A SOFTWARE DESIGN SYSTEM

Thesis by

Gideon Dawvid Hess

In Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

1980

(Submitted March {3, 1980)

II

ACKNOWLEDGHENT

I wish to thank Dr., Frederick B. Thompson for his patient
guidance and help during my graduate studies at Caltech.

III

The goal of the research described in this thesis was to
build a system that supports, without interfering with, the
activity of systematic software design and takes upon
itself mechanical activities the designer can be spared,

Two of the main activities which constitute the process of
sof tware creation are:

i, Designing a solution to the problem.
2, Implementing the design.

The activity of design has to be performed by the
programmer himself, it can only be aided by the computer,
Producing a program from a complete design is a mechanical
activity the computer can take upon itself,

These observations 1lead to the following objectives that na
software design system should meet:

i. Providing tools that support the design activity and
enable maximum flexibility,

2. Recognizing the lowest level primitives of the design as
the target language and producing the program in this
language.

A system along these guidelines was implemented, It permits
the wuser to write definitions which refine high level
design decisions into lower levels and, at the same time,
serve das syntax descriptions and translation rules for the
languaqes used in the design.

The system operates in twoe user—controlled passes. In the
first pass the wuser’s definitions are read, either
interactively or from external files, and the syntax rules
are stored in a dictionary., In the second pass a syntax
driven 1language processor wuses the dictionary to compile
the user’s program into the target language which consists
of the lowest level constructs of the design.

Due to the freedom the programmer has in design, several
kinds of syntactic ambiguities may be introduced with - or
without - +the wuser’s attention. Unless caused by vuser
errors, the translator tries to resolve these ambiguities
to match the designers intentions.

IV

In order to reduce the amount of time and space required
for parsing, long texts are divided into subtexts which are
translated separately., Guidance as to which subtexts are
separately translatable is provided by the wuser in a
natural way by composing the design of statements,

A command language enables the user to control the passes,
to look at the contents of the dictionary and of external
files, to monitor the translation process for debugging
purposes, to store dictionaries for later use and retrieve
them and to modify specinl symbols used in definitions,

The system 1is implemented in Simula, A second system is
presently being implemented as part of POL (Problem

Oriented Languaqge), a system for writing and wusing
application languages. POL’s metnlanguage enables the vuser
to build - or extend - object languages by writing new

syntax rules., The tools of the development system described
above are incerporated into the metalanguage in order to
aid the application programmer in the design and
compilation of the semantic routines of these ryles.

Table of Contents

ro

b

7

Introduction

Organizations in Software . .) .

2!1

2.2

2.3

o

L] 4

Organization of Design . .

Organization of the Software System
Relationship between the tuwo

Organizations

Hierarchies of Languages . .

Ob jectives . . . ' .) .

3.1
3.2
3.3
3'4

Existing
4.1

Db bdbd
Ul b Wi

Structured, but Flexible, Design
Automated Coding
Choice of the Target Language
Portable and Adaptable Programs

Software Development Aids . .
From Methodology to Actual Systems
Program—-Producing Systems '
Programming Languages ., . '
Translators .

Portability and Aduptob111t9 A1d5

Getting Aquainted with a Software
Development System

S. 4

U‘:U!UT

N oul -bthJ

More About Syntax Rules ' .

6.4
6.2
6.3

The General Idea . ' ' .
Syntax Driven Language Processing
A Sample Input Text . ' .
Definitions, Notations and

some Syntax . . ‘
Description of Syntux Rules .
The Syntax Pass
The Translation Pass ‘ . .

Defined Primitives .
Implied Primitives '
Orders of Priority .

- = = -
- - - -

Picking the Parsing Tree . . .

7., i
7.

7. 3
7.4

Statement of the Problen . .
Two Trivial Cases . . ' '
Using Ambiguities for Special Cases
Ambiquities Introduced by Implied

Primitives

Page

i0
i6

214
21

22

23

24

26
26
30
32

- 37

39

a4
a1
42

A4

45
48
S0
5%

58
58
64

62

65
65
bé6
70

77

VI

8 Separation of Languages .

8.1 One Dictionary for All anquages

8.2 Langquage Separation Through
Parts of Speech . . .

9? Piecewise Translation . . .

?.1 The Problem of Program Explos;on

?.2 A Piecewise Translation Method

?.3 State Transitions as Basic
Translation Units . .

i0 Using SDS for Other Tasks . . .
i0.14 Fixing the Target Language,
the POL System .
1.2 Portability and Adqptabllxty
of SDS Programs . ' '

if Summary '
i1.4 Overall Outline
11.2 Specific Problems
i1.3 Present Status ,

- - - -
- - . o=
- - - -

Appendix A
User’s Reference Manuval . . .
At Command Language . ' ‘
A.2 The Syntax Pass . . .
A.3 Debug Mode
A4 Character Handling . .
Appendix R

Implementation . ' . .
B.1 The System’s Structure .
.2 The Modules . ' . .

Appendix C
An Example

Eibliography . . . ' ' . .

84
84

8é&

102
10%

109
109
ii%
i14

115
i1s
121
133
138

141
144
144
150

184

i INTRODUCTION

The goal of the research described in this thesis was to
build a system that supports, without interfering with, the
activity of systematic software design and takes wupon

itself mechanicnl activities the designer can be spared.

BEoth in software and in other engineering disciplines
designers have to wuse divide-and~conquer strategies. One
can grasp only a limited amount of depth of a system’s
complexity at one time and it is this limitation that
determines the nature of design activity, If, for example,
you look at an airplane from a distance that allows you to
see the whole of it, you may see general features 1like the
general shape of the wings, to which part of the fuselage
they are attached, and how many engines the airplane has,
But details 1like the exact curvature of the wings, the
number of bolts attaching them and the size of these bolts
can not be seen from this point of observation. The
designer of the airplane faces the same problem. The depth
of his grasping ability is 1limited and he is forced to
abstract details while doing the overhaul design and to
forget about the overhaul when dealing with details and,

since both are interdependent, iterate between them,

Software designers face the same kind of gquantitative
problems, which call for the same kind of approach to the
design activity, but there seem to be difficulties in
implementing this approach. One only has to 1look at the
large amount of 1literature about the subject to realize

that it is not as natural and straightforward as the

comparison with other areas might suggest.

Two reasons for this difference are pointed out by Raver in
[31. The first one 1is the abstract nature of software
products as opposed to those of ether engineering

disciplines:

Software is not a physical object, it is non-material, Ve
Software is an abstract web, comparable to mathematical
tissve, but it is a process and in so far very different
from most of usual mathematics, too,

The second reason is that software lacks a sound foundation
of research and development, A foundation that most other

engineering disciplines have and vtilize:

A hasty buildup in the computer industry has not provided
the best climate for satisfactory development of good
sof tware, +v, We need a more substantial basis to be
taught and monitored in practice on the structure of
programs and the flow of their execution..,

The term "software development" covers a broad spectrum of
activities like: Specifications writing, design of a
solution, coding, compilation, debugging, verification and
documentation, The work described in this writeup is an
attempt to take a closer look at the design and coding
stages of software development, find the problems invelved
and provide solutions to them. Chapters 2, 3 and 4 analyze
these activities, discuss other systems in this area and
come up with a series of objectives for a software design
system. Chapters S through 30 describe the system and

issves regerding its development, operation and use .,

Chapter 41i summarizes those issves in short. A user’s
manual, details about the system’s implementation and an

example of its use are given in the appendices.

2 O0ORGANIZATIONS IN SOFTWARE

2.1 ORGANIZATION OF DESIGN

Designing a software system is the action of bridging a gap
between the system’s specifications on the one hand and a

machine on which it has to run on the other hand,

By "machine" I refer to an entity that represants all the
computer—side factors the designer has +to take into
account, This includes the programming language to be used
as well as all the performance characteristics relevant to

the particuvlar task such as speeds and capacities,

Ideally the specifications are independent of this machine.
They merely represent the requirements from the system so
that its performance meets the wuser’s expectations. In
reality, since machines are not ideal, requirements wmay be
impossible - or very difficult - to achieve., As a rasult
compromises are often necessary and even then the softuware
product may have to undergo various cycles of performance

checks and modifications,

The size of the gap depends wmainly on the size of the
system, but alse, to a large extent, on the machine, A
large gap can not be bridged all at once, it has to be done
astep by step, The number of ways by which this can be
nchieved is large and, as was pointed ovwt in the

introduction, it is not always clear what the best way to

divide the task is. However there are objectives the design

should meet.

The design should be as simple and manageable as possible,
In order to achieve this the number of simultaneous
decisions that have to be made at each step should be

minimized,

Another objective, mentioned by Goos in [S] is that the
design should proceed in such a way that one should be able
to convince himself at every stage that what has been done
s0 far is correct, and should not have to revise large
earlier designed parts because of errors detected at the

present stage,

The design strateqgy that meets these ob jectives is the one
Di jkstra describes in "Notes on Structured Programming"
{101, A general formulation of the problem, is divided into
a small number of sub-problems each of which is further
divided wuwntil finally the building blocks become visible at
the bottom,

One would 1like this activity to proceed in an orderly
top-down wmanner, this might even be the case if an
experienced programmer tackles a small problem, but in
reality one can not grasp all aspects of a large system at
one time and hence is wunable to predict all the
implications of design decisions. This glives rise to
numerous cnses where segments of the design are started at
the bottom - or an intermediate - level rather than at the
top, parts have to be reviewed, rewritten, modified or
generalized because they do not perform the required tasks
or do not match all other parts with which they are

related. The designer may have to move back and forth,
changing, adapting, compromising wuntil all parts work

correctly together.

Here are a few examples for the kinds of activities which
constitute a design process.

In the report about the REL system [35]1 the issuve of
parallel vs serinl syntactic and semantic processing in
data base query systems is tackled, It had often been
suggested that the semantic processing of a sentence should
be performed in parallel with its parsing so that its parts
parse in two ways, one of which can be eliminated by the
semantics, reducing the number of spurious parses in
further syntax processing. As it turned out in experiments,
since some of the spurious parsings have a semantic
meaning, this wmethod resulted in numerous superfluous
references to the data base cavsing disk accesses whose
time exceeded the time saved by reducing spurious syntactic
analysis which «can be performed in main memory. Had the
data base been small enough relative to main memory, or had
the semantics been of a different nature, the parallel
processing scheme might have worked. This is an example of
how performance of parts which are low level in the systems

hierarchy can influence and overthrow high level decisions,

While programming SDS I often realized that a sequence of
statements, I was just about to write, appeared in at least
twiree other places in my system and decided to make a
procedure out of it, Often these statements included rather
long and delicate expressions and were susceptible to
trivial errors and omissions. After writing and carefully

checking +the procedure I returned to the places where it

should have been in first place and replaced the sequence

of statements by the safer procedure call,

It often happens that parts of the system which have been
designed to perform a particular function are generalized
and uvsed for previously unplanned purposes. For example the
S5DS system includes a procedure that dumps the dictionary
contents on the terminal, At a later stage it turned out to
be desirable to dump only certain parts of the dictionary
in some cases, Rather than writing a new procedure it was
easier to generalize the existing one and add another
argument to it, changing its calling sequence, This in turn

required modifications wherever the procedure was called,.

Once a system is completed and running it usuvally wundergoes
a process of polishing and optimizing., In polishing one
takes care of lssves that have been neglected so far
because they are not crucial to the system’s operation such
a8 nice input and output formats and corrections of errors
that could be lived with so far., The process of optimizing
consists of performance measurements, attempts to detect
bottlenecks and make them more efficient by careful

reprogramming, often in assembly language,

This was just a short and far from complete 1list of
examples of the kinds of activities that constitute a
software design process and prove that describing it as a
tree may conform to our desire and aesthetical tendencies,
but, in most cases, not to reality,

2.2 ORGANIZATION OF THE SQFTWARE SYSTEM

The following ob jectives, mentioned in [i2], relate to the

final product of the design:

~The system should be organized in such a way that will
enable a larger group of people to participate in the
design. The amount of necessary communication between
members of the group should be kept to a minimum and it

should be as clear as possible.

~It should be easy to modify and to maintain the system.
Changes in one part should not cause a chain reaction of
many other necessary modifications and the consequences of
a change on the rest of the system should be easy to

predict,

These objectives imply that the system should be divided
into parts which are as independent from each other as
possible and that the necessary dependencies have to be

clearly defined and easily understood,.

Organizing the system’s modules in a tree structure would
certainly meet these requirements, but it turns out that
Most systems have a more complicated organization which can

noet be represented by a simple tree,

The system’s organization is determined by its designer., If
several people received equal specifications and vused the
same programming language, their organizations would
certainly differ, yet all would have two things in common:

Being externally prescribed, the specifications on one

side, and constructs of <the programming 1language on the
other, would form the top - and bottom - levels,
respectively, of all organizations. PBesides representing
both extreme sides of the system’s hierarchy, these two
levels also represent both extremes of another scale,
namely that of specialization., Consisting of the system’s
overall specifications the top level is wunique for a
partlicvlar system and as such represents the highest level
of specialization. The bottom level, on the other extreme,
consists of tools which are shared by all parts of the
system, in fact - by all systems written in the same
language, and thus represents the 1lowest specinalization
level. Fetween the two extremes, moving down the hierarchy
one observes a shift from system oriented to
programming-tool oriented parts, The lower the part is the
more its use tends to be shared by others. Therefore the
organization is composed of layers of modules rather than
being tree like. Each module occurs only once and it refers
to modvules of layers below it.

Another factor that affects the organization is the fact
that most high level programming lanquages support
recursion, A module may refer to itself or several modules
May refer to each other in cycles, Thus in addition to
references between 1layers there are references between

parts within layers,

The diagram on page ii includes a crude description of the
organization of SDS, It is shown here as an example for the
characteristics of Qa system’s organization. AR arrow
between boxes indicates that parts within the box from
which it emanates refer to parts of the other. The bottom
box includes the programming language constructs. All other

10.

boxes make vuse of it, but the corresponding arrows were
omitted in order to keep the diagram legible. The second
level includes text wutilities, parts of which #ay perhaps
be special to this particular system, but within it they
are vused by most modules, Proceeding up the diagram modules
become more amd more specialized and unique to the system,

2.3 RELATIONSHIP BETWEEN THE TWO ORGANIZATIONS

~S~2 A

The first two paragraphs of this chapter discussed the
organization of a software project from two aspects. One is
the conceptual division of the task into sub-tasks by the
designer during the design process., The second organization
is that of the software product itself, How are these two
related? Which of the suvb-tasks the designer had in mind
really becomes a module of the system? (By "module" I refer
to entities like Algol procedures, Fortran subroutines,
Simula classes or whatever mechanisms 1 programming

lanquage provides to divide the program).

11
A e e e e ————_—_——

e mm e T me =R e WS T an Se 4B S E® Le R ne e R EE e Ad e e " me e Em me e ae . >

e ww T e e KSR ME W mw EE R me e e B e e W ane W e e

P e T m mE ke W e me e ee mE we - T we em e en =6 se * e = e D

o ———

+
{
i
i
I
1
i + +
| I |
I | I
| | |
1 I c | + e 4
o i 1 o 1 bl = O | i
o | ee =D | 2t 1 i |
o | I - B il e LIPS S | !
2 | | ot I i I
o I | ©— i I L R i Ik -) 1
c i I 1D 1 | 1 I
=] i I & C I i R L 1 i |
- } { oo I i | { I
! I aXx | -+ 1 1 I N+ | —-D
y + oo e} I 1 1 1 &~ > |
o | 1 ! I 1 > o I
« i 1 i ! | o+« i
o | + e me - 4 i I i Il €2 |
£ 1 1] 1 i f I - O 1
£ 1 I © R e el L B L LI = | !
o | i o 1] | 1 1 }
[| w= == 1 A | ! + -~ + 1 | L
] I + | 1 I 1 1 |
! I o~ t I ! v I L AT i
] | — O | 1 + omem e 1 | i !
i I v ! ! | i + -2 1 >] == | e oo oo e oo e e D
i | €+ 1 + -2 1 i 1 ! |
| I oc 1] £ ! | o ! i
| I . © | | 1] | | © i]
| 1 +~0 | == == =eD | 0 } === D | © i !
{ i | | .] i ! |
1 + -+ i o i I + i | t om e e b
-——-— % ~ i] a. I I v I + -2 1 !
! | | } o~ | i [T
| [} 1 I I A | om memen D |} U o
| 1 + -4 + -+ 1 rt 1 |
! 1 I O+ 0 |
{ ~ tcowl -->
$ om - I v dul
I ©] il c £ o
| o I e i i I it JE DI S B VI TR T |
I =< wn i fOowna
I +u] | I
| o i + -t
| 4 &~ I
1 wc I
|l c ¢ !
| o £ |
b L ow R e i i =
i - i
+ e -

Utilities
Simula
A e e e o e e e e et B e e e e o i 8 e S S o e e o e

Text
o e e e e e e e e e e £ e e e o e e e s e e o

o e e e e e e e e e e e e e e e e e e et e e o
Organization of a software system

o e et e o e et e e e e s e e e e S S . o e S S B 0 St o 2 e o s S o o

Figure 1:

To answer this gquestion look first at the two extrames. On
the high-level side the system itself is a module. In most
ctases its high-level sub—-tasks are modules (all +the boxes
in the diangram on page ii are modules with various depths).
On the other side there are the constructs of the
programming language, Making every statement into a module
(eg an Algol procedure) would be absurd, Not only would it
be highly costly due to the 1larqge overhead in time and
space, it alse would not contribute anything to the design
process or to a better understanding of the system, in fact
= it would make it much more cumbersome. An important part
of the design is constituted by the decisions as to which
design blocks will have matching system modules and which
blocks are only conceptual sub-tasks whose mere purpose is

to simplify the design process.

Assembly languages allow this kind of distinction by
permitting the uvser to write macros and procedures. Eoth
are tools that enable the programmer to look at the program
from a higher point of view. Once written they can be vused
as higher level constructs ignoring their details. Whenever
a macre is c¢called, the sequence of instructions is
substituted into the code, while procedure calls stay in
the program as such and the procedure itself exists as a
separate entity, The decision as to whether a design block
should be a macro or a procedure is based vupon time and
space considerations., Here is a typical example taken from
the REL system which is written in IBM assembly language.
The overhead for procedure calls in REL is about 30
instructions. In order to obtain a new 1list element in

register R the following instructions have to be performed:

-f F-

R := top of available-space-list;
If R = nil then
Begin
Garbage-collect;
R := top of available-space-list;
End;
Top of available-space-list := Next free list-element;

Being very widely used in the system, this sequence is an
ideal candidate <for a separate design block. If there
exists an available 1list element (which 1is mostly the
case), the process takes three instructions., Writing it as
a procedure would increase the number of linstructions
executed almost each time by an order of magnitude and
substantially slow down the whole system, therefore it |is
defined as a macro., If there are no available list
elements, the garbage collector 1s called. The garbage
collector contains a few hundred instructions, compared to
which the procedure call overhead is small. On the other
hand -~ substituting its whole text whenever a list element
is required would largely increase the program size,
therefore it is defined as a procedure rather than as a

Macro.,

Blecks of the design organization which are also blocks of
the system organization will be referred to as procedures
throughout the rest of this thesis, Blocks of the design
organization which have no corresponding blocks in the
system will be referred to as macros.

In order to obtain the system organization from the design

organization, one has to know which of the design blocks

-4 4~

are procedures and which are macros. Every reference to a
macro in a design procedure has to be replaced with the
actions in the blocks the macro refers to, and this rule is
to be applied recursively, Completion of this process for
all the macros results in the actual procedures of the
software system,

For example consider the diagram on page iS5, It is an
enlarged section of the diagram on page ii, Every bex is
divided into two parts: The first part is a header which
states whether it is a procedure or a macro and also
includes the action it performs, The text describing the
action serves as the calling sequence within the design
organization. The second part is a refinement of <this
action. The line originating at the box points to the boxes
which correspond to the refinements, The bottom blocks
contain constructs of the programming language. They can be
considered macros which refine into themselves. The diagram
on page 16 shows the corresponding section of the system

organization which is obtained by collapsing the macros.

Procedure :
Getfile H
——————————————— :
Initinalize !
Get file name !

Open file
Terminate
tomm——— e ——————— +
i
F o e e e e e e e e e e e e e e +
' H : '
I T —— + ! Fmmm———————
i iMacro H } iMacro
i iGet file name : ' i Terminate
P e i ! e ikl b
i {Request file name ! ! 1Getfile:-F
i 1Read file name ! H 1End;
| e —————————— +] o ———————
' : :
! ! e e e e +
'] iMacro i
!] i0pen file :
' ' B o e e e e H
i ' iFi-new infile(N); :
i H iF.open(blanks(80)); !
H H A e et e e e +
i H
' o e e ————— +
H ' !
HEE R ————————————————— + o e e +
i ‘Macro ! ‘Macro i
! IRequest file name H i Read file name |
B e e o o e e H | e !
i i0vuttext("File name: "); | iIN:=Input; b
i iBreakoutimage; i tom e ———— +
b e e e e + !
' :
A e e e e e e e e ————— + R +
i Macro ' iProcedure |
iInitialize ! iInput !
o e e e e e e e e e e e e e e ! P e i
iRef(infile) procedure getfile; | HE I
i Begin i HE H
iText N; Ref(infile) F; H LN]
e + : '

Figure 2: An enlarged section of figure 1§

Ref(infile) procedure getfile; !
Begin !
Text N; Ref(infile) F; i
Outtext("File name: "); :
Breakoutimage; H
N:=Input; H
t=new infile(N); H
F.open(blanks(80)); i
Getfile:-F; i
End; H
+

Figure 3: Section of the system organization

2.4 HIERARCHIES OF LANGUAGES

Pt

This paraqraph presents two hierarchies of languages
related to the design - and system - organizations
discussed so far,

One way to look at the language hierarchy is from the point
of view expressed in [25]., A languaqe is seen as a formal
means of expressing one’s current view of his world, The
language is a function of this world., As the person’s
attention shifts, although the syntactic structure of his
language does not necessarily change, the vocabulary may
increase or decrease, old words May get new
interpretations,

e WA

A notion formally introduced in [251 is that of degrees of
expressiueness. It corresponds to the intuitive idea nabout
expressiveness, namely that langquage Li is at least as
expressive as language L2 if Li can distinguish between all
states that can be distinguished between by L2, Thus
speaking in Li one may be able to give a more refined
description of events described by L2 and talk about things

which are irrelevant for L2’s user.

