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Abstract

The evolution of residual stresses resulting from cooling an adhesive bond configuration
on its lateral surfaces at a constant rate through the glass transition of the polymer
are considered. A nonlinear, viscoelastic (free—volume) model serves for the thermo-
viscoelastic characterization of the polymer. The simultaneous solution to the heat
diffusion and the transient thermoviscoelatic problems are addressed. Both an infinite
(one-dimensional) and a finite (two-dimensional) domain are studied. A “critical” cool-
ing time exists, in the present case on the order of a few seconds, which separates the
control of the solidification process according to whether the relaxation or thermal dif-
fusion time scale governs. The short time “quenching process,” i.e., when the time scale
is governed by thermal diffusion, leads to essentially constant residual stresses. Slower
cooling increasingly invokes the time and rate sensitive properties of the polymer and
leads to monotically decreasing residual stresses with longer cooling times. To reduce
residual stresses by a factor of two from their maximal values requires cooling times
on the order of one or two days. These results are not drastically altered by changes
in the thicknesses of the bond components. Apart from singular behavior of the stress
components in the two-dimensionally finite domain “quenching” has the effect of pro-
ducing significantly different stress distributions (including stress “spikes”) than slow or
thermoelastic analyses would suggest. This observation is attributed to the interaction
of the bending response of the metal components early in the cooling history under
the high thermal gradients, which deformations are then partially frozen in during the
subsequent cooling of the polymer. Implications of these results for systems possessing
geometric and material differences subjected to various thermal cooling ranges are also
discussed. The results demonstrate the importance of knowing the bulk relaxation or
creep spectrum for the polymer.

In the second part of the thesis the effect of the residual stresses on fracture behavior

of an adhesive bond are addressed within the context of linear fracture mechanics for



dissimilar materials. The crack faces are found to be in contact at the fractured end
during the (residually stress) unloading process. A significantly error results if this
contact zone is not taken into account. The combined effect of the mechanical loads
and the residual stresses on the energy release rate is also studied. The total energy
release rate from the combined effect is not necessarily higher or equal to the sum of

the individual contribution from external loads and from residual stresses separately.
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Introductory Remark

The purpose of this thesis is to advance our understanding of the failure of adhesive
joints with special emphasis on the residual stresses which arise under thermal cool-down
across the glass transition during bond formation. This document is organized in three
chapters, each containing its own introduction and conclusions. In the first chapter, the
constitutive model employed in the study for the adhesive polymer based on the free vol-
ume theory is reviewed. This material description incorporates a nonlinear stress effect
in addition to the long recognized influence of temperature on the material properties
and response of polymers. This development is followed by the thermoviscoelastic stress
analysis of bonded joints in chapter 2. In this chapter the thermoviscoelastic bound-
ary value problem is formulated and is solved within the context of the finite element
method. The residual stresses for a wide range of processing conditions and for different
viscoelastic polymer properties are examined. Finally the effect of residual stresses on
fracture of the adhesive bonds is discussed in chapter 3 in terms of the energy release

rates.



Chapter 1

Thermoviscoelastic Constitutive Relation for a Class of
Polymers

1.1 Introduction

In the past, most of the constitutive models proposed for polymers and glasses were
constructed as phenomenological theories, and only few are based on the analysis of
phenomena occurring at the molecular level [1]. Due to the lack of computational power,
most of the previously thermoviscoelastic stress analyses were based on relatively simple
constitutive models.

The earliest model assumes thermorheologically simple material response to tem-
perature (horizontal shift of the relaxation modulus curve with temperature) and the
general linear viscoelasticity for isothermal stressing in shear [2]. Dilatation is governed
by a thermal expansion and an elastic response to hydrostatic stress, and the time shift
factor is a function of the current temperature only as obtained empirically. This model
is used by Lee et al. [2] in the study of residual stresses in a glass plate cooled symmet-
rically from its outer surfaces and also by Heymans [3] for thin films coated onto glass
substrates.

In an improvement to that earlier model, the time shift factor was made to depend
not only on the current temperature but also on an internal variable called the “fictive”
temperature Ty, i.e., ar = f(T,T}), to take into account the time and temperature-
dependent behavior of the coefficient of thermal expansion of glass [4, 5]. The internal
variable T} is used to quantify the effect commonly referred to as the volume or structural
relaxation effect. The model assumes that the relaxations of both shear and isotropic

stresses are governed by the same time shift factor. Furthermore, the thermal strain
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is expressed as a time convolution integral over the thermal history. This improved
model has been used extensively in many practical manufacturing problems such as
glass annealing and tempering through the studies of Narayanaswamy [5], Gardon and
Narayanaswamy [4]. Scherer and Rekson [6] generalized the model further and applied
it to a cooling problem of a glass-to-metal s'andwich seal.

In polymers the interstitial volume between polymer chains (free volume) is found
to play an important role in the relaxation behavior . Following from observations
on volume changes resulting from swelling experiments, the time shift of viscoelastic
functions depends on the current free volume which in turn depends on the histories of
temperature, pressure, and solvent concentration [8, 9].

Recently, Losi and Knauss [10] have addressed a new constitutive model for amor-
phous polymers, also based on the free volume theory. In this case the time scale of the
material relaxation is taken to be affected by the instantaneous free volume (through
the time shift), the change of which is tdken as a fraction of the total volumetric defor-
mation. Since the free volume changes are a part of the total deformation, this model
includes a coupling between the strain and stress fields and the internal time scale of
the polymer.

In this chapter we will briefly review the work of Losi and Knauss. For a more
detailed discussion of the subject, the reader is referred to [1]. In the sequel, the ther-
morheological material model for polymers in thermodynamic equilibrium states is first
delineated. This development is followed by the extension of the above model to poly-
mers in metastable equilibrium (glassy) states. This constitutive model employs a ma-
terial parameter f;,; its value is calculated in section 1.4. Finally, a constitutive model
which covers all (thermodynamic) regimes including the glass transition is addressed in
section 1.5.

In the discussion below, we refer to the states well below the glass transition as
being in the “glassy” regime while the states far above the glass transition are in the

“rubbery” regime.
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1.2 Thermorheological material model for polymers in ther-
modynamic equilibrium states

The constitutive relation for an isotropic thermorheological material under a non-isothermal

process is given by

o) = [ 26w - B a6, [ xew - er)%2ar
— 6:; p(t) (1.1)
) = [ o -emnGa (12)

where £ is the internal (reduced) time and ©(?) is a (possibly) time-dependent material
function which accounts for the effects of temperature on the stress state. G(t) and K ()
are the time-dependent bulk and shear moduli measured at some reference condition,
eg., T =T1T,.

The basic postulate of thermorheological simple materials is that the changes in
temperatures and pressures cause the relaxation function to be shifted to the right or
left when plotted against log . The relaxation functions at other fixed temperatures T
and pressure can be directly obtained from the corresponding functions at the reference
T, and pressure by replacing t by £, providing that the functional relation between £ and
t is known 1. That relation is usually called the time shift function and is considered a
basic property of the material.

For polymers, the time-dependent moduli K(¢) and G(¢) are usually measured at
some constant temperature above the glass transition, and they are characterized by a

Prony-Dirichlet series of the form

K(t)

M 1
Ko+ Kiexp 7 (1.3)

1

N
G(t) = Gu+ ZGi exp 7. (1.4)

The described constitutive model requires two additionally material property func-

tions beside the (isothermally) bulk and shear relaxation moduli, namely, ©(t) and the

!This phenomenon is referred in literature as the time-temperature superposition principle.
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time shift function. We consider these two functions in detail next. All considerations
apply to cases in which a polymer is initially in the rubbery regime and the sudden
changes in temperature and/or pressure would not be high enough to force the polymer
through the glass transition. In other words, upon a sudden change in environmental
condition, the polymer will change to a new state which is also in the rubbery regime.
The extension of this model to polymers at temperature below the glass transition is

addressed in section 1.3.
1.2.1 Construction of O(t)

In the absence of experimental data, O(t) is determined through a bound-estimate [1]
by the following argument: The time-dependent nature of the viscoelastic volumetric
response is a result of short-range rearrangements of the polymer chains, such as bond
rotation or local readjustments of position, and also of long-range motion involving
a drift of the entire chain. Since the long-range motions of polymer chains depends
strongly on the deformability of the network which in turn depends on the macroscopic
deformation of the solid, these motions are hindered when the macroscopic deformation
is restrained. As a result, the stress state in this case is reasonably assumed to be
history (time) independent. The function ©(t) can be evaluated by considering the
isotropic stress in a polymer which is initially in the rubbery regime and is subjected
to a temperature change AT while its volumetric deformation is completely restrained
(éxr = 0). Since the resulting isotropic stress g in this case is time-independent as

based on the previous argument, it follows that the function © is a constant and that
Gkk=p=®AT. (15)

Since the polymer in the rubbery regime (7' >> T}) is assumed to behave essentially
linearly elastic with a rubbery value oy, and K, (of equation (1.3)) as its volumetric
thermal expansion coefficient and bulk modulus, respectively, its isotropic stress can

also be obtained from linear elasticity as

p= Koty = Kooy, AT. (1.6)
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By comparing (1.5) and (1.6) one finds that ©(t) = a;, K, and the term p(¢) in
equation (1.1) can, therefore, be simplified to a history-independent term equalling

a, Koo AT.
1.2.2 Time shift function

We now turn our attention to the time shift function. It is well known that the material
viscosity is the governing factor in the relaxation behavior of a polymer. Higher viscosi-
ties retard the relaxation process while lower viscosities accelerate the creep process.
The relaxation process therefore needs to be scaled in time by the instantaneous value
of viscosity . If the time shift factor ar is defined as the ratio of the instantaneous

viscosity to that measured in some reference condition, the time shift function is given

= F=[ = (L.7)

o
Based on experimental observations, the time shift function for polymers will depend

as

not only on thermal history but also on the pressure history [7]. An accurate constitutive
model must, therefore, include the pressure-dependence of the time shift function.
Based on the hard sphere model for liquids, Cohen and Turnbull [11] suggested that
the viscosity 7 is related to the free volume of the liquid, which is defined as the region
accessible to the center of a molecule through a drifting motion without interaction with
its neighbors, by
1 1
logar = log(;-) = B(3 ~ %) (18)

where B is a material parameter, f and f, are, respectively, the fractional free volume
content at current condition (time) due to temperature and hydrostatic stress changes
and at the reference condition corresponding to the state of the polymer in which the
time dependent viscoelastic moduli were measured. The above equation is commonly
designated as the Doolittle equation since it was first obtained semi-empirically by

Doolittle [12].

The effects of temperature and pressure histories on the relaxation time scale (or
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viscosity) are indirect through the fractional free volume as proposed (elastically) by

Ferry and Stratton [7].

F=fotas AT + B; Aoy (1.9)

where a;, 3; are material parameters, AT and Aoy are temperature and isotropic
stress (or pressure) changes with respect to.the reference condition at f;.

According to this model, an increase in temperature causes an expansion and there-
fore increases the free volume which in turns shifts the relaxation function to the left.
On the other hand, high pressures effect a decrease in the free volume, with a shift of
the viscoelastic spectra towards the glassy behavior. It also follows that high tensile
stresses accelerate the creep process due to an increase in free volume, and they are
known to cause the yield-like phenomenon in glassy polymers [13]. It should be recalled
that equations (1.8) and (1.9) are derived primarily for polymers in the rubbery regime.
The free volume obtained by equation (1.9)is called the (thermodynamic) equilibrium
free volume and is denoted by f,..

For polymers in the rubbery regime, another approach, the molecular theory, claims
that a change in the free volume can be assumed to be some constant fraction of the

total deformation (inclusive thermal expansion/contraction), i.e.,
f=fo+6 Depy. (1.10)

Since equation (1.10) replaces (1.9), § must be related to 8; or a;. Again, the as-
sumption that polymers in the rubbery regime behave essentially linearly elastically

gives
Acrkk
K

Afkk = - oy, AT.

Using this in equation (1.10)and comparing the resulting equation with (1.9), it follows

that
)

ﬂf=‘R.;-

(1.11)

We next show that 8; and K, are related to the compliance of the free volume



which is defined as

of
Ciree = Fous’ (1.12)
By is the compliance of the equilibrium free volume since 8; = 5——2 by virtue of
Okk
equation (1.9). One then has
0f ' X
ﬂf - é—o_.—k_; - Cfreel(T))Tg) - Cfree' (1'13)

The relation between K., and Cj,.. is obtained as follows. Since the viscoelastic
behavior of the bulk modulus (or its compliance) as presented by equation (1.3) can be
described by a mechanical model shown in Figure 1.1 with each of the spring-dashpot
assemblies depicting one component of the spectrum while the series of the elastic springs
rendering the asymptotic response, the asymptotic bulk compliance is, therefore, equal
to the sum of the compliance of the free volume and that of the occupied volume as

indicated in the mechanical analogue.? Thus

1

K =— 14
>0 = G ¥ Co (14

Using (1.13), (1.14) and (1.11), it follows that

C*
§ = dfe= 1.15
tree T Coce (1.15)

Bio

= P 1.16
1+ By, (1.16)

where 3y, is a ratio of C7,,, to Co.. and is determined in section 1.4 below.

Equation (1.15) states that the contribution of the change in volumetric deformation
to the change in fractional free volume (6§ A €) is‘similar to the contribution of the
total displacement of a mechanical model consisting of two springs (occupied and free

volumes) in series to the displacement of each individual spring.

2A major simplification is made here since the molecular rearrangements could modify the chain
topology in such a way that a “trading” between free and occupied volume occurs, as would be the
case when the regions where molecules partially overlap change in size without a macroscopic change
in volume.
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Figure 1.1: Mechanical analogue for nonlinearly viscoelastic bulk behavior (Losi, 1990).
1.3 Extension to polymers in metastable equilibrium states

The extension of the previous constitutive relation to polymers in metastable equilibrium

state necessitates introducing the so-call frozen-in free volume which is addressed next.
1.3.1 Frozen-in free volume

To begin, we examine the viscoelastic behavior of the free volume. Upon sudden pressure
or temperature changes, the free volume undergoes an instantaneous change followed
by a time-dependent creep behavior which contributes to the evolution of the material
towards an equilibrium state. The creep behavior can last from microseconds up to
several years depending on the values of isotropic stress and temperature.

When the polymer is in the rubbery regime, the instantaneous change (as observed
on a laboratory time scale) is the same as the asymptotic (equilibrium) change due to
a very fast creep. The free volume change in this case is time-independent and can
be predicted by equation (1.9) or equivalently by equation (1.10). The constitutive

behavior of the polymer for this case is described by equation (1.1) with all parameters
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as defined previously.

Conversely, when the polymer is in the glassy regime, the evolution of the instan-
taneous change towards the asymptotic (equilibrium) value occurs at a very slow rate
such that the (thermodynamic) equilibrium change may not be attainable. The in-
stantaneous change in this case is identified as a metastable equilibrium change (differ-
ent from the true thermodynamic equilibrium change as observed in the former case).
The metastable equilibrium is defined here as a state in which there is virtually no
time-dependent change in the condition of the polymer, but the material is not at the
thermodynamic equilibrium. The condition of metastable equilibrium typically occurs
below the glass transition, e.g., when the volume of vacancies is larger than the equilib-
rium free volume. The molecular interpretation of the metastable equilibrium is given
immediately below.

According to the thermodynamic equilibrium description, as indicated in equa-
tion (1.9), the change in fractional free volume is proportional to AT, and as a conse-
quence a polymer can be cooled under the isobaric condition (o, = 0) to a state with a
null free volume. However, in reality, the total annihilation of the vacancies in the solid
is not likely to occur due to the random thermal vibration of the polymer chains which
is invariably present to varying degrees. The free volume therefore gradually decreases
to a (constant) residual (or frozen-in) value for cooling to temperatures well below the
glass transition.

The metastable equilibrium free volume is obtained by Losi and Knauss [1] from a

stochastic analysis of the viscoelastic process and is given by
fo= —aBaTD (1.17)

where f,, is given by equation (1.9). Equation (1.17) predicts that for every small
values of f,, there is always a larger nonzero positive value of f., and that f, = f,, for
sufficiently large foo-

For later discussion, it is also of interest to evaluate the compliance of the metastable

equilibrium free volume. The compliances of the metastable equilibrium free volume is
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computed through equation (1.12) with the aid of (1.13).

fe\ (0f
Cfreel(T((Tg) = <8f00> (8akk)

= Clree 0(fe)- (1.18)

#(f.) in the above equation is obtained by differentiating equation (1.17) with respect

to fo and has the following form

1
=40 Eep(Z-E)

o(fe) = (1.19)

¢(fe) is near unity for sufficiently large value of f, but vanishes as the latter becomes
small. The compliance of the free volume therefore vanishes at states well below the

glass transition.
1.3.2 The constitutive model for polymers in the glassy regime

We develop now the constitutive model for polymers in the glassy regime when they can
achieve at best a metastable equilibrium condition. Losi and Knauss gave two modifi-
cations to the previous constitutive model for polymers in the glassy state. First, the
metastable equilibrium free volume should be used in place of the thermodynamic equi-
librium free volume in all of the previous results since the prediction for time shifts based
on the Doolittle equation, e.g., equation (1.8), and the (thermodynamic) equilibrium
free volume ( f) fails to conform to experimentally measured values at temperatures
below the glass transition. Second, since the compliance of the metastable equilibrium
free volume is different from that of its thermodynamic equilibrium counterpart, the
“asymptotic bulk modulus (K,) is, therefore, also different in the two regimes.?

In the previous section it has been stated that the compliance of the metastable
equilibrium free volume vanishes for small values of f. (cf. equation 1.18). This lack
of free volume compliance affects the asymptotic bulk modulus of the polymer (in the

glassy regime) which is denoted here as K. With the aid of the mechanical analogue

3 As a consequence a correct asymptotic bulk modulus must used in the evaluation of the function
p(t) for the glassy regime.
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mentioned in section 1.2.2, K, is related to the compliances of the (thermodynamic)

equilibrium free volume and the occupied volume fractions by

. 1 1
I’

(oo = = — .
Cfree‘(T<<Tg) + Cocc eree d)(fe) + C’acc

Using (1.14) and the definition of §;, (as the ratio of C3,,, to C,..) in the immediately

above equation, it follows that

1"*'ﬂ.fo
1+ By, d(fe)

Ko = Kq (1.20)

The change in the fractional free volume for the present case is still assumed to be
some fraction of the total volumetric deformation (cf. equation 1.10) but with & (as
given by equation 1.15) being computed based on the (correct) metastable equilibrium

free volume compliance, i.e.,

5= Cf"eelT<<Tg — »Bfoqb(fe) )
Cfree|T<<Tg + Coce I+ ¢(fe)18fo

(1.21)

Equation (1.21)is applied to both the glassy regime (T < T,) as well as the rubbery
regime (T > T,) since it reduces to (1.16) for sufficiently large value of f,.

