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Abstract

A classical problem in fluid dynamics is the study of the stability of plane
Couette flow. This flow experimentally sustains turbulence for Reynolds
numbers greater than 144040 (see [10],[5]). (The Reynolds number is based
on channel width and wall velocity difference). Since plane Couette flow is
linearly stable for all Reynolds numbers, obtaining non-trivial mathematical
solutions to the plane Couette flow equations is difficult. However, M. Nagata
[6] finds a non-trivial numerical solution of the plane Couette flow equations
at low Reynolds number. We confirm these solutions. We compute the
minimum Reynolds number at which they exist. We study their stability.

We also study the effect of a Coriolis force on plane Poiseuille flow.
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Chapter 1

Introduction

A long standing problem in fluid mechanics is understanding the mechanisms
or processes by which a laminar flow becomes turbulent. This problem has
been studied in many specific cases. We will concentrate on the case of an
incompressible viscous fluid between infinite parallel plates. There are two
canonical examples of this special case. In one example, the plates shear past
one another with constant velocities. This example is called plane Couette
flow. For plane Couette flow, we define the Reynolds number to be the
velocity difference of the plates times the distance between the plates divided
by the viscosity of the fluid.

The other canonical example is that of plane Poiseuille flow. This is the
flow between stationary plates with an external driving force parallel to the
plates.

Experimentally, plane Couette flow sustains turbulence for large enough

Reynolds number (Re > Re; = 1440 + 40) (see [10]). For Reynolds numbers



less than the transition number (Re < Re;) the flow becomes a laminar flow
with the velocity depending only on the distance from each plate. Theo-
retically and numerically, all studies seem to imply linear stability of this
laminar flow for all Reynolds numbers (see [9] [2]). The lack of bifurcations
or other known solutions for plane Couette flow make study of this transition
difficult.

In contrast, Taylor—Couette flow bifurcates to other flows for large enough
Reynolds numbers. Taylor-Couette flow is the flow between infinitely long
coaxial cylinders. If the gap between the cylinders is small compared to the
average radius of the cylinders, Taylor-Couette flow is approximated by plane
Couette flow in a rotating channel. This limit is discussed in Appendix A

M. Nagata (see [6],[7],[8]) finds new solutions to plane Couette flow by
studying plane Couette flow in a channel rotating with speed Q) about the
z axis (see Figure 1.1). He finds bifurcations to two—dimensional solutions.
These solutions look like Taylor vortices in Taylor-Couette flow. The axis of
each vortex is aligned with the velocity of the bounding plates. When the
rotation is further increased, he finds another bifurcation. The new solution
bifurcating from the vortex solution has variation in all three directions. It
looks like wavy Taylor vortices in Taylor Couette flow. The rotation, 2, can
be decreased to zero while retaining the three-~dimensional structure of the
solutions. These solutions are poorly resolved due to Nagata’s use of series
of Chandrasekhar functions to approximate the flow fields in the direction
normal to the plates.

We reformulate the problem in terms of Chebyshev polynomials instead of

Chandrasekhar functions. These polynomials provide much better resolved
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Figure 1.1: We study flow between infinite parallel shearing plates. The

plates are tumbling with angular velocity, Q. The linear velocity profile,

v(z), seems to be (linearly) stable for all shear rates.

solutions. We also exploit a symmetry of the solution allowing us to do
most of the calculation on workstations (avoiding the need for time on a
supercomputer.) While this limits the types of solutions we can obtain, the
use of the symmetry increases the speed and accuracy of the solutions. We
study the dependence of these solutions on other parameters of the problem
using the path following techniques of H. B. Keller [4]. These methods allow
us to accurately locate bifurcation points and to find the minimum Reynolds
number at which these solutions exist.

This minimum Reynolds number (Re = 467) is about one third the
Reynolds number at which the flow experimentally sustains turbulence. In
an attempt to clarify this difference, we study the linear stability of this flow

to all disturbances having the same symmetry as the solution. The resulting



spectrum implies that some of the solutions may be stable.

We study several aspects of the problem. First we obtain the three-
dimensional solutions confirming the results of Nagata. Studying these so-
lutions allows us to find a symmetry. By exploiting these symmetries, we
further resolve the solution. Next we study the dependence of the solution
on several parameters of the problem. Lastly, we compute the eigenvalues
of the underlying linear problem in order to examine the linear stability for
these flows.

In Appendix A we relate the equations which Nagata studies to the equa-
tions describing Taylor-Couette flow. The cylinders are rotating with an
average angular velocity 2. The gap between them is a and their average
radius is b. In the limit /b — 0, the equations for a fluid between concentric
cylinders reduce to the equations satisfied by a fluid between parallel plates

with a Coriolis force (resulting from the rotating coordinate frame.)
We define
U(z,y,z,1)
U(z,y,z,t) = V(z,y,z,1)
W(z,y,z,t)
to be the velocity of the flow at time ¢ and at location (z,y, z) (see Figure
1.1). We define P(z,y, z,t) to be the pressure of the flow. The Navier-Stokes

equation for flow between parallel plates with a Coriolis force are as follows:

882] = — Re (U-V)U + VU = VP +20(2 x ), (1.1)
0 = V-U. (1.2)

The solutions of these equations are required to be solutions which satisfy no



slip boundary conditions at the plates which are at z = +1/2 and periodic

boundary conditions in the x and z coordinate directions parallel to the

plates:
G(~3028) = +24, (13)
4(1,‘/;2,1?) = ——g—qﬁ, (1.4)
Uz, y+ Ay, 2,t) = Ulz,y,z,1), (1.5)
P(z,y+ Ay, 2,t) = P(z,y,z,0)+ A Fy, (1.6)
Ulz,y,2+ A,t) = Ulz,y,21), (1.7)
P(z,y,z+ A, t) = P(z,y,z,t)+ A\ F.. (1.8)

The parameters, Fy, and F}, are external forces on the flow.

We seek traveling wave solutions to equations (1.1) through (1.8), where
¢y, and ¢, are the speeds of the traveling waves in the y and z directions
respectively:

U(z,y,z,t) = V(z,y — cyt, z — c.t),

P(z,y,z,t) —yF, — zF, = p(x,y — ¢,t,z — ¢;t),

—

V(CC,’!/,Z) = ’U(ZC,y,Z)



As a result, we require V(z, 3 ,2) and p(z,y, z) to satisfy the following equa-

tions:
0 = —Re(V -V)V+ VWV —Vp+20(2 x V)
+F,§+ F.2 4 ¢,0,V + ¢,8,V, (1.9)
0 = V.V, (1.10)
V(—%,y,Z) = +%J, (1.11)
V(%,y,Z) = —%932, (1.12)
Viz,y+ Ay, 2) = V(z,y,2), (1.13)
p(z,y+ My, 2) = pla,y,2), (1.14)
Vizg,y,z+ ) = Vie,y,2), (1.15)
p(e,y,2+ X)) = plz,y,2). (1.16)

These equations have two well-known special cases. In the case of shear-
ing plates with no rotation and no external forcing (Vo =1, @ =0, F, =0,
F, = 0) plane Couette flow is one solution. The other special case is that
of plane Poiseuille flow for which V5 =0, Q@ =0, F, = 2, F, = 0. We con-
centrate mainly on the case of plane Couette flow with  sometimes varying
from zero.

We break our study of these equations into three parts. In Chapter 2 we
describe our formulation of the problem. We use a truncated Fourier series to
approximate the velocity and pressure fields in the periodic directions. In the

non-periodic (cross—channel) direction we use Chebyshev polynomials. We



define the shear stress (7) of the fluid on the bounding plate. We use 7 as a
parameter which allows us to follow folds and pass folds which are present in
other parameterizations. We describe our implementation of path following.
We describe our phase constraints (which are necessary due to the periodic
boundary conditions) and how we take advantage of an observed symmetry
to eliminate half the variables.

