Intd4u low_16;
int i;
[*m——— start function ------- */
if (*seed_ptr < 0 || *seed_ptr > MAX RAND) {
time (&time_value) ;
low_16 = time_value & OXFFFF;
*seed_ptr = ((unsigned) (low_16 | (low_16<<16))) % IM;

}
uniform deviate = *seed ptr;

0; 1 < UNIFORM_TABLE SIZE; i++)

)i

for(1i=0; i < UNIFORM_TABLE_SIZE; i++)
uniform_table[i] = random():;

for(i
random (

uniform deviate = random() ;

uniform_table_initialized = TRUE;

May 20 1994 11:45:07 fstnoise.c

/* ___ */
int init_gaussian_table(width_in_sigmas)
/* Initializes noise table for generation of Gaussian
noise. Argument width_in_sigmas gives the width of the bell

curve used, expressed as the number of standard deviations.
This routine need only be called once by the application
program. The routine fast_noise() can then be used as many
times as desired, without calling this routine, as long as
there 1is no need to change the width of the bell curve.

Returns TRUE, without initializing the table, if
width_in_sigmas 1s not in the useable range; otherwise returns
FALSE. */

double width_in_sigmas;

[Fem——— functions called ----- */

double exp();
[K extern variables ----- */

extern Intd4u gaussian_table[];
extern int gaussian_table_initialized;

[Fmm——— local wvariables ----- */
int error,

17
double bell_curve_integral[GAUSSIAN_TABLE_SIZE 1],

sum,
X;
[F===—= start function ------- */
gaussian_table_initialized = FALSE;
if (error = (width_in_sigmas <= 0.0
width _in sigmas > MAX_WIDTH_IN SIGMAS)) {

fprintf (stderr,

"init_gaussian table: width_in_sigmas must be >0 and <=%g\n",
MAX _WIDTH_TIN_SIGMAS) ;

return(error) ;

}

bell_curve_integrall 0] 0.0;
bell_curve_integral[1] 0.5;

for (i = 2; 1 < GAUSSIAN TABLE_SIZE; i++) {
X = (i-1) * width_in_sigmas / MAX DA;

bell curve_integralli] = exp(-x*x/2.0) +

bell_curve_integral[i-11;

}

sum = bell curve_integral{ GAUSSIAN_ TABLE_SIZE-1 1;

for (i = 1; i< GAUSSIAN TABLE_SIZE; i++)
bell_curve_integrall[il /= sum;

for (i = 0; i< GAUSSIAN TABLE_SIZE; i++)
gaussian_table[i] =
(Intd4u) (MAX_RAND * bell curve_integral[i] + 0.5);

if (error = (gaussian_table[GAUSSIAN TABLE_SIZE-1]
<=
gaussian_table[GAUSSIAN_TABLE_SIZE-21)) {

fprintf (stderr,
"init_gaussian_table: use a smaller width_in_sigmas\n");

return(error) ;
}

gaussian_table_initialized = TRUE;

return (error) ;

Page 4

May 20 1994 11:45:07 gui.c

#include "includes.h"
#include "defines.h"
#include "globals.h"

Widget rasterTbl;
Widget stimdeck, curvedeck;
Widget fregTunTbl, itdTbl, iidTbl, f£iidTbl;

void getBPlow(), getBPhi();

void getFile(}, getFreq(), getITD(), getIID(

getABI();

).
void itdExposed(), 1lidExposed(), fregExposed(), fiidExposed();
XtActionsRec actionTable[] = {

Y

{"getBPlow", getBPlow},
{"getBPhi", getBPhi},
{"getFile", getFile},
{"getFreqg", getFreq},
{"getITD", getITD},
{"getIID", getIID},
{"getABI", getABI},
{"itdExposed", itdExposed},
{"fregExposed", freqExposed},
{"iidExposed", i1idExposed},
{"fiidExposed", fiidExposed}

makeGUI (argc, argv)
int *argc;
String *argv;

{

Widget mainForm;
XGCValues values;

char *fontname = "6x10";
Arg args[10];

Cardinal 1;

XtToolkitInitialize () ;

app_context = XtCreateApplicationContext();

XtAppAddActions (app_context, actionTable, XtNumber (actionTabkle));

display = XtOpenDisplay(app_context, NULL, "OASys", "OASys",
NULL, 0, argc, argv);

/* define cursors */
dot = XCreateFontCursor (display, XC_dot);
crosshalr = XCreateFontCursor (display, XC_crosshair);

i = 0;

XtSetArg(args([i], XtNinput, True); i++;

XtSetArg(args([i], XtNallowShellResize, True); i++;

toplevel = XtAppCreateShell ("OASys", "OASys", applicationShellWidgetClass,
display, args, 1);

i = 0;

XtSetArg(args([i], XtNformatString, "c."); i1++;

mainForm = XtCreateManagedWidget ('mainForm", xcuTbhlWidgetClass,
toplevel, args, 1i);

makeControlPanel (mainForm) ;
makeDisplayPanel (mainForm) ;

XtReallzeWidget (toplevel);
makePlotPanel (mainForm) ;

/* now make the GC’s & stuff */
values.foreground = BlackPixel (display, DefaultScreen(display));
plot_gc = XCreateGC(display, XtWindow(toplevel), GCForeground, &values);
values.line_style = LineOnOffDash;
dashed_gc = XCreateGC (display, XtWindow(toplevel),

GCForeground | GCLineStyle, &values);

if (! (font_info = XLoadQueryFont (display, fontname))) {
fprintf (stderr, "Cannot open %s font\n", fontname);
return;

}

XSetFont(display, plot_gc, font_info->fid);

Page 1

May 20 1994 11:45:07 gui.c

makeDisplayPanel (parent)
Widget parent;

{

}

Arg args[10];
int 1i;

i = 0;

XtSetArg(args[i], XtNformatString, "c."); i++;

rasterTbl = XtCreateManagedWidget ("rasterTbl", xcuTblWidgetClass,
parent, args, 1i);

i = 0;

XtSetArg(args[i], XtNwidth, 500); i++;

XtSetArg(args[i], XtNheight, 400); i++;

raster = XtCreateManagedWidget ("raster", simpleWidgetClass,
rasterTbl, args, 1i);

i = 0;

XtSetArg(args[i], XtNwidth, 500); i++;

XtSetArg(args([i], XtNheight, 100); i++;

stimCanvas = XtCreateManagedWidget('"stimCanvas", simpleWidgetClass,
rasterThl, args, 1i):

makePlotPanel (parent)
Widget parent;

Widget canvasTbl;
Arg args[10];
int i, x, vy;

X = XDisplayWidth(display, DefaultScreen(display))/2 - 400;
vy = XDisplayHeight(display, DefaultScreen(display))/2 - 350;
i=0;

XtSetArg(args([i], XtNallowShellResize, True); i++;

XtSetArg(args[i], XtNx, x); i++;

XtSetArg(args[i], XtNy, y); i++;

plotPopup = XtCreatePopupShell ("OASys Plots", transientShellWidgetClass,
parent, args, i)

i = 0;

XtSetArg(args([i], XtNformatString, "c c\n c c."); i++;

canvasTbl = XtCreateManagedWidget ("canvasTbl", xcuTblWidgetClass,
plotPopup, args, i);

i = 0;
XtSetArg(args[i], XtNwidth, 400); i++;
XtSetArg(args[i], XtNheight, 350); i++;
freqCanvas = XtCreateManagedWidget ("fregCanvas", simpleWidgetClass,
canvasTbl, args, 1);
fregPixmap = XCreatePixmap(display, XtWindow(toplevel), 400, 350,
DefaultDepth(display, DefaultScreen(display)));
{
String trans =
"<Expose>: fregExposed()\n";
XtTranslations table;
table = XtParseTranslationTable(trans) ;
XtOverrideTranslations (fregCanvas, table);

}

i = 0;
XtSetArg(args[i], XtNwidth, 400); i++;
XtSetArg(args[i], XtNheight, 350); 1i++;
itdCanvas = XtCreateManagedWidget ("itdCanvas', simpleWidgetClass,
canvasTbl, args, 1);
itdPixmap = XCreatePixmap (display, XtWindow(toplevel), 400, 350,
DefaultDepth(display, DefaultScreen(display))):
{
String trans =
"<Expose>: 1tdExposed()\n";
XtTranslations table;
table = XtParseTranslationTable (trans) ;

Page 2

May 20 1994 11:45:07 gui.c

}

XtOverrideTranslations (itdCanvas, table);
}

i = 0;

XtSetArg(args([i], XtNwidth, 400); i++;

XtSetArg(args([i], XtNheight, 350); i++;

iidCanvas = XtCreateManagedWidget ("iidCanvas", simpleWidgetClass,
canvasTbl, args, 1i);

iidPixmap = XCreatePixmap (display, XtWindow(toplevel), 400, 350,
DefaultDepth(display, DefaultScreen(display)});

{
String trans =

"<Expose>: 1idExposed()\n";

XtTranslations table;
table = XtParseTranslationTable(trans);
XtOverrideTranslations (iidCanvas, table);

}

i = 0;
XtSetArg(args([i], XtNwidth, 400); i++;
XtSetArg(args([i], XtNheight, 350); i++;

fiidCanvas = XtCreateManagedWidget("fiidCanvas", simpleWidgetClass,

canvasTbl, args, i);
fiidPixmap = XCreatePixmap (display, XtWindow(toplevel), 400, 350,
DefaultDepth(display, DefaultScreen(display)));
{
String trans =
"<Expose>: fiidExposed()\n";
XtTranslations table:
table = XtParseTranslationTable(trans) ;
XtOverrideTranslations (fildCanvas, table);

makeControlPanel (parent)
Widget parent;
{

}

Widget overallTbl, stimTbl, curveTbl, utilTbl;
Arg args[4];
int i;

i = 0;

XtSetArg(args[il, XtNformatString, "c c c c."); i++;

utilTbhl = XtCreateManagedWidget ("utilTbl", xcuTblWidgetClass,
parent, args, i);

makeUtilTbl (utilTbl) ;

i = 0;
XtSetArg(args([i], XtNformatString, "c c."); i++;

overallTbl = XtCreateManagedWidget("overallTbl", xcuTblWidgetClass,

parent, args, 1i);

i = 0;

XtSetArg(args([i], XtNformatString, "c."); i++;

stimTbl = XtCreateManagedWidget ("stimTbl", xcuTblWidgetClass,
overallTbl, args, i);

makeStimTbl (stimThl) ;

i = 0;

XtSetArg(args[i], XtNformatString, "c."); 1++;

curveTbl = XtCreateManagedWidget('curveTbl", xcuTblWidgetClass,
overallTbl, args, 1i);

makeCurveTbl {curveTbl) ;

makeUtilTbl (parent)
Widget parent;

{

Widget zero, file, quit;

Arg args([10];

int i;

String translations;

XtTranslations table;

void Quit(), getFilename(), stop_data_acqg(), zeroAtten();

Page 3

May 20 1994 11:45:07 gui.c

}

acgDeck = XtCreateManagedWidget ("acgDeck", xcuDeckWidgetClass,
parent, NULL, 0);

i = 0;
XtSetArg(args[i], XtNcursor, dot); i++;
XtSetArg(args[i], XtNlabel, "Start Data\n Acquisition"); i++;

begin = XtCreateManagedWidget ("begin", xcuCommandWidgetClass,
acgbDeck, args, 1i):;
XtAddCallback (begin, XtNcallback, getFilename, (caddr_t)NULL) ;

i = 0;
XtSetArg(args([i], XtNvalue, ""); i++;
XtSetArg(args([i], XtNlabel, "Data File:"); i++;

file = XtCreateManagedWidget("file", dialogWidgetClass,
acgDeck, args, i);

translations = "#override\n <Key>Return: getFile()\n";
table = XtParseTranslationTable (translations);
XtOverrideTranslations (XtNameToWidget (file, "value"), table);
XtSetKeyboardFocus (file, XtNameToWidget (file, "value"));
i=0;

XtSetArg(args([i], XtNcursor, dot); i++;

XtSetArg(args[i], XtNlabel, "Stop Data\n Acquisition"); i++;

XtSetArg(args([i], XtNsensitive, False); i1++;

interrupt = XtCreateManagedWidget ("interrupt", xcuCommandWidgetClass,
parent, args, 1i);

XtAaddcCallback (interrupt, XtNcallback, stop_data acqg, (caddr_t)NULL) ;

i = 0;
XtSetArg(args[1], XtNcursor, dot); i++;
XtSetArg(args([i]l, XtNlabel, "Zero\n Attenuators"); i++;

zero = XtCreateManagedWidget("zero®, xcuCommandWidgetClass,
parent, args, 1):
XtAddcallback (zero, XtNcallback, zeroAtten, (caddr_t)NULL);

i = 0;
XtSetArg(args[i]l, XtNcursor, dot); i++;
XtSetArg(args[i], XtNlabel, "QUIT"); i++;

quit = XtCreateManagedWidget('"quit", xcuCommandwidgetClass,
parent, args, 1i):
XtAddCallback (gquit, XtNcallback, Quit, (caddr_t)NULL);

makeCurveTbl (parent)
Widget parent;

{

Widget curveButtonMgr, curveBtnTbl;
Widget fregBtn, itdBtn, iidBtn, fiidBtn;
Widget managed_buttons[4];

caddr_t managed_values[4];

Arg args([10];

int i;

void curve_changer() ;

/* buttons which control which tuning curve is to be taken (and
* therefore which tuning curve parameters are on top of the deck.
*/
i = 0;
XtSetArg(args[i], XtNbmgrType, XcuBMGR_ONE_OF_MANY) ; i++;
curveButtonMgr = XtCreateManagedWidget ("curveButtonMgr", xcuBmgrWidgetClass,
parent, args, 1i);

i = 0;

XtSetArg(args([il, XtNformatString, "c c\n c c."); i++;

curveBtnTbl = XtCreateManagedWidget ("curveBtnTbl", xcuTblWidgetClass,
parent, args, 1i);

i = 0;