1.4 Evaluation of gy,

In this section, we want to calculate 3;, defined previously in term of experimentally
measurable quantities o, and K(2).

The basic event of the glass transition is observed to be a kinetic phenomenon under
ordinary experimental conditions. This kinetic phenomenon is attributed to a (possible)
nonequilibrium state of the polymer at temperatures below glass transition temperature.
It is interesting that although T is a function of the experimental time scale, the value of
the change of the thermodynamic variables (such as C, and «) across the glass transition
is not. This suggests that there is an underlying thermodynamic transition? [14]. Losi

and Knauss showed that the nonequilibrium effect dominates over the consequences of

1f the glass transition is characterized as a thermodynamic transition, the discontinuities of the
thermodynamic variables must satisfy certain relations.
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the thermodynamic transition [10]; they obtained f§;, by neglecting the presence of a
2

second-order transition at Ty, i.e. is assumed to be continuous across the glass

T ovVoT

transition (U is the internal energy of the system). From thermodynamics,

(57), -
v ), TFE

Since far above or well below the glass transition the polymer behaves essentially linearly
2

elastic, the values of are, at both ends of the glass transition

ovoT |rv
0*U 0oy, )
—_- - = K., 1.22
(EWBT)TQ»Ty ( or ), ~ v (1.22)
o0U -
= K (i |- .
(3V3T>Tg<<7’g ag, ( (oo + ;Ix ) (1.23)
2
The initial assumption that VoT is continuous across glass transition then determines
B, which is given by
oy v K
Bso = oy Do (1.24)

1.5 The complete model for all thermodynamic regimes

So far the constitutive model is proposed for cases in which upon environmental changes,
the polymer does not pass through the glass transition. Furthermore, there is no time-
dependent evolution of the instantaneous free volume change due to either extremely
slow or very fast creep. The constitutive relation, which applies to all regimes including
the glass transition and takes into account the time dependent behavior of the free
volume, is still described by equation (1.1) with the time shift function given by (1.8).
However, the time scale of the material relaxation is taken to be affected by the current

free volume f (through the time shift) which is

=i+ [ (5N dentr), (1.25)

where f; is the fractional free volume content in the initial, unperturbed state.
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In the computations of the current free volume f and the thermal pressure p(t) of
equation (1.1), the parameters §( f), K., #(f), and By, are defined by equations (1.21),
(1.20), (1.19), (1.24) with f in place of f,, respectively.
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Chapter 2

Thermoviscoelastic Stress Analysis

2.1 Introduction

Adhesive bonding offers certain advantages over many of the conventional joining meth-
ods such as spot welding, brazing welding and over the use of discrete fasteners. Besides
potentially beneficial economic aspects adhesive joining is prone to lead to lower stress
concentrations and thus offers the prospect of reduced failure through fatigue and frac-
ture damage. Investigations into the strength of adhesively bonded structures typically
deal with a plethora of scientific and engineering questions, ranging from the need to
understand the nature of the (chemical) bond between the joined solids, the distri-
bution of the forces transmitted through the joint and the dependence of the latter
on the structural geometry (test configuration). Of particular importance in pursuing
the physio-chemical characterization of the interface strength is a sufficiently detailed
knowledge of the stresses and deformations at and near the interface(s), for an impre-
cise knowledge of these conditions will invariably lead to improper interpretations of
mechanical tests for the purpose of developing physio-chemical bonding concepts.

One of the least addressed and understood phenomenon in this context is the gen-
eration of residual stresses, which are invariably present to varying degrees. Adhesive
bonds are typically formed by heating the polymeric adhesive to above the glass tran-
sition temperature while pressing the adherends together, and then cooling thém under
sustained pressure to room or use temperatures. Because the polymer is rate and tem-
perature sensitive, and in particular sensitive to the rate of thermal changes, the cooling
history has a potentially significant effect on the strength of the joint through the gen-

eration of residual stresses that depend on the manufacturing history. These stresses
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can be so large as to cause the failure of the adhesive bond without the addition of any
or with only minimal forces across it.

It is the purpose of this work, presented in two chapters (chapters 2 and 3), to exam-
ine the development of residual stresses in a geometrically reasonably realistic situation,
and to explore the corresponding decrease of the bond strength in terms of an associated
energy release deficit. This chapter addresses the problem of the (computational) stress
analysis, which is a prerequisite for the energy analysis relegated to the next chapter.

Previous investigations of the residual stresses in an adhesive bond were limited
because of (a) the lack of a suitable description of the mechanical behavior of polymers
and (b) a powerful computational tool; these two elements are now available. An “early”
thermoelastic analysis by Carson and Sapetta for an aluminum-epoxy joint suggested
that at temperatures of about 100°C below the glass transition temperature the joint
should readily fail solely because of the high residual stresses [15]. Weitsman calculated
(approximately) thermally residual stresses in a symmetric double-lap joint based on
both linearly elastic and viscoelastic models for the adhesive, using variational methods
[16]. For an infinite joint configuration, he found an optimal cooling path for achieving
the lowest residual stresses which did not necessarily involve temporally linear cooling
[17]. However, the viscoelastic constitutive description for the polymer employed in these
analyses was much simpler than that used here; also the transient (spatial) temperature
distribution in the sandwich was assumed to be uniform throughout the cooling history,
thus excluding a (possibly) severe effect of the bending response of the metal components
on the final stresses as discussed here for the finite bond configuration.

While progress can be made to determine residual stresses in bonded joints through
the experimental process of trepanation with suitably chosen sections and defoliation,
such investigations, while representing important experimental tools, deal only with
after-the-fact situations and tend to provide a more limited understanding of the influ-
ence of various processing parameters on the final stress state. It is desired, therefore,

to formulate a generic analytical problem, which, through its solution process demon-
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strates the important aspects of what controls the build-up of these deleterious stresses.
A necessary prerequisite to such an analysis is the existence of a constitutive descﬁption
for the polymer which incorporates its dependence on the rates of mechanical deforma-
tions and on the thermal history. A model for this characterization has been offered by
Knauss and Emri 8, 9] and by Losi and Knauss [10]; while further investigations into
its generality are in progress, we consider it at this time a viable material description
for the present purposes, because it has already provided very realistic simulations for
a considerable range of physical test situations [9, 18]. This nonlinear model is not
trivially applied to any arbitrary polymeric material, because a considerable amount
of characterization testing needs to be available. Some of these tests are not even in
the standard repertoire of the current mechanical characterization of polymers (e.g.,
volume compliance measurements). For this reason we employ here, for demonstration
purposes, the properties of a material modelled after polyvinylacetate (PVAc), which has
a glass transition temperature of about 30°C, lower than typical structural adhesives.
One can largely compensate for this shortcoming by making all deliberations relative
to the glass transition temperature. Moreover, PVAc is an uncrosslinked polymer for
which truly long term behavior is liquid-like; thus very long time considerations would
underestimate the very long term residual stresses relative to thermosetting adhesives.
Discussion of this consequence is included in section 2.5.1.2.

In the sequel the thermomechanical problem is first delineated, comprising spec-
ification of geometries and the formulation of the transient thermal problem. This
development is followed by a description of the finite element and concurrent thermal
analysis in section 2.3, and section 2.4 presents the (plane strain) stress results for spe-
cific geometries, i.e., aluminum-polymer sandwiches of both finite and infinite extents.
The implications of these results to adhesives made of other polymer systems and under

other processing conditions are discussed in section 2.5.
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2.2 Problem formulation

We consider the two-dimensional problems of two (aluminum) adherends of infinite and
of finite extent, bonded by a thin layer of adhesive polymer as indicated in Figure 2.1

(for the infinite domain ! — oo). The infinite geometry is used as a precursor for the

Figure 2.1: Geometry and reference frame.

finite one since it is simpler to understand and its solution corresponds to the “far
field” solution for the finite configuration. The whole assembly is initially at a uniform
temperature T; above the glass transition and the outside or large flat surfaces of the
adherends are cooled to below the glass transition according to the cooling history

(T; - T))

tr
= Tf t > g,

where T; and tr are the final temperature and the “cooling” time, respectively. For
reasons of simplicity, the edges of the sandwich are considered to be thermally insulated.

The heat flow and spatially varying temperature distribution is determined subjected
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to these thermal boundary conditions; all exposed surfaces are traction free.! The
thickness of each aluminum plate is held at 1.6 cm (~ 0.5 inch) in this study while the
thickness of the polymer is allowed to vary between 0.32 mm to 1.6 mm. The initial
and final temperatures of the sandwich are 60°C and —5°C, respectively, with the glass
transition temperature of the polymer (PVAc) being 29°C.

The constitutive behavior of PVAc is characterized by the nonlinearly viscoelastic
model employed previously for thermoviscoelastic stress analyses by Losi and Knauss.
This model is based on the assumption that in addition to the thermally induced change
in free volume, the mechanically (stress) generated change in (free) volume affects the
time dependence of the polymer. This model has been described briefly in chapter 1.
The material parameters for PVAc is listed in appendix A. The material properties of
the aluminum are also listed there.

The shear modulus of PVAc, shown as the solid line in Figure 2.2, was obtained
from the creep compliance as measured by Heymans [3] while its time-dependent bulk
modulus was extracted from data by McKinney and Belcher? [19] and is shown (also as
the solid line) in Figure 2.3.

Within the framework of the small deformation theory and by ignoring the thermo-
mechanical coupling term in the Helmholtz free energy, a thermomechanical boundary
value problem (without a heat source) must satisfy the following governing equations

with appropriate initial and boundary conditions:

dT
k7T = pCo(T)—= (2.1)
055 = 0 2.2
7.3
1
G = U+ ) (2.3)

!Normally during the bond formation, the large flat surfaces of the adherends are not traction free
but under a nonuniform and (probably) time dependent pressure field. Because of the already large
number of variables accounted for in the analysis we exclude this “pressure” boundary condition.

2The original data gives a very short relaxation time and an unreasonably low T, of 17°C either
because of the molecular weight was very low or because of plasticization by the pressurizing medium.
The original time-dependent bulk modulus curve is, therefore, shifted by 2.5 decades towards longer
relaxation times to approximate a Ty, of 29°C for the bulk behavior. The consequence of additional
approximations are considered at the beginning of section 2.4 and in section 2.5.1.1.
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o;; = Fle&;T), (2.4)

where F is the thermomechanical response functional of the maferial of the body (chap-
ter 1), k and C,(T") are the thermal conductivity coefficient and the temperature depen-
dent heat capacity, respectively; p is the density; o;;, €;; and u; denote the (nominal)
components of stress, strain and displacement under assumption of small deformation.
As a result of the omission of the thermomechanical coupling term, the energy equation
reduces to the heat conduction equation. Even though the equations look explicitly
uncoupled, they are, in fact, coupled because C, in equation (2.1) depends on the vol-

umetric strain such as in the case of the nonlinearly viscoelastic model for polymers.?

2.3 Computing algorithm and discretization

The simultaneous solution of the equilibrium equation coupled with the problem of heat
flow deserves special consideration. Also, the efficient partition of the whole geometry
into finite elements warrants discussion. Both of these topics are addressed briefly in
the sequel. A more detailed description of the finite element modelling the thermovis-

coelastic boundary value problem is given in appendix B.
2.3.1 Computing algorithm

The fully coupled thermomechanical problem is often solved by what is known as a
staggered algorithm based on an isothermal mechanical phase followed by a heat con-
duction phase. That algorithm is more efficient and convenient than the monolithic or
simultaneous solution scheme, in which the time-stepping algorithm is applied to the full
problem of evolution, because the latter scheme usually leads to an impossibly large and
non-symmetric system. However, the staggered scheme is at best conditionally stable
[20, 21, 22]. In spite of this potential drawback, we use the staggered algorithm. Be-
cause the thermomechanical response of the polymer depends on the volumetric strain

through the time shift factor, the stresses and strains must be determined iteratively

3The heat capacity of the polymer is discontinuous at the glass transition which corresponds to a
critical fractional free volume of 0.65 percent for PVAc.
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during an isothermal phase. The iterative procedure may fail to converge unless the
time step At is sufficiently small. However, if convergence is achieved within each time
step, the resulting temperature and displacement fields do not evolve in an unstable
manner. This conditionally stable (staggered) scheme has not posed any numerical dif-
ficulty in our computations, possibly because of the omission of the explicit coupling
term in the energy equations.

We use 4-node quadrilateral isoparametric elements. Because the long term (rub-
bery) bulk modulus is several orders of magnitude larger than the long term (rubbery)
shear modulus in many polymers, the adhesive is nearly incompressible in the long time
or rubbery regime. Isoparametric elements are known to behave poorly in such cases
due to the locking phenomenon which can have a serious effect on the stress solutions
unless special formulations are used [23, 24, 25].

We employ, therefore, the reduced integration scheme [25], in which the volumetric
strain is segregated and treated with a reduced quadrature while the remaining devi-
atoric term is integrated by full quadrature. Further, the thermomechanical response
function (or material property) is always evaluated based on the volumetric strain his-
tory at the reduced quadrature point. Thus it is assumed that the material property
of an element is uniform. This scheme eliminates mesh locking (see appendix B). Both
the nonlinearly viscoelastic model as well as the staggered (thermal) scheme were im-
plemented in a finite element code, FEAP*, as used by Losi and Knauss [18], however

modified here to include the reduced integration scheme.
2.3.2 Discretization

Due to (double) symmetry, only one quarter of the (finite) geometry needs to be consid-
ered. The infinite sandwich is modelled as a strip with one side being fixed in the axial
(z) direction to reflect the symmetrical condition and the other side being restrained
such that the displacements (in z direction) of all nodes along that side are independent

of the thickness coordinate. That model will give the correct vanishing shear stress 7.,

*This code was originally developed by R. L. Taylor of U.C. Berkeley [26].
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in the sandwich without considering a large finite element mesh. A typical mesh used
in modelling an infinite sandwich consists of 100 elements (layers) across the adherend
(aluminum) thickness and 10 - 50 elements across the polymer thickness.

Due to the stress singularity at the intersection of the free edge and the interface
[27], a mesh of at least 5000 nodes had to be employed to obtain results sufficiently

refined and acceptable to us.

2.4 Results and discussion

In this section the computation of stresses are detailed with the objective to interprete
them quantitatively and to deduce from them a cooling rate that is optimal in some
sense for achieving low residual stresses. To this end we examine the effects of the
cooling rate applied to the surfaces (or tg) on residual stresses for the two geometries
of an infinite and a finite dimensioned sandwich with h; = 1.6 cm, and h, varying
from 0.32 to 1.6 mm; these results are then discussed further in light of other process
conditions as well as of other polymers in section 2.5. Since cooling stresses continue
to change with time after thermal equilibrium has been reached (see Figure 2.4 for a
typical response), the stresses presented in the next two sections warrant discussion.
The time required for the adherend to achieve thermal equilibrium, as determined
from the first term of the series solution of Carslaw and Jaeger [28], is about five
seconds longer than the “cooling time” without the polymer. The thermal equilibrium
time for the sandwich is about 10 to 20 seconds longer than that value, depending on
the polymer layer thickness.> However, in that time frame the stresses have not reached
their maximum values; an explanation for this response is given immediately below.
The (final) fractional free volume f for PVAc modelled here is about 0.6 percent
for all cooling rates considered and for the final temperature at or below —5°C. By

using this value for f in equation (1.8) of chapter 1, the relaxation times increase by

5Since the thermal conductivity coefficient of the aluminum is relatively high (k = 237.1 —V}’n—“f—éﬁ) and
since the thicknesses of both polymer and adherend are small (k1 = 1.6 cm, h2 = 0.32 — 1.6 mm), the
thermal equilibrium time for the sandwich is very short, only about 15 seconds in step cooling (tr = 0.02
sec).
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Figure 2.4: A typical history of the thickness-averaged cooling stress &, in the polymer.
In this example, the time required for thermal equilibrium is about 15 seconds (quench
cooling).

a factor of 10° relative to that at the reference temperature T, = 40°C. Since the
relaxation times, especially those for the bulk modulus, at the reference condition are
very short, we expect that mechanical relaxation is not necessarily “frozen” at the fi-
nal temperature. In fact, the (shear) stress relaxation occurs over times on the order
of days while the thermal volume creep in the current description is on the order of
hours because the (shortest) bulk relaxation time of the model solid is shorter than
that corresponding to the shear behavior by a factor of 10*. Thus the effect of the
thermal volume creep dominates that of the stress relaxation for a short time imme-
diately after thermal equilibrium and becomes less important for longer times.® As a
result, the stresses keep increasing for a short time after thermal equilibrium prevails in
the sandwich, then decrease (relax) at a slow rate. Thus, for demonstration purposes,

all stress solutions presented in this chapter refer to the (timewise) maximum stresses.

In the absence of experimental data for ©(t), the thermal pressure p(t) is assumed to be history
(time) independent (see chapter 1); as a consequence, the thermal volume creep (or the viscoelastic
thermal expansion behavior) of the polymer resembles to its creep bulk compliance.
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This delayed stress rise is increasingly suppressed as the distribution of bulk relaxation
times shifts to longer times. Our calculations (not detailed here) show that when the
relaxation times for the bulk behavior are on the same order of those for shear behavior
(by log-shifting the time dependent bulk modulus curve 4 decades to longer times), the
cooling stresses reach their maximum values at the time of thermal equilibrium.

In connection with these remarks, we wish to make the following observation on
the viscoelastic characteristic of a “frozen” polymer. As outlined in chapter 1, the
free volume of the cooling polymer will decrease and finally reach a (constant) residual
value (of about 0.6 percent) if the final temperature is sufficiently low. In that case
the polymer is in a metastable equilibrium (glassy) state and is assumed to behave
essentially in a linearly elastic manner. The metastable equilibrium state is defined
here as that state in which there is virtually no time-dependent change in the condition
of the polymer, but the material is not at thermodynamic equilibrium. Since the bulk
relaxation times of the model solid (PVAc) are very short as pointed out earlier, the use
of glassy properties, especially the glassy thermal expansion coefficient, to characterize
a polymer in a metastable equilibrium state may not always be justifiable. This decision

is strongly impacted by the bulk relaxation spectrum relative to that in shear.
2.4.1 Infinite bonded plates

We consider first a sandwich, infinite in the z- and z-directions so that all displacements
are functions of y only. The only nonzero stress component is then the normal stress o,
(0y = Tuy = 0). The distribution of this stress across the polymer thickness is given in
Figure 2.5 for different layer thicknesses and for step cooling (i = 0.02 sec). To exhibit
the effect of the cooling rates on the residual stresses, the thickness-averaged o, stress,
G, is presented in Figure 2.6, for hy, = 0.32, 0.80, and 1.6 mm, as a function of ¢5.