In Chapter 3 we study the results of this formulation when there is no
external forcing. We also discuss the bifurcations and the (linear) stability
of various branches of solutions. We study the spectrum resulting from the
linearization of the Navier-Stokes equations at various points along these
branches. We also describe the method and results of locating the minimum
Reynolds number for which the bifurcating solutions exist.

In Chapter 4 we study how the three-dimensional solution varies with
forcing. We also describe the results of our study of Poiseuille low. We find
a first bifurcation from simple Poiseuille flow to a flow which has variation in
the z direction. We do not find a 3-dimensional flow (corresponding to wavy

vortices.)



Chapter 2

Formulation of the Problem

After a brief review of Galerkin and Tau methods, we describe our approx-
imation of the velocity and pressure fields. Then we discuss our method for

following paths of solutions. Lastly, we discuss some implementation issues.

2.1 Review of Galerkin and Tau Methods

It will be easier to discuss our approximations of the Navier-Stokes equations
if we first review Galerkin and tau spectral methods. For a more thorough
study of these methods, see Numerical Analysis of Spectral Methods: The-
ory and Applications by D. Gottlieb and S. A. Orszag [3]. For a study of
applications of spectral methods to the Navier Stokes equations, see Spectral
Methods in Fluid Dynamics by Canuto, Hussaini, Quarteroni, and Zang [1]
The difference between tau and Galerkin methods lies in their treatment

of boundary conditions. In a Galerkin method, the basis functions for the



expansion satisfy the boundary conditions. For example, if F(u(z))=01is a

differential equation and we require u(z) to be periodic, say:
u(z +7) = u(e —7),
then we can approximate u by a truncated fourier series,

N .
U= Z U e,
n=—N

We require the following projections of the residual, F(u), to be zero:

/ : ¢ F(d)de = 0,
Vne {-N,—-N+1,..N}.
The boundary conditions are satisfied by @(z) and we have 2N +1 projection
conditions to determine the coefficients u,, —~NV < n < N.
In contrast, the basis functions of a tau method do not necessarily sat-

isfy the boundary conditions. For example, if F(u(z)) = 0 is a differential

equation and we require u(xz) to satisfy Dirichlet boundary conditions, say:
u(—1) =0 = u(1),
we can approximate the solution u by a truncated Chebyshev series,

i =3 uTh(z).

n=0

Since the Chebyshev polynomials do not satisfy the required Dirichlet bound-

ary conditions, we require ¢ to satisfy them:

N
Z U, = 0.
n=0

The boundary conditions provide two equations for the N + 1 unknowns.
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Since we cannot in general require the residual, F(4), to be zero and we al-
ready have imposed two equations for the unknowns coming from the bound-
ary conditions, we only require that the first N —1 projections of the residual

to be zero as follows:

Tz =0,

JRCLCEY
-1 V1—22
Vn € {0,1,...N —2}.

In this way we get N+1 equations for the unknown coefficients u,,,0 < n < N.

2.2 Approximation of Velocity and Pressure

Fields

We use a Galerkin method in the y and z directions and a slight modification
of the tau method in the z direction to approximate the velocity and pressure
fields. First, however, we introduce the basis functions for the expansion.

We use the two wave numbers,

27

Uy =5
Yy )‘y7
__27r

az—)\z,

in our basis functions. The wave numbers are defined in terms of the peri-
odicities (A, and \.) appearing in the periodic boundary conditions (1.13)-
(1.16). We use these wave numbers and the Chebyshev polynomials, T(z),

to construct the basis functions,

Cimm(z,y, 2) = Ti(22) cos(mayy + na,z),
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Sl,m,n(xv Y, Z) = TI(QLIZ) Sin(mayy + nOéZZ).

We seek the approximate solutions,

Ug

— —
Va = Ve R V7
Wy

Po = p,

of equations (1.9)-(1.16). Each of the scalar fields, u,,v,,w,, and p,, are

truncated series expansions of the form,

L
q(z,y,2) = Z 2Q100C100(z,y, 2)

[=0
L N

+ Z Z Ql,O,nCl,O,n(m7 Y, Z) - Q;pynsl,O,n(wv Y, Z) (21)
=0 n=1
L M N

+ Z Z Ql,'m,ncl,m,n(x') Y, Z) - Q;,mynsl,m,n(mq Y, Z),
=0 m=1 n=-N

where ¢ represents u,v,w, or p. This expansion has (L+1)(14+2M)(1+2N)
coefficients. As a result, we have approximated V and p with a total of
4(L 4+ 1)(1 4+ 2M)(1 + 2N) coefficients. It is much easier to work with this
expansion in its complex form. In order to rewrite this series expansion, we

define the following complex quantities:
1 oy
dimn = i(Ql,m,n + ZQl,m,n)7

1 .
ql,—m,—n = §(Ql,m,'n - ZQ;,m,n)7

Q;,o,o =0
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Al,m,n = (Cl,m,n + isl,m,n) = E(Zx)ei(mayy-l-nazz).

Then we can rewrite Eq. (2.2) in the form,

M N
Z q1,m,nAl,m,n($7y)Z)’ (22)

=0 m=—M n=-N

-~

where ¢ represents u, v, w, or p.

Since V, and pa satisfy the periodic boundary conditions in Eqs. (1.13)-
(1.16), we can use a Galerkin method in the y and z directions. However, the
approximate solutions V, and p. do not automatically satisfy the boundary
conditions in Eqgs. (1.11)- (1.12); therefore, we wish to use a tau method in
the z direction. The tau method would be straightforward to implement if
we had boundary conditions for the pressure at the plates, p(—=1/2,y,2) and
p(1/2,y,z). Instead, we use a slight modification of the tau method which is
spelled out below.

In order to discuss our version of the tau method, we introduce the inner

product,

) = [ s [ [ st

We sometimes use the notation,

(£,9).

Whenever we have a vector in the inner product, we mean the component-
wise application of the inner product. In the following discussion, f will
always be S n(z,y,2) or Cimn(z,y,2) and g will either be the right-hand
side of Eq. (1.9) or Eq. (1.10). We define the set,

S(L, M, N)
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to be the set of basis functions,

Clro0 vie {0...L},
Cl,O,n, Sl,O,n Vi e {OL},TL € {1N},
Clmmny, Stmm VIE{0...L},m € {l..M},n e {-——NN}

We require V, to satisfy the boundary conditions, (Eqs. (1.11)~(1.12)).
We define the vector,

Ulm,n

—d

Wmn:

VT2, Vi,mmn ’
Wi m,n
in terms of the expansion coeflicients of the velocity fields, uim ny Vi m.n, Wy
given in Eq. (2.2). Requiring V,(z,y, 2) to satisfy Eqgs. (1.11)-(1.12) leads

to the equations,

0 )
Steo Vimn = | om0
0 Vm =0,n € {0,..N}
0 Vme {1.M},ne {—N,...N}
E{::o(”l)l‘—}l,m,n = l/2‘15»fn,05n,()
0

(2.3)
Thus, the boundary conditions provide 6(1 + 2M)(1 + 2N) equations.
We require the following (L — 1)(1 + 2M)(1 + 2N) projections of the
right-hand side of Eq. (1.9) to be zero:

(B,— Re (V.- V)Va+ V2V, = Vp, +20(2 X V,,) + ¢,0,V, + ¢.0,V,) =0 (2.4)
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VB € S(L —2,M,N).

Since there are 3 equations for every projection, we have 3(L—1)(14+2M)(1+
2N) equations for the unknown coeflicients in the expansions of V, and Da-
We also require the following (L + 1)(1 4+ 2M)(1 + 2N) projections of Eq.
(1.10) to be zero:

-

(B,V-V,)=0 VBe S(L,M,N). (2.5)

We use 2(1 + 2M)(1 + 2N) more projections in Egs. (2.5) than in Eqgs.
(2.4) since we have no boundary conditions for the pressure at the plates. A
simple application of the tau method would have left us with fewer equations
than unknowns.