XtSetArg(args[i], XtNresizable, True); i++;

XtSetArg(args([i], XtNcursor, dot); i++;

XtSetArg(args([i]l, XtNlabel, "Freq Tuning"); i++;

XtSetArg(args[i], XtNset, True); i++;

fregBtn = XtCreateManagedWidget ("fregBtn", xcuButtonWidgetClass,
curveBtnTbl, args, 1);

Page 4

May 20 1994 11:45:07 gui.c

}

i=0;

XtSetArg(args[i], XtNresizable, True); i++;

XtSetArg(args[i], XtNcursor, dot); i++;

XtSetArg(args[i], XtNlabel, "ITD Tuning"); i++;

itdBtn = XtCreateManagedwWidget ("itdBtn", xcuButtonWidgetClass,
curveBtnTbl, args, 1i);

i = 0;

XtSetArg(args[i], XtNresizable, True); i++;

XtSetArg(args[i], XtNcursor, dot); i++;

XtSetArg(args[i], XtNlabel, "IID Tuning"); i++;

iidBtn = XtCreateManagedWidget("iidBtn", xcuButtonWidgetClass,
curveBtnTbl, args, 1i);

i = 0;

XtSetArg(args([i], XtNresizable, True); i++;

XtSetArg(args([i], XtNcursor, dot); i++;

XtSetArg(args([i], XtNlabel, "FIID Tuning"); i++;

fiidBtn = XtCreateManagedWidget ("fiidBtn", xcuButtonWidgetClass,
curveBtnTbl, args, 1i);

(caddr_t) "fregBtn";
(caddr_t) "itdBtn";
(caddr_t) "iidBtn";
(caddr_t) "fiidBtn";

managed_buttons[0]
managed_buttons[1]
managed_buttons[2]
managed_buttons[3]

fregBtn; managed_values[O0]
itdBtn; managed _values[1]
1idBtn; managed_values|[2]
fiidBtn; managed_values([3]

o n

o

curvedeck = XtCreateManagedWidget ("curvedeck", xcuDeckWidgetClass,
parent, NULL, O0);

i = 0;

XtSetArg(args[i], XtNformatString, "c."); i++;

fregTunTbl = XtCreateManagedWidget("freqTunTbl", xcuTblWidgetClass,
curvedeck, args, i);

makeFregTbl (fregqTunTbl) ;

i=0;

XtSetArg(args([i], XtNformatString, "c."); i++;

itdThl = XtCreateManagedWidget ("itdTbl", xcuTblWidgetClass,
curvedeck, args, i);

makeItdThl (itdTbl) ;

i = 0;

XtSetArg(args[i], XtNformatString, "c."); i++;

1idTbl = XtCreateManagedWidget("iidTbl", xcuTblWidgetClass,
curvedeck, args, 1i);

makeIidTbl (iidThl);

i = 0;

XtSetArg(args([i], XtNformatString, "c."); i++;

fiidTbkl = XtCreateManagedWidget ("£fiidTbl", xcuTblWidgetClass,
curvedeck, args, i);

makeFiidTbl (£11dTbl) ;

XcuBmgrManage (curveButtonMgy, managed_buttons, managed_values, FOUR);
XtAddCallback (curveButtonMgr, XtNsetCallback, curve_changer, NULL) ;

/* Make frequency tuning curve parameter table */
makeFreqTbl (parent)

Widget parent;

{

Widget start, end, step, itd, 1id, abi;
Widget wval;

Arg args[10];

int 1i;

String translations;

XtTranslations table;

void getFreq();

char bufl[16];

i = 0;

sprintf (buf, "%d", FregCurve.start);

XtSetArg(args[i], XtNvalue, buf); i++;

XtSetArg(args[i], XtNlabel, "Starting Freqg (Hz):"); i++;
start = XtCreateManagedWidget ("start", dialogWidgetClass,

Page 5

May 20 1994 11:45:07 gui.c Page 6

parent, args, 1);

i= 0;

XtSetArg(args[i], XtNfromHoriz, XtNameToWidget (start, "label")); i++;
XtSetArg(args([i], XtNfromVert, NULL); i++;

XtSetArg(args[i], XtNinsertPosition, strlen(buf)); i++;

XtSetArg(args[i], XtNwidth, 75); i++;

val = XtNameToWidget(start, "value");

XtSetValues (val, args, 1);

translations = "#override\n <Key>Return: getFreqg()\n";
table = XtParseTranslationTable (translations);
XtOverrideTranslations(val, table);

XtSetKeyboardFocus (start, val);

i = 0;

sprintf (buf, "$d", FreqCurve.end);

XtSetArg(args[i], XtNvalue, buf); i++;

XtSetArg(args[i], XtNlabel, "Ending Freqg (Hz): "); i++;

end = XtCreateManagedWidget ("end", dialogWidgetClass,
parent, args, 1);

i=0;

XtSetArg(args[i], XtNfromHoriz, XtNameToWidget(end, "label")); i++;
XtSetArg(args[i], XtNfromVert, NULL); i++;

XtSetArg(args[i], XtNinsertPosition, strlen(buf)); i++;

XtSetArg(args[i], XtNwidth, 75); i++;
val = XtNameToWidget (end, "value");
XtSetValues(val, args, 1i);
XtOverrideTranslations (val, table);
XtSetKeyboardFocus (end, val);

i = 0;

sprintf (buf, "%d", FreqCurve.step);

XtSetArg(args[i], XtNvalue, buf); i++;

XtSetArg(args[1], XtNlabel, "Step Freq (Hz): "y odi++;

step = XtCreateManagedWidget("step", dialogWidgetClass,
parent, args, 1i);

i = 0;

XtSetArg(args[i], XtNwidth, 75); i++;

XtSetArg(args([i], XtNfromHoriz, XtNameToWidget(step, "label")); i++;
XtSetArg(args[i], XtNfromVert, NULL); i++;

XtsetArg(args[i], XtNinsertPosition, strlen(buf)); i++;

val = XtNameToWidget(step, "value");
XtSetValues(val, args, 1i);
XtOverrideTranslations (val, table);
XtSetKeyboardFocus (step, val);

i = 0;

sprintf (buf, "%d", FregCurve.itd);

XtSetArg(args[i], XtNvalue, buf); i++;

XtSetArg(args[i], XtNlabel, "ITD (usec): "y odi++;

itd = XtCreateManagedwidget ("itd", dialogWidgetClass,
parent, args, i);

i = 0;

XtSetArg(args[i], XtNwidth, 75); i++;

XtSetArg(args[i], XtNfromHoriz, XtNameToWidget (itd, "label")); i++;
XtSetArg(args[i], XtNfromVert, NULL); i++;

XtSetArg(args[i], XtNinsertPosition, strlen(buf)); i++;

val = XtNameToWidget(itd, "value");

XtSetValues(val, args, 1i);

translations = "#override\n <Key>Return: getITD()\n";
table = XtParseTranslationTable(translations);
XtOverrideTranslations(val, table);
XtSetKeyboardFocus (itd, val);

i = 0;

sprintf (buf, "%d", FreqCurve.iid);

XtSetArg(args([i], XtNvalue, buf); i++;

XtSetArg(args[i], XtNlabel, "IID (dB): L I

iid = XtCreateManagedwidget ("iid", dlalogWidgetClass,
parent, args, 1i);

i= 0;

XtSetArg(args[i], XtNwidth, 75); i++;

XtSetArg(args[i], XtNfromHoriz, XtNameToWidget(iid, "label")); i++;
XtSetArg(args[i], XtNfromVert, NULL); i++;

XtSetArg(args[i], XtNinsertPosition, strlen(buf)); i++;

val = XtNameToWidget(iid, "value");

May 20 1994 11:45:07 gui.c Page 7

XtSetValues (val, args, 1i);

translations = "#override\n <Key>Return: getIID()\n";
table = XtParseTranslationTable(translations);
XtOverrideTranslations(val, table);
XtSetKeyboardFocus (iid, val);

i = 0;

sprintf (buf, "%4d", FreqCurve.abi);

XtSetArg(args[i], XtNvalue, buf); i++;

XtSetArg(args[i], XtNlabel, "ABI (dB): "y i+

abi = XtCreateManagedWidget('abi", dialogWidgetClass,
parent, args, 1);

i =0;

XtSetArg(args[i], XtNwidth, 75); i++;

XtSetArg(args([i], XtNfromHoriz, XtNameToWidget(abi, “"label")); i++;
XtSetArg(args[il, XtNfromVert, NULL); i++;

XtSetArg(args[i], XtNinsertPosition, strlen(buf)); i++;

val = XtNameToWidget (abi, *value");
XtSetValues (val, args, 1i);
translations = "#override\n <Key>Return: getABI()\n";
table = XtParseTranslationTable (translations);
XtOverrideTranslations(val, table);
XtSetKeyboardFocus (abi, val);

}

makeItdTbl (parent)
Widget parent;
{
Widget start, end, step, iid, abi;
Widget val;
Arg args[10];
int 1i;
String translations;
XtTranslations table;
char buf[l6];

i = 0;

sprintf (buf, "%d", ItdCurve.start);

XtSetArg(args[i]l, XtNvalue, buf); i++;

XtSetArg(args[i], XtNlabel, "Starting ITD (usec):"); i++;

start = XtCreateManagedWidget ("start", dialogWidgetClass,
parent, args, 1);

i = 0;

XtSetArg(args[il, XtNwidth, 75); i++;

XtSetArg(args[i], XtNfromHoriz, XtNameToWidget(start, "label")); i++;
XtSetArg(args(i], XtNfromVert, NULL); i++;

XtSetArg(args[i], XtNinsertPosition, strlen(buf)); i++;

val = XtNameToWidget(start, "value");

XtSetValues (val, args, 1);

translations = "#override\n <Key>Return: getITD()\n";
table = XtParseTranslationTable (translations);
XtOverrideTranslations(val, table);

XtSetKeyboardFocus {start, val);

i=0;

sprintf (buf, “%d", ItdCurve.end);

XtSetArg(args[i], XtNvalue, buf); i++;

XtSetArg(args[i], XtNlabel, "Ending ITD (usec): "); 1i++;

end = XtCreateManagedWidget ("end", dialogWidgetClass,
parent, args, 1):

i = 0;

XtSetArg{args[il, XtNwidth, 75); i++;

XtSetArg(args[il, XtNfromHoriz, XtNameToWidget(end, "label")); i++;
XtSetArg(args[i], XtNfromVert, NULL); 1i++;

XtSetArg{args[i], XtNinsertPosition, strlen(buf)); i++;

val = XtNameToWidget(end, "value');
XtSetValues (val, args, i);
XtOverrideTranslations(val, table);
XtSetKeyboardFocus (end, val);

i = 0;

sprintf (buf, *%d", ItdCurve.step):

XtSetArg(args[i], XtNvalue, buf); i++;

XtSetArg(args[i], XtNlabel, "ITD step (usec): "y d4+;
step = XtCreateManagedWidget(“"step", dialogWidgetClass,

May 20 1994 11:45:07 gui.c Page 8

parent, args, 1i);

i = 0;

XtSetArg(args[i], XtNwidth, 75); i++;

XtSetArg(args[i], XtNfromHoriz, XtNameToWidget(step, "label")); i++;
XtSetArg(args[i], XtNfromVert, NULL); i++;

XtSetArg(args[i], XtNinsertPosition, strlen(buf)); i++;

val = XtNameToWidget (step, "value');
XtSetValues (val, args, 1i);
XtOverrideTranslations(val, table);
XtSetKeyboardFocus (step, val);

i = 0;

sprintf (buf, "%d", ItdCurve.iid);

XtSetArg(args[il, XtNvalue, buf); i++;

XtSetArg(args[i], XtNlabel, "IID (dB): "y, i++;

iid = XtCreateManagedWidget ("iid", dialogWidgetClass,
parent, args, 1);

i = 0;

XtSetArg(args[i], XtNwidth, 75); i++;

XtSetArg(args([i], XtNfromHoriz, XtNameToWidget(iid, "label")); i++;
XtSetArg(args([i], XtNfromVert, NULL); i++;

XtSetArg(args[i], XtNinsertPosition, strlen(buf)); i++;

val = XtNameToWidget(iid, "value");

XtSetValues(val, args, 1i);

translations = "#override\n <Key>Return: getIID()\n";
table = XtParseTranslationTable(translations);
XtOverrideTranslations(val, table);
XtSetKeyboardFocus (iid, val):

i=0;

sprintf (buf, "%d", ItdCurve.abi);

XtSetArg(args[i], XtNvalue, buf); i++;

XtSetArg(args[i], XtNlabel, "ABI (dB): "y, 1++;

abl = XtCreateManagedWidget ("abi", dialogWidgetClass,
parent, args, 1i);

i=0;

XtSetArg(args([i], XtNwidth, 75); i++;

XtSetArg(args([i]l, XtNfromHoriz, XtNameToWidget(abi, "label")); i++;
XtSetArg(args([il, XtNfromVert, NULL); i++;

XtSetArg(args[i], XtNinsertPosition, strlen(buf)); i++;

val = XtNameToWidget (abi, "value");
XtSetValues(val, args, 1i);
translations = "#override\n <Key>Return: getABI()\n";
table = XtParseTranslationTable(translations) ;
XtOverrideTranslations(val, table);
XtSetKeyboardFocus (abi, wval);

}

makeIidTbl (parent)
Widget parent;
{
Widget start, end, step, 1itd, abi;
Widget val;
Arg args{10}];
int i;
String translations;
XtTranslations table;
char buf{lé6];

i = 0;

sprintf (buf, "%d4", IidCurve.start);

XtSetArg(args[i], XtNvalue, buf); i++;

XtSetArg(args([i], XtNlabel, "Starting IID (dB):"); i++;

start = XtCreateManagedWidget("start", dialogWidgetClass,
parent, args, 1i);

i=0;

XtSetArg(args([i], XtNwidth, 75); 1++;

XtSetArg(args([i], XtNfromHoriz, XtNameToWidget(start, "label")); i++;
XtSetArg(args[i], XtNfromVert, NULL); i++;