In (sub)sections below we discuss first the form of the (residual) stress profile as
exemplified in Figure 2.5 and then examine the applicability or validity of thermoelastic-
as opposed to the thermoviscoelastic-analyses as often practiced in engineering design.

This discussion necessitates introducing the concept of the glass transition temperature
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Figure 2.5: Residual stress o, across polymer thickness in an infinite sandwich for step
cooling (tg = 0.02 sec). (Note that the thermoelastic analysis yields an uniformly stress
distribution with a magnitude of 11.3 MPa for all polymer thicknesses).

and the so-called stress-free temperature, especially in the context of cooling rate effects
on the glass transition.

The major factors for the build-up of the residual stresses are the following: At
any time during cooling, temperature changes on the surface will precede those in the
interior. Thus temporary temperature differences exist between points near the surface
and in the interior. Furthermore, the thermal expansion coefficient varies across the
sandwich since the adherend and the polymer are different materials and the thermal
expansion coefficient of the polymer is temperature-dependent. The displacement con-
tinuity in the (infinite) sandwich is then responsible for the development of the residual

stresses.
2.4.1.1 Residual stress profile

It is well known from previous work [2, 18, 29, 30] that a homogeneous viscoelastic body

cooled from an outer boundary contains residual tension in the interior and residual
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compression in the surface layers, a stress field that is desired to inhibit fracture from a
surface. This stress behavior results from the early cooling and hardening of the surface
before the interior has had a chance to cool and contract. The situation is similar here
in that the stress at the center of the polymer layer is higher than near the adherends.
The o, near the interface is not compressive, however, because the metal adherends
contract to a lesser degree and thus superpose an overall tension on the polymer. A
thicker polymer interlayer results in a larger transient temperature gradient across its
thickness and as a consequence in a larger deviation from an uniform stress distribution.
These trends are clearly evident in Figure 2.5.

2.4.1.2 The glass transition temperature and its dependence on cooling

rate

When the polymer is cooled across its glass transition, its thermodynamic state changes
from the rubbery to the glassy state. A common definition of the glass transition
temperature is in terms of the (interpolated) location of the change in slope of the
specific volume-temperature trace when the measurement is made under a very slow
and constant rate of temperature change. If such a measurement is performed at a
constant but higher cooling rate, the fractional free volume at the glass transition is
higher, instead of being at its critical value.”

Alternatively, the glass transition is sometimes assumed to occur at some critical
value of the fractional free volume [31]. This critical fractional free volume is chosen
to be the same as that at which the discontinuity of the heat capacity occurs.® For
the model material employed here this critical free volume is 0.65 percent. Thus we
define the (alternate) glass transition temperature Tg here as that temperature at which
the fractional free volume of the polymer reaches 0.65 percent while the temperature
falls from T; to T s~ Unlike the previous definition of the glass transition temperature,

this one gives a quantitative way to characterize the “onset” of the sudden changes

"As a result the glass transition temperature appears to be higher for higher cooling rates.
8The discontinuity of the heat capacity has been comsidered indicative of a glass transition as a
thermodynamic property [31].
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in mechanical properties of the polymer under a more general thermal (mechanical)
history. We thus denote the glass transition temperature of the homopolymer measured
at an infinitesimally small rate of cooling by T, which is notably different from Tg as
defined in terms of a critical free volume.

The effect of the cooling rates on Tg is .considered next. The glass transition tem-
perature Tg of the polymer (in a sandwich configuration) is a decreasing function of the
cooling rate since a higher cooling rate results in a smaller volume contraction for a
given temperature change. A direct consequence (of this quantitative result) is that a
higher cooling rate induces a smaller time shift (see section 2.4.1.6 for consequences).

It also follows that Tg < Ty.
2.4.1.3 The stress-free temperature and its dependence on cooling rate

We next turn our attention to the stress-free temperature. Since the long term shear
relaxation modulus of a polymer is very small (or zero as in the case of thermoplastic
materials such as PVAc) there should exist a minimum temperature above the glass
transition at which the sandwich is essentially still stress free. Let us define this stress-
free temperature T, as the lowest temperature at which no (signiﬁcant) stresses arise as
the temperature drops from T} to Tp. It is assumed that stress relaxation is fast enough
for the stresses to be completely relaxed down to this temperature.

For a low cooling rate, the thermal strain mismatch (the difference in thermal strains
of the two materials) is low because of a gradual temperature gradient and the stresses
are generated at a sufficiently slow rate so that none survive viscous relaxation even at
relatively low temperatures.® It thus follows that the lower the cooling rate the lower

the stress-free temperature.

®The time shift factor ar is higher for low cooling rates; however, the cooling time also increases and
its magnitude relative to the temperature-shifted relaxation times is larger for the lower cooling rate.
As a consequence the (rate dependent) thermal expansion coefficient of the polymer increases with the
cooling times while its stiffness decreases. This stiffness reduction is observed to be more significant
than the effect of the higher (rate dependent) thermal expansion coefficient for tr > 10 sec (see section
2.4.1.6).
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2.4.1.4 Evolution of the stress o,

With the definitions of 7 ¢ and Ty in mind, one divides the coo]jng history of the polymer
as it passes from T; to T; into three phases. In the first (“liquid”) phase, T; > T > T, 0,
the polymer behaves essentially as an incompressible liquid and any stress developed
during this phase will relax immediately to zero. The second (“viscoelastic”) phase
occurs for Ty > T > Tg. In the last (“glassy”) phase, Tg > T > Ty, the polymer is
assumed to be essentially linearly elastic, so that the stress increment in this phase
can be evaluated in a thermoelastic manner. Since both 7, and T, depend on the
cooling rate as mentioned in sections 2.4.1.2 and 2.4.1.3, any assumptions regarding ’f’g,
T, and the omission of the contribution of stresses developed during the viscoelastic
phase to the residual stresses must be made with care. In addition, Tj, T, and Tg are
not necessarily identical. It should be emphasized that even though the temperature
range of the glassy phase is smaller than |T; — T,| since T, < Ty, the residual stresses
computed from the fully thermoviscoelastic analysis may not be conservative since (a)
the stress contribution from the viscoelastic phase of the cooling may not be ignored
and (b) for the present model material (PVAc), the “frozen” polymer still exhibit some
time dependent characteristic at temperatures below T, (f = 0.65%) as mentioned in
the introduction of section 2.4. The second statement seems to be contradictory with
experiences as pointed out immediately below. Since the value of the change of the shear
modulus across the glass transition is several orders larger than that for the thermal
expansion, one normally assumes, at least for a problem of a sandwich under a (spatially)
uniformly temperature change, that the thermoelastic analysis with the glassy modulus
and glassy thermal expansion coefficient for the polymer would yield the highest residual
stresses. We show now that this assumption is not necessarily realistic for the model
solid. If the bulk relaxation times are short relative to the shear relaxation times, one
can visualize a situation in which the thermal transient time'® is shorter than the shear

relaxation times but still longer than those for the bulk behavior. The magnitude of

®The thermal time scale is governed by both the cooling time tx and the thermal diffusion time (see
appendix C).



- 31 -

the (time dependent) shear modulus of the polymer in that case is on the same order
as (not several orders smaller than) the glassy shear modulus while its (rate dependent)
thermal expansion coefficient is close to the rubbery thermal expansion coefficient. The
residual stresses from the thermoviscoelastic analysis for this example are, therefore,

not necessarily bounded by the thermoelastic results.!?
2.4.1.5 Thermoelastic analysis

When both the adherend and the polymer are considered to be linearly elastic, the

residual stress in the polymer is given by 2

o = 2E1h1E2(a1 A T1 — Qg A Tg)
£z 2hyEy + hoE,

(2.5)

with E, a, and AT denoting the elastic modulus, the thermal coefficient of expansion
and the temperature change; subscripts 1 and 2 refer to the adherends and the polymer,
respectively.

The thermoelastic analysis as often used in engineering design evaluations assumes
that the temperature distribution in the sandwich is spatially uniform throughout his-
tory and that Tg, Tg and T; may be considered to be identical, so that residual stresses
are accumulated only as the result of the temperature dropping below the glass transi-
tion. However, as discussed above, these assumptions are not necessarily realistic. The
thermoelastic counterpart problem consists then of treating the polymer as (glassy)
elastic below T, (= Ty = T,) and as not being endowed any more with time dependent
response.

The residual stress in the polymer is, therefore, estimated by using equation (2.5)

with AT} = AT, = Ty — T,. If we assume, for exemplary purposes, that T; = 60°C and

'The stiffness of the polymer decreases more significantly with the cooling times than its (rate de-
pendent) thermal expansion coeflicient increases, its residual stresses are, therefore, reduced for longer
cooling times as stated in footnote 9; however, the magnitude of this stiffness reduction is only slightly
greater than the increase in the (rate dependent) thermal expansion coefficient. Thus the stress com-
puted from the fully thermoviscoelastic analysis still can exceed the thermoelastic prediction when the
(rate dependent) thermal expansion coefficient is close to the rubbery value.

12For plane strain, —— and {1 + v)o are used in places of E and a.
v

1—
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that Ty(= —5°C) is reached after the relatively long time of 7 hours, a full thermovis-
coelastic analysis yields a thickness-averaged stress &, in the adhesive of 17 MPa; on
the other hand, a simple thermoelastic analysis with AT} = AT, = —34°C yields only a
stress of 11.3 MPa, an underestimation of 35%. Thus, as was found before by Losi and

Knauss [18], thermoelastic analysis renders typically nonconservative stress estimates.
2.1.4.6 The effect of cooling rates on residual stresses

The dependence of the stress on the rate of cooling (o 1/tg) is illustrated in Figure 2.6

for hy = 0.32, 0.8 and 1.6 mm. The same characteristic behavior holds also for other
hy
hy
tr < 1 sec the stresses are essentially insensitive to the cooling rate. Around tz = 1

thicknesses considered (e.g., < 15%,h; = 0.5 -7 cm, hy = 0.1 — 1.6 mm)!3. For
sec there appears a small maximum with a monotonic decrease for longer cooling times.
For present discussion purposes we consider thus tg = 1 as a “critical cooling time.”

The magnitude of the transient stress in the polymer depends on both the local
rate of strain as well as on the rate of change of the time shift factor with respect to
temperatures. A higher cooling rate yields higher rates of strains because of larger asso-
ciated temperature gradients and shorter times to reach thermal equilibrium. Without
considering the effect of cooling rates on the time shift factor, one should experience
that a higher cooling rate results in higher residual stresses.

In reality, the dependence of the residual stresses on the cooling rate is more com-
plicated and is harder to assess since the time-dependent volume contraction of the
polymer depends on the time-dependent mechanical behavior and on the transient tem-
perature gradient, which in turn depend on the history of volume contraction. However,
in the range g > 1 sec the above simple concept prevails as evidenced in Figure 2.6.

It remains to discuss the near-constancy of the stress for short times t5. Histories
of the thickness-averaged transient stress in the polymer for different values of tg are

given in Figure 2.7 where the curves for cooling times of tz < 0.1 sec collapse onto

13Four more geometries have been considered in this study, and the stress results are given in appendix
C in terms of the governing dimensionless parameters.
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essentially the same trace as implied by Figure 2.7 for step cooling. This response is, no
doubt, to a considerable degree due to the decreasing rate dependence of the polymer as
one enters the glassy domain. However, some rate dependence should normally still be
present. This remaining rate dependence has, however, a counterbalance. As mentioned
in section 2.4.1.2 and above in this section, a high cooling rate yields high strain rates
but produces a smaller time shift (toward glassy behavior) for the viscoelastic functions
due to a smaller volume contraction. The effect of an increase in the strain rate due
to higher cooling rates on residual stress is thus offset by a slower change in stiffness
under rapidly transient temperatures. The same impression is gained from a plot of the
thickness-average stress against the (dropping) temperatures. For cooling times equal

to and shorter than 1 sec all traces are the same as shown in Figure 2.8.

30 ¥ ¥ 1 T 1
tR=0.01 e T T
------ tR = 0.1 " R
Rt tR =10 fli T |
24 . tR =2.0 .
o ————— tR = 10.
§ 18 | ]
z
» 12 B .
|o
6t -
o 1 Ji“ 1 1
-2 -1 0 1 2 3 4

log (t) (sec)

Figure 2.7: History of the average transient stress &, in the polymer of an infinite
sandwich for different cooling times.

The strongest lesson learned from this examination is thus that there exists a “crit-
ical” cooling time below which the residual stresses maintain essentially constant but

maximum values. With longer cooling times these stress values decrease monotonically,
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Figure 2.8: Average transient stress &, in the polymer of an infinite sandwich versus
temperatures for different cooling times.

reduction on the order of 50% below those obtained in a “quench” process requiring cool-
ing times on the order of a day. There appears to be no other critical cooling time which
would clearly demarcate an economically favorable trade-off between the magnitude of

the residual stresses and the time (and cost) consuming process of cooling.
2.4.1.7 Sensitivity to changes in thickness ratio

Because cooling histories, and thus strain rates, are influenced by the thickness of the
adherends and the polymer layer via the thermal diffusion time scale, it is of interest
to examine the effect of different ratios % Figure 2.6 contains data for three such
ratios (given in the inset) which span a realistic range for this parameter as encountered
in engineering. It is interesting to note that this parameter does not have a markedly
strong influence on the magnitude of the residual stresses. That statement is accentuated
further by the inset figure which illustrates a cross plot of the primary plot to allow for

some potential extrapolation to additional thickness ratios. The inset figure applies to

tr = 0.02 and represents the response for supercritical cooling (tg < 1 sec); for tg > 1
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sec the dependence decreases, essentially vanishing for ¢t > 100 sec. The influence is

thus minor for relatively fast cooling and essentially absent for slow cooling.'*
2.4.1.8 Optimal cooling rate

One objective in the production of an adhesive bond is to achieve low residual stresses
within a minimum cooling time. However, since the residual stresses in the bond are,
in general, a decreasing function of the cooling time tg, one has to accept a trade off
between the magnitude of the residual stresses and the cooling time. Since there is
no appreciable change in the residual stress for any change in the cooling time above
tr ~ 600 to 10° sec as shown in Figure 2.6, an acceptable cooling time from the practical

point of view may be around 600 to 103 sec.
2.4.1.9 Residual stresses and ultimate strength

The maximum residual stress computed for the thicknesses of the polymer layer con-
sidered is about 30 MPa. Since the ultimate strength of the model material (PVAc) at
T ~ 23 — 24°C varies from 30 MPa to 50 MPa depending on its molecular weight,®
it is clear that residual stresses can contribute significantly to adhesive failure. This
statement is especially alarming if one considers that the interfacial bond strength is
usually significantly below that of the polymer itself. Observations to that effect have
been offered before in connection with composites by Pagano [33]. An additional con-
sideration enters when one recalls that the strength of a polymer is, roughly speaking,
a decreasing function of temperature. As a consequence it may happen that during
cooling the intermediate stresses may exceed the temporarily low material strength so
that the polymer bond may fail during the formation process. This possibility is often
suppressed by the addition of external compressive stresses, which, in the case of adhe-
sive bonding, are believed to be added to enforce a good mechanical bond, rather than

for reasons of counteracting intermediate material failure. Finally we remark that even

1* At long cooling times, a thicker adhesive yields a slightly lower residual stress, which shows the
same trend as the result from the thermoelastic analysis (cf. equation 2.5).
15These are apparently the only available strength data for PVAc [32]).
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if the residual stresses are insufficient to cause failure immediately upon cool down, the
strong possibility exists that failure occurs at a later time due to the time dependent

nature of the polymer properties.
2.4.2 The finite case

We consider next the case when the lateral extent of the plate is finite, e.g., | = 16h,
which induces non-zero o, and 7, stresses and changes o, from the case for the infi-
nite domain. The stress field for this problem is complicated by the singularities where
the interfaces and the free edge meet. o, is self equilibrated since there are no surface
forces acting on the plate. By Saint-Venant’s principle, o, and 7,, decay gradually
away from the free edge and the solution for the infinite sandwich applies on the re-
maining “interior.” The evolution of the stresses 7,, and o, are further complicated
by the bending of the adherend under the transient temperature gradient and because
of the early incompressible state of the polymer. For an elastic adhesive, this bending
does not contribute to the residual stresses of the adhesive owing to its time and rate
invariant properties. However, for the nonlinearly viscoelastic material employed here,
the stiffness is a decreasing function of temperature and the polymer is quite soft in
the time frame when the adherends bend, but becomes much stiffer at the time when
they attempt to return to their straight configuration. Since the “early” bending of the
adherend is substantial during fast cooling, one may expect that it can have a large
effect on the ultimate values of o, and 7,,.

We carry out calculations for two polymer thicknesses: 0.32 mm (2% of the adherend
thickness) and 0.80 mm (5%). The residual stresses across the sandwich thickness at
different stations along the length for h, = 0.32 mm and for step cooling (tg = 0.02
sec) are given in Figures 2.9 - 2.14. The tractions along the interface are of primary
interest since they drive the potential bond failure. These stresses are presented in
Figures 2.15 and 2.16 for h, = 0.32 mm and in Figures 2.17 and 2.18 for A, = 0.8mm,

for various values of tr. We also include there results from the thermoelastic analysis (for

a finite sandwich plate) with the (questionable) assumption of a stress-free temperature
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at T, = 29° and based on glassy properties, which are designated as those corresponding
to tg — oolb.

Apart from the corner singularity both o, and 7,, exhibit maxima along the in-
terface. If one examines this maximum as a function of the cooling time one finds a
result that is similar to that corresponding for the infinite domain, in that below a
certain cooling time (now only 0.2 sec) the stress remains at a maximum and drops to
lower values as the cooling time increases from this “critical value.” The location of the
maximum shifts to different positions as the cooling time changes.

One notes that the tractions are significantly different for supercritical cooling (quench-
ing) and for subcritical (slow) cooling. The tractions in the (pronouncedly) subecritical
cooling (tg > 10 sec) decay away from the “singular corner” such that the (spatial)
oscillation has, practically speaking, disappeared. For the thicknesses of the polymer
layer, the interface stresses o, and 7, exhibit a solution that is typical of the famil-
iar “beam on elastic foundation” (a damped oscillating response). A simple analytical
model for a finite sandwich plate has been developed for qualitative comparison. The
detail derivation of that closed form approximation model is given in appendix D. The
analytical result for 7,, are in fair agreement with the thermoelastic results from fi-
nite element analysis. However, there is a substantial difference in o, between the two
methods. The simple beam model tends to spread the distribution of ¢, over the whole
length.