Equations (2.3)-(2.5) provide 4(L+1)(1+2M)(1+2N) equations for the
4(L+1)(1+2M)(1 +2N) unknown coefficients in the expansions V, and p,.

Compatibility Conditions

Unfortunately, the equations arising from our approximation scheme are
linearly dependent. In particular, we note that the divergence condition,
V-V = 0, and the boundary conditions on V have to satisfy a compatibility
condition. An application of the divergence theorem gives us this relation as

follows:

0 = /0 * /OM / mv Vdedydz

- /.AZ/M u(z,y,z) —u(=1/2,y,2)]dydz

0 0

SUSW
= / / u(z,y, z)dydz. (2.6)

0

<
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Hence, the average (over a periodic box) flux of fluid through any plane
parallel to the plates must be zero. In particular, if we evaluate Eq. (2.6) at

x = 1/2 we obtain the equation,

0‘—/Az/ u(1/2,y,2z)dydz. (2.7)

While the boundary condition, u(1/2,y,2) = 0, satisfies the compatibility
condition (2.7), this analysis shows a linear dependence of the boundary
conditions (1.11,1.12) and the divergence condition (1.10). We discuss how
this linear dependence shows up in our equations for the coefficients for the
expansions Va and p, in the following.

In the system of equations (2.5), the divergence conditions,
(Cloo,V-Vy=0  Vie{0,..L}, (2.8)
requires the coefficients of the expansion u, (given in Eq. (2.2)),
U0 =0 vie{l,..L},

to be zero. Thus, the boundary conditions,

I
tjb

~1)'uro0 = 00,0, (2.9)
=0
L
0= EUI’0,0 = Up,0,0, (210)
=0

are not independent. We can satisfy Eq. (2.8), (2.9), and (2.10) by requiring

the coefficients,

Up,0,0 = 0 \/l € {0, L}, (211)
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to be zero. This analysis allows us to satisfy the (L+3) Eqs. (2.8), (2.9), and
(2.10) with the (L+1) Egs. (2.11). We now need two independent equations
to have as many equations as unknown coeflicients.

The two independent equations come from recognizing that the pressure
is not uniquely defined. The non-uniquenesses of the pressure are called
spurious pressure modes (see [1]). These modes are defined as any non-zero

Pa(2,y, z) for which
(B,Vp.) =0 VB e S(L,M,N).

In our formulation, there are two spurious pressure modes. One of the modes

is the average value of the pressure. The other is a linear combination of the

form,
L
Y cpiooli(z).

=0

Instead of requiring these modes to be zero (which would provide the two

independent equations), we note that the pressure coefficients,
Plo,o Vie {0,...L}
only appear in the equations,
(Cro0, — Re (V, - V)uq + Vit — 8pp — 200, + cyOytiq + . 0,u,) = 0, (2.12)

vie{0,..L —2}.

Equations (2.12) can be viewed as equations for the p; o since Egs. (2.12) are
the only equations in which the coeflicients, p; o0, appear. By not enforcing

Eq. (2.12), and not including the variables p; g0 in the calculation, we have
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removed (L — 1) equations and (L + 1) variables. While this leaves some
components of the pressure field undetermined, the velocity field is unaffected

by this removal of Eqs. (2.12) and pressure coefficients, pjooV! € {0,..L},

from the calculation.

Summary of the Approximation

In summary, we solve 4(L + 1)(1 + 2M)(1 + 2N) — (L + 1) equations in the
same number of unknowns. We represent these equations by the notation,
F(u,A) =0, (2.13)

where F' is the system of equations described in Egs. (2.3,2.4,2.5,2.11) with
the Eqgs. (2.8,2.9,2.10,2.12) removed. The argument, u, is the set of 4(L +
1)(1 +2M)(1 + 2N) — (L + 1) coefficients in the expansion of the velocity
and pressure fields with the (L + 1) coefficients, p;o0VI € {0, ..L}, removed

since these pressure coeflicients appear in no equations. The parameter, A,

is one of the set of parameters,

{RG, O.’y, Az, %7 Qa Fya Fz7 Cya Cz}-

2.3 Path Following

We use the methods of H. B. Keller to study the path,
D= {{u(A),A) : F(u(A),) =0,VA, < X < A ).

We use the following algorithm to find solutions along the path. The

subscript, ¢, indexes solutions along the path.
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Algorithm for Regular Path

Step 1 Start with an initial solution, (ug, Ao). Construct the Jacobian,

_ OF (uo; Ao)

0
L, ou

Step 2 Construct the initial iterate and initial parameter with one of the

following;:

e constant value continuation: A; = Ay + 6A,uf = u;y

e or secant continuation: A; = A\j_; + 8,

Ai=Aia

u? =g + 5 (wim1 — ui—2)

i—1=Ai—2
Step 3 Compute the special Newton iterates (indexed by v = 1,2,...),
Fle = —F(uf; M),

ut =t 4 o,

until [[eM]], <e.

Step 4 Set u; = ufv“. If the parameter, A;, is still in the range we wish to

study, and the number of iterations is small, e.g., N < 30, return to

Step 2.

This algorithm may fail for several different reasons. One is that the step
0\ is too large. In this case, we decrease the step size. Another reason the
algorithm may fail is that the Jacobian may need to be recomputed. Lastly,
we could have stepped beyond a fold or crossed a bifurcation point. These
last two failures require special algorithms to switch branches at a bifurcation

point or step around a fold. We discuss these next.
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2.3.1 Fold Points

Near a fold point, we find that we need to constantly decrease the step size
and recompute the Jacobian in order to have the iterates in Step 3 converge.
Furthermore, the condition number of the Jacobian increases rapidly. The
work of Keller suggests that we change our continuation to some other pa-
rameter. We shall switch to continuation in the shear stress at the lower

plate:

I R O
ﬂm_-%&ﬁ A (=172, 2)dydz. (2.14)

In Taylor-Couette flow 7 corresponds to the torque of the inner cylinder.

Nagata (see [8]) introduces this parameter in his study of these flows. We

adjoin the equation,

—

T(u) =7(Va) = (2.15)

to F(u; A) = 0. We study the solutions of the expanded system,

U\ T; ,)\ T;
st = (TN (1), e

By varying 7; we can study the path of solutions
D= {(u(m), M%), ) : Flu, ) = 0,7(u) = 7,Y7, < 7; < 7}

This leads to a slightly different algorithm in which we solve for A and
we continue in the shear stress, 7;. Again, the subscript, ¢, indexes solutions

along the path.

Algorithm for Path at Fold
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Step 1 Start with an initial solution, (ug, Ao). Construct the Jacobian,

eoay=| P

x
Tw O

Step 2 Construct the initial iterate and new parameter with one of the

following:

e constant value continuation: 7, = 7,_1 + 67,4 = u;_1, A? = A\

e or secant continuation:

Ty = Ti-1 T 57—7

T T
4] t 1—1
u; = uj—q1 -+ _""“_(ui—l - Ui—z)
Ti—1 — Ti—2
T — T;
0 2 1—1
A= dict + —— (A — Aia)
Ti—1 — Ty—2

Step 3 Compute the special Newton iterates (indexed by v = 1,2, ...),

€

Go _ ”F(u;'/; /\;,)
\ —r(ut) + 7,

AN

wf " =i + e,
A=
until ||eM]];, + (V] < e.

Step 4 Set u; = uM A = AN If 7, < 7; < 7y, is still in the range we wish

to study, and the number of iterations, N, is small, return to Step 2.

For any given fold, we find we only need to compute the Jacobian, G2,

once. When the iterations in step 3 fail to converge, we return to continuation

in A
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2.3.2 Bifurcation Points

In the case of two intersecting paths, we have a bifurcation point. In this
problem, we study two bifurcation points. One bifurcation point is an inter-
section of a solution depending only on z and a solution depending on « and
z. We call the solution depending only upon z the Couette solution. We call
the solution depending on x and z the vortex solution. The other bifurcation
point is an intersection of a solution depending on all three domain variables
and the vortex solution. The solution depending on all three variables is
called a wavy vortex. See Figure 3.4 for a picture of these paths and their
intersections.