XtSetArg(args[i], XtNinsertPosition, strlen(buf)); i++;

val = XtNameToWidget (start, "value");

XtSetValues (val, args, 1);

translations = "#override\n <Key>Return: getIID()\n";
table = XtParseTranslationTable(translations);
XtOverrideTranslations(val, table);

May 20 1994 11:45:07 gui.c Page 9

XtSetKeyboardFocus (start, val);

i = 0;

sprintf (buf, "$d4", IidCurve.end);

XtSetArg(args[i]l, XtNvalue, buf); i++;

XtSetArg(args{i], XtNlabel, "Ending IID (dB): "); i++;

end = XtCreateManagedWidget ("end", dialogWidgetClass,
parent, args, 1i):

i= 0;

XtSetArg(args[i], XtNwidth, 75); i++;

XtSetArg(args[i], XtNfromHoriz, XtNameToWidget(end, "label")}); i++;
XtSetArg(args[i]l, XtNfromVert, NULL); i++;

XtSetArg(args([i], XtNinsertPosition, strlen(buf)); i++;

val = XtNameToWidget{end, "value");
XtSetValues (val, args, 1);
XtOverrideTranslations(val, table);
XtSetKeyboardFocus (end, val);

i = 0;

sprintf (buf, "%d", IidCurve.step);

XtSetArg(args{i], XtNvalue, buf); i++;

XtSetArg({args[i], XtNlabel, "IID step (dB): "y i++;

step = XtCreateManagedWidget("step", dialogWidgetClass,
parent, args, 1);

i = 0;

XtSetArg(args[i], XtNwidth, 75); i++;

XtSetArg(args[i], XtNfromHoriz, XtNameToWidget(step, "label")); i++;
XtSetArg(args[i], XtNfromVert, NULL); i++;

XtSetArg(args[i]l, XtNinsertPosition, strlen(buf)); i++;

val = XtNameToWidget (step, "value");
XtSetValues (val, args, 1i);
XtOverrideTranslations(val, table);
XtSetKeyboardFocus (step, val);

i = 0;

sprintf (buf, "%d", IidCurve.itd);

XtSetArg(args[i], XtNvalue, buf); i++;

XtSetArg(args[i], XtNlabel, "ITD (usec): "y i++;

itd = XtCreateManagedWidget('itd", dialogWidgetClass,
parent, args, 1);

i = 0;

XtSetArg(args[i], XtNwidth, 75); i++;

XtSetArg({args[i], XtNfromHoriz, XtNameToWidget(itd, "label")); i++;
XtSetArg(args[i], XtNfromVert, NULL); i++;

XtSetArg(args([i], XtNinsertPosition, strlen(buf)); i++;

val = XtNameToWidget (itd, "value");

XtSetValues(val, args, 1i);

translations = "#override\n <Key>Return: getITD()\n";
table = XtParseTranslationTable (translations);
XtOverrideTranslations(val, table);
XtSetKeyboardFocus (itd, wval);

i = 0;

sprintf (buf, "$d", IidCurve.abi);

XtSetArg(args[il, XtNvalue, buf); i++;

XtSetArg(args([i], XtNlabel, "ABI (dB): "y di++;

abli = XtCreateManagedwWidget ("abi", dialogWidgetClass,
parent, args, 1i);

i = 0;

XtSetArg(args[i], XtNwidth, 75); i++;

XtSetArg(args([i], XtNfromHoriz, XtNameToWidget{abi, "label")); i++;
XtSetArg(args[i], XtNfromVert, NULL); i++;

XtSetArg(args[i], XtNinsertPosition, strlen(buf)); i++;

val = XtNameToWidget (abi, "value");
XtSetValues (val, args, 1i);
translations = "#override\n <Key>Return: getABI()\n";
table = XtParseTranslationTable (translations);
XtOverrideTranslations(val, table);
XtSetKeyboardFocus (abi, val);

}

makeFiidTbhl (parent)
Widget parent;
{

Widget start, end, step, fixed, itd;

May 20 1994 11:45:07 gui.c Page 10

Widget val;

Arg args([10];

int i;

String translations;
XtTranslations table;
char buf[leé];

i = 0;

sprintf (buf, "%d", FiidCurve.start);

XtSetArg(args[i], XtNvalue, buf); i++;

XtSetArg(args[i], XtNlabel, "Starting IID (dB):"); i++;

start = XtCreateManagedWidget("start", dialogWidgetClass,
parent, args, 1);

i = 0;

XtSetArg(args([i], XtNwidth, 75); i++;

XtSetArg(args[i], XtNfromHoriz, XtNameToWidget (start, "label")); i++;
XtSetArg({args[i]l, XtNfromVert, NULL); i++;

XtSetArg({args[i], XtNinsertPosition, strlen(buf)); i++;

val = XtNameToWidget(start, "value");

XtSetValues (val, args, 1i);

translations = "#override\n <Key>Return: getIID()\n";
table = XtParseTranslationTable(translations);
XtOverrideTranslations(val, table);

XtSetKeyboardFocus (start, val);

i = 0;

sprintf (buf, "%d4d", FiidCurve.end);

XtSetArg(args[i], XtNvalue, buf); i++;

XtSetArg(args([i], XtNlabel, "Ending IID (dB): "); i++;

end = XtCreateManagedWidget ("end", dialogWidgetClass,
parent, args, 1i);

i = 0;

XtSetArg(args([i], XtNwidth, 75); i++;

XtSetArg(args[i]l, XtNfromHoriz, XtNameToWidget(end, "label")); i++;
XtSetArg(args([i], XtNfromVert, NULL); i++;

XtSetArg(args[i]l, XtNinsertPosition, strlen(buf)); i++;

val = XtNameToWidget (end, "value');
XtSetvValues (val, args, i):
XtOverrideTranslations(val, table);
XtSetKeyboardFocus (end, val);

i = 0;

sprintf (buf, "%d", FiidCurve.step);

XtSetArg(args([i], XtNvalue, buf); i++;

XtSetArg(args[i], XtNlabel, "IID step (dB): "y odi++;

step = XtCreateManagedWidget("step", dialogWidgetClass,
parent, args, 1);

i = 0;

XtSetArg(args([i], XtNwidth, 75); i++;

XtSetArg(args[i], XtNfromHoriz, XtNameToWidget(step, "label®)); i++;
XtSetArg(args[i], XtNfromVert, NULL); i++;

XtSetArg(args[i]l, XtNinsertPosition, strlen(buf)); i++;

val = XtNameToWidget(step, "value');
XtSetValues (val, args, 1i):
XtOverrideTranslations(val, table);
XtSetKeyboardFocus (step, val);

i = 0;

sprintf (buf, "%d", FiidCurve.fixed);

XtSetArg(args[il, XtNvalue, buf); i++;

XtSetArg(args([i], XtNlabel, "Fixed Level (dB): "); i++;

fixed = XtCreateManagedWidget ("fixed", dialogWidgetClass,
parent, args, 1);

i = 0;

XtSetArg(args[i], XtNwidth, 75); i++;

XtSetArg(args[i]l, XtNfromHoriz, XtNameToWidget(fixed, "label")); i++;
XtSetArg(args[i], XtNfromVert, NULL); i++;

XtSetArg(args[i], XtNinsertPosition, strlen(buf)); i++;

val = XtNameToWidget (fixed, "value");

XtSetValues(val, args, 1i);

translations = "#override\n <Key>Return: getIID()\n";
table = XtParseTranslationTable (translations) ;
XtOverrideTranslations(val, table);

XtSetKeyboardFocus (fixed, val);

May 20 1994 11:45:07 gui.c

}

i = 0;

sprintf (buf, "%d", FiidCurve.itd);

XtSetArg(args[i], XtNvalue, buf); i++;

XtSetArg(args[i], XtNlabel, "ITD (usec): Yy o di++;

itd = XtCreateManagedWidget ("itd", dialogWidgetClass,
parent, args, 1i);

i=0;

XtSetArg(args[i], XtNwidth, 75); i++;

XtSetArg(args([i], XtNfromHoriz, XtNameToWidget(itd, "label")); i++;
XtSetArg(args([i], XtNfromVert, NULL); i++;

XtSetArg(args([i], XtNinsertPosition, strlen(buf)); i++;

val = XtNameToWidget(itd, "value");

XtSetValues (val, args, 1i);

translations = "#override\n <Key>Return: getITD()\n";
table = XtParseTranslationTable(translations);
XtOverrideTranslations(val, table);
XtSetKeyboardFocus (itd, wval);

Widget psDelaylbl, recDurlbl, stimDurlbl, repslbl;
Widget freqTbl, freqlbl, wnoiseLbl, BandpassTbl;

/* interface to fill the STIM struct */
makeStimTbl (parent)
Widget parent;

{

Widget buttonMgr, buttonTbl;

Widget toneBtn, whiteNoiseBtn, bpNoiseBtn, toneComboBtn;
Widget managed_buttons[4];

caddr_t managed_values([4];

Widget freqgSBHund, freqSBTens;

Widget yaTbl:

Widget psDelaySB;

Widget recDurSB;

Widget stimDurSB;

Widget incrReps, decrReps;

Arg argsl[5];

char buf[80];

int i;

void stim_changer () ;

void freqgdumpProcHund (), fregJumpProcTens () ;

void stimDurdJumpProc(), recDurJumpProc(), psDelayJumpProc();
vold addRep (), subRep()

i

/* buttons which control which stimulus is to be used (and therefore
* which stimulus parameters are on top of the deck.
*/
i = 0;
XtSetArg(args[i], XtNbmgrType, XcuBMGR_ONE_OF_MANY) ; i++;
buttonMgr = XtCreateManagedwWidget ("buttonMgr', xcuBmgrWidgetClass,
parent, args, 1i);

i = 0;

XtSetArg(args[i], XtNformatString, "¢ ¢ ¢ c."); i++;

buttonTbl = XtCreateManagedwWidget ("buttonTbl", xcuTblWidgetClass,
parent, args, 1i);

i = 0;

XtSetArg(args{i], XtNresizable, True); i++;

XtSetArg(args{i], XtNcursor, dot); i++;

XtSetArg(args([i], XtNlabel, "Tone"); i++;

XtSetArg(args([i], XtNset, True); i++;

toneBtn = XtCreateManagedwWidget ("toneBtn", xcuButtonWidgetClass,
buttonTbl, args, 1);

i = 0;

XtSetArg(args[i], XtNresizable, True); i++;

XtSetArg(args[i], XtNcursor, dot); i++;

XtSetArg(args[i], XtNlabel, "White Noise"); i++;

whiteNoiseBtn = XtCreateManagedWidget ("whiteNoiseBtn", xcuButtonWidgetClass,
buttonTbl, args, i);

i = 0;
XtSetArg(args([i], XtNresizable, True); i++;
XtSetArg(args([i], XtNcursor, dot); i++;

Page 11

May 20 1994 11:45:07 gui.c Page 12

XtSetArg(args[i], XtNlabel, "Bandpass Noise"); i++;
bpNoiseBtn = XtCreateManagedWidget ("bpNoiseBtn", xcuButtonWidgetClass,
buttonTbl, args, 1i);

i = 0;

XtSetArg(args[i], XtNresizable, True); i++;

XtSetArg(args[i], XtNcursor, dot); i++;

XtSetArg(args[i], XtNlabel, "Tone Combo"); i++;

toneComboBtn = XtCreateManagedWidget ("toneComboBtn", xcuButtonWidgetClass,
buttonTbl, args, 1i);

managed_buttons [0] = toneBtn;
managed_buttons[l] = whiteNoiseBtn;
managed_buttons[2] = bpNoiseBtn;
managed_buttons[3] = toneComboBtn;

caddr_t) "tone";
caddr_t) "white";
caddr_t) "bandpass";
caddr_t) "tonecombo";

managed_values[0]
managed_values[1l]
managed_values[2]
managed_values[3]

XcuBmgrManage (buttonMgr, managed_buttons, managed_values, FOUR);
XtAddcCallback (buttonMgr, XtNsetCallback, stim_ changer, NULL) ;

stimdeck = XtCreateManagedWidget ("stimdeck", xcuDeckWidgetClass,
parent, NULL, O0);

i = 0;

XtSetArg(args([i], XtNformatString, "c."); i++;

freqThl = XtCreateManagedWidget ("freqThl", xcuTblWidgetClass,
stimdeck, args, 1i);

i = 0;

sprintf (buf, "Frequency: %d Hz", stimulus.freq);

XtSetArg(args([i], XtNlabel, buf); i++;

freqglbl = XtCreateManagedwWidget ("fregLbl", xculLabelWidgetClass,
freqThl, args, 1i);

i = 0;

XtSetArg(args[il, XtNorientation, XtorientHorizontal); i++;

fregSBHund = XtCreateManagedwidget ("freqSBHund", scrollbarWidgetClass,
fregThl, args, 1i);

XtAddCallback (freqgSBHund, XtNjumpProc, fregJumpProcHund, (caddr_t)NULL) :;

i = 0;

XtSetArg(args[i], XtNorientation, XtorientHorizontal); i++;

fregSBTens = XtCreateManagedWidget ("fregSBTens", scrollbarWidgetClass,
fregTbhl, args, i);

XtAaddcCallback (fregSBTens, XtNjumpProc, fregJumpProcTens, (caddr_t)NULL) ;

i = 0;

XtSetArg(args[i], XtNlabel, "pfffffffffffv); i++;

XtSetArg(args[i], XtNshadow, True); i++;

wnoiselbl = XtCreateManagedwWidget ("wnoiseLbl", xculLabelWidgetClass,
stimdeck, args, 1i);

makeBandPassMenu (stimdeck) ;

i = 0;
XtSetArg(args[i], XtNformatString, "c\n c\n c¢c\n c\n c\n c\n ¢c c c."); i++;
vaTbl = XtCreateManagedWidget ('"yaTbl", xcuTblWidgetClass,

parent, args, 1i);

i=0;

sprintf (buf, "Record Duration: %d msec", stimulus.total_dur);