The thought proecess one wundergoes during design activity
corresponds, wusing these notions, to a progression through
a series of lanquages as the designer moves between
different points of view of the system. At some points
details of a small part, like how to compare two texts, are
worked out while all other aspects are ignored. At another
moment details that affect the behaviour of other parts,
for example - what should the exact format of list elements
be, are designed. At yet onother moment some high level
decision may be made while exact details of its
implementation remain disregarded., The sets of states of
the corresponding languages shrink, expand or shift one way
or the other, hence the 1lanquages themselves form 1
partially ordered set in regard to degrees of
expressiveness. It is 1like 1looking at a drawing from
different distances. A very close look may show dots and
lines of paint, but be too close to take in the entire
plcture, At a iurger distance, though those dots are still
visible, the objects they form can also be seen. At a very
large distance the dots disnppear from the view to give way

to an overall impression of the picture,

18

Since the design organization may be created in any order,
there is no way of telling through what 1languages the
designer progressed by wmerely looking at the complete
design, Moreover, since the design activity Moy be
iterative, there <could be languages which existed during
the design but left no trace in the final organization,

To see the second language hierarchy consider the steps one
has to go through in writing the program, given the design
graph. The final program consists of the procedures,
written in the target language, consisting of the lowest
level constructs of the design. In order to arrive at the
program one has to traverse the graph starting at the top
and for each procedure—-node go through a translation
process in which every macro-node is replaced with its
immediate descendants., In doing so one progresses through a
series of languages for each procedure, and, since the
constructs of each 1language describe refinements of those
of the higher ‘languages, the sequence is ordered in
increasing expressiveness,

The union of all the lowest 1level languages of the
procedures forms the target language of the translation
process. This target language is not necessarily identical
with the programming 1languaqge. It contains all the
constructs from which the procedure bodies are built,

namely programming language constructs and procedure calls,

For example, in the translation of the procedure Getfile

from the design organization of figure 2 one goes through

four languages. The text:

Getfile

is in language 4§.
The texts:
Getfile
Initialize

Get file name
Open file

Are in language 2.

The texts:

-4 9~

Ref(infile) procedure getfile;

Eegin

Text N;

Ref(infile) F;

Request file name

Read file name
‘=new infile(N);

F.open(blanks(80);

Getfile:-F;

End;

Are In language 3.

The texts:

Ref (infile) procedure getfile;
Begin

Text N;

Ref(infile) F;
Outtext("File name: ");
Breakoutimage;
N:—~Input;

Fi-new infile(N);
F.open(blanks(80));
Getfile:-F;

End;

Are in langunge 4.

Note that both the depth of this language hierarchy and the
depth of the system organization depend, in opposite
directions, on the number of macros in the design. When the
system organization is derived from the design, all the
macros collapse and disappear. At the same time every
application of a layer of macros introduces another
intermediate translation step and hence - another language.
Therefore the greater the number of macros among the design
blocks the flatter will the system be and the 1longer the
sequence of languages.

3 ORJECTIVES

The preceding chapter covered issues of software
development which give rise to a set of objectives for the
construction of a software development system as stated in
the following paragraphs,

3.1 STRUCTURED, BUT FLEXIELE, DESIGN

Design, by its nature, is a creative process where one
invents, finds alternatives, tries them and chooses between
them, reviews and changes earlier designed parts. A
software development system has to suppoert this maze of
nctivities and at the same time has to enable the user to
find his way through them. Thus it has to allow mMaximal

flexibility and impose a minimum of structure.

In order to be more precise about it, refer to the design
organization discussed in paragraph 2.4, The structure that
a system should support is the structure of this
organization: actions that are broken down into parts in an
open—-ended process of stepwise refinement possibly with
actions referring to themselves and actions referred to by
more then one other action, Within this structure maximal
flexibility should be provided. The designer should be able
to build the organization from any desired starting point

and from each point - to move in any direction: down - by

refining already designed steps, or up - wusing dalready
designed steps in new, more abstract, ones., The system
shovld also allow iterations by enabling the user to cancel
previously made decisions or to redo them.

Another aspect of flexibility is the choice of a language,
Designers wmay want to use different lanquages like natural
English, semi-formnl English or some formal programming or
design language., Some may mix languages and use diffferent
ones for different steps of the design or for different
moods of the designer. Any kind of language should be
permitted and accepted by a system that supports the action

of design.

3.2 AUTOMATED CODING

As described in chapter 2, the design organization is, in
general, different from the actuval program, The transition
between the two is quite straightforward: in order to
derive the program from the design, one has to decide which
step is a wmacroe and which is a procedure and to write the
program in the target lanquage accordingly, by applying the
macros to the procedures, This process can be automated if
the macro - procedure decislons are provided.

A second objective of a software development system is to
alleviate the vuser of the coding task by letting him
incorporate the macro - procedure decisions into the design
so that the system can produce the program automatically.

3.3 CHOICE OF THE TARGET LANGUAGE

Designers may choose different 1languages for different
tasks., A software development system should support this
and permit the choice of any desired 1language as target
langquage., At the same time it should make vuse of the fact
that for each procedure a languaqe hierarchy can be derived
from the design hierarchy and, if the design is complete,
the bottom layer of this hierarchy consists of the target
language constructs, The system should be able to extract
this language from the design and compile the whole design
into it without requiring any special specification of the
target language from the user.

EBeing a general design aid, such a system shovld not
attempt to go any further., It should not produce machine
code from the target language program (unless the target
language itself is machine language) since this would imply
the incorporation of a general compiler into it which has
to be different for each facility and for each set of
target languages to be wuvsed and would limit the target
languages to the anes it can compile. QOne is far better of £
taking advantage of existing compilers to translate the

code produced by the system into machine language.

3.4 PORTARLE AND ADAPTAERLE PROGRAMS

A software system may be required to underge various
modifications during its 1lifetime for which there are
basically two kinds of reasons: Changes in the environment
in which the system has te run on one hand and changes in
vser requirements on the other. In the first case the
measure of ease with which the system can be modified is
called oportability, in the second case it |is called
adaptability,

Changes in the environment can range from those which
require only minor wmodifications - 1like replacing a
compiler by a new one or moving the system to another
computer, where the languaqe dialect is different - to
major changes like the need to wuse another 1language,
possibly with different kinds of operntions and data types,
which wmight even require changes in the gslgorithms.
lLanguage cnanges are often part of the program development
process, A program may be written in a high 1level language
in order to check the feasibility of an idea, and then, in
order to increase its efficiency, parts of it are rewritten
in assembly languaqe, or sometimes the entire program is
transferred to a lower level and more efficient langunge,
possibly on another machine. In future there will be
languages and compilers that turn out instruvctions for
creating actval harduare devices rather than code for an
existing machine, This is another case where one might want
toe check a program in a high level language intending to
write it in a different language uvltimately.

User cauvsed changes
features, adding new
certain parts of the

The main gonl of the
the creation of

vsually consist of deleting unnecessary
ones or improving the performance of

system,

system discussed here is to support

new programs., Contributing to the

adaptability and portability of these programs certainly is

an issue when building such a system,

4 EXISTING SOFTWARE DEVELOPMENT AIDS

The preceding chapter stated a 1list of objectives a
sof tware design system should meet., The goal of this
chapter is to show how a system that meats these objectives
relates to software development support systems which
either exist at present or are likely to exist in the near

future,

4,1 FROM METHODOLOGY TO ACTUAL SYSTEMS

In 1969 E.W. Dijkstra published an article called "Notes on
Structured Programming" at the University of Eindhoven in
the Netherlands. In 1974 N, Wirth from the Eidgenoessische
Technische Hochschule in Zurich, Switzerland published an
article cnlled “"Program Development by Stepwise Refinement”
{381 in which he demonstrates the technique proposed by
Dijkstra on the problem of the eight queens. Dijkstra’s
article was published in a book [401 in the vyear 1972.
Several more editions of this book have been published
since then. The program design technique advocated in these
papers is that of dividing the problem to be solved into
sub-problems, dividing each of the sub-problems into
smaller sub problems and so on until each problem to be
solved is simple enough to be treated as a whole. This
methodology is referred to as “structured programming”™ or

"structured design®,

The structured programming technique was introduced into
the US in the early seventies. According to articles and
books published in <those days it seems that there was a
concensus about its advantages. In a book by E. Yourdon and
L. Constantine [39] which was first published in 1975 the
avthors analyze the methodology and show that it leads to
more efficiency both in <the design process and in the
resulting programs as well as better reliability,

maintainability and generality,

There never was much argument about the question whether a
design should proceed top-down, bottom—up or in any other
way, The designs on which Dijkstra demonstrates the
methodology proceed in an iterative top-down manner, but he
never claims that this is the only way. Rasili and Turner
in [2] as well as Wilkes in [37] make the point that often,
though one does not yet know exactly how the problem should
be solved, he may know about subprograms his system will
need. In such cases it may prove to be ensier to start the
design at those subparts and proceed from there in all

directions,

As a result of the success of the structured design
methodology and of the recognition that design is one of
the major parts of the activity of producing a software
system (Brooks in [S] estimates that one third of the
development time is dedicated to 1it), softuware systems
which support this activity have emerged since the mid
seventies, Examples of such systems are PDL (61, SDDL (191,
PSL/PSA [34]1, WELLMADE [41]1. The ob jective of these systems
is to support the activity of systemntric design., The input

consists of dynamic descriptions (algorithm descriptions)

of modules which are stepwisely refined into sub-modules as
well as, possibly, static and functional descriptions which
May include details such as input and output
specifications, data-types, names of people involved in the
development, security levels etc. The system uses the input
to build a data-base out of which documentation (video or
hard—copy) may be provided. This documentation serves as n
blueprint for programmers as well as a wuseful tool for

project management.

To give the reader a better idean of the way these systems
are used, here is a more detailed description of SDDL ([19]
(Software Design and Documentation Language) which was
developed at the Jet Propulsion Laboratories in Pasadena,
California, The input <to SDDL consists of a series of
module descriptions. The keywords PROGRAM, ENDPROGRAM,
PROCEDURE, ENDPROCEDURE are vsed to identify the modules,
Keywords 1like 1IF, ELSE, ENDIF, LOOP, CYCLE, ENDLOOP, CALL
are used to describe the control flow of the algorithm
Wwithin the modules. A third set of keywords like EJECT,
IDENT etc is used to control the output formats., The output
consists of two main parts., The first part includes all the
modules printed in a nice and easy to read way where 1lines
between keywords are indented and line numbers are supplied
by the system, The second part consists of tables which are
vseful to get a quick overview of the system and of its
interrelationships., One table lists the contents of design
document by showing in terms of page and line numbers where
the modules and the other tables are 1located, Cross
reference tables show where words and module names used in
the design are wmentioned iIn the modules. Another table
contains a module reference tree the inter—-module calls,

The inputs and outputs of the other design systems are of

similar nature with, possibly, some andditions or deletions,

A further step in software development supporting softuware
which is worth mentioning was the introduction of systems
for verification of designs and of programs in the late
seventies, Some are incorporated into the design systems
descr ibed above, some are independent. Above mentioned
PSL/PSA includes such a system, It provides reports about
sub jects like input/output consistency, gaps in information
flow or vunused data objects, Examples of independent
systems are REVS [4]1, DISSECT (151 and EFFIGY [i81., REVS
(Requirements Engineering and Validation Systems) includes
a Requirement Statement Language (RSL) in which the data
flow in the software system to be designed is described
vsing a Requirement Statement Language (RSL), This
description is wused to build a relational database called
Abstract System Semantic Module (ASSM), A set of programs
is then wused to analyze the database for completeness and
consistency as well as to simulate the data flow through
the model.

DISSECT and EFFIGY are examples of a different kind of
verification systems, They check the program by performing
a symbolic execution., This means that rather than returning

a value they return the formula which the program computes.

To conclude this paragraph here are Qa few remarks
concerning the design systems. First it should be noted
that these systems have been wused svuccessfully, They are
quite ensy to wuse and reports show improvements in the
amount of control of project managers over the activities
In their groups as well as improved programmer productivity

-2~

and less design and programming errors. An increasing
number of major companies have been introducing design
systems into their software development facilities and in

doing so have saved considerable amounts of money,

A second remark about these systems is that none of them
produce actual programs., When the design is completed the
programmer has to write <the program by hand wusing the
design as a blueprint, In terms of the discussions in
chapters 2 and 3 one may say that these systems do not
distinguish between the design organization and the system
organization, The macro-procedure decisions are made after
completing the design rather than being incorporated into
it, The automated coding ob jective discussed in chapter 3
states that the gap between the design and the program
which currently is closed by hand, can - and should be -
closed by the computer. |

4.2 PROGRAM-PRODUCING SYSTEMS

The desirability of a system which produces a program from
a design has been discussed in preceding paragraphs and
chapters, It might be worth mentioning at this point that
systems which produce programs, though not from designs,
have been - and are being - developed.

An interesting research in this area has been conducted by
J., Hobbs [14] first at the City University of New York and
presently at Stanford Research Institute, A system that

accepts a "well-written" algorithm description in a

-3%-

sublanguage of English and translates it into a PL/%
program is currently vnder development., It incorporates an
existing system for the semantic analysis of texts in
English (SATE)., The algorithm will be first translated into
a logic represenfqtion by the semantic analyzer, and from
there =— into PL/i. The semantic analyzer contains a lexicon
where, associated with each word, is a collection of facts
relating it to other entries., For example - the lexicon
"knows" that a binary tree is a data-structure, that it is
composed of nodes, that it has a root, and that the root is
a node, The lexicon is vused to transform the English
description into logic representation. For example the

sentence:
The variable points to the root of a binary tree
is transformed into:

point(Ixiivariable (x4i)1,
[x2ircot(x2) ,[x3ibinary=-tree (x3)1) 1)

Another example is a system being developed by R. Ealzer at
the USC Information Sciences Institute [i]. This system
will accept a probelm and an algorithm description in a
LISP-1like format and perform transformations, most of which
are automatic, on the input in order to translate it into a

computer program,

Systems for automatic selection of 1library rovtines like
{261 and [271 are another example of research in this
field, These systems select representations and associated
routines of commonly vused data structures 1like stacks,
queves and trees ln order to maximize the efficiency of the

programs wusing them, Information flow in the programs,
sample runs and vser interrogation are used to make the
selection,

Systems like the ones desribed above will provide wvery
attractive programming environments once they are
operational. However, as already mentioned, none of thenm
produce programs from the design., They all require a
program which is very high level, but nevertheless has to
include a description of the algorithm. These systems
reduce the gap between the design and the program by
providing a set of very high level primitives that can be
used as target language of the design. They will form a
nice complement to a design system which meets the

objectives of chapter 3,

4.3 PROGRAMMING LANGUAGES

High level programming languages were developed in order to
provide the user with a means of expressing an algorithm in
4 way that can be made to be understood by the machine and,
at the same time, avoid the necessity of writing parts of
the program which do not contribute to the description of
the algorithm and whose mere function is to match it to
prescribed machine features.

In reality it turns out that, for a large number of cases,
a perfect match between a programming language and an
application can not be found. This is a result of the
inertia and rigidity of 1languages. In the development

3"'5.

stages of a new language it is impossible to predict all
the applications it might be used for and hence - all the
demands it may be required to meet. On the other hand,
once the development and production phases are completed,
it is a difficult task to change the translator in order to
match the language to new unforeseen applications. As a
result, programmers often have to spend time trying to
force existing languages to fit their needs. There are
different ways to overcome this problem to some extent -

ench with its advantages and its drawbacks.

The idea of a wuniversal 1language 1is one possibility. A
language is universal if it can satisfy the needs of any
programmer for whatever application he might use it., It has
to provide data structures and operations in all possible
fields 1like: Arithmetic, text processing, list processing,
simulation etc. This implies the construction of a very
large and complicated translator together with all the
problems associated with such a system: It is difficult <o
produce and to maintain, it would require long translation
times and, because of the difficulty in optimizing such a
large system, the object code produced by it would often
suffer from inefficiencies, Recause of its size it would be
vunusable for many vsers who operate smnll machines. Further
- since, as mentioned agbove, it is limpossible to predict
presently non-existing applications, it may well be, that

today’s universal language will not be so in the future,.

On the other extreme the problem could be solved by using a
large number of special purpose, problem oriented languages
from which each wuser can pick the one that best suits his
needs, In this way one can enjoy the advantages of a small
system: It is relatively easy to write and to maintain, it

34.

runs faster and it is easier to optimize and be made to
produce wmaore efficient code. A drawback of this solution is
the large number of different languages a computing
facility has to keep. The efforts needed to maintain each
language add vp and make the maintenance of the whole
facility costly both in terms of time and money. Again
there is the problem of keeping up with developments and
the necessity to provide new languages as new needs arise.
Finally — the human factor: there is a phenomenon of
"loyalty <to the language”. A programmer often has a small
number of programming lanquages (in many cases only one
language) he has used a lot, feels comfortable with and has
to do only a small number of manual look-ups when he uses
them. He is reluctant to learn a new language unless
absolutely necessary and prefers to wuse his favorite
language even if it does not fit his current problem too
well., Therefore it could well be that out of a large number
of languages a computing Fqc;lity keeps, only a small

subset is actually being vsed.

The emergence of extensible languages in the late sixties
and early seventies was an attempt to tackle the problem of
matching the language to the application., Extensive surveys
and evaluvations of these languages can be found in [28],
(291, 1(L301 and [32]1., An extensible language consists of a
fixed kernel cnlled the base-language and an extension
mechanism by which the kernel can be modified and/or
extended., A program in an extensible lanquaqe consists of
definitions which extend the base language and instructions
in +the extended 1language which are then compiled or
interpreted.

-35~-

A number of different extension mechanisms can be found in
these 1langquages. One kind of such mechanism is the macro
definition, Initially only assembly languages provided the
ability to write macros, then it was recognized that macros
can serve as powerful tools in high level programming

languages as well (20,231,

One of the first high level languages into which a macro
processor was incorporated was Algol [211. Another common
extension mechanism is the ablility to define new operators
in terms of o0ld ones. For example ELF [7] MAD [ii], and
BalM (131 include such facllities. An example of a MAD

definition is:

DEFINE BINARY OPERATOR .CONCAT.,
PRECEDENCE HIGHER THAN ,ABS.
MODE STRUCTURE i = 1 .CONCAT.i

The third line of this definition defines the datatypes on
which the new operator works. Another, more general,
definition mechanism is the ability to modify, delete or
insert syntax rules and their semantics., IMP (161, ECT [34]
and ECL [36] are such 1languages. An example of a rule

modification in ECT is:

36

DELETE F
ADD P

vic
vic
This input specifies that the ENF syntax rules:

(F)>
(F)

are to be replaced with the rules:

(P) 1=
(P 1:=

(see 5.5 for an explanation of the EBNF notation)

The idea which 1led +to the introduction of extensible
languages was that a computing facility could keep a small
number of extensible 1langquages, such that <the required
maintenance efforts are not too large, and still satisfy
the programmers since every vser could use a langunge that
fits his needs by extending one of the kernel 1languages.
Yet, in spite of the advantages, it turns out that
extensible 1languages are not widely wused even in the
computer—science community, Standish in [32] explains why
this happened, Many kinds of extensions require
modifications of +the lanquage processor which are not
trivial and require sklll and knowledge that many users do
not =- and are not expected to - possess., Therefore only
trivial extensions, if any, were used, and the efforts of
the language designers to provide a sophisticated
environment were wasted, It seems to me that another reason
for the rejection of extensible languages is that the fact
that a language can be extended, even only superficially,
confronts the user with a much larger decision space than a
fixed language does. When wuvsing a fixed language with
prescribed constructs the only decisions the user has to
make are those concerning the method of solving his problem
and the vtilization of the language to perform the task. An
extensible language introduces another dimension into the

37-

decision spnce. The wuser has to decide how to extend the
language to fit his needs, These extra decisions require
additional mental efforts and time and often become a
burden rather than an advantage, a burden which may be
heavier than the one introduced by the need to tailor a

solution with a fixed language.

Most facilities have adopted a compromise between the first
two ways described above, They keep a medium number of
languages such that the maintenance costs do not run too
high, and the wuser has some choice and can pick the
language that most closely suits his application, taste or
habit. This is the reason for the reguirement (in 3.3
that a software design system should be able to translate
the design into any target language. Only if this
requirement is met will the system be useful for a large

spectrum of vsers in different facilities,.

4,4 TRANSLATORS

A major part of SDS, the software design system developed
according to the ob jectives in chapter 3, is constituted by
a languaqge translator which accepts any grammar, Before
discussing the &DS translator in later chapters, it may be
worth while to aquaint the reader with some of the existing

general translators,

Almost all the research and development efforts in the
field of translators have been directed towards the

creation of systems which translate programming languages

- 38—

into machine code, 1ie - compilers and interpreters, A
comparison of two such translators will wvusually reveal
that, though they may translate different languages and
have different implementations, they wuse similar data
structures (e.g. tables and stacks) and algorithms (e.qg.
for lexical analysis and parsing). This recognition led to
the development of so0 called "translator generators” or
"compiler compilers"”, These systems include programs and/or
data structures which have been found to be common to many
compilers or interpreters. Building a compiler from such a
system is usually easier and faster than starting the work
from scratch,

One of the first compiler compilers [221 called "The
Compiler Compiler” was developed at the University of
Manchester in England in the early sixties, It is used by
writing the syntax rules of the language +to be translated
nnd their corresponding semantic routines which are written
in nssembly lanquage. A built—in left-~to-right parser will
then process the input according to the rules entered and
call the semantic routines, A number of compiler compilers
which operate in a similar manner have been constructed
since, A recent example 1is YACC (Yet Another Compiler
Compiler) [401 which was developed at Bell Laboratories in
Murray Hill, New Jersey., YACC consists of a parser and of a
lexical analyzer, It accepts syntax = and lexical = rules
and the corresponding semantic routines which are wusvally
written in C Language. An example of input to YACC is:

-39~

NUMBER : DIGIT
€ %% = $1; 2
! NUMBER DIGIT

(¢3 10 % ¢4 + $2; 3

5
This input specifies the BNF rules:

(NUMBRER >

3= (DIGIT)
{NUMEER)Y ::=

(NUMBER?> <DIGIT>

The semantic routine of the first rule returns the valve of
the digit, The semantic routine of the second rule returns
the sum of the value of the digit and ten times the wvalue

of the number,

An example of g different kind is the TGS-II Translator
Generator System I[81. It consists of various tables and
associated programs a compiler wWwriter may need such as
tables for symbols, 1literals, terminal symbols, opernation
codes, lanbels, The wuser of this system wWwrites all the
translation phases himself, but is spared the effort of
designing and implementing most of the data structures he

May need.

4.5 PORTABILITY AND ADAPTARILITY AIDS

The straightforward way to modify a software system is to
rewrite the program. This is, in most cases, alse the mMost
laboriocous way., Better portability can be achieved if the
transition between the two 1languages would be automated,
Then, after the initial effort of building a translater, a
whole class of programs can be translated easily without

spending time and effort for each program.