Each of these bifurcation points presents a problem for the computation.
In particular, we wish to locate the bifurcation points and to switch the path
of solutions which we are following. In the generic case, we would expect the
determinant of the Jacobian to change sign when crossing a bifurcation point.
In both of the bifurcation cases above, the determinant of the Jacobian in
step 1 of the algorithm for a regular path does not change sign since the null
space of the Jacobian at the bifurcation point is two dimensional.

The bifurcation from the Couette solution to the vortex solution illus-
trates the difficulties of both bifurcations the most clearly. The Couette

solution,
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is a solution for all (Re, ), ;). At (Re = 600,Q. = 1.43,, = 3.1163) the
Jacobian in Step 1 of the regular path algorithm is singular. The null vectors
are only a function of z. Since the Navier-Stokes equations are autonomous in
z and the boundary conditions are periodic in z, the null vectors have a phase
freedom. As a result, the Jacobian is singular with two zero eigenvalues. This
means that the Jacobian does not change sign as ) varies from below (1. to
above Q.. This make detection of this bifurcation difficult.

In order to accurately locate the bifurcation point we make an ad-hoc

substitution of the phase constraint,
o b7 = [F = My /Azd in(2ry/\ 0
()= 0.7 = [ o [y [ dsinCny /A wulev,2) =0,
(2.17)

for the corresponding momentum constraint,
(00’0717 - R'e (‘_/;' ' 6)?“00‘ + V2wa - ﬁpa + Cyaywa + Czazwa) = 0’

in the equations, F'(u; ) = 0. The determinant of the Jacobian of this new
system changes sign at the bifurcation point. We use a secant method to
find the zero of the determinant. This is the first step in our algorithm to

switch paths from the Couette solution to the vortex solution.
Algorithm to Switch Paths from Couette to Vortex Solutions

Step 1. Accurately find the parameter value A* at which

Fr OF (u(A*), A7)
Oou

is singular.
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Step 2. Find the right nullvector, ¢, of the singular Jacobian with ®,(¢) = 0.
Step 3. Find a left nullvector, ¥, of the singular Jacobian with ®,(¢) = 0.

Step 4. Construct the initial guess for a solution on the new branch, u? =

u(A*) + €d.

Step 5. Compute the Newton iterates on the inflated system,

F(u, A, c,) 0
vou | =| vl
P, (u) 0

We add the phase constraint in step 5 in order to make the solution on the
new branch unique. Without the phase constraint, the solution has a phase
freedom. This freedom is a result of the periodic boundary conditions and
the fact that the Navier-Stokes equations are autonomous in z. Since we now
have one more equation, we now solve for the wave speed, ¢, in addition to
the other variables. In our calculations, we chose the parameter, A, to be the
rotation, Q). After the Newton iterates have converged, we find that using
shear stress continuation in the Algorithm for the Path at a Fold works best
for the extension of the path from the bifurcation point.

A completely analogous algorithm is used to switch from the vortex so-
lution path to the wavy vortex path. Once again, in order to accurately
locate the bifurcation point we make an ad-hoc substitution of the phase

constraint,

O, (u) = 0,(V,) /1 m/)‘y / dz cos(2mz[ X, )ua(z,y,2) =0,
’ (2.18)
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for the momentum constraint,
<SO,1,07 — Re (‘70, ) 6)ua + vzua - 6pa. - ZQva + cyayua + czazua> = 07
appearing in the expanded system,

Hu, )\, c,) = ( Flu,e; ) ) .

. (u)
This is the first step in the Algorithm to Switch Paths from Vortex to Wavy

Vortex Solutions

Algorithm to Switch Paths from Vortex to Wavy Vortex So-

lutions

Step 1. Accurately find the parameter value A* at which the Jacobian,
(Hu(w(A), A7, e2) [ He, (u(A7), A", c2))
is singular.
Step 2. Find the right nullvector, @, of the singular Jacobian with ®,(¢) = 0.
Step 3. Find a left nullvector, 1, of the singular Jacobian with ®,() = 0.

Step 4. Construct the initial guess for a solution on the new branch, u{ =

u(A*) + €g.

Step 5. Compute the Newton iterates on the inflated system,

F(u, A, ¢y, c;) 0
bou bl
®,(u) 0
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It would have been more reasonable to use the condition ¢ - u = ¢ - u?

rather that the condition 9 - u = 9 - u?; however, we did not.

2.4 Implementation

We have left several points of our method vague and we try to clarify them
here. In particular, we will discuss how we compute the inner products in
Eqgs. (2.4)-(2.5), we will discuss the construction of the Jacobians and we

will discuss the computation of the null vectors.

2.4.1 Inner Products and the Jacobians

The velocity and pressure fields are approximated by truncated series of

Chebyshev polynomials and Fourier series of the form,

L M N
T,Y, 2 z Z Z q1,m,nAl,m,n($ayaz)7

1=0 m=—M n=-N
where ¢ is one of u, v, w, or p. The basis functions, A; ., are given in Section
2.2. Each of the derivatives in Eqs. (2.4)-(2.5) are recast so that the inner
products are analytically calculated. We use the well-known derivatives of
the Fourier series,

M N

L
Oyqa(,y, 2 Z Z Z (tmoy)@tmnAtmn(T, Y, 2).

=0 m=—M n=-N
The analogous derivative in the z direction is also used. For the derivatives
in the z direction, we use the expansions computed by Gottlieb and Orszag

[3]. This only leaves this issue of the multiplications of fields appearing in the
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convective terms, (‘_/; . ﬁ)‘—}a, of Eq. (2.4). Since we use relatively few Fourier
and Chebyshev modes in our truncated series expansion of the velocity and
pressure fields, we compute the multiplications by convolutions rather than
by collocation methods. The advantage of the convolutions is that we can
analytically compute the derivatives of each of the inner products in Egs.
(2.4)—(2.5) with respect to the coefficients in the expansions of the velocity

and pressure fields.

2.4.2 The Null Vectors

Since the Jacobian is nearly singular at the points where we wish to compute
approximate null vectors, we use inverse iterations to find both the right and
left null spaces. This is easily done since LINPACK provides routines for

solving the problems,

Adis1 = $if[|ill — @y (¢:/l@:ll) — @=(Si/1|ill),

ATier = i/ [[ill = @y (i 1hill) = @=(hi/ [1ill),
1=0,1,2,...N.
To start the iterations, we chose a random initial vector ¢o or . After
N (= 30) iterations, the norm, ||¢:|| or ||¢||, converges. We use ¢n/||dn]| as

the null vector of the Jacobian. Similarly, we use ¥n/||¢n]|| as the left null

vector of the Jacobian.
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2.4.3 Symmetry and Optimization

In the special case of no forcing (F = 0), we find solutions of (2.13) which have
a symmetry which allows us to eliminate half the variables and equations. All
the real parts of the coefficients of the velocity components are zero whenever
their indices sum to a multiple of two. Similarly, the imaginary parts of the

velocity coefficients with odd summed indices are zero.

Imaginary(Vj m) = 0
magmary( l,m, ) V(l+m+n)(m0d2) =1, (2.19)
Real(p;mn) =0
Real(Vimn) = 0
eal(Vimn) V(I + m + n)(mod2) = 0. (2.20)
Imaginary(pimn) = 0

The wave speeds, ¢, = ¢, = 0, are also zero.
Solutions of this type can be obtained by performing Newton iterations
on only half of the equations. In particular we perform Newton iterations on

the equations,

(Crmm M(Vaypa)) V(I +m +n)(mod2) = 0
(Stmm; ]\—»( _.avpa» Y4+ m+ n)(mod2) =1
0=H(u; A) = (Clmn,V-Vo)  V(I+m+n)(mod2) =1 (2:21)
(Stmns V - Vi) Y(I+ m + n)(mod2) =0
| Boundary Conditions

]\;['(T_/:l,pa) = — Re (V, - VWV, 4+ V2V, — Vp, + 20(% X X_/;)

We solve for the coefficients not required to be zero by Egs. (2.19) and
(2.20). The boundary conditions we use for this half-size system are those not

identically satisfied when the coefficients have the symmetry of Eqs. (2.19)
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and (2.20). We only perform Newton iterates to solve for the coefficients
which are not identically zero by Egs. (2.19) and (2.20).

