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Abstract for part I

A study of the behaviour of an inviscid, swirling fluid is performed. This flow can be described
by the Squire-Long equation if the constraints of time-independence and axisymmetry are invoked.
The particular case of flow through a diverging pipe is selected and a study is conducted to determine
over what range of parameters (both pipe inlet conditions and geometry) does a (unique) solution
exist. The work is performed with a view to understanding how the phenomenon of vortex breakdown
develops. Experiments and previous numerical studies have indicated that the flow is sensitive to
boundary conditions particularly at the pipe inlet. A “quasi-cylindrical” simplification of the Squire-
Long equation is compared with the more complete model and shown to be able to account for most
of its behaviour. An advantage of this latter representation is the relatively undetailed description
of the flow geometry it requires in order to calculate a solution.

“Criticality” or the ability of small disturbances to propagate upstream is related to results of
the quasi-cylindrical and axisymmetric flow models. This leads to an examination of claims made
by researchers such as Benjamin and Hall concerning the interrelationship between “failure” of the
quasi-cylindrical model and the occurrence of a “critical” flow state. Other criteria for predicting
the onset of vortex breakdown are considered in the context of the model employed, particularly

those of Brown & Lopez and Spall, Gatski & Grosch.

Abstract for part II

Lundgren (1982) developed an analytical model for homogeneous turbulence based on a collec-
tion of contracting spiral vortices each embedded in an axisymmetric strain field. Using asymptotic
approximations he was able to deduce the Kolmogorov k~5/3 behaviour for inertial scales in the
turbulence energy spectrum. Pullin & Saffman have enlarged upon his work to make a number of
predictions about the behaviour of turbulence described by the model. This work investigates the
model numerically. The first part considers how the flow description compares with numerical simu-
lations using the Navier-Stokes equations. Integration of the full expressions proposed by Lundgren
for the energy spectrum is also performed to determine how the various parameters available affect

the behaviour and validity of the result.
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1. Introduction

Consider the flow of a fluid along an axis of symmetry. The introduction of a component of
swirl about that axis leads to a variety of interesting phenomena, some of which are considered in
the present study. When the axial vorticity is concentrated near the axis (the outer fluid being
assumed close to irrotational), the inner region is described as a vortex or vortex core. If the stream
surfaces diverge away from the downstream direction of the axis, then the vortex lines initially
aligned with the axis of symmetry will be tilted and induce a retardation of the axial velocity near
the axis and acceleration far from the axis. For concentrated vortex cores this may result in quite
dramatic deviations in behaviour between the inner and outer flows. For example, if the retardation
is sufficiently severe, a stagnation point may form on the vortex axis. Related phenomena include
short, embedded “bubbles” of backflow within the core, long regions of reversed flow in an enlarged
downstream vortex and vortex cores which diverge from the symmetry axis in a spiral pattern.
The process described above is inviscid, although the cause of the initial streamline divergence may
involve viscosity. Viscosity is also significant in determining what happens to the flow subsequent

to or in the vicinity of the stagnation point. In the following discussion, however, only inviscid flows

are considered.

1.1 Vortex breakdown

Although the existence of an axial stagnation point within a vortex core can occur due to
the action of superimposed waves (see for example Mudkavi’s (1991) numerical extension to finite
amplitude of Kelvin’s linear analysis (1880) of waves on a columnar vortex), the motivation for this
work derives from the phenomenon of vortex breakdown which is non-periodic. Historically, vortex
breakdown first received significant attention after the experiments of Peckham & Atkinson (1957)
and Lambourne & Bryer (1961) who visualised the leading edge vortices formed over a delta wing.
In the latter work one of the vortices underwent an abrupt axisymmetric swelling of its core while
the other exhibited a sudden outward spiralling. Both were initiated at approximately the same
distance downstream of the wing apex. Interestingly the entire flow was nominally symmetric about

the centreline of the wing so that the two different behaviours were assumed related and both were



said to be manifestations of the vortex “breaking-down” since downstream of both events the flow
became turbulent. It seems more likely that the two cases represent different phenomena which
occur under similar parameter conditions (Ludwieg 1970, Hall 1972).

Vortex breakdown has been defined in many different ways resulting in a variety of phenomena,
being identified with the same name. Ludwieg (1970) proposed that it be the sudden change in the
structure of a previously slowly evolving (in the axial direction) vortex core. This accounts for both
of the phenomena observed by Lambourne & Bryer but discounts cases where the flow develops
slowly to a stagnation point. Bossel (1969) defined vortex breakdown to be the “abrupt expansion
in space of a vortex core. It may or may not, lead to stagnation and reversed flow.” Since his
studies dealt only with axisymmetric flows of finite length, these obviously must be properties of
the phenomenon he examined. Keller (1985) on the other hand adopted the definition of Benjamin
(1962) who proposed a sudden transition between two cylindrical flow states (also axisymmetric).
Formation of a finite, recirculation bubble was taken to be due to some additional phenomenon
such as downstream unsteadiness. Yet another proposal by Leibovich (1978) is more specific: it
specified an upstream region of cylindrical flow followed in turn by a sudden deceleration of the
axial velocity on the vortex axis ending in a stagnation point, a small region of reversed flow and
then a resumption of flow in the initial axial direction. This definition ruled out the simple transitions
of Keller. However, both spiral and axisymmetric phenomena observed by Leibovich et al. (1977,
1978 and 1979) satisfied it. A common feature of all definitions is that the formation of a stagnation
point is clearly considered a central feature of the process of vortex breakdown.

For the purposes of this work, the definition and structure of vortex breakdown are less impor-
tant than the manner in which it is attained. Up to the point where a stagnation point occurs, a
unique solution can usually be found for these Euler flows. Beyond that state, the conditions re-
quired for finding a solution change and there is no unique answer as to what additional constraints
would be most “natural.” This suggests that the full Navier-Stokes equations may be required to
select a physically realisable solution. However, since the questions of existence of the swirling flows
treated here and the phenomenon of vortex breakdown are intertwined, a brief discussion of other

work conducted on that topic will be presented.

Previous studies of vortex breakdown

Following the earlier delta-wing experiments, Harvey (1962) was able to experimentally repro-

duce the axisymmetric form of vortex breakdown by blowing air through a cylinder. Swirl was
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imparted to the flow at the upstream end by introducing the air through a set of angled guide vanes.
He found the phenomenon very repeatable and controllable. Initially the bubble of recirculating
fluid would form at the outlet of the pipe and then as the swirl was increased, it would move up-
stream. By perturbing the downstream flow he was able to affect the location of the breakdown and
by applying suction was able in some cases to completely remove the recirculation region. Later
experiments by Sarpkaya (1971, 1974), Faler & Leibovich (1978) and Garg & Leibovich (1979) have
used similar devices to study both the axisymmetric and spiral forms of breakdown in considerable
detail. The latter two studies employed laser doppler velocimetry to measure velocities where previ-
ously only flow visualisation had been possible. When the Reynolds number and inlet swirl are both
small but large enough for some vortex disruption to occur, the vortex typically exhibited the spiral
form of breakdown. Increasing either of these quantities while holding the other one fixed resulted
in the bubble form eventually appearing, although there was a considerable region in parameter
space where the flow randomly alternated between the two types. The trend towards axisymmetric

breakdown at large Reynolds numbers suggests that this might be the inviscid limit for the flow.

Early numerical work built upon analytical proposals, seeking to extend and test the various
theories. Hall (1965, 1967) introduced a “quasi-cylindrical” model of the axisymmetric Navier-Stokes
equations. One advantage of this model was the lack of detail required to describe the boundary
of the flow region. Calculations were presumed to fail when the (neglected) axial gradients became
significant. Bossel (1969) extended this approach by appending an axisymmetric recirculation bubble
to the quasi-cylindrical region. The upstream swirl in his calculations was modelled using solid body
rotation which he argued derived from viscous effects in the vortex core. His calculations were very
sensitive to downstream disturbances (i.e., outlet boundary conditions which he manipulated to
precipitate the occurrence of breakdown). A number of early studies also attempted to simulate
vortex breakdown using the equations of steady, axisymmetric flow, for example, Narain (1977) and
Kopecky & Torrance (1973). They found recirculation regions formed just downstream of the inlet
which was contrary to the experimental results. Leibovich (1984) and Spall, Gatski & Grosch (1987)
have suggested that the upstream boundary conditions employed in these simulations were incorrect
and that the bubbles observed were the result of the flow adjusting to these boundary conditions,

rather than numerical examples of the physical phenomenon.

As computer architecture has improved, so have the capabilities of computational experiments.
Recent simulations of vortex breakdown include Kuruvila & Salas (1990) and Spall & Gatski (1991).

Both of these were fully three-dimensional, unsteady formulations. The former modelled a compress-



4

ible, viscous fluid, while the latter used the incompressible Navier-Stokes equations. The calculations
were performed within a rectangular domain on the sides of which boundary conditions were applied
which approximated a free-stream flow. This avoided the problems with boundary layers encoun-
tered in the earlier axisymmetric flows computed within pipes. Care was also taken to avoid the
inlet problems encountered previously. A streamwise, freestream retardation was imposed to initiate

breakdown of the vortex. Spall et al. were able to simulate both the axisymmetric and spiral forms

of breakdown.

Descriptions of vortex breakdown

A central question in understanding vortex breakdown is being able to predict under what con-
ditions it will occur. There are a number of theoretical models proposed to describe the phenomenon

which have been employed to address this issue.
Instability

Ludwieg (1970) proposed that vortex breakdown (a sudden stagnation point of the axial flow)
was a direct consequence of hydrodynamic instability. He proposed this for both the axisymmetric
and non-axisymmetric forms. For the axisymmetric case, the cylindrical vortex obviously must
satisfy Rayleigh’s criterion that the circulation increase monotonically with the radius in order to
be stable. A second axisymmetric “instability” mechanism was discussed which involved the slow
growth of a turbulent vortex core, a phenomenon not generally considered to be vortex breakdown
and not observed in the studies conducted by Leibovich et al. using laser doppler velocimetry within
the breakdown bubble. For the non-axisymmetric case, Ludwieg found the stability boundary for an
inviscid fluid spiralling through a narrow, annular cylinder and suggested that for a real vortex core
at sufficiently large Reynolds numbers this should provide at least a necessary condition for stability.
Several other papers exist dealing with the more general question of stability of vortex cores including
Howard & Gupta (1962). They attempted to exploit an analogy between stratified shear flows and
swirling flows to obtain a general stability criterion. They were successful for axisymmetric modes,
but the result for non-axisymmetric modes was very complicated and the implications were unclear.
The role of “stable” (Rayleigh’s criterion) swirl was shown to be stabilizing for all axisymmetric
disturbances. Lessen, Singh & Paillet (1974) specifically studied line (wake) vortices using numerical
methods and showed that there were parameter values for which a number of non-axisymmetric
modes would grow. Therefore, the experimental and theoretical studies are in agreement that the

axisymmetric form of vortex breakdown is not the result of an instability. However, due to the
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numerous modes which interact via non-linear processes, the spiral case is still unresolved.

Conjugate flow states and criticality

Squire (1960) proposed that the axisymmetric form of vortex breakdown could be understood
by considering it as an analogy to the two-dimensional hydraulic jump, with the point of breakdown
being the transition between two slowly varying flow states. The difference between the up- and
downstream vortical states could be measured by their ability to propagate infinitesimal disturbances
upstream. The upstream state was classified as supercritical when all information about neutrally
stable disturbances was swept downstream with the fluid, meaning that the flow was determined
uniquely by upstream conditions. The downstream state was able to transmit information in both
directions and classified as subcritical. Squire argued that vortex breakdown would occur at a point
where the flow was just critical. Benjamin (1962, 1965, 1967) modified this idea by strengthening
the hydraulic jump analogy. Constructing a variational principle he was able to find a family of
subcritical flows which conserved the mass and energy of a given supercritical vortex flow state (for
a hydraulic jump, mass and momentum are conserved). He argued that the imbalance in the “fow-
force” (momentum flux) could be attributed to waves propagating out from the transition, similar
to waves transporting the energy imbalance from a hydraulic jump. It has been suggested that a
contradiction exists between Benjamin’s assumptions of “weak” transitions which balance flow-force
by emitting a train of standing waves and the observed size of axisymmetric recirculation bubbles
which tend to be several original core diameters in extent. Also, this theory does not explain the
closed nature of the recirculation region except to perhaps attribute it to these standing waves.