-40—~

A solution along this line was proposed as early as 1958
(331, The idea was to develop a language called: UNCOL
(Universal Computer Oriented Language), which would serve
as an intermediate level between any high level language
and any machine language, and to build translators from all
high level languages into UNCOL and from UNCOL into all
machline languages., Then a program could be run on any
machine after underqoing two translation phases. The reasaon
why this idea was never implemented is the impracticality
of constructing a wuniversal 1lanquage as described in 4.3

above,

Poole and Waite [24]1 developed a system that operates on
similar principles but wuses more than one possible
intermediate 1level. The basic idea here is to define a set
of abstract machines each of which suits a particular class
of problems. All the programs written for such a machine
can be translated inte machine language by coding each
operation of the abstract machine as macros in terms of the
real machine and wusing a macro processor to do the
translation, This system has been implemented on different
computers without major difficulties,

..41_.

S GETTING ACQUAINTED WITH A SOFTWARE DEVELOPMENT
SYSTEM

A software design system (SDS) that attempts to meet the
ob jectives of chapter 3 has been designed and implemented,
This chapter acquaints the reader with the system and its
use, Detailed descriptions of the system and its
implementation are in the <following chapters and in the

appendices.

S.1 THE GENERAL IDEA

The iden of the system is based on the notions discussed in
the previous chapters, The process of design can be
modelled as a progression through a series of conceptual
languages, This was discussed in 2,4, Moving down this
hierarchy one sees languages with increasing
expressiveness, If design block 8 is refined into the
sequence Si S2 S3, then S belongs to a language L that is
one step higher (and therefore one step lower in its
expressiveness) than the language L’ to which 51 S2 §3
belong. Further - the sequence Si 82 S3 is the translation
of 8 into L7,

The system lets the designer define the languages through
which he progresses by specifying three things: (i) the
syntax rules of the lanquage constructs; (ii) how each
construct should be translated, in other words: what does

each construct mean in terms of the next lower language;
(iii) whether the rule is a macro or a procedure. The rules
so defined correspond, in general, to blocks of the design
hierarchy., The rules are kept in a structure called the
user’s dictionary. A language processor is then used to
perform a series of translations according to those rules
and to produce code in terms of the lowest 1language called
the Target Language.

The set of 1languages that the system goes through in
producing the «code is, in general, different from the
sequence of the designer’s conceptunl languages., It is the
macro - procedure distinction that provides the necessary
information in order to extract these languages and to make

the correct translation process possible,

In order to meet the flexibility requirement and 1let the
vser do the design in any order, the system works in two
passes: (i) A syntax pass, in which the wuser’s dictionary
is constructed; (ii) a translation pass, in which the
output code is compiled., The wuser has full coaontrol over
these passes and can invoke them when desired,

5.2 SYNTAX DRIVEN L ANGUAGE PROCESSING

In +the previous paragraph I mentioned thnt the translation
is performed by a language processor. Hefore proceeding
with the description of the whole system here are a few
words about the language processor’s operation,

Y KL

Languages are formally described by means of syntax rules
and associated meanings (also called: semantics, or
interpretations), These meanings are, in computer
languages, actions (which will also be called semantic
routines, or, in short semantics) to be performed whenever
a string obtained by the corresponding rule is encountered,
The dictionary of a language contains gll its rules

together with their assccinted meanings.

In order to process a string of characters that is suppoesed
to belong to the language, one first has to parse it in
order to wverify that it is indeed part of the language and
to find out which rules have been wuvsed to compose the
string, and then, if it parsed successfully, to execute the

corresponding semantic rouvtines,

—Q 4

5.3 A SAMPLE INPUT TEXT

The following text (without the line numbers) is an example
of an input to the system:

&£ PROC

2 (STMT)>: ADD ’A’ TO ’R’
3 WHERE

4 AE: <ID)

S =)

& SET ’B’ TO SUM OF ’A’ AND ’B’
7 PEND

8

9

10 MACRO

14 (STMT): SET U’ TO *V?
12 WHERE

£3 U:<IDY V:i(EX)

14 =--)

15 U=y

16 MEND

17

18

19 MACRO
20 <EX): SUM OF ’X’ AND ’Y’
24 WHERE

22 X,Y: (EX)’

23 -=)

24)X)+)Y}

25 MEND

26

27

28 MACRO

29 (EX>: N’

30 WHERE

34 N:CIDY,(NW)

32 --)

33 PRIMITIVE

34 MEND

In the following paragraphs this example 1is vused to
illustrate the system’s operation. Macros and procedures
are referred to by the line numbers at which they start,
Only the basic operations are described here. More aspects

-85

will be discussed in later chapters.

5.4 DEFINITIONS, NOTATIONS AND SOME SYNTAX

A complete syntax of the system is given in appendix A, The
part of this syntax which is necessary in order to follow
the example and a few notations which are wused in later

discussions are given in an informal way in this paragraph,

The user’s input consists of procedures and macros, both of
which constitute design blocks as explained in chapter 2.
Hoth procedures and macros provide refinements of higher
level constructs into lower levels, Besides being
refinements, the wmacro definitions nre also vsed as
translation rules which are applied to the procedures in
order to produce the actual modules of the final program,

PROC and MACRO are keywords indicating the beginning of a
procedure or a macro respectively. PEND and MEND indicate
their end.

The part of a procedure or a macro that precedes the arrow

L

is +the Jleft-hand side (lhs). Lines 4i-4 constitute the

left~hand slide of the procedure at the beginning of the
example; 1lines 10-13 constitute the left-hand side of the

first macro.

The part that follows the arrow 1is the pright—hand side

(rhs), Lines 6 and 7 form +the right-hand side of the
procedure (also called: Procedure body); lines 45 and i6

~446-

are the right-hand side of the first macre.

The left-hand sides of both macros and procedures contain a
text called lhs text whose refinement is given in the
right-hand side by the phs text. For example, the lhs text
of the procedure (line 2):

ADD ’A’ TO ’'B?

is refined into the rhs text (line 6):

SET ’B’ TO SUM OF ’A’ AND 'B’

Names between single quotes, like ’A’ and ’E’ above, are
parameters., They stand for any text of certain parts of
speech (abbreviated: pos; also called; syntactic
categories)., The specification of the parts of speech for
which each parameter stands is given in a declaration which
follows the keyword WHERE. Line 4 in the procedure is such
a declaration, It indicates that both A and E stand for
texts of the syntactic cateqgory: (ID) (identifier). Thus
if, for example, MAX, FLAG and P4 are identifiers and 8 is
not, then the texts:

ADD MAX TO FLAG

ADD P4 TO MAX

mean, according to this procedure:

_.47.-.

SET FLAG TO SUM OF MAX AND FLAG

and

SET MAX TO SUM OF P4 AND MAX

but the text

ADD B8 TO MAX

is meaningless with respect to this procedure because the
requirement that ’A? has to be replaced by an identifier

has not been met,

As the example shows, the 1left-hand side text is always
preceded with a part of speech followed by a colaon (like
(STMT?>: in 1lines 2 and ii; and (EX): in lines 20 and 29).
It will be referred to as the lhs pos. and it indicates the
syntactic category to which the lhs text and its refinement
(the rhs text) belong. Thus, according to 1lines 2 and b,
texts like:

ADD P4 TO MAX

and

SET MAX TO SUM OF P4 AND MAX

belong to the category (STMT) (statement); and, according

to macro 419, if INDEX and 4 belong to the cateqgory {EX)
(expression) then the texts:

-48~

SUM OF § AND INDEX

and

i +INDEX

are also expressions.

Macro 28 is of a different kind than the other macros of
the example. Its rhs text (line 33) consists of the word
PRIMITIVE. This is a keyword and it indicates that texts
which match the lhs should not be translated since they are
part of the target language. Macros of this kind will be

referred to as primitive macros.,

As mentioned above, names between angular brackets, like
(STMT> and <(EX)> indicate parts of speech. Four parts of
speech are pre~defined in the system: (STMT> (statement),
<IDD (identifier), (NW> (number) and <(BLANK> <(blank
characters), However the programmer may use freely any
parts of speech of his choice, The mere introduction of a
part of speech in a procedure or in a macro suffices to
introduce it into the system. For example: the part of
speech (EX) is Intreduced to the system when it is first

mentioned in line 13,

5.5 DESCRIPTION OF SYNTAX RULES

Throughout this writeup syntax rules are written in Backus

Naur Form (BNF)., Non-terminal parts of speech are

- QP

represented by names surrounded with angular brackets, like
(EX)> or (NU>, As I mentioned above, such a part of speech
represents a set of text strings which belong to the
corresponding syntactic category. These parts of speech are
merely a tool for describing the syntax of a language, they
do not appear in actual texts which belong to the language
and therefore are also cnalled "non-terminal parts of
speech", Subscripts are used if identical parts of speech

have to be distinguished between (egqg. (EX)i (EX)2 etec.),

It is often necessary to include actual characters of the
language in a syntax rule. These characters can be looked
upon as parts of speech which represent only themselves,
They are alse called "terminal parts of speech" and are
distinguished from non-terminal parts of speech by having
no brackets around them. For example the sequence:

C(ID)Y:=(EX)>

consists of two non-terminal parts of speech: (ID> and (EX)

and two terminal parts of speech: The characters ’:’ and

‘=7,

The symbol ::= is used to separate the left-hand side of a
syntax rule frem its right-hand side. It stands for: "May
be rewritten as", The entire rule states that the texts
which are defined in the right-hand side belong to the
syntactic category of the left-hand side. For example, the
rule:

-50-

(STMT?> 1:= (IDY:=(EX>

says that text strings which consist of an identifier
followed by a colon, followed by an equal sign, followed by
an expression, belong to the cateqory “statement"
(represented by the pos (STMT)).

5.6 THE SYNTAX_PASS

In the syntax pass the wvuser’s dictionary is constructed
from syntax rules which are defined in macros and

procedures,

Macros whose rhs is the word PRIMITIVE introduce one set of
new syntax rules into the user’s dictionary: Primitive lhs
ruvles which will also be referred to as: Declared

primitives, or as: Defined primitives.

Lhs ruvles have the 1lhs part of speech as their left-hand
side., Their right-hand sides consist of the 1lhs text in
which the <formal parameters have been replaced by all
possible combinations of parts of speech das found in the
declarations. Each combination defines a new rule.

For example, in macro 28 (whose rhs is PRIMITIVE) there is
one formal parameter ’N? which, according to the
declaration in line 31, stands for two parts of speech:!
¢ID> (identifier) and (NU)> (number)., The lhs part of speech
(on line 29) is (EX)., This macro intrsduces the two rules:

-Si_

EX> :1:= <ID>
and
(EXY 1= (NU>

These rules are primitives, ie = they are parts of the
target 1language and therefore their semantic interpretation
says: Leave the text that parsed according to them as it

IX-

Macros whose rhs is not the word PRIMITIVE introduce two
sets of rvules: Lhs rules and rhs rules. The lhs rules are
obtained in the same way as in primitive macros. The
semantic interpretation of a 1lhs rule in a non primitive
macro is the substitution of the corresponding text with

the rhs,

In macro 10, for example, there are two parameters: ’U’ and
’V? which stand for the parts of speech (ID) and <EX)

respectively. This macro introduces the lhs rule:
{STMT)> ::= SET <ID> TO (EX)

If Y is an identifier and X+7 is an expression, then the

text:
SET Y TO X+7

parses by this rule, hence the semantics will replace it,

according to the form on line 1S, with:

5:3

Y i=X+7

Rhs rules, like lhs rules, have the 1lhs part of speech as
their left hand side, Their right hand sides consist of the
rhs text in which the formal parameters have been replaced
by all possible combinations of parts of speech from the
declarations. Here again each different combination defines

a rule, Macro 10 introduces the rhs rule:

(STMT)> 1= (ID):=(EX>

This rvule was obtained by placing the part of speech (STMT)
trom line 14 on its lhs, and placing the form of 1line 1S
(after replacing the parameters U’ and ?VY? by {ID> and

(EX> respectively) on its rhs,

Rhs rules, as 1long as they are not redefined in another
macro or procedure, are considered to be primitives, ie -
parts of the target language. The translation system would
also work correctly if these rules were not in the
dictionary, However, as chapter 6 will explain in detail,
there are advantages in keeping them. For reasons which too
will be discussed 1later (in chapters 6 and 7), primitives
introduced as rhs rules have to be distinguished from
primitives introduced via primitive macros (like macro 28)
1s lhs rules, The distinction is made by marking the two
kinds of primitives differently in the dictionary, I will
distinguish between them in this writeup by referring to

primitives introduced via primitive macros as defined
primitives (or, in short, just: Primitives) and to

primitives introduced as rhs rules as implied primitives

(becnause the fact that they are primitives is implied by

their status of rhs rules),

=53~

A special case of a non-primitive macro is a macro with an
empty rhs, Such a macro introduces lhs rules whose semantic
interpretation is o substitution with an empty string, ie -
omitting the text that parsed by one of these rules. There

are ne new rhs rules introduced in this case,

l.eft hand sides of procedures are dealt with exactly like
left hand sides of primitive macros,. Each procedure
introduces a set of defined primitives. Procedure i, for

example, introduces the defined primitive rule:
(STMT> ::= ADD <ID> TO <ID>

The first condition for a svuccessful translation is that
the text Wwill parse, The introduction of this rule enables
the designer to use the corresponding construct in any part
(macroes or procedures) of his design in order to indicate a
call of the procedure, If, for example, RASE and
DISPLACEMENT are identifiers, then the text:

ADD DISPLACEMENT TO RASE

can be used as part of any procedure or Macro without

interfering with a successful parse,

Right hand sides of procedures are ignored in the syntax

pass,

In summary, here is a list of the rules that are introduced
by the procedure and macros in the example., Each rule is

followed by its semantic interpretation:

-S54~

PROC 1:

(I (8TMT> ::= ADD (ID> TO (ID)
Primitive

MACRO 10:

(ID) (STMTY ::= SET (ID> TO (EX>
Subst: (ID):=<(EX)

(III) (STMTY ::= (IDY:=(EX>
Implied primitive

MACRO 19:

(IV) (EX)> ::= SUM OF (EX)i AND <EX>2
Subst: (EX>1+<EX)2

(V) CEXY> 1= (EX)+CEX?
Implied primitive

MACRO 28:

(VI) (EX> 1= (ID)
Primitive

(VII) <EX)> ::= {(NU>

Primitive

-85~

5.7 THE _TRANSLATION_PASS

In the translation pass procedure bodies (right-—-hand sides
of procedures) are translated, using the +translation ruvles
that have been stored in the dictionary in syntax pass. The
process will be described on procedure 14 from the example.

Firet +the procedure is parsed, yielding the <following

parsing graph:

(STMT> (II)

- o - —— = S — . WM S S A S — S —— G WL — S " S L S S T S S D — I D = W " W . — S ——— S T . e

- oo

CEX> (IV)
R et L !
CEX) CEX)
(VI) (VI)
R : b ;
! : ; :
¢1D) ¢1D> (ID)

— -
-—
— -
— —-
-~

The arcs around the parameters ’A’ and ’B’ were built in a
pre-parsing process according to the part of speech
declarations in the lhs of the procedure. All the other
arcs correspond to rules from the vuser’s dictionary. The
number in parentheses following each part of speech

indicates the appropriate rule.

-S65-

All the semantic routines used in translation are functions
which return texts., Semantics of characters (leaves of the
parsing tree) simply return the character. Semantics of
parameters (like ’A’ and ’'B’) return the parameter. Every
other semantic routine first calls the semantics of its
constituents and then, if it is a primitive, simply returns
the concatenation of their outputs, otherwise it returns

the translation in terms of the constituents outputs.

Since there exists a complete parse (there is an arc that
spans the entire text) the semantic routine of the spanning
arc is called. This routine calls the routines of +the
constituents, and the procedure calls bubble down to the
leaves where they start to return. The parameters return
the texts ’A’ and ’B’, The semantic of rule IV is a
substitution, consequently the arc marked (EX) (IV) returns
the text: ?A’+’R’, The semantic of the <(STMT) is a
substitution that returns the text ’R’:=?A’+!R?,

Here the first +translation literation is completed. Since
the output text 1is different from the input, the
translation process is repeated. The output text is parsed
resulting in the following parsing graph:

57

(OTMT Y (IIID)

—— o e - " —am M=, D v S T - wvs S

CEX> (VI (EX> (VI)

- - e e s an — - ————ans s - o —— " —

-
- .-
-
-

Here, agqain, the arcs around the parameters were obtained
by a pre—-processor, The semantics of these arcs return the
parameters as they are. All the other arcs correspond to
rules from the wuser’s dictionary. All the rules, in this
case, are primitives, therefore the output text ig
identical to the input and the tranaslation iterations are

terminated,

As a last step the text is scanned and the quotes around

the parameters are removed, yielding the text: B:=A+RE,

-G8~

6 MORE__ABROUT SYNTAX RULES

6.1 DEFINED PRIMITIVES

Syntax rules can be explicitly defined as primitives of the
target language, This can be done in two ways: Through

primitive macros and through procedure definitions,

The first condition for a successful translation of a text
is that it will parse. Therefore the dictionary must
include syntax rules for all langquage constructs used in
the text, Usvally these rules are defined in macros (either
explicitly or a5 implied primitives) or in procedure
definitions. However the designer may want to incorporate
into his design constructs uwhich should not be refined into
lower levels and hence do not occur in any refining macro
or procedure, The primitive macro is a tool by which such

rvles can be introduced into the dictionary.

There are several cases in which one may need this
facility, Often the designer may want to mix target
langquage constructs together with higher level constructs
which have to be translated. For example he may want to

include in a procedure the statement:

SET X TO A+B

Suppose that X, A and B parse to (ID>. Further assume that
the rule

...59._

(STMT)> ::= SET (ID> TO (EX?

has been introduced by a non-primitive macro and should be

sustituted with

(ID):=(EXD

and that the rule

CEX> 1= (IDX+(ID)

is part of the target languvage.

To make the entire text parse svccessfully the last rule
has to be in the dictionary so that A+B will parse to (EX>,
The way to make this happen is to write a primitive macro
which introduces this rule as a defined primitive, In fact
a reasonable way to use SDS is to create dictionaries which
contain the rules of frequently used programming languages
as defined primitives, and to wuse the dictionary for a
programming language as a starting point for all designs
having it as a target language. In this way one can freely
tMix target language constructs with his own language

constructs in the design.

Another case in which one may have to define a primitive is
when he wants to uvse a high level, non-primitive, construct
in a procedure, but does not want, for the moment, to worry
about the refinement aof that construct and yet wants to see
how the rest of the procedure translates. Here again the
whole procedure has to parse. This can be achieved if the
high level construct is temporarily defined as a primitive

by a primitive macro., Then, if there are ne errors, the

_6 0-

procedure will parse and be translated inteo a target
language which, temporarily, includes this defined
primitive, Later the primitive can be overridden by

defining it with another, non-primitive, macro,

A third reason for writing a primitive macro is to override
an implied primitive rule, which has lower priorities in
both syntax and translation passes (see 6.3 and 7.4), by a
defined primitive, whose priority in translation 1is the

same as that of non—-primitive rules,

The second way in which defined primitives are introduced
is the 1lhs of procedures. Both procedures and macros
provide refinements of their left~-hand sides in terms of
lower languages, but when a text parses according to the
lhs of a procedure then, unlike the lhs of 2 macro, it is
not substituted with the procedure’s rhs text. It is
regarded as the «c¢alling sequence of <the procedure and
considered part of the target language just like a defined
primitive., Like any other primitive the rule can be
re-defined wvia a wmacro in order to translate the calling
sequence wused in the design into the actual calling
sequence used in the target 1language. For example, the
procedure in the preceding chapter introduced the primitive

rvle:

{STMT>» ::= ADD (ID> TO (ID>

Therefore, if X and Y are identifiers, the text

61

ADD X TO Y

may be wused as part of any procedure or macro. If the
target language is, say, Fortran, then this construct has
to be translated into a proper Fortran subroutine call, so

the programmer may add the macro

MACRO

{(STMT>: ADD U’ TO 'V’
WHERE

u,v: <Ibp»

- .
ADDTOC’U?, 2Y2)

MEND

Which changes the rule into the non-primitive:

(STMT>: ADD (ID)i TO (ID>,
[

Subst: ADDTD((ID)i, (ID>2)

6.2 IMPLIED PRIMITIVES

As explained in the preceding chapter, an implied primitive
is a rule which describes the 1lanquage construct wused in
the right-hand side of a macro to refine the text of its
left-hand side,

The main reason for storing implied primitives is to enable
the user to check the current status of his design. At any
stage he may, from the command level of the system, ask
what the primitives are and thus check what parts of his
program are still wundefined in terms of the target

language., Storing the implied primitives in the vuser’s
dictienary, together with all other rules has two
advantages: Once an implied primitive is in the dictionary,
it participates in the parsing process, therefore there
usually is no need to write a special primitive macro in
order to insert the rule., The second advantage is that the
process of overriding an implied primitive with a defined
primitive or with a non-primitive rule is simplified in
this way = all it involves is changing the type of the rule
in the user’s dictionary, whereas if it were kapt in a
different dictionary, every insertion of a defined
primitive or a non-primitive into the user’s dictionary
would invelve a search of the implied primitives dictionary

in order to remove the implied primitive if it is found.

6.3 ORDERS _OF PRIORITY

The wuser’s dictionary contains all the syntax rules that
the user defines. This includes non—-primitive rules as well

as defined primitives and implied primitives,

As mentioned in previous paragraphs, existing rules may bhe
redefined and their types changed. These changes are

sub ject to the following order of priority:

-63-

(i) Non primitives

(ii) Defined primitives

(iii) Implied primitives

This means that if an attempt is made to insert a rule that
already exists in the dictionary and the new rule is of na
type that has a higher priority than that of the old one,

then the type of the old rule is changed to that of the new
rule (which is equivalent to replacing the rule), otherwise

ne change is made, Further, if there is an attempt to
re-define a non-primitive rule and the new rule has
different semantics (ie - two macros define the same
construct in different ways), the second macro is

completely ignored (no rhs rules inserted either) and an

errar messnge is issuved.

The priority of non-primitives over implied primitives
reflects the idea of the development system. There is a
hierarchy of languages through which the designer
progresses., At any stage of the design there is a set of
rvles which have not been defined in terms of others. These
rvles form the current target language. If one moves down
the hierarchy, he refines primitive constructs by defining
them in terms of a lower language and they cease to be
primitives, If he moves wup the hierarchy, language
constructs, which have already been defined in terms of
others and thus are not primitives, are used in right-hand
sides of macros to define parts of a higher language. Being
rhs rules, the system attempts to insert them into the
dictionary as implied primitives, but this attempt has to
fail,

Non—-primitives have priority over defined primitives since,

ns discussed above, the designer may want to refine

—64.-

primitives which were introduced only temporarily or

primitives which are vsed as procedure calls,

The reason for the priority of defined primitives over
implied primitives is that implied primitives have lower
priority in the translation process (see 7.4)., If the vuser
wants to override this inferiority and specify that the
rule should be trented as equal to non—-implied rules, he
can do so by defining it in a primitive macro which results

in removing the implied-status from the rule,

-65-

7. PICKING THE PARSING_ TREE

7.1 STATEMENT OF THE PROBLEM

The parser used in the system can handle any general
rewrite rvule grammar, It builds all the possible arcs
around the input string and, with a reasonably sized
syntax, the resulting parsing graph consists of a large
number of arcs, most of them spurious, some of them
desired., If at least one arc spans the entire input string,
then the parsing graph is said to contain a complete parse

and the act of parsing is said to be successful.