XtSetArg(args[i], XtNlabel, buf); i++;

rechurLbl = XtCreateManagedWidget ("recDurlbl", xcuLabelWidgetClass,
vaTbl, args, 1i);

i = 0;

XtSetArg(args[i], XtNorientation, XtorientHorizontal); i++;

recDurSB = XtCreateManagedWidget ("recDurSB", scrollbarWidgetClass,
vaTbl, args, 1);

XtAddcCallback (recDurSB, XtNjumpProc, recDurdJumpProc, (caddr_t)NULL) ;

May 20 1994 11:45:07 gui.c Page 13

}

i= 0;

sprintf (buf, "Pre-stimulus Delay: %d msec', stimulus.prestim delay);

XtSetArg(args[i], XtNlabel, buf); i++;

psDelaylbl = XtCreateManagedWidget ("psDelaylbl", xcuLabelWidgetClass,
yaTbl, args, 1i);

1= 0;

XtSetArg(args([i], XtNorientation, XtorientHorizontal); i++;

psDelaySB = XtCreateManagedWidget ("psDelaySB", scrollbarWidgetClass,
vaTbl, args, 1i);

XtAddCallback(psDelaySB XtNjumpProc, psDelayJumpProc, (caddr_t)NULL) ;

i = 0;

sprintf (buf, "Stimulus Duration: %d msec", stimulus.stim dur);

XtSetArg(args[il, XtNlabel, buf); i++;

stimDurLbl = XtCreateManagedWidget("stimDurLbl", xcuLabelWidgetClass,
vaTbl, args, 1);

i = 0;

XtSetArg(args([i], XtNorientation, XtorientHorizontal); 1++;

stimDurSB = XtCreateManagedWidget ("stimDurSB", scrollbarWidgetClass,
vaTbl, args, 1);

XtAddCallback (stimDurSB, XtNjumpProc, stimDurJumpProc, (caddr_t)NULL) ;

i = 0;

sprintf (buf, "Stimulus Reps: %d", stimulus.nreps);

XtSetArg(args[i], XtNlabel, buf); i++;

repsLbl = XtCreateManagedWidget ("repsLbl", xculLabelWidgetClass,
vaTbl, args, 1i);

i = 0;

XtSetArg(args[i], XtNlabel, "+"); i++;

XtSetArg(args[i], XtNcursor, dot); i++;

incrReps = XtCreateManagedWidget("incrReps", xcuCommandWidgetClass,
vaTbl, args, i);

XtAddCallback (incrReps, XtNcallback, addRep, (caddr_t)NULL) ;

i = 0;

XtSetArg(args([i], XtNlabel, "-"); i++;

XtSetArg(argsf[i], XtNcursor, dot); i++;

decrReps = XtCreateManagedWidget("decrReps', xcuCommandWidgetClass,
vaTbhl, args, i);

XtAddcCallback (decrReps, XtNcallback, subRep, (caddr_t)NULL);

static void stim_changer(w, client, call)
Widget w;
caddr_t client, call;

{

}

if (strcmp("tone", (String)call) == 0) {
XcuDeckRaiseWidget (stimdeck, fregTbl);
stimulus.stimtype = Tone;

}

else if (strcmp("white", (String)call) == 0) {
XcuDeckRaiseWidget (stimdeck, wnoiseLbl) ;
stimulus.stimtype = WNoise;

}

else if (strcmp('bandpass", (String)call) == 0) {
XcuDeckRaiseWidget (stimdeck, BandpassTbl);
stimulus.stimtype = BPNoise;

}

else if (strcmp("tonecombo", (String)call) == 0) {
stimulus.stimtype = ToneCombo;

}

static void curve_changer(w, client, call)
Widget w;
caddr_t client, call;

{

if (strcmp("fregBtn", (String)call) == 0) {
XcuDeckRaiseWidget (curvedeck, fregTunTbl);
curvetype = Freq;

}
else if (strcmp("itdBtn", (String)call) == 0) {

May 20 1994 11:45:07 gui.c

XcuDeckRaiseWidget (curvedeck, itdTbl);
curvetype = Itd;

}

else if (strcmp("iidBtn", (String)call) == 0) {
XcuDeckRalseWidget (curvedeck, 1idTbl);
curvetype = Iid;

}

else if (strcmp("fiidBtn", (String)call) == 0) {
XcuDeckRaiseWidget (curvedeck, f£iidTbl);
curvetype = Fiid;

}

500;
0;

int hundfreq
int tensfreq

void freqiumpProcHund(scrollbar, client, percent_ptr)

Widget scrollbar;
caddr_t client;
caddr_t percent_ptr;
{

float percent = *(float *)percent_ptr; /* 0.0 to 1.0 */

Arg args[2];
char buf80];

/* ok, we want the frequency to be adjustable between 500 Hz

* and 10,000 Hz
* This scrollbar controls the hundred of Hz
*/
hundfreq = 100* (int) (90.0*percent) + 500;
stimulus. freq = hundfreq + tensfreq;
sprintf (buf, "Frequency: %d Hz", stimulus.freq);
XtSetArg(args[0], XtNlabel, buf);
XtSetValues (freqlbl, args, ONE);
}

void freqdumpProcTens (scrollbar, client, percent_ptr)

Widget scrollbar;

caddr_t client;

caddr_t percent_ptr;

{
float percent = *(float *)percent_ptr;
Arg argsl[2];
char buf[801];

/* this scrollbar controls tens of Hz */
tensfreq = 10*(int) (10.0*percent) ;
stimulus. freq = hundfreq + tensfreq;
sprintf (buf, "Frequency: %d Hz", stimulus.freq);
XtSetArg(args[0], XtNlabel, buf);
XtSetValues (freglbl, args, ONE);

}

void recDurJumpProc(scrollbar, client, percent_ptr)
Widget scrollbar;

caddr_t client, percent ptr;

{

XtParent (scrollbar) ;
* (float *)percent_ptr;

Widget parent
float percent
int dur;

Arg args[2];
char buf[80];

/* recording duration varies between stimulus duration and 500 msec */

dur = 10* (int) (50.0*percent);

if (dur < stimulus.stim_dur) dur = stimulus.stim_dur;

stimulus. total dur = dur;

sprintf (buf, "Record Duration: %d msec", stimulus.total_dur);

XtSetArg(args[0], XtNlabel, buf);
XtSetValues (XtNameToWidget (parent, "recDurlbl"),
}

void stimDurJumpProc(scrollbar, client, percent_ ptr)

Widget scrollbar;
caddr_t client, percent_ptr;

args,

ONE) ;

Page 14

May 20 1994 11:45:07 gui.c Page 15

{

}

XtParent (scrollbar) ;
*(float *)percent_ptr;

Widget parent
float percent
int dur;

Arg argsl[2];
char buf[80];

/* stimulus duration varies between 0 and 500 msec
* 0 basically means no stimulus
*/
dur = 10* (int) (50.0*percent);
stimulus.stim_dur = dur;
sprintf (buf, "Stimulus Duration: %d msec", stimulus.stim dur);
XtSetArg(args[0], XtNlabel, buf);
XtSetValues (XtNameToWidget (parent, "stimDurlLbl"), args, ONE);
/* adjust total_dur if necessary */
if (dur > stimulus.total_dur) {
stimulus.total_dur = dur;
sprintf (buf, "Record Duration (msec): %d", stimulus.total_dur);
XtSetArg(args[0], XtNlabel, buf);
XtSetValues (XtNameToWidget (parent, "recDurlbl"), args, ONE);

void psDelayJumpProc (scrollbar, client, percent_ptr)
Widget scrollbar;
caddr_t client, percent_ptr;

{

}

XtParent(scrollbar) ;
*(float *)percent_ptr;

Widget parent
float percent
int dur;

Arg args([2];
char buf(80];

/* prestim delay + stim_dur should be <= total_dur */
dur = 10* (int) (25.0*percent) ;
if ((stimulus.stim_dur + dur) > stimulus.total_dur) {
/* adjust it */
dur = stimulus.total_dur - stimulus.stim_dur;
}
stimulus.prestim _delay = dur;
sprintf (buf, "Pre-stimulus Delay: %d msec", stimulus.prestim delay);
XtSetArg(args (0], XtNlabel, buf);
XtSetValues (XtNameToWidget (parent, "psDelaylLbl"), args, ONE);

void addRep(w, client, call)
Widget w; /* the incrRep command widget */
caddr_t client, call;

{

}

char buf[80];
Arg argsl[2];

++stimulus.nreps;

sprintf (buf, "Stimulus Reps: %d", stimulus.nreps);
XtSetArg(args[0], XtNlabel, buf);

XtSetValues (repslbl, args, ONE);

void subRep(w, client, call)
Widget w;
caddr_t client, call;

{

}

char buf[80];
Arg args[2];

if (stimulus.nreps > 1)
--gtimulus.nreps;
sprintf (buf, "Stimulus Reps: %d", stimulus.nreps);
XtSetArg(args[0], XtNlabel, buf);
XtSetValues (repslLbl, args, ONE);

makeBandPassMenu (parent)
Widget parent;

May 20 1994 11:45:07 gui.c Page 16

{

}

Widget lowDialog, hiDialog, synth;
Arg args[5];

int 1i;

char buf[l6];

void makeBandpassNoise();

1= 0;

XtSetArg(args{i], XtNformatString, "c c\n c."); 1++;

BandpassTbl = XtCreateManagedWidget ("BandpassTbl", xcuTblWidgetClass,
parent, args, 1);

i = 0;

sprintf (buf, "%d", stimulus.bpNoiseStim.startfreq);

XtSetArg(args[i]l, XtNvalue, buf); i++;

XtSetArg(args[i], XtNlabel, "Low Freq (Hz):"); i++;

lowDialog = XtCreateManagedWidget ("lowDialog", dialogWidgetClass,
BandpassTbl, args, 1);

i = 0;

XtSetArg(args[i], XtNfromHoriz, XtNameToWidget(lowDialog, “"label")); i++;
XtSetArg(args[i], XtNfromVert, NULL); i++;

XtSetArg(args[i], XtNinsertPosition, strlen(buf)); i++;

XtSetArg(args(il, XtNwidth, 50); i++;

XtSetValues (XtNameToWidget (lowDialog, "value"), args, 1);

{

String lowTrans =

"#override\n <Key>Return: getBPlow()\n";

XtTranslations lowtable;

lowtable = XtParseTranslationTable (lowTrans) ;

XtOverrideTranslations (XtNameToWidget (lowDialog, "value"), lowtable);
}
XtSetKeyboardFocus (lowDialog, XtNameToWidget (lowDialog, “value")):

i = 0;

sprintf (buf, "%$d", stimulus.bpNoiseStim.endfreq);

XtSetArg(args[i], XtNvalue, buf); i++;

XtSetArg(args[i], XtNlabel, "High Freq (Hz):"); i++;

hiDialog = XtCreateManagedWidget("hiDialog", dialogWidgetClass,
BandpassTbl, args, 1);

i = 0;

XtSetArg(args([i], XtNfromHoriz, XtNameToWidget(hiDialog, "label")); i++;
XtSetArg(args[i]l, XtNfromVert, NULL); i++;

XtSetArg(args[i], XtNinsertPosition, strlen(buf)); i++;
XtSetArg(args[i]l, XtNwidth, 50); i++;

XtSetValues (XtNameToWidget (hiDialog, "value"), args, 1i);

{
String hiTrans =
"$override\n <Key>Return: getBPhi()\n";
XtTranslations hitable;
hitable = XtParseTranslationTable (hiTrans):;
XtOverrideTranslations (XtNameToWidget (hiDialog, "value"), hitable);

}
XtSetKeyboardFocus (hiDialog, XtNameToWidget (hiDialog, "value"));

i=0;

XtSetArg(args([i], XtNlabel, "Synthesize"); i++;

XtSetArg(args([i], XtNcursor, dot); i++;

synth = XtCreateManagedWidget ("synth", xcuCommandWidgetClass,
BandpassTbl, args, 1);

XtAddcallback (synth, XtNcallback, makeBandpassNoise, (caddr_t)NULL);

void getBPlow(widget, event, params, numparams)

Widget widget; /* the value widget of the dialog */
XEvent *event;

String *params;

Cardinal *numparams;

{

Widget dialog = XtParent (widget);
char *value;

int freq;

Arg argsl[2];

char buf[80];

value = XawDialogGetValueString(dialog) ;

May 20 1994 11:45:07 gui.c

freq = atoi(value);
if (freq > 1000 && freqg < 10000) {
stimulus .bpNoiseStim.startfreq = freq;

else {
sprintf (buf, "%d", stimulus.bpNoiseStim.endfredq);
XtSetArg (args[0], XtNvalue, buf);
XtSetValues (dialog, args, ONE);

}

void getBPhi (widget, event, params, numparams)
Widget widget; /* the value widget of the dialog */
XEvent *event;
String *params;
Cardinal *numparams;
{

Widget dialog = XtParent (widget);

char *value;

int freq;

Arg args[2];

char buf[80];

value = XawDialogGetValueString(dialog) ;
freq = atoi(value);
if (freq > 1000 && freqg < 10000) ({
stimulus .bpNoiseStim.endfreq = freq;
}
else {
sprintf(buf, "%d", stimulus.bpNoiseStim.endfreq);
XtSetArg(args[0], XtNvalue, buf);
XtSetValues (dialog, args, ONE);

}

void getFreqg(widget, event, params, numparams)
Widget widget;

XEvent *event;

String *params;

Cardinal *numparams;

{

XtParent (widget) ;

XtParent (dialog);

Widget dialog
Widget parent
Window window;
char *value;
int freq;

value = XawDialogGetValueString(dialog);
freq = atoi({value):
if (dialog == (XtNameToWidget (parent, "start"))) {
if (freq < 500) freq = 500;
if (freqg > 10000) freqg = 10000;
FregCurve.start = freq;
window = XtWindow(XtNameToWidget (parent, "end"));
XWarpPointer (display, None, window, 0, 0, 0, 0, 50, 20);