As shown in Figures 2.15 - 2.18, the edge effect can extend over a distance of
several (total) sandwich thicknesses and not several thicknesses of the polymer layer.
This effect is clearly the result of bending the plate rather than considering the end
effect as a local perturbation over the domain on the order of the polymer thickness.
The stresses at the center line (z = [/2) are, within 5%, the same as those obtained from
the infinite sandwich configuration. We also observe that, as was true for the infinite

plate, thermoelastic results are nonconservative.

18These thermoelastic analyses are also carried out by way of the finite element method.
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Figure 2.9: Normal stress o, across polymer thickness in the finite sandwich for step
cooling and for hy = 0.32 mm.
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Figure 2.10: Normal stress o, across adherend thickness in the finite sandwich for step
cooling and for hy = 0.32 mm.
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Figure 2.11: Normal stress o, across polymer thickness in the finite sandwich for step
cooling and for Ay = 0.32 mm.
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Figure 2.12: Normal stress g, across adherend thickness in the finite sandwich for step
cooling and for A, = 0.32 mm.
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Figure 2.13: Shear stress 7,, across polymer thickness in the finite sandwich for step

cooling and for hy = 0.32 mm.
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2.5 Generalizations

Because the foregoing numerical analyses address specific geometries and material prop-
erties it is of interest to be concerned with the implications of this study for bond systems
of greater generality. The basic difficulty in this regard is that one deals basically with
two time scales, one of which is coupled with the geometry. The first of these is pre-
scribed by the rate of relaxation, modified by the temperature at any point, and the
second is governed by thermal diffusion, which in turn is strongly coupled to the geom-
etry of the structure. Of concern is thus the influence of different relaxation behavior,
changes in the thermal history both with respect to magnitude and cooling rate, as in-
fluenced also by the geometry. We consider some of these aspects here, being well aware

that a totally encompassing study transcends the scope and extent of this presentation.
2.5.1 Effect of different polymer properties

The question that motivates us in this section concerns the variation of the previous
results when different polymer properties are involved. We continue to operate under the
assumption that the thermoviscoelastic behavior is normalized primarily with respect
to the glass transition, and that all thermal excursions should be referenced to that
property. Also, the magnitude of the polymer stiffness as measured by, e.g., the glassy
modulus may be normalized by that parameter. It is of interest, though, to examine the
effect which polymers possessing different time dependence (relaxation or creep rate)
have on residual stresses. This characteristic may be exemplified by the log-log slope
of the relaxation modulus or creep compliance. This slope typically ranges from 0.5
to 1.1 for most amorphous polymers [34]. We are particularly interested in the effect
which changing of the relaxation behavior relative to the heat conduction time has on
the residual stresses. This topic is discussed in the next section, followed by a brief

summary of the influence of the nonvanishing long term shear moduli.
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2.5.1.1 Influence of the relaxation times

In the previous sections, we have discussed the consequences of a large difference in
the time scales of the shear and bulk relaxation behavior. Before considering other
polymer systems, we will re-examine some of these consequences in more detail here.
For the present, we continue to employ the shear and bulk moduli of PVAc in the
thermovisocelastic analysis but with each modulus being log-shifted differently towards
longer or shorter times. Figure 2.19 shows the average residual stress in the polymer
layer for different bulk relaxation times, with the shear relaxation modulus providing
the reference. It is clear that the residual stress decreases with the bulk relaxation
times. Again this (stress) behavior is the result of the smaller time-temperature shift
for viscoelastic functions and also of the smaller (rate dependent) thermal expansion
coefficient. Similarly, we illustrated the effect of the shear relaxation times relative
to the bulk relaxation times and to the thermal transient time on residual stresses
in Figure 2.20 (but with the bulk relaxation modulus being the reference). Since the
shear relaxation behavior has a “direct” effect on the residual stresses, significantly
stress reduction is observed when the shear relaxation times decrease by a factor of
10* (8, = 0.12 MPa). It also notes that for this case the shortest relaxation time of
the (time dependent) shear modulus is on the same order of magnitude as that for the
(reference) bulk relaxation modulus.

To cover a wider range of viscoelastic properties, we consider two additional shear
relaxation moduli as well as two bulk moduli. Each additional relaxation modulus pos-
sesses the same short and long term moduli as the model solid (“reference material”),
but exhibits different relaxation rates. They are compared with the reference material
in Figures 2.2 and 2.3. We note that the extent of the transition region for the bulk
modulus, especially that for B3, is exaggerated; this is done with the intention to illus-
trate more forcefully the importance of the time-dependent bulk behavior in establishing
residual stresses. All other properties such as the thermal expansion, the thermal diffu-

sion behavior, and the “material parameters” governing the time-temperature shift as



— 45 —

50 T T T T T Y

o} tp = 0.02 sec
v th = 104 sec

10

T

-4 -2 0 2 4 6 8 10
log ( TK/ TKr‘ )

Figure 2.19: Average residual stress &, in the polymer of an infinite sandwich for dif-
ferent bulk relaxation times (hy = 0.32 mm). 7k, denotes the bulk relaxation time of
the reference solid (“PVAc”).
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Figure 2.20: Average residual stress &, in the polymer of an infinite sandwich for dif-
ferent shear relaxation times (h, = 0.32 mm). 7,, denotes the shear relaxation time of
the reference solid (“PVAc”).
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defined in free volume theory are assumed unaltered.

Figures 2.21 shows the effect which different viscoelastic properties have on the mag-
nitude of residual stress as a function of the cooling time tg. Since different combinations
of shear and bulk moduli are considered, we adopt the notation of BI SJ for the mate-
rial model which has a bulk modulus of BI and a shear modulus of SJ. It is clear that
the character of these (selected) examples closely follow the result for the “reference”
material as illustrated in Figure 2.6. However, the log-log slope of (primarily) the shear
modulus is reflected in a different slope in the portion of the curve beyond the “critical”

cooling time.
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Figure 2.21: Average residual stress &, in the polymer of an infinite sandwich for dif-
ferent cooling times and for different viscoelastic properties (h; = 0.32 mm)

The (normal) stress relaxation behavior of the polymer is determined primarily by
the (isothermal) shear relaxation modulus and also by the time-temperature shift which
is influenced by the bulk modulus via free volume. For a qualitative discussion, we
can define a characteristic relaxation time 7(7') of an isothermal relaxation process at

temperature T as the time required for the modulus to relax to the mean value between
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the short and long term moduli. All shear moduli considered here have approximately
the same characteristic relaxation time at the reference temperature (T, +11°C) as well
as for the bulk moduli; but the shear relaxation times are longer than those for bulk
moduli by a factor of 10°. The characteristic relaxation times of the bulk moduli B1,
B2, and B3 are very short at the reference temperature (on the order of 10~ sec). For all
cooling times, the thermal diffusion time scale is always longer than the characteristic
bulk relaxation times (7;) of the three moduli at most transient temperatures. As a
consequence a solid with B1 as its bulk modulus will produce a larger time-temperature
shift than those with B2 or B3 since it yields a larger volumetric deformation for the same
temperature change. In addition, the (rate dependent) thermal expansion coefficient of
the former solid is also highest among the three materials (even though its viscoelastic
properties have been shifted further towards the glassy regime during cooling) since
the longest relaxation time of B1 is short relative to the thermal transient time and is
shortest for the three moduli. Thus when one compares residual stresses of material
models having the same shear modulus but with different bulk modulus such as B152
with B252 and B1S3 with B3S3, it is clear that for all cooling time tg the stress is
always higher for the material with B1, as illustrated in Figure 2.21.

On the other hand, if the time-temperature trade-off is the same for the comparison
materials (same bulk relaxation modulus), the effect of different shear behaviors on
the residual stresses is not as simple as in the previous case since the characteristic
shear relaxation times are much longer than the bulk relaxation times so that their
magnitudes relative to the diffusion time scale are more important. In a quench process,
the relaxation behavior for the two solids with S2 and S3 as their shear modulus occurs
at respectively shorter times than for that with S1. As a consequence the relaxation
process at shorter times allows a relatively more rapid stress relaxation to take place at
the higher temperatures, thus allowing the solid to reach a lower stress state before the
freezing-in process begins.

From Figure 2.21 one notes that the residual stress for quenching appears to decrease
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with the log-log slope of the (shear) relaxation modulus. We believe that in reality this
lowering of the residual stresses in a quench process is the result of the diffusion time
scale being shorter than the characteristic shear relaxation times of the three materials
but still longer than their bulk relaxation times, as discussed above in this section.
Figure 2.22 shows the results of the same computations, executed for the same three
materials B151, B252 and B3S3 except that the shear and bulk functions have been log-
shifted to longer times by two decades. One observes that now the relaxation behavior
has been slowed relative to the thermal time scale, which results in a uniform raising
of the residual stress level over those observed in Figure 2.21 (particularly noticeable
in the “quench region”). Since the bulk relaxation times of the three materials have
increased, the diffusion time scale in a quench process may become shorter than these
relaxation times, so that the effect of the different bulk behaviors on the residual stresses
counterbalances that of the different shear behaviors. However the former effect is
not strong enough to reverse the observed trend for the residual stresses of the three
materials under “quench” cooling. In this context the reader is reminded that the ratio
of the cooling time to the (characteristic) relaxation time can be also affected to a

limited extent by the thickness of the sandwich, i.e., the geometry.
2.5.1.2 Influence of the long term shear moduli

The shear moduli of all representative materials considered so far eventually vanish for
long time, i.e., G, = 0. Not all polymers exhibit that characteristic. In fact, G
typically ranges from zero to a value of several orders smaller than the glassy modulus,
depending on the concentration of cross-links or the degree of entanglement coupling in
uncrossed-linked polymers. For linear polymers of low molecular weight, the rubbery
plateau region may span a very short time scale so that the polymer can be characterized
by a mechanical model with G, = 0.

In order to extend the previous stress results to the case of nonvanishing G, we

compare residual stresses for material B151 and its counterpart with G, = 0.2 GPa,!”

171t should be recognized that this value of Geo (about 20% of the glassy value) may be large by
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Figure 2.22: Average residual stress &, in the polymer of an infinite sandwich for dif-
ferent cooling times and for materials B1S1, B2S2, and B3S3 with their moduli shifted
2 decades towards longer time (h, = 0.32 mm).

i.e., B1S1c (the glassy shear modulus for Slc is also higher than that for S1 by 20%),
for various cooling rates in Figure 2.23.

The uniaxial relaxation modulus of material B1S1c has a glassy value of 3.71 GPa
(compared to 3.22 GPa for B1S1) and a rubbery value of 0.58 GPa. The uniaxial
relaxation modulus of B1S1c is therefore approximately the same as that of B151 but
is translated along the ordinate by an amount equal to 0.58 GPa. As a result, a similar
(vertical) transposition (but by a different amount) is expected in the curve of 7, vs
log(tr) for B1S1c relative to that for B1S1. This transposition is calculated to be about
20% of the stress for B1S1 from quench cooling. Moreover, as in their uniaxial relaxation
responses, the difference in &, between B1S1c and B1S1 at short g (high cooling rate)
is slightly less than that at long tg (low cooling rate).

The amount of vertical translation of the curve of “&, versus tg” for material B1S1c

can be estimated based on a simple linear analysis which assumes that any additional

normal polymer standards.
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Figure 2.23: Average residual stress &, in the polymer of an infinite sandwich for various
cooling times and for materials B151 and B1S1c (hy = 0.32 mm).

transient stresses generated in association with the nonvanishing E, would not change
the relaxation behavior of the polymer. The additional residual stress Ag, due to
E., is calculated from equation 2.5 (with appropriate modifications for plane strain).
However, the time-dependent thermal strain of the polymer must be used in place of
o, AT, in the equation. The thermal strain of the polymer is computed as the sum of

the glassy and rubbery components, e.g.,
€, = (L4 vg)og(Ty — Ti) + (1 + veo Jau(Ty — Tp).

In this manner the vertical translation (addition) is calculated for B1Slc to be 8.3
MPa while the result from the thermoviscoelastic analysis gives a value of 6.1 MPa at

tr = 0.02 sec and 7 MPa at tz = 10* sec.
2.5.2 Effect of the temperature range

In the previous discussion only a single temperature range (of 65°C) across the glass

transition was investigated. We now remark briefly on the effects which different thermal
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change have.

One notes first that raising the initial temperature markedly above the glass tran-
sition has very little influence, since during cooling towards the glass transition the
polymer is in a state of very rapid relaxation. Computations to that effect indicated
that no change resulted if the initial temperature was 30°C higher than the glass tran-
sition temperature. On the other hand, extending the cooling history to temperatures
further below the glass transition temperature requires consideration of the two ranges
for the supercritical (quenching) and subcritical cooling rates (slow cooling) (see Figure

2.24).
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Figure 2.24: Average residual stress &, in the polymer of an infinite sandwich for various
cooling times and for different temperature ranges (h, = 0.32 mm).

In the case of supercritical cooling the cooling time is small compared to the thermal
diffusion time, so that when the “final” temperature 7T} is reached at the outer surfaces,
the polymer is not yet “hard,” but becomes so only during the subsequent holding of the
surfaces at that temperature. For further discussion we refer to Figure 2.25 where the

thermal surface temperature history is depicted for a situation identified by subscript
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“1” as conforming to the data recorded in Figure 2.6. We now consider matters when
the temperature is lowered to T}, < T,. In general there will be two effects: one is due
to the magnitude of the temperature change and the other a (possible) change in the
rate of cooling and straining. As discussed earlier, in this range of the thermal response
variation the rates of strain have no signiﬁcant effect. On the other hand the stress
will be, to a first approximation, proportional to the magnitude of temperature drop,
so that the stress levels can be scaled from the computed values by the ratio L= 1y,

T =Ty
to estimate the stresses achieved through a larger temperature differential.
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Figure 2.25: Different surface cooling histories.

For long (pronounced subcritical) cooling times uniform temperature distributions
across the plate thickness prevail throughout the thermal history. However, the present
study indicates (not detailed here further) that there is no (final) temperature below
the glass transition or a “glassy state” such that further cooling would merely increase
the stress level in a thermoelastic manner, with the coefficient of thermal expansion
corresponding to the glassy value. This is a direct consequence of the short relaxation

times of the bulk behavior as explained earlier throughout the chapter. In fact, if the
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bulk relaxation modulus is shifted logarithmically 4 decades toward longer times, the
residual stresses are sensitive to the cooling history for a temperature range spanned
mostly by T, ~ 54°C < T < T, + 30°C.

1t should be emphasized that lowering the final temperature from 34°C below T,
to 80°C and 120°C below T, increases the thickness-averaged stress &, by 75 % and
135 %, respectively, for quench cooling, and by 115 % and 210 % for pronouncedly long

cooling times.
2.5.3 Special remark for the finite sandwich

The above generalizations are made based on results for an infinite sandwich. However,
for a finite plate, one needs to consider additionally the effect of the transient, ther-
mally induced bending response of the metal components arising from the supercritical
(quench) cooling. Therefore, we carry out also computations for a finite sandwich with
select cases for different polymer properties and temperature ranges.

In sections 2.5.1 and 2.5.2, the dependence of the residual stresses on the (viscoelas-
tic) polymer properties and on the temperature ranges are examined in light of the
relative time scale of thermal response and thermoviscoelastic relaxation/creep in the
vitrification process. The interface stresses o, and 7, arising from the bending response
of the adherends are also affected by the relative magnitudes of these two time scales,
but at greater intensities.

The influence of different polymer properties on the interface stresses 7,, and o, is
shown in Figures 2.26 - 2.29 for a plate with hy = 0.32 mm, and for two short cooling
times, i.e., g = 0.02 and 2 sec. The maxima of the interface stresses o, and 7., for
materials B1S1, B152, and B1S3 follow the behavior similar to that of &, for the infinite
plate, but with a larger variation for different viscoelastic properties, especially when
one compares the (stress) results for B1S1 with those for B1S3. Further, while the
infinite plate solutions yield the highest values in &, for B1S1c compared to B1S1, B1S2
and B1S3, the present calculation (for the finite configuration) shows that the maxima

of the interface stresses for B1S1c are the next lowest among the four materials. This
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Figure 2.26: Interfacial shear stress 7, for different polymer properties and for step
cooling (hy = 0.32 mm).
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Figure 2.27: Interfacial normal stress o, for different polymer properties and for step
cooling (he = 0.32 mm).
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Figure 2.28: Interfacial shear stress 7., for different polymer properties and for tgp = 2
sec (hy = 0.32 mm).
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Figure 2.29: Interfacial normal stress o, for different polymer properties and for tgp = 2
sec (hy = 0.32 mm).
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is attributed to the fact that the time dependent Poisson ratio of some materials con-
sidered here does not approach the compressibility limit (v = 0.5) at most transient
(high) temperatures because of the nonvanishing G, (as for B1S1c) or because of the
large extent of the longest shear relaxation time (as for B1S3) so that the polymer is less
severely strained during the early bending Qf the adherends as detailed below following
the presentation of (stress) results for different thermal changes.

The effect of different thermal changes on the interface tractions is shown in Figures
2.30 and 2.31 for hy = 0.8 mm and for quench cooling (tg = 0.02 sec). It is interesting
to note that the maxima of the interfacial normal stresses o, yield essentially the same
value when they are scaled by their own thermal change; however, this characteristic
does not hold for the interfacial shear stresses 7,,. In fact, the “odd” stress spike in 7,
for a temperature range of 151°C (T; = —91°C and T; = 60°C) raised our concern of
the sufficiency of the mesh used for that extremely high cooling rate. For this reason,
a similar computation (for AT = 151°C) was executed for a second grid with a very
refined mesh in the area of stress spike; however, the results based on the new grid are
essentially identical to those recorded in Figures 2.30 and 2.31. In contrast, a parallel
computation for material B1S1c shows no similar stress spike (cf. Figures 2.32 and 2.33).
The “spikes” in Figure 2.30 for 7., are, therefore, truly indicative of a phenomenon which
is, as becomes apparent later, associated with the (lengthwise) “abrupt” change in the
polymer properties and related to the incompressibility condition of the polymer in the

rubbery regime.!®

18 The numerical inaccuracy tied to the incompressibility condition may attribute, in part, to this
phenomenon.
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Figure 2.30: Interfacial shear stress 7., for different temperature ranges and for step
cooling (hy = 0.80 mm).
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Figure 2.31: Interfacial normal stress o, for different temperature ranges and for step
cooling (hy = 0.80 mm).