Any spanning arc is the root of a tree whose leaves are all
the initial arcs of the input string. The semantic
evaluation starts at the root of a parsing tree and
recurses down to the leaves, In order to translate the text
there has to be at least one parsing tree, because
otherwise, though parts of the text may have their
translations, the input string as a whole is semantically

Meaningless,

For reasons which will be clarified later in the chapter,
many input strings, which parse successfully, end up with
several spanning arcs, each corresponding to a different
parsing tree and hence a different translation. The user
usually has only one translation in mind for a given input,
and it is the task of the translation system to resolve the
ambiquities and to find the corrrect parsing tree.

—.66...

Ambiguous parsing graphs can be divided into four
categories, two of which are rather trivial and are dealt
with in the next paragraph., The other two categories
require a more complicated algorithm which is explained in

the rest of the chapter,

7.2 TWO TRIVIAL CASES

The first category of ambiguous parsing graphs is where the
ambiguity is a result of syntax rules whose right hand side
contains a single part of speech. Such rules may produce
parsing graphs which have more than one spanning arc and
therefore look ambiguous but actually are not ambiquous at

all. The following example clarifies this case.

Suppose that one wishes to take a list of statements which
are separated by blanks and to insert a semicolon afrter
each of the staotements, A way to do it is to write the

following macros:

MACRO
(STMTL>:’8?
WHERE

8: (STMT)
-=

)S);

MEND

MACRO

(STMTL>:?GL°> ’8§’
WHERE

SL:(STMTL)Y S:<(STHT?>
-=2

rgL? g7,

MEND

67

Here STMT and STMTL stand for statement and statement-list
respectively. These Macros introduce the following

non—-primitive syntax rules:

(STMTL?Y ::= (STHMT>
Subst: (STHT>;

(STMTL> ::= (STMTL)> (STMT>
Subst: (STMTL)> (STMT);

Let 5S4 S2 and S3 parse to (STMT). The processing of two
input texts will be demonstrated, one of which has a
non—-ambiquous parsing praph, the second has a seemingly
ambiquovus parsing graph. The similarity between the two
will show that the ambiguity in the second case is only an

"eptical illusion",

The first input text is: S1 82 83. It yields the following
parsing graph (spurleus arcs which do not contribute to a

spanning arc have been omitted):

-58-

CSTMTL)
¢STMTL)
(STHMTL)
(STMT) (STHT> (STHT)
: b P :
s 1 s 2 s 3

There ls exactly one spanning arc in this graph. Picking
this arc as the roeot of the parsing tree and evaluating the

semantics result in the desired output: Si; S52; 83;

The second input text is: Si, The corresponding parsing

graph is:

The graph has two spanning arcs. This is a result of the
fact that the first syntax rule happens to have only one
part of speech on its right hand side. The correct root is,
Just as in the previocus example, the arc (STMTL)>, and the
resuvlting output text is: Si; .

Another way taoa look at these rules is to view their
right~-hand sides as having two parts of speech one of which
is <(EMPTY?> to which every empty text parses and whose

—69..-

semantics return an empty string. The first rule can bhe
written as:

(STMTL) ::= (STHMTX><EMPTY>

Using this rule the parsing graph of S1i is:

(STHMTL)
(STHT) (EMPTY)>
o Do E

S i

In this way the optical illusion is gone and there is only

one spanning arc left,

To summarize: rules whose right-hand sides consist of only
one part of speech carry semantic meaning just like any
other rule and are inserted into the dictionary in order to
be applied whenever an input string parses to them. The arc
that has to be picked as the root of the parsing tree in
such a case is the one that covers the maximum number of
arcs, ile - the highest spanning arc, In the rest of the
chapter any mention of a spanning arc will refer to the

highest,

The second category of ambiguous parsing graphs is where
there are two or mMmore spanning arcs with different parts of
speech, This implies that the input text means two
different things in terms of the current language that the
designer is wusing and can not be resolved. It is regarded

as a vser error, the translation process is aborted and an

—70..

error message stating that the text is ambiguous is issuved,

Nete that subtexts may have more than one spanning arc with
different parts of speech as long as the text aos a whole
parses only to one part of speech, In such a case the
ambiguity 1is internal, it is not reflected externally
because the context in which the ambiguous subtext appears
disambiguates it (all <the arcs except the correc?t one
become spurious)., This kind of ambiguity can serve as a
vseful tool Ffor the designer who wants to use similar
constructs in different places and make the context
determine the correct translation. For example in Pascal
[i7]1 one may need an ambiguous type which one may get in
the cumbersome way of declaring a record with a variant
nttribute whose name has to be different for each type. In
an SDS design one could use the same name for all cases and

let the context in which it appears disambiquate it,

7.3 USING AMBRIGUITIES FOR SPECTAL CASES

The third category of ambigquous parses is the one where the
parsing graph has several spanning arcs - all with the same
part of speech, One way in which this may occur is when the
designer, vsually for reasons of efficiency and
optimization, specifies a specinl translation rule for a
text that otherwise wouvld fall in a more general category
and would be translated differently,

Fer example - 1let the target language be an assembly

language which includes the instructions:

=74~

ADDI N (add the number N to the contents of the

accumulator)

INC (andd 4 to the contents of the accumulator)

L.OAD M (move contents of location M into the

riccumvliator)

STORE M (move contents of accumulator into

location M)

Suppose that the INC instruction is more efficient than the
ADDI instruction, In order to translate statements like:

Y:=X+S into the target language one may write the macro!

MACRO

(STHT)>: H?:1=2A’+’N’
WHERE

A,B:C(IDY N:i<(NW

-=)

L.OAD A’

ADDI N’

STORE ’H’

MEND

For efficiency the user might want to wuse INC instead of
ADDI whenever the number following the ’+’ is 4., So he may

write a special macro for this case:

MACRO
(STMT>: ’R’:="A’+4
WHERE

A,B:CID)
-

L.OAD A’
INC
STORE ’R’
MEND

The non-primitive rules inserted into the dictionary are:

(I) (STHMTY 1:= (ID>:=(ID>)+(NU)
Subst: LOAD (ID?
ADDI <(NW)
STORE (ID>
(II> (STMT)> ::= (ID>:=(ID)+{
Subst: LOAD <IDD
INC

STORE <ID?

Suppose that X and Y parse te (ID> and every number parses
to <(NUY, A text 1like: Y:=X+8 (where the number is not 1)
parses by the first rule only and will be +translated
correctly, wusing the ADDI instruction, The text Y:=X+i
parses ambiquously. The parsing graph, in this case, has
two spanning arcs with the part of speech (STMT> and hence

includes the two following parsing trees:

_73....

(STMTY (I)
¢1D> (1D) (NU) (ID)
bt R T P
b S T B !
Y o= X o+ i Y

(STHMT> (II)

i
>
+

The tree that has to be picked in order to match the

user'’s

intention is the one that parsed according to rule II whose

semantic uses INC rather then ADD,.

Here is another example:

The user’s dictionary includes the following rules:

(1) (COND> ::= (IDX<{(=<ID?}

Primitive

(II) (COND> ::= (ID>>=(ID)

Primitive

(III> (COND> ::= (COND> AND (COND?>

Primitive

A special case is defined in the macro:

MACRQO

{COND)>: ’A’(=?B’ AND ’A’)=’R’
WHERE

A,E:CID)

~=)

*AI=2R?

MEND

[

74.

which introduces the noen-primitive rule;

(IV) <(COND> ::= <ID>{=<(ID> AND (ID>>=(ID)>
Subst: (ID)>=(ID?

If X and Y both parse to (ID> then the text: X{=Y AND X)=Y

has two possible parsing trees:

(COND> (IID)

{COND)> (I) (COND> (I
<ID> <ID> <ID> (ID>
f———1 }———1 === 1 -—
H : H H H H : :

X < = Y A N D X ? = Y
and:
{COND> (IV)
<(ID> CID> <ID> <ID>
HED R {1 HE] { =1
; : ! H H } ; i
X 4 = Y A N D X > = Y

In the first tree all the rvles used are primitives hence
the translation is identicnl to the input: X{(=Y AND X>=Y .
In the second tree non-primitive rule IV is wused and the
translation is: X=Y , which the user had in mind for this

case .,

-75~-

In both examples it turns out that the correct choice is
that of the parsing tree which has less branches. This is
not a ceincidence, it is typical for special case
definitions, Right-hand sides of syntax rules may contain
parts of speech and individual characters. A part of speech
is an abstraction, It represents a collection of texts that
parse to it, This is what ennbles the representation of the
large (often infinite) set of all the legal strings of a

language by a finite, relatively small, number of rules.

In a parsing tree the root represents the highest level of
abstraction., Knowing the part of speech of the root one
usually does naot know what the leaves are. They may be any
text from the set that the root represents., Moving along
the branches from the root to the 1leaves, the level of
abstraction decreases, Each step through a branch
corresponds to reducing the set of possibilities to a

subset of the set of possibilities known sao far,

In a special cnse definition one wants a subset of the set
of strings represented by a part of speech to be treated
differently than the rest of the set. The desired subset
can be distinquished from the rest only by replacing the
part of speech that represents the whole set in the syntax
rule by an explicit definition of the subset. In the first
example the part of speech (NU)> that represents the set of
whole numbers wns replnced by the subset (1), In the second
example the two parts of speech (COND)Y in the rhs of rule
III, which stand for the set of conditions, were replaced
by certain subsets of conditions in rule IV.

Replacing | part of speech by an explicit subset

corresponds to skipping one or more levels of abstraction,

...7(3_

which results in a smaller number of branches in the

parsing tree in which the special rule is applied.

The translation system makes use of these results. In case
of multiple spanning arcs with identical parts of speech
the number of branches in each parsing tree is counted and

the one with the least number is picked,

If there are several trees with the 1least number of
branches, this could be a result of applying different
special cases or, maybe, a user error, For example, if the

vuser introduced two special case rules:

(8TMT)> 1:= (ID):=(NU>+{
and
(GTHTY 1= (IDY:i=4+(NU

then the text: Y:=i+i{ would have two parsing trees, boeth of

them resuvlting in a good translation,

On the other hand, dve to a wvuser error the syntax might

permit ambiguous texts like:

IF Ci THEN IF C2 THEN Si ELSE 82

where it is unclear whether to execute 52 if C4L is false or

if Ci is trve and C2 is false.

In cases of several minimal parsing trees, one tree is

picked arbitrarily and a warning is issved to alert the

..7'7..

designer to the possibility of an error.

7.4 AMBIGUITIES INTRODUCED RY IMPLIED PRIMITIVES

As mentioned in chapter 6, implied primitives are stored in
the user’s dictionary and stay there as implied primitives
until their status as implied primitives is changed by
re~-defining them. This is +true if the whole ruvle is
explicitly defined in another macro. But there is another
way to re-define primitives, namely by re-defining parts of
them., In such a «case the primitive rule stays in the
dictionary as a primitve despite the fact that a text that
parses according te it has to be translated. Here is an

example:

l.et the target language be ALGOL., The high level text:
AVERAGE OF A AND B can be refined, as a first step, via the

following macro:

MACRO
CEX>: AVERAGE OF ’X’ AND Y’
WHERE

X,Y:<ID>

-

HALF OF SUM(’X? ?Y?)

MEND

78

This introduces the rules:

(I (EX> ::i= AVERAGE OF <(ID)> AND <ID>
Subst: HALF OF SUM(KIDY <ID>»)

(11) (EXY ::= HALF OF SUM(KID) <(ID»)

Implied primitive

One way to proceed from here is to re-define rule II with

the macro:

MACRO
CEX>: HALF OF SUM(’X’ ?Y?)
WHERE

X,Y:<ID>

-

(PX?+7Y7)/2

MEND

The effect of this macro is to change the type of the

implied primitive to non-primitive:

(ITIIY (EX> ::= HALF OF SUM({ID> <(ID»
Subst: (CIDX+(IDY)/2

and to insert a new implied primitive:

C(IV) (EX> 1= ({ID>X+CID>)/2

A second way to proceed is to replace the last macro by two
macros. The construct: HALF OF SUM(CID> (ID)») includes two

high level expressions: HALF and SUM. They happen to be
vused together in this example, but the user may also want

_79....

to vuse each of them separately or,
this possibility and therefore

separately in the following macros:

MACRO

(EX>: HALF OF ’E’
WHERE

E: EX}

-=2

(’E2)/2

MEND

MACRO

CEX>: SUM(?A? ’E?)
WHERE

A B (ID)

-

)A).{.)B)

MEND

The corresponding syntax rules are!

(V) (EX> :1:= HALF OF (EX>
Subst: ({(EX))rs2

(VI (EX> 1= ((EX))¥/2
Implied primitive

(VII)Y <(EX)> ::= SUMC(ID> <(ID»
Subst: (IDX+(ID>

at least,

define

ench

anticipate

of

them

-80 -

(VIII) C(EX> ::= (ID>+(ID>
Implied primitive

Note that in this case the implied primitive rule II does

not disappear from the dictienary,

Now follow the translation of the input text: AVERAGE OF A
AND B,assuming that A and FE parse to (ID>. In the first
iteration the input text parses by rule 1 and translates
into: HALF OF SUM(A BR)., The parsing graph in the second
Lteration depends on the way the vuser chose. If he picked
the single—-macro way, then the dictionary containsg only

reles I, III and IV, and the parsing graph is:

(EX) (III)

There is no ambiquity here and, according to the semantics
of rule III, the output is: (A+B)/2 .

If the user picked the two-macro way then the dictionary
contnins the rules I, II, IV - VIII which give rilse to n
parsing gqraph with twe spanning arcs, both with the part of

speach (EX), The two parsing trees are

-84~

{EX> (V)
(EX> (VI
<ID (ID
Lo
H A L F 0 F S U M (A R)
and:
EX> (I
§ o e e e e e e o e e e e H
<1ID> (ID>
H : H i
H A L F 0 F S U M { A K)

If the translation proceeds according to the first tree,
the semantics of rules V and VII provide the correct
translation: (A+B)Y/2 If the translation proceeds
according to the second tree, the text will not change,
since rule II is a primitive hence the output will be: HALF
OF SUM(A B) .,

If the algorithm +that picks the parsing tree were as
described at the end of paragraph 7.3, then the second
tree, which has less branches, would be picked, resulting
in the wrong translation.

The problem obviously is a result of the fact that the
implied primitive rule II was not re-defined as a whole and
therefore was not removed from the dictionary although it

ceased to be a primitive,.

_.8;2)...

The system provides two sclutions te this problem, One is
incorporated in the algorithm that picks the parsing tree,
the second is the UPDATE command that the wuser can issue

from the command language level,

The algorithm that picks the root of the parsing 1tree
starts by counting the number of implied primitive rules
that were applied in each tree. All the trees in which the
number of implied primitives 1is 1larger than the minimum
number found are eliminated from further consideration,
Then the process proceeds as describrd in 7.3 - a tree with
the minimum number of branches is picked from the remaining

set,

The need to count the number of implied primitives follows
from the fact that a procedure may include several text
segments which parse according to indirectly re-~defined
implied oprimitives, For each application of such a rule in
a1 parsing tree there is another parsing tree in which the
rule is not applied., Picking a tree with the minimal number
of implied primitives applications assures that it contains

no application of an indirectly re-defined rule,

The UPDATE command results in wupdating the dictionary by
removing all the implied primitives that have indirectly
heen re—-defined. In order to detect whether an implied
primitive has been re-defined, its right-hand side is

parsed (see also appendix A).

Parsing all the implied primitives in the dictionary can be
time consuming, so the user may wish to aveid wusing UPDATE

whenever he re-defines, or thinks that he re-defines, an

83.

implied primitive indirectly., In a typical design session
the designer wWwould write wmacros and procedures, mostly
translate procedures without updating the dictionary,
letting the root picking algorithm do the work, and once in
a2 while or perhaps only at the end of the session, clean wup
the dictionary via the UPDATE command.

-84~

8 GEPARATION OF LANGUAGES

8.1 ONE DICTIONARY FOR ALL LANGUAGES

When the wuser designs his program, he defines a set of
different languages. During the translation process the
system proceeds through these 1languages step by step,
translating the input text into the next lower language,
translating the result into the next lower language and so
on until the 1lowest 1level - the target langquage -~ is
reached. At first sight it might seem that, in order to
obtain successful translations, these languages have to be
kept in separate dictionaries, and that the translator
should move from one dictionary to anaother as the
translation proceeds through the sequence of languages,
However, fortunately, it turns out, that if certain
restrictions are observed, such a physical separation is

not necessary.,

Why is it desirnble to keep all languages in one
dictionary? This is a result of the flexibility
requirements, One requirement is that the designer shovld
be able to proceed in any direction: top - down, bottom -
vp or any combination of them., This implies, that macros
and procedures may be written in any order that pleases the
user., Suppose he writes o macro where both left-hand side
and right-hand side rules do not yet appear in any other
macro or procedure and hence they do not appear in any
dictionary. Then there is no way to tell where in the
language hierarchy these rules belong vunless explicitly

specified by the user himself,

-85~

Another aspect of flexibility of design is that the user
May use constructs from more than one language in procedure
texts., If the 1language dictionaries were separated, then
some translation steps might have to use two or mMmore
dictionaries simultaneously, and it is the designer who has

to tell which of the dictionaries should be used.

A third aspect of flexibility is the ability to skip
language 1levels, One wm™may translate Some high level
constructs into the target language with fewer intermediate
steps than other constructs, Thus the fact that, say, the
left—~hand side rule of na macro exists already in one
dictionary does not necessarily imply that the right-hand
side rule belongs in the immediately following dictionary,
Here agnain the user’s instructions would be needed in order

to tell into which dictionary the rules should be inserted,

All the above examples have the same implication: The
combination of . flexibility on one hand and physical
language separation on the other requires the user’s
awareness of the structure of the language hierarchy that
he builds in his design, and his help both in maintaining
this hierarchy and in vusing it correctly. But doing such a
bookkeeping job is the 1last thing a software designer
wants, and should have to de. The purpose of using a
development system is to be able to avoid distracting and
time consuming activities that are not part of the design
process., The method in which the development system
operates should certainly not be a cause for an excessive
burden on the user. The wuser may, for example, find it
natural to mix target language constructs together with

high level constructs; he also may be unaware of the fact

-86H—

that a macro skips a language level, and, since he is only
interested in producing a correct and working program, all

other detnails do not, and should not, concern him,

8.2 LANGLIAGE SEPARATION THROUGH PARTS OF SPEECH

Assuming that a text (a string of terminal parts of speech)
belongs only to one language, if the sets of syntax rules
of all the languages were mutually exclusive, then keeping
only one dictionary would be no reason for confusion, A
given text would parse by the rules of one language only
and translate accordingly. The fact that rules from other
lanquages are also present in the dictionary would have no
influence on the translation process, But the real
situation 1is sometimes different. Two or more languages may
share structures that can be described with identical
syntax rules, byt, since the languages are on different
levels, these structures have to be translated differently,
Of course the assumption is that a text that may belong to
more than one language, always appears in conjunction with
some other text so that the context uniquely specifies the
language., Otherwise there is no way to tell how it should
be translated.

If two identical rules are both non-primitive, then failing
to disambiguate them will result in the system’s rejection
of the rule the second time the user tries to introduce it,
thus alerting him to his mistake. The way to resolve the
ambiqguity is to vse different parts of speech for each
language, The system, in this case, will interpret the

8'7

rules as being different and accept both.

The only case in which the designer has to be aware of the
need for separation is when one of the rules is a
primitive, As described in chapter 6, defining two
identical rules one of which is primitive and one
non-primitive, in any order, results in accepting only the
nen-primitive rule, The failure to disambiguate the syntax

will not be detected in this case,

The following example demonstrates what can happen in such
1 case, Suppose there are three languages: A very high
level language called: High, the high level language: Algol
and the target language: Macro Assembly, Suppose that both
Algol and High use the same arithmetic expressions. The
following Algoel rules define two forms of expressions and
translate them into an Assembly language stack—-machine

program:

(1) CEX> 11= (NU)
Subst: PUSH A, [(NU)]

(1D (EX> 1:= (NU> +(NU)2

i

Subst: MOVEI i,(NU>i

PUSH A, 1(NUY,]

ADDH 1, (A)

The word INCREMENT is used in High to increment expressions
and is translated into Algol via the High - rule:

(IIIY <EX> :1:=
Subst:

-88 -~

INCREMENT <EX>
(EX>+1

One form of a High - expression is introduced via the macrao

MACRO
(EX}>: ’N?
WHERE
N:(NUD
-
PRIMITIVE
MEND

This macro has

primitive rule

no

it

effect on the dictionary since the

attempts to introduce exists already in

the dictionary as a non-primitive (rule I),

The High text segment: INCREMENT S parses successfully and

vields the following parsing tree:

(EX) (I1II)
CEX)
(1)
==t
<NUY
I N € E M E N T 5

In the semantic processing the arc (NU> returns the text 5,
The arc <(EX> (I) returns the text: PUSH A,S and the latter
is vsed by the semantic of the arc <(EX> (III> to produce
the text: PUSH A,5+1i which is not the desired target

language output but a meaningless combination of Algol and

Assembly language,

—89...

The thing that happened here is that in the translation of
the text: S the translator "slipped”" all the way down into
Assembly langunge, S is an expression both in High and in
Algeol. The S in the input text is the High - S, it had to
be translated first into Algol and the resvlting Algol text
would translate correctly into Assembly lanqguage,

As already mentioned, +the situntion c¢an be remedied by
veing a different part of speech for High expressions and
for Algol expressions. If (HEX) is vsed in High and <EX> in
Algol then rule III has to be replaced by the rule:

(IVY (HEXY ::= INCREMENT {(HEX>
Subst: (HEX>+4

and the primitive rule that was overridden by the

non—primitive rule I should be replaced by the rule:

(V) {(HEXY 1:= <(NW
Primitive

Now the text INCREMENT S yields the following parsing tree:

-90-

(HEX> (IW)
(HEX?
(W)
(NU>
I N C R E M E N T 5

Now the semantic processing returns the Algol text: 5+i,
which in the next translation iteration parses according to
ruvle II whose semantic returns the correct target language

text:

MOVEI 1,S
PUSH A,1
ADDM 1, (A)

Note that in case two lanqguages have identical primitive
syntax ruvles then they can use the same parts of speech. An
example is the rule:

(NUY ::= 5

which is both a High primitive and an Algol primitive,
Actually if two languages have lidentical rules with
identical semantics, then keeping only one rule in the
dictionary is enough. Primitive rules are the most common
specinal case of this category.

e &

9 PIECEWISE TRASNSLATION

?.4 THE PROBLEM OF PROGRAM EXPLOSION

A typical procedure in this development system is a short
program, wWwith only a few 1lines of wvery high level code
stating in general what the procedure does. Parts of the
procedure are then translated via macros into a language in
which the program is more refined, Parts of the new program
are further translated, and so on until the whole program

is defined in terms of the target language.