If small perturbations are able to migrate upstream to some point where the flow is critical, they
might accumulate there until a larger non-linear wave forms. This idea was explored by Leibovich
& Randall (1973) who were able to derive a finite amplitude wave equation for the flow. However,
the theory also employed the assumption of small deviations from the cylindrical state which, when
calculated using the theory, turned out to be substantial.

Keller, Egli & Exley (1985) have more recently done numerical work matching cylindrical vortex
flows. They assumed the downstream state contained a hollow vortex, for example, an air bubble
inside a flow of water. They suggested (at least pictorially) that the bubble closure seen might be

attributable to unsteady turbulence occurring downstream of the transition.

Analogy to separation of two-dimensional boundary layers

Another approach to predicting the onset of vortex breakdown was proposed and developed by

Hall (1965). He simplified the governing steady, axisymmetric Navier-Stokes equations by suggesting
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that since upstream the vortex evolved only slowly, it would be reasonable to approximate its
behaviour using a “quasi-cylindrical” form. Specifically, second derivatives in the axial direction
were neglected with respect to the other terms. The resulting equations were parabolic and could be
advanced stepwise downstream in the direction of the flow. Eventually a solution could no longer be
found and Hall interpreted this as an indication that the assumption of negligible axial derivatives
had been violated. This is similar to two-dimensional boundary layer calculations where failure of
the equations is taken to indicate the onset of separation. Hall showed, using the quasi-cylindrical
form of the radial momentum equation, that small pressure gradients present in the outer flow were
magnified by the axial vorticity, causing large gradients inside the vortex core. Hence a small free-
stream flow deceleration results in a much more violent deceleration at the axis of the vortex (an
alternative way of explaining the mechanism described in the opening paragraph of this chapter).
This model offers a simple means for predicting when vortex breakdown will occur since it does
not require a knowledge of the “outer” flow as detailed as that required for the full Navier-Stokes
equations. Hall performed some calculations using data gained from experiments to predict the

location of vortex breakdown. Agreement was reasonable.

It is also possible to incorporate a quasi-cylindrical approximation in the equations governing
the flow of an inviscid fluid. For this case, the problem reduces to a two-point boundary value
problem. Brown & Lopez (1988) used a variation of the inviscid formulation in an argument similar
to Hall’s pressure magnification approach to show that if at some axial location the flow satisfied a
certain criterion, then a slight expansion of the vortex core would cause it to continue to expand due
to the presence of a positive feedback mechanism. Their criterion is therefore a necessary condition

for the appearance of vortex breakdown.

It was noted by a number of researchers that as the quasi-cylindrical calculations were advanced
towards a point of failure, the wavespeeds of neutral perturbations on these computed profiles
decreased towards zero. Hall (1972) and Stuart (1987) have attempted to link the ideas of criticality
and the quasi-cylindrical model. Trigub (1985) showed that under certain conditions the quasi-
cylindrical equations developed a fold in their solution (the point at which the former calculations
“failed”) and that it was necessary for at least one neutral-wave speed to cross zero at this point.

An interesting feature of Trigub‘s solution was the assumption that at the fold the axial velocity is

still positive everywhere.
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1.2 Description of study undertaken

This work expands on an analytic approach to swirling flows employed by Batchelor (1967).
He considered flow of an inviscid, incompressible, swirling fluid both through a slowly expanding
pipe and in a decelerating free-stream. The governing equation was linear and solvable using Bessel
functions if special upstream velocity profiles were assigned. These solutions were discussed and
indicated that for a given flow geometry, increasing the swirl parameter eventually leads to the
formation of a stagnation point downstream. In cases where the flow consisted of diverging stream
surfaces, Batchelor associated the stagnation point which formed on the axis with the axisymmetric
form of vortex breakdown. The same flow description was extended to include large variations in the
axial derivatives by Chow (1969) who solved a variety of problems using separation of variables. He
calculated the downstream geometry of stream surfaces given the parameter values for the upstream

velocity profiles. A wide range of flow topologies were found including many with embedded regions

of backflow.

In Chapter 2 the governing equations for inviscid, incompressible flow are introduced. Assump-
tions of time independence and axisymmetry are used to reduce these to the “Squire-Long” form
employed by Batchelor, Chow and others. Boundary conditions are proposed which are intended to
yield a unique solution to this steady, Euler problem. These are based on a discussion by Drazin
& Howard (1966). They include three distinct boundary conditions formulated for the downstream
domain border. Equations describing the evolution of small perturbations on cylindrical vortical

states are also derived for later use in the calculation of their wavespeeds.

Beran (1989) has computed steady, axisymumetric, Navier-Stokes flows through a pipe and
compared the results with the simpler “quasi-cylindrical” model finding reasonable agreement (one
to two core diameters) between predictions of the location of the recirculation bubble. A similar
strategy is adopted here for the Euler equations. Chapter 3 substitutes the upstream velocity profiles
adopted by Batchelor and Chow, uniform axial flow and solid body rotation about the vortex axis,
into the flow description. For flow through a diverging pipe, it is shown that the quasi-cylindrical
model is a good approximation to the full axisymmetric Euler description. A family of wavemodes
are found on the quasi-cylindrical profiles, the speeds of which all go to zero just as a stagnation
point forms at the centreline of the baseflow. The case of a finite vortex, using the same upstream
profiles, embedded in an irrotational free-stream is also considered with the quasi-cylindrical model.
Although the governing equation is still linear, a non-linearity enters the problem through the free-

boundary condition at the edge of the vortex. Thus the behaviour of this system could and in fact
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does behave differently: continuing the solution in the swirl parameter, a fold is found before the
axial flow has decelerated sufliciently to form a stagnation point. Neutral-wave speeds calculated
on these profiles also exhibit a fold, once again reaching zero at the flow stagnation point. An

interesting feature of this is the comparison with the work of Trigub.

Chapter 4 contains many of the same studies discussed in Chapter 3 except that the simple
linear inlet profiles are replaced with gaussian distributions representative of those observed in
experiments (Leibovich (1978)). Similar results and good agreement is once again found between
the quasi-cylindrical and axisymmetric Euler models in most of the flow cases considered. Solution
features such as folds in the swirl continuation parameter appear in both, reinforcing the value of
the simpler calculations. One contradictory Euler calculation suggests a global sensitivity of the
problem to boundary conditions about the entire flow and is discussed. Wavespeeds are calculated

on the cylindrical profiles and when folds appear in the solution, they behave as predicted by Trigub.

Simulations of swirling flows leading to breakdown have shown that boundary conditions are
an important consideration. This study concentrates on the conditions (both boundary and flow
parameters) under which a flow, which is well defined everywhere, can exist. In Chapters 3 and
4, three different boundary conditions developed for the outlet are tested in order to determine
how sensitive the flow behaviour is to downstream changes. Two tests for predicting the onset of
breakdown, those of Brown & Lopez (1988) and Spall, Gatski & Grosch (1987) are compared with
the results of the current work in Chapter 5. Missing from each of these criteria is a consideration of
downstream geometrical features which might affect behaviour of the flow. A simple example of this
would be, given some flow through a pipe, the fact that the cross-section is diverging or converging
1s just as important to the question of formation of an axial stagnation point as the inlet velocity
profiles. Chapter 6 presents some conclusions drawn from the studies conducted together with
some suggestions of directions for further investigations. A discussion of the numerical techniques
employed in each of the various studies conducted in this work has been placed in the appendices
so that these issues do not interfere with the main focus of the exposition. Finally, an extensive

bibliography dealing with vortex breakdown is included.

As the development of ever more powerful computers continues, so the capabilities for simulation
of more complicated phenomena are made available. However, these very simulations are making
increasingly apparent that the mimicking of nature is not understanding it. This must come through
the isolation of physical processes responsible for a given phenomenon and a detailed study of how

they interact. The restriction of this study to consider the flow of an idealised, inviscid fluid in a
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simplified geometry was motivated by the belief that within this class of flows lie many but certainly

not all of the answers to questions surrounding vortex breakdown.
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2. Equations and boundary conditions

2.1 Governing equations
The Euler equations for an inviscid, incompressible fluid can be written in vector form as

Ju
—a—t—+u-Vu— -Vp. (2.1)

where u is the velocity and p the pressure. Using vector identities for the products of the velocity

and the vorticity (w = V Au), the terms can be rearranged in the following form

fu 1
-5t——u/\c_g——-V(-2-u-u+p). (22)

Since this thesis considers the behaviour of a streaming, swirling fluid, cylindrical co-ordinates are
a natural choice. The radial, azimuthal and axial co-ordinates are assigned as (r, 6, z) respectively.
Corresponding velocity and vorticity components are (u, v, w) and ((,7,£). Expanding the original

form of the Euler equations in these coordinates gives,

du u  vou Ou v? 18p
a——ﬁg;-;&*ﬂ)a"‘_r‘—;s‘;; (2361)
ov _ Ov wov Ov  wvu 1 0p

Ve e Ve T T T e (2:30)
Jw 6_11_)_ v Jw Ow 139p

R et TR e (2:3)

The continuity equation completes the counting in order that the three velocity components and

pressure can be determined,
19(ru) 10v  Ow

ror tragtE =0 (2.4)

These relations can be simplified through the introduction of a stream function (%) if the flow

is axisymmetric,

_6_77_101/1677 1 oy 161#_817_ 2v Ov

% =70 8 raras T 7o (2.50)
Ov _10¢0v 1040w 1 3¢ 9.5b
o rdzdr rordz 2 oz (2.55)
o 19y | 0%
=G T vt E (2:5)
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The first two of these equations express the time evolution of the azimuthal vorticity and velocity
respectively. The third relates the azimuthal vorticity to the stream function by substituting the

expressions for the radial and axial velocities,

U= 10¢ and w—-l—%

r 8z o or’ (2:6)

into the definition of the vorticity component 7. Continuity is automatically satisfied. Axisymmetry

also results in the two remaining vorticity components depending only on the azimuthal velocity,

_Ov _ l@(rv)
(= ~% and ¢ = s (2.7

If the flow is steady, a Bernoulli constant may be defined along each streamline as,
1
H(y) = -2-(u2 + v +w?) +p. (2.8)

A further consequence of steadiness when applied to equation (2.5b) shows that the circulation
(C = rv) is conserved along streamlines. These two relations may be substituted into the axial
component of the Euler equations (2.2) and combined with (2.5¢) to yield

2 2
M_l_a_l/)_ MZTZd_II_mcﬁ’ (2.9)
ar?  r Or 0822 di di
known variously as the Squire-Long or Bragg-Hawthorne equation (see also Batchelor p. 545).
For the case of a cylindrical flow where there is no change in the axial direction, the term

involving the z-derivatives may be dropped leaving a one-dimensional version of (2.9) which still

contains the same functional form on the right hand side,

Yrp — %"/)r = 7’2H'¢» - Cczp (210)

2.2 Boundary conditions

Given that a solution exists, Drazin & Howard proved that a set of boundary conditions sufficient
to yield a unique solution for the time dependent Euler equations (2.3, 2.4) are u - n given on the
entire domain boundary (n is the unit outward normal) and specification of the complete velocity
vector wherever u-n < 0 (fluid enters the domain). Boundary conditions yielding a unique solution
are not limited to this choice. They also propose replacing the description of the full velocity vector of
the incoming fluid with its tangential vorticity components. Examination of equations (2.5) suggests

a combination of the two: giving 1) on the boundary allows the elliptic equation (2.5¢) to be solved
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(and is equivalent to specifying u-n); the remaining two equations are parabolic and would normally
require knowledge of v and 7 for incoming fluid.