Figure 2.32: Interfacial shear stress 7,, for | AT| = 151°C and for material B1S1c under
step cooling (hy = 0.80 mm).
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It remains to explain how the incompressibility condition of the polymer in the
rubbery regime causes the large local strain and stress spikes in the polymer layer for
quench cooling. The evolution of the interface stresses 7., and o, for h; = 0.8 mm,
tr = 0.02 sec and | A T| = 151°C are given in Figures 2.34 and 2.35 for B1S1 and
in Figures 2.37 and 2.38 for B1S1c. For the nonlinearly viscoelastic model employed
here, the (total) strain dilatation governs the time shift for the viscoelastic functions;
its evolution is, therefore, indicative of how the polymer properties would change during
cooling. For that reason, the distribution of the strain dilatation (e, + ¢,) along the
interface is plotted for various times in Figures 2.36 and 2.39 for materials B1S1 and
B1S1c, respectively. For short time, as the adherends bend apart due to the transient
temperature variation across their thickness, they drag along with them the polymer
which is still at the initially high temperature. Since the length of the adherends is 16
times longer than its thickness, the bending curvature is small so that only portions
of the plate near the free edges curve while its remaining “interior” remains essentially
straight. As a result, the polymer response varies along the length of sandwich (cf.
Figures 2.36 and 2.39) since (a) the polymer properties depend on both the temperature
change and the mechanically (stress) induced strain dilatation according to the free
volume theory and (b) the normal strain ¢, (thus o,) is a function of the coordinate
z. The interfacial normal stress g, is tensile near the free edges and is at its maximum
(apart from the corner singularity) at a distance away (cf. Figures 2.35 and 2.38) even
though the (normal) strain is highest near the free edge. This behavior arises because
the high tensile strain near the free edges also induce fast stress relaxation there. Since
all exposed surfaces of the sandwich are stress free, o, must be self equilibrated; oy

becomes compressive and gradually tends to zero on the remaining length.
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Figure 2.34: Evolution of interfacial shear stress 7,, for B1S1 (“PVAc”) and for [A T| =
151°C (ke = 0.80 mm).
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Figure 2.35: Evolution of interfacial normal stress o, for B1S1 (“PVAc”) and for |A T| =
151°C (hy = 0.80 mm).
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Figure 2.36: Evolution of strain dilatation plotted along the interface for B1S1 (“PVAc”)
and for | A T| = 151°C (hy = 0.80 mm).

The interfacial shear stress 7,, is the consequence of two effects. First, since the
“Poisson response” of the adherend and the polymer are different, the (Poisson) con-
tractions of these two components in the z direction under the interfacial normal stress
o, are also different, so that the axial (z) displacement continuity across the inter-
face is responsible, in part, for the interfacial shear stress. Secondly, since both the
interfacial normal stress o, and the polymer properties vary along the length of the
sandwich, the polymer is strained nonuniformly in the normal (y) direction, causing
another source for the shear stress. It should be emphasized that the first effect is
mainly due to the material mismatch between the polymer and the adherend while the
second effect is attributed to the inhomogeneous normal stress o, and inhomogenous
material response within the polymer layer. For short times 7., is negative near the
free edge and becomes positive at a distance away; this behavior is primarily due to the
Poisson response mismatch mentioned above: The polymer at the interface contracts

more (in the z direction) than the metal counterpart under tensile (normal) stress o,
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and expands further under the compressive stress. The inhomogenous normal stress g,
and polymer properties cause an additional negative shear stress field which superposes
on the previously described shear stress distribution; however, this (additional) stress
contribution is small compared with the (previously discussed) Poisson ratio effect since
the polymer is still at the initially high temperature during this stage of cooling so that
it remains in the near-rubbery regime under applied stress o,.'°

For long times, as the sandwich approaches thermal equilibrium, the adherends
gradually return to their original straight position while the polymer experiences its
own thermal change and becomes “frozen” (hard). Since the polymer is stiffer during
the release of the initial strains reacting to the bending response, o, reverses to be
compressive near the free edge. However, o, is still tensile over a “relatively” long length
in order to satisfy the stress equilibrium, especially when the (reversely) compressive
stress near the free edge is very large (cf. Figures 2.35 and 2.38). In contrast, 7, does not
necessarily change to positive values near the free edge since the Poisson ratio mismatch
between the two materials is not significant as the polymer enters the glassy state®® (cf.
Figures 2.34 and 2.37). Further since the thermal contraction of polymer is larger than
that of the adherend, an additionally negative shear stress field is also generated near the
free edge. In contrast, the thermal contraction mismatch within the polymer layer due
to the inhomogeneous thermal properties (with a larger thermal expansion coefficient
near the free edge) produces a (another) positive shear stress field. However, if the
bending effect is highly localized as for B1S1c, the effect of the inhomogeneous thermal
properties is likely to be “absorbed” by the singularity at the intersection of the free
edge and the interface. On the other hand, when the bending response of the adherend
affects a wide area, e.g., over distance of several total thicknesses, as for B1S1, the effect
of the inhomogeneous polymer properties is large and well separated from the “corner”

singularity (cf. Figure 2.36), leading to the stress spike.

19 Although the interior part of the polymer layer is under compressive stress oy, this stress is not
high enough to push the material there towards the glassy regime.
20y equals 0.37 for glassy PVAc and 0.33 for aluminum.
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In summary, the incompressibility condition of the polymer in the rubbery regime
affects the stresses in two ways: (a) it causes a larger Poisson ratio mismatch during
the early bending of the adherends which leads to large shear strains in the polymer
layer, especially at the interface near the free edge, and (b) it results in a large area
affected by the bending response, thus separating the polymer layer into two regions
with different material responses (cf. Figure 2.36) and leading to the stress spikes in
Tey. It is thus apparent that the residual stresses are affected significantly by the cooling
rate and the extent of the compressible, rubbery state of the polymer, in part, because

of the bending response.

2.6 Conclusions

The residual thermal stresses in a simulated adhesive bond have been considered in the
context of a nonlinear viscoelastic (free-volume) model for the thermoviscoelastic char-
acteristic of a polymer. These stresses depend significantly on the surface cooling rates.
In the case of the infinite sandwich, the residual (average) stress varies logarithmically
with the cooling time tg in a fashion similar to the variation of the relaxation modulus
with time: Below a “critical cooling time,” the residual stress is nearly constant while
above it the residual stress drops with longer cooling times. Further, lowering the final
temperature from 35°C to 80°C below T, increases the residual stresses by 75 % for
quench cooling and by 115 % for pronouncedly long cooling times.

The present study indicates that the thermoelastic analysis may not apply well to
any range of temperatures depending on the relaxation times of the shear and bulk
moduli relative to the diffusion time. It is particularly clear from these studies that
the time dependent bulk response of the polymer has a significant influence on residual
stresses and that, therefore, an accurate description of the time dependent bulk modulus
is absolutely necessary for these types of problems.

Even though we are interested only in thermally induced residual stresses in adhesive

bonds, the results from this study can apply, in a broad sense, to other manufacturing
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processes such as the curing of fibrous composites and the cooling phase of polymer
parts in injection molding and extrusion.

It needs to be stressed that the constitutive theory used here is strictly a small
deformation model of nonlinearly viscoelastic behavior of polymers. Due to the initial
bending of the adherend, a fast cooling may cause large strains in the polymer apart
from the (corner) singularities. Since large strains will induce anisotropy due to the
molecular orientation of the polymer which in turns affects the viscosity and time shift
factor in addition to the nonlinear strain-displacement relation, future work should be
based on a more advanced constitutive model where all of these effects are taken into
account. Furthermore, only a linear cool-down from the initial temperature to the final
temperature has been considered in the study. It has already been shown that the
selection of an optimal cool-down path could reduce thermally induced residual stresses
for epoxy resins [17]. Future work may, therefore, include a determination of such an

optimal cooling history for a prescribed cooling time and a desired temperature range.
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Figure 2.37: Evolution of interfacial shear stress 7,, for B1Slc and for | AT| = 151°C
(hy = 0.80 mm).

200 Ll T 1] ¥ i
t=0.01
e e t=0.06 b
————————— t=0.11
A —— t =10.36
120'ﬁﬁQ _q 4
r = 4,

.0 .5 1.0 1.5 2.0 2.5 3.0
X/hl
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Figure 2.39: Evolution of strain dilatation plotted along the interface for B1S1c and for
| AT| = 151°C (hy = 0.80 mm).
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Chapter 3

Fracture Analysis

3.1 Introduction

Adhesive bonds for structural purposes are typically formed through heating the ad-
herends together with the interspersed adhesive layer under moderate press»ure from
a temperature above the glass transition of the polymer to the use temperature (sub-
stantially) below the latter. It is thus inevitable that, depending on the processing
conditions, residual stresses are generated to varying degrees (see chapter 2). During
use these residual stresses act in addition to those induced by the loading so that the
final load carrying ability of the bonded joint may be materially impaired. In fact,
it is believed that in many cases an apparent bond weakness observed in laboratory
tests is primarily the result of residual stresses rather than an intrinsically weak chem-
ical/mechanical interface connection.

Thus, understanding the failure/fracture behavior of adhesively bonded joints is
important from two points of view. First, it is essential to be able to predict the onset
and propagation of (interfacial) fracture for engineering design purposes. Second, in
pursuing the understanding and evaluation of the physio-chemical aspects of bonding, it
is mandatory that one be able to fully evaluate the relation between the past (formation)
history of the bond and its strength, in terms of the surface chemistry or physics. Thus,
an evaluation of the "bond strength” may attribute unfairly low strength to a particular
interface chemistry, unless residual stresses are properly accounted for. Indeed, when
the residual stresses induced during manufacturing are so high that the bond may fail
under minimal or no loading at all, it would be inappropriate to assess the chemistry

or surface physics as the culprit for the “apparent” residual “weakness.”
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Failure, and specifically fracture, of adhesive bonds is the result of the growth of one
or several flaws, most often at or near an interface. In that situation it is advantageous
to characterize the instability of crack propagation in terms of energy release rates,
although the definite answer as to whether that characterization is the most efficient
means from an engineering point of view is not yet clearly established: The uncertainty
in this regard derives, in the general interface-near fracture process, primarily from un-
resolved issues concerning the nature of the stress field at the tip of an interface crack
[38]. In case the crack advance is constrained to occur along the interface, which is the
situation underlying the discussion in the sequel here, this issue is largely circumvented
[38]. A major question remaining then concerns the role which the fracture topology, in
interaction with friction or mode mixity play in the process of unstable crack advance
[39]. In the following development we are, therefore, concerned only with the exami-
nation of the available energy for fracture and investigate the change in the residually
stored energy with a small advance of the crack along an interface.

With this idea in mind we consider the effect of inhomogeneous stresses introduced
during the thermal bond formation process. Because of the already large number of
variables accounted for in this analysis we exclude the effect of pressure during the
bond formation from consideration here, although this effect is within the scope of the
analysis and material model employed here. We point out that the requisite material
characterization, which involves thermal rate effects as well as other thermoviscoelastic
responses of the adhesive polymer, is not generally practiced and thus an appropriate
characterization is not available for even a limited number of materials. For this reason
we draw on the computations of the residual stresses in a bonded joint, the adhesive
for which has been modelled by a relatively simple polymer, Polyvinylacetate (PVAo),
as outlined in chapfer 2 delineating the stress analysis aspect of this problem. We
expect that while the resulting values are not necessarily directly applicable to arbitrary
commercial adhesives, the results are, nevertheless, indicative of the phenomena one

needs to be concerned within this context.



- 69 —

Because adhesive bonds are typically used at temperatures considerably below the
glass transition the fracture process occurs in what, in viscoelastic parlance, is called the
“glassy state.” As a consequence we assume that all stress changes related to fracture
occur elastically, with the corresponding properties of the polymer being its glassy
or short term ones. In addition, we follow Hnearly elastic fracture analysis concepts to
determine then the energy release rate associated with crack advance along an interface,
taking into account the special deformations of the adherend(s) that result from such

an adhesion breakdown, namely crack closure away from the crack tip.
3.2 Problem statement

Consider a sandwich consisting of two aluminum plates (E = 6.895 x 10!° Pa, v = 0.33)
joined by a polymer layer. The geometry is two-dimensional and considered to be in
a state of plane strain, with the reference frame indicated in Figure 2.1 of chapter 2.
The “length” of the sandwich is “I” (I — oo for an infinite plate) and the adherend and
polymer layer thicknesses are h; and h,, respectively. In the bond formation process
this polymer exhibits thermoviscoelastic properties that are sensitive to the rate of
(thermal) strain and additionally to the rate of cooling through incorporation of free
volume effects, which in turn are influenced by rate dependent and mechanically induced
volume behavior. The details of this constitutive description have been discussed in
chapter 1 and the (stress) results appropriate for the present problem are delineated in
chapter 2. It suffices here to repeat from the Introduction that for the present fracture
problem only the short term elastic (glassy) properties of the polymer (E = 0.322 x 10'°
Pa, v = 0.371) enter the current considerations.

To examine the effect of residual stresses on the fracture of bonded joints, an “edge”
crack is introduced into the polymer layer at or near the interface. The nature of
the crack may be due to either a manufacturing flaw or to service loads. Because the
sandwich is symmetric with respect to the midplane, only cracks located above the

midplane (or plane of symmetry) need to be considered. The length of the crack is



._70._

semi-infinite in the infinite sandwich and has length “a” for the finite configuration.
The two faces of the crack are assumed to be frictionless. It turns out that when the
polymer is cracked parallel to the interface, the released surfaces tend to close but are
then free to slide at the “free edge” while separating at the tip since the residual normal
stress o, (cf. Figures 2.16 and 2.18 of chapter 2) is compressive near the free edge
and tensile at some distance away. The solution algorithm for this “contact” (fracture)

problem and the computation of the energy release rate are outlined in the next section.
3.3 Computing Algorithm

The iterative procedure for the solution of the contact (fracture) problem deserves spe-
cial consideration. Also, the computation of the energy release rate warrants discussion.

Both of these topics are addressed briefly in the sequel.
3.3.1 Iterative procedure for the contact problem

Since both the adherend and the polymer are considered to be linearly elastic for the
present problem, the formulated problem can be analyzed within the context of linear
fracture mechanics for dissimilar materials.

It is well known from previous work [40, 41, 42] that the linearly elastic asymptotic
solution to the interface crack problem has various undesirable consequences for the
predicted near tip field: crack faces can overlap and the stress components change sign
alternately. Since our concern here is only with the (global) energy release rate without
recourse to the detailed near tip stresses and displacement, this (near tip) contact zone
is completely ignored in modelling the present problem. In addition, when tractions on
the crack line are completely released, the crack surfaces interpenetrate over a small
domain at the free edge; the residual normal stress o, (for the uncracked sandwich) is
compressive there. It will be shown in section 3.4.2 that a significant error results if
this interpenetration near the free edge is not modelled realistically as a region of crack
closure. The crack surfaces are, therefore, modelled to be in contact but free to slide

over the interpenetration domain near the free edge. Thus the basic difficulty for the
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present problem consists of the determination of the stress and displacement fields which
satisfy (a) the stress free condition on the open part of the crack and (b) the vanishing
condition of the “relative” normal (y) displacement of the crack surfaces (which are free
of shear stress) on the contact domain. It should be emphasized that the (boundary)
conditions (a) and (b) prescribed on the crack surfaces depend on the displacements of
these surfaces according to whether the surfaces are pressed together or separate in the
(stress) unloading process. The present problem is, therefore, “geometrically” nonlinear
and is solved by an iterative procedure. The discussion of this iterative procedure
necessitates introducing an alternately crack surface loading problem; the connection
between this alternate problem and the (original) residually stress crack problem is
given immediately below.

Assuming that, for the immediate discussion, the solution of the present problem is
already determined, e.g., both the contact domain and the open portion of the crack
are known, as shown schematically in Figure 3.1, the stresses of a residual stress crack
problem (case A) can be obtained by superposition of the originally residual stresses
(case B without a crack) and those of a crack surface loading problem (case C). The
principle of superposition holds here because the adherend and the polymer both act in
a linearly elastic manner for this consideration. The crack faces of case C are subjected
to a shear traction over the whole crack length and a normal traction over the open
portion of the crack, both of which are equal in magnitude but opposite in sign to those
given for B over the appropriate length on the crack line. In addition, the “relative”
normal displacements of the released surfaces in the contact area (or along the crack
closure) are imposed to be zero. This superposition (a) leads to an iterative procedure
in solving for the solution of case A as detailed in the next paragraph, and (b) asserts
the equivalence between case A and case C for the energy release rate since the strain
energy of case B is independent of the crack length and its %g— is zero.

We outline next the iterative procedure. The open portion of the crack is first

assumed. The stress solutions of the crack surface loading problem is obtained and is
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Figure 3.1: Schematic representation of superposition method for thermal stress crack
problems.

then added to the corresponding original residual stresses. The superimposed iterated
solutions must satisfy two conditions. First, the released crack faces must separate along
an “open” portion; second, the superimposed normal traction (o, ) must be compressive
everywhere in the contact zone. If one of these two conditions is violated, another guess

will be used, and the whole procedure is repeated until both conditions are satisfied.
3.3.2 Computation of the energy release rate

It was pointed out in the previous section that the energy release rate in a residual stress
crack problem is identical to that in a crack surface loading problem. It suffices here to
show the computation of the energy release rate in a crack surface loading problem. The
computation of the energy release rate for a semi-infinite crack in an infinite sandwich
can be accomplished in a closed form approximation via a bi-material cantilever plate
model. The corresponding derivation is given in appendix E.

On the other hand, the energy release rate in a finite dimensioned sandwich is

determined by way of the finite element method with the crack tip path (or area)
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independent integral. Based on the mechanical energy balance and the local steady
state condition at the crack tip, the energy release from a homogeneous body per unit

crack advance (per unit thickness) is defined as, [43]
Q’ = lim / [Wéij - aiju,-,l]njdf, (31)
r—o Jpr

where W is the stress work density. T is a small contour which is fixed in size and
orientation with respect to the crack tip and translates with the crack tip. G must be
independent of the shape of I' as I is shrunk to zero. Moran and Shih [43] have shown
that for a traction free crack in an homogenous elastic solid, G will be independent
of I for all I without the condition I' — 0. In that case, G is equivalent to the well
known path-independent J integral. They also established the following result for G for

a surface loaded crack,

Figure 3.2: Conventions at crack tip. Domain A is enclosed by I', C,, C_, and C,.