When a piece of text is refined, it is rewritten so that
more details are revealed of the process, the data
structure or whatever it describes, A More detailed
description vsually takes more text than the initial
description, therefore refinements are mostly associated
with expansions of the program. The amount of expansion in
each step of refinement (ie - into how many new lines of
code is one old 1line translated) depends on the style of
the designer. The number of refinement steps from the
initial program to the target language program also
depends, for a given program and a given target language,
on the designer: The more detailed the initinl procedure is
and the more is refined in each step - the less steps are
necessary, Other factors that affect these numbers are the
complexity of the task the program has to perform and the

level of the target language,

Here are a few numbers from an actual program: In the first
example in appendix C the expansion ratio of the macros is
between 4 and 6 output 1lines (not counting REGIN’s and
END’s) <for one input line, with an average larger than 3.
The initial procedure consists of one line. The number of
refinement steps for different parts of the program is
between 2 and S, and the target language (Simula) code is
about 20 lines long. The second example in appendix C is an
expansion of this Simula code into Macro assembly language.
Here most of the expansions are in one step, The length of
the output is about 200 lines whose length, on the averagqe,
is about 4/3 of the avernge Simula line length,

A fair estimate would be that the process of refining
increases the amount of text at an exponential rate of

about one order of magnitude for every 2 to 3 steps.

The phenomenon just described has practical implications eon
the translation process. Translation of an input text, as
described in chapter 5, consists of several iterations,
Each iteration constitutes one step in the process of
refinement and therefore wusuvally ends up in further
expansion of the text, In every iteration the text has to
be parsed and then processed semantically, The parsing
algorithm is, on the averaqge, worse than linear both in
time and in space, and it turns out that, at the above
mentioned rate of expansion, the simple iterative method
becomes impractical after 4 to 6 steps., The only way to
keep the translation process going and terminating after a
reasonable time is to divide the text into segments which
can be handled by the parser at a reasonable cost, and to

translate each segment separately,

-3~

9.2 a_ PIECEWISE TRANSLATION METHOD

The question arises how <can a program be split without
affecting its successful translation, Clearly one can not
split it arbitrarily since this will, in general, resvlt in
segments which do not parse and hence do not translate
separately. The segments into which a program is split have
to be logical units that are independent of one another in

their translation.

In order for a text segment to be translatable it has to
parse, ie =~ there has to be an arc which spans the whole
segment. It ls the semantic of this arc which determines
the translation. This criterion can be used for splitting a
long text. If the parsing tree is given, subtexts which are
covered by arcs can be translated without referring to the
rest of the text. Using the same criterion aganin these
subtexts can be split into shorter segments and so on until

the leaves of the tree are reached,

Using this method, the parsing tree on page 456 can be
processed in the following way: The subtext SUM OF ’A’ AND
B’ is covered by an arc, thus it can be processed
separately. The sub-subtexts ’A’ and K’ are each covered
by an arc, so they can be processed separately., Both of
them return the original texts. The processing of these
texts is now completed, they are marked as translated and
their parts of speech are recorded for future use., Now SUM
OF ’A’ AND ’B’ is translated using the semantic of the arc
(EX> (IV) which returns 'A’+’B’, Since the arc was not the

-4~

result of a primitive, the text wundergoes another
translation iteration, The first step in this iteration is
replacing the subtexts ’A’ and ’B’ , which are marked as
translated, by single arcs with parts of speech <(ID) whose
semantics return the original texts, Note that initially
each character is represented by an initial arc, thus ench
replacement reduced three arcs to one arc in this case).

The string that is passed to the parser is:

(1ID> (ID>

: ==
} H + ' H
It parses to (EX> by rule V (on page 4%). This rule is a
primitive and the text remains unchanged. It is marked as

translated, and its part of speech (EX) is recorded.

Another subtext that is covered by an arc is the parameter
*R? (following the word SET). It is translated separately,

marked, and its part of speech (ID) is recorded.

Now comes the turn of the arc (STMT> (II). Its semantic
returns the text: ?H’:=’A’+’H’ in which the subtexts ?’R?
and ’A’+?’B’ are marked as translated. In the second
iteration the marked texts are replaced by single arcs., The

input to the parser is the string:

CIDD (EX)

- — -

- -

¥
1]
]]
1)

It parses by rule III (page 45) which is a primitive. The
text remains unchanged, and the translation process is
completed,

-95-

9.3 STATE TRANSITIONS AS RASIC TRANSLATION UNITS

The method described in the previous paragroph reduyces the
amount of parsing to a minimum, but it has a drawback and
therefore is only partially vsed. The problem with the
method is that it takes subtexts out of their contexts. As
mentioned in chapter 8, two or wmore languages wmay share
syntax ruvles, Certnin text segments may parse ambiguously
by the rules of more than one language, and it is the
context in which the text appears that determines which of
the parsings is relevant and which is spurious. But, as the
. example shows, in the translation process subtexts are
parsed separately and if a subtext, 1like ?A’+’E’> 1in the
example, belongs to two languages, there is no way to tell

which parse ta pick.

Subtexts can also be taken out of their context within one
language, Here is an example of such a case: Let the
languages be, like in the example of chapter 8, High, Algol
and Macro assembly, with the following non-primitive rules:

-Q4~

Algol rules:

(I (EX> 11= (NW
Subst: PUSH A,[(NU>1

(1) (EX) 1= (NUY, +<NUD,
Subst: MOVEI 1, (NU>,
PUSH A,[(NUY,)

ADDM 1, (A)
High rules:

(III> (HEX)> ::= FIVE
Subst: S

(IV) (HEX)> ::1= INCREMENT <(HEX)>
Subst: (HEX)+{

Nete that in this case no ‘texts are shared by the

languages. Suppose that S parses to (NU)., Let the input be:
INCREMENT FIVE ., The parsing tree is:

(HEX>Y (IV)

-

[E Y ——

The subtext FIVE is covered by an arc and translated into:
S . The resulting text undergoes a second iteration. The

parsing tree is:

And the translation, according to the semantic of ruvle (I),
is: PUSH A,5 . Now the semantic of the arc (HEX> (IV) is
applied, yielding the text: PUSH A,S+% which is
meaningless, does not parse, and the translation ends with

the wrong resulrt,

The reason for obtaining the wrong text is that the text S
was taken out of its context in the second iteration. Had
the whole text been translated and then reiterated, then
the input to the parser in the second iteration would have
been the text: S+i , There is only one way to parse this
text, namely by rule (II), and the arc <EX)> (I), that the
parser would build around the subtext S, would be spurious

and not participate in the parsing tree,

The above described problem makes it clear that not every
subtext of a program, even if it is meaningful, can be
translated separately. Still, for a system to be practical,
it is necessary to split the program. So the question
arises how can subtexts whose translations do not depend on

the environment be identified?

There is no general gsolution to this question., It all
depends on the syntax of the languvages the designer uses.
However, keeping in mind <that <the designer writes a
computer program and does not just play games with syntax
rules, there is a class of subtexts which are independent
of each other., To see what this class is, one has to look

-98-

at the real semantics of the language constructs used in
the program. By real semantics I mean the operations that
the constructs refer to as oppposed to the translation
system semantics which are texts in another language into
which the constructs have to be translated. One way to look
at these semantics is described by Dijkstra in [?1.
Dijkstra looks nt the set of states defined by the
varianbles of the program and views the proegram as a
transition (in his terminology: A predicate transformer)
between specified initial and final subsets of this set., In
most, even least complex programs this transition is
composed of a series of smaller state transitions, Each of
the intermediate transitions has its own sets of initial
and final states, These sets are independent of the other
state transitions, which can at most 1limit the set of
initial states the transition may actually encounter in a

particular program to a subset of those on which it works,

The translation of a text segment whose renl semantics are
a state transition in language L results in a text in
another language Li, Li is at 1least as expressive as L
since the set of states it describes has to include L’s set
of states. The real semantics of the text in Li describe
the same state transition as the L-text but it may be
composed of a series of finer transitions between states
that L can not distinguish, A typical example is the
translation of an Algol text, say, U:=VU+W into assembly
code. The set of states, which the Algol speaker can see,
consists of all the combinations of values assigned to the
variables U, UV and W. The set of states of Assembly
language includes all those, but the assembly language
gpeaker also talks about registers, stacks, addresses etc
and breaks the single Algol transition into two or three

-

sub-transitions expressed in those terms.

A given state transition is something that occurs in the
real ob jective world. It remains the same transition
independent of the language that describes it. Therefore
translation of a text that describes a state transition
into another language can not be influenced by other texts
that might be in the neighbourhood. The answer to the
piecewise translation problem follows from this fact., If a
program is split into subtexts which correspond to real
world state transitions, then each subtext can be
translated separately and the translation would be correct.

The problem remaining now is how can these subtexts be
recognized. The +translation system does not know anything
about the real semantics of the texts it translates; it has
to be teld by the vuser what text segments correspond to
state transitions., A natural way to indicate these texts is
via parts of speech., A 1look at syntax descriptions of
programming languages shows that most of them use the word
“statement" for texts that correspond to state transitions.
This convention was adopted here too in order to make
things as natural as possible. Every part of speech whose
last four characters are STMT (in particular the part of
speech (STMT) itself) is viewed by the +translator as
referring to a text which is separately translatable, and

only these texts are translated separately,

The choice of parts of speeéh is done at the wuser’s wild
imagination discretion. There is no way for the translator
to check whether texts that parse to <(.,..STMT> really are
separately translatable. However it does not seem to be to
much of a strain for the designer, it really 1looks quite

~100-

natural, to assign a part of speech ending with STMT to
statements, In order to encourage this way of design,
(STMT> is the default 1lhs part of speech of macros and
procedures, For example, macro 10 on page 35 could have
been written:

MACRD

SET 'u’ 710 'V
WHERE

A,EB: <ID)

-=>

ryYr =2y

MEND

A text does not necessarily have to be a state {transition
description to start with, in order to be split into state
transition descriptions at a later refinement, For example,
the expression: A+B is not a state transition in the Algol
level, If it is refined into assembly 1language, it is
translated into code that leaves its value in some location
- the accumulator, for example - so it may be translated

inta the two instructions:

LOAD A
ADD H

Exach of these instructions constitutes a state transition
on the assembly language level.

Note that a text can only be sgsplit after it has been
parsed, An input text, regardless of the number of
statements it includes, has to be parsed as a whoele in
order to obtain the parsing tree from which the statements
can be separated. 0dnly from the second translation
iteration on are statements translated separately, For this

reason it might be of advantage to write procedures in a

-i04i-

very high 1level, general form and refine them with macros
rather than to start with more refined forms., Suppose, for
example, that a procedure’s initial text consists of the
statements S T , that § translates into Si S2, and T - into
T4 T2 ., The text that enters the second translation
iteration is: S1 82 T4 T2 . Since the input text S T was
parsed, the system knows that the translations Si S2 and T4
T2 are statements and should be considered separately for
further refinements. If the designer wrote the procedure in
the more refined form in the first place, then the initial
text would be Si 682 Ti1 T2, and it would parse as a whole
and net be separated until the next lteration, All it takes
to achieve an early separation of texts is using macros in
order to start the design at a level that is as high as
possible, It <contributes to the clarity of the design and,
on the other hand, does not affect the final program since

the macros disappear in the translation process.

-i02-

10 USING SDS _FOR OTHER TASKS

10.4 EIXING THE TARGET LANGUAGE. THE POL_SYSTEM

Being a general development system, one of its objectives
is the ability to wuse any desired 1language as target
language. However, as discussed in 4,1, in most cases users
tend to choose a language out of a small set for their
programs, so that one may write a large number of designs,
all with the same target language. In such a case a natural
extension of the software development system is to augment
it with the target language compiler and produce executable
machine code directly from the design.

A project along these lines is the POL (Problem Oriented
Language) system developed by Dr, Fred Thompson at Caltech.
POL enables the vser both to build and to wuse application
languages. The tools of the software development system
together with a compiler for Pascal, which 1is the fixed
target 1language, are incorporated into POL as parts of its
metalanguage - the language in which the ob ject

(application) language is written,

POL has two dictlonaries: An object language dictionary and
a wmetalangunge dictionary (which corresponds to the user'’s
dictionary in the development system). An object language
is created at the metalanguage level by defining ob ject
language syntax rules (in short: rules), macros, procedures

and parts of speech.

-103-

Rules, like procedures and macros, have a left-hand side
and a right-hand side. The left-hand side is a syntax rvule
of the object language, which is merged into the ob ject
language dictionary. The right-hand side is the
corresponding semantic rouvtine, which may be written in any
language of the writer’s choice, The routine is first
translated into Pascal - using the metalanguage dictionary,
and then compiled. The resulting machine code is stored,
and its location is linked to the syntax rule in the ob ject

language dictionary,.

Macros provide the translation rules which are inserted
into the metalanguage dictionary. af course, the
metalanguage will only work successfully if every
non-Pascal structure is translated all the way down into
Pascal via appropriate macros. All the Pascal primitives
are pre-merged intec the metalanguage dictionary, so that
the designer can freely mix very high level structures with

Pascal code,

It Is the handling of procedures where the facts that the
target language is fixed and its compiler is incorporated
into the system, mnke the difference. Recall that in SDS
the left—hand side rule of a procedure serves as its
calling sequence., The formal parameters in this rule stand
for non-terminal parts of speech and may be replaced in the
procedure call by any text with the appropriate structure,
ie =~ a text that parses to one of the parts of speech which
correspond to the particular parameter, Pascal procedures,
rather than being called by an arbitrary structure as SDS
procedures are, are cnlled by single names followed by an
arqument 1llist, Like 8DS procedures Pascal procedures also

accept arguments only 1f they are of the correct structure,

-104-

But rather than calling these structures "parts of speech",
they are called “data +types" and the syntax for their
declaration is different from the SDS syntax. The above
mentioned part of speech declarations, which are part of
POL’s metalanguage, are vused to associate parts of speech
with Pascal data types, Only after having appeared in such
a declaration may a part of speech be used in a procedure,

In wview of all these facts procedure definitions are
handled in the following way:; The left—-hand side rule is
inserted into the metalanguage dictionary, but this time
net as a primitive, An internal name is assigned by the
system to each procedure; this name is put in the
dictionary as the semantic part of the left-hand side rvule,
ie = whenever the translator encounters the left-hand side
rvle (which, for the wWwriter, serves as the procedure’s
calling sequence) it will be translated into the internal
name (which serves as the Pascal calling sequence)., The
right-hand side text is first translated into Pascal. The
resulting text is prefixed with a Pascal procedure
declarntion header including the internal name and the data
types corresponding to the arguments’ parts of speech; all
this is compiled, and the mnachine code is stored and 1linked

with the procedure’s internal name.

Procedures may be used as semantic routines of rules, they
may alsc be called by semantic routines or by other

procedures,

One 1language processor is vsed for handling both the object
language and the target language. Command-language commands
enable the 1lanquage writer to switch between the two
languages so that he can easily iterate between writing the

-40S5~

object language and vsing it (or trying it out),.

10.2 PORTAERIL ITY AND ADAPTARILITY OF SDS PROGRAMS

One of the objectives of a software development system, as
discussed in chapter 3, is to produce programs which are
portable and adaptable. The main objectives towards which
SDS wns designed are the ones which concern the development
itself, namely: Flexibility in design, free choice of the
programming language and automated coding., However the
design can be vused to make changes in the programming
language or in the program’s specifications. How easy it is
to make these changes =~ in other words: how portable and
adaptable is the program -~ is the subject of the following

discussion,

No matter how "unorderly" the act of design was - top-down,
bottom~up or any mixture of them -~ it always results in a
series of languages, for each procedure, that constitutes a
hierarchy ordered in increasing degrees of expressiveness,
through which the translator proceeds in translating the
procedure, If a program is to be rewritten in a new
language Li whose set of states is a subset of a language L
from this hierarchy, then, since every state transition of
L can be expressed in terms of state transitions of Li, the
program can be written in the new language by replacing the
macros translating L into the old target language with
macros translating L inte Li. Of course every langugage
~which stands above L in the hierarchy, and therefore is at

most as expressive as L, can be used instead of L as a

-i06-

starting point for the change,

All this sounds very simple in theory. In practice however
the ease of writing the set of new macros translating L
into Li, or - the portability of the program, depend on the
relationship between the two languages. The simplest case,
which rarely happens, is when the new language Li in which
the program has to be written is in the hierarchy. Then L
is taken to be identical to Li, and one only has to delete
from the design all the macros which translate it further
down thus making it the new target language.

Another simple case is when a programming language has to
be replaced by a different dialect of itself. This happens,
for example, if the compiler has been replaced or if a
program has to be transferred to another computer which
supports the same language. In such cases vusually some
language constructs have to be modified to fit into the new
environment, Li is in this case the new dialect and, if L
is taken to be the o0ld dialect, a rather small set of
macros can provide the necessary rules for translating it
into the modified version,

More effort is required if the programming lanquage has to
be replaced by one of much lower level, If L is taken to be
the old programming language a suitable set of macres can
be written that 1links the lower level language to the
bottom of the hierarchy. An example of this case is shown
in appendix C where Simula code is translated into Macro
Assembly language,

In boeth <cases just described it was possible to take the

old programming 1language as a starting level for the

-107-

creation of new levels, The wmacros that perform these
translations are program independent and can serve as a
translation package to transfer all the programs from the

old programming language inte the new one,

The +task becomes more difficult if the two languages are of
more or less similar levels but are different in nature.
Svppose, for example, that a Pascal program has to be
rewritten in LISP. A set of macros that express Pascal
constructs and data types in terms of LISP lists can be
written, but it is hard to believe that a programmer would
choose this way, because a great effort is required to
write the macros that perform this kind of translation and
the resulting LISP program will be longer, less efficient
and maore difficult to understand and to maintain than a
program that was designed for LISP in the first place. The
difficulty arises from the fact that each of these
langunges requires a different programmig style and a
different approach to the task., It would be much easier in
such a case to start the translation from a level in the
langquage hierarchy where <the influence of the target
language is not yet felt, This level might very likely be
the highest one which corresponds to redoing the design
from the beginning. From the language theoretic point of
view the sitvation can be described as L and Li having
similar, but not identical, sets of states, The language up
in the hierarchy which serves as a convenient starting
point is one whose set of states is a subset of the sets of
both L and L{.

As the above discussion shows, portability does not always
depend on the user’s style., If the transition to the new

programming language can be made with the o0ld language as a

-108-

starting level, <then the design does not affect the
complexity of this task. On the other hand, if the starting
point is a language introduced by the designer himself,
then of course the ease of moving to a different target
lanquage depends on what has been designed so far,

Adaptability -~ the ease of changing the program in order to
meet new specifications - on the other hand, depends, for a
given change, entirely on the design of the program. If the
design is clean in the sense that Interaction - and hence:
dependence =~ between parts is kept to a minimum, then the
chanqge should be relatively easy to make as it does not
affect many parts, Otherwise it might .cause a chain
reaction of necessary changes in a large number of
procedures and macres. 6Sds does not police the amount of
dependence between modules of the program. It provides
tools which, if properly wused, can yield adaptable
programs,.

-409-

i1.4 OVERALL OQUTLINE

The overall goal of the work described in this thesis was
to build a system that supports the activity of design and
coding of a software system by requiring from the user only
the minimum that will enable the system to take over the

rest of the task,

This goal led to the <following objectives such a system

should meet:

(i) Flexibility of design., This objective has two aspects:

-Ability to start the design at any point and proceed in
any direction: Top-down, bottom—up or any combination
of them,

-=No prescribed constructs and no restrictions to the

language vsed for the design,

(ii) Automated production of code by the system once the

design is completed,

(iii) Ability to vuse any lanquage as target language and neo
need for special specification of this language other than

its appearance at the bottom level of the design.

~140~

(iv) Production of programs that are portable and

adap table,

To meet objectives (i), (ii) and (iii) SDS was buvild as a
two—-pass system whose second pass is performed by a
language processor which ' uses a powerful parser., The vuser
writes his desiqgn modules in this system either as macros
or as procedures, Both macros and procedures define a
refinements - or translatiens - of «constructs from one
lanquage inte constructs of another language, and at the
same time serves as a means of introducing the appropriate
syntax rules into a dictionary. To turn the design into a
program SDS translates the procedures according to the
tanslation rules defined in the macros., Thus the procedures
become the modules of the <final system while the macros
disappear,.

The ability to do the design in any direction is achieved
by the wvuse of two passes: In the first pass the syntax
rvles of the designer’s languages and their semantics are
introduced into the dictionary. In the second pass the
translation is perofrmed according to these rules.

The wuse of any language is made possible by the use of the

powerful parser,

Avtomated coding into the bottom level language is done by
the semantic routines of the language processor which
iterates by translating the procedure bodies into lower and
lower languages according to the translation rules stored
in the dictionary and stops when the output text is
constructed by primitive rules only,

~$44-

The system was designed mainly to meet ob jectives (i), (ii)
and (1ii). However the hierarchy of languages which the
user creates can provide a convenient staritng point for

rewriting a program in a different language.

11.2 SPECIFIC PRORLEMS

The following problems had to be solved in order to make

the system work correctly and satisfactorily:

114.2.14 HANDLING OF AMBIGUITIES

The SDS translator May encounter several kinds of
ambiguities. In order to obtain a correct translation each
kind has to be recognized and treated in a different way,
Here is a short description of each kind of ambiguity and

of the way it is handled in the system:

(i) Ambiguities which cause error messages. If the parsing
graph of a text to be translated has two or more spanning
arcs with different parts of speech, the system can not
resolve the ambiquity. In such a case an error message is
issued and the translation is aborted. All other ambiguity
cases discussed below have two or more spanning arcs with

ildentical parts of speech.

(ii) Internal ambiquities introduced by the user. The user
can freely use ambiqguous rules a long as the ambiquity is

only internal and can be resolved by the context in which

-112-

the ambiguous construct occurs. This kind of ambiguity is
handled by the parser which does not use the arcs which do

net fit into the context and thus makes them spurious,.