These boundary conditions are expected to carry over to the steady case with care taken to
ensure that conditions at boundaries other than the inlet do not influence the flow in some artificial
manner such as reflecting boundary conditions at the outlet. For the flows treated in this study,
namely, fluid crossing the domain boundaries at fixed values of 2z (so that the variables there are
functions of r only), a detailed description is presented below.

Equation (2.9) is elliptic and thus requires some function f(v,4¥,,%,) = 0 be given on the entire
domain boundary. In addition C and H are functions of the stream function and hence it would seem
appropriate that they be specified wherever fluid enters the domain. To determine the circulation
as a function of the stream function, it is necessary to give both v(r) and ¥(r). The stream function
may be found by specifying the normal velocity at the inlet and integrating to obtain #(r). This
relation is then inverted (either analytically or numerically) to yield C = r(¢)v(r(¢)).

The process for obtaining H(v) is similar. The radial momentum equation for axisymmetric

flow

v ér r  or’

Oz

may be substituted into equation (2.8) for the pressure giving,

H(ry= (v +w +u2)+/( 3(u2/2)

— wu,) dr’

H

5(1)2 + w?) +/0 (;7- — wu,) dr’. (2.11)

If w(r) and v(r) are already known, the only additional requirement is u,(r). Since the azimuthal
vorticity n = u, —w,, supplying its value wherever the flow enters the domain would be an equivalent
specification. Thus H(r) and hence H (%) is determined.

Other studies have been conducted apparently using inlet conditions u(r) = 0, v(r) and w(r)
given. However, equation (2.11) requires knowledge of u,(r) which was not explicitly supplied. It
appears that the authors implicitly assumed that the flow was cylindrical in order to fix H and hence
have taken u,(r) = 0. If the flow near the inlet turns out to be slowly varying in the axial direction,
then both of the constraints on u are satisfied and the problem is consistent. If this is not the case
then the condition u = 0 is incorrect and hence should not be applied at all.

For the specific flows considered in this work, namely flow through a pipe or flow of a vortex
core embedded in an irrotational free-stream, the axis of symmetry will be taken to be colinear with

the z-axis from z = 0 to z = L. The outer wall of the pipe (or vortex) is given by r = R(z). All
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flows will use u, = 0 at pipe entrance so that the inlet profiles at z = 0 may be considered fixed

when w(r) and v(r) are specified. Two sets of inlet profiles are used. The first,
w(r) = Wi and  o(r) = Qr, (2.12)

reduces the right hand side of (2.9) to a linear equation allowing more extensive analysis albeit at

the expense of some “specialness.” The second profiles,
—r2/r2 Q —r2 /2
w(r) = Wy + Wae™" /70 and v(r) = 7(1 —€ 0y, (2.13)

are considered representative of many physically realised swirling flows (Hall (1972), Leibovich
(1978)). When W is positive the flows are of the leading-edge vortex type, while Wy < 0 is the
form trailing-edge or wake vortices have been observed to exhibit. The right hand side of equation
(2.9) with these profiles is highly non-linear due to the transcendental equation relating r and .

Both the centreline and pipe wall (or edge of the vortex) are streamlines and thus boundary

conditions are
R(2=0)
P(0,2) =0 and  P(R(2),z) = 271'/0 rw(r) dr = Q, (2.14)
To solve the steady problem it is also necessary to give downstream boundary conditions which
assume some a priori knowledge of how the flow exits the domain. The usual procedure for such

a problem is to employ a condition which is least “intrusive” upon the upstream flow. The most

common candidate for this is the assumption that

(i) v =1, =0, i.e., parallel flow. This is most appealing if the pipe is long so that axial gradients
have decayed significantly and hence may be neglected. However, wavelike solutions in the
z-direction might also be possible since ¥, is not necessarily zero. It might also result that
forcing the flow to be parallel at the exit actually induces waves to form.

To explore the effect of downstream boundary conditions on the behaviour of the whole swirling

flow, two other conditions are also employed in this study.

(ii) (u, = v,, = 0). The flow in this case is no longer constrained to be parallel but to have uniform
slope at the exit. This boundary condition also requires the stream function to satisfy the
cylindrical equation (2.10) as the fluid leaves the pipe. For a long pipe where the flow approaches
a cylindrical state, the solutions due to both this and the previous boundary condition are
expected to converge.

(iii) another common boundary condition used in discharging pipes is that the pressure at the outlet

is at ambient conditions. Modifying this to allow for centrifugal effects leads to a third, non-
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linear boundary condition for 1,

op(r,L) v? o 8%y _ _5_1!)@ _
or v 0 or 8z 920r  Or 022 0- (2.15)

All three conditions are applied assuming there is no inflow at the end of the pipe (z = L). Such
a situation would require that the extra conditions for w and v required at the inlet be given there
also.

In situations where the flow varies only slowly in the axial direction, such as when the boundary
of the pipe R(z) is slowly varying, it may be appropriate to neglect the z-derivatives in equation (2.9)
and use the cylindrical form (2.10). Solutions for the flow may be calculated at some downstream
station using (2.10) by considering it to apply on the one-dimensional domain (0, R(z)). The axial
dependence of the flow thus enters only through the size of the domain. This model is called the

quasi-cylindrical approximation. Suitable boundary conditions would be

$(0)=0 and  P(R(2)) = Q = %(R(0)). (2.16)

2.3 Neutral waves

Classification of a flow as either super- or subcritical requires the calculation of the wavespeeds
of neutral waves or perturbations. This is done by assuming a baseflow of the form ¥(r), V(r), H(r)
is known. Since the baseflow is only a function of r, this analysis is carried out on solutions to the
cylindrical problem and is not applicable to flows which undergo rapid changes in the axial direction.

To these baseflows, a perturbation is added to give,
Y(r, 2) = U(r) + ey (r)e =D,
v(r, 2) = V(r) + e’ (r)etE=et)
n(r, z) = H(r) 4 en (r)e* =1, (2.17)

where € << 1, & is the wavenumber of the perturbation and c is the wavespeed. A standing or

stationary wave occurs when ¢ = 0. These expressions may be substituted into equations (2.5),

matching terms to each order gives,

1
e —ri =T,y — Uy, (2.18)
= = Yl — 2 — k2,
r
1 1
—cv' = =p'V, — =T, + —15V1//,
r r r

1 1 1 2
—cy = ;WH, - ;Q'WH - ;\I’rﬂl + ;VUI- (2.19)
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Equation (2.18) is the equation satisfied by the baseflow, while the O(¢) equations may be combined

to give a single, two-point boundary value problem for v,
! 1 / 2,01
’ltbrr - ;wr + ﬁ 'w = 0?

(B = E) (2o, — o) + 2V(V, + )]
(2w, - o)

To complete the wavespeed problem it is necessary to decide upon boundary conditions. When

where, f%= — k2 (2.20)

the flow being examined is through a pipe, it is assumed that the perturbation leaves the mass flow

unchanged so that
¥'(0) = 0, and  ¢'(R)=0. (2.21)

The vortex embedded in a free-stream is more complicated. The condition on the axis is the same
as for the pipe case, but the perturbation now introduces a deflection of the vortex surface. After
matching velocities at the vortex free-stream boundary, the leading order constraint may be written

as

vpm—.L

r = W—:—zl/)’ =0 at r = R, (222)

where W(r) = 1/r¥, and the wavespeed ¢ now occurs in the boundary condition as well.
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3. Linear flow profile

A simple idealisation of a vortex core is that of a region of fluid undergoing solid body rotation
(€2r) and moving with uniform axial velocity (W1). These are the conditions described by the profiles

(2.12) and employed in this chapter. When these profiles are combined at the pipe inlet, the resulting

form of (2.9) is linear,

Oy 9% 10y 20° , 407

522 "oz ror Wi Wf—ﬂ‘b‘ (3.1)

The relative tractability of this model is appealing, and it has been used extensively since Lord
Kelvin’s time in many general studies of vortex cores and more specifically for work on vortex break-
down performed by Batchelor (1967), Benjamin (1962, 1967), Chow (1969) and others. Benjamin,
however, notes that this very linearity limits the usefulness in employing (3.1) as a general model
for studying the behaviour of vortex cores since it is not able to capture the full range of phenomena
observed. For example, equation (3.1) describing flow through a pipe is unable to capture the dis-
crete “conjugate” flow states of his model uniquely. Despite these limitations, the model still serves

as a simple vehicle for the discussion of many of the methods and ideas which this work employs.

The quasi-cylindrical approximation to (3.1) is discussed in section 3.1 for the flow entering a
pipe (section 3.1.1) which is a totally linear problem and for the vortex embedded in an irrotational
free stream (section 3.1.2). Since the boundary conditions in this second case are non-linear, the
problems discussed by Benjamin for pipe flow do not apply. Studies are performed to see how the
parameters describing these flows affect their behaviour and in particular for what parameter values
are solutions possible. Means by which a solution eventually fails are noted and compared with the
results of other studies. In section 3.2 neutral-wave perturbations to the quasi-cylindrical solutions
are examined in an attempt to relate the idea of criticality to solution failure. Since the quasi-
cylindrical equation maintains the “form” of the full, axisymmetric equation and in particular the
non-homogeneous terms, it would seem to be a good, simplified model of the larger problem. Section
3.3 examines equation (3.1) for a variety of downstream pipe boundary conditions and compares the

results with those of the earlier sections.
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3.1 Quasi-cylindrical model

The axisymmetric model can be simplified for flows which vary only slowly in the axial direction
as discussed in Chapter 2. The term containing the z-derivatives is dropped as negligible leaving a
model which has only the radial coordinate (r) as an independent variable. Some dependence on z

is maintained through the boundary conditions,
1
Y(r=10,2)=0 and Y(R(2),2) = Q = -Q—WlR(O)z. (3.2)

These specify the radius of the vortex or pipe at the axial station where the flow profile is to be
calculated. The inlet conditions define H and C resulting in a two-point boundary value problem
at a given z on the interval » € [0, R(2)].

An exact solution to the quasi-cylindrical form of (3.1) can be found (Batchelor (1967)) for a
vortex with upstream radius e at some downstream/outlet location, radius R(z = L) = b. The

resulting stream function is

_ Wir? a? — b2
’lﬁ(T’) = -+ 2bJ1(kb) erJl(kr), (33&)

from which the axial and azimuthal velocities may be calculated to give

a? — b?
w(r) =W+ WW]_ICJQ(]{IT), (33b)
a2 _ b2
’U(T’) =Qr+ WQJl(kT’) (330)

The swirl parameter k£ = 2Q/W; may be non-dimensionalised as a Squire number, Sqg = ak/2 =
a2/ W1 which may also be interpreted as an inverse Rossby number. The results involve solutions to
Bessel’s equations of the first kind, order zero and one (Jo and J; respectively). Due to the oscillatory
nature of Bessel functions, at certain values of kb the solutions become undefined. Properties of the

solution will be discussed in the context of two flows described below.

3.1.1 Flow in a diverging pipe

Defining a pipe of length L with its radius given by R(z = 0) = a and R(z = L) = b, the
flow described by equations (3.3) represents the velocity profiles at the outlet assuming R(z) varies
only slowly with z. The change in the radius can be represented by the non-dimensional geometry
parameter b/a, while the inlet flow conditions are expressed by the Squire number as defined above.

The numerical experiments performed here consist of varying the inlet conditions of the flow

while keeping the geometry of the pipe, b/a fixed, much as would be done in a laboratory experiment.
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Initially when Sq = 0, w(r,z = L) = Wya?/b?, so that the outlet flow remains uniform with a value
determined by continuity. Then as the swirl increases, the second term in equations (3.3) above
introduces a perturbation to the form of the inlet flows. This modification grows until the factor
J1(kb) in the denominator of each of these expressions becomes zero at kb = ji,,n = 1,2, ....