G= /{ Wéij — oijuinlgr; + [Wa— (0iui1) 4]q A — /
A

C++C

ai2uz‘,lm2q1d07 (3-2)

where ¢, is a weight function which has a value of unity at the tip and zero on the outer

contour Cy (c.f. Figure 3.2); m, is the unit outward normal vector; “A” is the area
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enclosed by Cy, and Cy, C_ are paths along the crack faces. Even though all of the
above results are restricted to cracks in a homogeneous, elastic solid, they are also valid
for cracks parallel to the interface in a sandwich plate because the plate is homogeneous
in the crack direction [45].

All energy release rates presented in this chapter (for a finite sandwich) are the
average values of those evaluated via equation (3.2) for ten different outer contours
Cy with stresses and displacement from finite element analysis. Particular care must
be exercised in the computation of G for a long crack. The stress gradient close to
the corner of the interface and the free edge is very steep due to the singularity there
(chapter 2). For cracks longer than 7% > 3, crack closure occurs over a smaller portion
of the crack at the free edge and the effect of the end singularity grows stronger. Unless
the mesh is very refined at the corner to enable capturing the steep crack surface loads,
the difference in G from the inner and outer paths can be as much as 40% . In all of
the calculations, the mesh is chosen so that the maximum difference in G for different

paths enclosing the crack tip is 8%.
3.4 Results and discussion

In this section the computation of the energy release rates are detailed. We also illus-
trate several important results for assessing the durability of bonded joints such as the
potentially failure (fracture) location in the adhesive polymer, the critical crack length
for maximum energy release rate in finite bonded plates, and the effect of the cooling
rates on the energy release rate. In the sequel, the energy release rates for an infinite

sandwich is first delineated, followed by the results for the finite configuration.
3.4.1 Infinite configuration

We consider a semi-infinite crack in a sandwich, infinite in the z- and z- directions.
As mentioned in section 3.3, the energy release rate for an infinite crack is determined
via a cantilever plate model. The energy release rates for cracks in the polymer layer,

at various locations from the midplane (plane of symmetry) are given in Figure 3.3
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for different polymer thicknesses and for step cooling (tg = 0.02 sec). These results
indicate that for a fixed geometry and cooling history, the energy release rate is always
maximum at the interface. The effect of the cooling rates on the energy release rate for
an interfacial crack is shown in Figure 3.4. Similar to the residual stress, the (maximum)
energy release rate is nearly constant below the critical cooling time and drops rapidly

for any cooling time longer than the critical value. This behavior follows from the fact

log G (Joules/m?)

Figure 3.3: Energy release rate for a semi-infinite crack at various position from the
midplane with residual stresses obtained for step cooling (tg = 0.02 sec).

that (a) the energy release rate is proportional to the square of the residual stresses, (b)
o, is the only nonvanishing stress component in the infinite plate and (c) the polymer
layer is very thin so that the thickness-variation of o, from the average value &, is small
and therefore has a small influence on the energy release rate. Also from Figure 3.4, it
is clear that the energy release rate increases significantly with the polymer thickness
even though the influence of polymer thickness on the residual stress is only minor (cf.
the inset in Figure 2.6). That statement is accentuated further by the inset figure which

illustrates a cross plot of the primary plot and applies to tz = 0.02 sec (note that in
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Figure 3.4: Energy release rate for a semi-infinite crack at the interface with residual
stresses obtained for different cooling times.

the inset figure, the energy release rate, not the logarithm of the energy release rate, is
plotted on the ordinate). The energy release rate is roughly proportional to the square
h
(8
We next explain the occurrence of the maximum energy release rate at the interface
in terms of the cantilever plate model. The energy available for crack extension in
each plate is proportional to the square of the applied bending moment.! Let M* be
the resultant moment due to residual stresses in each plate when the crack is at the
midplane position. From Figure 3.5a, it is clear that with P defined in that figure and

representing the net force acting on a cut across the sandwich
P
M* = Z(th + hg)

For an interface crack, the two forces acting on the lower plate at (b) and (c) result in

a couple M* as indicated in the figure. The moment of the force P acting at (a) about

1The contribution from axial deformation (stretch) is small in comparison to that from bending and
is neglected in the present discussion.
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Figure 3.5: Geometry of a cracked sandwich. (a) Crack at the midplane position. (b)
Crack at the interface.

the neutral axis of the lower plate also equals M* since
M (due to force at (a)) = P(%hz +h1 — %) (3.3)

and from appendix E (equation (E.10))

12 112
2 B0 B,
Yo = Ebhy + Elhy

so that equation (3.3) becomes
P E3hi 4+ 3B hihy 4 2E(h}
4’ Eihy + Eihy

P

M (due to force at (a)) =

Therefore, as the crack location moves from the midplane position to the interface, the
bending moment will vary from M* to 2M* for the lower beam and from M* to 0 for
the upper beam. As a result, the energy release rate of the sandwich will vary from
2M*" to 4AM*"2.

20ur numerical calculations show that G varies between 0.1 and 0.59 Joules/m2 as the crack location
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3.4.2 A finite case

As illustrated in the previous section, the failure of an adhesivé bond is more likely at
the interface because (a) the energy release rate is maximum there and (b) the toughness
is likely to be lowest there. Thus for demonstration purposes, we consider only the case
of an interfacial crack for a finite sandwich (I = 16h,). The energy release rate for an
interfacial crack is given in Figure 3.6 as a function of crack length for different cooling
times tr and for a polymer thickness of 0.32 mm. Similar results but for a polymer
thickness of 0.8 mm is given in Figure 3.7 (Note the difference in scale on the ordinate
in the two figures). The last point on the curves of Figures 3.6 and 3.7 corresponds
to the case % = 0.5. For low cooling rates, the value of G at 3;- = 0.5 approaches
the results for the semi-infinite crack. On the other hand, for supercritical cooling, it
is higher since the energy contribution from the work done by the tractions acting on
the crack faces cannot be ignored as in the analysis for the semi-infinite crack. The
(maximum) energy release rate is a monotonically decreasing function of the cooling
time (cf. Figure 3.8) and occurs at different (critical) crack lengths (cf. Figures 3.6 and
3.7). It is interesting to note that for each cooling rate, there is critical crack length
for the maximum energy release rate. The tip of this critical crack length does not
coincide with the location where the interfacial normal stress o, reaches its maximum.
It should be emphasized that since the interface stresses Tsy and o, are significantly
different for the supercritical (quench) cooling and for the subcritical (slow) cooling (cf.
Figures 2.15 -2.18), the maximum energy release rate is reduced by a factor of 300 as one
passes from quench cooling to (pronouncedly) slow cooling, but this factor is still about
a hundred times greater than that for the infinite plate. Finally, we remark that if the
interpenetration near the free edge is allowed to happen, the energy release rates based
on that unrealistic (crack) model are far below the corresponding values reported here.
For — = 1.025, h; = 0.8 mm, and for step cooling, the energy release rate equals 72

h
Joules/m? if crack closure is taken into account and 0.7 Joules /m? if interpenetration

location changes from the midplane position to the interface, for Az = 0.80 mm and for quench cooling
(tr = 0.02 sec).
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were not considered; the results are different by a factor of about a hundred. Modelling

the present problem must, therefore, include crack closure.
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Figure 3.6: Energy release rate for an interfacial crack in the finite sandwich for different
cooling times (hy = 0.32 mm).

3.5 Generalization

Because the foregoing numerical analyses are for specific geometries and material prop-
erties, it is of interest to be concerned with the implication of this study‘for bond
systems of greater generality. In this regard, we examine the influences of the (vis-
coelastic) polymer properties and the temperature ranges on the energy release rate. In
addition bonded plates used for structural purposes carry loads during their service life.
It is, therefore, appropriate to examine also the combined effect of residual stresses and

external loads on joint failure. We consider these aspects here in the sequel.
3.5.1 Influence of the polymer properties and temperature range

Different ranges of the cooldown temperature and different (viscoelastic) polymer prop-

erties result in alternate residual stresses. It is, therefore, appropriate to examine how
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Figure 3.7: Energy release rate for an interfacial crack in the finite sandwich for different
cooling times (h; = 0.80 mm).
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Figure 3.8: Maximum energy release rate for an interfacial crack in the finite sandwich
for different cooling times.
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these changes in stresses affect the bond durability or load carrying ability of the struc-
ture through the energy release deficit. It was illustrated in section 3.4.1 that the énergy
release rate for the infinite plate domain is roughly proportional to the square of the
(thickness-averaged) stress &, so that its value for other temperature ranges (or polymer

properties) can be scaled from the previously computed values recorded in Figure 3.4
Gy '

by the ratio — where &,, and &,, are the average stresses corresponding to the two

T2

temperature ranges (or to the two polymers) considered. We show, therefore, only the
effect of different temperature ranges on the energy release rate for an infinite bonded
joint (hy = 1.6 cm, hy = 0.32 mm) which is depicted in Figure 3.9. The inset in Figure
3.9 illustrates a cross plot of the primary plot at {r = 0.02 sec to allow for some potential

extrapolation to additional temperatures below 7.
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Figure 3.9: Maximum energy release rate for an infinite sandwich cooled through dif-
ferent temperature ranges (hy = 0.32 mm).

The residual stress state is more complicated for a finite sandwich; for this situation
the energy release rate is not necessarily scaled by the square of the maxima of the

interface stresses g, or 7,,. For this reason, the energy release rates have been computed
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for different (viscoelastic) polymer properties and for different temperature ranges, and
the results are presented in Figures 3.10 - 3.12. It was pointed out in chapter 2 that
residual stresses in a finite sandwich are affected significantly by the cooling rates and
by the extent of the incompressible, rubbery state of the polymer which is governed by
the longest shear relaxation time and by the long term shear modulus (G,). The energy
release rate is, therefore, also affected significantly by these (processing) parameters. It
is evident from Figures 3.10 - 3.12 that the (maximum) energy release rate follows
a behavior that is similar to that of the maxima of the interfacial normal stresses oy
(cf. Figures 2.27, 2.29, and 2.31). Moreover, it is apparent that the maximum energy
release rate is roughly proportional to the square of (T — T}) only for T, , — Ty > 80°C.
An estimate of the maximum energy release rate for additional T} by multiplying the
(maximum) results recorded in Figures 3.6 and 3.7 by the square of the ratio of the

temperature ranges yields a nonconservative value with an error larger than 20 %.
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Figure 3.10: Energy release rate for an interfacial crack in the finite sandwich under
step cooling and for different (viscoelastic) polymer properties (hy, = 0.32 mm).



log G (Joules/m?)

- 83 -

+ 0 b 0O

T T T

B1S1 ("PVAc")
B1S2

B1S1, Gy = 0.2 GPa
B1S3

Figure 3.11: Energy release rate for an interfacial crack in the finite sandwich cooled at
tr = 2 sec and for different (viscoelastic) polymer properties (h, = 0.32 mm).
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Figure 3.12: Energy release rate for an interfacial crack in the finite sandwich under
step cooling and for different temperature ranges (h; = 0.8 mm).
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3.5.2 Maximum energy release rates and fracture toughness

The maximum energy release rates obtained in this study are small compared to the
Gerit for dry PVAc which is on the order of 4-10 % [46]. However, experiments have
shown that a transition region exists between the adherend and the bulk adhesive in
which the physical and chemical properties of the polymer differ from the bulk material.
Since Gt of the transition material is expected to be much lower than that for the bulk
material depending on the interfacial chemistry treatment, one should not underestimate
the deleterious effect of residual stresses on fracture of bonded joints based only on this
numerical study for PVAc. In fact, it was pointed out in the chapter 2 that if one
estimates joint failure based on ultimate stress criteria, the contribution of the residual
stresses is significant. With the uncertainty about the fracture toughness of the interface
in mind, one wants to keep the maximum energy release rate for a given sandwich
configuration as low as possible. Since the energy release rate is a decreasing function of
the cooling time which processing parameter is desired to be short, the optimal cooling
time for low energy release rate would still be around 600 to 10° sec as found earlier in

chapter 2 for residual stresses.
3.5.3 Residually stressed sandwich under external loading

The energy release rate associated with the residual stresses have been calculated for
a wide range of processing conditions. The range of the energy release rates varies
from 0.02 to 500 Joules/m?. Because these values are small compared to the fracture
toughness for PVAc as discussed in the previous section, the residually stressed sandwich
may carry (additionally) loads before failure can be anticipated. Of concern is thus the
combined effect of residual stresses and external loads on the energy release rate. A
basic difficulty of presentation in this regard is that additional stresses arising from
external loads increase the energy release rate in a non-additive fashion since (a) the
energy release rate is proportional to the square of combined stresses and (b) the present

fracture problem is geometrically nonlinear. We consider, therefore, for demonstration
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purposes, only one particular loading configuration, being well aware that a totally
encompassing study transcends the scope and extent of this presentation.

In this portion of the study, we consider a residually stressed (finite) sandwich (h; =
1.6 cm, h, = 0.80 mm) carrying some external loads. To avoid unnecessarily repeated
calculations for the “total stresses” in the case of proportional loading, the (additional)
stresses corresponding to the external loads are calculated from the linearly elastic
analysis with the assumption that the whole sandwich is stress free before additional
loads are applied to it. These stresses are then superposed on the original, residual
stresses. A crack is then introduced into the polymer layer at the interface, and fracture
analyses similar to that given in previous sections are carried out for a sandwich carrying
“total” (residual plus mechanical) stresses.

All calculations in this section have been executed for a specific residual stress state
and for a specific loading configuration (but the magnitudes of the forces for that loading
configuration are allowed to vary by multiplying them by the same factor). In these
calculations, the residual stresses correspond to the case of quench cooling (tg = 0.02
sec) from an initial temperature of 60°C (31°C above T}) to a final temperature of —91°C
(120°C below Ty) (cf. Figures 2.30 and 2.31). These residual stresses, as shown in the
previous sections, yield the highest energy release rate for all bond systems considered
in this study.

The loading configuration imposed on the sandwich is based on the typical loading
on a lap joint: the upper and lower metal plates are subjected to forces P as shown
schematically in Figure 3.13. ® The interface stresses o, and 7., for the sandwich under
loads shown in Figure 3.13 and in the absence of residual stresses are presented in
Figures 3.14 and 3.15 for P = 0.1 MPa-m (or 0; = P/h; = 6.25 MPa). The interfacial

shear stress 7., is approximately symmetric about the centerline (z = [/2) as expected

3In lap joints, two metal sheets of length (c + I) are bonded together by a thin polymer layer over
the length [ (cf. Figure 3.13); for stress analysis purpose, the unjointed ends of the sheets are normally
assumed to be simply supported and acted upon by tensile forces. However, these tensile forces at the
unjointed ends result in tensile forces as well as the bending moments and transverse shears at the edges
of the joint. Our assumed loading configuration is thus simpler than the realistic one for lap joints.
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since the length of the sandwich is long (compared to the total thickness) so that the
“end” effects disappear for 3 < z/h; < I/hy — 3. In fact on that domain, 7,, reaches
stant value while o, = 0. The small amount of asymmetry in 7, is due to the

bending of the sandwich under the unsymmetric (moment) loading.

| l — ¢ —]

Figure 3.13: Loads acting on a sandwich. The upper figure shows the typical loading
in a lap joint.
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Figure 3.14: Interfacial shear stress 7,, at y = hy/2 for a sandwich under the loading
shown in Figure 3.13 and in the absence of residual stresses.
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Figure 3.15: Interfacial normal stress o, at y = hy/2 for a sandwich under the loading
shown in Figure 3.13 and in the absence of residual stresses.
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To exhibit the “combined” effect of residual stresses and load P on the total energy
release rate, the (maximum) total energy release rate is plotted as a function of the
dimensionless parameter Z—f in Figure 3.16, where o; = P/h;, og is the thickness-
averaged residual stress 6,1R in the adherend, at the centerline (z = [/2), and equals
1.8 MPa. We also include there the energyvrelease rate for a sandwich under the same
(external) loads but without residual stresses. * Although the residual stresses are zero
in this case, for presentation purpose, we still normalize o; by 1.8 MPa. From Figure
3.16, the contribution of the residual stresses to the total energy release rate is smaller
as the magnitude of P increases as expected. However, it is interesting to note that

the total energy release rate is not necessarily higher than the sum of the individual

contribution from external loads and from residual stresses separately.
3.6 Conclusions

The energy release rates resulting from thermally induced residual stresses in an adhesive
bond have been considered. The bond is more prone to failure at the interface. The
energy release rate is a decreasing function of the cooling times. For each cooling rate,
there is a critical crack length in a finite sandwich for the maximum energy release rate.
The front of this critical crack length does not coincide with the location where the
(residually) interfacial normal stress o, reaches its maximum. Although the residual
stresses in the polymer are high in comparison to the ultimate strength of the bulk
material, the energy release rates are small since the polymer layer is very thin. From
a fracture point of view, the contribution of the residual stress to bond failure becomes
significant if the fracture toughness of the interface material is much lower than that of
the bulk polymer.

Although the combined effect of residual stresses and external loads on the energy

release rate has been addressed in the study, this aspect has been examined within

*For the purely mechanical loading case, no crack closure is observed for all crack lengths. The energy
release rate is, therefore, proportional to the square of P. Moreover, the energy release rate increases

monotonically with crack length for % < 7 since the interfacial shear stress is constant (different from

zero) at distance away from the free edges.
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Figure 3.16: Maximum energy release rate for a residually stressed sandwich carrying
loads shown in Figure 3.13. o; = P/h;; 0g = 6,,. For A, op = 1.8 MPa.
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a simple context: The crack is assumed to propagate along the interface. In reality,
the residual stresses as well as the external loads determine the subsequent path for the
crack propagation [47, 48]. Furthermore, the present model for crack closure assumes the
contact surfaces to be frictionless. Again this assumption may not be totally realistic.
Future work should, therefore, be based on a more advanced crack model for which the
friction of the contact surfaces and the dependence of crack propagation path on the

external loads and residual stresses would be taken into account.