(iii) Ambiguities due to special case definitions. The user
may define a translation rule which specifies that a subset
of a set of text-strings is to be handled in a different
way than the rest of the set. The parsing of a text which
includes one or more specinl cases resvlts in several
parsing trees, The translator assures that all special
cases are incluvded in the translation by picking the tree
with the minimum number of branches,

(iv) Ambiguities which cnuse warning messages, If more than
one tree with the minimal number of branches are found, the
reason wmight be either the occurence of different special
cases or a user’s error or both, In such a case the
translator arbitrarily picks one of the trees and issues a

warning to alert the user to the possibility of an error,

(¢ Ambiguities due to indirectly redefined implied
primitives, This kind of ambiquity occurs if the vuser
redefines an implied primitive in parts rather than as a
whole, In such a case the implied primitive is not
avtaomatically removed from the dictionary and its
participation in parsing leads to ambiguous parsing graphs,.
The tanslator resolves this ambigquity by picking only the
parsing trees with the minimun number of implied primitives

as candidates before counting the branches,

-113-~

11.2.2 LANGUAGE SEPARATION

SDS vuses one dictionary to store all the syntax rules
defined by the user regardless of the language to which
they belong. In this way the user enjoys the maximum amount
of flexibility in the use of these languages. He cnan move
in any direction, mix 1langunges and skip levels of the
language hierarchy in his translation rules wWwithout bhaving

to do any bookkeeping of the hierarchy which he defines,

A result of this fact is that two or more languages may not
share identlcal syntax rules which hanve different
translations., The way to distinguish between two identical
sonstructs which belong to different languages is to use
different parts of speech. If one rule is primitive and the
other non-primitive, then the wvuser’s failure to vuse
different parts of speech will remain undetected due to the
lower priority of primitive rules. In the other cases, when
both rules are non-primitive, a vser’s error will result in
the rejection of the second rule and an error message will

be issved,

11.2.3 HANDLING LONG TEXTS

In each translation step of SDS texts are, in general,
refined and become longer. Every 2 to 3 steps may increase
the length of the text by an order of magnitude,

8DS uses a powerful parser which is able of handling any
text, but consumes large amounts of time and storage space

if texts become long,

-114~

Handling each text which syntactically is separately
translatenble wmay result in translation errors due to the

fact that in this way texts are taken out of their
contexts,

The SDS solution is to handle separately only texts which
describe state transitions, whose translation does not
depend on their environment. The translataor recognizes such
texts with the help of the user., Every text which parses to
a part of speech whose last four characters are STMT is
treated as separately translateable. Since one vusually
writes and refines statements, and since (STMT) 1is the
system’s defavlt part of speech, this way of guiding the
translator is quite natural and should not require extra
effort on the user’s part,

11,3 PRESENT STATUS

SDS has been implemented on the DEC-20 computer in Simula,
A second system is currently being implemented in Pascal as
part of the metnlanguage of the POL (problem oriented
langunge) n system for writing and wusing application
languages, SDS will be used in POL for designing semantic
rouvtines of syntax ruvles of new - or extensions of old -
lanquages.

-115-

Appendix A

USER’S REFERENCE MANUAL

AL COMMAND LANGUAGE

SDS runs on the DEC~20 computer and uses the TOPS-20 file
structure the knowledge of which is assumed in this manual,
When the system is entered, it is in command language
level, The prompt: > indicates that a command may be
issued, Here is a list of the commands and their effects in

alphabetical order:

Erase the wuser’s dictionary. The system responds with
CONFIRM: and waits for YES in which case the dictionary is

erased, or ND in which canse nothing happens,

A.1.2 DERUG

Puts the translator in debug-mode where the translation is
interrupted in each iteration so that the user can look at
useful data for debugging the syntax of his design (see

paragraph A.3).

~i46-

A.1.3 DICTIONARY

Type the contents of the user’s dictionary on the terminal.
Every rule is typed with an arrow (--)) separating the
right-hand side from the left-hand side. If twe or more
parts of speech stand for lildentical strings (see paragraph
A.2.4) then the following 1line contains a list of their
numbers separated with equal symbols (=), This is followed
by the semantics, If the ruvle is non-primitive the
semantics consist of the word SUBST: followed by a string
of numbers between single quotes and of characters., The
numbers indicate parts of speech of the syntax rule
counting from right to left. The count includes terminal as
well as non-terminal parts of speech, Strings of blanks are
counted as one part of speech., If the rule is a primitive
or an implied primitive, then the semantics 1line consists
of this information. Following the semantics line is the
source - or record - file name without extension and the
line number in _the REF file (see paragraph A.2) of the
macro or procedure in which the rule was defined.

If, for wexample, the source - or record - file name is
EXAMPLE, and the input consists of the three macros:

MACRO

(STMT>: (SET ’Y? ’E?)
WHERE

Y:<ID)Y E:CEX)

-2

?Yl :-_-)E)

MEND

=147

MACRO

(EX>: ’EL?+’E2?
WHERE
Ef,E2:<EX)

-—

PRIMITIVE

MEND

MACRO

(EX>: 'E’%’E?
WHERE

E:CIDY, (NWD
-

TE? x%2

MEND

Then the DICTIONARY command will display the following text

on the terminnl:

(STMT)==> (SET (ID)> <EX))
Subst: ?42:=’'27
Def: EXAMPLE - 1§

{(STMT»-=> <ID):=(EX)>
Implied Primitive
Def: EXAMPLE - 1

-4418-

(EX>==> (ID>X{ID)>
i= 3
Subst: 247%x2
Def: EXAMPLE - {9

(EX>==> (ID>xx%2
Implied Primitive
Def: EXAMPLE - 19

(EX>==) (EX)+(EX>
Primitive
Def: EXAMPLE - 1490

(EX>==> (NU>X{NU>
i= 3
Subst: 742x%x%x2
Def: EXAMPLE - {9

(EX)>==> <(NU>%%2

Implied Primjitive
DEFINITION No: 19

A.1.4 ENDDEBUG (or ENDEBUG)

Terminate debug-mode.

A.1.S ENTER

Load a dictionary from an external file. The system
responds wlth FILE NAME: After the file name has been
entered the new dictionary is loaded and the dictionary

-1i9-

that existed prior to issuving the command is erased (see
also the SAVE command).

Change the brackets used to identify labels in macros. The
user is prompted for each bracket, Hitting the return—-key
leaves it unchanged,

A.1.8 PRRACKETS
Change the brackets which identify parameters in macros,

The wuser is prompted <for each bracket. Hitting the

return-key leaves it unchanged.

A.1.9 PRIMITIVES

Same as DICTIONARY but only primitive and implied primitive

rvles are ouvtput,

A.1.10 SAVE

Save the user’s dictionary in an externnal file for future
use, The system responds with: FILE NAME (EXTENSION:

’GAV?): and waits for the user to enter a file name. The
extension of the file name is changed to SAV if not so

alrenady,.

A.1.114 SYNTAX

Build the user’s dictionary. For details see paragraph A.2,

A.1.12 TRANSLATE

Translate procedure bodies. The system responds Wwith a
request for an linput flle name. If no other TRANSLATE
command has been issved since the last SYNTAX command, then
hitting the RETURN key indicates that the default file
should be taken. The default file is the input - or record
- file used in the last SYNTAX command.

Two output files are created. One of them contains the
translated procedures in the target language. Its default
name is the input file name with extension changed to TGT,
but it may be overridden by the wuser. The second file
contains a list of the macros vsed in the translation of
each procedure In their order of use., Its name is the input
file name with extension changed to TRS. Both files are
considered as old files, ie - if a file with the identical
name already exists in the vuser’s directory, the new text

is appended to it.

A.1.13 TYPE

Type a file on the terminal. The system responds with a
request for the file name,

A.1.44 UPDATE

Remove all implied primitive rvules which have been

re-defined indirectly from the dictionary (see paragraph
7.4).,

A.2 THE _SYNTAX PASS

A.2.1 FILE HANDLING

All the vuser’s input is done in the syntax pass, Macros and
procedures may be input either from an external file or
interactively from the terminal., When the command SYNTAX is
issued, the system requests an input file name, The
response TERMINAL indicates that definitions will be input
interactively., Any other response is interpreted as an
external <file name from which +the definitions should be

taken,.

If the input mode is interactive, the system requests a
name for @ record file, All the wuser’s input will be
recorded in this file in a format that matches the syntax
that has to be used in an external input file, s0 <that the

record file may be vused at another time as an external

input file in order to enter the same definitions. The
record file is considered old - this means, that if a file
with the same name exists already in the user’s directory,
then the new input is appended to its end.

In both input modes =~ external and interactive - a
reference file is created. Its name is the input - or
record - file name with extension changed to REF. The
reference file contains the same text as the input - or
record — file with the addition of line numbers and, if the
input is external, error messages if any (if the input is
interactive, the user is requested to re-type erroneous
input 1lines wuntil they are correct, only then is the input
recorded in the record and reference files). The reference
file is considered old if the input is interactive, or new
— any previous contents of the file are erased - if the

ilnput is external,

The file handling facilities described above and in
paragraph A.1.10 and the possibility to save and restore
the user’s dictionary are intended to support design and
production of large programs by single users or by groups,
It takes many sessions to create a large program. The SAVE
and ENTER commands enable the designer to save the
dictionary he has built in an external file at the end of a
session and to restore it at the next one without having to
waste time on rebuilding it., The choice of appending
information to old output files or creating new ones in
interactive syntax mode and in the translation pass
provides the flexibility needed for organizing the design
documents and the source code in any desired files

structure.,

A.2.2 EXTERNAL INPUT

The following syntax should be vsed for entering
definitions via an external file., Square brackets ({1
indicate options, lower case letters are wused for

descriptions and should not be taken literally:

Macro definitions

{MACRO> 11= (LHSY

(RHS)

LLeft—hand side
{LHS> {<POS> (COLON>1 (LHS TEXT)
[WHERE

{DECLINES)1

#

If the part of speech is omitted, then (STMT> is taken as
default, If the left-hand side text contains no parameters,
then the declarations have to be omitted. Undeclared

parameters are considered declared as (ID> by defavlr,

Part of speech

<PQS)> i:= (LPOSBRKT)> (ID)> (RPOSBRKT?}

Part of speech brackets

(LPOSERKT?> ti= (£
(LPOSERKT> 1= ((BLANK)>
{RPOSBRKT) 1=)
{RPOSERKT?» t1= (BLANK) »
Elank

(BLANK) :t= blank
{BLANK)> t1= <(BLANK)> blank
Colon

(COLON?> =

{COLON> t1= (BLANK)> :
(COLON> 1i= 1 {BLANK»

(COLON> 1= (BLANK) : (BLANK)

-125-

lLeft-hand side text

(LHS TEXT» 1i1= (STRING?

(LHS TEXT> 11= (PARAMETER>

{LHS TEXT)> 1= (LHS TEXT> (STRING)

(LHS TEXT> t:= <(LHS TEXT)> (PARAMETER?

String

{STRING> 11= string of characters not including
parameter and label brackets

Parameter

(PARAMETER> ::= . (LPARBRKT) <(ID)> (RPARERKT)

Parameter brackets

({LPARBRKT)> :

initially a single quote (?); may be
overridden with any character other
than 1letters, 1label brackets and
part of speech brackets; optionally
followed with blanks

-126-

(RPARERKT> t= initially a single quote (’); may be

overridden with any character other
than letters, 1label brackets and
part of speech brackets; optionally
preceded with blanks

Declaration lines

({DECL.INES> 1= (DECL)>

{DECL.INES>» 1= (DECLINES>»
{DECL)>

Declaration list

{DECL> 1= (DEC>

(DECL >

_¢(DECL> {(BLANK) <(DEC>

Declaration

{DEC> {IDL> <COLON> <POSL>

Identifier list

<IDL)

i

<ID>

<IDL>

(IDL> (COMMA> <ID)

Identifier

<ID) ti1= <(LETTER)

<ID> t1= (ID)> (LETTER?
{ID)> ti= (ID> (DIGIT>

(ID> 1= (ID) _

Comma

(COMMA)> =,

<CCOMMA> 11= (BLANK) ,

CCOMMA)> = ., (BLANK?»

(COMMA)> ti= (BLANK)> , (BLANK)>

Part of speech list
{POSL)> ti= (POS)

(POSL> 1i= <(POSL) (COMMA> <POSL)

Right—~hand side

(RHSG> vi= L[IKPOS)> (COLON>] <RHS TEXT>1]
MEND

If the part of speech and colon are missing, the left-hand
side part of speech is default,

Right—hand side text

(RHS TEXT)> t:= <(STRING)

(RHS TEXT> 1= {(PAR)

{RHS TEXT> ii= (LABEL)

(RHS TEXT)> t1= {RHS TEXT)> (STRING>

(RHS TEXT)> 1t1= (RHS TEXT> (PAR>

(RHS TEXT> 1:= (RHS TEXT) <(LABEL)

L.abel

(LAREL> 1= <(LLABBRKT) <(LID> <(RLABRERKT)

When a label 1is encountered in the translation process, its
brackets are removed, and it Is agqugmented with an integer
which is wunique to the application of the macro In which
the label appears, so that in another application of any

macro in which this 1label may occur it will be augmented

-129~

with a different number.

Label identifier

{LID> 1= (ID»

{LID> t1= (NU>

Number

{NU> 1= (DIGIT)

{NU?> it= (NU> (DIGIT>
Digit

(DIGIT> 1!1= _any digit

lLabel brackets

(LLAEBRKT)> !

-

initially a dollar symbol ($); may be
overridden with any character other
than letters, parameter brackets and
part of speech brackets; optionally
followed with blanks

-130~

{RLARERKT> 1:1= initinlly a dollar symbol (%$); may be
overridden with any character other
than letters, parameter brackets and
part of speech brackets; optionally
preceded with blanks

Procedures

{PROC)> ::= PROC
{LHS>
-=>
(LHS TEXT>
PEND

Macros and procedures may be preceded with the word DELETE,
This cauvses the syntax rules to be deleted from the
dictionary, 1f they are found there, rather than inserted,
DELETE applies only +to the macro or procedure immedintely
following it.

Comments are lines starting with an exclamation mark (1)

the may be inserted between definitions., They are copied
into the REF file and are other wise ignored.

A.2.3 INTERACTIVE INPUT

If +the Iinput mode is Interactive, then, after obtaining a
record file name, the system outputs a double praompt: >) to
indicate <that it is ready for input., Now the user can enter
one of the words MACRO, PROC, DELETE, EXIT or a comment.

-131-

The DELETE command Indicates that the syntax rules defined
in the immedintely following macro or procedure should be
deleted from the dictionary., The system responds to the
command with a double prompt. The command applies only 1to
one macro or procedure definition. After the definition has
been entered, the user is reminded of <this fact by the
text: DELETE MODE CANCELLED.

The EXIT command puts the system back into command 1language

level.

A comment iIs a line starting with an exclamation wmark (1),
It is copied 1into the record and reference files and is

otherwise ignored,

The MACRO and PROC commands are used to enter macro and
procedure definitions respectively., They are responded with
series of input requests <for the various parts of the
definition. The syntax for entering these parts is
identical to the syntax used in an external input file. The
termination of multiple line entries (left-hand side and
right-hand side texts and declarations) is indicated by a
line consisting of a percent sign (X)), Each declaration
line 1is processed separately and the system issues a triple
prompt:)>) to indicate that the next declaration line may
be entered,

Here is an example of interactive input., Texts input by the

user are indicated with underscores.

-132-

> >MACRO

LHS PART OF SPEECH: (EX)»

LHS TEXT:

Fe>Xx?, *Y?)
V4

DECLARATIONS

2> X, ¥Y: (NU),<ID)

»YV%
RHS PART OF SPEECH:
RHS-POS IS: (EX)
RHS TEXT:

’X%(’Y?-8)
%

)

A.2.4 SPECIFYING IDENTICAL TEXTS

Identical parameters in the left-hand side of a macro or a
procedure or in the right~hand side of a macro stand for
identical texts <(and hence =~ identical parts of speech),

-133~

This is recorded in the dictionary, and texts will parse to
the corresponding rules only if the texts in the

appropriate places really are identical,

For example consider the third macro of paragraph A.1.3 ,
The parameter E occurs twice in the 1lhs text and it
represents two parts of speech, but only twoe lhs rules
(rather than four) are inserted 1into the dictionary, and
the fact +that both parts of speech have to represent
identical texts 1s noted following the rule when the
DICTIONARY command is issved.

A.2.5 COMMENTS

$E_ A4

In both input modes, every 1line whose first non—blank
character is an exclamation wmark (!) is considered a
comment, Comments entered in interactive input are

transferred into the record file.

A.3 DEEBUG MODE

Debug mode is intended to aid the vuser in detecting errors
in his own syntax and in its vse. If a procedure does not
translate correctly, the reason wvusvally is that it, or
sections of it, did not parse, either because of an error
in a syntax rule in the vser’s dictionary, or because of an
error in the procedure text., In debug mode the user can
follow the translation step by step in order to detect his

errars.,

-134-

The command DERUG is responded with a request for a file
name., All the related ovutputs will be put in this file., If
the name entered is TERMINAL then the outputs will appear

on the vser’s terminal rather than in an external file.

In debug mode the translator stops its processing every
time when parsing is completed and issues a daouble prompt:
»)., At this stage the user may type one of the commands:
TEXT, PMARKER, GO or a part of speech,.

The GO0 command instructs the translator 10 resuyme

processing.

The TEXT command outputs the text being currently

translated,

The PMARKER command outputs the whole parsing graph in a
table. '

Typing a part of speech results 1In ovutputting all the
subtexts of the textstring currently being translated that

parsed into that particular part of speech,

If, for example, the text being currently translated is:
Y=F(A) with parsing graph:

-135~

(STMT>
(STMT>
(EXD

' !

{FN)>

i J |
(EX? (EXD (EX?
<¢ID (1D (ID>

and if the output is directed to the user’s terminal, then

the following conversation might take place:

~136-

PITEXT
Y=F(A)
Y)PMARKER
INITIAL ARC ALTERNATE ARCS NEXT(OF ALTERNATE)
)Y)
<{ID> r=
(EX)> r=2
(STMT)> (2
(STHMT) ————
? =
)F)
{ID)> r(?
(FN> r(?
(EX) P2
(EX?} -
?A)
(ID> ry?

> 2{STHMT)>

-137-

-4138-

A.4 CHARACTER HANDLING

All letters in commands, sub-commands and keywords wmay be
typed in lower-case as well as in upper-case (or, for this

matter, any combination of them),

Names are considered to refer to the same parameter or part
of speech regardless of whe ther their letters are

lower—-case or upper-case.

Lower—case letters parse to the same part of speech as the
corresponding vupper—-case letters. Thus rules which have
been defined in, say, lower-case may be used in wupper-case
without affecting the success of parsing.

A.4.2 CONTINUATION CHARACTERS

A backslash (\) at the end of an input line indicates that
the 1line is to be continuved, If the backslash is
immediately preceded with a dash (~), beth characters and
the following {(CR>{LF) are removed thus concatenating the
following 1line to the character immediately preceding the
dash, Otherwise the backslash and the following <(CR>{LF>

are removed and a blank is inserted between the two lines.

-4139-

For example, the input:

Cal-\
tech

is the same as:

Caltech

and the input;

Los\
Angeles

is the same as!

LLos Angeles

A.4.3 BLANKS AND <CR><LF)>

Strings of one or more blanks are handled like one blank
both in definitions (syntax pass) and in procedure bodies
(translation pass).

If a rule, introduced by the vser in syntax pass, consists
of more than one 1line, each (CR)LF) is replaced by the
part of speech {(BLANK)>. However non-leading <(CR){LF>’s of
rhe texts are remembered in the semantic part so that the
ovtput from the translator 1Is formatted in the way
prescribed by the user,

-140~

In translation pass each <(CR>{LF> in the procedure body

parses as <(BLANK>, Thus a text written in one line can

parse by a rule that was enterd in several 1lines and vice

versa,

-141~

Appendix E. IMPLEMENTATION

k.4 THE SYSTEM’S STRUCTURE

The software development system is written in Simula on the
Dec-20 computer. The system is composed of 12 separately
compiled modules., The order imposed by the Simula system is
that any external parts vused in a wmodule have to be
compiled prior +to the compilation of the module which uses
them. Therefore the modules are arranged in a linear
hierarchy. For the same reasaon some parts, that
contextually belong to certain modules, had to be moved to

other modules,

Each module, except the highest one, 1is a class. Each
class-module, except the 1lowest one, is a subclass of the
next lower module, The highest module is a program whose
main block is prefixed with the highest class~module name.
In this way every module has access to all wvariables,

classes and procedures defined in all the modules below it.

E.2 THE MODULES

The following sections list the modules and their functions

in the system’s hierarchical order,.

~142~

B.2.4 TEXT HANDL ING

This module includes basic text bhandling wuvtilities which
scan texts for certain characters or strings of characters,
concatenate texts, turn characters and numbers into texts
and modify texts by deleting or inserting subtexts,

B.2.2 INPUT / QUTPUT

Includes file handling rovutines which obtain file names
from the user, create, open and close the wvarious external
files +the system works with., Further it includes input and
output routines which read from - or write to - the wuser'’s

terminal or externnl files,.

E.2.3 SEMANTICS

This module contains the class SEMANTIC which is the master
class for all semantics. It contains all the procedures
which are comMMon to all semantic classes and the
declaration of a virtual procedure SEM. Different semantic
routines are obtained by declaring subclasses of SEMANTIC
and writing the particular procedure SEM there. 0Objects of
subclasses of SEMANTIC are wused in the dictionary: Every
defining dictionary element points (indirectly) to an
ob ject of the subclass which contains the appropriate SEM
procedure. Objects of subclasses of SEMANTIC are also wvused
as the nodes in the parsing tree,

~143-

Subclasses of SEMANTIC are declared in wvarious modules of
the system according <to the location in the wmodule
hierarchy where they belong. Four of these subclasses are
declared in the semantics module itself: SEMTERM, SEMSTR,
SEMID and PRESEMSUBST, The first three are semantics of
terminagl parts of speech, strings and identifiers
respectively, The fourth class contains the attributes of
the semantics of text substitution (used in translation
pass) which have to be known to modules 1located below the
translator wmodule., The class SEMSUBST is declared as a
subclass of PRESEMSURST in the translator wmodule becavuse
i1ts SEM procedure interacts recursively with the

translation routine.

Other main parts in this module are the class of branches
of the parsing tree and the class of number lists (which |is
used in PRESEMSURST).

E.2.4 DICTIONARY

Includes the part of speech table, the dictionaries and

related procedures,

The parts of speech are arranged in a hash table which
consists of an array of 96 lists, one for each non-control
character., The parts of speech are hashed according to the

first character,

The dictionary is the data structure used by the parser., It
is arranged in a binary tree, The attributes of each node
are a part of speech, a definition and two links: NEXT and
ALT. The definition and +the 1links may be empty. The

~144-

definition attribute points to a 1list of objects of the
class DEFINITION (also declared in this module), which
includes pointers to the left hand side part of speech of
the syntax rule and to an object of a subclass of SEMANTIC,
The NEXT 1link points to the node containing the next part
of speech of the syntax ruvle, The ALT link points to a node
whose part of speech may be used instead of this node’s
part of speech in order to obtain another rule.