For a diverging pipe where b/a > 1, the fluid is uniformly decelerated when Sg = 0. As small
amounts of swirl are added, the outer part of the flow is accelerated and that near the axis is slowed.
Figure (3.1) shows outlet axial velocity profiles for b/a = 1.5 as the swirl is increased. The velocity

on the axis reaches a stagnation condition when
a2

If the swirl is further increased, the stream function becomes negative for a finite region near the
axis. Since H and C are defined only for ¥ € [0,Q], a unique solution is no longer obtainable for
k > ko (Sq > Sqo) with this set of boundary conditions. A stream function which lies outside the
range of [0, Q] at the outlet indicates the presence of backflow. Additional boundary conditions for
v and w would be expected in this region as discussed in section 2.2 so that a unique flow could
be obtained from the Euler equations (or equivalently, for this model H and C need to be specified
outside the range of 1 for which they are known upstream). Viscosity could be expected to select
the form of the recirculation region if it were introduced at this point. Since the value of kob is
smaller than the first zero of J; and therefore Ji(kob) is strictly greater than zero for all b/a > 1,
the current model always has a solution. However, it is deemed for the purposes of this work to
have failed due to its inability to select a unique result when backflow occurs. A useful measure of
how the flow approaches the stagnation condition is shown in figure (3.2) where the axial velocity
on the axis at the outlet (w(r =0,z = L)) normalised against its value when Sq = 0 is plotted as a
function of Squire number for several pipe expansion ratios.

If b/a < 1, the pipe converges and for flow without swirl the fluid is accelerated at z = L.
With finite swirl, the axial velocity near the axis is increased even further for a given b/a, while the
fluid near the pipe wall is retarded with respect to the zero swirl case. As the swirl is increased,
kb reaches the first zero of Jo and the second term in (3.3b) vanishes and then becomes negative.
At even larger swirl rates, the denominator decreases as the first zero of Jy is approached until
the axial velocity at the wall is slowed to a stagnation point and then backflow. Once again the
quasi-cylindrical model will be considered to have failed when uniqueness is violated. Figure (3.3)

shows how the axial velocity profiles change at z = L as Sq is increased for b/a = 0.5. The critical
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value of swirl is given by,

A map of the parameter boundary for the existence of unique solutions to the quasi-cylindrical
model is given in figure (3.4). For Squire numbers smaller than the bounding curve, a unique
solution can be found. Once the curve is crossed, non-unique regions of backflow appear in the
solution profiles. For b/a > 1 or b/a < 1, this occurs when equations (3.4) or (3.5), respectively,

equal zero. When b/a = 1 there is no critical Squire number (Sqo).

3.1.2 Free-stream vortex

The solutions (3.3) can also be used to describe the fluid motion of a vortex embedded in an
inviscid, irrotational free-stream. The “inlet” conditions describe an upstream vortical state for
which the outer, free-stream, axial velocity is w(r) = W; and v(r) = Qa?/r, r > a. At some
downstream station the axial velocity of the outer flow is given by W5 so that w(r = b) = W, which
yields an implicit equation for the unknown vortex radius b,

(-V-V%- — 1)2673(kb) = (a2 — b2)kJo(kb). (3.6)

Having solved (3.6) for b, equations (3.3) give the velocity profiles across the downstream vortex
core.

Results are similar to the pipe case, with an adverse pressure gradient imposed by an expanding
pipe replaced by one generated by a decelerating free-stream (W,/W; < 1). Fixing this parameter
and increasing the upstream vortex swirl, the outer part of the core slows less that the inner part
where the free-stream deceleration is magnified. However, instead of a stagnation point eventually
forming on the vortex axis, at some sufficiently large S¢ = Sg;, a solution can no longer be found
to the equations, as 6(Sq) forms a turning point or fold. Figure (3.5) shows how b/a varies as a
function of the swirl for three values of the free-stream deceleration. An important feature of this
flow is that at the fold point the axial velocity is nowhere equal to zero. Although it has been
significantly retarded, a stagnation point does not appear on the vortex axis until after the solution
has been continued around the fold. Plotting w(r = 0, L) versus Sg, figure (8.6) shows how the axial
velocities on the vortex axis behave, including the fold which exists for all three values of W, /Wi

A change in the solution stability must take place at the fold point which will be denoted as
Sq; so that the branch of solutions where w(0, L) = 0 occurs is unstable. This critical value of the

Squire number is shown together with the Squire number at which the flows first attain a stagnation
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point in figure (3.7). Both are plotted as functions of the free-stream deceleration. The difference
between them is most significant for cases where the deceleration of the free-stream flow is small.
In an accelerating free-stream, Wy /Wi > 1, there is always a solution for the downstream vortex
radius.

Although equation (3.1) and its quasi-cylindrical form are linear, this free-stream vortex ex-
ample is non-linear due to the non-linear expression for the outer surface of the vortex boundary
condition. Some manifestation of non-linearity appears to be crucial to understanding how swirling
flows breakdown particularly in light of the calculations of Hall (1965) and Ludwieg (1971) who
detected a fold in the quasi-cylindrical approximation of the Navier-Stokes equations when mod-
elling experimentally measured flows. Since this is the simplest model available which possesses this
property, it is a useful tool. It is also interesting that for the free-stream vortex, the quasi-cylindrical
equations fail to find a solution for a$2/W; > Sq;, which constitutes a different failure mechanism
than that found in the linear problem. In the light of Hall’s calculations, it seems that the addition
of viscosity while still maintaining the quasi-cylindrical form of the governing equations, would not
overcome the difficulty in this case. Two options exist to determine if any steady solutions exist
beyond Sg > Sgy. The first is removal of the quasi-cylindrical approximation for the Euler equa-
tions which is done in section 3.3. The other option would be to employ the full, time-independent

Navier-Stokes equations, that is, adding all the viscous terms neglected by Hall.

3.2 Wavespeeds and criticality

This section examines infinitesimal perturbations to the quasi-cylindrical solutions considered
above. The precise form of the perturbations is given in section 2.2. Just as they did for the baseflow,

the inlet profiles employed in this chapter enable simplification of equation (2.20) governing the

behaviour of the neutral waves,

1 20 \?
Y o ane r
’lpT’r ,’,,71[)7‘ + (W(T’) . C) 7:/" 07 (37)
where W(r) is the base flow axial velocity, €2 is the inlet swirl and ¢ is the wavespeed of the mode

%'(r). The inlet conditions are always supercritical as will be shown in the following discussion so

that initially all ¢’s are positive.

3.2.1 Wavespeeds in a diverging pipe flow

The perturbations (2.17) are applied to the solutions found in section (3.1.1) for flow through

a slowly diverging pipe. To completely specify the problem, no change in the mass flux is allowed
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due to the introduced variations so that
¥'(0) =0 and ¥'(b) = 0,

are the appropriate boundary conditions. This results in a two-point boundary value problem for
the perturbed stream function ¢’. The general solution to this equation is ¥'(r) = 0, however, for a
given baseflow, there may exist a discrete set of ¢,’s (wavespeeds) and corresponding wave shapes,
¢}, which are non-trivial.

For the baseflow described by (3.1) with b/a = 1, the wavespeeds may be solved for analytically
giving,

2Q
Vi + K%

J1n 18 the nth zero of the Bessel function Ji. There are two infinite families of waves, one set with

en =Wy £ n=20,1,2,.. (3.8)

speeds faster than the baseflow and the other with speeds slower. The velocities of both families
converge to W; for n increasing. As the wavelength of the perturbations increases (k — 0), the
speed of all waves deviates most from the baseflow velocity. Therefore, the fastest and slowest waves
and hence the ones which define the critical state of the flow are those with infinite wavelength
(k = 0). This is true in general and not only for the baseflows considered here (Hall 1972). When
the swirl is zero or small, all the wavespeeds are positive and hence directed downstream (the flow
is supercritical). If the swirl is increased, eventually zero and negative velocities will occur and the
flow will be able to support upstream propagating waves and is then classified as being subcritical.

Given a diverging pipe (b/a > 1), an analytical result cannot be obtained, although when the
swirl is small, the wavespeeds were calculated to behave asymptotically like

e = W(%)Z + 2(’(]—?)29 +0(02). (3.9)

in

This serves as a check for the numerical results which are presented in figures (3.8). For each
divergence ratio (b/a = 1.1,1.5,2.0), the minimum velocity of the baseflow at the pipe outlet (wmin =
ming<,r<p w(r, z = L)) is plotted as a function of the swirl. The minimum always occurs at the axis
of the pipe for these profiles as was shown in section 3.1.1. Also plotted on these figures are the
wavespeeds of the four slowest modes (e,,n = 0,1,2,3). As the divergence of the pipe increases,
the speeds become more tightly grouped and are located closer to wmin. The shapes of the four
slowest modes when b/a = 1.1 and S¢ = 0.5 are shown in figure (3.9) and represent the modes with
2, 3, 4 and 5 zeros. The first derivative of the modes with respect to r is clearly zero at r = 0.

The critical state of a flow is defined by the phase velocity of the slowest neutral wave decreasing
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to zero (¢g = 0). For these examples this occurs at the same Squire number as the appearance of a
stagnation point on the pipe axis (S¢. = Sqp). An alternative way of stating this is that criticality
arises at precisely the same conditions as are present when the baseflow solution is deemed to have
failed by non-uniqueness. For these flows all the wavespeeds of the slow family of modes go to zero

at the same Squire number.

3.2.2 Wavespeeds on a free vortex

The free vortex case uses equation (3.7) again with the same boundary condition on the axis,
i’'(r = 0) = 0; however, here the three velocity components are required to be continuous at the

surface of the vortex R(z) = b. This leads to the condition,

/ W, ’_
Yy — Wz‘;)—_—gl/) =0, (3.10)

where W(r) = 1/r¥, and the wavespeed ¢ occurs in the boundary condition as well as the equation
describing the interior of the vortex.

The procedure for finding the wavespeeds follows the same steps as were employed for the pipe
flow case except that the baseflow is determined by specifying W, /W) (the outer, free-stream axial
velocity deceleration), and Sq. Figure (3.10) shows how the wavespeeds of the slowest three modes
change with the inlet swirl for this case. Three different values of the free-stream deceleration are
illustrated. For the case Wy/W; = 0.9, the wavespeeds all clearly undergo a change in direction
when plotted as functions of the Squire number. The fold in the zeroth order wave speed is the most
apparent and is somewhat surprising considering it is generally the case that at least one neutral-
wave mode must have zero velocity when a fold appears in a base solution (Trigub (1985)). However,
in order for a change of sign in a neutral-wave speed to be required, it is necessary for the geometry
of the baseflow to remain the same during the solution continuation. Here the radius of the vortex
core (b/a) increases as the fold is traced out. The fold does occur in the Wy/W; = 0.5 and 0.1 cases
(figure 3.10) although it is difficult to detect particularly on the latter. The wavemodes are similar
to those seen in the diverging pipe case.

