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Abstract

The focus of this thesis is on engineering effective color vision subsystems for
object segmentation based on hue and discontinuities in hue. Hue, which encodes
color, is a psychophysical scalar variable defined on the ring [0,27]. A computational
theory justifying the use of hue for distinguishing material differences is established
and novel algorithms are developed to detect its discontinuity. Although the focus of
this thesis has been on anthropocentrically based trichromatic systems, some effort is
placed in exploring the multi-dimensional spaces of more than three primary colors. A
hypothetical explanation is proposed of the 11 spectral sensors of the Mantis shrimp,
which performs functionally as a biological spectrum analyzer. The importance of
the opponency calculation is emphasized. Its role in optimum filter design offers
_ hyperacuity in the spectral domain.

This work encompasses spectral filter design, color space evaluation, computer
vision algorithm development, and hardware implementation in custom analog VLSI
circuitry. A one pixel (zero dimension) “intensity/normalized-color/hue” sensor is
built based on a trichromatic system. For the basic analog circuit element required
in hue segmentation, the current-fuse is developed. Guidelines for building higher
dimensional sensors in both spatial and spectral domains are presented. Practical
offshoots from this research range from color quality sensors for inexpensive printing

to vision systems for robotics and autonomous vehicles.
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Chapter 1

Introduction

Although color is one of many cues that help discriminate one object from another, it
plays an important and unique role. While texture, intensity, depth, and motion are
other cues that contribute to the object segmentation task, they differ from color in
one important respect: color sensing requires extra “front-end” equipment. Spectral
processing requires special sensing hardware (cones) and circuitry (neurons), thus de-
manding more resources and power. Nevertheless, the evolution of biological visual
systems shows a trend toward an increase in and refinement of multispectral pro-
cessing. In primates we see the recent evolution of the middle wavelength cone from
. the long wavelength cone (Nathans et al., 1986), thus creating a trichromatic system
from a dichromatic one. Then there is the case of the Mantis shrimp, with at least
11 spectral sensors (Cronin and Marshall, 1989b). Why does it need so many cones?
What can we learn from its multi-spectral processing?

The underlying theme of this thesis is the design and manufacture of color sen-
sors, which with further refinement can be integrated into effective visual hardware.
We envision utilizing analog VLSI systems because of the speed, cost, power, and

efficiency advantages they offer over other alternatives. To date, only monochromatic
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implementations of these analog VLSI systems have been realized. The addition
of color sensing to artificial analog systems offers new representations of the visual
environment and boosts performance levels. This parallels the evolution of multi-
spectral sensing in biological systems. Suitable engineering by-products from this
research range from color quality sensors for inexpensive printing to vision systems
for robotics and autonomous vehicles.

Overall, this thesis addresses color segmentation issues within Marr’s framework:

e What is the goal of color segmentation computation and why is it appropriate

(Chapter 3)?
e What algorithm will implement this color computation (Chapter 4)?
e What hardware can be built for this (Chapter 5)?

This paradigm for information processing encompassing theory, algorithm, and hard-
ware (Marr, 1982) is a powerful tool for carrying out any vision-understanding task.
Although many representations and algorithms can be utilized to realize the goal
of color segmentation, the physical embodiment in hardware limits and defines the
algorithm.

At the core of this thesis is the utilization of the psychophysically based hue
parameter and its role in segmentation. A recurrent theme in this endeavor is the
imitation of biological systems. In particular, the hardware implementation of the hue
sensor (Chapter 5) was made viable only after the utilization of the biologically-based

opponent color system. An outline of this thesis is as follows:

o Chapter 1! introduces color segmentation issues and history and motivates the

utilization of hue. Extension of color segmentation to multispectral domains is

!Portions of this chapter (1.1 to 1.4) in addition to portions of chapters 2, 3, 4 and 5 have already
appeared in publication(Perez and Koch, 1994).



suggested by the Mantis shrimp.

e Chapter 2 defines nomenclature and commonly used color spaces.

e Chapter 3 evaluates the advantages and disadvantages of the hue space, and
how it compares to normalized color. Important properties that relate color

variables to the underlying material properties are emphasized.

e Chapter 4 develops novel operations for convolution and regularization to find
discontinuities in modulo hue space. Performance is compared to standard

methods applied to real images.

o Chapter 5 describes the hardware implementation of normalized color and hue
sensors. Spectral tuning curves are measured and compared to biological data.
Enhancements of these sensors are discussed. Also, a current-fuse circuit, which

has direct application in hue segmentation, is described and tested.

o Chapter 6 focuses on multi-spectral sensor systems and speculates on the 11-
cone Mantis shrimp function. Filter optimization and sampling is discussed.

An artificial 6 cone silicon-based sensor is proposed.

Chapter 7 summarizes the thesis and indicates future directions for research.

The novel contributions of this research include: (1) Establishing a connection be-
tween the hue variable and physical properties of materials, (2) Developing modulo
operators to detect discontinuities in the hue variable, (3) Design and testing of bio-
logically motivated analog VLSI color sensors, and (4) Proposing multi-spectral vision

hardware systems based on a study of the spectral filter design of the Mantis shrimp.
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1.1 Color Vision

The primary goal of color segmentation is to determine where changes of material
occur in a visual scene. While it is true that most of the information content in an
image is contained in the achromatic intensity channel? (Buchsbaum and Gottschalk,
1983), it is clear that there is some merit to evaluating spectral differences in scenes.
For example, locating the red berries in the achromatic scene of Figure 1.1a is made
easier through the use of a red filter as shown in the filtered scene of Figure 1.1b.
Such a simple task as finding red berries amongst green foliage suggests that biological
systems obtain an advantage, through evolution, from the addition of extra chromatic
Sensors.

While a material’s surface properties are associated with its spectral reflectance
signature (also called the “bidirectional spectral reflectivity” (Horn, 1986; Siegel and
Howell, 1981) or “albedo” when independent of viewing geometry such as for lamber-
tian surfaces), it is only the image radiance—spectral reflectance multiplied by the
illumination or spectral irradiance—that is available for data processing at the image

SENSOrs.

Radiance(A) = Irradiance(\) Albedo())

This relationship is illustrated in Figure 1.2. Thus, the surface spectral reflectance,
which is a material property, is independent of illumination, while the image radiance
is not. The measurement of surface color from the image radiance is an approximation

to obtaining the spectral reflectance signature®. This absolute measurement of surface

2For human vision, 97% of the signal energy is contained in the luminance channel. See Chapter
2 for further discussion.
3The problem is underconstrained and requires some assumptions for its solution. The typical
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Figure 1.1: Natural scene photographed with a standard 35 mm camera using red and grey
filters. Notice that the reddish objects (berries) in the scene are accentuated when the two images
are compared.
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color, which is an illuminant-independent property, is known as “color constancy”
(D’Zmura and Lennie, 1986; Hurlbert, 1989; Maloney and Wandell, 1986) and falls
outside the scope of this study. What is of interest here is the measurement of relative
color differences calculated from the image radiance. It is this task that we call color
segmentation, which in general, is associated with distinguishing material differences

and thus object boundaries.

1.2 Color Segmentation

Recent work on color segmentation has been based on physically based models in mul-
tispectral environments. Rubin and Richards describe an approach based on assigning
material differences to spectral crosspoints (Rubin and Richards, 1982) and to the
opposite spectral slope condition (Rubin and Richards, 1984). Gershon, Jepson, and
Tsotsos (1986) incorporate that idea in a double-opponent center surround operator
to distinguish material changes from shadow boundaries. Other approaches involve
separating image radiance into surface reflection and body reflection. For example,
Klinker, Shafer, and Kanade (1988, 1990) discuss a physical-based color reflection
model (the dichromatic model (Shafer, 1985)) that accounts for highlight reflection
and matte shading to improve segmentation. Their method evaluates planar clus-
ters in three-dimensional color space while considering camera limitations. Similarly,
Healy and Binford (1987, 1989) describe a reflectance model of materials to classify
metals and dielectric surfaces.

Non-physically based segmentation models, in particular those that utilize hue,
have been few and far between. Ohlander (1976) uses recursive thresholding on

histograms of a 9-parameter color space (RGB, HSI, YIQ) for his segmentation algo-

assumption is that the illumination and the spectral reflectance of objects in the scene can be
constructed with a few orthogonal basis functions.
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: : L
Radiance
T

Albedo or Bidirectional
Reflectance

Figure 1.2: The Geometry of Image Formation. The surface property, albedo, is contained in the
radiance signal-viz. Radiance(A)=Irradiance(A) Albedo(A). (Alternate variables i, ¢, g are utilized
in the Dichromatic Model (Shafer, 1985).
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rithm. Ohta (1980) evaluates the performance of 7 different color spaces (21 param-
eters, 3 of which were HSI) utilizing Ohlander’s algorithm. In recent times, Celenk
(1990) utilizes the peaks of the 1-D histograms of the equivalent hue-saturation-
intensity (HSI) coordinates in the CIE (L*a*b*) uniform color coordinate system to
identify cluster regions and then projects the clusters onto a line for 1-dimensional
thresholding. Similarly, Tominaga (1990) utilizes iterative histogramming on the
principal components of the CIE (L*a*b*) color space to identify cluster regions, and
then applies a grouping operation dependent on hue difference thresholds.

Bajcsy (1990) uses a physically based model to construct HSI from an orthog-
onal basis space whereupon shading, highlights, shadows, and inter-reflections are
discounted. Nevertheless, clustering, histogramming, and thresholding are applied to
the hue parameter. As an extension, Lee (1991) improves segmentation performance
by considering multiple views to compensate for viewpoint-dependent specular reflec-
tions.

With the exception of Rubin and Richards’ approach these methods use classi-
cal pattern recognition techniques—histogram thresholding, linear discriminant func-
tion, recursive region masking, clustering, etc.—which require heavy computational
resources. These techniques represent neither plausible schemes for naturally-evolved,
efficient, biological systems nor lend themselves very easily to dedicated analog “vision
chips.” This research is fueled by the desire to understand the basis of color segmen-
tation in primate cortex as well as to imitate those structures in analog CMOS VLSI
circuits (see for example (Harris, 1990b; Koch et al., 1991; Perez and Koch, 1992)). In
particular, the low-accuracy and inhomogeneity of the circuit components we are us-
ing (Mead, 1989) forces us—as in biological evolution—to consider simple and robust
implementations of vision algorithms. Accordingly, we reevaluate and justify a sim-
plified hue description, propose an algorithm for hue segmentation and demonstrate

its adaptation to the first version of an analog VLSI hue chip.
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1.3 Using Hue for Image Processing

In this study, the psychophysically based parameters hue, saturation, and intensity
were used as the starting point for color segmentation. Functional studies suggests
that hue is computed at a high level in the nervous system (Desimone et al., 1985;
Schein and Desimone, 1990; Zeki, 1983). An examination of the spectral response
curves in area V4 of the monkey visual cortex bears this out. For example, we
partially reproduce Schein and Desimone’s (1990) Fig 2C and Fig. 4 in Fig. 1.3.
Fig. 1.3a shows the measured response of what can be labeled a “purple” cell, since
it responds maximally to both red and blue stimuli. Fig. 1.3b shows the distribution
of 71 cells as a function of peak wavelengths. Here, the whole visible spectral range is
spanned by the V4 neurons. Neurobiology literally constructs dozen of color classes
from three basic primary classes.

Furthermore, anthropological studies indicate that hue ordering and color naming
evolution are universal and are not culturally unique (Berlin and Kay, 1969). Heider
and Olivier (1972) investigated the short-term color memory of New Guinea Dani, a
stone-age agricultural people whose color lexicon is only limited to two terms: milli for
dark/cold hues and molla for bright/warm hues. Through psychophysical experiments
they found that the Dani’s color representation formed cylindrical structures very
much akin to Western color scales.

In the parlance of system engineering, this suggests that hue is a high level vari-
able. In addition to its circular (modulo) nature, it has invariance to illumination
changes and white light additions. The motivation for its selection in image seg-
mentation is that material boundaries correlate more strongly with hue than with
intensity discontinuities. Shadow boundaries are strongly associated with intensity
edges, and less so with hue boundaries. The same is said for highlight, transparency,

and shading boundaries. These conjectures are evaluated in Chapter 3. (See also the
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Figure 1.3:
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Partial Reproduction of Schein and Desimone’s (1990) Fig. 2C and Fig. 4 which

shows the spectral properties of V4 neurons in the Macaque. (a) Normalized response of a ‘purple”
cell. (b) Histogram distributions of peak wavelengths for 71 cells which have mean half-bandwidth

of 27 nm.
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study of (Bajcsy et al., 1990)). Furthermore, segmentation in the one-dimensional
hue parameter space is computationally less expensive than in the three-dimensional
RGB space. In comparison to other techniques, the method developed here is simpler
yet as effective in removing confounding cues as the color clustering and histogram
thresholding methods developed for color image segmentation. Also, because hue has
basis in biological hardware, it is readily implemented in electronic analog hardware.

The history of hue as a computational variable for image segmentation has not
been favorable. Kender’s 1976 study showed that nonlinear color transforms such as
HSI and normalized color have essential singularities, and spurious modes due to the
digitizing nature of the nonlinear transforms. Kender’s recommendation was to use
linear spaces. Still, researchers (Healey, 1989; Hurlbert and Poggio, 1989; Nevatia,
1977; Poggio et al., 1988; Rubin and Richards, 1984) have used normalized color as
the basis of an illumination independent color space.

Few studies exist that address the special considerations of modulo computa-
tion. (Winfree (1990) is a rare example.) Perhaps this is due to the limited appli-
cation of modulo variables (phase, orientation, and hue are the only variables that
come to mind). Chapter 4 describes the necessary tools to segment images in hue
space. Modulo convolutions and regularization utilizing the Markov Random Field
approach are developed. This can be compared to Yoon (1991), who describes a
computationally-extensive geodesic-based clustering/segmentation algorithm in the

hue-saturation space.

1.4 Analog VLSI Implementation

After the algorithms were developed and tested, the next phase was their implemen-
tation onto special purpose hardware. In Chapter 5 we describe a zero-dimension

(one pixel) intensity/normalized-color /hue chip we manufactured, complete with on-
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board photoreceptors and custom analog VLSI circuitry. The spectral differentiation
of photoreceptor elements was achieved by the manual placement of RGB gelatin
filter elements directly on the chip die photoreceptors*. This manufacture of a neu-
rologically based integrated color sensor lacks precedents. On the one hand there are
analog vision chips emulating various neurobiological components and circuits, such
as the silicon retina (Mead, 1989), pyramidal cells (Mahowald and Douglas, 1991),
and superior colliculus (Horiuchi et al., 1994). On the other hand there are color im-
agers (Parulski et al., 1992; Watanabe et al., 1984) utilizing digital circuits and RGB
CCD arrays for the purpose of replicating color images. In this thesis we combine
the efficient computing of analog VLSI with the color sensing approaches of digital
CCD imagers to make an effective color vision sensor. Closest in spirit to this work is
the color constancy analog computer (Moore et al., 1991), which utilizes analog VLSI
resistive grids to compute color corrected RGB channels from a CCD camera.
Additionally, in Chapter 5 we describe a segmentation (current-fuse) circuit that
complements our hue sensor. The future integration of this segmentation circuit with
the hue sensor is the fundamental element for the smart color sensor.
Manufacturing one and two-dimensional color systems was not explored in this
thesis due to the apparent technical limitations encountered earlier on in the re-
search. The manual placement of spectral filters directly on the chip precludes any
dense spatial positioning. This difficulty can now be overcome with color array filter
mask additions discussed in Chapter 5. Extensions to one and two-dimensional color

systems are now forthcoming.

4Utilizing intrinsic silicon devices such as buried diodes at varying depths to exploit the differential
absorption of light in silicon apparently is not beneficial within the visible spectrum according to
Delbriick (1993). However, we re-evaluate the use of intrinsic diodes in Chapters 5 and 6.
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1.5 The Number of Color Sensors

As mentioned earlier, image radiance is the multiplication of the surface spectral
reflectance by the spectral illumination or irradiance. Figure 1.4 shows the proto-
typical natural illumination available during a midlatitude summer. The figure shows
illumination as a function of wavelength for the overhead sun and various portions of
the sky. We notice that sky-light spectrum has a noticeable blue shift when compared
to the solar spectrum.

Measured illumination-independent surface spectral reflectances of 4 colored pa-
pers are shown in Figure 1.5. The corresponding image radiance of these papers under
the natural illumination is shown in Figure 1.6. At first glance, reconstruction of the
surface spectral reflectance from the image radiance looks like a foreboding project
considering the spectral diversity of materials. Fortunately, principal component anal-
ysis of surface reflectance signatures suggests that objects may be accounted for by
a small number of components. For example, Maloney (1986) shows that a three
parameter linear model will empirically fit a large number of surface reflectances.

Obviously, three is not a magic number. Numerous biological systems have four,
five, and six cone systems. Recently, the Mantis shrimp (Cronin and Marshall, 1989b)
was found to contain 11 color sensors. What governs this diversity is the system
requirement of accurate spectral discrimination for the job at hand. For example,
remote sensing artificial systems, such as an airborne radiometer with 512 spectral
sensors covering the 0.4 to 1.1 pm region (Chang and Collins, 1983), have been used
to detect metal sulfides in soils by examining for a tell-tale spectral blue shift (7 to
10 nm) of the chlorophyll red-edge in coniferous and deciduous trees. To paraphrase
a maxim, this application “sees the leaves for the trees.”

Thus, the measurement of surface color is an approximation to an object’s spectral

signature. It is an approximation because the measurement of color is obtained by
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Figure 1.4: Typical illumination from various portions of the sunlit sky based on a LOTRAN-7
software simulation courtesy of Ron Alley of Jet Propulsion Laboratory. The reflected sky radiance
1s based on a model midlatitude summer atmosphere with rural aerosols and assumes Mie scattering.
Notice that the ambient sky illumination has a noticeable blue shift when compared to the solar
spectrum. Also notice that to a first order approximation, the scattering from various portions of
the sky differs by an additive shift in spectral intensity.
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Figure 1.5: Surface Spectral Reflectance of Red,Orange,Green,and Blue Papers. This was mea-

sured using JPL’s Beckman UV5240 Spectrophotometer.



16 CHAPTER 1. INTRODUCTION

4+

Atbitrary Units (10%)

1 ! t t
350 400 450 500 550 600 650 700

Wavelength (nm)

Figure 1.6: Measured radiance of red, orange, green, and blue papers from a typical March
Southern California early afternoon sunlight utilizing a Jarrell Ash 275 c¢m spectrometer with a
Tracor Northern Optical Multichannel Analyzer courtesy of Rockwell International.
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a small and finite number of spectrally integrating sensors, usually on the order of
three sensors for many natural and artificial systems. As an example, the spectral
response for human cones is shown in Figure 1.7 and is similar to the RGB system of
many color camera systems.