- 91 -

Appendix A: Material properties for PVAc and aluminum

The properties of PVAc are obtained from data given in [10, 18]. They are repeated

here for reference.

fo = 0.0095
fi (at T=60 deg) = 0.01414

B;, = 0.63

A = 20x10°°

B = 0.1

foie = 0.0065

pC, = 2.09x10° mgK = pCy, for [ > feris
= 1.29 x 10° m‘ZK = pCy, for [ < forun
Watt
ko= 019 ——5
o, = 6.0x107* % deg C

The material properties of the aluminum plate are

a = 0236x 1074 L degC
cm

W att
mK

pCp = 2.417x 10°

k = 2371

m3K
K = 67.60GPa

G = 25.90GPa
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Appendix B: Finite element modelling
the thermoviscoelastic boundary value problem

The advent of the finite element method has opened new ways to compute transient
and residual stresses in viscoelastic solids. This numerical method can be easily applied
to complicated (arbitrary) geometries; for example, Crochet and Denayer [30] used the
finite element method to study transient and residual stresses in glass bottles from the
annealing process. An efficient computing algorithm for the thermoviscoelastic problem
was also derived by Taylor et al. [35]. The nonlinear constitutive model described in
chapter 1 was implemented into the finite element program FEAP, as used by Losi and
Knauss in their investigation of residual stresses in a homogenous sphere and in an
infinite cylinder cooling across the glass transition [18]. For these simple geometries,
their analyses did not encounter any numerical instability. However, as we found in this
study, there are some meshes for the present adhesive bonding problem which result
in a spurious (spatial) oscillation in the stress field; this instability is attributed to
the “incompressibility locking.” A special finite element formulation, therefore, has
been used in the present study. We, therefore, devote this appendix to the study of
the incompressibility locking in viscoelastic solids, especially to the elimination of this
numerical instability.

In this appendix, the finite element modelling of the governing field equations are
detailed. The variational statements of the field equations, including the special form of
the principle of virtual work, are first delineated. This development is followed by the
descriptions of the strain-displacement and stress-displacement relations. The (finite
element) equilibrium equations are then derived, and finally the effect of the different
orders of numerical integration on the solution of the thermoviscoelastic problem is

discussed.
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Finite Element Implementation

The governing equations for the present thermoviscoelastic boundary value problem are

(see section 2.2 of this chapter):

dr
K Vz T = ,DCPE' (Bl)
Uij,j = 0 (B2)
1
Eij = §(ui,j -|- uj,i) (B3)
Gi; = f(ﬁj,T). (B4)

In the finite element method, we deal with the weak or variational forms of equa-
tions (B.1) and (B.2). These forms can be obtained as follows. We take the inner
product of equation (B.1) with the weight function 7" and that of equation (B.2) with

@;, and rearrange the resulting expressions to give

0ij,i U = (03j8:) ; — 03585 = 0

KTsT = w(T;T)s — kT, T, = PCpTa(‘)_f.

Integrating the above expressions over the volume V and applying the divergence the-

orem to the terms in the parentheses yields

I
o

Siﬁ,;ds-}-./ a,-jé,;jdV (B5)
\4

v

/ NeX L / KTV + [ kqfds
v ot v 1%

Il
=)

(B.6)

where S; is the traction on the boundary dV and ¢ is the (normal) derivative of the
temperature field.

If we choose the weighting function 4; to be any compatible, small and virtual (or
fictitious) displacement increment, e.g., @; = du;, equation (B.5) is equivalent to the
principle of virtual work in solid mechanics, and it can be applied to any material at
any instant ¢. The finite element equations corresponding to equation (B.6) will not

be presented here as detailed descriptions are available in many textbooks. We limit
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our discussion to the implementation of equation (B.5) as applied to the nonlinearly

viscoelastic materials. In matrix notation, the principle of virtual work is written as
/ <u> {S}d5'+/ < 6> {o}dV =0, (B.7)
av v

where {} denotes a column vector and <> a row vector.
The constitutive relation for the polymer is described in detail in chapter 1. The

pertinent mathematical description of this constitutive model are listed below for ready

reference.
o) = [ 26660 -6 i dr v, [ a(ew - ) pttar
— &; Kwan, AT(2), (B.8)
where

€ = [Z (B.9)
logar = B(?—;}; (B.10)
) = fi+ / 6(f(r))dexn(7) (B.11)
§(f) = ﬁ% (B.12)
) = [ e (B.13)
K(t) = Koo+§:1(,;exp"f?’ (B.14)
G(t) = Goo-l—iG,-exp_::r (B.15)
K, = Kmr% (B.16)
Bre = —i—‘%’f = %—1 II; (B.17)

An alternate form of equation B.7, which is appropriate for the incompressible,

viscoelastic solids, is given in the next section.
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An alternate form of the principle virtual work

We used 4-node quadrilateral isoparametric finite elements. Because the long term bulk
modulus is several orders of magnitude larger than the long term shear modulus in
many polymers, the polymer is nearly incompressible in the rubbery regime. Isopara-
metric finite elements are known to behave poorly in incompressible elastic materials
due to an inadequate representation of the volumetric strain energy (overestimation of
this energy in bending modes). Since a similar “locking” is expected for the nearly in-
compressible viscoelastic materials, as in [25] the term o;;6¢;; is split into the deviatoric
and volumetric components with the (volume) integral of the latter component being

“underintegrated.”

1
Oij 6€ij = Si4 66,'1' + ~3—0kk 56,‘,’ (Blg)
M | —

deviatoric contribution volumetric contribution

where s;; and e;; are deviatoric stress and strain tensors, respectively.
Beside the time (history) independent term p(t), the constitutive relation given in

equation (B.8) can be rewritten in the following form,

1
§0kk(t)

K % éy (B.19)
S,'j(t) = 2G % éija (BQO)

where (*) denotes time convolution. Equations (B.19) - (B.20) are written in matrix

notation suitable for finite element implementation and for plane (2-D) problem as

{a(t)} = [Dlk ={é} (B.21)
{s(t)} [Dle  {¢é}. (B.22)

In the above equations, {&}, {s}, [D]k, [D]¢ and {¢} are defined by
[D]x = 3[R,]K (1) (B.23)

[Dlo = 2ARA)G(1) (B.24)
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S1 Sz Oy +0y+ 0, €x
(3= 2 h=0 3 b = TN {g=0 ¥t (B29)
3 s, ’ o, +0,+ 0, ’ & [’ )
S4 Szy 0 €zy
where , . .
T 11 g
_ _ | "3 3 T3
0000 0 0 01

By definition, e;; and € are given by

{e} = [Rol{e} 5 {€} = [Ril{¢}, (B.26)
where
€ €&+ €+ €,
— €y . = € + €y + €,
=1 . AU &t e
€y 0

Using equations (B.21), (B.22), and (B.26), the deviatoric and volumetric components
of the virtual strain energy density become
< de>{s} = {6¢}T[Ra]"[D]c * {€} (B.27)
1 1 .
gakkéekk = g{éE}T[RI]T[D]K * {6} (B.28)
However, because
[R2)"[D]¢ = [Dla
[R:)"[Dlx = 3[Dlx

it follows that (B.27) and (B.28) can be rewritten as

<be>{s} = {66)7[Ds{e) (B.29)
%akkﬁekk = {5e)7[D]x + {&}. (B.30)

By substituting (B.29), (B.30) and (B.18) into equation (B.7), the desired (alternate)

form of the principle of virtual work is

/V < be > {s}dV +/ < be> {a}dV + /BV < du>{S}dV =0, (B.31)
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where {s} and {G} are again given by (cf. equations B.21 and B.22):

{s} = [Dlex{é}
{o} [Dlk *{¢}.

Strain-displacement relation
In the context of finite element formulations, the strain-displacement relations are given
by
{e} = [B{U} (B.32)
or
€ = B,‘jUj, (B.33)
where {U} is the vector of nodal displacements.

Stress-displacement relation

We now express {5(t)} and {s(¢)} at a material point as the hereditary integrals of the
nodal displacement vector {U(%)}. Substituting equation (B.33) into (B.21) and (B.22)
for the strains and using the Prony-Dirichlet series representation for K (t) and G(t) (as

in equations B.14 and B.15) yields

5. — (p) (f(t) (7)) aUz
5:(t) = By z D) / - (B.34)

(1) = (») (E(t) £(7)),0U: .
si(t) = By ZD”G ex 7 |— (97' (B.35)

where

(D@ = 3[R, (B.36)
[D®)]g = 2[R]G). (B.37)
Ky, 1, " and G'p, ,» are the components of the Prony series and the relaxation times for

the bulk and shear behaviors, respectively. 7, and 7, are chosen to be infinitely large

to represent the possible asymptotic behavior.
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Because the evaluations of the heredity integrals for 7;(¢) and s;(¢) are conceptually

the same, we show only the calculation for 7;(t). Rewrite equation (B.34) as

€(1)
ai(1) = J,ZDS’Z [ el N e, (B.38)
where we have used %gid glg d¢ and & = £(71).

Assume that the relation between the mternal time £ and £ is known for all ¢, and
that the nodal displacement vector U;(t) is known at each discrete time t;, t5, -- -1,
(with t = tr), thus also at &,&,,- - where §; = £(t1), etc. If the time domain from

. .. ol . ..
t, to t is discretized accordingly and if ——IL in each time interval from ¢, to ¢.,, (for

o¢
Ui(try1) = Ui(tr)

r=1,2,---L — 1) is assumed to be constant and given by i £
r+1 T &7

heredity integral in equation (B.38) can be evaluated exactly to yield

, then the

ai(t) = J,iLYjD(p) w Ui(trga) = Un(t, ){exp[_g_ﬁ__(t_)_____éri-_ll] xp[— (&t )—f )]}

p=0r=1 xr &1 =& Tz;, p
= Z a®(1). (B.39)
p=0

5?’ )(t) is the contribution of p th Prony element to the component &; at time t.

The formula for &;(¢t + At) is obtained in a similar manner and is given by

M L-1
a(t+ ot = By 3 D@y lrn) = Git)

p=0r=1 e p f +1 5,.
< fopl-CERD —En)y oy (€420 &)y,
wl [1 - exp(=5#)]
+ ByY.DEr ML
JI?;_;) ixTp AE 1

[1 - exp(~4§)
A

M
Fi(t+ ot =Y a7t exp(— ) + By ZDS;’,Z T,

p=0

AU, (B.40)
where

AU, = Ui(t+ At) - Ui(t)

AE = ((t+ At) - £(1).

An identical expression is obtained for s;(t + At) except that D& 7 and 6 a

YK? p
() (»)
iia Tp and s;

replaced by D; , respectively.
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Finite element equations

To simplify the notation, in the previous section we express the sfresses and the internal
time at a given material point as s;(t), &;(¢) and £(¢) while the precise notations for
them should be s;(2,x), 7;(¢,x) and £(¢,x) where x denotes the location of that material
point. However, we will use the precise notation (rather than the simplified version) for
stresses and the internal time in this section for reason of clarity.

Substituting the recursive formula (equation B.40) for {s(t + At,x)} and {&(¢ +
At,x)} into equation (B.7) applied to the time ¢ + At and then dividing out the
variational term é6U; from the resulting equation, yields the following (finite element)
equilibrium equation

a Ad(x)
/ Si(t + At,x)BirdS + / BikZSE”)(t,X)exp[—mT,‘ Jav
av v P

=0

+/ B;: Za(”)(t x) exp[— fl(lx)]

I )
/B,kB],ZD,JG T - v | AT,

o (L= exp[- 55
/B,kB],ZDW x| A Ui=0. (B.41)
p=0 =

Here B;; is also a function of x.

If the current internal time £ (at time ¢ + At) is known, the above equation renders
a system of linearly algebraic equations for the unknown vector AU; (and also for
Ui(t+ At)) with the incremental stiffness matrix given by the last two terms. However,
the current internal time £ in general is not known since it depends on the current values
of strains, temperature and possibly solvent concentration. The current mechanical state

must, therefore, be obtained through iteration.
Numerical integration

We consider next how the volume integrals in equation (B.41) are evaluated numerically.

As is shown later, two different integration schemes are employed in the evaluation of
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the volume integrals in equation (B.41), and they are summarized here.

e All volume integral terms are integrated by using 2 X 2 quadrature rules (full

integration).

o The third and fifth terms are integrated by 1x1 rule The second and fourth terms

are integrated by 2 x 2 rule but with Zs(”)(t x) exp[— 6( )] and

p=0 p
AE(X
¢, (L~ &Pl ) :
Z Di;e, NS always evaluated at the centroid of the element. By
X

domg so, we can eliminate the mesh locking associated with material incompress-

ibility.

The results may be significantly different depending on the integration scheme used.

An in-depth discussion on this subject is given in the next section.

Effect of the order of numerical integration

As already mentioned, 4-node isoparametric finite elements are used in the computation.
The selection of the appropriate order of integration in such a (materially) nonlinear
analysis is important since the conditions governing the material behavior are only
computed at the integration points. Nonlinear material conditions should be sampled
to sufficient accuracy. In fact, by using a different integration order, the results can be
affected significantly, especially for a nearly incompressible nonlinear viscoelastic solid
unless proper precautions are met. The ultimate check on whether the use of a given
order of integration is appropriate is through comparing the reality of the predicted
response with the expected physical processes and its insensitivity to fine finite element
meshes. Since the global response of a structure or body is an assemblage of each
individual element response governed by energy minimization, a good understanding of
the behavior of a single element will help us in the selection of the appropriate order of
integration and also in the interpretation of the results.

A 4-node rectangular isoparametric. element has five deformation modes beside the

three rigid body modes. These are two “bending modes” (in two directions), an exten-
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sion mode, an expansion mode, and a shearing mode. Under applied loads, the element
will respond as the combination of these modes with each mode possessing different
weight. In many circumstances, the elemental response under the same applied loads
will be different depending on the numerical integration rule used. In search for the opti-
mal integration scheme for our nearly incom‘pressible, nonlinear viscoelastic element, we
consider two integration rules. These are the full 2x2 quadrature rule and the selective
reduced integration scheme.

We examine the behavior of the 4-node element under each of these rules. Just as
in the linearly elastic case, the element under full integration will be very stiff in the
bending modes for incompressible media because those modes will result in an incorrect
volumetric strain at the integration points even though its total volume is preserved.
As a consequence the element is excessively stiff, and it may cause “mesh locking” as
demonstrated later.

In the selective reduced integration rule, different strain terms are integrated with
different orders of integration. The volumetric strain term is segregated and treated
with reduced quadrature (1x1 rule) while the remaining deviatoric term is integrated
by full quadrature to retain the rank of the elemental matrices [25]. Since the volumetric
strain is exactly zero at a reduced quadrature in the bending modes, this scheme will
alleviate mesh locking. However, unlike the linearly elastic case, the incorrect volumetric
strain at the full (2x2) quadrature points also affects the deviatoric strain energy of the
element, thus the global response of the structure, since the thermal mechanical response
of the polymer depends on the history of the volumetric strain. The thermal mechanical
response functional (or material property) is, therefore, chosen to be evaluated based
on the volumetric strain history at the reduced quadrature point where this strain
component is most accurate for the bending modes. The material property of an element
is assumed to be uniform.

We demonstrate the superiority of the last integration rule over the former through

examples. In these examples, all meshes considered have approximately the same num-
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ber of nodes (around 5500 nodes) and either simple rectangular grids or distorted grids.
Based on the results in [27], the stresses at the corner of the interface and the free edge
are expected to be singular. However, the normal stress o, and the shear stress 7,
will gradually vanish at some distance away from the free edge. while the distribution
of the normal stress o, across thickness will eventually become independent of the x
coordinate. Therefore, a very refined mesh must be employed at the corner while a
coarser one may be used for the remote area. The rectangular grids have small square
elements at the corner and slender elements in the remote area. On the other hand,
the distorted grids have more elements per unit thickness at the free edge than at the

remote area with elemental reduction through transition areas as shown in Figure B.1.
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Figure B.1: Elements at transition areas in the “distorted” mesh.

The tractions along the interface based on the rectangular and distorted meshes
are given in Figures B.2 and B.3 for the full integration scheme and in Figures B.4
and B.5 for the new integration scheme. The results based on two meshes under the
full integration rule are in excellent agreement overall except at locations coinciding

with the transition areas of the distorted mesh, where the solutions “oscillate” suddenly
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and rapidly. These local oscillations are the manifestations of mesh locking in 4-node
isoparametric elements, and can be explained as follows. As mentioned earlier with
reference to Figure B.1, the mesh outside of the transition area is a rectangular grid
while the mesh in the transition areas has many irregular elements. As the plate is
cooled, the polymer will contract and shears occurs at the transition locations. Since
the rectangular element is oriented parallel to the contracted direction, it will contract
and shear in this case without any bending nor locking. In contrast, the response of
the distorted elements to such action may involve bending because of their relative
orientation and geometries with respect to the contracted direction. As a result, the
elements in the transition areas will appear much stiffer than those of the neighboring
areas which leads to the mentioned oscillation. A “standard” linear analysis of the same
problem with a Poisson ratio of 0.499 for the adhesive gives the same local oscillations
and thus supports this argument. Results from Figures B.4 - B.5 indicate that distorted
elements under the reduced integration scheme have minimal locking.

Based on the above numerical study, the reduced integration scheme appears to be
the most appropriate choice for the nonlinearly viscoelastic solids. Thus, all results
obtained in this study are based on this reduced integration scheme. It is worthwhile
to mention that there is no bending involved in the infinite sandwich; for that case, our
calculations show that there are no difference in stresses and displacement under these

two rules.
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Figure B.2: Interfacial shear stress 7., based on two meshes and the under full integra-
tion scheme.
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Figure B.3: Interfacial normal stress o, based on two meshes and under the full inte-
gration scheme.
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Figure B.4: Interfacial shear stress 7, based on two meshes and under the new integra-
tion scheme.
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Figure B.5: Interfacial normal stress o, based on two meshes and under the new inte-
gration scheme.
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Appendix C: Effect of cooling rates and geometries

There is a large number of parameters that control the residual stress state(s), as for ex-
ample (for the case of the infinite domain) the thicknesses hy, h,, the stiffness properties
of the two materials F; and F, - - - yielding a total of 20 parameters. By the Buckingham
Pi-theorem this list generates 16 nondimensional parameters. The influences of different
thermoviscoelastic material behaviors, the weight of changes in the temperature and the
geometries as well as the cooling rates on residual stresses have been discussed sepa-
rately in chapter 2. It is also of interest to examine the “combined effect” of the cooling
rates and geometries on the residual stresses when both the geometry and the cooling
rate are the design parameters. For this situation, one wants to characterize the results
in terms of the governing dimensionless parameters. For that purpose, we find that the
Kilr ha and E?— with &

B2’ hy 7
and 7 being the thermal diffusivity and the characteristic relaxation time, respectively.

most important of these 16 nondimensional parameters are

In order to establish the latter fact we have repeated the calculations for the infinitely
large sandwich for 21 cases with a wide range of these variables,® but because these do
not explore the full range of all the variables we do not present them in detail here and
merely summarize briefly their effect on the residual stresses.

To begin, we review the results from the heat conduction in a homogenous slab cooled
symmetrically from its large lateral surfaces with the expectation that the pertinent
parameters are also appropriate for the sandwich problem.