Just as for the diverging pipe solutions, the flow reaches its critical state for the free-stream
vortex at the same conditions as a stagnation point occurs on the vortex axis. This would suggest
that for either flow studied in this chapter, the minimum neutral-wave speed is a good measure for
predicting the proximity of the solution to incurring reversed flow. However, the free-stream vortex
would fail due to non-existence of solution at the fold if the Squire number were simply monotonically

increased and at that point on the bifurcation diagram, all the wavespeeds are still positive.
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3.3 Axisymmetric Euler model

"The more general axisymmetric problem described by equation (3.1) is examined in this section
in order to compare the solution behaviour with the results obtained from the quasi-cylindrical
model as well as the wavespeed/criticality calculations. Since dependence in the axial direction is
now permitted, a larger class of solutions would seem possible. Swirling flows are considered in a

pipe the radius of which is described by
R(z) = (14 €) — ecos(mz/L), z € [0, L], (3.11)

where R(z = L)/R(z = 0) = (1+ 2¢) = b/a measures the pipe divergence. The boundary conditions
employed are as discussed in Chapter 2, namely linear inlet profiles, values of the stream function
given on the pipe wall and centreline and three downstream flow conditions at the pipe outlet.
The first outlet boundary condition is u(r,L) = #, = 0. Fixing the geometry with pipe
expansion b/a = 1.5 and length L/a = 1, the flow entering the pipe has its swirl increased from
zero and the entire solution is continued in order to examine its dependence on Sq. Contour plots
of the stream function are shown in figure (3.11) for several values of the Squire number, with
the final plot showing the state at which a stagnation point first appears on the pipe axis at the
outlet (z = L,r = 0). For Sq¢ > Sgo = 1.137, reversed flow forms at the downstream end of the
pipe. For a unique solution to be selected at larger Squire numbers, specification of additional
boundary conditions would be required there. Non-unique solutions occur for the axisymmetric
Euler equation for the same reasons given for the quasi-cylindrical equations: values of the stream
function occur outside the range for which the Bernoulli and circulation functions have been defined.
Thus Sqo = 1.137 is taken as the limiting value of the Squire number for this geometry for which
a solution can be found. The axial velocity profiles at the pipe outlet corresponding to the contour
plots in figure (3.11) are plotted alongside them in figure (3.12) to illustrate how the stagnation
point develops. These profiles behave in a manner similar to those illustrated in figure (3.1) for the
quasi-cylindrical calculations although the axisymmetric profiles have greater curvature (compare the
profiles at S¢ = 0). This numerical experiment was also repeated for pipe geometries with divergence
ratios b/a = 2.0 and 1.1. Although the profiles are not shown for each of the three geometries, a
plot illustrating how the axial velocity on the pipe axis at the outlet (w(r = 0,z = L)) decreases
as the Squire number is increased is given in figure (3.13). The velocity at this point in the flow
decreases monotonically to zero as the swirl is increased in quantitatively the same manner as was

observed in the quasi-cylindrical calculations. The Squire number at which a stagnation point forms
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decreases as the pipe divergence increases. This is to be expected since the adverse pressure gradient
is larger in these cases. It is possible to study how the axisymmetric pipe solution approaches the
quasi-cylindrical results as the length of the pipe is increased. This tests the consistency of the
assumption that axial derivatives become negligible as well as giving some idea of the minimum
value of ratio (b—a)/L = 2¢ before the quasi-cylindrical approximation is reasonable. Figure (3.14)
shows once again the axial velocity at the pipe outlet on the axis as a function of the swirl for length
ratios I/a = 1,5,10. Also on this diagram is the same curve for the quasi-cylindrical model. The
full axisymmetric pipe flow calculation is clearly limiting towards the quasi-cylindrical result and

L/a =5 is already very close to the limit.

The second outlet boundary condition u,(r, 2 = L) = 0 or (¢,, = 0) is implemented by applying
it to the full differential equation (3.1) which results in the cylindrical version of the equation being
enforced at the downstream end of the pipe. Although a parallel or cylindrical flow might be
expected to occur as a result of this, radial velocities are not necessarily zero and contours of the
stream function in figure (3.15) show that non-zero radial flows do indeed result at z = L as the swirl
is increased. The axial velocity profiles at z = L are included in figure (3.16). These are the same
profiles as would be generated using the quasi-cylindrical model. An example of this is the straight
profile when Sq = 0. Therefore, as was noted for the first boundary condition, the profiles here are
straighter and less distorted than the former. Since the flow at the exit satisfies the quasi-cylindrical
equations, the limiting Squire number is identical to that found for the calculations of section 3.1

(the axial velocity on the pipe axis decreases monotonically along the length of the pipe from the

inlet to the outlet).

The third exit boundary condition models discharge to the atmosphere corrected for the swirl-
induced radial pressure gradient. It may be written in terms of the stream function as V0 —
Yrp., = 0. Although this is clearly non-linear and more complex than the previous two boundary
conditions, the results remain qualitatively the same. A flow develops, as shown in the contour plots
of the stream function in figure (3.17), to a limiting case with a stagnation point, once again at the
pipe outlet on the axis. At either end of the pipe the streamlines are not all parallel to the pipe
walls, indicating the existence of radial velocity at these locations. Figure (3.18a) reveals that for
the zero-swirl case, the outlet axial velocity profile is quite distorted with a “core” of faster fluid
present near the vortex axis. As the swirl is increased, the core decelerates until a stagnation point
develops on the axis as it did for the previous two boundary conditions. When the pipe divergence

ratio is increased with Sq = 0 fixed, the acceleration of the fluid near the pipe axis becomes even
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stronger. This effect cannot be seen in figure (3.19) since the axial velocities are normalised there.
The curvature of the lines near w == 0 is a numerical artifact and can be removed by increasing the
resolution of the calculations. For both boundary conditions (ii) and (iii), increasing the length of

the domain results in Sqp approaching its quasi-cylindrical value.

The results discussed so far suggest that the behaviour of the flow with increasing azimuthal swirl
is qualitatively unaffected by reasonable choices for the downstream boundary conditions. However,
the stagnation point occurs at the outlet in all three cases since this is where the maximum pipe
radius is situated. It is possible that the solution is constrained by the boundary conditions enforced
there. This would seem particularly probable in the case of the second condition where the critical
Squire number is determined by the inlet conditions and b/a without any reference to the flow
within the pipe. To address this question, a second pipe geometry is employed by changing the pipe
length to 2L with the wall still described by (3.11), so it forms a diverging/converging geometry

with R(0) = R(2L) and the maximum radius is located at z = L, halfway along the pipe.

For boundary condition (i), the double length pipe flow solution no longer develops a stagnation
point at the axial location of maximum pipe radius, but slightly downstream of it. Figures (3.20)
are stream function contour plots just as stagnation points form on the axes for the three standard
pipe divergence ratios. Once again these are the final states which may be continued uniquely. Since
the stagnation point occurs within the computational domain, extra boundary conditions can no
longer be used to overcome the problem of non-uniqueness. Instead, either the functional form of H
and C' must be specified explicitly outside the range ¢ € [0, Q] or viscosity must be introduced to
select the flow inside the recirculation region. The location of the stagnation point indicates that the
symmetry of the flow about z = L is broken. Another asymmetric feature are the streamlines which
leave the pipe parallel (a requirement of the outlet boundary condition), but are not parallel at the
pipe inlet where there is a significant radial velocity component present. Downstream of the region
where the recirculation would eventually occur, the streamlines contract back towards the axis but
not sufficiently to reproduce the inlet profile. This is suggestive of the experimental results of Harvey
(1962), Sarpkaya (1971) and others who observed that downstream of a vortex breakdown bubble,
the vortex never fully recovers its upstream form but is larger in diameter. However, the experiments

in both cases used slowly diverging pipes, not the converging/diverging sections employed here. No

evidence of waves can be seen in the figures.

When the second boundary condition is applied at the outlet where R(2L) = a = R(0), the

flow is symmetric about z = L since identical flow conditions are then satisfied at both ends of the
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pipe. In this case the minimum axial velocity and hence the stagnation point occurs at the line
of symmetry, half-way along the pipe. The solutions at which the stagnation points first appear
are given in figure (3.21) and are just those of figure (3.11) reflected about z = L. Obviously, the
critical Squire numbers must also be the values found for the diverging pipe with the first boundary
condition applied. At both the upstream and downstream ends of the pipe, the flow has a velocity
component in the radial direction.

The third boundary condition shows evidence of a slightly different behaviour as compared with
the other two at the pipe outlet. Although the gross features are similar, the streamlines near the
pipe outlet (figure (3.22)) show some divergence from the pipe centreline particularly for the largest
pipe deflection case b/a = 2.0. This might be an indication that the flow undergoes some decaying
oscillation to recover from the large disturbance it has experienced. A more likely explanation could
be that the boundary condition is not consistent with the rest of the flow and thus requires an
adjustment of the solution locally, adjacent to the outlet. This would be similar to the problems
evident in some early calculations of vortex breakdown where the inlet boundary conditions were
not consistent with the rest of the flow. This resulted in deflections occurring just downstream of
the inlet, and at large enough swirls, recirculation regions would form. Close examination of the
zero swirl case in figure (3.17a) also shows some distortion of the flow near the pipe outlet. For that
flow scenario, the deflection appears to disappear with increasing swirl.

A comparison between the critical Squire numbers at which a stagnation point forms, for the
six axisymmetric pipe flow cases (three boundary conditions for the diverging pipe (length L) and

the three boundary conditions applied to the converging/diverging pipe (length 2L)) is shown in
table (3.1).

BC
length 1 2 3
L 1.137 0.688 1.03
2L 1.107 1.135 1.098
QC 0.686 0.686 0.686

Table 3.1 Critical Squire (Sqo) numbers for the pipe geometry (b/a = 1.5).

Since the double length domain using the second boundary condition is symmetric about z = L,
it has the same Sqo as the domain of length L with the first boundary condition v, = 0. It was
also noted earlier that the L-domain with boundary condition (ii) should also have the same critical
Squire number as the quasi-cylindrical calculations which serves a good check on the accuracy of

the two methods. Apart from this result, the other Euler calculations are in reasonable quantitative
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agreement with each other. Increasing the length of the pipe domain with the geometry fixed (L/a)
was previously shown in figure (3.14) to result in the Euler calculations converging towards the
quasi-cylindrical result for the first boundary condition on the domain of length L. This is also the
case when the other two boundary conditions are employed. This result is encouraging as it suggests
that for most flow geometries, L/a > 2, the quasi-cylindrical calculations may be taken as a good
estimate of the more general model and its behaviour. A significant advantage of this is that much
of the detailed knowledge of boundary conditions surrounding the swirling flow being calculated is
not needed in the simpler model. It has also been shown that the boundary conditions appear not
to significantly affect features such as the parameter values at which stagnation points occur or in
fact where they occur. Some differences do exist such as the wave-like stream surface contours which
appear only in the 2L-domain with boundary conditions (iii). Of course these calculations rely on
simplified inlet profiles which are not generally observed in experiments and which result in solutions
which fail to exhibit some of the behaviour observed when non-linear phenomena are involved such
as the solution folds of section 3.2.2. The aim of Chapter 4 is to extend the studies treated in this

chapter to a case where such features are seen.
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Figure 3.1- Profiles of axial velocity at a pipe outlet radius of b/a = 1.5 for Sq = 0,0.2,0.5, 0.68659.

Figure 3.2- Axial velocity on the axis at the pipe outlet w(r = 0,b)/w(r = 0,b,5¢ = 0) as a
function of the Squire number Sq for pipe expansion ratios b/a = 1.1,1.5,2.0.
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Figure 3.3- Axial velocity profiles at a pipe outlet radius of b/a = 0.5 for Sq = 0,1.5,2,2.3,2.641.

Figure 3.4- Critical Squire number Sqo for which an axial stagnation point first occurs, plotted
against the outlet pipe radius b/a. No stagnation point forms when b/a = 1.
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Figure 3.5- Downstream vortex core radius b/a shown as a function of Sq, the swirl parameter for
W /W1 =0.1,0.5,0.9.

Figure 3.6- Normalised axial velocities at r = 0,2 = L versus the swirl parameter Sq for values of
the free-stream deceleration, Wy/W; = 0.1,0.5,0.9.
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Figure 3.7- Critical values of the Squire number due to appearance of a fold (S¢s) and an axial
stagnation point (Sqo) versus the free-stream axial deceleration Wy /W;.
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Figure 3.8- Minimum axial velocity of the baseflow (w(r=0)) and the wavespeeds of the slowest
four modes (¢n, n = 0,1,2,3) versus the Squire number for b/a = 1.1, 1.5 and 2.0 respectively.
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Figure 3.9- Mode shapes for the slowest four modes n = 0,1,2,3 when b/a = 1.1 at Sq = 0.5. (The
n'" mode has n zeros excluding endpoints.)
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Figure 3.10- Minimum axial velocity of the baseflow (w(r=0)) and the wavespeeds of the slowest
three modes (¢n, n = 0,1, 2) versus the Squire number for Wy /W; = 0.9,0.5 and 0.1 respectively.
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w(r)

Figure 3.11- Contour plots showing streamlines of the flow through a diverging pipe with expansion

ratio b/a = 1.5. Downstream boundary condition (i) is employed. Plots correspond to Squire
numbers 0, 1, 1.137 respectively.