}
else if (dialog == (XtNameToWidget (parent, "end"))) {
if (freqg < 500) freqg = 500;
if (freq > 10000) freqg = 10000;
FregCurve.end = freq;
window = XtWindow (XtNameToWidget (parent, "step"));
XWarpPointer (display, None, window, 0, 0, 0, 0, 50, 20);
}
else if (dialog == (XtNameToWidget (parent, "step"))) {
FregCurve.step = freqg;
window = XtWindow(XtNameToWidget (parent, "itd"));
XWarpPointer (display, None, window, 0, 0, 0, 0, 50, 20);

}

void getITD(widget, event, params, numparams)

Widget widget; /* value widget of the dialog which invoked this proc */

XEvent *event;
String *params;
Cardinal *numparams;

Page 17

May 20 1994 11:45:07 gui.c Page 18

{
Widget dialog = XtParent (widget);
Widget parent = XtParent(dialog);
Window window;
char *value;
int itd;

value = XawDialogGetValueString{(dialog) ;

itd = atoi(value);

if (dialog == (XtNameToWidget (parent, "start"))) {
ItdCurve.start = itd;
window = XtWindow(XtNameToWidget (parent, "end"));
XWarpPointer (display, None, window, 0, 0, 0, 0, 50, 20);

}

else if (dialog == (XtNameToWidget (parent, "end"))) {
ItdCurve.end = itd;
window = XtWindow (XtNameToWidget (parent, "step")):
XWarpPointer (display, None, window, 0, 0, 0, 0, 50, 20);

}

else if (dialog == (XtNameToWidget (parent, "step"))) {
ItdCurve.step = 1itd;
window = XtWindow(XtNameToWidget (parent, "iid"));
XWarpPointer (display, None, window, 0, 0, 0, 0, 50, 20);

}

else if (dialog == (XtNameToWidget (parent, *"itd"))) {
/* dialog isn’t from itdTbl */
if (parent == 1idTbl) {

IidCurve.itd = itd;
window = XtWindow (XtNameToWidget (parent, 'abi"));
XWarpPointer (display, None, window, 0, 0, 0, 0, 50, 20);

}

else if (parent == freqTunTbl) {
FreqgCurve.itd = 1itd;
window = XtWindow (XtNameToWidget (parent, "iid"));
XWarpPointer (display, None, window, 0, 0, 0, 0, 50, 20);

}

else if (parent == £iidTbl) ({
FiidCurve.itd = itd;
window = XtWindow (XtNameToWidget (parent, "start"));
XWarpPointer (display, None, window, 0, 0, 0, 0, 50, 20);

}

void getIID(widget, event, params, numparams)

Widget widget; /* value widget of the dialog which invoked this proc */
XEvent *event;

String *params;

Cardinal *numparams;

{

XtParent (widget) ;

XtParent (dialog);

Widget dialog
Widget parent
Window window;
char *value;
int iid;

value = XawDialogGetValueString(dialog);
iid = atoi(value);
if (parent == 1idTbl) {
if (dialog == (XtNameToWidget (parent, "start"))) {
IidCurve.start = iid;
window = XtWindow (XtNameToWidget (parent, "end"));
XWarpPointer (display, None, window, 0, 0, 0, 0, 50, 20);

}

else if (dialog == (XtNameToWidget (parent, "end"))) {
IidCurve.end = iid;
window = XtWindow (XtNameToWidget (parent, "step")):;
XWarpPointer (display, None, window, 0, 0, 0, 0, 50, 20);

}

else if (dialog == (XtNameToWidget (parent, "step"))) {
IidCurve.step = iid;
window = XtWindow (XtNameToWidget (parent, "itd")):
XWarpPointer (display, None, window, 0, 0, 0, 0, 50, 20);

May 20 1994 11:45:07 gui.c Page 19

else if (parent == fiidTbl) {
if (dialog == (XtNameToWidget (parent, "start"))) {
FiidCurve.start = iid;
window = XtWindow (XtNameToWidget (parent, "end"));
XWarpPointer (display, None, window, 0, 0, 0, 0, 50, 20);

}

else if (dialog == (XtNameToWidget (parent, "end"))) {
FiidCurve.end = 1id;
window = XtWindow (XtNameToWidget (parent, "step")):;
XWarpPointer (display, None, window, 0, 0, 0, 0, 50, 20);

}
else if (dialog == (XtNameToWidget (parent, "step"))) {
FiidCurve.step = iid;
window = XtWindow (XtNameToWidget (parent, "fixed"));
XWarpPointer (display, None, window, 0, 0, 0, 0, 50, 20);
}
else if (dialog == (XtNameToWidget (parent, "fixed"))) {
FiidCurve.fixed = iid;
window = XtWindow (XtNameToWidget (parent, "itd"));
XWarpPointer (display, None, window, 0, 0, 0, 0, 50, 20);
}

}
else if (dialog == (XtNameToWidget (parent, "iid"))) {
/* dialog isn’t from iidTbl or f£iidTbl */
if (parent == 1tdTbl) {
ItdCurve.iid = iid;
window = XtWindow (XtNameToWidget (parent, "abi"));
XWarpPointer (display, None, window, 0, O, 0, 0, 50, 20);

else if (parent == freqTunTbl) {
FreqCurve.ild = 1id;
window = XtWindow (XtNameToWidget (parent, "abi"));
XWarpPointer (display, None, window, 0, 0, 0, 0, 50, 20);

}

void getABI (widget, event, params, numparams)
Widget widget; /* value widget of the dialog which invoked this proc */
XEvent *event;
String *params;
Cardinal *numparams;
{

Widget dialog = XtParent (widget);

Widget parent = XtParent(dialog):

Window window;

char *value;

int abi;

value = XawDialogGetValueString(dialog);
abi = atoi(value);
if (parent == fregTunTbl) {
FreqgCurve.abi = abi;
window = XtWindow(XtNameToWidget (parent, "start")});
XWarpPointer (display, None, window, 0, 0, 0, 0, 50, 20);
}
else if (parent == itdTbl) {
ItdCurve.abi = abi;
window = XtWindow(XtNameToWidget (parent, "start"));
XWarpPointer (display, None, window, 0, 0, 0, 0, 50, 20);

}

else if (parent == 1idTbl) {
IidCurve.abl = abi;
window = XtWindow(XtNameToWidget (parent, "start"));
XWarpPointer (display, None, window, 0, 0, 0, 0, 50, 20);

}

void zeroAtten(w, client, call)
Widget w;

caddr_t client, call;

{

}

setRack (0, 0, 0);

May 20 1994 11:45:07 gui.c Page 20

void Quit(w, client, call)

Widget w;

caddr_t client, call;

{

#ifdef mc700
mrclosall();

#endif
setRack (0, 0, 0);
XtUnmapWidget (toplevel) ;
exit(0);

May 20 1994 11:45:07 loadstim.c

#include "includes.h"
#include "defines.h"
#include "globals.h"

short 1left[50000];
short right[50000];
short sound[50000];

/* for freq tuning curves */
loadFreq(freq)
int freq:;

{

}

register int i, j;

int numpts, delay, itdoffset;
int 1_level, r_level;

int temp;

void ShapeWaveform() ;

/* save whatever frequency we’'ve been using for itd, iid, etc. */
temp = stimulus.freq;

stimulus. freq = freq;

bzero(stim.buf, sizeof (stim.buf));

bzero(left, sizeocf(left));

bzero(right, sizeof (right));

bzero (sound, sizeof (sound));

/* convert stimulus duration to number of samples */

numpts = (stimulus.stim dur * DA_FREQ)/1000;

/* convert prestimulus delay to number of samples */

delay = (stimulus.prestim_delay * DA_FREQ)/1000;

make_tone(freqg, 5000, sound, numpts);

ShapeWaveform(sound, numpts, 5.0, 5.0, (double)DA_FREQ) ;

if (FreqCurve.itd == 0) itdoffset = 0;

else itdoffset = (int) ((float)FreqCurve.itd * DA FREQ/{(1000.0*1000.0));

if (itdoffset < 0) { /* negative ITD means left leads right */

itdoffset *= -1;
for (j=0, i=delay; j<numpts; i++, j++) left[i] = sound[j];
for (j=0, i=delay+itdoffset; j<numpts; i++, j++) rightli] =

}
else if (itdoffset > 0) { /* right leads left */
for (j=0, i=delay; j<numpts; i++, j++) right[i]l = sound{j];
for (j=0, i=delay+itdoffset; j<numpts; i++, j++) left[i]l =
}
else if (itdoffset == 0)
for (Jj=0, i=delay; j<numpts; i++, j++) right[i] = left[i] =
/* stuff the D/A array */
for (i=0; i<numpts+delay; i++) {
stim.buf[i+i] = left[il;
stim.buf{i+i+1] = right[i];
}
/* set the digital attenuators */
if (FregCurve.iid == 0)
setAtten (FreqCurve.abi, FreqCurve.abi);

else {

if (FregCurve.iid < 0) { /* left is louder than right */
1 _level = ((~1*FreqgCurve.iid)/2) + FregCurve.abi;
r_level = FreqgCurve.abi - ((-1*FregCurve.iid)/2);

}

else {
r_level = (FreqgCurve.iid/2) + FreqCurve.abi;
1_level = FregCurve.abi - (FreqCurve.iid/2);

}

setAtten(l_level, r_level);
}
/* restore previous frequency */
stimulus.freq = temp;

initITD()

{

register int i, j;

int numpts, delay, offset;
int 1_level, r_level;
void ShapeWaveform() ;

sound[j];

sound[j];

sound[ij];

Page 1

May 20 1994 11:45:07 loadstim.c

bzero(stim.buf, sizeof(stim.buf));
bzero(left, sizeof(left));
bzero(right, sizeof(right));
bzero(sound, sizeof (sound));

numpts = (stimulus.stim_dur * DA_FREQ)/1000;
delay = (stimulus.prestim delay * DA_FREQ)/1000;
offset = (int) ((float)ItdCurve.start * DA_FREQ/(1000.0*1000.0)};

/* check that numpts+offset < length of sound array */
/* this allows for no onset time difference */
if (stimulus.stimtype == Tone)
make_tone(stimulus.freq, 5000, sound, numpts+abs (offset));
else if (stimulus.stimtype == WNoise)
getWhiteNoise (sound, numpts+abs(offset));
else if (stimulus.stimtype == BPNoise)
getBandpassNoise (sound, numpts+abs (offset));
ShapeWaveform(sound, numpts, 5.0, 5.0, (double)DA_FREQ);
if (offset < 0) { /* negative ITD means left leads right */
offset *= -1;
for (j=0, i=delay; j<numpts; i++, j++) {
left(i] = sound{jl;
right[i] = sound[j+offset];
}
}
else if (offset > 0) { /* right leads left */
for (j=0, i=delay; j<numpts; i++, j++) {
right[i] = sound[j];
left[i] = sound[j+offset];
}
}
else if (offset == 0)
for (j=0, i=delay; j<numpts; i++, j++) right[i] = left[il]l = sound[j];
/* stuff the D/A array */
for (i=0; i<numpts+delay; i++) ({
stim.buf[i+i] = left[i];
stim.buf[i+4i+1]1 = rightli];
}
/* set the digital attenuators */
if (ItdCurve.iid == 0)
setAtten(ItdCurve.abi, ItdCurve.abi):;
else {
if (ItdCurve.iid < 0) { /* left is louder than right */

1l _level = ((-1*TItdCurve.iid)/2) + ItdCurve.abi;
r_level = ItdCurve.abi - ((-1*ItdCurve.iid)/2);
}
else {
r_level = (ItdCurve.iid/2) + ItdCurve.abi;
1_level = ItdCurve.abi - (ItdCurve.iid/2);
}
setAtten(l_level, r_level);
}
}
loadITD(itd)

int itd; /* in usec */

{

register int i, 7j;
int numpts, delay, offset;

bzero(stim.buf, sizeof(stim.buf));

bzero(left, sizeof(left));

bzero(right, sizeof (right));

/* neither zero, nor recalculate the sound array */

numpts = (stimulus.stim_dur * DA_FREQ)/1000;

delay = (stimulus.prestim delay * DA_FREQ)/1000;

offset = (int) ((float)itd * DA _FREQ/(1000.0*1000.0));

1f (offset < 0) { /* negative ITD means left leads right */
offset *= -1;
for (J=0, i=delay; j<numpts; i++, j++) left[i] = sound[j];
for (j=0, i=delay+offset; j<numpts; i++, j++) right[i] = sound[j];

}
else 1f (offset > 0) { /* right leads left */

for (j=0, i=delay; j<numpts; i++, j++) right[i] = sound[j];

for (j=0, i=delay+offset; j<numpts; i++, j++) left[i] = sound[j];
}

Page 2

May 20 1994 11:45:07 loadstim.c

}

else if (offset == 0)

for (=0, i=delay; j<numpts; i++, j++) right[i]l = left[i] =

/* stuff the D/A array */

for (i=0; i<numpts+delay; i++) {
stim.buf [i+i] = left(i];
stim.buf [i+i+1] = right[i];

}

sound[j];

/* no need to set the digital attenuators again since IID remains

* constant for a given ITD curve.
*/

initIID()

{

register int i, Jj;

int numpts, delay, offset;
int 1_level, r_level;
void ShapeWaveform();

bzero(stim.buf, sizeof(stim.buf));
bzero(left, sizeof(left));
bzero(right, sizeof(right));
bzero(sound, sizeof(sound));

numpts = (stimulus.stim dur * DA_FREQ)/1000;

delay = (stimulus.prestim_delay * DA_FREQ)/1000;

if (stimulus.stimtype == Tone)
make_tone(stimulus.freqg, 5000, sound, numpts);

else if (stimulus.stimtype == WNoilse)
getWhiteNoise (sound, numpts);

else if (stimulus.stimtype == BPNoise)

getBandpassNoise (sound, numpts);

ShapeWaveform(sound, numpts, 5.0, 5.0, {(double)DA_FREQ) ;
offset = (int) ((float)IidCurve.itd * DA_FREQ/{(1000.0*1000.