Based on the Nyquist sampling theorem, justification for trichromacy has been
proposed (Barlow, 1982; Bowmaker, 1983). The sampling theorem establishes the
number of independent channels that can be constructed given the available spectral
range and sensor spectral bandwidth. In the case of the primate visual system the
number of independent channels is calculated to be three. Although this appears as
a justification for trichromatic systems, it cannot explain the 11-cone Mantis shrimp.
Also, sampling theorem arguments appear to directly conflict with the requirements
for accurate spectral encoding operations. To sample accurately, more narrowly-tuned
sensors are required; on the other hand, encoding requires broadly-tuned overlapping
spectral responses. Obviously, these contradictory requirements are resolved in biol-
ogy. Chapter 6 explores some of the pertinent issues related to this topic within the

Mantis shrimp.
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Figure 1.7: Spectral sensitivity of the human eye (Ingling and Tsou, 1977). (Compare this to
the spectral response curves for the artificial color sensor in Chapter 5.) The substantial spectral
overlap of the long- and middle-wave cones supports their recent evolution (Nathans, et al., 1986) but
contains suboptimal spectral crossing patterns (see Chapter 6). It has been argued (Barlow, 1982;
Mollon, 1990) that form vision and thus spatial resolution would be compromised if the sensitivity
curves became too separated thus resulting in an increase in chromatic aberration.
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Chapter 2

Color Space Comparison

RGB, normalized RGB (Nrgb), YIQ, HSI, Opponent color, Munsell, and various
CIE spaces (Foley et al., 1990; Joblove and Green, 1978; Ohta et al., 1980; Schwarz
et al., 1987; Smith, 1985; Wyszecki and Stiles, 1982) are a few of the most widely
used color spaces. The existence of many different color spaces is largely a result of
color scientists attempting to construct perceptually uniform color organization. The
Munsell and the CIE spaces in particular fall into this subjective category. The spaces
introduced in this chapter and examined in the thesis are the RGB, Nrgb, Opponent
color, YIQ, HSI, and CIE (L*a*b*) color spaces!.

2.1 RGB Space

The Red, Green, and Blue colors represent the tristimulus components and define the
basic color space(Wyszecki and Stiles, 1982). Each of these components corresponds

to a filtered spectral mapping from image space to a 3-D sensor space. The equation

'Portions of this chapter have already been published (Perez and Koch, 1994).
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governing this transformation is:
C= / E(\)Sc(M)d\  for C = (R, G, B) (2.1)
A

where C' are the tristimulus values, E()) is the incoming light intensity or radiance,
and S¢ are the three hypothetical color filters.

The original color images in Fig. 2.1 were obtained in the laboratory utilizing a
Panasonic WV-D5000 RGB camera. Separate RGB components of that image are
shown in Fig. 2.2. These images were chosen because they contained some attributes
of shading, transparency, highlights, and shadowing. Fig. 2.1a is a simplified “Mon-
drian” consisting of four patches with the shadow of a camera tripod head cast upon
it. Fig. 2.1b is a group of peppers in a semi-transparent bowl. In both images, multi-
light sources are evident. A projector halogen lamp was used for direct illumination,
and ambient fluorescent light provided background illumination.

The major problem of the RGB space is that segmentation needs to be performed
in 3-D space. Along these lines, Wright fused R, G, and B images using Markov
Random Fields (Wright, 1989). The results show that each of the components in the
RGB space are highly correlated and not independent of each other. This result is
also confirmed in the principal component analysis study of (Ohta et al., 1980) which

will be discussed in Section 2.3.

2.2 Normalized RGB Space

Nrgb gives a space that is independent of uniformly varying lighting levels. The

transformation to normalized colors is given by:

C

Ficym C=(RGB) (2.2)

N¢ =
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®

Figure 2.1: Original color images of (a) shadowed Mondrian and (b) peppers. In both images a
projector lamp was used for direct illumination while fluorescent light provided ambient illumination.
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Figure 2.2: Red, green, and blue components of (a) Mondrian and (b) peppers of Fig. 2.1.
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But, since Nrgb in Equation 2.2 is redundant (viz. Ng = 1 — Ng— Ng ), the preferred
normalized color space is typically formulated as (Hurlbert and Poggio, 1989; Kender,

1976; Nevatia, 1977):

Y = R+ c;G+ 3B
R

T, = m (2.3)
_ G
> (R+G+B)

where ¢, ¢y, and c3 are chosen constants such that ¢; +¢; +e3 = 1. Y is interpreted as
the image luminance of the image pixel and 7T} and 75 are chromatic variables which
are approximately independent of illumination (Nevatia, 1977). The Nrgh images of
the Mondrian and peppers are shown in Fig. 2.3. When we compare this figure to

Fig. 2.2 we note that illumination dependence is less for normalized color than for

RGB images.

2.3 Opponent Color Spaces

Opponent color spaces can be considered as intermediate transforms of the RGB
system to other systems. The simplicity of the linear operations from the opponency
transformation is a plus?. However, the most important benefit is the construction of
the principal components in the RGB color space. This has been used to advantage in
applications such as computer vision and color television signal encoding as discussed
below.

One of the originally proposed color opponent transform (see for example (Hurvich

and Jameson, 1957)) that was promulgated by Hering was based on psychophysical

2This benefit is not directly exploited in our segmentation algorithms of Chapter 4 but is explicitly
utilized in our hardware implementations of Chapter 5.
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Figure 2.3: Normalized red, green, and blue components of (a) Mondrian and (b) peppers of
Fig. 2.1.
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observations and is given by

Wh— Bl 1 1 1|(R
1
RG =3] 1 -21])G (2.4)
BY -1 -1 2|\ B

Usually, this transform matrix is modified with other values to account for psy-
chophysical data. We present this equation both for historical reasons and as an
introduction to other opponent color spaces. In the 1880’s Hering qualitatively pro-
posed the opponent system so that various psychophysical phenomena could be easily
explained. Later in 1957, Hurvich and Jameson quantified and championed the oppo-
nent representation over the three component Young-Helmholtz RGB model. Even-
tually, we utilize a variant of this simple and elegant formulation of the opponent
color space and construct high-level color variables directly within silicon hardware.

In an another study, an empirically derived opponent color space was derived
based on the Karhunen Loeve transformation on RGB data of various images (Ohta
et al., 1980). By analyzing more than 100 color features obtained during segmentation
of eight kinds of color pictures, the following color features, ordered by their principal

components, Iy I, I3, were found to be most effective.

5 53 3 || R
L |=| Yo -1|]la (2.5)
Rt

Another practical opponent color system is the YIQ system (Buchsbaum, 1987)
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defined by
Y 0.299  0.587 0.114 R
I | =1059% -0.274 -0.322 G (2.6)
Q 0.212 -0.523  0.311 B

This space is utilized in the optimum transmission of color television signals by the
National Television Systems Committee (NTSC). The YIQ standard was designed to
provide the best® possible color television signal within the existing monochromatic
standard. Y stands for the luminance (It is the Y in the CIE XYZ) and is a major
portion of the signal energy. At small portions of the signal energy, I, or in-phase, is
psychophysically related to red—cyan, while @, or quadrature, is related to magenta—
green. Y is transmitted at a bandwidth of 4.2 Mhz, while I and @ are transmitted
at 1.3 Mhz and 0.7 Mhz respectively. That the system works within the bandwidth
constraints of the existing monochromatic standard can be attributed to exploiting
human color encoding.

In general, opponent color systems are utilized to reduce the information content
of the signal. For human color vision, Buchsbaum shows that efficient information
transmission is achieved by transforming the initial RGB signal into one achromatic
and two opponent chromatic channels which are all uncorrelated and have maximum
variability. These three principal channels are computed from the Vos-Walraven hu-
man psychophysical response curves (Buchsbaum and Gottschalk, 1983) and have
signal energy of 97.2%, 2.78%, and 0.015% respectively. For color TV images the
typical signal distribution for YIQ is 93%, 5%, and 2% respectively. Thus, most of

the information content of an image is in the achromatic signal.

3In this sense, best signal means best compromise for “standard” observers.
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2.4 HSI Space

Of the many similar spaces that achieve Hue-Saturation-Intensity (HSI) characteris-
tics, i.e., color ordering systems that are based on human color perception, the Munsell
color system is remarkably popular (Wyszecki and Stiles, 1982). This system char-
acterizes color in terms of Hue, Chroma (or Saturation), and Value (or Intensity)
components and has been shown to achieve favorable hue segmentation (Tominaga,
1987).

Many transforms from RGB to HSI type spaces have been presented in the Com-
puter Graphics (Foley et al., 1990; Joblove and Green, 1978; Smith, 1985) and Com-
puter Vision (Gershon, 1985; Jain, 1989; Kender, 1976; Tominaga, 1987) literature.
The transformation to HSI from RGB that is used in this study is currently imple-
mented with special purpose digital hardware (Genz, 1990) and is given by:

It = BrG+B)
3
Sat = 1-— E@%ﬁ (2.7)

V3(G - B)

= t
Hue Arctan (R—G)+(R—B)

where Arctan(y/z) utilizes the signs of both y and x to determine the quadrant in
which the resulting angle lies?. Generally, hue is thought of as the angle between a
reference line and the color point in the RGB system. The physical model used to
determine the hue angle is based on the diagram shown in Fig. 2.4a. If the R, G, B
radial basis vectors are equally spaced %71' apart on the unit circle, the z and y com-

ponent of an arbitrary point in the plane can be calculated from basic trigonometry

“Note that embedded within this hue definition are opponency calculations. Also note that hue
becomes undefined at G = R = B. (See Section 3.3)
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and are given by

z = R—G+B=%[(R—G)+(R—B)]
y = ?(G—B)

This results in the hue angle shown in Equation 2.7. Conceptually, one can think of the
HSI space as a cylindrical one (Fig. 2.4b), where the coordinates r, 0, z respectively
correspond to saturation, hue, and intensity with 0 < r < 1. The resulting HSI
components for the Mondrian and the peppers are shown in Fig. 2.5°. Discussion
of all these figures follows in the next chapter. For now, notice that the hue map
of the Mondrian gives a false visual impression that there are different values within
the upper color patch. Because of hue’s modulo nature, the opposite is true, that
“dark” and “light” hue values are very similar to each other. Notice also that the
low saturation and low intensity background of the pepper image has inconstant hue

values.

2.5 CIE Spaces

For completeness we describe the CIE “uniform” perceptual spaces that are involved
in human color perception. The concept of “uniform perceptual distance” is an an-
thropomorphic one in that these spaces were set up so that traversals of a unit distance
in any direction in the space is perceived by human observers to have the same “color

difference.” Computing the CIE representation of color involves a linear intermediate

% Also see Chapter 5 for a comparison of hue for human visual data and measurements from the
color VLSI chip.
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Figure 2.4: Details of hue space. (a) Physical model for simplified hue based on weighted average
of RGB vectors. (b) Comparison of normalized color in HSI space. The non-tilted hue planar
structure is a simplification of the dichromatic planar hypothesis in (Klinker et al., 1990) without
the added complexity of color clustering and histogramming.
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Figure 2.5: Hue, saturation, and intensity components from left to right of (a) Mondrian (top)
and (b) peppers (bottom) of Fig. 2.1.
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transformation, followed by a nonlinear transformation. First, the tristimulus values

R, G, and B are transformed to another tristimulus set: X, Y, and Z.

X 0.490 0.310 0.200 R
Y | =10177 0813 0.011 G (2.8)
Z 0.000 0.010 0.990 B

For other arbitrary RGB sensor inputs, the transfer matrix must be determined

empirically. In particular, the transform for the NTSC receiver primary system is

X 0.607 0.174 0.200 R
Y | =1 0299 0587 0.114 G (2.9)
VA 0.000 0.066 1.116 B

Once the XYZ tristimulus coordinates are computed, a number of different CIE

spaces can be constructed. One of these spaces, the CIE (L*u*v*) space can be

described by

Y 1/3
L* =116 (-———) —16
Y,
u* =13L"(u' — ul) (2.10)

v* = 13L"(v' —v))

n

Where

4X

T X+15Y +3Z
, %

T X +15Y +32

’
U
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and u;, and v}, are the nominally white object-color stimulus. Equation 2.10 is only

valid for Y/Y, > 0.01. If Y/Y,, is equal to or less than 0.008856 then

Y
L7 =903.3—
n = 90335

Another important CIE space, the CIE (L*a*b*) coordinates, is usually selected
because it appears to have more uniform perceptual properties and gives better results
than the CIE (L*u*v™) space in segmenting color pictures (Ohta et al., 1980). The
CIE (L*a*b*) space is represented by

Y 1/3
L* =116 (———) -1
% 6

n

= [(3)" - (5)"] 1)
Z

b = 200 [@m - (Z)“]

with the constraint that X/X,,Y/Y,,Z/Z, > 0.01. Formulas that do not satisfy that
constraint are given in (Wyszecki and Stiles, 1982).

Chroma for the L*u*v* and the L*a*b* spaces is respectively given by

1/2

Cr, = |(w)? + (v)7]

= [(a)? + ()Y

1/2

(2.12)

Similarly, hue is given by

*

huey, = Arctan [v_*] , and huey, = Arctan l:b—} (2.13)

U a*

The CIE (L*a*b*) hue, chroma, and lightness images of the “Mondrian” and peppers

are shown in Fig. 2.6.
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Both CIE (L*u*v*) and CIE (L*a*b*) spaces require an intermediate transform to
the XYZ system from the system dependent RGB system, and then either a normal-
ization or a cube-root transformation. In comparison, the hue transformation given
by Equation 2.7 is substantially simpler. This added complexity is not warranted
since we will show that the simplified hue formulation gives satisfactory results. Fur-
thermore, CIE spaces were developed for the psychophysical need to have perceptual
uniformity for the standard human observer. We are concerned with the use of color
segmentation for analog vision sensors and not in matching human perception.

When we compare the figures, we see that qualitatively CIE (L*a*b*) hue, chroma,
and lightness are similar to HSI. We note that the hue measure is least correlated to
intensity, that normalized color is somewhat correlated to intensity, and that RGB is
strongly correlated to intensity. Noisy hue regions within images are indicative of low
saturation or low intensity regions. Their treatment requires special consideration

and is described in the following chapters.
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Figure 2.6:  CIE (L*a*b*) hue, chroma, and lightness components of (a) Mondrian and (b)
peppers of Fig. 2.1. RGB inputs are based on the NTSC receiver primary system. While hue and
lightness in this figure are directly related to hue and intensity of Fig. 2.5, chroma is unrelated to
saturation. Note also that the CIE hue angle is slightly shifted when compared to simplified hue of
Fig. 2.5.
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Chapter 3

Properties of Hue

In this chapter we describe the fundamental properties of hue and compare it to
normalized color. We show some of its problems, and some of its advantages for

locating material changes in images!.

3.1 Additive/Shift and Multiplicative/Scale In-
variance

Both Nrgb and HSI have the desirable property of multiplicative/scale invariance,
that is, uniform variation of the tristimulus components will not change the measured

quantity. This property is illustrated by the following relationships:

hue(R,G,B) = hue(aR, aG,aB)
Nc¢(R,G,B) = N¢(aR,aG,aB) (3.1)
(Va > 0)

1Portions of this chapter have already been published (Perez and Koch, 1994).
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These results can be verified by examining the constitutive Equation 2.2 and Equa-
tion 2.7.
Additionally, hue has additive/shift invariance which Nrgh lacks:

hue(R,G,B) = hue(R+ 3,G+ 3,B+ )
No(R,G,B) # No(R+B,G+B,B+f) (3.2)
(VB such that (R4 5,G + 3,B+ 8) € [R > 0]°)

This property of additive/shift invariance gives iso-hues a greater span in the color
space. The comparison shown in Fig. 2.4b between normalized color and hue in the
HSI space illustrates that iso-hues occupy plane segments while iso-Nrgb occupy line
segments. An equivalent statement to Equation 3.2 is that hue is invariant under
saturation changes, while normalized RGB is not. Another interpretation is that Hue
is invariant to white color vector additions. (We generalize this to the Integrated White
condition in Section 3.4.2.) Originally, these multiplicative/scale and additive/shift
invariance properties were used by (Kender, 1976) to analyze hue instabilities. In this

study, we show their advantages.

3.2 Hue in CIE Spaces

Similarly, hue in the CIE (L*a*b*) space defined by Equation 2.13 show multiplica-
tive/scale invariance. This property follows from a straightforward evaluation of
Equation 2.13 in the invariance relationship of Equation 3.1. However, the CIE hue
lacks strict additive/shift invariance. It only approximates additive/shift invariance
due to its non-linear cube-root transformation and normalization. Our approach is
to avoid the CIE color spaces because of their added complexity in matching human

perception.
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3.3 Problem of Singularities

Kender’s 1976 study of the properties of nonlinear color transforms revealed certain
problems associated with the use of HSI space. In particular, the HSI transform
has the unfortunate property of an unremovable singularity at the axis of the color
cylinder, where R=G=B (Saturation = 0). We can see this by examining the hues of
totally saturated pixels along the red-green segment of the color wheel, i.e., hue{R =
(I =r)z;G = ra; B = 0}, where 0 < r < 1. This situation corresponds to Int = £

and Sat = 1). It then follows from Equation 2.7:

V/3r
2—37")

lir% hue {(1 —r)z,rz,0)} = arctan(

Thus, hue varies continuously from 0 (when r=0) to 27/3 (when r=1). In addition,
hue near its singularities is intrinsically unstable. Take for example, pixels whose
values are hue{z,z,0}, where z > 0. For 8 bit digital implementation (i.e., hue
€ [0..255]) a minimal digital perturbation gives hue{z + 1,z,0} which can result in
changes up to 7 /3. This characteristic noise is prominent in the hue images in Fig. 2.5
(and in the hue edges shown in Fig. 4.3). Thus, the mapping from RGB to HSI is
ill-conditioned near the central axis (low saturation) and ill-posed at the axis (zero
saturation). Consequently, hue values will vary dramatically from one location to the
next within black or white areas within an image.

The Kender study went as far as recommending not to use nonlinear color trans-
forms such as HSI and normalized color spaces but to use linear transforms such as
YIQ and opponent color spaces. This recommendation has been heeded in the applied

computer vision literature (Barth et al., 1986; Ohta et al., 1980).
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3.4 Hue Discounts Confounding Cues

In this section, we show that assuming reasonable material properties and lighting
conditions, hue information will discount intensity edges due to transparency, high-

lights, shading, and shadowing.