By only solving half the equations for half the variables, we save much
memory and time. Every u satisfying H(u,A) = 0 and Eqgs. (2.19) and (2.20)
was found to satisfy F'(u, \).
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Chapter 3

Results in Plane Shear Flow

In the case of shearing plates with no external forcing, we search for solutions

of the equations,

0 = — Re (V- -V)V+ V2V —Vp+20(2 x V), (3.1)
0 = V.V, (3.2)

with boundary conditions (1.11-1.16), Vo = 1, and the two phase constraints,
®,(V) =0 and ®,(V) = 0 defined in (2.17) and (2.18). We approximate the
solutions to these equations using the methods described in Chapter 2. We

are particularly interested in solutions with € = 0.
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3.1 Bifurcations and Solution Paths

3.1.1 From Couette Flow to Vortices

Couette flow,

0
Vo=| -z |,
0
Nz?
bo = R

is a solution of Eqs. (3.1-3.2) for all (Re, ). The average (over the y and
z directions for one period in each direction) of the y component of Couette
flow is shown in Figure 3.1.

At certain values of (Re, c;,{2) we find a bifurcation from Couette flow.
We know from the analysis in Appendix B that the locations of the bifurca-

tions from the Couette solutions are a function of the Taylor number,
T = 2Q(Re — 29Q),

and the wave number, «,. The locations of these bifurcation points are not
independent functions of the Reynolds number and Q. We call the Taylor
number at which the Jacobian is singular the critical Taylor number (7}).

Note that the Taylor number is quadratic in Q. This means that for large
enough Reynolds number,

Re > 2/T,,

there are at least two singular points. In the generic case, there are an even

number of singular points. We will concentrate on the singular point with
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Figure 3.1: The y velocity as a function of distance from the center of the

channel for Couette flow.
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Figure 3.2: T, vs a,.

lowest critical Taylor number and 2 < Re/4.

T, varies with «, = 27 /X,; however, it does not vary with a,. See Figure
3.2 for a graph of 7, as a function of «,. Since the boundary conditions are
periodic, if the Jacobian is singular at (T¢, A;) then the Jacobian is also singu-
lar for all periodicities which are integral multiples of A, ., namely, (T,,n,).
Figure 3.3 1s a graph of the critical Taylor number against the periodicity A,.
Only the first 6 multiples of the fundamental mode are shown.

We compute these values of the critical Taylor number by fixing the
Reynolds number at Re = 600. At different values of the wave number,
o, we increase () from zero (in steps of .05). When the determinant of the

Jacobian changes sign, we use a secant method to determine the value of (2
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Figure 3.3: T, vs A, when the x-direction is spanned by 33 Chebyshev poly-

nomials.
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at which the Jacobian has the smallest determinant. (We find that ) can be
determined to 14 digits by this secant method; although, the actual accuracy
of this value of Q could be affected by roundoff error or resolution of the so-
lution space.) We then compute the Taylor number using T' = 2Q(Re — 29).
We compute the Taylor number for different values of the wave number «,.
This gives us T'(ar,). We then compute Newton iterations on the minimum

problem,

oT

da, -

to find the minimum Taylor number. The results of this calculation are shown

0,

in Table 3.1 for several different resolutions of the solution. The minimum

critical Taylor number is

T, = 1707.76177710472

when the wave number is
o, = 3.116323555/n.

Table 3.1 shows that very few Chebyshev polynomials are necessary to accu-
rately compute T¢.. Couette flow only varies with z. As a result all the y and
z modes decouple. Thus, the accuracy of the critical Taylor number does not
depend upon the number of fourier modes in the y and z directions.

At the bifurcation point (Re = 600,c, = 3.0,Q = 1.43) we switch to
the new branch of solutions (the vortex branch) by the methods discussed
in Section 2. The Couette solution has a constant shear stress of 1.0 for all
values of (). In contrast, the new branch of solutions (labeled ‘vortex’ in

Figure 3.4) increases in shear stress with increasing ).
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Wavy Vortex
Vortex

Couette

10 15

L

Figure 3.4: Shear Stress as a function of . Re = 600,a, = 1.6,a, = 3.0.
The lower intersection of vortex and wavy vortex branches is a bifurcation.
The upper intersection of the vortex and wavy vortex branches is only graph-
ical. (The flows are not the same at this point.) There are two wavy vortex
solutions @ = 0. The solution with large shear stress is called the upper
branch solution and the low shear stress is called the lower branch solution.

The resolution is (L, M, N) = (14,3, 3) in this picture.
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minimizing a, minimum T, L
3.1163235547 | 1707.761777104727 | 16
3.1163235550 | 1707.761777104721 | 18
3.1163235549 | 1707.761777104720 | 20
3.1163235548 | 1707.761777104720 | 24
3.1163235548 | 1707.761777104719 | 30

Table 3.1: Only 16 Chebyshev polynomials are needed to resolve the critical
Taylor number (7,) to 15 digits of accuracy. L is the number of Chebyshev

polynomials used.

These vortices have some symmetries. The null vector at the bifurcation
point has components only in the direction of the first harmonic of the fun-
damental wavelength in the z-direction. The solution branch only varies with
x and z. There is no y variation. We graph the mean flow in the y direction
in Figure 3.5 and the flow perpendicular to y in Figure 3.6. We can write

the vortex solution in the simpler form,

L N
‘/a —_ Z Z WOnTl(QCL')ei(”QZZ),
=0 n=—N
L N |
Py = Z Z onnTl(zx)ez(nazz)_
=0 n=—N

We follow the vortex solution from 0 = 1.43 where it bifurcates from
Couette flow to 2 = 13. During this continuation the determinant of the
Jacobian changes sign at ) = 2.1725 signalling a secondary bifurcation. We

discuss the new branch of solutions bifurcating from the vortex branch in
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Figure 3.5: The mean (over a period in y and z) of the flow in the y direction

for the vortex solution at Re=600, = 13, a, = 3.0.
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Figure 3.6: The velocity field in the xz plane for the vortex solution at
Re=600, Q = 13, a, = 3.0. The lower plate is shearing out of the paper on

the lower edge of the image.
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Section 3.1.2. The new branch of solutions is labeled “Wavy Vortex” in
Figure 3.4.

At lower Reynolds numbers (i.e., Re < 250), we have sufficient resolution
to compute the the full path of vortex solutions. At wave number, a, = 3.0,
we have a critical Taylor number, T, = 1711.28. Thus, at Reynolds number
85.0, the two values of {1 which satisfy the equation,

T, = 20(Re — 2Q0),

are (£ = 16.377 and Q0 = 26.123). As can be seen in Figure 3.7, there is one
vortex solution branch which intersects the Couette flow branch at these two
points.

We have discussed the bifurcations from Couette flow with low critical
Taylor numbers (T, ; < 2000). At the same wave number, o, = 3.0, there
are a sequence of critical Taylor numbers, say, 1;.,,v = 1,2,.... The T., are
the sequence of eigenvalues of the problem B.6 in Appendix B. While we
did not accurately locate them, the next two values of the critical Taylor
number are T¢ 5 = 26, 100 and 7.5 = 182, 300. These critical Taylor numbers
also vary with a,. In Figure 3.8 we show the relation between T.2 and the
wave number, «,. Note that the minimum value of Tt 1s nearly ten times

the minimum value of T, ; (graphed in Figure 3.2 and labeled 7%.)