0));

if (offset < 0) { /* negative ITD means left leads right */

offset *= -1;

for (=0, i=delay; j<numpts; i++, j++) left[i]l = sound([]j];
for (=0, i=delay+offset; j<numpts; i++, j++) right[i] = sound[jl;
}
else if (offset > 0) { /* right leads left */
for (j=0, i=delay; j<numpts; i++, j++) right[i] = sound[j];
for (j=0, i=delay+offset; j<numpts; i++, Jj++) left[i] sound[j];
}
else if (offset == 0)
for (j=0, i=delay; j<numpts; i++, j++) right[i] = left[i] = sound[j]:

/* stuff the D/A array */

for (i=0; i<numpts+delay; i++) {
stim.buf[i+i] = left{i];
stim.buf [i+i+1] = right[i];

}

/* set the digital attenuators */

if (IidCurve.start == 0)
setAtten (IidCurve.abi, IidCurve.abi);
else (

if (IidCurve.start < 0) { /* left is louder than right */

1 _level = ((-1*IidCurve.start)/2) + IidCurve.abi;
r_level = IidCurve.abi - ((-1*IidCurve.start)/2);
}
else {
r level = (IidCurve.start/2) + IidCurve.abi;
1 level = IidCurve.abi - (IidCurve.start/2);

}
setAtten(l_level, r_level);

loadIID(iid)
int iid; /* in dB */

{

int 1_level, r level;

/* no need to rezero any buffers, just reset the digital attenuators */

if (iid == 0)
setAtten(IidCurve.abi, IidCurve.abi);
else {

Page 3

May 20 1994 11:45:07 loadstim.c

if (iid < 0) { /* left is louder than right */

1_level = ((-1*iid)/2) + IidCurve.abi;
r _level = IidCurve.abi - ((-1*iid)/2);
}
else {
r_level = (iid/2) + IidCurve.abi;
1_level = IidCurve.abi - (iid/2);
}
setAtten(l_level, r_level);
}
}
initFIID()

{

register int i, 7;

int numpts, delay, offset;
int 1_level, r_level;
void ShapeWaveform() ;

bzero(stim.buf, sizeof(stim.buf));
bzero(left, sizeof(left));
bzero(right, sizeof (right));

bzero (sound, sizeof (sound));

numpts = (stimulus.stim_dur * DA_FREQ)/1000;

delay = (stimulus.prestim_delay * DA_FREQ)/1000;

if (stimulus.stimtype == Tone)
make_tone(stimulus.freq, 5000, sound, numpts);

else if (stimulus.stimtype == WNoise)
getWhiteNoise (sound, numpts) ;

else if (stimulus.stimtype == BPNoise)

getBandpassNoise (sound, numpts);
/* rise/fall */
ShapeWaveform(sound, numpts, 5.0, 5.0, (double)DA_FREQ) ;
/* give the sound ITD */
offset = (int) ((float)FiidCurve.itd * DA_FREQ/(1000.0%1000.0)):
if (offset < 0) { /* negative ITD means left leads right */
offset *= -1;
for (j=0, i=delay; j<numpts; i++, j++) left[i] = sound[j];
for (j=0, i=delay+offset; j<numpts; i++, j++) right[i] = sound[j];
}
else if (offset > 0) { /* right leads left */
for (j=0, i=delay; Jj<numpts; i++, j++) right[i] = sound[j]:;
for (j=0, i=delay+offset; j<numpts; i++, j++) left[i] = sound[j];

}
else if (offset == 0)
for (3=0, i=delay; j<numpts; i++, j++) right[i] = left[i] = sound[j];
/* stuff the D/A array */
for (i=0; i<numpts+delay; i++) {
stim.buf[i+i] = left[i];
stim.buf [i+i+1] = right[i];

/* set the digital attenuators */
if (FiidCurve.fixed < 0) { /* left ear is fixed */
1_level = -1*FiidCurve.fixed;
if (FiidCurve.start == 0) r_level = 1_level;
if (FiidCurve.start < 0) /* left ear louder */
r_level = 1_level + FiidCurve.start;
else /* right ear louder */
r_level = FiidCurve.start - FiidCurve.fixed;

else if (FiidCurve.fixed > 0) { /* right ear is fixed */
r_level = FiidCurve.fixed;

if (FiidCurve.start == 0) 1l_level = r_level;
if (FiidCurve.start < 0) /* left ear louder */
1_level = (-1*FiidCurve.start) + FiidCurve.fixed;

else { /* right ear louder */
1_level = FiidCurve.fixed - FiidCurve.start;
}
}
else if (FiidCurve.fixed == 0) { /* what the hell is this??? */
}
setAtten(l_level, r_level);

Page 4

May 20 1994 11:45:07 loadstim.c

loadFIID(iid)
int iid;
int 1_level, r_level;
/* set the digital attenuators */
if (FiidCurve.fixed < 0) { /* left ear is fixed */
1 level ~1*FiidCurve.fixed;
if (iid == 0) r_level 1 level;
if (iid < 0) /* left ear louder */
r_level 1 level + iid;
else /* right ear louder */
r _level iid - FiidCurve.fixed;

else if { /* right ear is fixed */

r_level
if (iid == 0)

(FiidCurve.fixed > 0)
FiidCurve.fixed;
1_level r_level;
if (iid < 0) /* left ear louder */
1_level (-1*iid) + FiidCurve.fixed;
else { /* right ear louder */
1_level FiidCurve.fixed - iid;
}

}

else if

}
setAtten(l_level,

(FiidCurve.fixed == 0) {
r_level);
}

setAtten (Llevel, Rlevel)
int Llevel, Rlevel;
{
register int i;
char buf[80];
int freq, latten, ratten;
float lmax, rmax;

Freq) {

if (stimulus.stimtype == Tone || curvetype

freq stimulus. freq;

if (freq < Calib.freg[0]) {
sprintf (buf, "Frequency %d Hz out of
latten 80 - Llevel;
ratten = 80 - Rlevel;
setRack (0, latten, ratten);
uhoh(buf) ;
return;

calibration range

}
for
if

(1=0; Calib.freqli] < freq; i++)
(1 > 91) {
sprintf (buf, "Frequency %d Hz out of

latten = 80 - Llevel;

calibration range

ratten = 80 - Rlevel;
setRack (0, latten, ratten);
uhoh (buf) ;
return;
}
if (Calib.freqlil]l == freqg) {
latten = rnd(Calib.Lmax[i] - Llevel);
ratten = rnd(Calib.Rmax[i] - Rlevel);
else { /* interpolate */

float x1,
x1 (float)calib.fregl[i];

vl, X2, y2;

x2 = (float)Calib.freqg[i-11;

vl = Calib.Lmax[i];

v2 = Calib.Lmax[i-1];

lmax = ((y2 - yv1)/(x2-x1) * ((float)freq - x1)) + vy1;
vyl = Calib.Rmax[i];

yv2 = Calib.Rmax[i-17;

rmax = ((y2 - v1)/(x2-x1) * ((float)freg - x1)) + v1;
latten = rnd{lmax - Llevel);

ratten = rnd(rmax - Rlevel);

}
if latten > 127) {
"Unable to get %ddbSPL at %d Hz\non left

(latten < 0
sprintf (buf,

, latten, freq);

Page 5

/* what the hell is this??? */

freq);

"
LI

"
LS

freq) ;

earphone\n Doing best possible."

May 20 1994 11:45:07

loadstim.c

1if (latten < 0) latten = 0O;

if

(latten > 127) latten = 127;

uhoh (buf) ;

if (ratten < O
sprintf (buf,

ratten, freq);

(ratten < 0) ratten = 0;

(ratten > 127) ratten =

if
if

ratten > 127) {

127;

uhoh (buf) ;

}

else if (stimulus.stimtype == WNoise || stimulus.stimtype == BPNoise)

latten
ratten
}

setRack (0,

80 - Llevel;
80 - Rlevel;

latten, ratten);

"Unable to get %ddbSPL at %d Hz on right earphone.'

|
7

{

Page 6

May 20 1994 11:45:07 main.c Page 1

/* OASys: Ovoidalis Analysis System
* ITD, IID, Frequency tuning and whatever else becomes necessary.

*/

#include "includes.h"
#include "defines.h"
#include "globals.h"

#define PROPORT_32kHz_AD_DELAY 82 /* 82 samples */

int event_stat, counter, whichrep;
int last, step:;

int rasterline;

BOOLEAN DONE, INPROGRESS, COMPLETE;

main (argc, argv)
int argc;
char **argv;
{
void mainloop() ;
int da_tecr(), event_tcr{();

setup (&argc, argv);

INPROGRESS = False;

DONE = COMPLETE = True;
#ifdef mc700

mrevtcr (da_path, da_tcr);

mrevtcer (event_timer, event_tcr);
#endif

mainloop() ;

}

void mainloop()
{

XEvent event;

for (;;) {

if (XtAppPending(app_context) != 0) { /* are there X events? */
XtAppNextEvent (app_context, &event);
XtDispatchEvent (&event) ;

}

if (!INPROGRESS) {
if (!DONE) do_trial();
else if (!COMPLETE) do_next{();

}

void start_run()

{
Arg args[1l];

if (datafile == (FILE *)NULL) {
uhoh ("Datafile is NULL") ;
return;
}
write_header();
rasterline = counter = 0;
setup_raster();
/* clear the raster & stimulus windows */
XClearWindow(display, XtWindow(raster));
XClearWindow(display, XtWindow(stimCanvas));
COMPLETE = False;
loadFirst () ;
do_trial{);

loadFirst ()

/* load first stimulus in the tuning curve series */
switch (curvetype) ({
case Freq: {
previous = FregCurve.start;
last = FreqCurve.end;

May 20 1994 11:45:07 main.c

step = FregCurve.step;
loadFreqg(FregCurve.start) ;
break;

}

case Itd: {
previous = ItdCurve.start;
last = ItdCurve.end;
step = ItdCurve.step;
initITD() ;
break;

}

case Iid: {
previous = IidCurve.start;
last = IidCurve.end;
step = IidCurve.step;
initIID();
break;

}

case Fild: {
previous = FiidCurve.start;
last = FiidCurve.end;
step = FiidCurve.step;

initFIID() ;
break;
}
}
}
loadNext ()
{
/* load next stimulus in the tuning curve series */
int next;
next = previous + step;
if (next <= last) {
switch (curvetype)} {
case Freq:
loadFreqg(next) ;
break;
case Itd:
loadITD (next);
break;
case Tid:
loadIID(next);
break;
case Fiid:
loadFIID(next);
break;
}
previous = next;
}
else COMPLETE = True;
}
do_next ()

{

}

Arg args[1l];

loadNext () ;
if (YCOMPLETE) do_trial();
else {
fclose (datafile) ;
datafile = (FILE *)NULL;

analyze_data() ;

do_trial ()

{

void Digital _TO();

unsigned int *events; /* list of spike times */
unsigned int numevents;

unsigned int *getTTL();

if (!INTERRUPT) ({

Page 2

May 20 1994 11:45:07 main.c Page 3

DONE = False;
INPROGRESS = True;

whichrep = counter+l;
++rasterline;
{

Digital IO (stimulus.total_dur);
events = getTTL(24000) ;
if (events != NULL)
numevents = events[0];
plot_raster (events, events[0], rasterline, previous);
if (fwrite((char *)&numevents, sizeof (numevents), 1, datafile) < 1) {
uhoh ("Error writing events[0] to file");
INTERRUPT = True;
return;

if (events[0] > 0) {
if (fwrite((char *)events, events[0], 1, datafile) < 1) {
uvhoh("Error writing event buffer to file.");
INTERRUPT = True;
return;

}
}
INPROGRESS = FALSE;
free (events) ;
IntentionalDelay(1000) ;
++counter;
if (counter < stimulus.nreps)
return;
else {
DONE = True;
counter = 0;

}

}

else if (INTERRUPT) {
DONE = True;
COMPLETE = True;
fclose (datafile) ;
datafile = (FILE *)NULL;
counter = 0;
INTERRUPT = False;

}

void Digital_IO(duration)

int duration; /* in msec */

{
int nframes;
int nmissed, missrec, missplay;
int cc;

/* convert duration to number of samples */
nframes = (duration * DA_FREQ)/1000;

drp_rpm_constructor (drp, &rpm);
drp_stream_constructor(drp, &rpm.rec_stream, nbits, Stereo, SAMPLING_RATE) ;

if (drp_stream config_buf (drp, &rpm.rec_stream, - (nframes),
(char *)ad.buf, NULL, 0) == -1) {
fprintf (stderr, "drp_stream config_buf bombed for recording.\n"):;
return;

}

rpm.rec_stream.buflen = 0;
drp_stream_ constructor (drp, &rpm.play_stream, nbits, Stereo, SAMPLING_RATE) ;

if (drp_stream_config_buf (drp, &rpm.play_stream, -(nframes),
(char *)stim.buf, NULL, 0) == -1) {
fprintf(stderr, "drp_stream config buf bombed for playing.\n");
return;

}
rpm.play_stream.buflen = sizeof (stim.buf);

if (drp_start(drp, DRP_DIR RECPLAY) == -1} {
fprintf (stderr, "drp_start: %s\n", drp->error);
return;

}
cc = drp_rec_play_mem(drp, &rpm);

May 20 1994 11:45:07

main.c

if (cc == -1) {
fprintf (stderr, "drp_rec_play mem: %s\n", drp->error);
return;

}

if (drp_end(drp) == -1) {

fprintf(stderr, '"drp_end: %s\n", drp->error);

return;

}

nmissed = drp_missed(drp, &missrec, &missplay);

if (nmissed == -1) {
fprintf(stderr, "drp_missed: %s\n", drp->error);
return;

}

if (nmissed != 0) {

fprintf (stderr, "WARNING: missed %d record samples and %d play samples.\n",

missrec, missplay);
}
drp_stream destructor (&rpm.rec_stream) ;
drp_stream destructor (&rpm.play_stream);