3.4.1 Discounting Transparency

The first question that comes to mind: why is discounting transparency impor-
tant? Possibly the underwater medium could be transparent. But, when we examine
the data for pure water, the absorption coeflicient («) exhibits varying attenuation

throughout the visible range. In particular, the data shows (Wolfe and Zissis, 1985)

Aum 040 044 050 054 060 0.65 0.70
a,m™t 0.072 0.023 0.016 0.024 0.125 0.210 0.840
T 0.931 0.977 0.984 0.976 0.882 0.811 0.432

where the transmission coefficient, 7, at depth, z= 1 meter is calculated from

7(A) = exp(—a(}A)z)

Although we use the data for pure water, the attenuation coefficients for other
types of waters, such as deep oceanic and clear coastal waters, also vary within the
same spectral range (Wolfe and Zissis, 1985).

For small distances through the water environment, the uniform spectral trans-
mission assumption is valid. Additionally, a reasonable assumption for an object is
that its material points are physically close to each other, thus, the transparency
effects for viewing objects in aqueous environments will be negligible because rela-

tive transmission distances are small. In general, the tristimulus equation with and
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without an absorbing media is given by the following:

Xy = /AE()\)Sk(A)d)\
XT1, = /A E()Su(A) 7P (\)dA (3.3)

XT2, = /AE(A)Sk(/\)TDQ(/\)d)\

where X,k = R,G, B are the tristimulus values, XT'1; and X772 are tristimulus
values through transparent medium, E(A) is the incoming light intensity defined as
in Equation 2.2, Sy are the three hypothetical color filters, 7(A) is the transmittance
per unit distance in the medium, and D1 and D2 are the distances in the medium
for points 1 and 2.

For a spectrally uniform transmitting medium,
XTy = (7)P /A EMN)Si(VdA = (10)P X,

This case has the property of multiplicative scale invariance. Evaluating Equation 2.2

for normalized color and Equation 2.7 for hue results in:

Hue(XR,Xg,XB) = Hue(XTR,XTg,XTB)
nRGB(Xr,Xs,Xp) = nRGB(XTr,XTg, XTs)

Both normalized colors and hue discount image transparency through a spectrally

uniform medium.
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3.4.2 Discounting Highlights and the Integrated White Con-

dition

In this section we describe the Phong shading model, how it accounts for highlights
and how utilizing hue can discount highlights. A similar analysis in Appendix A
on other advanced models of shading such as the Cook-Torrance Model and the
Dichromatic Reflection model gives comparable results.

The Phong shading model (Phong, 1975) is based on the empirical observation
that the radiance from a highlight reflection falls off sharply with increasing o, where
« is the angle between the reflection vector and the viewpoint vector as shown in
Fig. 1.2. The form adopted by Phong was cos™(«), where n varies from 1 to 200
depending on the surface. The full equation for Phong shading is given by:

Io = Lickoo + ]:_Ck[kdc cos(#) + k, cos™(a)] for C = (R, G, B) (3.4)
r

where, I, and k, are the ambient intensity and ambient reflection coefficient. 1, is the
intensity of a point light source, r is the distance from the perspective viewpoint to
the surface, k is a constant, k; is the diffuse reflection coefficient, and k; is a specular
reflection coefficient. Both reflection coefficients k, and k; have three components
for the tristimulus equations and assume a constant value between 0 and 1. In the
Phong model the specular reflection coefficient, k,, is assumed to be constant and
independent of surface color. The first two terms in Equation 3.4 represent the non-
highlight condition, while the third term contains the highlight contribution.
Explicitly, for the non-highlighted (NH) region, the equivalent RGB tristimulus

values become

CNH = Iackac -+ TI-T—C]C [de COS(B)] for C = (R, G, B) (35)
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Then, if we assume a white light source (I,p = I,¢ = I,B), the equivalent RGB

tristimulus for the highlighted (H) region becomes

B

~

Cu =Cny + r—Iic—k[ks cos®(a)l=Cnpg+ 3 for C =(R,G,B) (3.6)

We immediately see that this equation satisfies the additive/shift invariance con-
dition. Thus, a computation based on hue will discount highlights due to the Phong
shading model, while a computation on normalized color, in general, will not. An
exception is the condition that the ambient illumination is proportional to the source
illumination (i.e., I,(A) = clI,())). Now multiplicative/scale invariance holds and
both normalized color and hue will discount highlights.

The Phong shading model has been criticized within the computer graphics com-
munity because it gives an object a “plastic” appearance. Ironically, the figures used
in the study by Klinker, Shafer, and Kanade (Klinker et al., 1988; Klinker et al.,
1990) were composed of plastic objects. Furthermore, a simple hue transform on
the image in Fig. 3.1 gives accurate segmentation while discounting highlights. The
measurements for a horizontal slice through two highlight regions in the subsampled

image are shown in the following table.
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Top left doughnut (y=36) Orange highlit cup (y=>57)
X Hue Sat Intensity X Hue Sat Intensity
33 3 126 77 63 7 73 109
34 2 98 88 64 2 19 196
35 0 56 110 65 225 6 245
36 253 57 111 66 249 36 163
37 1 111 78 67 4 64 117
38 3 140 71 68 6 71 112

% span | 2.4 329 15.7 % span | 14.9 27.1 53.3

For the central orange cup, a typical slice through the dominant highlight shows that
hue varies by 14.9 percent while intensity varies by 53.3 percent of the total range.
As we cross the highlight, hue changes 9.4 percent while intensity changes by 32.2
percent?.

The hue map shown in Fig. 3.1 discounts most of the highlights in the intensity
map. The reason for this is that typical plastic has embedded pigment particles
within a substrate that is transparent or white (Cook and Torrance, 1981). Thus,
light reflected off plastics will have a diffuse colored component and a specular white
component.

If we generalize the Phong shading model by assuming that the reflectance coef-

ficients are not constant but vary with wavelength we have:

I\
+k

N

1) = L(\ka(A) + 222 [ky(X) cos(6) + ks cos™(a)] (3.7)

-3

This implies that from Equation 2.1 the tristimulus values in the nonhighlighted

2Note that due to the wrap-around nature of hue, low values of hue are near high ones. For
example, a hue value of 0 is 3 units removed from 253.



3.4. HUE DISCOUNTS CONFOUNDING CUES 43

®)

Figure 3.1:  (a) Plastic Objects with highlights (Klinker et al., 1988; Klinker et al., 1990),
and (b) hue transform of the same image for intensities above 20/255. Note that highlights are
removed for most of the plastic objects. Although not considered in this paper, we clearly see yellow
interreflection on the blue doughnut within the hue space.



44 CHAPTER 3. PROPERTIES OF HUE

region becomes

cos(8)
r+k

Ong = A L(MEa(\)Sc(\dA + [\ L(A)ka(A)Sc(A)dA (3.8)

for C' = (R, G, B)

For the highlighted region the equivalent tristimulus values become

ks cos™(a)

Cuw =Cnp+ oy

/A L(\)Sc(A)dA  for C = (R,G, B) (3.9)

We see that hue invariance due to highlights will work exactly if and only if the

integrated white condition® holds, namely if

[\ L(A\)Sr(A)dX = [\ L(\)Se(A)d\ = A L(\)Ss(\)dA (3.10)

This follows from an inspection of Equation 3.9 and the fact that the additive/shift
invariance condition of Equation 3.2 is reached. The multiplicative/scale invariance
condition of Equation 3.1 can not in general be reached for the generalized Phong
shading model. The assumption of ambient illumination being proportional to source
illumination will not simplify matters much.

But, how reasonable is the integrated white assumption? For white light illumi-
nation, I,(A) is independent of A. This implies that the integrated white condition

simplifies to

A Sr(\)d\ = A Se(\)dA = /A Sp(A\)dA (3.11)

For artificial systems, this feature may be designed in with carefully selected spec-

tral filters. Additional compensation of non-white illumination to a white standard

3Bajesy (1990) utilizes a similar concept called illumination whitening.
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perhaps utilizing “color constancy” techniques is also necessary. Nevertheless, the
general integrated white condition for non-uniform spectral intensities requires that
Equation 3.10 must hold* in order for hue to discount highlights completely. Anything
less will give an approximate hue invariance to highlights. Within the framework of

the Phong shading model, normalized color will not generally discount highlights.

3.4.3 Discounting Shading

Shading or surface orientation changes is another confounding cue that will confuse
an achromatic vision system. A simple analysis by Rubin and Richards (1985) for a

single light source situation shows that

Iy = p(A)Ip(}) cos(61)
I, = p(A)I,(X) cos(8;) (3.12)

where I; and I, are the image radiance intensities for two points that differ only
by a surface orientation change, p(A) is the spectral albedo (will be similar to the
bidirectional reflectance of a lambertian surface), and 6 is the angle between the sur-
face normal and the illumination direction. The tristimulus equations (Equation 2.1)

immediately implies that the RGB ratios for these two points become

R,  cos(6y) Gi _ cos(bh) Bi _ cos(b)

R, cos(f)’ Gy cos(f)’ B, cos(6y)

(3.13)

For this simple model, the multiplicative/scale invariance condition holds. Thus, both

4This is viable in industrial applications where the illumination and the filter characteristics are
controlled such that the conditions of Equation 3.10 are satisfied.



46 CHAPTER 3. PROPERTIES OF HUE

normalized color and hue will discount this model of shading.

If ambient light were added to the model, the integrated white condition (such as
those defined by Equation 3.10) must hold for hue to discount confounding shading
cues®. The analysis for this is similar to the above calculations for highlight invariance
for the Phong shading model and the Cook-Torrance model. The Dichromatic Reflec-
tion model requires a slight modification of the addition of an ambient illumination

term.

3.4.4 Discounting Shadowing

For analyzing shadowed regions, we require two sources of illumination: one to cast
the shadow on an object and the other to lightly illuminate the darkened region. In
practice, the second light source often results from interreflections or scattering from
the principal light source. Our starting point is taken from Rubin and Richards’
analysis (1985) for shadowed regions. (See also (Gershon, 1985) for a discussion on
distinguishing material from shadow boundaries.) The governing equation for this

simple model of an image point with and without a shadow is given by

Liz = p(A)[L(A) + La(M)]
Lshade = p(X)[1a(M)] (3.14)

where Ij;; and I 4. are the radiance intensities in the non-shadowed and shadowed
region respectively, p is the albedo as defined before, I, is the illumination intensity.

and I is the diffuse ambient intensity. The relevant tristimulus equations for the

>This cue can also be discounted when the ambient light differs from the direct light by an
additive white light shift (which is approximately true for natural illumination). This is discussed
in section 3.4.4 below.
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shade region becomes
Copade = / 178 (\)d\  for C = (R, G, B) (3.15)
While the relevant tristimulus equations for the lit region become
Clit = Cahade + / L(\)p(N)Sc(VdX  for C = (R, G, B) (3.16)

In the most general case, hue will discount shadows if and only if

JRAVENENE WA = [ L(N)p(N)S(A (M)A = [ L(A)p(X)S5())A

This equation seems coincident with the integrated white condition of Equation 3.10.
However, this condition depends on the surface albedo p(\) which depends on material
type®.

A further simplification is possible if we assume that the ambient lighting and
the main lighting are related. In particular, if the ambient lighting tracks the main

lighting, that is I,(A) = aly(}), then the following tristimulus equations hold

Clt = (Oz -} 1)Cshade for C = (R, G, B)

For this case, the condition of multiplicative/scale invariance holds. Thus, both nor-
malized color and hue will discount this particular shadow cue. In the following table,

we compare color values for typical points in the light and shadow regions of the lower

5The implication of this equation is that the diffuse illumination can be arbitrarily colored and
not violate the infegrated white condition. Segmentation will be achieved under these conditions.
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right hand side of the Mondrian of Fig. 2.1a within different color spaces.

Color space | A light to shade
R:G:B 80% 92% 68%
nR:G:B | 16% 68% 24%

H:S:1 3%  55% 6%

(CIE)H:C:L | 4% 11% 52%

Hue varies only 3% across the shadow edge while normalized color varies at least 16%.
The performance of the CIE (L*a*b*) hue is similar to the simplified hue (for more
details, see Chapter 4).

In most cases, however, I,(A) # oly()). The work of (Gershon et al., 1986)
provide a complementary analysis for discounting shadow boundaries utilizing Rubin
and Richards’ spectral crosspoint concept. At the heart of the issue: intensities from
within shadow regions will be illuminated by ambient sources that will not have
the same spectral characteristics as the primary source. The example of natural
illumination shown in Fig. 1.4 illustrates this clearly. First, there is a color shift in
the ambient illumination when compared to the direct illumination. Second, there is
an additive shift component to the overall ambient spectral radiance from different
portions of the sky. Although complicating the analysis, the additive shift attribute
of natural illumination complements the hue representation and supports discounting
confounding cues cause by shadowing and shading”. The measured spectral radiance
of green paper shown in Fig. 3.2, which also includes shadow and shading effects,
supports the hypothesis that hue is conserved. Calculated values from the figure
show that although the radiance value can shift by 90% the hue shifts by no more
than 20 degrees or 5.6%

"This type of illumination will affect the measured RGB values from objects with different ori-
entations, but will be discounted in hue
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400 450 500 550 600 650 700
Wavelength (nm)

Figure 3.2: Radiance measured of green paper under natural illumination under varying orien-
tations (shading) and shadowing. Shading changes cause an approximate linear shift in spectral
intensity. Shadows have both multiplicative scale and additive shift changes in intensity. Calculated
hue values for the shadow region differ by 16 to 20 degrees from the non-shadowed region.
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3.5 Rubin and Richards Representation

Rubin and Richards (1984) describe a method of determining material boundaries
by comparing the spectral slopes at candidate positions in an image. For a two
sensor color system—say R and G—they conclude that no single continuous function
of R and G will be invariant under multiplicative (shading or surface orientation
and approximate shadows), exponential (pigment density), and additive (highlights)

changes®

. Therefore, they concentrate on one invariance property—multiplicative
change—to facilitate discounting shadow and shading cues. For this particular case,

they examine three candidate functions:

_ B(=) _ K@) _ R(z)-G(z)
FO=5er PO meoer MO mmraw

where z is a spatial location in the image

Fiy is discarded because it maps image regions onto the unbounded interval [0, oo,
while F, and F3 maps onto the closed intervals [0,1] and [~1,1] respectively. Fj
is selected because it has a simple condition for determining material boundaries,

namely, the opposite slope condition:

Sign[F5(z1)] # Sign[F3(z,)]

This condition implies that the material at position z; differs from the material at
zo. In any case, both F, and F3 can be considered respectively as normalized color

and differences of normalized color. We know this will only account for multiplicative

SFortuitously, the construction of hue in a trichromatic system is invariant to both multiplicative
and additive changes. Constructing a function that includes invariance to exponential changes is
more difficult and left as future work.
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scale changes within an image.

For trichromacy, Rubin and Richards note that six basic material types are pos-
sible due to the 3 slope sign combinations. For a three sensor system—say R, G,
and B—these become (B — G,G — R, B — R). This information can be summarized

in the two-dimensional plot reproduced in Fig. 3.3. The critical elements are the

R~-G B-G

quadrant boundaries in the (57&, 356

) space and the slope = 1 line in that space,
which divides the material zones into 6 distinct regions. Image points that cross these

boundaries signify material differences.

B-G
B+G
G
Q7
|  B>G>R |8
G
$‘1
¥ R-G
R+G
<«
67%7
%
E
& R>G>B

Figure 3.3: Rubin and Richards’ (1986) material representation in trichromatic space. The axis
lines and the unit slope line divide the color space into six regions, which correspond to 6 different
material types.

In comparison, the candidate function we utilize in this thesis is the hue represen-

tation given by
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V3(G — B)

Hue = arctan(X), X = (R—G)+(R—- B)

The hue argument, X, functionally gives invariance to both multiplicative and addi-
tive changes. Furthermore, even though X maps onto [0, 0o}, the nonlinear “arctan”
function compresses X to the range (0,27). An added benefit is the wrap-around
nature afforded by the “arctan” function, which is a measured characteristic of the
psychophysical variable hue. Since the criterion for material changes is based on
threshold conditions, Rubin and Richards’ representation is a discrete valued variable
(of six values). Our representation of material differences is hue, a continuous variable

which has no set boundaries and offers higher resolution.

3.6 Physical Basis for Hue’s Modulo Nature

Within Maloney’s (1986) analysis of surface spectral estimation by a few parameters,
he summarizes the physical basis for the properties of materials. We further summa-
rize his work and justify the circular nature of hue, which has its basis in the physics
and chemistry of materials.

For simple organic and inorganic molecules, light interaction within the visible
spectrum results in a smooth broad shaped spectral absorptance curve® whose half-
width size is on the order of 5,000 cm™!, and caused primarily by low energy elec-
tronic transitions(Kauzmann, 1957; Nassau, 1983; Suzuki, 1967) 1°. The fact that
the spectral curves are not spiky at these electronic transitions is due to electronic

and molecular interactions which smooth out the discrete transitions of the high fre-

9For opaque materials, absorptance is the complement of reflectance. Conceptually, peaks and
troughs are interchanged when switching from absorptance curves to reflectance curves.
%The conversion from wavenumber units to wavelength is Z[em=1] = 10,000, 000/A[nm)].
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quency vibrational and rotational molecular transition energies. From a quantum
physics standpoint, the low energy transitions are regularly repeated as the frequency
space is traversed.

Since the energy separation of different electronic states is of the order of 10,000

cm™!

and since the width of the visible spectrum is 10,000 cm™?!, there can be a
maximum of only one spectral absorptance peak within the visible range for this
simple material. To first order, this peak absorptance corresponds to hue directly.

The concept illustrated in Fig. 3.4 shows the effect of shifting the position of
the peak absorptance transitions thus resulting in a changing perception of color.
Nevertheless, as the peak absorptance is shifted through the visible spectrum toward
the left, for example, the tail of the next peak absorptance (nearby energy transition)
appears toward the right of the spectrum. Further shifting will result in a repetition
of the spectral pattern in the visible window. Thus, the hue variable will be cyclical
as the absorption curve traverses the spectrum.

The measurement of spectral position for absorptance curves caused by electronic
energy transitions requires, at a minimum, the use of 3 sensors to determine the
relative placement (left, centered, or right) in the visible spectrum. Because molecular
vibration energy transitions have a factor of 1/3 to 1/10 the separation of electronic
energy states, a minimum of 9 spectral sensors are required to discriminate them.
In the extreme, the discrimination of molecular rotational energy transitions, which
have energy separations on the order of 1 to 100 cm™?, require 100 to 1000s of spectral

SE€I11S0TSs.
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Visible Spectrum

Red Blue

Figure 3.4: Absorption band of 4 different materials in relation to the visible spectrum. Each
materials absorption band has energy spacings of 10,000 cm™=! and half-widths of 5,000 cm~!. For
different materials the absorption band locations can be shifted. In this example, materials 1, 2, 3,
and 4 correspond to red, purple, blue, and green objects respectively.
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Chapter 4

Algorithms for Hue Segmentation

Before we can utilize hue in image segmentation, we need to develop special tools
to detect edges in hue space. Furthermore, because of the instabilities of hue in low
saturation and low intensity regions (as described in Section 3.3 and indicated in
Figs. 2.5 and 2.6), we need to temper our hue edge detection algorithm with some
measure of “goodness.” The natural candidate is the Markov Random Field (MRF)
regularization technique which uses line discontinuities, when appropriate, to segment
images. The adoption of the MRF regularization method will lead to improved color

segmentation performance.