3.1.2 From Vortices to Wavy Vortices

On the vortex solution branch bifurcating from Couette flow the Jacobian
is singular at parameter values Re = 600,Q = 2.17,c, = 1.6,, = 3.0. We
switch paths using the algorithm described in Section 2. The new path of
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Figure 3.7: Shear Stress vs. Q at Re = 85.0,, = 3.0, a, = 1.6. This branch
of vortices shows that the two values of Q) satisfying 2Q(Re — 2Q) = T.

correspond to bifurcation points on the same branch of vortex solutions.
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Second Bifurcation Branch from Couette Flow to Vortex Flow
21000 T T T T i T T

20500 - -
20000 | -
19500 -

Te,2 19000 - -
18500 - -
18000 |- -
17500 - -

17000 | 1 1 i { | 1 |
3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

Figure 3.8: Couette flow bifurcates to a different path of solutions at higher
Taylor number. This second branch of critical Taylor numbers has a mini-

mum near 17700 when «, is near 5.4.
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solutions is labeled ‘Wavy Vortex’ in Figure 3.4. Note that it has a fold point
and two solutions at {2 = 0.

We study these three solutions on this path. We study the solution at
the fold point, (7 = 1.86,0 = —2.07.) We also study the solutions at Q = 0.
We call the solution (at €2 = 0) with larger shear stress the upper branch
solution and the solution with smaller shear stress the lower branch solution.

Table 3.2, indicates that there is a relative error of less than 4% in the
shear stress for resolutions above (L, M, N) = (13,3,3). We use the resolu-
tion (14,3,3) for the rest of the computations discussed in this chapter.

In Figure 3.9 we show the mean velocity in the y-direction for comparison
with the vortex and Couette solutions (Figures 3.5 and 3.1 respectively.) In
Figure 3.10 we graph x-z cross sections of the velocity field for different values
of y. Compare with the vortex solution in Figure 3.6.

While the solutions (at 2 = 0), are well approximated, we do not yet
know anything about their stability. We also do not know the minimum

value of the Reynolds number at which these solutions exist.

3.2 Minimum Reynolds Number Solutions

As we have seen (in Figure 3.4), there are the upper branch and lower

branch wavy vortex solutions at {2 = 0. These solutions vary with Reynolds
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Figure 3.9: The mean flow in the y direction of the lower branch solution

as a function of distance from center of channel. Re = 600, = 1.6, 0, =

3.0,Q=0,7=17.
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Figure 3.10: Cross sections (at y = 0,2, 42, 82 87 97) of the velocity field
of the lower branch wavy vortex solution in the xz plane. The left-bottom
cross section is at y = 0 and the upper-right cross section is at y = 2r.

Re = 600,a, = 1.6,a, = 3.0. The lower plate is shearing out of the paper

at the bottom of each cross section.
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resolution | shear stress
L,M,N | at lower plate
13,3,3 1.72177413
14,3,3 1.69405548
15,3,3 1.70084151
16,3,3 1.69987208
17,3,3 1.69936109
18,3,3 1.69959818
14,3,4 1.68283399
14,3,5 1.66029900
14,44 1.66777241
14,4,5 1.67317174

Table 3.2: The lower branch wavy vortex solution (at 2 = 0) is resolved well
enough that the shear stress of the solution at the lower plate has a relative

error of less than 4%.
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Shear Stress vs. Reynolds at oy = 1.6, ¢, = 3.0
2.2 T T T I T I
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T

Figure 3.11: As the Reynolds number decreases from 600.0, the upper and

lower branches of the (2 = 0 wavy vortices coalesce and disappear.
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number, shear stress, and the two wave numbers. We study the problem,

F(u(7o, oy, @0), Re(70, ay, ;)
0 =0, (3.3)

7(u) — 7o

to elucidate this variation.

We start with the lower branch solution and increase the shear stress (7).
We find (for o, = 1.6, o, = 3.0) that the Reynolds number decreases, reaches
a minimum and increases again. Figure 3.11 shows this variation of Reynolds
number with shear stress. This path includes the upper branch solution. For
these values of the wave numbers, the minimum Reynolds number is 520;
however, we find lower Reynolds number flows by varying the wave numbers.

In order to find the minimum Reynolds number for all (local) wavenum-

bers and shear stresses, we solve the minimum problem,

9Re
ar
ohe | = (3.4)

dRe
daz

by Newton’s method. We start the Newton iterations with the solution at
7 =1.85,a, = 1.6, 0, = 3.0 in Figure 3.11. Each step of Newton’s method
requires 42 solutions of the Navier—Stokes equations in order to evaluate the
finite difference approximations of the derivatives appearing in the Newton
iterations for this minimum problem. We find the minimum at the following

values of the parameters:

Re = 467.3,
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Shear Stress vs Rotation at Re = 467, oy = 0.9603, a, = 2.0032
3 T

25

2 - -
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1

0.5 N

10 15

Do

Figure 3.12: Solution path with resolution (L,M,N)=(14,3,3) at minimum
Reynolds number Re=467. o, = .96, o, = 2.0.

T = 1.70,
ay = 0.96,
a, = 2.00.

These values are calculated with a resolution of (L, M, N) = (14,3,3). We

trace the solution path (7 vs Q) for these values of the Reynolds number and

wave numbers in Figure 3.12.
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3.3 Linear Stability

While we are fairly certain that we have approximated solutions of the time
independent Navier—Stokes equations, we need to know if these solutions are

stable solutions of the time dependent equations,

v
at
0 = V.V. (3.6)

= —Re (V- -V)V+VV —-Vp+20(: x V), (3.5)

The time has been scaled by the square of the channel width and viscosity.
We perform the usual stability analysis. We look for non-zero eigenvectors ,

€, p, satisfying the following equations:

Ae = —Re[(V, - V)E+ (& VIV +V2%E-Vp+20: x8) (3.7
0 = V.2 (3.8)

We require € to satisfy the symmetry discussed in Section 2.4.3. We
approximate € and p in the same way as V, and Pq. € is subject to Dirichlet
boundary conditions at the z boundaries and periodic boundary conditions
in y and z. In this way we get a (singular) generalized eigenvalue problem of
order 1454 (for (L, M, N) = (14,3,3)). We know from theory that there are
some eigenvalues at infinity for (singular) generalized eigenvalue problems;
however, our numerical analysis (in finite precision) perturb the eigenvalues
at infinity to large magnitude eigenvalues. In particular if we use D Galerkin
projections of Eq. 3.7 and E projections of Eq. 3.8, then there are D — E
eigenvalues. In our particular case, we have 968 projections of Eq. 3.7 and

360 projections of Eq. 3.8. Thus, we should have 588 meaningful eigenvalues
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and many large magnitude eigenvalues. Note that unstable eigenvalues have
Real(A) > 0 and stable eigenvalues have Real()) < 0. We compute these
eigenvalues using EISPACK.

First we study the stability of the lower branch solution. The parameters
are Re = 600,a, = 1.6,a, = 3.0, = 0, and 7 = 1.694. Figure 3.13 shows
the scattered eigenvalues of large magnitude. We look at the center of this
figure scaled by 100 in Figure 3.14. Note the cluster of 588 eigenvalues near
the origin. This cluster of eigenvalues is shown at much larger scale in Figure
3.15. The cluster of eigenvalues along the imaginary axis is scaled again in
Figure 3.16. Lastly, we show the eigenvalues near the origin in Figure 3.17.
Note that there is one eigenvalue in the right half plane. This means that

the solution is unstable.
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Figure 3.13: All the eigenvalues that we compute (including those perturbed
from infinity) of the lower branch wavy vortex solution. We magnify the

center of this graph by a factor of 100 to get the next figure.
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Figure 3.14: The eigenvalues near the origin

-500000

500000 1 x 108

of the previous figure. There

are 588 eigenvalues clustered near the origin. This cluster of eigenvalues is

shown (magnified) in the next figure.
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Figure 3.15: The 588 meaningful eigenvalues of the problem. The eigenvalues

along the imaginary axis are magnified in the next figure.
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Figure 3.16: The eigenvalues near the imaginary axis.
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Figure 3.17: Eigenvalues of lower branch solution near the origin. Note the

one unstable eigenvalue to the right of the imaginary axis. The parameter

values are Re = 600,y = 1.6, 0, = 3.0,7 = 1.7.
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Figure 3.18: The eigenvalues from the linear stability analysis of the solution
at the fold point for the wavy vortex solution at Re = 600, a, = 1.6, a, = 3.0.