}
#define AD MAX VALUE 32767

unsigned int *getTTL (buflen)
int buflen; /* examine £
{
int thresh;
int in_pulse = 0;
int count = 0;

/* threshold (must cross)
/* state machine:
/* count of spikes */

rom j=0 to buflen */

for TTL pulse */
in or out of TTL pulse */

unsigned int *spikes; /* pointer to spike info */

int i, 3J; /* index vars */

int room = 10; /* available room in growing spike bufer */

/* TTL pulses from BES uA-200D amplifier are negative going */

thresh = 0.25* (float)AD_MAX VALUE;

spikes = (unsigned int *)malloc((1+(2*room))*sizeof (int));

for (j=2*PROPORT_32kHz_AD_DELAY, i = 0;
if (iin_pulse && ad.buf[j] > thresh)
in_pulse = 1;
if (count >= room) {
room += 10;
spikes = (unsigned int *)
realloc (spikes, (1+(2*room))
}
/* spike time in usecs */

j < 2*puflen; i++, j += 2)

{

*sizeof (unsigned int));

spikes[++count] = (int) (1.0e6*1/SAMPLING_RATE) ;

}

else if (in_pulse && ad.buf[j] < thresh) {

in_pulse = 0;
}

}
spikes[0] = count;

fprintf (stderr, "Number of spikes: %d\n", count);

return (spikes) ;

int SetupEvtClocks (duration)

int duration; /* in msec */

{

#ifdef mc700
int evstat; /* status info */
unsigned long overflow;
void ClearEventBuffer();

mrclksetter (timer_clock, /* path number of clock */
11, /* src = 6 MHz, rising edge */
6, /* lent: 6 MHz/6 = 1 MHz clock freg */
0, O, /* hold register count, gating mode */
CLK_STLOW,
CLK_PULSE,

CLK_REPEAT) ;

Page 4

May 20 1994 11:45:07 main.c Page 5

bzero (Events.list, sizeof (Events.list));
overflow = (unsigned long) (duration * 1000.0); /*convert to usecs*/
evstat = s_evtmod(event_timer, overflow);
mrbufall (event_timer, Events.list, 1, EVTSIZE*2);
mrxing(event_timer, EVTSIZE, EVTSIZE, 0);
return(evstat) ;

#endif

}

/* D/A task completion routine */
int da_tcr (rpathno)
int *rpathno;
{
#ifdef mc700
char buf([80];

/* this should be called on completion of d/a transfer */
mrclkdis (1, &da_clk_path);
if (*rpathno != da_path) {
sprintf (buf, "BCR bad path: %d should be %d\n", *rpathno, da_path);
uhoh (buf) ;
}
#endif
}

/* event timer task completion routine */
int event_ tcr(rpathno)
int *rpathno;
{
#ifdef mc700
int cEvtBufSize, Index, status;
int argmod = 3; /* Index is an index to a short integer array */
unsigned int *cEvtBuf, *CompressEventBuffer();
char buf[80];
Arg argsl[l];

/* disarm the clock */

mrclkdis(l, &timer_ clock);

/* stop the devices just in case */

mrstop (event_timer, 1, &status);

mrstop(da_path, 1, &status);

mrstop(timer_clock, 1, &status);

mrstop(da_clk_path, 1, &status);

INPROGRESS = False;

/* check the path number to make sure the BCR is servicing the
* correct device.

*/
if (*rpathno !'= event_timer) {
sprintf (buf, "BCR bad path: %d should be %d\n', *rpathno, event_timer);
uhoh (buf) ;
return;

}
/* retrieve the done buffer */
mrbufget (event_timer, argmod, &Index);
if (Index == 0) { /* the usual case since I'm only using one buffer */
/* check to see if data collection has terminated */
if (!INTERRUPT) {
/* write the data to file */
cEvtBuf = CompressEventBuffer (&cEvtBufSize):;
if (cEvtBuf != NULL) {
/* update the raster */
plot_raster (cEvtBuf, cEvtBuf[0], rasterline, previous):;
if (fwrite((char *)&cEvtBufSize, sizeof (int), 1, datafile) < 1) {
uhoh ("Error writing EvtBufSize to file");
INTERRUPT = True;
return;

if (cEvtBufSize > 0) {
/* write out the event buffer */
if (fwrite((char *)cEvtBuf, cEvtBufSize, 1, datafile) < 1) {
uhoh ("Error writing event buffer to file.");
INTERRUPT = True;
return;

May 20 1994 11:45:07

}

}
free(cEvtBuf) ;

/* delay in msec between stimulus repititions */

IntentionalDelay (1000);
++counter;
if (counter < stimulus.nreps)
return;
else {
DONE = True;
counter = 0;
}
}
else if (INTERRUPT) {
DONE = True;
COMPLETE = True;
fclose(datafile);

datafile = (FILE *)NULL;
counter = 0;
INTERRUPT = False;

}

#endif

}

IntentionalDelay (DelayTime)
int DelayTime;

{

}

static struct timeval StartTime, NowTime;
static struct timezone dummy;

gettimeofday (&StartTime, &dummy) ;
StartTime.tv_sec += (DelayTime / 1000);

StartTime.tv_usec += ((DelayTime % 1000) * 1000);

while (TRUE) ({
gettimeofday (&NowTime, &dummy) ;
if (NowTime.tv_sec > StartTime.tv_sec ||

NowTime.tv_sec == StartTime.tv_sec && NowTime.tv_usec > StartTime.tv_usec

break;
}

void stop_data_acg({w, client, call)
Widget w;
caddr_t client, call;

{
}

INTERRUPT = True;

main.c

Page 6

May 20 1994 11:45:07 plots.c

#include "includes.h®
#include "defines.h"
#include "globals.h"

plot_raster(list, length, line, value)
unsigned int list[], length;
int line, value;

{

register int i;

static int previous = 0;
XSegment rasterSegl[l];
Drawable d;

Window window;
XWindowAttributes raster_info;
int row, X, y, spiketime, v;
float loc, rowsiz;

char buf[80];

void user_to_out();

d = window = XtWindow (raster);
XGetWindowAttributes (display, window, &raster_info);
row = RasterRows-(line*2);
rowsiz = 1.0;
loc = (float)row;
if (value != previous) {
sprintf (buf, "%d", value);
user_to_out(raster_wc, 0.0, loc, &x, &y,
raster_info.width, raster_info.height);

XDrawString (display, d, plot_gc, 0, y, buf, strlen(buf));

previous = value;

if (length > 0) {

for (i=0; i<length-1; i++) { /* for each spike */

spiketime = (int)event_time(list([i+1]1)/1000;

user_to_out (raster_wc, (float)spiketime, loc,
raster_info.width, raster_info.height);

rasterSeg[0].x1l = (short)x;

rasterSeg{0].yl = (short)y;

user_to_out (raster_we, (float)spiketime, loc+rowsiz,

raster_info.width, raster_info.height);
rasterSeg([0].x2 = (short)x;
rasterSeg([0].v2 = (short)y;
XDrawSegments (display, d, plot_gc, rasterSeg,
}
XFlush (display);

/* convert to msec */
&X,

1)

&x, &Yy,

Page 1

May 20 1994 11:45:07 plotutils.c

#include "includes.h"
#include "defines.h"
#include "globals.h"

/* graph plotting utility routines */

vold set_world_coords (window, xmin, ymin, xmax, ymax)
WC_window *window; /* which window */
float xmin, ymin, xmax, ymax;

/* set the user coordinate system (cartesian). This is equivalent
to the GKS routine set window, but since this is implemented under
X Windows, I used the name set_world_coords to avoid any confusion.
*/

window->xmin = xmin;
window->ymin = ymin;
window->xmax = xXmax;
window->ymax = ymax;

window->width = xmax - xmin;
window->height = ymax - ymin;
}

void user_to_ndc(window, x, y, ndcx, ndcy)
WC_window window;

float x, y, *ndcx, *ndcy;

{

(window.width) ;
(window.height) ;

(x - window.xmin)
(y - window.ymin)

*ndcx
*ndcy

S~

ton

}

void ndc_to_user{(window, ndcx, ndcy, X, Y)
WC_window window;

float ndcx, ndcy, *x, *y;

{

(ndcx * window.width) + window.xmin;
(ndcy * window.height) + window.ymin;

*x
*y

}

void ndc_to_out(ndex, ndcy, dcx, dcy, ndh, ndv)
float ndcx, ndcy; /* normalized device coordinates */
int *dcx, *dcy; /* device coordinates */
int ndh, ndv; /* number of dots (pixels) horizontally & vertically */
/* see Computer Graphics Software Construction, by John R. Rankin
Prentice Hall, 1989. pp 10 -11.
FLOOR function substituted for rounding on advice of Paul S. Heckbert,
"What are the coordinates of a pixel?", p.246, Graphics Gems,
Andrew S. Glassner, ed.

*dex
*dcy

FLOOR(ndcx * (ndh-1));
ndv - FLOOR(ndcy * (ndv-1)); /* flip y values */

o

}

void inp_to_ndc(dcx, dcy, ndcx, ndcy, ndh, ndv)

int dcx, dcy; /* display coordinates */
float *ndcx, *ndcy; /* normalized device coordinates */
int ndh, ndv; /* number of dots horizontally & vertically */
/* same reference as above */
{
*ndcx = (float)dcx/ (float) (ndh-1);
ndcy = (float) (ndv - dcy)/(float) (ndv-1); / flip y values */

}

void user_to_out(window, x, y, dcx, decy, winWidth, winHeight)
WC_window window;
float %, y:
int *dcx, *dcy:
int winWidth, winHeight; /* width & height of window */
{
float ndcx, ndcy;

/* convert world coordinates to normalized device coordinates */
user_to_ndc(window, X, y, &ndcx, &ndcy);

/* convert normalized device coordinates to physical device coordinates */

Page 1

May 20 1994 11:45:07 plotutils.c Page 2

ndc_to_out(ndcx, ndcy, dex, dcy, winWidth, winHeight):
}

void inp_to_user(window, decx, dcy, x, y, winWidth, winHeight)
WC_window window;
int decx, dcy;
float *x, *y;
int winWidth, winHeight;
{
float ndcx, ndcy;

/* convert physical device coordinates to normalized device coordinates */
inp_to_ndc(dex, dcy, &ndcx, &ndcy, winWidth, winHeight):

/* convert normalized device coordinates to world coordinates */
ndc_to_user (window, ndcx, ndcy, x, V);

}

/* routines for graph labeling - from Graphics Gems, A.S. Glassner Ed.*/
double nicenum() ;

#define expt(a, n) pow(a, (double) (n))

loose_label (min, max, ntick, newmax, labels, numlabels)
double min, max;

int ntick; /* desired number of tick marks */

double *newmax; /* maximum value calculated by loose label */
char labels[][20]; /* array of labels to return */

int *numlabels; /* number of labels returned */

{
register int i;
char strl[6];
int nfrac;
double d; /* tick mark spacing */
double graphmin, graphmax; /* graph range min and max */
double range, x;

/* we expect min != max */
range = nicenum(max-min, FALSE) ;
d = nicenum(range/(ntick-1), TRUE);

graphmin = FLOOR(min/d) *d;

graphmax = CEILING (max/d)*d;

*newmax = graphmax;

nfrac = MAX(-FLOOR(logl0(d)), 0); /* # of fractional digits to show */
sprintf (str, "%%.%df", nfrac); /* simplest axis labels */

for (i1=0, x=graphmin; x<graphmax+.5*d; x+=d, i++) {
sprintf(labels{i], str, x);
}
*numlabels = i;
}

tight_label (min, max, ntick, labels, numlabels)
double min, max;
int ntick:
char labels[]1[20]; /* array of labels */
int *numlabels; /* number of labels returned */
{
register int i;
char str[6];
int nfrac;
double d; /* tick mark spacing */
double range, x;

range = nicenum(max-min, 0);
d = nicenum(range/(ntick-1), TRUE);
nfrac = MAX(-FLOOR({loglO(d)), 0); /* # of fractional digits to show */
sprintf (str, "%$%.%d4f", nfrac); /* simplest axis labels */
for (i=0, x=min; x<max; x+=d, 1i++) {
sprintf{labels[i], str, x);
}
*numlabels = i;

}

/*
* nicenum: find a "nice" number approximately equal to x.