Figure 3.12- Axial velocity at the pipe outlet (L = 1) for b/a = 1.5, boundary condition ).
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Figure 3.13- Plot of the axial velocity on the pipe axis at the outlet (w(r = 0,z = L)/w(r =
0,2 = L,Sq = 0)) as a function of the Squire number for three pipe divergences, b/a = 1.1,1.5,2.0.
Downstream boundary condition (i) is used.

Figure 3.14- Axial velocity on the pipe axis at the outlet (w(r = 0,z = L)) as a function of the
Squire number for pipe lengths L/a = 1,2,5,10 with downstream boundary condition (i). Also
shown is the quasi-cylindrical model result for b/a = 1.5.
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w(r)

Figure 3.15- Contour plots showing streamlines of the flow through a diverging pipe with expansion
ratio b/a = 1.5. Downstream boundary condition (ii) is employed. Plots correspond to Squire
numbers 0, 0.4, 0.6884.

Figure 3.16- Axial velocity at the pipe outlet (L = 1) for b/a = 1.5, boundary condition ().
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Figure 3.17- Contour plots showing streamlines of the flow through a diverging pipe with expansion

ratio b/a = 1.5. Downstream boundary condition (iii) is employed. Plots correspond to Squire
numbers 0,0.75,1.03.

Figure 3.18- Axial velocity at the pipe outlet (L = 1) for b/a = 1.5, boundary condition (iii).
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Figure 3.19- Normalised axial velocity on the pipe axis at the outlet (w(r = 0,z = L)/w(r = 0,Sq =
0)) as a function of the Squire number for three pipe divergences, b/a = 1.1,1.5,2.0. Downstream
boundary condition (iii) is used.
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4. Non-linear flow profile

In Benjamin’s 1962 paper he suggests that certain features of the behaviour of swirling flows
cannot be seen in the linear inlet profiles studied in Chapter 3 for pipe flows. As noted there,
however, free-stream flows employing the same inlet conditions may be considered not to possess this
“gpecialness” since the boundary matching introduces non-linear effects. To explore this assertion,
this chapter examines non-linear/gaussian velocity profiles entering into a pipe. The problem is once

again described by equation (2.9),

oy O 18y
—6—Z7+57’_2_;57—’——TH¢~CC¢’ (29)

with pipe inlet conditions,
Q _7,2/1,2 —r2/r2
v(ir)=—(1—e o), w(r) = Wi + Wae o and u,(r,0) = 0. (4.1)
r

These closely model the profiles measured in a number of experimental studies of vortex breakdown
including Hall (1972) and Leibovich (1978). Selecting these candidates for the inlet boundary condi-
tions is sufficient to define the right hand side of equation (2.9), although it is not possible to write it

down explicitly. Instead the functional dependence may be solved for implicitly using the relations,

2 2 2
$(r) = gWar? + 2281 = 1),

2
r

H() = 1/20%0) + () + | "2 (e ede.

C(r) = —(1—e™7I"),

4.1 Quasi-cylindrical model

Reduction of this problem to the quasi-cylindrical case involves neglecting the axial derivative
terms but maintaining the (non-homogeneous) right hand side intact. Thus, non-linear effects would
be expected to appear in this model much as they occur in the full problem described above. The
simplified model is a well defined two-point boundary value problem when the same boundary
conditions employed for the linear pipe flow are specified here, namely, ¥(0) = 0 and ¢¥(R(2)) = Q.

In this chapter only flow through a diverging pipe is considered with the gaussian profiles introduced
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above since a distinct vortex core boundary cannot be easily defined. Mudkavi (1991) considered the
case of waves on gaussian vortex cores in an infinite, inviscid fluid. Pipe flow allows the downstream
radius of the outermost streamline to always be known a priori (R(z = L) = b) and hence the
problem may be solved explicitly to give the downstream stream function and therefore both the

“axial and azimuthal velocity profiles in a relatively straightforward manner.

The inlet profiles (4.1) introduce two parameters in addition to the ones present in the linear
problem. The previously defined pipe radius b, swirl parameter @ (which differs dimensionally from
the linear profile definition) and uniform axial velocity parameter W; are now combined with a
vortex-core size parameter, rp, and a gaussian, jet-like component of the axial velocity, Ws. These
are described in terms of four non-dimensional parameters, b/a, Wa/Wi, ro/a and Sq = Q/aW;.
The strategy employed will again be to assume that the pipe geometry and the form of the inlet
conditions is fixed (the first three parameters) and to then vary the swirl increasing it from an initial

value of Sq¢ = 0.

The velocity profiles in figure (4.1) show how the downstream axial velocity across the pipe
radius changes with swirl for parameter values Wy/Wq = 1, b/a = 1.5 and ro/a = 0.5. This case
will be used as a standard reference for the next three sections to enable comparisons to be made
between the different models. The profiles in figure (4.1) show the expected decrease in velocity
near the pipe axis which eventually results in a stagnation point forming there. The velocity of
the fluid near the wall increases at a much slower rate than the central fluid decelerates in order to
preserve the total mass flux of fluid through the pipe. The accompanying figure (4.2) plots the outlet
axial velocity on the pipe axis as a function of the Squire number for three different pipe divergence
geometries, b/a = 1.1,1.5,2.0. The three cases have qualitatively very similar velocity profiles which
is reflected in the curves in this figure. The magnitudes of the two critical Squire numbers, Sq; and
Sqo, denoting the location of the fold and stagnation point respectively, do disagree however. In
fact even quantitatively this deviation is small between the b/a = 1.5 and 2.0 results. For all three
cases, while the swirl is small the axial velocity changes very little. At larger values it decreases
rapidly over a relatively small range of the Squire number and exhibits a fold requiring the swirl to
be decreased in order for a stagnation point to form. This is similar to the behaviour calculated for
the linear core embedded in a free-stream, described in section 3.1.2, although here the non-linear

effects come from the governing equation itself: the boundaries of the flow are rigid pipe walls.

The behaviour described and illustrated above is typical of that seen over the entire range of

the flow parameters studied, namely, b/a = 1.1,1.5,2.0, Wy/W; = 0,0.5,1,2,4 and ro/a € (0.1, 1.0).
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The zero swirl flows show little distortion to the shape of the downstream profiles but even so are not
slowed uniformly proportional to a?/b? as they must be in the linear model. In all cases a stagnation
point eventually forms on the pipe axis, although the presence of a fold in the solution path and
its acuteness depends on the values of the parameters listed above. By varying the parameter
W, /W1, it is possible to study flows with inlet axial velocity profiles ranging from a uniform profile
(Wa/W1 = 0) to a strong jet-like profile (= 4). Results are presented in figures (4.3), (4.4) and
(4.5) to show this dependence. The first two figures illustrate downstream axial velocity profiles for
these two extreme members of this parameter family. The Squire number at which a stagnation
point occurs varies considerably. More importantly, the manner in which the axial velocity on the
axis approaches stagnation alters as shown in figure (4.5). For W /W; large, a fold is evident and
a stagnation point cannot form in the flow without the solution passing through the bifurcation.
However, as the axial velocity ratio decreases, the fold becomes less pronounced until for Wy /Wy = 0
it is no longer present and the swirl may be increased monotonically up to where the stagnation
point appears. Several interesting features can be seen in the Wo /W = 4 case. Firstly, when Sqg = 0
the velocity on the centreline has hardly been retarded at all despite a pipe expansion of b/a = 1.5.
If the flow were described by the previous linear equation, this would result in a centreline velocity
of 2.22 (= 5(a/b)?). In order for this flow to satisfy continuity, there is instead a disproportionately
larger decrease in the velocity adjacent to the pipe wall, so much so that the velocity there is 0.0077,
or very close to zero. Therefore, for pipe expansions slightly larger than b/a = 1.5 and with strongly
jet-dominated inlet velocity profiles, the zero swirl case will contain regions of backflow near the
pipe walls. Hence additional boundary conditions would be required at the outlet. In this case the
addition of swirl to the flow removes the backflow near the wall by increasing the velocity there and
the flow development resembles the other cases discussed, with a stagnation point forming on the
pipe axis after the solution has been continued around the fold. The final flow profile computed at
Sq = 2.316 can be divided into two regions, a large central “core” where the velocity changes only
slowly in r surrounded by a smaller uniform flow region (with higher axial velocity) adjacent to the
pipe wall. This outer region of constant velocity increases in size when the core parameter rp/a is
decreased. Figure (4.6) illustrates just this point. The core ratio is reduced to ro/a = 0.1 and the
downstream axial velocity profiles are plotted at increasing values of Sq. The flow in this case starts
to resemble a vortex embedded in a free-stream with uniform (decelerating) axial velocity. Taking
this parameter to the limit ro/a = 0 might be expected to predict the behaviour of such a class of

flows. The on-axis axial velocity plotted versus the Squire number is plotted in figure (4.7) for three
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values of ro/a = 0.1,0.5 and 1.0. The folds which form for the two smaller core values are difficult to
see on this diagram; however, the absence of a fold is clear for the ro/a = 1.0 case. Also of interest
in this figure is the velocity on the pipe axis when Sq = 0. For all three cases illustrated, the inlet
velocity, w(0,0), is held fixed as is the pipe divergence. However, as the core radius is decreased,
the outlet velocity at » = 0 clearly increases. This is an effect similar to that observed for the Euler
calculations in section 3.3 where the third outlet boundary condition distorted the inlet flow profiles
resulting in a larger outlet velocity at » = 0 (also in the zero swirl case). Both can be ascribed to the
action of non-linearity. The former in the boundary condition, the latter due to the inlet velocity
profiles and the right hand side of the Squire-Long equation which they generate. When the core
radius is increased (rg — ©0), the inlet profile goes to the linear case studied in Chapter 3, and the
downstream profile would be expected to be linear also in the quasi-cylindrical model and hence
= 0.444. This is the value that the outer flow takes in the 79/a = 0.1 example of figure (4.6).

In figures (4.8) the value of the Squire number at which a fold, Sq¢ys, (if any) and where the
stagnation point forms, Sqo, is shown to illustrate how they vary with the parameters discussed in
this section. The strongest dependence of the difference between the two numbers can be seen in
the axial velocity parameter. There is no fold when Wo/W; = 0 (the uniform velocity profile) but it
appears when the axial, gaussian jet is added. The fold is also most developed for core sizes around
ro/a = 0.5 and disappears for large values (ro/a = 0.8). As the core radius decreases, ro/a — 0, the

difference between Sq; and Sqo decreases as well suggesting that the limiting “free-stream” vortex

case also might not have a fold.

4.2 Wavespeeds and criticality

The profiles calculated in the previous section may be examined for the speeds of neutral wave
perturbations superimposed upon them. The variables which are derived from the cylindrical flows,
U(r), V(r) and H(r) (as defined in section 2.3) must now, however, be computed numerically. Only
the pipe flow situation is considered, so that the boundary conditions on the perturbed stream
function are ¥'(r = 0) = 0 and ¢/(r = b) = 0 for all calculations.

The slowest three wavespeeds found on the standard (Wo/W; = 1.0, b/a = 1.5 and ro/a = 0.5)
quasi-cylindrical flow are plotted in figure (4.9a) together with the minimum axial velocity across
the downstream profile and the axial velocity on the pipe axis (r = 0). For low values of swirl, the
minimum axial velocity is located at the pipe wall. The velocity there slowly increases as the swirl

is increased while the velocity on the pipe axis decreases. This continues up to Sq; = 0.912 where
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a fold occurs in the solution continuation. Shortly after the fold, the velocity on the pipe centreline
becomes the minimum and continues to rapidly decrease, forming a stagnation point with only a
small additional decrease in the swirl. There is a limited range over which the wavespeeds are easily
distinguished from wp,;, and this region is enlarged in figure (4.9b). Starting with the slowest mode
(eo), the wavespeeds diverge from wy,;, and begin to decrease as the fold is approached. The zero
wavemode becomes zero at the solution fold and defines the critical state of the flow. The faster
modes c; and ¢s are finite at the fold, decreasing to zero when the flow forms the stagnation point.
Figure (4.10) shows the mode-shapes for these three modes at a Squire number of S¢ = 0.887. Using
higher resolution in the wavespeed detection algorithm allows additional modes to be followed. This
suggests that there is an infinite family of waves with velocities slower than the minimum axial
velocity of the baseflow here, just as for the linear baseflow calculations. Only the slowest of these
is required to define the critical state. Beyond the fold the flow must therefore be subcritical and

hence the stagnation point occurs after a flow has passed through the critical point.