The cluster of 588 eigenvalues near the origin are shown here.

In Figure 3.4 we see that there is a fold in the graph of shear stress versus
). We study the linear stability of the wavy vortex solution at this fold. We
plot the 588 meaningful eigenvalues in Figure 3.18. Once again we look at
the eigenvalues near the origin (in Figure 3.19) and find that there is one
neutrally stable eigenvalue.

Figures 3.20 and 3.21 show the eigenvalues of the upper branch solution.
Note the pair of unstable eigenvalues in Figure 3.21.

Lastly, we study the stability at the minimum Reynolds number solution.

These eigenvalues are plotted in Figures 3.22 and 3.23. Note the two eigen-
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Figure 3.19: This figure shows the eigenvalues nearest the origin in the previ-
ous figure. The stability at the fold is neutral with only one neutrally stable

eigenvalue and no unstable eigenvalues.
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Figure 3.20: The eigenvalues nearest the origin of the upper branch solution.



59

250 T T T T T
200 o ° -
150 | -
100 | -
50 o < o .
0
50 < o < ]
-100 R -
-150 | -
-200 |- © o -
_250 i { | { 1
-50 -40 -30 -20 -10 0 10 20

Figure 3.21: The eigenvalues of the upper branch solution has two unstable

“Hopf pair” eigenvalues.
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Figure 3.22: The eigenvalues for the solution at Re = 467,a, = 0.96,a, =
2.00.

values which are nearly zero in Figure 3.23. Note also in Figure 3.22 that
the eigenvalues near the imaginary axis have much smaller imaginary parts

than the corresponding eigenvalues for other solutions.
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Figure 3.23: The eigenvalues nearest the origin for the solution at Re =

467, = 0.96, , = 2.00.
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Chapter 4

Pressure Driven Flows

There are two canonical plane shear problems. One problem is plane Couette
flow in which the flow is driven by the bounding walls. In contrast, plane
Poiseuille flow is the flow between stationary walls. The driving force for
Poiseuille flow is a pressure gradient parallel to the walls. In the sections
below, we try to find a connection between the flows. In order to make the
connection between Couette flow and Poiseuille flow, we look for solutions of
Egs. (1.9-1.16) with F, and F, nonzero. Note that in this section we use the
full set of equations and variables described in Chapter 2 and summarized in

Section 2.2. We cannot use the symmetry discussed in Section 2.4.3.
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Shear Stress vs. Forcing at Re=600 cty = 1.6 o, = 3.0
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Figure 4.1: Shear Stress vs Forcing in z. Note that the solutions on the upper

and lower branch of the solution are connected by the forcing manifold.

4.1 Forcing of Wavy Vortices

In this case, we wish to find solutions of the equations,

0 = —Re(V-V)€W+VV —Vp+ F.2+4¢,8,V, (4.1)
0 = V-V. (4.2)

In one study, we take the lower branch wavy vortex solution at = 0 (see
Figure 3.4) and continue in F,. We use the methods of Chapter 2 to follow
the solution path shown in Figure 4.1 which relates shear stress to force.
The solution path connects the lower branch solution and the upper branch

solution of Figure 3.4. The forcing in the z direction leads to traveling wave
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Wave Speed vs. Forcing at Re=600,cy, = 1.6,cx, = 3.0
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Figure 4.2: Wave speed vs Forcing in 3-D flow at Re=600 o, = 1.6 o, = 3.0
and resolution of (14,3,3).

solutions. The wave speeds, c¢,, are shown in Figure 4.2. Poiseuille flow is
defined as flow between stationary walls. In this case, as we decrease the
wall velocities, V4, (given in the boundary conditions (1.11-1.12)), the fold
points in Figure 4.1 approach the central axis. As a result, we find no simple

connection between Couette flow and Poiseuille flow with these solutions.
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4.2 Poiseuille Flow with a Coriolis Force

In a similar attempt to find wavy vortices in Poiseuille flow, we start with

Poiseuille flow and add a Coriolis force.

0 = —Re(V-V)V+ V2V —Vp+2Q(2 x V)
+ Fyg + cyayva (4-3)
0= V-V (4.4)

While these equations (with F, = 8,02 = 0) are known to have Tollmein-
Schlichting wave solutions for large Reynolds numbers (see [2]), these waves
only exist for Reynolds numbers greater than the experimentally observed
(turbulent) transition Reynolds number. We attempt to find new solutions
to Eq. 4.3 with @ = 0 by looking for intermediate solutions having non-zero
Q) (just as we did for Couette flow in Chapter 3). This problem can be seen
as the thin gap limit of flow between concentric rotating cylinders with an
azimuthal pressure gradient (otherwise known as the Taylor-Dean problem).
(See Appendix A.)

We start with Poiseuille flow (Re = 600, = 0, F}, = 8) and increase Q.
As in Couette flow, Poiseuille flow bifurcates to a two-dimensional flow as the
Coriolis force, €1, is increased. The critical value of € is shown in Figure 4.3 as
a function of a,. We switch solution branches using the methods of Chapter
2. The new branch of solutions only varies in the z and z directions. Just as

in Couette flow, this two-dimensional flow is not a function of the y variable.

At Reynolds number 600, we see in Figure 4.3 that the minimum € for the
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Figure 4.3: The critical  as a function of «, at Reynolds number 600 with

32 Chebyshev polynomials in the z direction. This is Poiseuille flow with the
forcing in the y direction. F, = 8.
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Critical Omega as a Function of Critical Reynolds Number
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Figure 4.4: Critical Reynolds number vs Critical {0 with 32 Chebyshev poly-

nomials. F, = 8, a, = 1.96.

bifurcation is found when the wavelength in the 2z direction is around 2 /4.
The value of critical {2 varies with the Reynolds number. In Figure 4.4, we
show the relation between the critical ) and the Reynolds number.

At the critical 2 we switch branches of the solution. We follow the path
of solutions for increasing §). As in the case of the vortex branch of Couette
flow, we graph the shear stress at the wall as a function of §) in Figure 4.5.
We find no bifurcations along this path of solutions; however, there may be

a Hopf bifurcation which we do not attempt to find.
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Figure 4.5: Shear Stress (7) as a function of Rotation (2). Re = 600, F, =
8,a, = 4.0,L = 16, N = 4. The boxes are calculated values along the path.

Poiseuille flow has a constant shear stress (7 = 4).



69

Chapter 5

Discussion

Nagata [8] finds new solutions to the equations for plane Couette flow by in-
troducing a Coriolis force. By varying the Coriolis force, he finds bifurcations
from Couette flow to two—dimensional (vortex) solutions and secondary bi-
furcations to three—dimensional (wavy vortex) solutions. He finds that these
three—dimensional solutions persist when the Coriolis force is zero. Using a
different approximation scheme in a primitive variable formulation, we con-
firm these solutions.

Two criticisms of these solutions have been raised by experimenters [10].
The first criticism is of the resolution of Nagata’s solutions. We find that
these solutions exist at relatively high resolutions (see Table 3.2). The second
criticism is a question about the stability of these solutions. We find that
these solutions are not stable; however, there may be values of the param-

eters, Re,a,, and «,, for which the solutions are stable (see Figures 3.17,

3.19, 3.21, and 3.23).
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In addition to the confirmation of the solutions and the stability compu-
tations, we are able to compute several other quantities of interest. In par-
ticular, we compute the minimum Reynolds number at which the solutions
exist. This allows us to postulate that there are no wavy vortex solutions for
Reynolds numbers less than 467.