Two dictionaries are wused in the system: The definition
dictionary, which is used in the syntax pass to parse the
definitions entered by the user, and the user’s dictionary,
which is bvilt in the syntax pass and wvused in the
tranlsation pass,

In order to reduce parsing time in the syntax pass, the
definition dictionary is divided 1inte 4 sections., One
section includes syntax rules that are vsed in all parts of
a definition. The other three include rules that are used
only for processing of a left—-hand side text, declarations
or right-hand side text of a definition. Whenever one of
these parts of a definition is processed, the correspanding
dictionary section is linked to the common section. In this
way the dictionary size, and hence - the number of spurious

arcs created by the parser, is kept to a minimum,

The MERGE procedure puts new rules into the dictionaries.
It is wuvsed in the initialization step to build the
definitions dictionary and in syntax pass to build the
user’s dictionary, It is this procedure that takes care of
the order of priority discussed in chapter 6.

~145-

E.2.5 PARSING

The module includes the parser and all the related

procedures,

The system permits the designer to use any language without
syntax restrictions, In order to meet this requirement, a
general parser has to be used. The parser used here is the
bottom - up, right to left parser that has been
successfully used In the REL system (351,

The parsing procedure is an attribute of the class of arcs:
ARC. ARC ob jects have four data attributes: A pointer to a
part of speech, a pointer to an object of a subclass of
SEMANTIC, a NEXT link, which points to the next arc in the
parsing graph (herizontal direction), and an ALT link,
which points to an alternate arc (vertical direction).

Other parts that participate in the parsing process are the
constituvent stack (class CONSTITUENT) and the APPLY
procedure, The parser pushes arcs onto the stack and,
whenever a rule should be applied, the APPLY procedure is
called in order to build a new arc around the arcs that are
in the stack, Whenever a new arc is created, all its
attributes are set up, in particvlar a new semantic ob ject
is created and 1linked to the semantics of the arc’s

constituvents.

When parsing is completed, the ROOT procedure is called to
find the root of the parsing tree, It is this routine that
performs the algorithm described in chapter 7 in the

translation pass,

~146-

Other important procedures in this module are: ARCSTRING
which creates the initial string of arcs from the text to
be parsed; prescanning procedures, which are attributes of
ARC and are called prier to parsing in order to build arcs
around strings (in syntax pass) and around numbers and
identifiers (in both passes); PMRKR, OUTPOS and TAKEALOOK
are used in debug mode to look at the parsing graph.

R.2.6 PARAMETER TARLE

When a definition is processd, its parameters are recorded
in a table together with the parts of speech they represent
and with information about the equality of different
parameters, The parameter table (class PARTAB) and its
related procedures and data structures are declared in this
module, The module also includes the procedures GETRULES
and BUILDRULES (both attributes of PARTAB) which wuse the
informaotion in the table in order to build the input to the
MERGE procedure (in the dictionary module) and then call it
to insert the rules into the user’s dictionary.

B.2.7 SEMANTICS OF DEFINITIONS

The module includes subclasses of SEMANTIC contnining the
semantic routines which correspond to the syntax rules of
definitions, Further it contains the procedure GETMACSYNTAX
which builds the definitions dictionary, It wuses the
external file SYNTAX.MAC to read the syntax rules and the
information about the dictionary section into which each
rvle belongs (see B.2.4) and the semantic routine to

~147-

associate wWwith each rule.

E.2.8 TRANSLATION

contains procedures and classes used in translation pass.
The procedure TRANSLATE takes a text, passes it to the
langunge processor, obtains its translation and repeats the
process wuntil the text remains unchanged. Class SEMSUERST is
declared in this module as a subclass of PRESEMSUBST (see
E.2.3), Its SEM procedure is the one that performs the
translation, The class had to be declared in this module
since, whenever a subtext that parsed to (STMT) is
encountered, SEM calls TRANSLATE to translate the subtext
and enly afterwards resumes its own processing (see

paragraph 9.3).

Other procedures and classes in this module read the input
text and prescan it in order to parse its parameters
according to the procedure’s declarations,.

E.2.9 DEFINITIONS PROCESSING

The simplest way to process the definitions is to pass a
whole definition to the language processor and let it do
the work. The drawback of this method is that in this way
it is very difficult to put useful information about error
locations into syntax—error messages. The messages have to
be of a rather general nature, they can say that "there Iis
something wrong wWwith this input®™, The user himself has to
do the job, which ls quite laborious for long inputs, of

pinpointing the error.

~148-

In order to overcome this problem, at least partially, the
processing of definitions in this system is partially
keyword and partially syntax driven, Keywords are wvused in
order to divide macros and procedures intoe their main
parts: Left—hand side, definition 1lines and right-hand
side, Each part is then processed separately by the
language processor. Syntax—error messages can restrict the
error to the part being processed and make it easier for

the user to locate it.

The module contains the procedures which read macros and
procedures - interactively or from an external file -
recognize their parts and pass them to the language

processor,

The reason for putting this module above the translation
module level is that it has to know about class SEMSURST
{semantics vuvsed in translation). Objects of this class have
to be passed to the procedures which wmerge the defined

syntax rules intoc the user’s dictionary,

B.2.40 DICTIONARY DUMPING _AND UPDATING

This module contains two procedures: DICDMP and UPDATE.
DICDMP is cnlled to display the dictionary contents on the
terminal whenever one of the command-language commands
DICTIONARY or PRIMITIVES is issved. UPDATE is called
whenever the UPDATE command is issuved from command-language

level.

-149-

The two procedures hnd to be raised tao this level because
they use information from objects of class SEMSUEST (see
E.2.8), which are attributes of every defining node in the

user’s dictionary.

E.2.14 SYSTEM DRIVERS

Includes two procedures: GETSYNTAX and GETPRGOCS, They are
called whenever one of the commands SYNTAX or TRANSLATE,
respectively, are issuved from command-lanquage level,
GETSYNTAX drives the system in syntax pass, It reads the
input - interactively or from an external file - and
wnenever a macre or a procedure is encountered, the
appropriate procedures are called to process it, GETPROCS
performs a similar task in the translation pass,

B.2.12 COMMAND LANGUAGE

This modvle is a program which intializes the system by
bvilding the definitions dictionary, saves the core image
in a file named SDS.EXE and then reads command language
commands from the terminal and performs them by calling the

appropriate procedures,

The file SDS.EXE can be vsed in order to run the system
Wwithout having to wait for dictionary initialization and
other initialization steps., If the command RUN SDS is
issued from monitor level, the system resumes at the point
where the file SDS,.EXE was created and immediately is ready
to accept command-language commands.

o

-150~-

Appendix C

AN EXAMPLE

The following example consists of an SDS design of the
problem of computing the 1000 first prime numbers, This
problem appears as an example of stepuwise program
composition in Dijkstra’s "Notes on Structured Programming"
£10] and the SDS design presented here roughly follows

Di jkstra’s refinements,

The design (starting page 1%52) is almost self explanatory,
Its bottom level consists of Simula constructs. Note that
the refinement of INITIALIZE AUXILIARY VARIABLES which
appears on the right-hand side of macro 8 was postponed
almost to the end (macro i114) because only after completing
all the refinements did I know what local variables were

needed.

The design wmixes Simula constructs with higher level
constructs in some of the refinements. Successful parsing
of these mixtures was achieved by using a dictionary with
primitives of a subset of Simula as the starting point for
the syntax pass., The file that was vused to build this
dictionary is on page 1%56.

The set of macros titled "High Level ERoolean Expressions"”
(line 14S) is not really necessary for the translation into
Simula, but if a lower level target language is introduced,

then these macros are needed in order <to0 avoid confusing

-iS4i-

the high 1level constructs with Simula constructs due to
their mixture in one statement in macro 70 (see chapter 8

for an explanation of this phenomenon),

After obtaining a Simula program which ran successfully
(page 166), I ran the same design on a dictionary that
translates a subset of Simula into Macro Assembly Language
(instead of the dictionary with Simula primitives). In
order to obtain a valid assembly language program I had to
take care of the initialization and termination
instructions that have to be in any svch program, and
therefore added initialization and termination statements

to the procedure from line i1 which became:

PROC

MAIN PROGRAM

-=)>

INITIALIZE PRIME;

LIST 100 FIRST PRIMES;
TERMINATE PRIME

PEND

The file from which the Simula—-Assembly translation
dictionary was constructed starts on page 167, This file
contailns the refinements of the initialization and

termination statements as well,

The resulting program, which ran successfully, starts on

page 179,

~-i52~

Desiqn of the Proqram: List 1000 First Primes

NN UL GITY -

PROC

MAIN PROGRAM

-}

LIST 1000 FIRST PRIMES
PEND

MACRO

LLIST ’N’ FIRST PRIMES

WHERE

N:<(NUD

==

INITIALIZE TARLE OF SIZE ’N’;
INITIALIZE AUXILIARY VARIAERLES;
FILL TAELE WITH ’N’ FIRST PRIMES;
PRINT ’N’ SIZED TABLE AND TERMINATE
MEND

MACRO ,

(BEGINSTMT>: INITIALIZE ’ARRAY’ OF SIZE ’N’
WHERE

N: (NU>

--)

BEGIN

INTEGER ARRAY ’ARRAY’[4i:’N’]}

MEND

MACRO
FILL TABLE WITH ’N’ FIRST PRIMES
WHERE
N CNUY
-=>
TABLE[11:=2; TABLE[2]:=3;
FOR III:=3 STEP { UNTIL ’N’ DO
BEGIN
MAKE TABLEIIII] THE III®TH PRIME
END
MEND

43
44
4S
a6
47
48
49
50
S4
52
53
54
55
56
57
58
59
60
64
62
63
64
65
66
67
68
69
70
74
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
94
92
93

-4153-

)N);

)X}

)B)

)N)

MACRO
MAKE ?ENTRY’[’I’] THE ’I’"TH PRIME
WHERE
I:<(ID>
-=>
JITi=?ENTRY?[?1’-41;
JPRIME :=FALSE;
WHILE NOT JPRIME DO
REGIN
JIT:1=JJJ+2;
JPRIME:=JJJ IS A PRIME;
END;
PENTRY?[?I?1:=JJ7
MEND
MACRO
'B?:=’N’ IS A PRIME
WHERE
N:CIDY,(NUD
-
COMPUTE UPPER BOUND ORD FDR THIS
’R?:;=TRUE;
KKK :=0;
FOR KKK:=KKK+4{ WHILE ’EB? AND KKK{ORD+4i DO
BEGIN
'B?:=TABRLEIKKK] IS NOT A FACTOR OF
END
MEND
MACRO
COMPUTE UPPER BOUND ORD FOR THIS
WHERE
X: {ID)Y,<{(NW
--)
WHILE SQUARE(’X’+i DO
BEGIN
ORD:=0RD+4;
SQUARE :=TABRLEIORDIXTARLEIORDI];
END
MEND
MACRO
(HBOOEX>: A’ IS NOT A FACTOR OF
WHERE
A,B:(HID), (HNU)
-=>
NOT (?B’>—=(’B?//’A?)%?A’=0)

MEND

95

96

97

98

?9
100
i04
i02
103
104
105
106
107
io8
109
140
1114
112
113
114
1S
116
117
ii8
119
120
124
i22
123
124
135S
126
127
128
129
130
134
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

MACRO
(ENDSTMT)>: PR
WHERE

N (NUD

-2
KKK:=?N*-40;

INT

~154-

)N)

SIZED

» TABLE?

FOR III:=0 STEP 40 UNTIL KKK DO

REGIN

FOR JJJ:=1 STEP { UNTIL 10 DO
OUTINT(’TABLE’[III+JJJ]1,8);

OUTIMAGE;
END;
END
MEND

MACRO

INITIALIZE AUXILIARY VARIARLES

--)

DECLARE AUXILIARY VARIABLES;
SET THEIR INITIAL VALUES

MEND

MACRO

DECLARE AUXILIARY VARIAELES

--)

INTEGER III,JJJ,KKK,ORD,SQUARE;
BOOLEAN JPRIME

MEND

MACRO

SET THEIR INITIAL VALUES

-=)

ORD:=1; SWUARE:=4

MEND

! High Level KHoolean Expressions

MACRO
(HBOOEX) :NGT
WHERE

HE: (HBODEX>
-2
PRIMITIVE
MEND

THE?

AND TERMINATE

-85~

147 MACRO

i48 {HBOOEX>: (’HB?’)
149 WHERE

150 HE: (HEOOEX>
154 -—>

152 PRIMITIVE
153 MEND

154

1SS

156 MACRO

157 'Y?:=’HB’
is8 WHERE.

159 HE: (HEOOEX>
160 ~=>

161 PRIMITIVE
162 MEND

i63

164

165 MACRO

166 (HID>:?ID’[’I’]
167 WHERE

168 I:<(ID>,<{NU>
169 -

170 PRIMITIVE
174 MEND

i72

173

174 MACRO

175 (HNU>: ’N?
176 WHERE

177 N: (NUD

i78 -2 ‘
179 PRIMITIVE
i80 MEND

it

ig82

183 MACRO

i84 (HID)>: 1D’
i8S -

186 PRIMITIVE
187 MEND

-156-

File of Simula Primitives

i ! Elock Structure
2

3 MACRO

4 BEGIN ’SL’ END
S WHERE

&6 SL: {(STMTL>

7 -

8 PRIMITIVE

4 MEND
i0
i1
i2 MACRO
i3 BEGIN ’SL?; END
14 WHERE
is SL:(STMTL)
ié -—)
17 PRIMITIVE
i8 MEND
i9
20
21 MACRO

22 BEGIN ’DL’; ?SL’ END
23 WHERE

24 DL:<(DECL> SL:(STMTL>
29 -—2

26 PRIMITIVE

a7 MEND
28

29

30 MACRO

34 BEGIN ’DL’; ’SL’; END
32 WHERE

33 DL:<(DECL? SL:<(STHTL?
34 -—2

35 PRIMITIVE

36 MEND

39 ! Program Structure

41 MACRO

42 (BEGINSTMT>: BEGIN ’DL’
43 WHERE

44 bL: <(DECL>

45 --)

46 PRIMITIVE
47 MEND

48

50
54
s2
53
54
5%
Sé
57
58

60
b4
62
63
64
65
b6
67
68
69
70
74
72
73
74
75
76
77
78
79
80
81
82
83
84
8S
86
87
88
89
?0
?14
92
?3
94
?5
96

MACRO

~457~

(ENDSTMT)>: ?SL’ END

WHERE

SL: (STMTL)
-->
PRIMITIVE
MEND

MACRO

(ENDSTMT>: ?SL’; END

WHERE

SL: (STMTL>
-=>
PRIMITIVE
MEND

MACRO

)A); ’SL’; ’Z,

WHERE

A CBEGINSTMT) SL:<(STMTL)

-=)
PRIMITIVE
MEND

! Statement List

MACRO
(STHMTL>: ’S8?
WHERE

S: (STMT
-=)
PRIMITIVE
MEND

MACRO

(STMTL): ’SL’; ’8?

WHERE
SL: (STMTL)
~=)
PRIMITIVE
MEND

S:(STMT>

Z:(ENDSTMT>

—-458-

?7 | Declarations
98

?9 MACRO

100 (DEC>: T’ »1IDL?
i04 WHERE

102 T:{TYPE)> IDL:<IDLIST}
103 -—)

104 PRIMITIVE

10S MEND

i06

107

108 MACRO

109 (DEC>: ’T’ ARRAY ’ID’I[’Ni’:?N2’]
110 WHERE

i1 T:(TYPED ID:<(ID)> Ni,N2:(NU)
ii2 -=)

113 PRIMITIVE

114 MEND
145

116

117 MACRO

118 (IDLIST): *1ID?

£49 WHERE

120 ID:<ID)

124 -=)

£22 PRIMITIVE

123 MEND

124

125

126 MACRO

£27 CIDLISTY: ?IDL’,’ID’
128 WHERE

129 IDL:<IDLIST)> ID:<ID)
130 --)

131 PRIMITIVE

132 MEND

133

134

135 MACRO

136 (DECL): ’D’

137 WHERE

138 D:(DEC)

139 ~-=)

140 PRIMITIVE

141 MEND

142

143

144
145
146
147
148
149
150
154
152
153
154
155
156
157
158
159
160
1614
162
163
164
165
166
167
i68
169
170
174
172
173
174
175
176
177
178
179
180
i84
182
183
184
18S
i86
187
188
i89
190
194
i92
193
i94
19S

~4.59-

MACRO
(DECL): ’DL’; ’D’
WHERE

DL:<DECL) D:<DEC)
-=)

PRIMITIVE

MEND

MACRO

({TYPE>: INTEGER
-=>

PRIMITIVE

MEND

MACRO

(TYPE)>: BROOLEAN
-1

PRIMITIVE

MEND

MACRO

(ID>: *A’[’E’]
WHERE

E:(AEX)

-2

PRIMITIVE

MEND

! lLoops
MACRO

FOR ?I7:=?INIT’ STEP
WHERE
INIT,INC,FINAL:<CAEX)>
-

PRIMITIVE

MEND

MACRO

WHILE ’COND’ DO ’S?
WHERE

COND: (BOOEX> S:{(STMT)
-=)

PRIMITIVE

MEND

PINC? UNTIL

S:(STMT>

?FINAL’

DO

)SI

196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
214
212
213
214
215
216
217
218
219
220
221

222

223
224
225
226
227
228
229
230
231
232
233
234
235
236
a37
238
239
240
241
242
243
244

-160-

MACRO

FOR ’I’:=’EX? WHILE ’REX’ DO ’§!
WHERE ’

EX:<{AEX> BEX:(BOOEX) S:(STMT)»
-2

PRIMITIVE

MEND

! Assignment Statements

MACRO

)YI ;=)Ex)
WHERE

EX: CAEXD
-=>
PRIMITIVE
MEND

MACRO

)Y} :=)B)
WHERE:

B: (BOOEX?
-
PRIMITIVE
MEND

! Boolean Expressions

MACRO

(BOOEX>: ’*A’(’B?
WHERE

A,B: (AEX>

-

PRIMITIVE

MEND

MACRO
(BOOEX)>: *A?)’R’
WHERE

A,B:(AEX)

--)

PRIMITIVE

MEND

245
246
247
248
249
250
251
252
253
254
255
256
257
258
as5¢9
260
2614
262
263
264
265
266
267
268
269
270
271
272
273
274
27%
276
277
278
279
280
281
282
283
284
28S
286
287
288
289
290
294

292

-416i~-

MACRO
(BOOEX>:’A’=?R?
WHERE

A,B: (AEX)>

-

PRIMITIVE

MEND

MACRO

(BOOEX>: NOT ’R’
WHERIZ

B: (BOOEX)»

-

PRIMITIVE

MEND

MACRO
(BOOEX>: TRUE
-

PRIMITIVE
MEND

MACRO

(BOOEX)>: FALSE
==

PRIMITIVE

MEND

MACRO
(BOOEX)>: ’R’
-=)
PRIMITIVE
MEND

MACRO

(BOOEX>: (’B?)
WHERE

B: (ROOEX)>

-2

PRIMITIVE

MEND

-162-

293 MACRO

294 (BOOEX>: ’Bi’ AND ’R2?
a9s WHERE

296 ki ,B2: (BOOEX)

297 -

298 PRIMITIVE
299 MEND

300

304

302 MACRO

303 (BOOEX>: ’Ei’ OR ’B2’
304 WHERE
305 Bi,B2: (BOOEX>

306 -

307 PRIMITIVE
308 MEND

309

310

344 ! Arithmetic Expressions
312

313 MACRO

314 (REX)>: ABS(’X?)
345 WHERE

316 X1 (AEX?
317 -=)>

3i8 PRIMITIVE
319 MEND

320

321

322 MACRO

323 (AEX)>:?8?
324 WHERE '
325 S:{(SuUM>
326 -=>

327 PRIMITIVE
328 MEND

329

330

3314 MACRO

332 (SUM)>:’T?
333 WHERE

334 T:(TERM)
33% -

336 PRIMITIVE
337 MEND

338

339

340
341
342
343
344
345
346
347
348
349
350
3514
352
353
354
355
356
357
358
359
360
364
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
3814
382
383
384
385
386
387
388
389
390
3914

~163-

MACRO

(SUM>:?8’°’A2°T7?

WHERE

S:{SUM> A:(AOP) T:(TERM>
-2

PRIMITIVE

MEND

MACRO
(TERM):’S?
WHERE

S: (SECONDARY)
-~

PRIMITIVE
MEND

MACRO

(TERM»:’T?'M2’8?

WHERE

T:<TERM> M:(MOP) S:(SECONDARY?>
-

PRIMITIVE

MEND

MACRO
(SECONDARY)>:+’§?
WHERE

S: (SECONDARY?
- .
PRIMITIVE

MEND

MACRO
(SECONDARY>:~’§?
WHERE

S: (SECONDARY>
-

PRIMITIVE

MEND

MACRO
(SECONDARY): ’P’
WHERE
P:<(PRIMARY)

-=>

PRIMITIVE

MEND

~164~

392

393

394 MACRO

395 (PRIMARY>:’N?
396 WHERE

397 N:(NUD
398 -

399 PRIMITIVE
400 MEND

404

402

403 MACRO

404 (PRIMARY>:’ID’
405 WHERE

406 ID:<ID>
407 -

408 PRIMITIVE
469 MEND

4410

411

412 MACRO

413 (PRIMARY>:(’S?)
414 WHERE
445 S:(SuUM>

416 -=>

447 PRIMITIVE
448 MEND

449

420

421 ! Binary Arithmetic Operators
422

423 MACRO

424 (AOP) :+
425 -

426 PRIMITIVE
427 MEND

428

429

430 MACRO

4314 (AOP) : -
432 -

433 PRIMITIVE
434 MEND

435

436

437 MACRO

438 (MOP) : X%
439 -

440 PRIMITIVE
441 MEND

442

443

~165~

444 MACRO

445 {MOP):/

446 -

447 PRIMITIVE

448 MEND

449

450

451 MACRO

452 (MOP>://

453 -=>

454 PRIMITIVE

455 MEND

456

457

458 i OQutput Statements
AS9

460 MACRO

464 OUTIMAGE

462 -=>

463 PRIMITIVE

464 MEND

465

466

467 MACRO

468 OUTINT(’A?,’N’)
4569 WHERE

470 A: (AEXD N: (NU>
4714 -2

472 PRIMITIVE
473 MEND

-166-

The Simula Proqram that SDS Turned out

BEGIN
INTEGER ARRAY TABLE[L:4000];
INTEGER III,JJJ,KKK,ORD,SQUARE;
EOOLEAN JPRIME;
ORD:=1; SQRUARE:=4;
TABLE[11:=2; TABLE[2]:=3;
FOR III:=3 STEP 4 UNTIL 41000 DO
REGIN
JIJ:=TARLEIIII-4i];
JPRIME:=FALSE;
WHILE NOT JPRIME DO
BEGIN
JITi=JJJ+2;
WHILE SQUARE(JJJ+4i DO
REGIN
ORD :=0RD+1;
SQUARE:=TABLE[ORDIXTABLEIORD];
END;
JPRIME:=TRUE;
KKK :=0;
FOR KKK:i=KKK+4i WHILE JPRIME AND KKK{(ORD+4i DO
BEGIN
JPRIME:=NOT (JJJ-(JJJ//TABRLEIKKKI)XTARLEI[KKK1=0)
END;
END;
TABRLEIIII1:=JJJ
END;
KKK:=1000-10;
FOR III:=0 STEP 10 UNTIL KKK DO
BEGIN
FOR JJJ:=1 STEP 1 UNTIL {0 DO
QUTINT(TARLELIII+JJJ1,8);
OUTIMAGE;
END;
END

File of Simula-to-Assembly Translation Rules

-167-

0 WU s GITO e

! Block Structure

MACRO

BEGIN ’SL’> END

WHER) SL:(STMTL)
-

)SL)

MEND

MACRO

BEGIN ’SL’; END
WHERE
SL:(STMTL?