In this chapter we only present novel results. For edge detection, we assume the
background of (Marr and Hildreth, 1980; Canny, 1986). For regularization and the
MRF formulation we assume the background of (Geiger and Girosi, 1990; Geman and

Geman, 1984; Poggio and Koch, 1985; Terzopoulos, 1986)!.

1Portions of this chapter have already been published (Perez and Koch, 1994).
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4.1 Finding Edges of a Circular Variable

Standard techniques of intensity edge detection (Canny, 1986) by convolving with
various masks followed by thresholding or extremum detection such as by Canny’s
algorithm do not work with hue, because unlike intensity, hue is defined on the ring
S! rather than on the interval R'. However, standard convolution techniques can
be modified to work with these modulo variables to determine their spatial “edges.”
Conceptually, this is similar to a 2-D lattice populated with particles whose state is
defined by a scalar variable defined on §*, such as orientation or phase angle 6. In the
latter example, “edges” would correspond to all locations on the 2-D lattice across
which the phase angle changes maximally.

Traditional edge detection entails finding the zero-crossings of the 2-D image con-
volved with a Laplacian. One of the simplest discrete approximations of a Laplacian

is the following kernel:

0 1 0
1 -4 1
0 1 0

In the manner of Terzopoulos, this kernel can be decomposed into the following

computational molecules (Dahlquist and Bjorck, 1974; Terzopoulos, 1985):

O
e
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The individual computational molecules represent the distance measure between near-
est pixel neighbors. For linear operations the centroid of the computational molecules
can be summed and combined to give the Laplacian kernel. For non-linear modulo op-
erations, this consolidation is incorrect. Nevertheless, it is this formulation that allows
us to generalize the modulo Laplacian as the modulo distance of nearest neighbors
from a central pixel. Modulo distance or angular distance, ®(y — z), can be repre-
sented functionally as a linear saw tooth pattern with slope 1 and period 27. It is

given by the Fourier series expansion

()

Ply—z)=2 2 sin[n(y — )] (4.1)

An equivalent form of this equation is given by

Py —z)=(y—z)—2nk (4.2)

where £ = Floor [%Ceiling[l;—-x-ﬂ . For example, if y — z = 7 + § with § small, then
k = Floor [} Ceiling [1+ £]] = Floor [2] = 1. Thus, ®(r+68) =7+ 6 —2r = 6 — .
Since the hue values z,y are given in the principal range 0 to 27, the angular

distance formula can be simplified to

+2r fy—z< -7
y—z)=y—z+{ —27r fy—z>nr (4.3)

0 otherwise,
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where positive values of ®(y — z) indicate that y is positioned clockwise to z2. There-
fore, the strategy for finding material boundaries in an image is to (1) convolve the hue
image array with the modulo Laplacian, defined by the decomposed Laplacian kernel
and the distance measure of Equation 4.3, and (2) identify the hue zero crossings.
We can compare our approach to Yoon (1991) who developes a mathematically
elegant but numerically extensive algorithm in hue-saturation space. His method
requires evaluating geodesics on the hue-saturation manifold to cluster image val-
ues about pre-selected cluster centers. Yoon’s distance measure, which is used to
mark hue-saturation cluster boundaries, requires solutions to a two-variable non-
linear equation. In contrast, we can explicitly state the distance measure in our

simplified hue space as Equation 4.3.

4.2 Performance Comparisons

In this section we compare conventional edge detection in the RGB and Normal-
ized color spaces to the non-linear operator developed for hue space. A quantitative

measure of performance is also computed.

4.2.1 Conventional Edge Detection

Edge detection is performed utilizing Canny’s (1986) algorithm which is remarkably
robust with noisy images. It achieves this by using an optimal detector that maxi-
mizes detection and localization performances with certain classes of edges. Canny‘s
algorithm assigns edges to maxima in the gradient magnitude of a Gaussian-smoothed

image.

2 Appendix B presents a digital implementation of this algorithm that does not rely on conditional
operations.
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Fig. 4.1a shows the edges obtained from the RGB image of the Mondrian shown
in Fig. 2.2a, while Fig. 4.1 (b) shows the edges obtained from the RGB image of
the peppers shown in Fig. 2.2b. The edges obtained represent intensity changes, and
thus, falsely indicate the shadow as a material boundary.

Notice that the edges shown in Fig. 4.2 for the normalized RGB image of Fig. 2.3
also show segmentation at the shadow edge. The reason for this has been discussed
previously, and is a result of normalized color only factoring out uniform changes in

color—what we call multiplicative scale invariance.

4.2.2 Results of Modulo Discontinuity Operator

Based on the algorithm developed in the previous section, we computed hue edges
associated with both the HSI and the CIE (L*a*b*) color spaces. Figs. 4.3 and 4.4
display the hue edges as well as the saturation/chroma and intensity/lightness edges
of both the Mondrian and the peppers.

Comparison of the Mondrian hue edge map with the intensity edge map in both
HSI and CIE color spaces show an amelioration of the shadow edge effect. Hue edges
are qualitatively superior to normalized RGB edges in discounting shadow cues. The
reason for this is that the additive scale invariance property in HSI space offers the
added benefit of cancelling the saturation changes to the RGB components of the
image radiance. An evaluation of the performance of hue segmentation is discussed

in the next section.

4.2.3 Comparisons

Qualitatively, a visual inspection of the Mondrian edges in the four color spaces used
illustrates that hue discontinuities in both HSI or CIE spaces appear to be the best

measure for detecting material changes, independent of shadow edges. In order for
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Figure 4.1: Red, green, and blue Canny edges of (a) Mondrian and (b) peppers of Fig. 2.1.
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4.2. PERFORMANCE COMPARISONS

Normalized red, green, and blue Canny edges of (a) Mondrian and (b) peppers of

Figure 4.2:
Fig. 2.1.
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Figure 4.3: Hue, saturation, and intensity edges of (a) Mondrian and (b) peppers. Excellent
performance is achieved in discounting the shadow boundary of the Mondrian hue edge map. The
unsatisfactory performance for the peppers is due to the instabilities of the hue transform at low
saturations and intensities associated with the shadows and background of Fig. 2.1.
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Figure 4.4: CIE L*a*b* Hue, chroma, and lightness edges of (a) Mondrian and (b) peppers.
Results for the Mondrian are similar to Fig. 4.3. As in the previous figure, the hue edges were
obtained with the modulo algorithm, while the chroma and lightness edges were obtained with the
Canny edge operator.
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us to form a more quantitative judgement of the relative performance in the different
color spaces, we use a modified figure of merit, F', first proposed by (Abdou and
Pratt, 1979; Pratt, 1978) to compare different edge detection schemes. This is given
by

1 NZ 1
max(Ni, Na) = 1 + ad?

7

F= (4.4)

where Ni and Na represent the number of ideal and actual edge map points, « is a
scaling constant (typically o = % to penalize offset edges more than smeared edges),
and d is the separation from the location of an actual edge point to the closest ideal
point. (In this study, the ideal edge map was hand-constructed piecemeal from the
intensity map.) The figure of merit, F', defined by Equation 4.4 will penalize both
non-localized edges and inaccurately positioned ones. Values of F close to 1 are ideal.

Applying this measure on the saturated portion (central half) of the Mondrian

image gives the following results:

Color space Figure of Merit
R:G:B 0.2596 0.4126 0.2626
nR:G:B 0.1830 0.2509 0.2330

H:S:1 0.9158 0.1765 0.3093

(CIE)H:C:L | 0.7421 0.3215 0.2733

In general, normalized color gives spurious edges within low intensity regions. That
is why its figure of merit is penalized more than that of the RGB system. The best

performance for object segmentation is achieved in hue space. For this particular

3In the original reference, Abdou (1979) evaluated edges within 1-dimensional images. In our
extension to the 2-dimensional image of the Mondrian, our definition of d will give an upper bound
on F. We adopt this viewpoint because the problem of finding the correct location of an actual edge
point in a 2-D image is ill-posed.
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example, hue segmentation in HSI space outperforms the CIE (L*a*b*) hue segmen-

tation.

4.3 Improvement with Regularization

While the hue segmentation works adequately in some areas, it is clear that it performs
poorly in other areas. As the image pixels approach low saturation and low intensity
values, hue values become unstable. This is apparent in the upper left hand portion
of the Mondrian-edge image in Fig. 4.3a and in the background regions of the pepper-
edge image in Fig. 4.3b. This suggests hierarchical processing based on confidence
values depending on saturation and intensity. That is, hue regions of low saturation
and intensity should be smoothed before segmentation is performed. This strategy
is the complement of combining all sensory data to find all “true” edges (Ohlander,
1976). The rationale behind this algorithm is that a cooperative pixel neighborhood
scheme is appropriate for scene segmentation since object pixels will correspond more
closely to nearby pixels. This neighborhood correspondence is a fundamental premise

in Geman and Geman’s Markov random field (MRF) formulation.

4.3.1 Markov Random Field Formulation

Smoothing unstable hue regions is performed by utilization of a regularization tech-
nique based on MRFs. While other researchers (Hurlbert and Poggio, 1989; Wright,
1989) have used the MRF formulation in color segmentation, the research of (Daily,
1989) comes closest in spirit to this work in the selection of hue as a useful measure for
image segmentation. Although our use of the MRF formulation requires heavy digital
computational resources, its implementation of minimizing a non-convex functional

is directly transferable to analog VLSI hardware.
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In this study, we use deterministic hue discontinuities to segment hue regions
smoothed by a first-order membrane type stabilizer. This represents a deterministic
approximation to the underlying stochastic MRF algorithm of (Geman and Geman,
1984) (see also (Geiger and Girosi, 1990).) The advantages of using such a deter-
ministic approach are simplicity, speed, and the fact that hue values are smoothed
while hue discontinuities are computed at the same time. Noise is eliminated while
discontinuities are preserved. The algorithm utilizes a first-order Tikhonov stabilizing

functional (Poggio et al., 1985) by minimizing the following “energy” function:

Eie = Egaa+ Ey + En + Elie,
where
Egwe = A Z[RelativeDist(Hueij, Di))?
E, = Z[JRelativeDist(Huein, Hue;;)(1 — v;;))?
tj
Eyn = ) [RelativeDist(Hue;sj, Huey;)(1 — hij)]?
ij
Eline = ay_(hj+v)

i
Here, 2,7 are pixel locations in a rectangular lattice, A is associated with the data
confidence to smoothing ratio, v;; and h; ; are vertical and horizontal hue discontinuity
line processes which take on values of 0 or 1, and « is the energy penalty for forming
these line processes. Because the formulation of this energy functional has many local
minima, standard gradient-descent techniques can converge to non-global solutions.
Finding the optimum solution requires utilizing an annealing process which allows
convergence to unique global solutions during each annealing cycle. The deterministic
annealing schedule we utilized was based on adjusting the A parameter from very small

values (high degree of smoothing) to higher values (small degree of smoothing).
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The method we used in segmenting scene boundaries was to start with the inten-
sity edge map generated from the Canny edge operator and to gradually eliminate
those edges not due to hue differences. Our constraint is that hue discontinuity line
processes would only form if pixel saturation values exceeded some specified minimum

value (20% saturation).

4.3.2 Results

By utilizing a membrane type stabilizer to smooth low confidence regions due to
low saturation or low intensity, improvement in object segmentation is obtained.
The corresponding hue edges for regions away from unstable saturation are shown in

Fig. 4.5 and shows significant improvement over the edges shown in Fig. 4.3b.
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Figure 4.5: Smoothed hue edges away from low saturation regions. The threshold was 20%
saturation.
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The procedure used to generate this map was to start out with an initial edge
map identical to the intensity edge map and to minimize the hue energy functional.
Edges are created if both critical hue thresholds and critical saturation thresholds are
exceeded, while intensity edges are eliminated if hue differences are small.

Notice that edges associated with intensity variations due to shading on the curved
bell-pepper surface and intensity filtering through the translucent bowl have been
eliminated in the hue edge map. This hue edge map correlates more strongly to the
material boundaries than the intensity edge map.

In general, the MRF regularization formulation for global minimization requires
the “tweaking” of parameters that cannot be derived a priori. Selecting proper values
for the regularization parameters @ and A are problem specific, while the selection of
the annealing procedure is strongly problem dependent bordering nearly on intuition
and art. Automating this process of global optimization is an active research topic

(Harris, 1991; MacKay, 1992) and lies beyond the scope of this thesis.
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Chapter 5

Analog VLSI Chip

Implementation

Based on the performance of our hue segmentation algorithm, we proceeded to the
next step of our research program, implementing a hue sensor using integrated cir-
cuit technology. Because the underlying photoreceptor signals are continuous, it is
appropriate to use the analog paradigm rather than the digital one, so that all the
information of a spectral signal can be elegantly extracted. In this chapter we de-
scribe the one pixel (zero dimensional) intensity, normalized color, and hue sensors
which were manufactured. This represents the first analog CMOS VLSI circuit that
uses on-board photoreceptors responsive to different spectral components!. We also
present a current segmentation circuit useful for detecting discontinuities. Qur main
objective in this research effort of achieving the first steps of on-chip color processing
has been met. In our analysis of future hardware improvements (in this chapter and
the next) we uncover the importance of spectral filter design on the assigned task.

The ideal design requires narrow-band filters for precise spectral sampling and wide

1Portions of this chapter have already been published (Perez and Koch, 1994).
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overlap for accurate encoding. Further work is required in optimizing spectral filters

to improve measurement accuracy and system performance.

5.1 The Analog Representation

Our technology of choice is analog CMOS VLSTI technology, as developed and applied
to a range of neuromorphic systems by Carver Mead (1989) and his collaborators.
A significant number of circuits have been successfully built with this technology,
including a silicon retina with logarithmic photoreceptors (Mahowald, 1992; Sivilotti
et al., 1987), resistive networks for smoothing and “fuses” for detecting discontinuities
(Harris, 1990b; Harris, 1991). This will allow us in the future (Koch, 1989) to integrate
smoothing and discontinuity detection circuits with our color sensors to build a single
smart sensor for directly computing hue discontinuities.

The alternative CCD camera/color imaging system (D’Luna and Parulski, 1991;
Khosla, 1992; Watanabe et al., 1984) is a power-hungry system requiring analog pixel
scanning, A/D conversion, and digital computation. In comparison to CCD camera-
based vision systems, integrated spectral sensors combined with analog CMOS cir-
cuits operating in the subthreshold regime offer low power consumption?, real-time
performance, illumination independent solution to color segmentation.

Although the previous chapter successfully demonstrates a number of machine vi-
sion algorithms to segment hue, these algorithms are not amenable to analog circuit
implementation due to their complexity (witness, for instance, Equation 4.3). Fur-
thermore, no direct analog circuit can be constructed for hue utilizing Equation 2.7
because the required division operation is not a functional analog computational

unit. Our approach fortunately overcomes these obstacles. We report on two color

2The silicon retina requires less than 1 mW of power, most of which is used in the photo-
conversion stage.
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circuits that perform the required computations using simplified algorithms. Because
normalization® lends itself quite readily to an analog circuit implementation, we first
built a circuit for computing normalized color with inputs provided by on-board
red, green and blue photoreceptor sensors. In order to incorporate the additive/shift
invariance property we utilize an opponency strategy to compute hue components.
The final outputs of the hue circuit are the x and y components of hue rather than
the single hue angle. It is interesting that this functional progression from three
wavelength-selective signals to opponency to hue imitates the known stages of color
computation in the primate visual system (De Valois and De Valois, 1975; Lenny and
D’Zmura, 1988). These circuits should be viewed as exploratory designs, proving that
analog VLSI hue chips are feasible. We first describe some of the practical aspects of

chip design and fabrication.

5.2 Chip Background and Experimental Setup

Because all of our chips are fabricated using the government sponsored silicon foundry
service MOSIS, we are restricted to using standard CMOS and BiCMOS processes.
Over the visible range of light, the spectral sensitivities of the various kinds of photo-
diodes and phototransistors available in these processes is apparently insufficient for
full color vision according to Delbriick (1993). Thus, we did not exploit any intrinsic
wavelength filtering of silicon for this research effort?.

Furthermore, we do not have access to the highly developed colored polymer film

deposition technology found in the majority of modern solid-state commercial video

3Although normalization is a division operation, its output is restricted to the range of 0 to 1.
The general division operation however has no restriction since large outputs can be generated from
small denominator inputs.

“However, in Sections 5.6.2 and 6.7, we evaluate their advantages and suggest improvements of
these devices.
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cameras. We therefore had to manually deposit spectral filter over our phototran-
sistors, a quite tedious process which does not lend itself to an extension to one- or
two-dimensional arrays of photoreceptors.

We manually glued color gelatin filters (KODAK, 1981) on top of standard bipolar
phototransistors, which were further covered by an IR filter so that we could concen-
trate our experiments in the visible range. Spectral transmissivity of these filters
are shown in Fig. 5.1. (Also included in the figure is the spectral response curve for
bipolar phototransistors.)

The areas of the phototransistors were approximately sized to accommodate the
color filter transmissivity®. The phototransistors we use have logarithmic voltage
responses over five orders of magnitude of intensity change (Mead, 1989; Sivilotti
et al., 1987). In our application, we use photocurrent output that varies linearly with
intensity. All chips were fabricated using the MOSIS 2 um process. We used the
standard 40 pin “Tinychip” die which has an effective 1.6 mm by 1.6 mm usable chip
area.

To measure spectral tuning curves for our constructed color sensors, we used
the calibrated prism monochromator and halogen incandescent lamp source setup
of Delbriick (1993). The prism monochromator (Gaertner Scientific Corp.) has ad-
Justable input and output slits which we use to regulate intensity levels. The light
source is a 400 watt General Electric “quartzline” lamp. Because the light source
used in this experiment is approximately a black body radiator with peak intensity
in the infrared, the intensity varies 3 orders of magnitude over the spectrum of in-
terest as shown in Fig. 5.2. Even though the light source exhibits these non-ideal
spectral characteristics, our circuit compensates for this variation by performing a

multiplicative/scale invariance operation, thus removing intensity contributions from

®The red cell was sized to 100 by 100 ym while the green and blue cells were sized a factor of
1.39 and 2.18 larger, respectively.
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Figure 5.1: Filter spectral transmissivity of (a) Kodak Wratten gelatin filters and (b) Kodak Ek-
tachrome 100 HC slide film. The curves were calculated from chip intensity measurements of filtered
and un-filtered phototransistors, and thus, represents the total system spectral response. Kodak
Wratten gelatin filters No. 24, 58 and 38A were used for the red, green, and blue photoreceptors in
(a). Blue transmissivity for slide film in (b) attenuates illumination much greater than in (a) and
must be compensated. Included in the insert is the spectral response of a typical bipolar transistor
such as the Motorola MRD300 series (Bliss, 1993).
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the chromatic computation. We report our results in the visible 400 to 700 nm
wavelength range.