Along the path of solutions connecting Couette flow and wavy vortices is
a path of vortices (see Figure 3.4). We find evidence (see Figure 3.7) that the
vortex branch of solutions reconnects with the Couette flow branch at higher
Coriolis forces. This indicates that in an experiment, as the Coriolis force,
), is increased, we would expect to see Couette flow bifurcate to vortices
and the vortices to subsequently bifurcate back to Couette flow. The Taylor
number at both bifurcations from Couette flow to vortices and from vortices
to Couette flow are the same.

In an attempt to find a connection between the wavy vortex solutions
and nontrivial plane Poiseuille flow, we add a force to the wavy vortices at
Q) = 0. Following the path of wavy vortices for increasing force leads us to a
fold point. This means there are no (steady) solutions for larger forcing.

In another attempt to find wavy vortices in plane Poiseuille flow, we start
with the trivial (parabolic profile) Poiseuille flow and add a Coriolis force.
We detect and follow a bifurcating branch of vortex solutions. We detect
no secondary bifurcations from this branch, but we do not search for Hopf
bifurcations. (We would expect a Hopf bifurcation since there is a net flux
of fluid in the direction of the forcing.)

We conclude by asking some of the many questions left open by this

work. Are there parameter values (Re,ay, ;) for which the wavy vortex
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solutions are stable? Are there other branches of solutions (see Section 3.1.1)
which lead to stable branches of solutions? Is it possible that new solutions
appear at Re = 1440 (the experimental critical Reynolds number) which
help to explain turbulent flows? Can we detect a Hopf bifurcation on the
upper branch solution between the fold point and © = 0?7 Is there a Hopf

bifurcation leading to a steady three-dimensional flow (at 0 = 0) in plane

Poiseuille flow?
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Relation to Taylor—Couette

Flow and Poiseuille Flow

A.1 Taylor—Couette Flow

Taylor-Couette flow is the flow between concentric cylinders. If the gap

width, a, between the cylinders is negligible compared to the average of the

radii of the cylinders, b, then the equations governing Taylor-Couette flow

are approximately the same as the equations for flow between parallel plates

in a rotating frame. We study this limit in this section.

The Incompressible Navier Stokes equations in cylindrical coordinates

are:
v, - V,?
o TV Ve
1/ 7
o+ (V- V)V + =22
T p

aP . 28V, V,
~op + v(VV, — 200 F)’ (A.1)
10P 20V, V,

=% oy, 4 220 16
sag TV Vet 2 ) (A.2)
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The domain is

pOp
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oP .,
~ac +v(V*V),
1,0 1.0V oV,
;(5;()0‘/})) + ;(—8_0—) + 3

Pop’ T 2 0e® T act

pE {RDaRl]a 0 € [-—O0,00], C € [—O0,00],

and boundary conditions are

V(Ro,0,¢,7) = Vo, V(Ry,0,¢,7) = Vi,

where @ is the unit vector in the 8 direction.

A.2 Change of Variables

(A.3)

(A.4)

(A.5)

We change variables, using the width of the gap, @, between the cylinders

as the length scale. The time scale is a?/v. The velocity scale (V) is chosen

later. We also use a new reference frame rotating with the average rotation

rate, w, of the cylinders. Explicitly, the change of variables is as follows:

b

:R1+Ro

2

Vi+W
26

,aZRl—Ro,
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p—1> b(0 — wr) ¢

a a a
. vT

t=—,

Vﬁ(way727t) = v(p707C)T) - pwé,

% w?
p=P_ )%
ap 2p’

where
Vs u
V = Ve 7?7: v
Ve w
The Navier Stokes equations become:
I ev? 0
U = —Re[(u.V)u— 1—[—6:1:} +29v—a—i
2¢  Ov €?
2, %€ Ov &
+H(Vu (1+ex)20y (1+ ew)zu)’
L e €uv 1 0Op
v = —Re[(u-V)v—l— 1+e:z:] - 2Qu — 1—{—61}—6_}/
2¢  Ou €?
2, , 4 ou €
+H(Vio (14+ex)?20y (1+ e:c)zv)’
b Op
wy = —Re[(u-V) ]—g
+(V2w),
0 .z ou € 1 Ov Ow
_ q = hdhad

_6—;+1+e:z:u+1+ea:8_y+ oz’

where

£y
<
|

9ol ()l
= "oz 1+ ez vay 0z’
0? 1 9* 0 e 0

V2 — —
Fro (1+ ex)? Oy? + 07* + 1+ ex dz’
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a 2
€ Q=%w, Re=—

9

:Z’ ”
S [_1/2a1/2]7 Yy € [—O0,00], EAS [

The boundary conditions are the following:

u(+1/2,y,2,t) =0,

L Vi— Ve Q
1 N=4i (B
v(£1/2,9,2,1) iz( % ):FZRe’

w(£1/2,y,2,t) =0.

A.3 Thin—gap Limit

a
v
00, 00].

(A.10)
(A.11)
(A.12)

In the limit € — 0, these equations reduce to the Cartesian equations satisfied

by a fluid between parallel plates in a rotating frame:

g, = —Re(ii- V)T —20(2 x @) — Vp + V1,
-~ , Ou Ov Ow

0 = V-U—%'I—a—y'*'gz,

where
L2 0 d d
u-V o= u%—kva—y—}-wé—;,
2 2 2

v - 0 +8 0

522 T oy T 52

(A.13)
(A.14)

The rotation, €, is about the z—axis which is the axis of rotation of the

cylinders. The boundary conditions are the following:

u(x1/2,y,z,t) =0,

(A.15)



76

1Y) @
W(E1/2,0,5,0) = 25 (o) F o (A.16)

w(£1/2,y,2,t) = 0. (A.17)
Plane Couette Flow and Plane Poiseuille Flow

Equations A.13-A.17 include two separate special cases. When
0=0,V="WV-1,

the equations are satisfied by plane Couette flow. When
Q=0,Vo=V =0,

I)('$7lz 7Z7t) = Fyy +p,($7y7z)7
Pz, y+ A, 2) =9 (2,9, 2),
Pz, y,z+ X)) =p'(z,y,2),

and V is the average (over y and z) of v(0,y, z,t), the equations are satisfied
by plane Poiseuille flow with the driving pressure gradient in the y—direction

(i.e., the transformed #—direction.)
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Appendix B

Singular Points in the Linear
Stability Analysis of Plane
Shear Flows

In this section we study some of the singular points of the linearized equations
for shear flows between parallel plates in a rotating frame. In particular, we
show that the Taylor number (T') arises naturally in linear stability analysis.

We start with the Navier—Stokes equations linearized about a shear flow
(V,p); that is, we seek flows of the form (V + € p+ p) where V only varies

with z and €is “small.” Dropping quadratic terms in € we get:

0 = —Re((V -V)e+ (- V)V)—2Q(; x& —Vp+ V2% (B.1)
0 = V-¢ (B.2)
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where

&d£1/2,y,2) = 0. (B.3)
We seek solutions in the form,
ez(z)cos(az),
€= | ¢,(z)cos(az) |,
e.(z)sin(az)
p= p(w)COS(aZ),
)

V(z)y.

Equations (B.1)-(B.3) then imply

. = _l Oe,
T adz’
1, 0? 2
@ = Tonar(ge )
_ _.(ﬁ B )(%m
P = 2\ 0e? oz’
and e, must satisfy the linear eigenvalue problem,
ov 0*
0= (Re— —20)(20) e, + (5——5 - a*)e,, (B.4)
(172 = L(e)(E1/2) = (0 — eV ()ED) =0 (B
‘ oz " Ox? ‘ ' ‘
In the particular case of Couette flow (V(z) = z,) equation B.4 reduces to
2
0 = Ta’e, + (BF —a*)’e,, (B.6)
where
T = 20Q(Re — 2Q). (B.7)

This shows that the Taylor number T arises naturally in the linear stability

analysis of Couette flow.
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