May 20 1994 11:45:07 plotutils.c

* Round the number if round = 1, take the ceiling if round = 0
*/

static double nicenum(x, round)
double x;
int round;

{
int exp:; /* exponent of x */
double £f; /* fractional part of x */
double nf; /* nice, rounded fraction */

exp = FLOOR(loglO(x)):

f = x/expt(10.0, exp); /* between 1 and 10 */
if (round)

if (f<1.5) nf = 1.0;

else 1if (£<3.0) nf = 2.0;

else if (£<7.0) nf = 5.0;

else nf = 10.0;
else

if (£<=1.0) nf = 1.0;
else 1if (f<=2.0) nf
else if (f£<=5.0) nf
else nf = 10.0;
return nf*expt(10.0, exp);

2.0;
5.0;

Page 3

May 20 1994 11:45:07 setup.c

#include "includes.h"
#include "defines.h®
#define DEFINE_GLOBALS
#include "globals.h"

static char *dspcode = "lib/ssirp.lod";

setup(arg, argv)
int *arg;
String *argv;
{
register int i;
int screen;
int error;
long seed = -1;

if (REALTIME) {
/* Boot the DSP and load the application */
drp = drp_bootdsp("gckMon.lod", dspcode);
if (drp == NULL) {
perror ("drp_bootdsp") ;
exit(1);

if (drp->error{0]) {
fprintf (stderr, "drp_bootdsp: %$s\n", drp->error);

return;

}

/* set DMA mode and page size */

if (drp_confio(drp, nbits, pagesize, readsize) == -1) {
fprintf (stderr, "drp_confio: %s\n", drp->error);
return;

if (drp_confperiph(drp, "proport", SAMPLING_RATE, 1, DRP_DIR_RPM) ==
fprintf (stderr, "drp_confperiph: %s\n", drp->error);
return;
}
}
/* initialize the globals structs */
stimulus.nreps = 5;
stimulus. total_dur = 300;
stimulus.stim_dur = 100;
stimulus.prestim delay = 100;
stimulus.stimtype = Tone;
stimulus.freqg = 1000;
stimulus.bpNoiseStim.startfreq = 1000;
stimulus.bpNoiseStim.endfreg = 10000;
stimulus. tcStim.numfregs = 0;

curvetype = Fredq;

FreqCurve.start = 1000; FregCurve.end = 10000; FregCurve.step = 500;
FregCurve.itd = 0; FreqCurve.iid = 0; FregCurve.abi = 50;

ItdCurve.start = -300; ItdCurve.end = 300; ItdCurve.step = 30;
TtdCurve.iid = 0; ItdCurve.abi = 50;

IidCurve.start = -60; IidCurve.end = 60; IidCurve.step = 5;
IidCurve.itd = 0; IidCurve.abi = 50;

20; FiidCurve.step = 5;
0;

-40; FiidCurve.end
20; FiidCurve.itd

FiidCurve.start
FiidCurve.fixed

o
o

fprintf (stderr, "Making white noise...\n");
error = init_gaussian_table(2.0);
init_random_sequence (&seed) ;

error = fast_noise(wnoise, 65536, 1);

for (i=0; i<65536; i++) bpnoise[i] = wnoisel[i];
fprintf (stderr, "...done.\n");
readToneCalib () ;

makeGUI (arg, argv);

/* clear the pixmaps */

screen = DefaultScreen(display);

XSetForeground (display, plot_gc, WhitePixel (display, screen)) ;
XFillRectangle(display, fregPixmap, plot_gc, 0, 0, 400, 350);
XFillRectangle(display, itdPixmap, plot_gc, 0, 0, 400, 350);

Page 1

May 20 1994 11:45:07 setup.c

XFillRectangle (display, iidPixmap, plot_gc, 0, 0, 400, 350);

XFillRectangle(display, fiidPixmap, plot_gc, 0, 0, 400, 350);

XSetForeground(display, plot_gc, BlackPixel (display, screen));
}

get_parameters()
{
char choice;
int i, numpts, error, frequency;

choice = '2";

while (choice i= 'x
show_parameters (
fflush(stdin);

) q
)

fprintf(stderr, "\nSelect parameter to change by letter.\n\n");

fprintf (stderr, "Type r to run.\n");
choice = getchar{();
switch(choice) {
case 'o0’:
fprintf (stderr, "Name of data file: "):
scanf ("%$s", datafilename);
analyze_data() ;
show_parameters () ;
break;
case 'q’:
setRack(0,0,0);
XtUnmapWidget (toplevel) ;
#ifdef mc700
mrclosall();
#endif
exit (0);
case 'r’:
break;
case ‘'z’:
setRack(0, 0, 0);
break;

}

show_parameters ()

{

int i;

/* system("clear"); */
fprintf (stderr, "(o) Open and plot data file. \n");
fprintf (stderr, "(z) Zero attenuators. \n");
fprintf (stderr, "(g) QUIT\n");

}

/* read in the tone calibration file "earmic.cal" */
readToneCalib()
{

FILE *calibfile;

int i;

float lrms, rrms, lleak, rleak;

char buf[80];

if ((calibfile = fopen("earmic.cal", "r")) == NULL) {
/* set max intensity to something vaguely reasonable */
for (i=0; i<91; i++) Calib.Lmax[i] = Calib.Rmax[i] = 80.0;
fprintf(stderr, "Can’'t read earmic.cal file.\n");
return;

}

/* skip the header commentary */
for (i=0; i<5; i++)
fgets (buf, 80, calibfile);
/* now read the file */
for (i=0; i<91; i++) {

fscanf (calibfile, "$dA\tE\tIENCLRENLRENCL3ENLREE", &Calib.freqli],
&Calib.Imax([i], &Calib.Rmax[i], &lrms, &rrms, &lleak, &rleak);

}
fclose(calibfile);

Page 2

May 20 1994 11:45:07

setup_raster ()

{
Window window;
XWindowAttributes info;

float x_value_min, y_value_min, xmin,

float x_value_max, y_value_max, xmax,
float x_range, y_range;

int start, end, step;

vold set_world_coords() ;

window = XtWindow(raster) ;
XGetWindowAttributes (display, window,
x_value_min 0.0;

X_value_max
y_value_min

[T

0.0;

switch (curvetype) {
case Freq:

setup.c

ymin;
ymax;

&info) ;

(float)stimulus.total_dur;

start = FregCurve.start; end = FregCurve.end;

step = FregCurve.step;
break;

case Ttd:
start = ItdCurve.start; end
step = ItdCurve.step;
break;

case Iid:

ItdCurve.end;

start = IidCurve.start; end = IidCurve.end;

step = IidCurve.step;
break;
case Fiid:

start = FiidCurve.start; end = FiidCurve.end;

step = FildCurve.step;
break;
}

yv_value_max = (fabs((float)start-(float)end)/(float)step) + 1.0;

v_value_max *= stimulus.nreps;

/* there is a line of space between each line of spikes, plus a line

* of space along the bottom and top,
* 2% (# of rows)+2
*/
yv_value_max = 2.0*y_value_max + 2.0;
RasterRows = (int)y_value_max;

x_value_max - x_value_min;
y_value_max - y_value_min;

X_range
y_range

/* scale window to the data */

xmin = x value_min - 0.1*x_range; /*
xmax = X_value_max + 0.1*x_range;
ymin = y _value_min - 0.05*y_range; /*

ymax = y_value_max + 0.05*%y_range;

so the number of lines is

10% space */

5% space */

set_world_coords (&raster_wc, xmin, ymin, xmax, ymax);

Page 3

May 20 1994 11:45:07 sound.c

#include "includes.h"
#include "defines.h"
#include "globals.h"

void ShapeWaveform(buffer, sizeofbuffer, RiseTime, FallTime,
short buffer(]; /* data to be shaped */

int sizeofbuffer;

double RiseTime, /* rise time in ms */

FallTime, /* fall time in ms */

SamplingFreq; /* hardward sampling frequency in Hz */
{

int time, index, last_member;
double slope, x;

last_member=sizeofbuffer-1;

if

if

(RiseTime '= 0.0) {

time = (int) (slope = RiseTime/1000.0 * SamplingFreq);
slope = 1.0 / slope;

for (index = 0; index < time; index++) {

x = (double) (buffer[index]);
X *= slope * index;
buffer([index] = (short) (x);
}
(FallTime !

= 0.0) {
time = (int) (
slope = 1.0 / slope;
for (index = 0; index < time; index++) {

x = (double) (buffer{last_member - index]);
X *= slope * index;
buffer[last_member - index] = (short) (x};

#define TWOPI 6.283185307

make_tone(fregq, p, array, len)

int freq; /* requested frequency in Hz */
int 2amp; /* amplitude in mvV */

int len; /* length of array */

short array[]; /* array to store the sine wave */

{

int 1, j, num, gcd;
int cycles, samples;
double frTs, arg, phi;
double phase = 0.0;
double A;

SamplingFreq)

slope = FallTime / 1000.0 * SamplingFreq);

/* find the greatest common denominator of the sampling frequency

*/

A

num = len/samples; /* number of complete cycle segments in the array */
if (num == 0) samples = len; /* do as many as will fit */

frTs = (double)freq/(double)DA_FREQ;

phi = (TWOPI/360.0) *phase; /* convert to radians */

and the tone frequency.

= ((double)Amp/0.24) -24.0; /* mV/DAC slope - DAC offset */
gcd = GCD((int)DA_FREQ, freq);
samples = (int)DA_FREQ/gcd;
cycles = freqg/gcd;

/* first segment */
for (j=0; j<samples; j++) {

}

arg = (double)j* (TWOPI*frTs + phi);
array[j] = (short) (A*sin(arg));

/* remaining whole cycle segments */
for (i=1; i<num; i++) {

for (j=0; j<samples; J++)

Page 1

May 20 1994 11:45:07 sound.c

array [samples*i+j] = arrayl[jl;
}
/* leftover cycle segments */
for (j = 0, i=num*samples; i<len; i++, j++) {
array[il = arrayl[j];
}

/* return the actual fregquency */

return((int) (((float)cycles/ (float)samples) * (int) DA_FREQ)) ;
}
GCD(x, V)
int x, v;
{
if (y == 0) return(x);

else GCD(y, X%Y);
}

getWhiteNoise(array, len)
short arrayl(]; /* array to store the noise in */
int len;
{
register int i;
for (i=0; i<len; i++) array[i] = wnoisel[il]l;

}

getBandpassNoise (array, len)
short arrayl];
int len;
{
register int i;

for (i=0; i<len; i++) arraylil] bpnoisel[i];

ii

}

/* callback of the Synthesize bandpass noise command widget */
void makeBandpassNoise(w, client, call)
Widget w;
caddr_t client, call;
{
/* filter the wnoise array with the values stored in
* gtimulus.bpNoiseStim and stash the results in array.

x/
int i, 3;
int n = 16384;
int length;
float a, b, *filter, *fft, *vector();
Arg args[1l];
length = 2*n;
filter = vector(l, length);
fft = vector{(l, length);

fprintf (stderr, "Defining filter...\n");
define_filter(filter, length, (int)DA_FREQ,
stimulus.bpNoiseStim.startfreq, stimulus.bpNoiseStim.endfreq);
/* bpnoise array is 65536 long, so we filter it in two passes
* of 32768 each

for (j=0, i=1; i<=length; j++, i+=2) {
fft[i] = (float)wnoiselj]; /* real part */
fft{i+1] = 0.0; /* imaginary part */

}

fprintf (stderr, "Forward FFT, lst pass...\n");

fourl (fft, n, 1);

/* multiply FFT of noise by frequency response of filter */
for (i=1; i<=length-1; i+=2) {

a = (fft[il*filter[i]) - (fft[i+1]*filter(i+1]);
b = (fft[i1*filter[i+1]1) + (fft[i+1]1*filter([il);
fft{i]l = a;

fft[i+1] = b;
}
/* inverse FFT result */
fprintf (stderr, "Inverse FFT, 1lst pass...\n");
fourl(fft, n, -1);
/* leave out the imaginary part (even indices)
* scale the inverse fft to correct value.

Page 2

May 20 1994 11:45:07

/*

*/

}

*/
for (j=0, i=1; i<=length-1; j++, i+=2)
bpnoise[j] = (short) (£ft[i]l/n);

/* do the same thing on the next 32k samples */
for (j=n, i=l; i<=length; j++, i+=2) {

fft[i] = (float)wnoiseljl;

fEE(i+1] = 0.0;
}
fprintf (stderr, "Forward FFT, 2nd pass...\n");
fourl(fft, n, 1);
for (i=1; i<=length-1; i+=2) {

a = (fftl[il*filter[i]) - (f£ft[di+1]*filter[i+1]);
b = (fft[i]l*filter[i+1]) + (fftli+1]1*filter(i]);
ffe[i] = a;

fft[i+1] = b;
}
fprintf (stderr, "Inverse FFT, 2nd pass...\n");
fourl (fft, n, -1);
for (j=n, i=1l; i<=length-1; j++, i+=2)
bpnoise[j] = (short) (fft[il/n);
fprintf (stderr, "...done\n");

free_vector(filter, 1, length);
free_vector(fft, 1, length);

{

int wmax = 0, wmin = 0;

int bpmax = 0, bpmin = 0;

for (i=0; i<length; i++) {
if (wmax < wnoise[i]) wmax = (int)wnoisel[i];
if (wmin > wnoise[i]) wmin = (int)wnoise[i];

(
if (bpmax < bpnoise([i]) bpmax
if (bpmin > bpnoise[i]) bpmin
}

fprintf(stderr, "Wnoise max: %d\tmin: %d\n", wmax,
fprintf(stderr, "BPnoise max: %d\tmin: %d\n", bpmax, bpmin);

define_filter(filter, length, Fs, low_freq, high freq)

float filterl]; /* filter array */
int length;
int Fs; /* sampling frequency */

int low_freq, high_freq;

{

float freq res; /* frequency resolution */
int lowcut_index, highcut_index;
int i;

freq res = (float)Fs/(float)length;
lowcut_index = rnd((float)low freqg/freq res);
/* make sure lowcut_index is even */

if (lowcut_index % 2 != 0) --lowcut_index;
highcut_index = rnd((float)high_freq/freq res);

fprintf (stderr, "Freq res: %0.2f\n", freq res);

fprintf (stderr, "lowcut_index: %d\n", lowcut_index);
fprintf (stderr, "highcut_index: %d\n", highcut_index) ;

/* define the frequency response of the digital filter */

/* positive frequencies */

for (i=1; i<=lowcut_index; i++) filter[i] = 0.0;
for (i=lowcut_index+1; i<=highcut_index-1; i+=2) {
filter(i] = 1.0; /* real part */

filter[i+1l] = 0.0; /* imaginary part */

}
for (ishighcut_index+1; i<=length/2; i++) filter[i]

/* negative frequencies */

for (i=length; i>=length-(lowcut_index-1); i--) filter([i}]
for (i=length-lowcut_index; i>=length-highcut_index; i-=2)

filter[i]l = 0.0; /* imaginary part */
filter({i-1] = 1.0; /* real part */

sound.c

(int)bpnoise(i];
(int)bpnoisel[i];

/* length of complex frequency response to be defined */

/* low & high frequency cutoff in Hz */

Page 3

May 20 1994 11:45:07 sound.c Page 4

}
for (i=length-(highcut_index-2); i>=length-((length/2)+1); i--)
filter([i] = 0.0;

May 20 1994 11:45:07 uhoh.c Page 1

#include "includes.h"
#include "defines.h"
#include "globals.h"

uhoh (string)

char *string:;

{
fprintf (stderr, string);
fprintf (stderr, "\n");