Instead of building our circuits using the prevalent voltage mode of operation, our
circuits operate in the current mode®, an approach that is gaining popularity (see
(Toumazou et al., 1990)). Since charge rather than voltage is the active parameter,
higher usable gains, accuracy, and bandwidth are expected. Also in the current
representation, linear computations such as addition and subtraction are more easily
achieved than in the voltage representation (for examples of available “building block”
circuits see the compendium in (Seevink, 1988)). Even though, we lose the logarithmic
compression (Mahowald, 1992) of intensity that the voltage-mode of operation affords,

we achieve the same functionality with the current normalization circuit.

5.3 Normalized Color Sensor

Because of its relative design simplicity, we first designed and built a Normalized
color sensor (Perez and Koch, 1992). The basic circuit design is based on Gilbert’s
translinear principle (Gilbert, 1975) and consists of a current-mode normalization
circuit (described by (Seevink, 1988)) that has the desired scaling behavior. The
input currents I, I, I, from the three phototransistors produce normalized output

currents V., Ny, Ny such that

I
N, = R [
Tbias (L - ]b>

1
Ny = Ipjas (m) (5.1)

In monochromatic image processing, a current-mode approach has also been used for modeling
the synaptic interactions in a contrast sensitive silicon retina (Boahen and Andreou, 1991).
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Figure 5.2: Typical intensity photocurrent output from the experimental setup used throughout
this thesis as a function of wavelength. Because of the nature of the tungsten halogen light source,
a variation of intensity of 3 orders of magnitude occurs across this spectrum.



76 CHAPTER 5. ANALOG VLSI CHIP IMPLEMENTATION

Iy
M= Thias (IT +1, + Ib) ’

where [ . is set to operate in the subthreshold regime (Mead, 1989). Notice that
this equation matches the normalized color equation given in Equation 2.2, and thus
offers multiplicative/scale invariance. This normalization operation is achieved with
7 transistors and functions over 4 orders of magnitude of measured intensity change.

To confirm the behavior of the normalizing circuits shown in Fig. 5.3 we apply the
analysis (and notation) of Mead (1989) (See also (Gilbert, 1984; DeWeerth, 1991)).
For the simple color normalization circuit shown in Fig. 5.3a, if we assume that all

transistors are saturated, then the input and output currents become

I = e for C = (R,G, B) (5.2)
Igut — IoenVc-—V

This directly implies that

g =1&e™"  for C = (R,G,B) (5.3)

Summation over the output currents of Equation 5.3 and application of Kirchoff’s

current law gives

Ibia,s = Z Igm =e Z Ié'n (5.4)
C=(R,G,B) C=(R.,G,B)

Combining Equation 5.3 with Equation 5.4 results in the normalized color of Equa-
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tion 5.1, which in the notation of the current analysis is given by

I3 = Ibias"i’” for C = (R,G, B) (5.5)
2o lf
Similar analysis on the circuits shown in Fig. 5.3 will verify the associated equa-

tions. Of particular interest is the series diode connected normalizing circuit we call

“square” normalization shown in Fig. 5.3b, which has the canonical equations given

by

184 = Ispe—S—  for C = (R,G,B) (5.6)
Yol

The advantage of this equation is not fully realized in CMOS devices because k =
0.5 to 0.7. However, bipolar transistors have x = 1 so that the denominator in
Equation 5.6 exactly represents the distance measure, since its exponent tl =2 In

general, for M — 1 diodes in series, the exponent, P, is given by

11 Mo
=14 -4 —=+...=
P=1+-—+—+ mz-:wm‘l
So generally we have
out ]gLP
IC = ]blas————'—-}—; for C= (R, G,B) (57)
2o lE :

Fig. 5.3c shows a translinear circuit stacked with “m” diode connected transistors

that obeys these relations. Obviously, there is a finite limit to how many diodes can
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be connected in series before the voltage headroom is exhausted.

In the limit, we note that the “m-th” normalization approaches the “winner-take-
all” normalization shown in Fig. 5.3d. Analysis of this circuit is presented elsewhere
(DeWeerth, 1991; Lazzaro, 1990; Lazzaro et al., 1988).

Fig. 5.4 shows the experimental spectral tuning curves for the normalized color
circuit at two different illumination levels: (a) an arbitrary baseline level and (b) 10
times that baseline level. The ten-fold increase in illumination uniformly across the
entire spectrum was achieved by opening the monochromator slit, and confirmed by
photocurrent measurement. The figure shows that for illumination level increases of
one order of magnitude, the circuit output increases no more than 25% for N, and
Ny. That Ny is 60% off for the baseline illumination is attributed to circuit operation
in the non-saturated regime for this particular experiment. Ensuring operation in
the saturation regime will improve the performance of the normalization circuit. The
circuit modification that will achieve this is a change in the source of the input
transistor from ground to a higher voltage, V,.;. Experimental results of this simple
circuit modification, with V;.s set to 0.6 volts, are shown in Fig. 5.5. The figure shows
that for a 10-fold increase in illumination, the circuit output increases no more than
30% for N,, N,, and even Nj.

Since the translinear principle is based on Kirchhoff’s current and voltage laws
and the transistor voltage-current logarithmic relationship, the circuit normalizing
behavior will hold over a large range (4 orders of magnitude from experiments) of
input currents. The advantage of this circuit is that intensity gain control can be
achieved electronically instead of by mechanical iris movements as is customary in

standard camera systems.
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Figure 5.3: Normalization circuitry, canonical equations, and simulated output for (a) “linear”
(b) “square” (c¢) “mth” and (d) “winner-take-all” normalizations. The input was a large array of
evenly spaced Gaussians. Circuit equations are for bipolar rather than CMOS transistors, whose
differences are further elaborated in Section 5.6.2.
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Figure 5.4: Spectral Tuning Curves for Normalized Color Circuit from (a) standard intensity
(arbitrarily set) and (b) 10 times standard intensity. The normalization operation is demonstrated
on N,.(A) and Ny(O) because a 10-fold increase in intensity causes a 1.25 increase in circuit output.
The 60% attenuation of Nj(o) is attributed to low S/N from the experimental setup and the resultant
non-saturation circuit operation. In the central portion of the curve, the sum of the normalized color
currents equals a constant Ip;,,. The circuit diagram used for normalized color is shown in the insert.
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Figure 5.5: Spectral Tuning Curves for Improved Normalized Color Circuit from (a) standard
intensity (arbitrarily set) and (b) 10 times standard intensity. The corresponding circuit used for
this measurement is shown in the insert. The source of each input transistors is set to some reference
voltage (V;¢; = 0.6 volts) to ensure operation in the saturation regime.
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5.4 Hue Sensor

In addition to multiplicative/scale invariance, hue has additive/shift invariance. To
help us construct this extra property, we adopted the opponent cell concept from
biological vision processing. Thus, we designed an opponent circuit which computes

the following additive/shift invariant parameters:

Xt = min(2R — 2G,0)

X~ = min(2G - 2R,0)
Y* = min(R+ G- 2B,0) (5.8)
Y™ = min(2B-R-G,0)

Here R, G and B are the currents from the “red,” “green,”

and “blue” phototransis-
tors. Each of the opponency currents X+ and X~ are half-wave rectified, such that
if either one is positive the other one is zero, that is X = X+ — X~ (the same applies
to the opposing pair Y™ and Y 7). In an earlier version of this chip, we used a single
current X that could take on both negative and positive values. However, imbalances
due to inherent mismatched properties of the circuit lead to poor performance. The
opponency currents are then processed by the translinear normalization circuit dis-
cussed above to give normalized z and y current values that map directly onto a unit

diamond on the 4 quadrants of the color plane shown in Fig. 5.6.

These currents are given by

X+t
+ = .
T = Iblas (X+ T X-+Y++ Y") (59)
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- X~
x = “‘bias X+ 4+ X-+Y++Y-

with the corresponding equations for y* and y~. Notice that we slightly warp the
hue definition given earlier in Equation 2.7 for expedient hardware implementation”.
This formulation is reminiscent of (Hurvich, 1981). (R-G is « apart rather than ).

In this case, hue will be defined as

_ R+G-2B] y*t —y~
Hue = Arctan [——m] = Arctan {m (5.10)

The block diagram circuitry for the hue sensor is shown in Fig. 5.6%. The outputs
of the chip are the normalized half-wave rectified hue currents z and y, which are
shown as a mapping on the unit diamond in the X-Y opponent color space. This
mapping is fundamentally different from traditional color space mappings which uti-
lize preprocessed RGB input signals that lie within a fixed region (typically 8 bits)
of color space. Whereas traditional color processing operates within the radius of the
color circle, the hue sensor element described here operates outside of the color radius
as illustrated in Fig. 5.6.

As expected, Fig. 5.7 shows that the hue circuit measured output varies little with
changing illumination levels. When the image intensity is increased by a factor of 10
uniformly across the entire spectrum, the z and y currents scale only by at most 25%,
in a manner similar to the normalized color circuit.

Finally, we numerically computed off-chip the hue defined by Equation 5.10 on the

basis of the measured = and y currents. For comparison, we additionally superimpose

"In particular, we avoid the 1/3 scaling required from the use of Equation 2.7.

8Each opponency unit contains 6 transistors for addition and subtraction of photocurrents while
the translinear section contains 9 transistors to normalize 4 different signals (X*+, X, Y+, Y~). A
basic hue sensor element, therefore, consists of 33 transistors.
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Yo2y-2b=r+g-2b

X=2r-2g
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Figure 5.6: Block diagram of Hue sensor element. RGB current inputs are converted into oppo-
nency currents which are then converted into z and y components of hue in the translinear normal-
ization circuit. Opponency circuit gives the additive/shift invariance property while the translinear
part gives multiplicative/scale invariance. Opponency X and Y currents in the plane are mapped
onto the unit diamond shown in the insert. The unit diamond is defined by | X|+|Y| = Ij;as = const.
In the insert, even though point BB is roughly twice as intense as point AA, their mappings to B
and A respectively on the unit diamond indicate their hue similarities.
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Figure 5.7: Spectral response of the hue circuit at (a) standard intensity (arbitrarily set) and (b)
10 times standard intensity. Similarities of the half-wave rectified hue currents z+(s), z—(0O), y* (o),
y~ () in (a) and (b) indicate that the circuit performs the normalization and thus exhibits multi-
plicative/scale invariance. Here an order of magnitude increase in illumination causes a maximum
change of only 25% of current output. Notice the spectral sharpening of the y* hue current, which
at 10 nm half-bandwidth represents at most 14% of input filter response shown in Fig. 5.1a.
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the calculated hue based on photosensor input and human visual input in Fig. 5.8. The
former is computed from the measured output photocurrents from RGB color filtered
phototransistors shown in Fig. 5.1, while the latter is computed from the equivalent

RGB spectral response curves of the human cone system as shown in Fig. 1.7. In

both cases, hue is calculated from Arctan [Rz%ci‘ZéB ] In the visible range (> 400 to
700 nm) all curves show a monotonic behavior. The hue chip output agrees within
experimental error to the calculated hue based on phototransistor current input. Both
have a flattened output spectral response in the 500 to 600 nm band. Because they
have different input sensor characteristics, hue calculated from human visual curves
does not have this flattened output spectral response.

We select the output of the chip to be the z and y currents, rather than the single

variable hue, because we can easily compute them within analog circuitry. In the

next section, we show how to utilize these z and y currents in segmentation.

5.5 Segmentation Circuitry

We envision two approaches for designing a hue circuit that locates discontinuities in
hue space as discussed earlier. One is to convert the normalized z*z~y*y~ currents
into voltages and utilize available circuits for detecting discontinuities (Harris, 1990b;
Harris, 1990a)°.

Another approach is to develop current-mode versions of discontinuity detectors
such as resistive fuses. One advantage of the current-mode fuse over a voltage-mode
one is that in principle, it can be made into more compact circuitry. Another ad-

vantage is that the domain of operation is a current based one so that the signal

One possibility is to treat the 2 and y variables separately. Two separate networks will be used
to calculate Az and Ay, the differences between neighboring pixel elements. Another possibility is
to evaluate the hue distance norm defined by Az? + Ay?.
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Figure 5.8: Comparison of hue as computed using (1) the z and y output currents of the hue
chip (o) from Fig. 5.7, (2) the spectral response curves of the RGB filtered phototransistors (1)
from Fig. 5.1, and (3) the spectral response curves (Ingling and Tsou, 1977) from human cones (A)
from Fig. 1.7. I we discount the “flat” hue regions and the borders of the spectral range (near
400 nm) where our experimental setup has low signal content, all curves exhibit strictly decreasing
hue values in the visible range. The flat range in the band-500nm to 600nm for the hue chip is
predicted from the color photosensor input. (This issue and possible improvements are discussed
in the next section.) The color wheel in the insert shows the color interpretation of the hue angle.
An absence of hue angles in the 270 to 360 degree range is an affirmation that monochromatic light

cannot produce “purple” hues.



88 CHAPTER 5. ANALOG VLSI CHIP IMPLEMENTATION

processing remains self-consistent.

The elemental circuit that achieves one-dimensional current-fusing is shown in
Fig. 5.9. When the fuse is not in operation, the fundamental filtering operation of
this circuit is achieved by 1-2-1 current mirrors which copy % of the current from the
left element, 3 from itself, and % from the right element (a binomial filter). This
filtering operation is reminiscent of current research in smart CCD image processing
(Seitz et al., 1993; Yang, 1991), but the main difference is that current rather than
charge is used as the signal parameter. To complete the current fuse, two high gain
amplifiers and several pass transistors control the “fuse” by switching-off the filter
when a threshold current is exceeded.

A layout utilizing the current-fuse element is shown in Fig. 5.10. The current-fuse
chip layout consists of 7 layers of binomial 1-2-1 filters in the top portion of the die
and 3 layers of current-fused binomial 1-2-1 filters at the bottom of the die. Each
layer feeds into its succeeding layer resulting in a 1-2-1 convolution at each layer. For
example, while the first layer is a 1-2-1 filter, the second layer will result in a 1-4-6-4-1
filter, the third layer will result in a 1-6-15-20-15-6-1 filter, and so on. In the future,
elegant designs that utilize feedback to achieve convolution /filtering within one layer
should be explored.

However, our goal was to prove the concept, which is validated by experimental
data shown in Fig. 5.11. This figure superimposes the output from the second layer
of the current-fuse chip when the input current is above and below the fuse thresh-
old current. The results are clear: Filtering occurs below threshold, while the fuse
operates above threshold. The filtering and fusing operation of this chip makes it
an elementary hardware implementation of the regularization/line-discontinuity al-

gorithm developed previously.
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Figure 5.9: One-dimensional current-fuse circuit element which performs a 1-2-1 binomial filtering
as long as a threshold current is not exceeded. Two high gain amplifiers control the pass transistors
that switch the binomial filter operation.
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Figure 5.10: The current-fuse chip layout consists of 7 layers of binomial 1-2-1 filters in the top
portion of the die and 3 layers of current-fused binomial 1-2-1 filters at the bottom of the die. Each
layer feeds into its succeeding layer.
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Figure 5.11: (a) Experimental data for current-fuse. The X-axis shows the cell number along
a one-dimensional array, while the Y-axis is the scanned sense-amp voltage output which is pro-
portional to current. The input for this experiment is a central current (at element 7) which is
perturbed about a threshold current shown in dashed line. When the input current exceeds the
threshold current, the output shown as (A) is not filtered. As the input current is reduced below
the threshold current, the output signal shown as o is filtered according to the binomial expansion—
in this case the second layer binomial expansion is a 1-4-6-4-1 filter. (b) Results of current fuse to
step edge data. Solid circles show input data. Line through open circles show smoothing and fusing

operation.
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5.6 Future Hardware Issues

Based on the research presented in this chapter, further hardware development is still
required before practical devices can be constructed. To develop color vision systems
useful for robotics and autonomous systems, arrays of color sensors must be incor-
porated and integrated with vision processing units. To develop color sensors useful
for inexpensive printing quality control, spectral discrimination and performance ac-

curacy must be improved further.

5.6.1 Color Arrays

In our current unoptimized circuit design, one pixel, including three (RGB) photo-
transistors as well as normalized RGB, intensity, opponency, and hue circuits, spans
350 pm by 1600 pm on the die, most of which is inactive silicon real estate. This odd
geometrical shape was selected to facilitate color filter placement. Without circuit
optimization, a 5 by 5 pixel array can be implemented onto the smallest available
“Tinychip” (using a 2 pm process), while significantly larger array sizes are possible
with circuit optimization, bigger die sizes and smaller design rules. Because photo-
transistors take up 70% of the active silicon real estate area, their design optimization
will have the biggest impact on circuit reduction. Still, manual spectral filter place-
ment will be difficult to achieve so a method to place the filters easily and accurately
1s desired. One method is to fabricate color array dyes using a lithographic process
and bond to the chip (Dillon et al., 1978a). Unfortunately, this process is propri-
etary to industry and thus unobtainable. A lower resolution, readily available, but
cheaper version of this method is to use color slide film as the color filter array. Our
evaluation of Kodak Ektachrome 100 HC slide film shows acceptable performance for
spectral filtering. The test patterns we created on the slide film have minimum feature

size of 30 ym and spectral transmissivity given in Fig. 5.1. The advantage of using
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this technique is that one-dimensional and even two-dimensional color arrays can be
constructed easily. This fabrication is more robust than the single filter placement
method because less manual handling is required and the potential for chip damage
is lowered.

Thus, extension to one- or two-dimensional arrays may proceed in one of two ways:
either each pixel element contains (1) identical RGB triplet unit-cells or (2) a single
R, G, or B sensor element. The first method offers higher spatial resolution, but the
latter utilizes a third less hardware. It is the second method that is embraced in both
vertebrate biological systems and modern CCD television imagers.

In many ways the reduction in hardware by sampling the image with a tessellated
color array with lower resolution than the image, complements the MRF regulariza-
tion formulation discussed earlier. The missing data points can be interpolated with
regularization techniques, at which point the normal computations can proceed as
usual. We show an example of the results of this technique in Fig. 5.12. Here, our
pepper image is subsampled both spectrally and spatially (to speed up digital com-
putation) and a hue map is constructed and segmented. Although the results seem
coarse when compared to the previous chapter, the hue segmentation qualitatively
functions similarly.