-

)SL)

MEND

MACRO

BEGIN ’DL’; ’SL’ END
WHERE

DL:(DECL> SL:<{(STMTL>
-

)DL)

)SL)

MEND

MACRO
BEGIN ’DL’; ?SL’; END
WHERE

DL:(DECL> SL:{(STMTL>
-

)DL)

)SL)

MEND

! Program Structure

MACRO

(BEGINSTMT>: BEGIN ’DL’

WHERE
DL: <DECL)
--)

)DL)

MEND

S0
51
52
53
54

56
S$7
S8
59
60
61
62
63
&4
65
66
67
68
69

74
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
?14
92
?3
94
?S
96
97
98
99

MACRO

—-168-

(ENDSTMT>: ’SL’ END

WHERE
SL: <STMTL)
-=>

)SL)

MEND

MACRO

(ENDSTMT)>: ’SL’; END

WHERE
SL: (STMTL)
--)

)SL)

MEND

MACRO

)A); }SL);)Z)

WHERE

A: (BEGINSTMT)> SL:(STMTL)>

-=>
PRIMITIVE
MEND

| Statement List

MACRO
(STMTL)>: ’§?
WHERE

S: (STMT»
-
PRIMITIVE
MEND

MACRO

(STMTL>: ’SL?; g7

WHERE

SL: ¢STMTL)
--)

)SL)

)S)

MEND

S:(STMT>

Z;(ENDSTMT)

100
104
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
147
118
149
120
121
122
123
124
125
126
§27
128
$29
130
134
132
133
134
135
136
137
128
139
140
141
142
143
144
145
146
147
148
149
150
151

-169-

* 1D
6,71D?

)ID)
6,71D?

(ADECY: T’ ARRAY ?ID’[’Ni’:’N2’]

T:(TYPE? ID:(ID> Ni,N2:(NU>

! Declarations
MACRO
{DEC>: T’ *ID?
WHERE
Ti1(TYPE>
-
INTEGER
MOVEM
MEND
MACRO
(DEC>: 'D?,?1D?
WHERE
D:{DEC>
-2
)D)
INTEGER
MOVEM
MEND
MACRD
{DEC>:?ADEC’
WHERE
ADEC: {ADEC)
-
PRIMITIVE
MEND
MACRO
WHERE
-
ARRAY
MOVE
MOVEM
MEND
MACRO
{DECL>: ’D’
WHERE
D:<DEC)
-
PRIMITIVE
MEND

»ID’[~D’N2?=*D’Ni’+2]
17,0*D’Ni’-11]
i7,?1D’

152
153
i54
155
156
157
158
159
160
6l
i62
163
164
165
166
167
168
169
170
174
i7a2
173
174
175
176
177
178
179
igo
184
182
183
184
i8S
i86
187
ies
189
190
194
i92
193
i74
i9s
i?6
197
198
199

MACRO

-170~

(DECL>: ’'DL?; ’D?

WHERE

DL:(DECL> D:(DEEC>

-~
)DL)
)Dl

MEND

MACRO

{TYPE>: INTEGER
-

PRIMITIVE

MEND

MACRO
(TYPE>:BROOLEAN
-2

PRIMITIVE

MEND

! l.oops

MACRO
FOR *1%:=?INIT’
WHERE

STEP ?INC’? UNTIL ’FINAL’

I:<AID INIT,INC,FINAL: (AEX) S:(STHT>

-->

»INIT?
)I) B
POP
$FORSS : 'FINAL’
POP
)I)
SUE
JUMPL
)S)
»INC?
POP
)I)
ADDM
JRST
$EFORSS :
MEND

A,es

A,13

13,05
13,$EFORSS
A,13

13,85
$FORSS

DO

)8)

~1741~

200 MACRO

201 WHILE COND’ DO ’S?
202 WHERE

203 COND: (BOOEX> S:{(STMT>

204 -=>

205 WH: 'COND’

206 JUMPE 7 ,$EWHS
207 -

208 JRST WH

209 $EWHS

210 MEND

214

212

213 MACRO

214 FOR ?I?:=’EX’ WHILE ’BEX’ DO ’S?

215 WHERE

216 I1:{AID> EX:{AEX)> BEX:<(ROOEX> §:<(STMT>
287 -=)>

248 $FORWS : "EX?

219 21

220 PQP A,BS
221 *HEX?

222 JUMPE 7, $EFORWS
223 g

224 JRST $FORWS
225 $EFDORWS:

226 MEND

227

228

229 ! Array Identifier
230

234 MACRQ

232 (AID>: ’A’I1’E’]

233 WHERE

234 E:<{AEX>

235 -——>

236 rE?

237 POP A,S
238 SUR S5,’A?
239 ADDI S,’A?
240 MEND

2414

242

243 MACRO

244 (AID>: X’

245 -2

246 MOVEI S,?X?
247 MEND

248

249

250
254
252
253
254
255
256
257
258
259
260
264
262
263
264
265
266
267
268
269
270
271
272
273
274
ar7s
276
277
278
279
280
284
282
283
284
285
286
287
288
289
290
294
292
293
294
29s
296
297
298
299
3060

-172~

l Assignment Statements

MACRO

Y2 i=2EX?

WHERE

Y:(AID> EX:(AEX)>

-—>

)Ex}

}Y)
POP A,RS

MEND

MACRO

)Y) :=)B)

WHERE

Y:<{AID> B: (ROOEX>

-=>

)B)

)Y)
MOVEM 7,85

MEND

! Boolean Expressions

MACRO

{BOOEX>: (’RB’)

WHERE

B: (EOOEX)>

-

)B)

MEND

MACRO

{BOCEX>: ’A’{(’'R’

WHERE

A,B: CAEXD

-2

)h)

)B)
POP A,i4
POP A,i2
SUB 14,12
SETO 7,
SKIPG 14
SETZ 7,

MEND

301
302
303
304
305
306
307
308
309
3410
314
312
313
3i4
315
316
317
3418
319
320
324
322
323
324
325
326
327
328
329
330
334
332
333
334
335
336
337
338
339
340
344
342
343
344
345
346
347
348
349
350
354
352

~173-

MACRO

(BOOEX>: ’A’='E’

WHERE

ALB: CAEX)

-=)

)A)

)B)
POP A, 14
POP A, L2
SUE 14,12
SETO 7,
SKIPE 14
SETZ 7,

MEND

MACRO

(BODEX>: B4? AND ?'R2’
WHERE

Bi,RB2: (ROOEX>

-

)Bi)

MOVE 10,7
132)

AND 7,40
MEND
MACRO
(ROOEX>: NOT ’B’
WHERE
B: (BOODEX)
-
)B)

SETCA 7,7
MEND
MACRD
(BEOOEX>: *R’
--)

MOVE 7,78’
MEND
MACRO

(BOOEX)>: TRUE
--)

SETO 7,
MEND

353
354
355
356
357
358
359
360
364
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
394
392
393
394
39S
396
397
398
399
400
401

~174-

MACRO
(BOOEX): FALSE
-->

SETZ 7,
MEND

! Arithmetic Expressions

MACRO
(AEX)>:?S’
WHERE

S: (SUM>
-
PRIMITIVE
MEND

MACRO
(SUM>: T
WHERE
T:{TERM>
-=)
PRIMITIVE
MEND

MACRO
(SUM):?82 24777
WHERE
S:(SUM> A:(AOP) T:<TERM)
-->
)T)
)S)
POP A,12
X 12, (A)
MEND

MACRO
(TERM>:’S?
WHERE

S: (SECONDARY)
-2

PRIMITIVE
MEND

402
403
404
405
406
407
408
409
440
a1
442
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
434
432
433
434
435
436
437
438
439
440
444
442
443
444
445
A44
447

-175~

MACRO
(TERM>:?T?2M225)

WHERE

T:(TERM> M:<MOP) §:<{SECONDARY)
-=)

)S)

)T)

MEND

MACRO
(SECONDARY)>:+28?
WHERE

S: (SECONDARY>
-

)S}

MEND

MACRO
(SECONDARY)>: P’
WHERE
Pi{PRIMARY>

-=)

PRIMITIVE

MEND

MACRO
(PRIMARY)>:’N’
WHERE
N:<(NU>
- .
PUSH A,L*D’N’]}
MEND

MACRO
(PRIMARY)>:?ID’
-=)

PUSH A,’ID’
MEND

-176-

448 MACRO

449 (PRIMARY>:’AID’

450 WHERE

4514 AID:<AID>

452 -2

453 *AID?

454 PUSH A,eS
455 MEND

456

457

458 MACRO

459 (PRIMARY>:(?8")

4460 WHERE

461 S: (SuM>

462 -

4463 g

4464 MEND

465

466

467 MACRO

448 (AEX)>: ININT

4469 -=

470 MOVEI 1, .PRIIN
474 MOVEI 3,42
472 NIN

473 ERJMP NINER
474 PUSH A,2
475% MEND

476

477

478 I Binary Arithmetic Operators
479 -

480 MACRO

481 (AOP)Y : +

482 -=)

483 ADDM

484 MEND

48%

486

487 MACRO

488 (AQCP) :~

489 -=)>

4990 SUEM

4914 MEND

492

493

494 MACRO

495 (MOP > 1 X

496 -=>

497 IMULM

498 MEND

499

500
501
502
503
S04
%05
506
507
508
509
Si0
514
Siz2
513
514
54%
516
547
5i8
519
520
5214
522
523
524
528
526
527
528
529
530
5314
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
554

-177-

MACRO
(MOP>:/
-=
IDIVM
MEND

MACRO
(MOP>://
-=>
IDIVM
MEND

! Output Statements

MACRO
OUTIMAGE
--)
HRROI {,[ASCIZ/
/1
PSOUT
MEND
MACRO
OUTINT(’A?,?N?)
WHERE
A:(AEX> N:<NW)
)A)) .
MOVEI 4,.PRIIN
popP A,2
MOVEI 3,12
HRLI 3,400K+AD’N?
NOUT
ERJMP NOUTER
MEND

! Program Initialization

MACRO
INITIALIZE ’NAME’
-=)

SEARCH MONSYM

A=4
'NAME?: MOVE A,[IOWD 1000,STACK)
SETZ 6,

MEND

552
553
554
555
556
557
558
559
560
%614
562
563
564
565
S66
567
568
569
570
5714

-178-

| Program Termination

MACRO
TERMINATE ?NAME’
-=>
HALTF
NINER: HRROI 1,[ASCIZ/
ININT ERROR
/1
PSOUT
HALTF
NOUTER: HRROI i,lASCIZ/
OUTINT ERROR
/1
PSOUT
HALTF
STACK: BLOCK 1000
END ’NAME’

MEND

-179~

The Assembly Lanquage Program that SDS Turned out

SEARCH MONSYM

A=4

PRIME: MOVE A,LIOWD 4000,STACK]
SETZ 6,

ARR MOVE £7,04D1i-11

MOVEM 17,TABLE
INTEGER III
MOVEM 6,111
INTEGER JJJ
MOVEM 6,173
INTEGER KKK
MOVEM &6,KKK
INTEGER ORD
MOVEM 6,0RD
INTEGER SQUARE
MOVEM 6,SQUARE
INTEGER JPRIME
MOVEM 6,JPRIME
PUSH A,[*D11]
MOVEI S,0RD
POP A, RS
PUSH A,[*DA4]
MOVEI 5,SQUARE
POP A,85
PUSH A,[~D2]
PUSH A,[~Di1]

POP A,S
SUER S, TABLE
ADDI S; TABLE
POP A,BS

PUSH A,L*D3]
PUSH A,[+D2)

poP A,S

SUER S, TABLE
ADDI 5, TABLE
POP A,B8S

PUSH A,[*D3]
MOVEI 5,III

POP A,BS
FORSZ2:PUSH A,I[*Di000]

POP A,L3
MOVET 5,111

SUR 13,05

JUMPL 13,EFORS2
PUSH A,[*D4i]
PUSH A,I11

POP A,12

SUBM 12,(A)

MOVEI

SETZ
MOVEI

WH3:

PUSH
PUSH

MOVEI
WH4

PUSH
PUSH

PUSH
PUSH

MOVEI

PUSH

PUSH

MOVEI

EWHA ;

POP A,S
SUK S, TABLE
ADDI S, TABLE
PUSH A,B@S

5,737

POP A,BS

7,

S,JPRINE

MOVEM 7,85
MOVE 7,IPRIME

SETCA 7,7

JUMPE 7, EWH3

A,[*D2]

A,J13

POP A,L2

ADDM 12, (A)

5,737

pPOP A,RS
PUSH A, SQUARE

A,[~Di]

A,JIT

POP A,i2

ADDM 12, (A)

POP A,i4

POP A,i2

SUK 14,12

SETO 7,

SKIPG 14

SETZ 7,

JUMPE 7,EWH4
A,I"DL]

A,ORD
POP A,12
ADDM 12,(A)
S,0RD

POP A,@S
A,ORD

POP A,S

SUE S, TABLE

ADDI S, TABLE
PUSH A,B5

A,ORD
PoP A,S
SUR S, TABLE

ADDI S, TABLE
PUSH A,eS

POP A,12
IMULM 12, (A)
5 ,SQUARE

POP A,BS
JRST WH4

-480~

-181i-

SETO 7,
MOVEI S,JPRIME
MOVEM 7,85
PUSH A,L*D0]
MOVEI S,KKK
POP A, RS
FORWS : PUSH A,[~D4i]
PUSH A, KKK
POP A, 12
ADDM 12, (A)
MOVEI S,KKK
POP A,BS
MOVE 7, JPRIME
MOVE 10,7
PUSH A, KKK
PUSH A,[*D1]
PUSH A,ORD
POP A,i2
ADDM 12,(A)
POP A,14
POP A,12
SUB 14,12
SETO 7,
SKIPG 14
SETZ 7,
AND 7,40
JUMPE 7, EFORWS
PUSH A, KKK
POP A,S
SUK S, TABLE
ADDI S, TABLE
PUSH A, 85
PUSH A, KKK
POP A,S
SUR S, TAELE
ADDI S, TABLE
PUSH A,BS
PUSH A,JJT
POP A,12
IDIVM 12, (A)
POP A,i2
IMULM 12, (A)
PUSH A,JIT
POP A,L2
SUEM 12, (A)
PUSH A,[~D0]
POP A,14
POP A,L2
SUK 14,12
SETO 7,
SKIPE 14
SETZ 7,

MOVEI

EFORWS:
EWH3:

MOVE
PUSH

PUSH
MOVEI
EFORS2:
PUSH
PUSH
MOVEI

PUSH
MOVEI

SETCA 7,7
5, JPRIME

MOVEM 7,85
JRST FORWS

JRST WH3
7,337

A,III

POP A,S

SUH S, TABLE

ADDI S, TAELE
MOVEM 7,85
A,[~D1i]

POP A, L3
5,111

ADDM 13,05
JRST FORS2

FORSO0:PUSH A, KKK

MOVEI

PUSH
MOVEI

MOVEI

PUSH
PUSH

A,[~D10]
A,[~D1000]
POP A,L2
SUEM £2,¢A)
S, KKK

POP A, RS
A,[~D0]

S,III

POP A,8S
POP A,1L3
5,111

SUH 13,85

JUMPL. 13 ,EFORSO
A,{~D1]

S,JI7J

POP A,BS
FORS4 : PUSH A,[~D10]

POP A,13

5,JJ37

SUH 13,05

JUMPL 13,EFORS1

A,JIT

A,III

POP A,L2

ADDM £2,(A)

POP A,5

SUR S, TARLE

ADDI S, TABLE
PUSH A,B8S
MOVEI 1,.PRIIN
POP A,2
MOVEI 3,12

-182-

-183--

3,100K+~D8
NOUTER
A, 13

13,05
FORS1

A, 13

13,85
FORSO

HRLI
NOUT
ERJMP
PUSH A,[*Di]
POP
MOVEI 5,JJJ
ADDM
JRST
EFORSY:
HRROI i,lASCIZ/
/1
PSOUT
PUSH A,[~D1i0]
POP
MOVEI S,III
ADDM
JRST
EFORSO:
HALTF

NINER: HRROI
ININT ERROR
/1

PSOUT

HALTF
NOUTER: HRROI
OUTINT ERROR
/1]

PSOUT

HALTF
STACK: BLOCK

1,[ASCIZ/

1,lASCIZ/

1000

END PRIME

-184-

Bibliography

[i1 Balzer B., Transformational Implementation: An
Example, USC Information Sciences Institute,
August 1979

[21 Basili V. R, and Turner A, J., "Iterative
Enhancement A Practical Technlique for Software
Development”, in IEEE Transactions on Software
Engineering, Volume i, Part 4, December 1975

£31 Raver F, L., "Software Engineering”, in Advanced
Course on Software Engineering,
Springer Verlag, 1973

4] Bell T, E, and Bixler D, C. and Dyer M. E.,
"An Extendable Approach to Computer Aided Software
Requirements Engineering”, in IEEE Transactions
en Software Engineering, Volume 3, Part {,
January 1977

[51 EBrooks F, P,, The Mythical Man Month,
Addison-Wesley, 197S

(61 Caine S. H. and Gordon E. K., "PDL - A Tool for
Software Design™, in AFIPS, Volume 44, {97S

[71 Cheatham T, E, and Flisher A, and Jorrand P.,
"On the Basis of ELF - An Extensible Language
Facility", in AFIPS, Volume 33, 1968

(81 Cheatham T, E,, "The TGS-II Translator Generator
System™, in IFIP, Volume 2, 1965

[?1 Dijkstra E. W,, A Discipline of Programming,
Prentice-Hall, 1976

(101 Dijkstra E. W., "Notes on Structured Programming"”,
in Structured Progqramming, Academic Press, 197S

(111 Galler B, A, and Graham R, M., "The MAD Definition
Facility", in Communications of the ACH,
Volume 412, Part 8, August 1969

(121 Goos G., "Hlerarchies", in Advanced Course in

Software Engineerinqg, Springer Verlag, 1973

(431 Harrison M. C., “BALM - An Extendnble List-Processing
Language®, in AFIPS, Volume 36, 1970

[14]

(151

(161

(171

[181

[231

[24]

1251

(261

-18S-

R., From Well-Written Algorithm Descriptions
» Research Report, Department of Computer
Science, City University of New York, July 4977

- T

obbs J.
nto de

Howden W, E., "DISSECT - A symbolic Evaluvation nand
Program Testing System", in IEEE Transactions on
Software Enqineering, Volume 4, Part i, Janvary 1978

Irons E, T., "Experience With an Extensible
Language”, in Communications of the ACM,
Volume 13, Part 4, Januvary 1970

Jensen K. and Wirth N., Pascal, User Manual and
Report, Springer Verlag, 1978

King J, C., "Symbolic Execution and Program Testing",
in Communicnations of the ACM, Volume 19, Part 7,
July 976

Kleine H.,, Software Desiqn and Documentation
Lanquage, JPL Publication 77-24, 1977

Leavenworth E. M., "Syntax Macros and Extended
Translation®, in Communications of the ACHM,
Volume 9, Part {1, November 1966

Leroy H., "A Macro-Generator for Algol®*,
in AFIPS, Volume 30, 1967

MacCallum I, R. and Morris D. and Rohl J. 5. and
Brooker R, A., "The Compiler Compiler" in Annual
Review in Automatic Proqramming, 1963

McIlroy M.D., "Macro Implementation Extensions of
Compiler Languages", in Communications of the ACMH,
Volume 3, Part 4, April 1960

Poole P. C. and Waite W. M,, "Machine Independent
Software"”, in Second Symposium on Operating Systems
Principles, 1969

Randall D, L., Formal Methods in the Foundations of
Science, PhD Thesis, California Institute of
Technology, 1970

Row J. R., "Automatic Data Structure Selectlion: An
Example and Overview", in Communications of the ACM
Volume 21, Part S, May 1978

~186—-

(271 Rowe L. A. and Tonge F. M., "Automating the Selection
of Implementation Structures”, in IEEE Transactions
on_Software Engineering, Volume 4, Part 6,

November 1978

[281 Schuman S. A. and Jorrand P., "Definition Mechanisms
in Extensible Programming Languages",
in AFIPS, Volume 37, 1970

[291 Solentseff N,, "A Classification of Extensible
Programming Languages”, in Informntion Processing
Letters, Volume i, Part 3, February {972

[301 Solentseff N. and Yezerski A., "A Survey of
Extensible Programming Languages™, in Annual Review
in Automatic Programming, Volume 7, Part S, 1974

[31i1] Solentseff N. and Yezerski A., "ECT - An Extensible
Contractable Translater System”, in Information
Processing Letters, Volume i, Part 3, February 1972

[321 Standish T, A., "Extensibility in Programming
Lanquage Design”", In AFIPS, Volume 44, 1975

(331 Strong J,. and Wegstein J., "The Problem of Program
Communication with Changing Machines®",
in CACM, Volume i, Parts 8 & 9, 1958

[34] Teichroew D. aond Hershey E. A, III, "PSL/PSA:
A Computer—-Aided Technique for Structured
Documentaion and Analysis of Information
Processing Systems", in IEEE Transgctions on
Software enqineering, Volume 3, Part i,
Januvary 1977

[35] Thompson B. H. and Thompson F. B,, "The REL System
as Prototype", in Advances in Computers, Volume 13
Acndemic Press, 1975

[361 Wegbreit B.,, "The ECL Programming Systen",
in AFIPS, Volume 39, 1974

[371 Wilkes M. V,, "Software engineering and Structured
Programming”, ln IEEE Transactions on Software
Enaineering, Volume 2, Part 4, December 1976

[381] Wirth N., "Program Development by Stepwise
Refinement”, in Communications of the ACM,
Volume 14, Part 4, April 419714

[379]

(401

[41]

~187-

Yourdan E. and Constantine L. L., Structured Design,
Yourdan Inc., Febrvary 1976

"YACC - Yet Another Compiler Compiler", in Documents
For Use With the UNIX Time-Sharing System,
Sixth Edition, The Western Electric Company

The WELLMADE System Desiagn Methodology, Honeyuwell
Publication, October 1979