By increasing the vortex core radius to ro/a = 1, the quasi-cylindrical calculations resulted in
a solution for which no fold appeared. Wavespeeds were calculated for this flow also and are plotted
in figure (4.11). Just as for the standard case, it is difficult to differentiate the wavespeeds from
Wmin until near where the axial velocity on the pipe axis becomes slower than that near the pipe
wall (Sq ~ 1.87). As the swirl is increased towards this value, successively faster modes separate
from the minimum velocity and begin to decrease. Then as the centreline velocity begins its rapid
deceleration to form a stagnation point, the wavespeeds once again merge with it, including the
slowest of these, eg, thus resulting in the stagnation point and flow critical state occurring at the
same Squire number just as they did in section 3.2.1 for the linear pipe flow case. Wavemodes are

included for this case in figure (4.12) as they indicate how little changing the vortex core radius

affected the shape of the neutral waves.

Other flows described in section 4.1 have been studied but are not included individually since
the two cases above are representative. Increasing the divergence ratio of the pipe (b/a) causes
the modes to follow w,y;, more closely as it did for the pipe flows of section 3.2.1. Decreasing the
axial velocity ratio Wa /W, to zero results in the quasi-cylindrical solution changing from one which

contains a fold to one which doesn’t, hence from one of the cases illustrated above to the other.

The important result of this section is the calculation of flows which reach their critical states
but still have an axial velocity profile which is everywhere greater than zero. Since the critical

state occurs when a solution path undergoes a fold, this result supports the linking of Benjamin’s
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conjugate flow states theory with that of Hall’s quasi-cylindrical model. However, calculations are
found in other sections of this work (3.2.2 and 5.2) which find solution folds at which the flow is still
supercritical and hence contradicts the correspondence between the two theories. The conclusion
which must be drawn from this is that the two are not simply different representations of the same

underlying mechanism but descriptions of quite separate features of the flow.

4.3 Axisymmetric Euler model

Just as in the linear case, the axisymmetric Euler equations are computed for the flow through
a diverging pipe, the wall of which is described by equation {3.11). Of interest is how the quasi-
cylindrical solutions compare and particularly to see if any phenomena appearing in the axisymmetric
solutions fail to be expressed in some manner in the quasi-cylindrical results.

The two figures (4.13) and (4.14) show the standard case, (Wo/Wi =1, ro/a = 0.5, L/a = 1),
at the three Squire number values, 0,1.088 and 1.076, the third being the Squire number (Sq = Sqq)
at which a stagnation point is first detected. In figure (4.13) the deviation of the stream function
contours close to the axis becomes quite marked at Sq = Sqp, while little change occurs in the flow
profile near the pipe wall beyond a small shift required to conserve the overall mass flux when the core
slows down. At all three swirl rates, the exiting fluid has no radial velocity component as specified by
outlet boundary condition (i). The middle figure (Sg = 1.088) has a larger Squire number than the
flow containing the stagnation point, a result of the fold which occurs in the solution continuation,
just as it does in the quasi-cylindrical case. At the point where the fold is reached (Sq = 1.097),
the axial velocity on the axis is approximately 0.6 which is significantly different from zero although
it changes very rapidly in this vicinity. Figure (4.15) highlights this feature with w(r = 0,2z = L)
plotted versus the Squire number for three pipe divergence ratios. The similarity between the results
in this figure and the quasi-cylindrical case shown in figure (4.2) is very encouraging. To efcplore this
point, figure (4.16) plots the solution curves of w(0, L) maintaining the standard inlet conditions
and pipe geometry (b/a = 1.5) while extending the length of the pipe to L/a = 1,2,4. Computer
memory limited the pipe lengths able to be computed. However, convergence towards the quasi-
cylindrical result is indicated just as for the linear profile case in Chapter 3. The slight crossover
between the L/a = 4 and quasi-cylindrical curves is due to the finite arc-length steps adopted.

Next the radius of the vortex is increased to rg/a = 1.0 and the results of these calculations are
shown in figures (4.17), (4.18) and (4.19). The first two show contour plots of the stream function

and axial velocity profiles at the pipe outlet as the Squire number is increased. There is no fold in
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the solution for this case as is shown in figure (4.19). This is the same conclusion reached using the
quasi-cylindrical model. By comparing these figures with the corresponding plots in figures (4.13)
and (4.14), the effect of increasing the inlet core size can be seen. The ro/a = 0.1 case is not
considered since sufficient grid points were not able to be employed in order to properly resolve the
flow for this parameter value. (The quasi-cylindrical calculations indicate that at least 100 points
are required in the radial direction.) Since the quasi-cylindrical model has been shown here to reflect
the behaviour of the axisymmetric Euler equations very well, there is no reason to believe that this
case would be any different. Further evidence supporting the agreement between the two models is
supplied by varying the inlet axial velocity ratio. The two cases which are illustrated are Wy /W; = 0
and = 4. The results of these calculations are given in figures (4.20) and (4.21) respectively and
represent plots of the outlet axial velocity profiles at selected values of the swirl parameter. Figure
(4.22) illustrates the outlet axial velocity on the pipe axis for all three axial velocity ratios. The fold
appears when Ws is non-zero but the range over which non-unique solutions occur does not vary
significantly when the magnitude of the jet component is increased further.

Employing the second outlet boundary condition, a number of the calculations discussed in the
previous paragraphs were repeated with similar results. Figures (4.23) and (4.24) show the standard
case computed with u, = 0 enforced across the pipe outlet. The streamlines are inclined at the exit
and hence the flow containing the stagnation point (figure (4.23c)) exhibits a much less distorted
velocity profile than that obtained using the first boundary condition. The Squire number values at
which the fold and stagnation point occur also differ somewhat from the previous calculation (see
Table 4.1). As noted previously, this boundary condition s the cylindrical equation applied at the
outlet and so the outlet velocity profiles and continuation curve are exactly those obtained for the
quasi-cylindrical model and illustrated in figures (4.1) and (4.2). Results using the first boundary

condition have also been shown to converge towards these values as the length of the pipe domain

(L/a) increases.

BC
1 2
length Sqo Sqy Sqo Sqy
L 1.076 1.097 0.870 0.891
2L 1.054 1.073 1.077 1.096
QC 0.870 0.894 0.870 0.894

Table 4.1 Critical Squire numbers for the pipe geometry b/a = 1.5.

For the gaussian inlet profiles of this chapter, the third outlet boundary condition causes the flow

to behave in a manner distinctly different from the previous two cases. As shown in figures (4.25) and
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(4.26), the velocity near the axis increases with the addition of swirl instead of the usual decrease.
Surprisingly, the velocity near the pipe wall also increases, although very slightly. To conserve mass,
the velocity of the fluid midway between these two points decreases so that the final profile plotted
shows a narrower fast core of fluid surrounded by a slowly varying outer range. Continuation of the
solution for this case eventually fails as the central core continues to accelerate more rapidly as can
be seen in figure (4.27b). The acceleration of the fluid near the axis can be explained in terms of the
boundary condition where the radial pressure gradient equals the square of the azimuthal velocity.
This results in the pressure gradient increasing as the inlet swirl is increased. The large pressure in
the outer flow would force the flow towards the central axis and hence accelerate the core. Distortion
of the streamlines near the pipe outlet is more obvious here than in the cases considered in Chapter 3
using the third boundary condition, and it is exacerbated further when the vortex radius parameter
is reduced. In fact when rg/a = 1.0 the flow behaved as it had in all the previous calculations (a
stagnation point formed on the axis as Sg¢ was increased). Investigation of this result hints that
the boundary condition is not consistent with the flow upstream. This incompatiblity is heightened
when extreme parameter cases of the Chapter 4 flows are considered such as small vortex cores, large
pipe divergences or strongly jet-like axial velocity profiles. The entire character of the flow has been
altered using only a different downstream boundary condition. Since the wavespeed calculations of
the previous section indicated that the corresponding quasi-cylindrical flow was super-critical, this
result is particularly surprising. It strongly suggests that the flows calculated throughout this study

are really “global” problems in which the entire flow field must be considered and not just the state

of the flow at some upstream station.

Finally in figure (4.28) the Euler calculations are performed using each of the three boundary
conditions on the diverging/converging pipe of length 2L and maximum divergence R(L)/a = 1.5.
The results for the first two conditions follow the usual pattern described previously with stagnation
points occurring on the interior pipe axis. The first boundary condition results in an asymmetrically
located stagnation point downstream of z = L while the second flow is symmetric about that axial
location. The third case does not result in a stagnation point at all. Instead the axial velocity
w(0,2L) decreases slightly as the Squire number is increased, but eventually the solution cannot be
continued any further. The streamlines near the exit are quite distorted particularly towards the
pipe wall. Table (4.1) also shows the Squire numbers at the fold and stagnation point for these
calculations. For boundary condition (ii) on the double domain, the calculations should result in

the values for boundary condition (i) on the single length domain which they do to several figures
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of accuracy. The double length domain using boundary condition (i) also results in values close to

those for the single length domain with the same boundary condition.
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Figure 4.1- Downstream axial velocity profiles calculated for swirl values Sq = 0, 0.798, 0.890,
0.892, 0.870, using the quasi-cylindrical model and gaussian inlet profiles. b/a = 1.5, ro/a = 0.5,
We /Wy = 1.0.

Figure 4.2- Downstream axial velocities on the pipe axis as functions of the swirl (Sg) for three
pipe divergences, b/a = 1.1, 1.5 and 2.0 with ro/a = 0.5, Wo/W; = 1.0.
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Figure 4.3- Downstream axial velocity profiles calculated for swirl values Sq = 0, 0.170, 0.228,
0.246, 0.260, using the quasi-cylindrical model and gaussian inlet profiles. b/a = 1.5, ro/a = 0.5,
We /Wy = 0.

Figure 4.4- Downstream axial velocity profiles calculated for swirl values Sq¢ = 0, 2.405, 2.379,
2.333, 2.315, using the quasi-cylindrical model and gaussian inlet profiles. b/a = 1.5, rg/a = 0.5,
Wa /Wy = 4.0.
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Figure 4.5- Downstream axial velocities on the pipe axis as functions of the swirl (Sq) for five axial
velocity ratios, Wy /Wi = 0, 0.5, 1, 2, 4, using the quasi-cylindrical model and gaussian inlet profiles.
bfa=1.5,rg/a=0.5.
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Figure 4.6- Downstream axial velocity profiles calculated for swirl values Sq¢ = 0, 0.160, 0.181,
0.180, 0.171 using the quasi-cylindrical model and gaussian inlet profiles. b/a = 1.5, r¢/a = 0.1,
We /W, = 1.0.

Figure 4.7- Downstream axial velocities on the pipe axis as functions of the swirl (S¢) for three

core size ratios, ro/a = 0.1, 0.5, 1.0, using the quasi-cylindrical model and gaussian inlet profiles.
b/a=1.5,ro/a=0.5and Wr/W1 = 1.
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Figure 4.9a,b- Minimum axial velocity of the baseflow (wpmin ), velocity on the pipe axis (w(r = 0))
and the wavespeeds of the slowest three modes (¢,, n = 0,1,2) versus the Squire number for
ro/a = 0.5, b/a = 1.5 and W5/W; = 1. The lower figure is an enlargement of part of the top figure.
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Figure 4.10- Wave shapes for the slowest three modes when Sq = 0.887. (The n'* mode has n
zeros excluding endpoints.) ro/a = 0.5, b/a = 1.5 and Wo/W; = 1.
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Figure 4.11- Minimum axial velocity of the baseflow (wmin ), velocity on the pipe axis (w(r=0)) and
the wavespeeds of the slowest three modes (¢,, 7 = 0,1,2) versus the Squire number for ro/a = 1.0,
b/a = 1.5 and W/W; = 1.