The traditional two-dimensional tessellation pattern (Bayer, 1976) utilizes a reg-
ular rectangular grid of 50% green, 25% red, and 25% blue photosensors. The green
detectors are arranged in a checkerboard layout with the red and blue sensors inter-
weaved at a coarser resolution as shown in Fig. 5.13a. The spatial sampling of the
green sensors is twice that of either the red or blue ones. However, a problem arises
when this array geometry is utilized for CCDs or any imagers using an interlaced
readout. In particular, horizontal luminance edges near the Nyquist frequency can
exhibit annoying 30 Hz yellow-cyan hue flicker as a result of the green-red interline

linear array contrasting with the nearby green-blue array. The solution (Dillon et al.,



94 CHAPTER 5. ANALOG VLSI CHIP IMPLEMENTATION

“Reconsiructed Hue Edges™ - 1282128 pisels R Hue: lambdax. 05(itere253) lambdas=,0005(iter>3200)" - 1285128 pixcls

Figure 5.12: Reconstructed (a) hue edges and (b) hue map of subsampled pepper image from
digital simulations. The starting configuration was a 128 by 128 pixel array containing a single
randomly organized R, G, or B data point. Data reconstruction by the MRF formulation was applied
to approximate the missing data, whereupon the hue segmentation algorithms were exercised.



5.6. FUTURE HARDWARE ISSUES 95

1978b; Watanabe et al., 1984) to eliminate this flicker is to adopt an interline geom-

etry which staggers the subsampled red and blue elements as shown in Fig. 5.13b1°,
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Figure 5.13: Color filter array for the (a) Bayer geometry and the (b) Interline geometry. Both
contain 50% green, 25% red, and 25% blue sensors (Dillon et al., 1978). The advantage of (a) is that
the regular pattern allows easier implementation in vision circuitry, while (b) removes color flickering
for interlaced imaging devices when horizontal luminance edges are near the Nyquist frequency.

Modern CCD imagers further exploit human visual psychophysics by allocating
more of the color image array to the luminance channel. In the latest reincarnation,
75% of the elements in the color filter array is allocated to the luminance green
photoreceptor while 25% is allocated to the red and blue sensors (Parulski et al.,

1992; Khosla, 1992).

10As nonsequitur, Welch (1991) shows that the flicker response of an NTSC image can be greatly
improved if the saturation and intensity components were spatially filtered. This is achieved at the
expense of sharpness response.
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To further exploit biological vision, perhaps the array could be arranged into
compact triangular tessellation patterns to imitate the human cone mosaic (Williams,
1986). Each element is generally surrounded by a 6 neighbor hexagonal gridwork
with the color array forming irregular patterns. (For processing hexagonally sampled
data see also (Feinstein, 1988; Mersereau, 1979).) The advantage of an irregular
arrangement of color arrays is the elimination of global aliasing that arises with regular
layouts. Although it seems impractical to manufacture VLSI circuitry with random
patterns, evolutionary biology “thought” otherwise and developed the cones and the
connecting neurons anyway.

A two-dimensional color analog VLSI sensors should have some combinations of
these features. For example, the Bayer color filter structure is attractive in non-
interlaced applications because the regular rectangular patterns allow easier imple-
mentation into VLSI circuitry. Triangular tessellation offers efficient packaging of
sensors but requires more thought on color array geometries and interfacing.

For spectral extensions beyond trichromacy, the two-dimensional array may not
be adequate because of reduced resolution resulting in unacceptable aliasing'!. If
the number of spectral classes is N then the spatial sampling in a two-dimensional
array of each spectral class scales as v/N. One possible solution is to use a scanned
one-dimensional spectral array. This will achieve hyper-color vision without loss of

spatial resolution. In biology, we see this very solution adopted by the Mantis shrimp.

5.6.2 Improved Hue Sensor

Because of the many-to-one wavelength-to-hue mapping in the spectrum, Fig. 5.8

shows that the hue chip exhibits low discrimination, and thus poor performance,

11We assume that only one spectral sample can be obtained per pixel position. This is a limitation
of what is essentially a two-dimensional device. If on the other hand, the third dimension could be
used for spectral processing, then the spatial resolution would not be compromised.
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in the flat bands spanning 500 to 570 nm and 620 to 700 nm. These performance
inaccuracies can be traced to two sources: (1) an essential experimental idiosyncrasy

and more importantly (2) spectral filter characteristics.

Circuit or Experimental Improvement

The first source of the hue sensor performance inaccuracy can be traced to the non-
ideal spectral characteristics of the experimental setup. Fig. 5.2 shows that the in-
tensity increases over 3 orders of magnitude as the spectrum is swept. As shown in
Figs. 5.4, 5.5, and 5.7, the increasing intensity skews the translinear circuit spectral
tuning curves to flatten or “tanh-out” at wavelengths above 500 nm.

To compensate for this intensity increase, the translinear circuit element CMOS
transistor, which is essentially a voltage controlled switch, can be replaced with a bipo-
lar transistor, which is a current controlled device. Simulations shown in Fig. 5.14
using AnaLOG (Gillespie and Lazzaro, 1990), a circuit simulator, indicate that the
bipolar translinear circuit performs “linear” normalization at all intensity values!Z.
On the other hand, the CMOS translinear circuit performs a “quartic” normalization,
and only achieves “linear” normalization at the lower intensities (at the shorter wave-
lengths in the spectrum). Thus, the use of bipolar transistors will compensate for the
experimental idiosyncrasy of widely varying illumination. However, their adoption
will not lead to compact circuit designs, since bipolar transistors can be 5 to 10 times
larger than their CMOS counterparts.

How do we resolve this dilemma? First we note that real scenes do not have
3 orders of magnitude intensity variation in their spectrum. Typical scenes have
reflectance values that span about a factor of 20 only (Moore, 1992); spectral vari-

ations span less than that (see for example (Billmeyer and Saltzman, 1981)). Thus,

12This is not surprising since Gilbert’s analysis (1975) of the translinear circuit was for bipolar
transistors.
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Figure 5.14: Comparison of simulated CMOS (A) and Bipolar (o) Translinear Circuits with
inputs from intrinsic diodes consisting of spectral properties shown in Fig. 6.9. Intensity variation
over 3 orders of magnitude matched the experimental variation shown in Fig. 5.2. Bipolar translinear
circuits perform “linear” normalization over the spectrum (3 orders of magnitude intensity variation),
while CMOS translinear circuits approach “quartic” normalization at higher intensities.
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substituting bipolar transistors in the translinear circuit will mainly compensate for
the intensity variation idiosyncrasy in the experimental setup. One obvious solution
1s to use a more spectrally uniform light source. The zenon-arc lamp, which closely
approximates the natural solar spectrum, comes to mind since its intensity varies by
no more than a factor of 2 within the visible range (ACTON, 1990; Hunt, 1987) as
opposed to the factor of 500 for the tungsten incandescent light source used in our
current experimental setup. The solution we propose, therefore, is to maintain the
CMOS translinear circuit system and change the light source.

Yet inaccuracies in the hue discrimination performance are, only to a minor ex-
tent, due to non-ideal intensity variation from the experimental setup. For example,
computed hue from spectral filter transmissivity indicated as (0O0) in Fig. 5.8 differs
only slightly from the hue evaluated from the measured output of the CMOS translin-
ear circuit (shown as (o) in the figure). In the next section, we show that the main

contribution of discrimination inaccuracies comes from the filter characteristics.

Spectral Filter Improvement

The primary colors in slide film, and to some extent other gelatin films, have very little
“cross-talk” or spectral overlap. This is reasonable since the photographic process
requires that primary spectral intensity components in a visual scene be absorbed
sequentially in three emulsion layers. Low spectral overlap in color filters works
favorably for color photography and color imagers but is detrimental to the proposed
analog processing with our color sensors. Analog processing requires that the filter
response of the differential color sensors have large spectral overlap. We can see
the advantage of spectral overlap in the simulations of ideal Gaussian filters shown
in Fig. 5.15. The figure indicates that increasing the spectral half-bandwidth or
increasing the number of sensors will improve the hue sensor performance. In a

simplified analysis in Appendix C, we show that for a 2 cone system the filters should
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have overlapping spectra that crosses over at 32 to 80% of peak. Furthermore, the
measurement of the derivative of hue with respect to wavelength, which should be as
small as possible, scales as 6§ /((IN —1)0?). Here 6 is the separation of peak wavelengths
between two adjacent spectral filters, o is the Gaussian width and N is the number
of spectral sensors.

In Fig. 5.15b we superimpose the calculated hue output from intrinsic diodes!?
which have wide-band overlapping spectral response curves as shown in Fig. 6.9. On
the one hand, Fig. 5.15 shows that intrinsic diodes offer improved hue sensor per-
formance over RGB filtered phototransistors. On the other hand, when we compare
the simulated hue x-y photocurrents for intrinsic diodes shown in Fig. 5.16 to the
same currents measured for RGB filtered sensors shown in Fig. 5.7, we notice that
the spectral half-widths are wider for intrinsic diodes and thus offer less spectral
sampling discrimination.

These two performance measures—determining monochromatic stimuli and sam-
pling the spectrum—seem to conflict with one another. They both require color
sensors that have overlapping spectral curves. But one requires wide-band curves
and the other requires narrow-band curves. This apparent dichotomy will be fur-
ther discussed in the next chapter, where we also describe improvements to intrinsic
diode performance (Section 6.7) by creating many narrow-band overlapping spectral

SENSOrS.

13We hold off introducing the concept of intrinsic diodes until Chapter 6.
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Figure 5.15: Comparison of calculated hue output with ideal Gaussian filter configurations (a)
with increasing spectral widths o, and (b) increasing number of Gaussian spectral sensors. In (a)
we superimpose the hue output calculated from the RGB filtered phototransistors (o) as shown in
Fig. 5.8. In (b) we superimpose the calculated hue output from intrinsic diodes (o) based on the

spectral response curves from Fig. 6.9.
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Figure 5.16: Simulated half-wave rectified hue currents z*(e), z=(0), y* (o), y~(A) for intrinsic
diodes based on spectral properties shown in Fig. 6.9. In comparison to Fig. 5.7, the x-y hue currents
have wider half-widths and extend beyond the visible range. In particular, the z+ current is only
activated above 700 nm in the infrared region.
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Chapter 6

Beyond Trichromacy: The Mantis
Shrimp

Perhaps because of our anthropocentric tendencies, the literature places a special em-
phasis on analyzing and justifying the trichromatic sensor system. The fundamental
question asked is “Why does the system have three sensors, why not less, why not
more?” Justification for trichromacy is typically carried out a posteriori by evaluat-
ing the principal component basis functions that approximate natural illuminations
and object reflectances. Other times it is carried out through analysis of human psy-
chophysics, which ultimately depends on subjective “perception.” In this chapter,
we examine incorrectly applied communication theory arguments, and maintain that
the trichromatic system is far from optimum in an information theoretic sense. Psy-
chophysical data confirms this; the existence of multi-chromatic systems suggest this.
We also examine biological systems that have more than 3 cones, and propose man-
ufacturing an artificial system consisting of six spectral classes. Important concepts
that we imitate from biology are signal normalization and the opponency computa-

tion. Our model is the Mantis shrimp. But first, we evaluate the arguments justifying
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the trichromatic system.

6.1 Trichromacy: Sampling versus Encoding

The signal-processing arguments to justify trichromacy can be traced to Barlow who
suggested a novel experiment to test for color sensitivity by using a “comb-filtered”
spectrum! as stimulus (Barlow, 1982; Bowmaker, 1983). This stimulus is an extension
of spatial vision sinusoidal gratings where frequency and amplitude modulation are
used to evaluate contrast sensitivities. For color sensitivities frequency and phase are
modulated in the “comb-filtered” spectrum.

Barlow’s theoretical analysis is conducted in the Fourier Transform space. Tremen-
dous simplification is afforded by the “comb-filtered” spectrum stimulus, since a si-
nusoidal variation in energy transforms to a single impulse in Fourier space. The
modulation of the cone transforms by the “comb-filtered” impulse is a theoretical
indication on how the system should respond. We assemble Barlows’s analysis in
Fig. 6.1, which shows the Fourier transform of the wavelength response of human
cones, one of the Mantis shrimp photoreceptors, and the psychophysical response to
“comb-filtered” stimulus.

Barlow then invokes the sampling theorem. The sampling theorem establishes the
number of independent channels that can be constructed given the available spectral
range and sensor spectral bandwidth. The formulation typically used is based on the
Shannon-Whittaker Theorem: N, the number of independent samples possible in a

segment of waveform of extent £ and maximum frequency F is given by

1The spectrum is decomposed, for example by a prism, selectively filtered by a sinusoidal grating,
and recombined. The term “comb-filtered” connotes placing a comb in between the decomposing
and the recombining optics.
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Figure 6.1: Fourier transform of the human receptor system based on a Gaussian approximation
of the responses shown in Fig. 1.7. The Mantis shrimp response is a Gaussian approximation of
the distal 2 row photoreceptor shown in Fig. 6.5. In the insert we copy the psychophysical response
to “comb-filtered” stimuli (Barlow et al., 1983; Gemperlein et al., 1990). Curve 3 is the contrast
sensitivity function for a deuteranope, while curves 1 and 2 are for color normal observers. In
particular, Curve 1 is the psychophysical performance of Barlow.
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N =1+2EF (6.1)

It should be noted that this statement of the theorem is approximate and only
valid when N becomes large. (See also (Brill and Benzschawel, 1985).) The estimate
on the error can be as much as (Brown, 1967; Butzer and Stens, 1982; Slepian, 1976).

e=2[" 1P(w)|dw (6.2)

T J2rW

where ¢ is the upper bound on the absolute error incurred in sampling a non-bandlimited
signal at bandwidth W. F(w) is the Fourier transform of the real function f(t) that
is to be sampled and reconstructed®. With the assumptions of Barlow and Bowmaker
(50 % demodulation on the channel bandwidth) the error in reconstruction can be as
much as 28 percent?.

Barlow’s analysis (Bowmaker, 1983) essentially works backwards. For trichro-
macy set N =3 . The range of human vision is 435 nm (689 THz) to 650 nm (461
THz), so set E = 228 THz. Therefore, the maximum frequency according to Equa-
tion 6.1 is F' =4.4 cycles/1000 THz. Furthermore, this maximum frequency of 4.4
cycles/1000 THz is justified by an inspection of the Fourier transform of the human
spectral sensitivities which shows a 50 to 60% demodulation at that frequency (Fig. 1,
Bowmaker, 1983; Fig. 8, Barlow, 1982).

Although this appears as a justification for trichromatic systems, it cannot explain

2In our notation, the independent variable “wavelength” is interchangeable with “time.”
3This estimate is based on reconstructing Gaussian shaped spectra of similar bandwidth to cone
spectra. The value is obtained from the Fourier transform pair (exp(z?), 71-2- exp(%;) and evaluation

of Equation 6.2.
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the 11 cone Mantis shrimp. When we compare the data for the Mantis shrimp in
Fig. 6.5 with human visual data (Fig. 1.7), the maximum half-width reduction is only
a factor of 2. With F' = 8.8 cycles/1000 THz, according to Equation 6.1 the Mantis
shrimp should rightfully have only 5 spectral receptors, not 11.

This is a case of a misapplication of anthropocentric thinking. Maloney (1986)
argues that for color constancy to work, the band limit of the photoreceptors must
be greater or equal to the band limit of illuminant plus the band limit of the surface
reflectance. “The appropriate frequency cutoff for each photoreceptor is dictated not
by the number of photoreceptor classes but by the need to preserve information in the
color signal corresponding to the light and surface spectral reflectances.” Maloney
reevaluates Barlow’s data for photoreceptor bandwidths and predicts the number of
independent channels that can be formed as 5 to 7.

But, the strongest argument against Barlow’s theoretical analysis of trichromacy
comes from himself—from psychophysical data (Barlow et al., 1983; Gemperlein et al.,
1990) with “comb-filtered” spectra on himself. The insert in Fig. 6.1 shows that Bar-
low has color contrast sensitivity up to 10.5 cycles/1000 THz which corresponds to
N = 5. Another color normal subject and a deuteranope (red/green color-blind) mea-
sured 11.0 cycles/1000 THz (N = 6) and 7.0 cycles/1000 THz (N = 4) respectively.
(Computer simulations (Benzschawel et al., 1986) predict this bandpass drop-off for
deuteranopes.) Obviously, trichromacy is not sacrosanct, and the human visual sys-
tem has room for an additional two or three more spectral photoreceptors before the
Nyquist sampling limit is reached.

Although they do not state it explicitly, the analysis of (Brill and Benzschawel,
1985; Buchsbaum and Gottschalk, 1984) complements the notion that the spectral
bandlimit is “more than meets the eye.” A figure that we borrow from their work,
shown in Fig. 6.2, indicates that the gamut of signals band-limited to 5 cycles/um

(which corresponds to trichromacy in Barlow’s analysis) represents a small section of
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visual space. Fig. 6.2 hints that we seeing more than sampling theorem allows.
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Figure 6.2: Signal gamuts within human visual space, copied from Fig. 1 in (Buchsbaum, 1985).
While the frequency limited (5 cycles/um) signal gamut encompasses all of the Munsell samples,
and a significant portion of the color television gamut, it misses a significant portion of the CIE
visual space.

Sampling theorem arguments, therefore, appear to directly conflict with psy-
chophysical performance and the necessity for accurate spectral encoding. This
dilemma is resolved if we focus on the goal of these seemingly analogous tasks of sam-
pling and encoding as shown in Fig. 6.3. To sample accurately, more narrowly-tuned
sensors are required; on the other hand, encoding can be achieved with broadly-tuned
overlapping sensors responses.

Furthermore, hyperacuity analysis in the spatial domain (Baldi and Heiligenberg,
1988) indicate that for Gaussian type receptor fields the incertitude of spatial mea-

surement, €, scales as
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Figure 6.3: Sampling versus encoding. The number of channels needed to accurately sample is
determined by the Nyquist frequency of the data. For this operation, the spectral response curves
should be as narrow as possible. For accurate spectral encoding, on the other hand, only two
overlapping broad-band spectral response curves are needed. The goal of sampling is to reconstruct
the total waveform, while the goal of encoding is to determine the wavelength of a monochromatic
input.
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_ 7
€= Tona (6.3)

where n is an absolute error in the computation and o is the Gaussian half-width.
This indicates that higher resolutions are achieved with larger o, i.e., larger curve
widths. These results in the spatial domain are directly transferrable to the spectral
domain.

In this section we argue that previous analysis (Barlow, 1982; Bowmaker, 1983)
on trichromacy may be in error, probably a result of anthropocentric inclinations and
incorrect data interpretation. If we extend the arguments of Barlow and Bowmaker
to the Mantis shrimp we reach the conclusion that Nature gave the Mantis shrimp
6 more receptors than it could use. This turns out to be untrue. Nevertheless, the
problems of sampling and encoding spectral information seem to have conflicting

requirements in their solutions.