For the immediately following discussion we consider time-independent material re-
sponse in order to recall certain basic characteristics of the thermal solution. The
temperature distribution in a homogeneous plate cooled symmetrically from the outer

surfaces to the final temperature in the time tg is given by

Lt Lo,
T(ta y)'— Ti — 1473 ttR %hz,y y At tig < (C 1)
Ty - T; N s L _onpE2L * ’ '

Shy = 5- 23 mm, hy = 0.32 - 1.6 mm, and tr = 0.01 — 10° sec.
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where h is the half thickness of the plate, x is the thermal diffusitivity and is given by

——, and

pCyp’

_ s 4 (1—e™™Y  nry
F(t,y) = E — —= sin( )-
’ n=15 ong1 T n?r2t 2h

At=1t—tg
'K,tR 4 T(t,y) — T,' i
—lll

Kt
hz’F(m,y)=F(Z,;5';;,y)—*0aand — for

For a large value of T, - T, th

4h?
—— < — < 1. Then the temperature distribution reaches uniformity across the plate

I’\‘,tR tR 5

4 Kip
thickness (independent of y) after the time ¢t = - . For other values of —= 72 1O such

general statement can be made except that based on the first term of the series (C.1),

the time to approximately reach thermal equilibrium is given by

2
te =tr + ﬂ*’;" (02)

2

where 3 is a constant and — is called thermal diffusion time.
K

This expression indicates that the temperature changes in the midplane lag those at

. . I

the outer surfaces by an interval proportional to the thermal diffusion time —.
K

Kt Kitp t . .
By rewriting e as hf = equation (C.1) can be recast into
R

T(t,y)—T; tp t

e ) (C3)
Ty - T; h? "tp’ h

The function R has been compiled in most text books on the subject for step cooling,

) Ktp

i.e., for a parameter 3 equal zero.

The generalization of (C.3) to the sandwich may take the following form

T(t,y)—T; _ kit hy KoTy 1t ]
Ty - T; =R h? "hy’ h3 ’tR’2h1+h2)’ ‘ (C4)
where R depends also on %— and H;L—; with 7, being the characteristic (average) bulk
1

relaxation time for a particular polymer.® The above functional form of R includes the
influence of the nonlinearly viscoelastic behavior of the heat capacity of the polymer on

transient thermal response.

®The discontinuity of the heat capacity is determined by the fractional free volume which in turn
depends on the bulk modulus.
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For the present we continue to use the earlier material (PVAc) for modeling purposes
and compute residual stresses for different combinations of geometry and cooling rate.

In that case the dependence of R on

22 is (probably) weak as long as the polymer
layer is thin, which is usually the case in bonding, and equation (C.2) applies in the

form
te = tR + = (C5)

and the temperature field is described implicitly by

T(t, y) T I‘CltR hz i y
Ty - T; =R h? ’hl’tR’th—i-hz)' (C.6)
Kitr  ho
The temperature field depends, therefore, on three parameters h2 R E—, and tg.

Since material properties do not vary in this part of the study, the stress field also

depends on these three parameters. In the sequel we consider variations of these pa-

rameters such that any two are held constant for any case.

K1tR hy KitR hy
and — constant: =cy, —

T2 YR RE T g,

In this situation the temperature distribution in the sandwich is characterized by equa-

tion (C.6) as

Case 1: Variation in tg with —— = ¢y

T(ty)-T; t y ot y

Et-’ 2h, + hz) B P(;};’ 2h, + hz) (C.7)

from where the average temperatures in the adherend and in the polymer are computed

as
T,-T, _ 1 % y 3 ¢
Tf — T; - h—l ﬁz P(th n h2a£)d?} = (2+ Cz) V/2(;+C2 'P(n,g)dn
T2 T; y t 2 + ¢, /2 2+c2
Ty - T: hz :&z 2h1 + hy’ ) vy= ) - P, )dn
with

- 2hy + hy



- 109 -

= = . . . t . .
T} and T, are functions of the single variable 7 50 that the thermal strain mismatch is
R

t
also a function of = since it is determined by
R

€m = a1(T1 T) - az(Tz ) ﬁ(_)

where the time and temperature-dependent thermal expansion coefficient of the polymer
is represented, for estimation purposes, by its “effective” value @s,.

The strain rate associated with the thermal contraction mismatch therefore is

for

where a prime denotes the differentiation with respect to the argument.

Since the functions £, £’ and the normalized time for attaining thermal equilibrium

K1l h
;llzR and 7;2 constant, it is clear that the case with
1 1

a higher cooling rate (smaller tg) among them would yield a higher strain rate and

are the same for all cases with

produces a higher residual stress as indicated in Figure C.1.

. L. . K1t ha h
Case 2: Variation in FrR with — and typ constant: 2 = ¢z, tR =01

h? hy hq
de, .
This consideration follows the same procedures as in case 1; the strain rate —%— for this
case turns out to depend on two variables since
T(ty)-T; Kie y
—— =R , =D —
T, — T; Gy 2h1+h2) (h2’ Sy 1 )

K1
€m = H(t7 E'g)

for
B2
0<t<61+ﬂ—1‘.

The dependence of ¢, on L beside time ¢ makes the comparison of residual stresses

h

for different cases with EZ- and tg constant less appealing unless the explicit form of the
1

function H is known. However, a qualitative prediction can be made.
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Figure C.1: Thickness-averaged stress o, in the polymer of an infinite sandwich for

FitR _ 003839 and for 12 = 5 %.
h? hy

As shown earlier, the time for attaining thermal equilibrium is given by equation
. hZ
(C.5). Based on that equation, the case with a smaller thermal diffusion time, e.g., —
K1

would result in a shorter thermal equilibrium time, thus a higher strain rate. Therefore,

ki

K‘ltR rd
5 -
hl

we expect that residual stress is an increasing function of the parameter This

trend is evident from Figure C.2.

Kitp KitR
and tgr constant: —— =c;, tr=c
1

Case 3: Variation in -2 with 5
h] hl

In this situation, the thickness of the adherend and the cooling time are kept constant
while the polymer thickness varies. We already present the result for this case in section
2.4.1.7 of chapter 2 (cf. Figures 2.6). For high cooling rates, the residual stresses increase
with -iﬁz but decrease with that ratio for low cooling rates. However, the influence of

hy
thickness ratio is only minor for all cooling rates. We now explain the increase in residual

K,1t
hi

"tg is constant in this situation so that 2 is proportional to the inverse of the thermal diffusion

time.
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Figure C.2: Thickness-averaged stress o, in the polymer of an infinite sandwich for

%3 = 5% and for tg = 0.02 sec.
1

stresses with thickness ratio at high cooling rates: A thicker polymer layer produces
larger (transient) temperature gradients across the sandwich thickness while, for the
present situation, the time required for attaining thermal equilibrium remains nearly
unchanged since (a) the thermal diffusion time for the adherend and the cooling time
are kept constant and (b) the polymer is much thinner than the adherends (% < 10%).
The applied strain rate is, therefore, higher for a thicker polymer layer which leads to a
higher residual stress. On the other hand, for low cooling rates, the effect of transient
temperature gradients is essentially absent so that the stress behavior for that case

follows the same trend as what thermoelastic analysis predicts.
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Appendix D: Linearly Thermal Stress Analysis

This appendix presents an engineering analysis of bonding stresses at the interface
between an elastic adhesive layer and an elastic adherend of a sandwich plate exposed
to a uniform temperature change. The bonding stresses at the interface of the similar or
closely related problem have been studied in [3, 36, 37] by using either a beam analysis
or a variational method. Our approach to solve this problem is based on the work by
Suhir in [37]. The adherend is considered as a plate on an elastic foundation. Due to
symmetric lay up of the adherends, the polymer layer will not bend as a plate, thus it

is modelled as a thin elastic strip (see Figure D.1).

v
et

L2

Figure D.1: Forces and moments acting on the adherend and the polymer. The con-
vention of the forces and moment acting on a cut across the thickness is also given in
the figure for the adherend. (Note that z = 0 corresponds to the center line).

Let us denote the subscript 1 and 2 of any quantity to be that of the adherend and

polymer, respectively. The displacement of the lower extreme fiber of the adherend in



-113 -

the direction of the bond line is given by

2
-

u(@) = (14 m)oy ATa + 5 T / 0(0) dg+n1q(x)+%1/0x o(C) dc,

where E,, 11, and o, are the elastic constants and the thermal expansion coefficient of
the adherend, respectively. @, ¢, and v are the axial force, shear force per unit plate
length, and normal displacement, respectively. The first term in the above equation is
the free thermal expansion (contraction). The second and third terms are the displace-
ments due to distributed shearing force. The last term is due to bending. Typical for

plate analysis are the following relations

K N 2(1+I/1)h1
vt 3E,
Q@) = - [ a0
M = Dlv"

E\h?

Dy = 12(1 - v2)
dM hy
PP vy
v _

dr P

aw  _

de ¢

A similar expression for the axial (x) displacement of the upper extreme fiber of the

polymer layer can be obtained as

ux(z) = (1+ vo)ay ATz —

2 [T 00 dc - mate)+ 2 [ gy ac

In this case, the last bending term has been substituted by a Poisson ratio induced term,

e.g., the term with the normal distributed force p(x). By assuming that the polymer
layer is very thin compared to the adherends and that p(x) is smooth without any step

change, it follows from linear elasticity theory that

p v (1+ v)as AT

By he(l-13) (1—2v3)
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After enforcing the axial (x) displacement continuity across the interface, the above

equations can be reduced to

Q”—(l_yf—i—l_l/%)Q:ﬁv”—l— vy _Aa AT (14 v)a AT
Elth/ Ezhgf‘{ 2 (1 bl l/g)hgﬁ K (1 - l/g)l‘i
EZ hl azEz AT
" + " + R
mD1-0) 20,0 T -
- where
K = Ki+ K

LN = (14 w)ar— (14 vy

subject to boundary conditions

v(0) = 0
v"(0) = 0
V(1) = 0
QU =0
Q) =0

h
Dyo"(1) - ?1Q'(1) = 0.
The above two coupled differential equations can be solved by rewriting them as a
system of six coupled first order equations, e.g., w’ = [A]w + r and then reducing them

further to an uncoupled first order system through a proper variable transformation.

The solution for w is finally given as

6
— Ajz -1
= E wgz—Nije 3T - Aij r

where
[ 0 1 0 0 0 07
1-v? + 1-v? 0 Vo 0 hi 0
Elhllﬁ Ezhgﬁl hgli(l - l/2) 2K
0 0 0 1 0 0
[A4]= 0 0 0 0 1 0
0 0 0 0 0 1
h1 <1 — 1/2 + 1- 1/2> 0 Vo _h_l _ E2 0 h? 0
L 2D1 Elth’ Eghgl‘i 2:“&D1(1 — Vz) hg h2 (1 — 1/2) 4/’\',D1 .
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0 3\
Da AT vear(l4v,) AT
Tk (1-wv)k

r = 0 >

—_ 0 ?
0
hAaAT vhiay(l4+v) AT 0B, AT
.~ 2D, 2D1k(1 — vy) (1 =wy)D, )

wp; are the constants of integration determined by the boundary conditions, N;; is the

it" component of the j'* eigenvector of the matrix [A], and ); are the corresponding

h . e .
eigenvalues. If —E‘z— 4 ;L—l as in most typical adhesive joints, the eigenvalues can be
1 2

approximated by the following expressions

— 3(1—1/2) 1
Mz & 2(1+ B) h,
2712(1 - x1)B1Y* .
Asa56 i%[_ﬁ_l___i_}_)ﬁ] (11'_1)
1 — Vg
8 = Exhi(1+ 1)
Ei1hy(1 4 v3)
Y
X = Vz.

Based on these A;, the homogeneous solution of w decays to zero at a distance of several
adherend thicknesses away from the free edge as expected.
We compare the results based on this analytical model with those from (finite ele-

ment) thermoelastic analysis in Figures D.2 and D.3.
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————— hy = 0.32 mm (beam analysis)
——————— hz = 0,32 mm (FE) .
————————— hy = 0.8 mm (beam analysis)
----------- hy = 0.8 mm (F.E)

x/hy

Figure D.2: Comparison of the analytical and the finite element solutions for the inter-
facial shear stress 7., in thermoelastic analysis.

|
—_ |
© H
%, -2 1',' ————— hy = 0.32 m (beam analysis) 8
- W hy = 0.32 m (F.E)
o v e hy = 0.8 mm (beam analysis)
N hy = 0.8 m (F.E) .

1

.0 .5 1.0 1.5 2.0
X/h1

Figure D.3: Comparison of the analytical and the finite element solutions for the inter-
facial normal stress o, in thermoelastic analysis.
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Appendix E: Energy Release Rate For A Semi-infinite
Crack

Consider the sandwich to be separated by a hypothetical plane through the polymer
and along which a crack is introduced later. This plane is not necessarily located in
the (large) plane of symmetry of the sandwich. The two segments defined by the plane
constitute bi-material plates, each (possibly) possessing a different layer thickness of
polymer. Before introduction of the crack there exists a net force F; and a net moment
M, resulting from the residual stresses in each of these hypothetical plates (s;ee Figure
E.1). If the assembly were cut along this hypothetical plane the stresses reduce to
yield a vanishing net force and moment across each section, but these segments then
deflect into each other at the free end. As a consequence there must be a contact
force P acting on each segment to keep them from interpenetrating. For the present
analysis the length of the crack is assumed to equal “a,” and “a” is the half length
of the sandwich with the goal of letting a — oo for a semi-infinite crack. Figure E.1
depicts the deformed configurations of this cracked sandwich after the (stress) unloading
process. The energy release rate for this problem can be computed with the aid of a dual
bi-material cantilever type plate model. Since this computation uses results from the
bi—material plate analysis, we review the latter briefly in the next section. All equations

are derived for plane strain with E’ denoting

— 2
Results from bi-material plate analysis

Consider a bi-material plate under an applied force F' and/or under a moment M as
shown in Figure E.2. One then wants to derive the stresses, strains and the strain energy
in the plate. We show the calculation for the plate under F first. The stresses c‘rw'1 and

6;2 in layers 1 and 2, respectively, of the plate due to the force F are given by

: FE;
= T WEi+ B (E-1)
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o FE,
%e T W B+ By (E-2)
as determined from the two following equations
c‘fxllhl + 6;21‘/2 = F (sum of forces) (E.3)
7, Tos (i :
— = 2 (identical strain). (E.4)
Er 2
The corresponding strain energy is
5 g _ 19
U= (2er 4 T2y, '
Gy *amy)" (E-5)

We next consider the plate subjected to an applied moment M. As in the homoge-
nous case, the strain-curvature relation follows from the assumption that plane sections

remain plane, i.e.,
&(y) = —(y — vo)s, (E.6)
where vy, is the location of the neutral axis as measured from a reference axis as indicated

in Figure E.2. The axial stress profile in the plate (across the thickness) is

_ EzEw 0< y < tQ

This stress profile o,(y) must satisfy the force and moment equilibrium conditions
hitis
| e = o (E8)
hi+ts
/0 (v = yo)ouly)dy = M. (E.9)

Substituting (E.7) and (E.6) for the stress and strain, respectively, into (E.7) and (E.9)

and carrying out the integrations yield

Bl E'R?
—; 24 ——; L 4+ Elhyt,
Yo = Fit, + iR, (E.10)
M = (E'I)k, (E.11)
where
E!t2  E'R? :
B B s [ 55+ 2 + b
E'N = —=2 4+ ——= 4 E'h’t Elt2h, —
( )* 3 + 3 + 17912 + 2211 Eétz’l‘E{hl (EIQ)
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The strain energy in the plate for this (moment) loading follows: From the definition of

the strain energy for a plate, one has

1 a phitta
= —2-/ / Oy €,dyde (E.13)
o Jo

with a being the length of the plate. By substituting (E.6) into (E.13) and by invoking
(E.9) and (E.11), one finds

2 G I) (E.14)

So far M has been assumed to be constant but allowing M = M(z) does not change
the results in any way. One can also show that the total strain energy of-the plate
under a combined axial force F' and moment M equals the sum of the strain energies
arising from each load component separately. It is thus clear that all results from the
homogenous plate analysis also apply to the bi-material case but with the “effective”

flexure rigidity (E'T),.
Energy release rate

As mentioned at the beginning of this appendix, a contact force P acts on each segment
of the cracked sandwich during the (moment) unloading process. This contact force is
determined from the continuity in the transverse displacement at the end of the two

bi-material plates, e.g., (uz); — (uz) = 0, as

3 | Mo, (E'T), + My, (E'T),

p=3 . .
2| @D, +(ED.. |’ (E.15)

where M,, and M,, are the net moments resulting from residual stresses as defined
below on a cut (cross) section in the upper and lower segments, respectively; (E'I), is

the effective flexural rigidity.

The energy release rate for a cracked geometry is

oU
G = ~3a’ (E.16)

where a is the crack length. With the aid of Figure E.1 and by linear superposition the

energy release rate for the present cracked sandwich can be computed from equation
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(E.16) via a dual cantilever plate model, in which U is the total strain energy of the two
bi-material plates, each being subjected to its own force —F; and moment — M, but a
common load P at the end = 0. We deal next with (either) one of the two bi-material
plates.

If 0,,(y) is the residual stress in the (infinite) plate before the crack is introduced,
Y1, Y and 7y, are the positions of the bottom fiber, the upper fiber and the neutral axis
of the bi-material plate, respectively, then Fy and My resulting from this residual stress

are given by

Fy, = 0z, dY

M, = Tse(Y — Yo)dy.

I,
I

The calculation of the energy release rate for one (generic) bi-material plate is out-
lined next. As mentioned in the previous section, the contribution of the bending strain
energy and that of the stretching counterpart to the total strain energy can be computed
separately. Both expressions for stretching and bending strain energies are also derived
in that section as given by equations (E.5) and (E.14), from which G follows by (E.16).

The contribution of —F; to G is determined through equations (E.5) and (E.16) for

F=-F, as

FE(E| + EY)
2(E1hy + Eztz) ‘
Similarly, by using equations (E.14) and (E.16) with M = — M, + Pz, the contribution

g =

(E.17)

of —M, and P to G is given by

M? + P%a* -~ 2MyPa

G = 2ET).

(E.18)

1
The above equation for G is independent of a since P is proportional to —. The total
a
energy release rate of the cracked sandwich is then calculated by evaluating equations
(E.17) and (E.18) for each bi-material plate and combining the results. This final result

also holds for a semi-infinite crack since its expression is independent of the crack length

WK »
a.
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Figure E.1: Deformed configuration of the cracked sandwich and schematic representa-
tion of superposition method used. (a) Deformed configuration of a cracked sandwich.
(b) Schematic representation of superposition method used (shown only for the upper
segment of the cracked sandwich).
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