6.2 Trichromacy: Principal Components

For the most general case, accurately reconstructing a spectrum from the uniformly
sampled data of that spectrum requires that the sampling interval be less than half
the wavelength of the highest frequency present. This is a consequence of the Nyquist
sampling limit. But the information overload of the uniform Nyquist sampling can be
reduced if non-uniform sampling, which focuses in the region of interest, is considered.
For example, in a “burst” type signal, it is intuitive that uniform sampling would not
be the most efficient sampling scheme, over one that adjusted the sampling rate based
on estimates of a “local” bandwidth (Clark et al., 1985).

The current fashion in justifying trichromacy is a posteriori: evaluate the prin-



6.3. COLOR SYSTEMS REVIEWED 111

cipal component bases functions that approximate natural illuminations and object
reflectances, then declare that the visual system must correspond likewise.

An empirical study of surface spectral reflectances shows that Munsell color sam-
ples and spectral samples of natural surfaces can be approximated with a reasonable
fit by a few (2-6) basis functions (Maloney, 1986; Dannemiller, 1992). The a priori
use of these few basis functions allows for the efficient coding of object classes.

Even though the visual spectrum is sampled with N data points, these points form
an N-dimensional space which is highly correlated. Principal component analysis
eliminates these correlations and determines the best eigenvectors that span the N
dimensional space. Within multispectral image processing, the determination of the
principal components allows tremendous information compaction.

For example, to detect the presence of metal sulfides in soils, only 2 sensors are
needed of the 512 spectral sensors operating in the 0.4 to 1.1 pm electromagnetic
range. For this particular remote sensing airborne radiometer (Chang and Collins,
1983) task, discriminating the 7 to 10 nm blue shift in the chlorophyll red-edge of
coniferous and deciduous trees detects the presence of sulfides. Here, selecting prin-
cipal components by appropriate filter selection dramatically reduces the information

overhead.

6.3 Color Systems Reviewed

Although most primates function quite satisfactorily in a bi-chromatic or tri-chromatic
world within the 400 to 750 nm visible bandwidth, for some other biological systems
this may constitute perceptual blindness. Some animals push this spectral bandwidth
or extend it into other parts of the spectrum such as into the ultraviolet or the infra-
red. For example, flowers which appear to be yellow or varying shades of yellow to

the human visual system can be mapped to blues, purples, reds, or yellows in the
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honeybee visual system (Autrum and Thomas, 1973; Dusenbery, 1992). That the
same object is perceived far differently for a honeybee than a human is understand-
able considering the pollinating/nectar-gathering requirements of that ecosystem. It
is appropriate that evolution should pick the appropriate spectral range for vision
and enhance important details there.

Furthermore, numerous systems sample the spectrum with more than 3 sensors.
Insects are known to have 3 or 4 types of color receptor cells, the butterfly (Papilio
zuthus) is shown to have 5 types of color sensors (Arikawa et al., 1987), and the
turtle (Pseudemys scipta elegans) is shown to have 6 morphological types of cones
(Ohtsuka, 1985). The current champion, as we have hinted in the previous sections, is
the Mantis shrimp (Gonodactylus oerstedii and Pseudosquilla ciliata) with 11 spectral
types of photoreceptors (Cronin and Marshall, 1989a)%.

The compound eye of the Mantis shrimp has approximately 6,000 photosensors
arranged in at least 36 ommatidial rows. It is roughly 4 mm in diameter and is divided
into three sections: dorsal and ventral hemispheres and a specialized midband (Cronin
and Marshall, 1989b; Marshall, 1988). These three sections contain overlapping visual
fields, with each section operating independently of the other. The dorsal and ventral
hemispheres are essential for occular tracking (Cronin et al., 1991; Cronin et al.,
1992) and are thus involved in the visual analysis of form, motion, and position
and possibly in rangefinding and controlling ocular scanning movements. Acting
like a specialized fovea, the midband is involved in spectral and polarization visual
analysis during ocular scanning®. Fig. 6.4 illustrates this architecture. The midband

of the Mantis shrimp retina consists of 6 rows of ommatidia containing approximately

1At first glance, it seems that “lower” life forms need more spectral photoreceptors, suggesting
that color is more important for “lower” than “higher” life forms. The resolution of this dilemma
is to note that primates “recently” evolved from nocturnal animals. These multispectral sensing
“lower” life forms have been in daylight far longer.

5Scanning motions typically occur in a 300 msec interval with velocities averaging 40 degrees/sec
(Land et al., 1990). Observed peak motion was at 327 degrees/sec within a 10 degree visual field.
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160*6=960 sensor elements aligned and stacked in spectrally unique one-dimensional
rows. Four of these rows have two tiers of spectral photoreceptors, while the other 2
rows contain single photoreceptor types. Including the peripheral region, the Mantis
shrimp contains 4 * 2 + 3 = 11 types of spectral photoreceptors. With the scanning
motion of its retina, the mantis shrimp figuratively paints the world with an 11-color

primary system.

6.4 A Model for the Mantis Shrimp

In the Mantis shrimp, we propose that an opponent calculation is performed in the
first 4 mid-band rows which contain two photoreceptors per row. Although electro-
physiological data is not available for this animal, the opponent computation con-
jecture seems reasonable in view of the photoreceptor spatial proximity. These two
spectral photoreceptors operate within a single ommatidium so they are actually
spatially coincident, whereas other spatial dimensions include: intra-row ommatidia-
ommatidia spacing of 20 ym, and midband row-row spacing of 60 um. Fig. 6.5 shows
the normalized spectral response of these eight unique spectral photoreceptors® in
Pseudosquilla ciliata) (Cronin and Marshall, 1989a). Note that the half-widths (width
of the spectrum where its value is half of its peak value) of the spectral response curves
for the Mantis shrimp are slightly smaller than those for the human visual system
shown in Fig. 1.7. An analysis of this situation apparently contradicts the conclusions
of Barlow (1992).

Performing opponent and normalizing operations on the data of Fig. 6.5 in a
manner similar to the hardware implementation of the hue sensor in the last chapter

results in Fig. 6.6. The narrow spectral bins in the output response of these normalized

6These spectral response curves were measured using microspectrophotometry of frozen sections
of dark-adapted retinas .
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Figure 6.4: Concept of Mantis shrimp visual architecture adapted from (Land et al., 1990; Cronin
and Marshall, 1989a) (a) Front view of Mantis shrimp. Eye stalk allows independent movement of
each eye, which is roughly 4 mm in diameter. The midband ommatidial rows specialize in color and
polarization vision. Triple overlapping of the visual field with the dorsal and ventral hemispheres,
allows “monocular stereopsis.” (b) Simplified diagram of the optic apparatus of the midband region.
The first 4 distal rows have dual spectral tuning function.
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Figure 6.5: Spectral response curves of 8 putative opponent color receptors from the first 4
midband rows in the Mantis shrimp courtesy of Tom Cronin (Cronin and Marshall, 1989a). Labeling
on each curve indicates the row and intra-row position of each photoreceptor. For example, “1d”
represents distal 1st row photoreceptors while “4p” is the proximal 4th row photoreceptors. Note
that the opponent receptors within the 1st and the 4th rows are not spectrally adjacent. Note that
the half-widths of the spectral response curves for the Mantis shrimp is slightly less than that for
the human visual system shown in Fig. 1.7. For example, the half-width of the proximal 1st row
spectral response is 96, 63, and 49 percent of the short-, middle-, and long-wavelength photoreceptors

respectively.
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opponency cells indicate that the Mantis shrimp could be considered as a biological

spectrum analyzer.

6.5 Importance of Opponency

When we review Chapters 2 and 3 of this thesis, we can assemble the advantages
afforded by an opponency computation. In the linear-intensity representation, the
subtraction operation removes the dc bias, the white light addition, of the spectrum
and contributes what we call additive shift invariance. In the logarithmic-intensity
representation, the subtraction operation compensates for uniform gain changes and
contributes multiplicative scale invariance’.

Furthermore, when we look at the numerous spectral sensory channels that con-
vey visual information, the opponency computation offers a natural way to calculate
the principal components that allow efficient information transfer (Buchsbaum and
Gottschalk, 1983). The main idea here is that since their spectral response curves
greatly overlap in the wavelength domain, the original RGB signals are highly cor-
related. The opponency computation discounts redundancies and enhances signal
differences. It is for this reason that the YIQ system for color television works. Addi-
tionally the opponency computation in the human visual system has the unexpected
benefit (Hurlbert, 1991; Lee, 1990; Lee, 1989) of aligning its chromatic basis vectors
(yellow-blue) along the CIE daylight locus—a mechanism proposed to compensate
for the changing natural illumination and thus achieve functional color constancy.

Still another advantage of the opponency operation is “spectral sharpening” con-

ceptually illustrated in Fig. 6.7. Although we utilize idealized bandpass spectral

“Recall that in our hardware implementation, we use the linear-intensity representation achieving
both additive shift and multiplicative scale invariance by subtraction and normalization operations
respectively.
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Figure 6.6: Projected spectral response curves for an artificial 8 cone color chip based on the
filter response of the Mantis shrimp given in Fig. 6.5. Opponency and normalization operations are
performed on this data in a manner similar to the hue chip in Chapter 5. The narrow bands of the
spectral output response, which is independent of illumination levels, indicate that this a spectrum
analyzer.
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response curves for concept clarification, real spectral response curves have typical
Gaussian shape but still provide spectral sharpening. In biology for example, although
the half bandwidths of the input RGB cones are 50, 80, and 100 nm (Fig. 1.7), a ma-
jority of the color selective cellsin V4 have mean half-bandwidth of 27 nm (Schein and
Desimone, 1990). Also, our hardware example of Fig. 5.7 shows that the y+ cell has
accentuated spectral sharpening to 10 nm from filter inputs that have half-bandwidths

of greater than 70 nm.

-
,-

J"k\ > ﬂ

v

Figure 6.7: Spectral sharpening of spectral response sensors. Subtracting overlapping spectral
response function results in a narrower spectral response curve. Increasing spectral overlap further
sharpens the output spectral response.
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6.6 Optimum Spectral Response Filter Design

The analysis of optimizing the information transfer by constructing other efficient
channels starts from specified original channels—the red, green, and blue signals in
a trichromatic system. But what happens if we have greater flexibility? If we were
designing a color vision system with given spectral filter sensitivities, how should we
choose to arrange them? From the previous sections, we learn that the opponent
channels should have crossover point at a selected spectral wavelength important to
the visual task. What remains is the separation between spectral sensitivities.

In Appendix C we calculate the shift required for two photoreceptor responses to
maximize opponent spectral discrimination. For Gaussian type spectral responses of
the same width, o, a shift of 20 would maximize the derivatives—maximize signal
change—at the spectral crosspoint. For this ideal example, the optimum spectral
crosspoint occurs at 61% of peak value. The Mantis shrimp appears to follow this
rule in its opponency calculations in rows 1 and 4.

In the Japanese yellow swallowtail butterfly (Arikawa et al., 1987), the 5 color
receptors appear to also have optimum spectral discrimination. Fig. 6.8 shows the
spectral crosspoints occurring at approximately 70%, 40%, 60%, and 60% as the
spectrum is swept.

Far from optimum, the human photoreceptor system shown in Fig. 1.7 crosses
over at 97% of peak for the red/green and 21% of peak for the blue/green wavelength
system. The accepted justification for this substantial overlap of the red/green system
is related to the degradation of form vision and spatial acuity due to chromatic
aberration effects for uncorrelated spectral curves. (Barlow, 1982; Mollon et al.,
1990). For completeness the spectral half-widths are approximately 112 nm, 87 nm,

and 57 nm for the red, green, and blue photoreceptor spectra respectively.
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Figure 6.8: Spectral tuning response curves of Japanese yellow swallowtail butterfly (Fig. 1 in
Arikawa et al., 1987).

6.7 Improving the Spectral Response of Intrinsic

Devices

Intrinsic silicon devices such as buried diodes potentially could be used for spectral
sensing because of the differential absorption of light as a function of silicon depth.
Utilization of buried silicon diodes has the noteworthy advantage of ease of manufac-
ture since these intrinsic devices are commonly available in standard microelectronics
processing. Their use eliminates the extra post-processing manufacturing step that
color dye or interference filter deposition requires.

But, based on the maximum spectral change criterion described above, intrinsic
photodiodes and phototransistors available in silicon devices appear to be insufficient
for high performance color vision. For example, Fig. 6.9 shows the spectral response
curves for various silicon devices available from the MOSIS process (Delbriick, 1993).

The figure shows that the spectral crossover points are not at the optimum 61% of
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peak, but more importantly, the spectral half-widths may be too wide for accurate
vision in the visible range.

However, other researchers have measured the color reproduction performance
of these silicon devices (Kramer, 1993; Seitz et al., 1993). For example, the CIE
color-rendering index of these buried-layer silicon devices is 87% of CCD color cam-
eras. Recent development efforts show their applicability as sensors for determining
toast completion for bread (Kramer, 1994). Another circuit under development uti-
lizing these intrinsic silicon devices is a vision sensor that discounts shadow in images
(Zucca, 1994) by utilizing the multiplicative/scale and additive/shift invariance prop-

erties discussed in Chapter 3.

Normalized Response

3 : i ]
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0.0 t t t
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Figure 6.9: Spectral response of various intrinsic silicon devices as measured by Zucca (1994).
Properties include (1) crossover points occurring at 75% for the red/green system and 81% for the
green/blue system, (2) spectral half-widths of 220 nm for the green channel and 142 nm for the blue
channel, and (3) red channel operating in the visible and extending into the infra-red.
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Therefore, a re-evaluation of the intrinsic silicon diodes as spectral sensors is in
order. On the one hand, the wide-band overlapping spectral response of intrinsic
diodes offer improved performance of the hue sensor as shown in Fig. 5.15 in Chapter
5. On the other hand, the very same wide-band spectral response is detrimental in
obtaining accurate spectral signatures®. This conflict is related to the encoding ver-
sus sampling issues summarized in Fig. 6.3. But, with the addition of multichromatic
sensors, one can address both issues by using wide-band overlapping filters for accu-
rate encoding of monochromatic signals, and many narrow-band filters for accurate
spectral sampling. Filtering intrinsic diodes with color gels produces multichromatic
sensors that achieve this goal.

Fig. 6.10 shows that the addition of 2 color gels results in the creation of 6 narrow-
tuned overlapping spectral response curves in the blue-green region of the visual
spectrum. Long wavelength or “red” gel filters have a sharp spectral drop-off® and
do not contribute in creating a set of 3 overlapping spectral filters as the green and
blue filters do in Fig. 6.10.

To get more overlapping filter responses in the long wavelength region, further
research and developement is required for the fabrication of gel or die combinations
that have reduced slope at the red filter drop-off wavelength. Another approach is
to fabricate multilayer dielectric filters which offer high quality (high cost) custom
spectral responses (Morf and Kunz, 1990). Nevertheless, the possibility exists for
the creation of at least 10 unique spectral sensors from the addition of slide film
over intrinsic silicon diodes: 3 wide-band spectral sensors, 6 narrow-band blue-green

sensors, and 1 red spectral “long-pass” sensor.

8For example, the half-bandwidths shown in Fig. 5.16 for intrinsic diodes are much larger and
more extensive than those of dye filtered phototransistors shown in Fig. 5.7.

9 Additionally, we measured the spectral transmissivity of numerous red-orange-yellow gel filters
from various manufactures (Kodak, Roscolux, Lee) and observed the same undesireable spectral
drop-off in all cases.
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Figure 6.10: Spectral response of various intrinsic silicon devices of Fig. 6.9 sharpened with (a)
blue [0, 128, 255] and (b) green [0,255,0] slide film. The dashed curves (A) indicate the spectral
response of the unfiltered silicon diodes while the solid lines show the sharpened spectral response

of the diodes filtered by slide film.
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6.8 Proposed 6 Spectral Sensor System in Analog
VLSI

It is appropriate to design and manufacture multi-spectral systems greater than the
trichromatic system. For color reproduction and correction, a 4 or 5 filter system is
vastly superior to a 3 filter system (Vrhel and Trussell, 1994).

Multilayer dielectric filters offer the exact filter design for high quality sensors
(Glass, 1990; Engelhardt and Seitz, 1993; Morf and Kunz, 1990; Seitz et al., 1993).
Unfortunately, these techniques require deposition of multiple layers of optical mate-
rials after microelectronics processing with great impact on system cost.

We initially explore inexpensive spectral filtering technologies available in our
research. In Fig. 6.11, we show the results of mixing color on readily available slide
film. An effective shifting of the peak green response curve results as more red is added
to the mixture. Ultimately, we expect the combination of dye deposition combined
with intrinsic silicon devices (as shown in the previous section) will give improved
performance at a substantial cost advantage.

Based on the above arguments on the Nyquist sampling limit and the available
spectral sensitivity curves available from slide film shown in Fig. 6.12a, we design a
multispectral image sensor consisting of 6 different spectral photoreceptors.

Utilizing the opponency and normalization operations on the spectral channels
in the manner of the hue chip described in Chapter 5 will give an output spectral
tuning curve as shown in Fig. 6.12. By manufacturing a one-dimensional array of
these 6 photoreceptors, adding opponency and normalization operations, and utilizing
scanning techniques, we can create a silicon analog of the Mantis shrimp color vision

system. This proposed design offers “hyper-spectral” vision sensing.
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Figure 6.11: Various spectral transmissivity curves of Ektachrome 100 HC slide file with 100%
green and various mixtures of red. The peak transmission curves shift to longer wavelengths as
more red is added to the mixture. A bifurcation from green dominant to red dominant transmission
spectra occurs between 47% (R,G,B=120,255,0) and 59% (150,255,0) red.
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Figure 6.12: Artificial multispectral system (a) filter spectral transmissivity of Kodak Ektachrome
100 HC slide film at various color mixtures and (b) projected spectral response curves for oppo-
nent/normalization analog VLSI chip based on that filter response.
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Chapter 7

Conclusions

In this study we engineer color vision subsystems based on hue and discontinuities
in hue. We argue that edges in hue correlate more directly with material boundaries
than edges in intensity, RGB, or Nrgb space. In particular, given the properties of
additive/shift and multiplicative/scale invariance, hue edges are invariant to particular
types of shadows, highlights, shading, and transparency. We illustrate this behavior
using video-acquired color images. Segmentation in images containing low saturation
and intensity image values can be improved with the help of a smoothing operation.
Using an intensity edge map as a starting point and applying a first-order smoothness
operator to the hue map results in an edge map which discounts confounding cues.
In comparison to physically based models with their associated color clustering and
histogramming, the method developed here is comparable in performance yet simpler
in concept and execution. The main advantage of utilizing this operation is the
straightforward application to analog VLSI hardware.

We also developed modulo operators to enhance traditional image processing algo-
rithms for segmentation of variables defined on a circular space. For shadowed images,

hue edges corresponded more closely to material boundaries than edge types in all
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other color space measures. While modulo operators are elegant they are not feasi-
ble for analog VLSI implementation. However, they may have utilization in custom
digital hardware.

We greatly favor the simple definition of hue employed in the HSI space over the
definition of hue in the CIE spaces, since the former is relatively straightforward to
implement in analog electronic integrated circuits. On that basis we have proceeded
to build electronic test circuits to facilitate color processing. The first electronic
integrated structure to be manufactured and tested was the Nrgb color sensor. The
next electronic structure was the Hue color sensor. Tests on these sensors show correct
performance to varying illumination. We also manufacture and test segmentation
circuits useful in determining hue boundaries. With this hardware effort, we have the
fundamental circuit building blocks necessary for a smart color vision sensor.

In designing artificial vision systems, there is some benefit to carefully selecting
spectral filters such that the integrated white condition is satisfied. In doing so,
the input spectral sensors will ultimately construct a hue space that is invariant to
transparencies, highlights, shadows, and surface orientation.

Also, there is some advantage to controlling the spectral design of filter response
curves. Increasing the filter spectral width so that different spectral filters have a
greater degree of overlap in the spectrum increases the resolution for spectral encod-
ing. The hue measurement performance, for example, was found to be enhanced by
broadly overlapping spectral filters that crossover at 32% to 80% of peak value. But
the performance enhancement that comes from utilizing broadly overlapping spectral
filters comes at the price of penalizing spectral sampling reconstruction. Extension to
the multispectral domain by increasing the number of spectral sensors will alleviate
this concern.

For Gaussian shaped spectral response filters, the relative placement that max-

imizes signal change at the spectral crosspoint occurs when the spectral response
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curves intersect at 61% of the peak value. This same filter design optimization ap-

pears to be adopted in four photoreceptors within the Mantis shrimp retina.

7.1 Future Directions

Even though the achromatic signal contains a majority of the signal energy, chromatic
signals can enhance a visual system’s performance by facilitating object segmenta-
tion and discounting illumination changes. This can be achieved without too much
increase in hardware and complexity. In terms of information content in the visual
environment and in terms of biological sensors, color information and color sensing
utilizes few resources. In primates, based roughly on the cone-to-rod ratio, only 9%
of the “front-end” visual sensors (16% in the Mantis shrimp) is for spectral sam-
pling. Thus, to create a multichromatic (V) system, there is no need to increase the
achromatic hardware by a factor of N. For example, one could use the subsampling
tricks that biology and some television systems utilize for two-dimensional arrays or
use the scanning of a one-dimensional array that the 11-cone Mantis shrimp exploits
for higher spectral resolution. The manufacture of these devices in analog VLSI will
have some speed, cost, power, and efficiency advantages over digital color CCD sensor
systems for vision tasks.

To make useful devices, much work still needs to be pursued. For example, test
performance on our preliminary sensors was based on inputs from monochromatic
light sources. For commercial applications spanning inexpensive color printing con-
trollers to color vision chips, the visual input should be more realistic than monochro-
matic lights. Inputs from polychromatic light sources and even illuminated natural
objects should be examined. Altogether, this future work requires calibrated envi-
ronments and thus more sophisticated equipment.

Conflicting issues of spectral discriminability versus spectral signature reconstruc-
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tion must also be quantified experimentally. Perhaps custom spectral filter design or
the addition of more spectral sensors will resolve these issues. In our push to multi-
chromatic systems we implicitly assume that all spectral sensors have equal contribu-
tion to the color computation. Variants to this scheme including pyramid strategies
that evaluate coarse to fine spectral hierarchies and other dynamic search strategies
should be explored.

Also, the use of intrinsic diodes should be explored, especially when combined
with color filters which sharpen the overall spectral response. Some of these concerns
were addressed in Chapter 6 and in the “Future Hardware Issues” Section in Chapter
5. With the adoption of appropriate equipment and completion of characterization
tests, the next task that remains is the integration of one- and two-dimensional color
sensors and their inclusion into a complete vision system.

Further down the road, our color sensors can be integrated with color constancy
hardware to compensate not only for varying illumination but for varying spectral
illumination. The use of adaptation in color constancy algorithms may offer other ben-
efits, especially in simplifying the filter/circuit design by automatically compensating
for the non-normalized filter transmission characteristics. This use of adaptation for
filter-balancing represents unexplored research territory. Ultimately, the combination
of color segmentation and color constancy hardware with on-chip spectral sensors
will produce a smart color sensor that maximally utilizes the spectral content of the

visual environment.
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Appendix A

Other Models for Discounting
highlights

This appendix is a continuation of Section 3.4.2 and describes other computer vision

models which consider highlights in images.

A.1 Cook-Torrance Model

The Cook-Torrance model is a more advanced model than the Phong model in that
it incorporates a physically based model rather than empirical results to account for
specularity or highlights. It is distinguished from the Phong model by the following
factors (Watt, 1989):

e It is based on a consideration of incident energy rather than intensity
e The specular term is based on a physical microfacet model.

o Color change within the highlight is based on Fresnel’s law and measured char-

acteristics of the material.
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These differences are enhanced when the light source is at a low angle of incidence to
a material and the contribution from the Fresnel interaction becomes important. It is
this effect that accounts for color change in a specular highlight and is not predicted
by the Phong shading model.

The governing equation for the Cook-Torrance model for a single source illumina-

tion (Cook and Torrance, 1981) is given by
I, = IR, f + I, cos(6)dw, Ryq (A.1)

where I, is the reflected intensity, I, is the ambient intensity, R, is the ambient
reflectance, f is the fraction of the hemisphere not blocked, I, is the light source
intensity, 6 is the angle between the normal and the light source (can also be defined
by N - L), dw, is the solid angle defined by light source area/r?, and Ryg is the
bidirectional reflectance which is segregated into specular and diffuse components

and defined by

Byg = fRs + faRy
fs + fd =1

Of significance is the specular term R, defined by

B FDG
T a(N-V)N-I)

where (7 is a geometrical attenuation factor which accounts for shadowing and mask-
ing of one micro-facet by another. D is a facet slope distribution function that
represents the fraction of the facets oriented in a particular direction. Cook and Tor-
rance (Cook and Torrance, 1981) utilize the Beckman distribution function which is

a function of geometry and surface roughness. Finally, F is the Fresnel term which
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describes how light is reflected from each micro-facet. It is a complicated function of
geometry, material properties, and wavelength.

Therefore, Equation A.1 can be written as

T, = TR.f + T, cos(8)dw,[ fala + foR.] (A.2)

where 7 signifies that x is a function of wavelength A, and ¢ that y is a function of
both wavelength and geometry. This equation can be used to give the tristimulus

values. Namely,

K= /A T.5%Ra fd) + cos(6)dw, [ [\ T,5% Rad

+ cos(8)duw, f A T.SxR.d\ for K = (R, G, B)
In the non-highlighted region R, = 0, therefore
Kng = /A T,5% Rafd) + cos(8)dw, f A T.SxR.d\ for K = (R,G,B) (A.3)
For the highlighted regions, the tristimulus equations become
Ky = Kni + cos(6)dw, f, A LSxR.d\ for K = (R, G, B) (A.4)

Thus, the equivalent integrated white condition for hue invariance due to highlights

for the Cook-Torrance model becomes
/A T,8rk,d) = /A T,5aR,d) = /A 1,55 B,d) (A.5)

If the Fresnel component is negligible (i.e., R, is not a function of wavelength) the

integrated white condition of Equation A.5 reduces to the generalized Phong shading
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model given by Equation 3.10, that is,

A.2 Dichromatic Model

The Dichromatic Reflection model was developed by (Shafer, 1985) to be used for
extracting the specular and diffuse components of an image through its span in the

color space. The model states that
I, = I\ i,e,9) + Li(X i, e,9) (A.6)

where I, is the reflected radiance which is composed of a specular component I, and a
diffuse component I; (Shafer calls these interface and body reflections respectively),
and ¢,e,g are geometric angles as shown in Figure 1.2. Furthermore, the Dichro-
matic Reflection model assumes that the spectral and geometric variations can be

decomposed from each other. Namely that
I, =my(i,e,9)Cs(A) + ma(is e, 9)Ca(A) (A7)

This assumption of spectral and geometric decomposition will not be valid when
the Fresnel contribution is not negligible such as when the illumination is at a low
angle of incidence—a condition which Shafer states is not common. Otherwise, the
Dichromatic Reflection model is a generalization of the Cook-Torrance model.

For the Dichromatic Reflection model the tristimulus values in the non-highlighted

region become

Kng = ma(i,e,9) /A Ci(N)Sk(NdX  for K = (R, G, B) (A.8)



A.2. DICHROMATIC MODEL 135

For the highlighted region the tristimulus values become
Kﬁr:KﬁH+wn4ngXACAMSKQyM for K = (R, G, B) (A.9)

Similar to previous findings, we see that hue invariance with confounding high-
lights will work exactly if and only if the integrated white condition holds, namely
if

AQW&WM=A@W%WM=AQW&WM (A.10)

This condition is similar to the Generalized Phong and the Cook-Torrance integrated

white conditions. As a result, the analysis that ensued in their examination applies.
The result of this study shows that hue will discount highlights exactly for Phong

shading models and approximately for more complicated physically based models.

Still, hue is preferred over normalized color for discounting highlights.
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Appendix B

Modulo Algorithms for Digital

Hardware

Here a digital implementation for calculating modulo distances is described. The
basic operation that calculates absolute distance in 27 modulo space 1s the following

equation:

AbsoluteDist(z,y) = min lv =<l (B.1)
21 — |y — x|

A convenient implementation of this equation in 8-bit digital space would utilize

the following kernel
min(A,B)=(A—-B)[(B—A)>>T7+ A (B.2)

where [z >> 7] represents a 7-bit shift and results in 0 for z > 0 and -1 for z < 0 in

two’s-complement digital architecture. To show that this relationship is true, define
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w| 0 ifA>B
V{A>B} ¥ (B.3)

—1 otherwise

For 8-bit two’s-complement digital representations Equation B.3 is equivalent to (B —

A) >> T by a trivial inspection. That is
V{A> B} ¥ (B-A)>>7 (B.4)
Furthermore, we define in the usual manner [A == B]

[ __B]dﬁf{l ifA=B

0 otherwise

This relationship can be equivalently written as

[A==B|Y -BV{A>B}+-AV{B> A} + A (B.5)
By inspection,
min(A, B) = —AV{A > B} + —BV{B > A} + A[A == B] (B.6)

Substituting Equation B.4 and Equation B.5 into Equation B.6 results in the repre-
sentation for calculating modulo distances as given by Equation B.2.
Thus, the equation that calculates relative modulo distance in 27 modulo space

is given by
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+2r fy—z< -7
RelativeDist(z,y) =y —z+{ —27 ify—z>nx (B.7)

0 otherwise

The relative modulo distance is a measure of how much needs to be added to x to get
toy. (The term “relative” is used to imply that the measure has a notion of direction
which is contained in the sign of the variable.) Its equivalent digital implementation

in 8-bit modulo space would give

RelativeDist(z,y) =y —z +256{1 + [(z — y — 128) >> 7]}
—256{1 4 [(y — z — 128) >> 7|} (B.8)

Equation B.2 and Equation B.8 have the desirable property that they do not rely
on conditional operators. Their feedforward computational nature allows its use in

nonlinear mask convolutions in custom-designed digital hardware.
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Appendix C

Spectral Filter Design

In this appendix we approach spectral filter design through analysis of Gaussian
shaped spectral response curves. We do this for mathematical tractability and ease
of analysis. In the first section, we examine how filter design and filter quantity affects
the hue computation. In the second section, we address optimum filter placement in

the spectrum.

C.1 Filter Parameters that Affect Hue

This section presents a simplified analysis for Section 5.6.2. To streamline the prob-
lem, let us construct a hue space from a two cone system. Position the spectral
response curves of the two cones at a set separation distance in the spectrum, and
evaluate the effect of varying the widths of these spectral responses. Without loss of
generality, position one cone, Y (1)), at the origin and the other cone, X (M), at é as

shown in Fig. C.1. The plan is to examine the effect of modifying o. That is

X() = exp(~- A2 (c1)
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V() = exp(- L)

Figure C.1: Idealized two cone system, X (A) and Y(}), for the evaluation of hue. The spectrum
of interest spans the range of A = [0, 6]. Here, the x-axis, A, is in é units.

If we limit the spectrum to A = [0, 6] and define hue as in Equation C.2, it is clear

that we are limiting the hue angle to the range of [0, 7/2].

Hue(A) = Arctan [)};8‘3} (C.2)

Examining this measure of hue at varying spectral sensor widths as shown in
Fig. C.2 indicates that increasing the overlap (increasing o) favorably reduces the
slope of the hue output at the crossover point, but unfavorably decreases the effective
span of the hue angle. At o less than 0.3336 (or conversely é greater than 3o)
the hue measure abruptly changes at the spectral crosspoint with large slope and

flattens out at the spectrum boundaries contributing low discrimination and thus
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0 0.2 0.4 0.6 0.8 1

Figure C.2: Hues computed from a 2 cone system of varying spectral widths on the basis of
Equation C.2. The curve shows the results when the Gaussian width o is progressively reduced from
(a) 16, (b) 0.56, (c) 0.333334, and (d) 0.1666675. Note this is equivalent to § = (a) 1e, (b) 20, (c)
30, and (d) 60.

poor performance. This condition corresponds to having the spectral crosspoint at

32% or less of peak value for the Gaussian response curves.

From straightforward calculus, the slope of hue angle can be defined as

2 52 _ 2)
o |1+exp(sz — %

9 8| exp(E -2
) [Hue(N)] = —— { )} (C.3)

Arguing from symmetry, the maximum slope for hue occurs at the midpoint §/2. An

evaluation gives the maximum hue slope, M HS(0o)

6

202

MHS(o) = (C.4)

Increasing o too much, however, contributes to the offsetting hue span reduction

of the hue measure. Therefore, it appears that there is some “optimum” range for o.
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Mathematically, the hue span reduction, SR(c) € [0,1] can be defined as

SE(o) = 2 [Arctan (exp(é—l—z—)> — Arctan (exp(——l—))} (C.5)

T o 202

The behavior of SR(c) in Equation C.5 is shown plotted in Fig. C.3.

0.5 1 1.5 2

Figure C.3: Hues span reduction as a function of Gaussian width, ¢ in § units. Reduction starts
at about ¢ = 0.3336 (or conversely é = 30).

Both the maximum hue slope, MHS(c), and the hue span reduction, SE(o),
places offseting bounds on the value of 0. However, we can construct a figure of

merit, FOM(c) that incorporates these ideas together.

FOM(o) = = f(o)”

In this function we chose to raise SR(c) to some power P greater than 1.0, since

in the limit, FOM(o) will reach an asymptote and not an extrema. The reason for
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this 1s that as o gets large the Taylor expansion of SE(c) approaches 1/0? which
is equivalent to M HS(o). The effect of setting P greater than 1.0 is equivalent to
placing more emphasis on hue span reduction than on minimizing abrupt hue change.

Fig. C.4 plots Equation C.6 for different values of P.

Increasing P

Figure C.4: Figure of merit as defined by Equation C.6 which maintains suitable hue span usage
while minimizing abrupt hue changes. Increasing emphasis is placed on the hue span reduction by
changing the parameter P in the figure.

From examination of Fig. C.2 and inspection of Fig. C.4, the appropriate spectral
width appears to be in the range of ¢ = 0.33 to 0.75 é (or 6 = 1.33 to 3 o). This
translates to spectral crossover points between 32% and 80% of peak values.

If the number of cones were increased to say N cones (N greater than 2) the cones
can be distributed over the hue space, thus reducing the “workload” (hue span) for
the original 2 cones system. For each 2 cone system the hue span is essentially reduced
by the factor of 1/(N — 1). For example, we can immediately modify Equation C.4

as
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)

MHS (o) = -——2——(—N—~_—1—)0—2

(C.7)

Therefore, for satisfactory hue measure the filter response of a 2 cone system should
have overlapping spectral response with cross over point at somewhere between 32
to 80 percent of peak value. For conditions below that range, the consequences are
abrupt hue angle transistions and flattened boundary regions that contribute to low
hue discrimation. Above that range, the consequence is a reduction in the hue span
and thus an ineffective use of hue space. Increasing the number of spectral sensors will
decrease the span workload over the 2 cone system and improve hue discrimination

and performance.

C.2 Optimum Separation of Gaussian Filters

A derivation of optimal spectral filter selection as mentioned in Section 6.6 is shown
below. This simplified analysis is partially motivated by the observation that the
opponency computation in multispectral biological systems such as the Mantis shrimp
is not performed between cone types with the nearest spectral response. Also, from
discussions on material changes from Chapter 3, it is clear that the objective function
that should be maximized is the slope of the spectral opponent curve at the crossover
point (Rubin and Richards, 1984).

First, assume that the cone spectral response, C1, is a unit magnitude Gaussian

centered about wavelength A = A\g. That is

Ci() = exp(— 222k
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If another cone spectral response C,, with the same o, is shifted § away from
C1 then the opponency operation of the Difference of Offset Gaussians, (DofG =
C; — Cs), becomes
(A — Xo)?

202

(A= Ao — 8)?

202

DofG(),8) = exp(— ) — exp(— ) (C.9)

To find the required offset such that the slope of the DofG is maximized entails

evaluating the following equation for dmax

8 [8DofG(), ) ~
(7 | 250]) -0 (€40

To clarify these concepts we illustrate the DofG()) and its derivative in Fig. C.5.

Evaluating Equation C.10 at the crossover point A = Ag + % gives

1 "‘[é%@l]z 1 6max 2 __[.‘2912@1.]2
_—0-—2€Xp( 20_2 ) ;Z( 2 ) exp( 20,2 )— 0

Which further simplifies to 6. = 20.

This result indicates that for Gaussian spectral response curves, the optimum
curve should be shifted by 20 from the baseline Gaussian spectral curve. The value
of the spectral response at the crossover point, A = Ao + 5“‘%, becomes exp(—-i‘f—;—) =
exp(—3) or 61% of the peak value. This criterion is validated in the Mantis shrimp,
where upon examination of Figure 6.5, the crossover points for the spectral response

curves in rows 1 and 4 occur at 58% and 62% respectively of peak response.
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Slope at Crossover point

1 2 3 4 5

6 in o units

Figure C.5: (a) Difference of Offset Gaussians (DofG) for a given offset 6. As 6 is increased, the
slope at the crossover point (at zero) reaches a maximum, as shown in (b).
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