Figure 4.12- Wave shapes for the slowest four modes when Sq = 1.799. (The n** mode has n zeros
excluding endpoints.) ro/a = 1.0, b/a = 1.5 and Wy/W; = 1.
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Figure 4.13- Stream function contours computed using gaussian inlet velocity profiles, W, /Wi =1,

ro/a = 0.5. The pipe has divergence b/a = 1.5 and length L/a = 1. Figures correspond to Sq = 0,
1.088 and 1.076 respectively.

Figure 4.14- Axial velocity profiles across the pipe outlet (z = L) for each of the contour plots.
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Figure 4.15- Axial velocities on the pipe axis at z = L as functions of the swirl (Sq) for three pipe
divergences, b/a = 1.1, 1.5 and 2.0 with ro/a = 0.5, Wo/W; = 1.0.

Figure 4.16- The axial velocity on the pipe axis at the outlet (w(r = 0,z = L)) as a function of the
Squire number for pipe lengths L/a = 1,2, 4 calculated using the axisymmetric Euler equations with
downstream boundary condition (i). Also shown is the quasi-cylindrical model result for b/a = 1.5.
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Figure 4.17- Stream function contours computed using gaussian inlet velocity profiles, W2 JWi =1,
ro/a = 1.0. The pipe has divergence b/a = 1.5 and length L/a = 1. Figures correspond to
Sq = 0,2.482 and 2.799 respectively.

Figure 4.18- Axial velocity profiles across the pipe outlet (z = L) for each of the contour plots.
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Figure 4.19- Axial velocity on the pipe axis at the outlet (w(r = 0,z = L)) as a function of the

Squire number for two vortex core radii r¢/a = 0.5,1.0, calculated using the axisymmetric Euler
equations with downstream boundary condition (i). Flow parameters are b/a = 1.5, L/a = 1,
Wa /W1 = 1.
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1.0

Sq=0.0

Figure 4.20- Outlet axial velocity profiles calculated for swirl values Sq = 0, 0.349, 0.426, 0.459
and 0.474, using the axisymmetric equations and gaussian inlet profiles. b/a = 1.5, ro/a = 0.5,
Wy /W1 = 0.0, L/a = 1.0.

Figure 4.21- Outlet axial velocity profiles calculated for swirl values Sq¢ = 0, 2.658, 2.659, 2.604

and 2.541, using the axisymmetric equations and gaussian inlet profiles. b/a = 1.5, ro/a = 0.5,
Wa /W1 =4.0, L/a =1.0.
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Figure 4.22- Plot of the axial velocity on the pipe axis at the outlet (w(r = 0,2z = L)) as a function
of the Squire number for two vortex core radii ro/a = 0.5,1.0, calculated using the axisymmetric

Euler equations with downstream boundary condition (i). Flow parameters are b/a = 1.5, L/a = 1,
Wy /Wy = 1.



65

1.5

12

0 5 1.0 1.5 2.0

w(r)

16

12 +

0 5 1.0 Is 2.0
w(r)

1.5

i2

0 é 1.'0 1.‘5 2.0
w(r)

Figure 4.23- Plot of stream function contours computed using gaussian inlet velocity profiles,
Wa /Wi =1, r9/a = 0.5. The pipe has divergence b/a = 1.5 and length L/a = 1. Figures correspond
to Sg = 0,0.891 and 0.870 respectively. Outlet boundary condition (ii) was used.

Figure 4.24- Axial velocity profiles across the pipe outlet (z = L) for each of the contour plots.
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Figure 4.25- Plot of stream function contours computed using gaussian inlet velocity profiles,
Wy /Wi =1, 7¢/a = 0.5. The pipe has divergence b/a = 1.5 and length L/a = 1. Figures correspond
to Sq = 0 and 1.383 respectively. Outlet boundary condition (iii) was used.

Figure 4.26- Axial velocity profiles across the pipe outlet (z = L) for each of the contour plots.
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Figure 4.27a,b- Axial velocity on the pipe axis at the outlet w(r = 0,z = L), for the standard
inflow case using the three boundary conditions.
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5. Predictions of the onset of vortex breakdown

This chapter examines several criteria which have been proposed for predicting the onset of
vortex breakdown. The definition of what is vortex breakdown is clearly important in predicting
when it occurs, and although the authors surveyed here specify the axisymmetric form of the phe-
nomenon together with the appearance of a stagnation point, ambiguities such as the rapidity of the
axial deceleration still exist. Other definitions have been used, for example, Ito, Suematsu & Hayase

consider steady and unsteady forms of breakdown and allow for asymmetric as well as axisymmetric

disturbances.

5.1 The Brown-Lopez criterion
Explanation of the criterion

Brown & Lopez (1988) have proposed a criterion for vortex breakdown (which in their work
is defined as the appearance of a stagnation point on the axis of the vortex preceded by sudden
axial deceleration). Using an idea related to the tilting of vortex lines discussed in the introduction
to Chapter 1, they propose that negative azimuthal vorticity must be present in order for the flow
on the axis to be decelerated relative to the outer stream. At some upstream station (denoted by
the subscript 0) where the flow quantities are known, they assume that the azimuthal vorticity is
positive and examine the equation describing its evolution in terms of the stream function (2.5¢). If

the flow may be considered cylindrical or nearly so, then Brown & Lopez find the behaviour of 7 is

described by
%: (%s)gf‘ (%‘0%’ (5.1)

where » = ¢(2) is a curve in the » — 2 plane which traces out the streamline passing through the

point (7o, 20). The tangents of the helix angles of the velocity and vorticity at the point “0” are,

respectively,

g = Yo and Go = EQ.
Wo o

If the axial flow retardation occurs through the action of negative azimuthal vorticity, then 7 must
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become negative at some point in the flow. Therefore, given that g is positive, it is necessary that

ao/fo > 1. (5.2)

By careful examination of equation (5.1), it can be seen that for a flow which satisfies this condition,
as 77 becomes negative and grows in magnitude, the streamline must continue to diverge to satisfy
continuity. They propose that this positive feedback is the basis of the rapid streamline divergence
which characterises the onset of the axisymmetric form of vortex breakdown.

Application of Brown-Lopez

It is possible to apply the Brown-Lopez criterion to the flows treated in both Chapters 3 and 4
and it is particularly relevant since it assumes an inviscid flow mechanism. The criterion does not
require any information about downstream geometry, only knowledge of the flow at some upstream
station. Thus it can be evaluated simply, using either the linear or non-linear profiles as they are
specified at the inlet.

For the linear inlet profiles of Chapter 3 (equations 2.12), ag/Bo > 1 is trivially satisfied for
all values of the Squire number since 7y = 0 and hence Sy = 0 also. Thus (5.2) predicts that
axial velocity deceleration on the axis and hence vortex breakdown are always possible for this
case. The criterion fails to distinguish any differences between the two types of flows considered
using the quasi-cylindrical model, namely the pipe and free-stream geometries. For the case of flow
through a diverging pipe when swirl was employed as the continuation parameter, the solution was
deemed to have failed when a stagnation point formed on the vortex axis. This is as Brown & Lopez
would expect although given that this result may be obtained using the quasi-cylindrical model, it
is questionable how rapidly the flow decelerates. However, the solution for the vortex embedded in
a decelerating free-stream develops a fold and hence solutions cannot be found for Squire numbers
larger than some critical value. At this state the axial velocity is still finite and positive everywhere.
The criterion is unable to differentiate between these two failure mechanisms since it does not require
any information about the flow geometry.

The non-linear profiles offer a more interesting comparison. Here the necessary condition for

generation of negative azimuthal swirl is

2 2
r2Wo 1—e " /7

Q2 Wy + Wae™72/75"

(5.3)

If this is satisfied at any point across the inlet (0 < r < 1), then vortex breakdown would be expected

to be able to occur. The test must be performed across the entire inlet since the location of the
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critical point of the inequality varies with the flow parameters. Condition (5.3) is examined as a
function of the inlet parameters ro/a, Wy /W; and Sq = Q/aW; in figures (5.1) and (5.2). In figure
(5.1), the vortex radius is fixed at three different values, ro/a = 0.1,0.5 and 1.0, so that critical
values of the Squire number may be plotted as a function of the axial velocity parameter Wo/W;.
A complete contour plot of Sqpr versus the two parameters describing the vortex core radius and

axial velocity profile is given in figure (5.2). It is a monotonically increasing function of both.

Comparison with quasi-cylindrical model

By modifying the quasi-cylindrical analysis performed in section 4.2, it is possible to compare
the results of that model with the Brown-Lopez predictions. The modification involved requires
performing continuation using the pipe radius b/a with the other inlet parameters fixed rather than
the previous procedure of continuing in the Squire number. This may be viewed as calculating
the velocity profiles at various stations along a pipe, the radius of which is slowly changing. This
procedure eventually results in failure of the model to give either any solutions or at least a unique

solution for further values of the continuation parameter, just as for swirl continuation.

At zero swirl (S¢ = 0), condition (5.3) is always violated and hence predicts that an axial
stagnation point can never occur. This is also the case for small but finite values of the Squire
number where the Brown-Lopez criterion still fails to be satisfied. For these cases, continuation of
the quasi-cylindrical model in b/a supports this prediction. The entire axial velocity profile decreases
at approximately the same rate (i.e., simply scaling on the change in pipe radius required to satisfy
continuity). The minimum velocity across the inlet is at the pipe wall for cases where Wy /W; > 0,
and this remains the minimum as the pipe radius is increased (figure {5.3a)). At large enough b/a
the axial velocity at the wall decreases to zero, and any further increase in the pipe radius results
in reversed flow there. For flows which possess larger amounts of swirl at the inlet, the downstream
profiles increasingly distort when continuation is performed. The velocity near the axis begins to
decrease more rapidly than that further out (figure (5.4a)). When the swirl is sufficiently large,
(Sq > Sq.), the diverging flow forms a stagnation point on the axis, the development of which can
be seen in figure (5.5a). Initially the entire profile decreases as it did for the lower swirl cases.
However, before the flow near the wall achieves a stagnation point, the centre flow begins to retard
more rapidly than the outer fluid. Eventually this phase of strong deceleration near the axis results
in the outer flow accelerating in order to satisfy continuity. This behaviour can be seen in figure
(5.5b) where the minimum axial velocity (wm:n) and the velocity on the axis (w(r = 0) are plotted

as functions of the pipe radius. Initially the minimum is located at the pipe wall as it was for
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Sq = 0.65 and 0.75 (figures (5.3) and (5.4)), and the velocity decreases there as it did in those
cases, with the rate at which the velocity decreases slowing down until b/a ~ 1.779. The profile
then deforms quickly with the central flow being retarded quite suddenly and the flow near the pipe
wall increasing. Over this range of the continuation parameter, the solution forms a fold. Since
initially after the fold, the wall velocity is still the minimum across the profile, the value of wm;n
continues to increase. This is the segment of the wp;, curve where it reaches the fold and then
turns upwards. The minimum velocity continues to increase until w(r = 0) crosses it and becomes
the point on the cross-section with the lowest velocity. Then wpi, resumes decreasing until the
stagnation point forms on the pipe axis. Of course, this requires that the pipe radius be decreased
once the solution fold has been encountered at b/a = 1.779. This case just described is typical of
the solution behaviour for flows in which the inlet core radius is smaller than unity: a fold forms
with respect to the pipe radius so that two solutions are possible for a given pipe outlet radius close
to the flow containing the stagnation point. This case is similar to the flows considered in Chapter
3 for a vortex embedded in a free-stream, specifically, in that the two solutions occur on different

domain geometries. This results in the analysis of Trigub (1985) not being applicable here.

The quasi-cylindrical model is unable to compute flows for a pipe radius larger than b/a =
b/asorg. For these cases, even though the Brown-Lopez criterion predicts that a stagnation point
can form and a solution of this form has been found as described above, the flow would not be
realisable since the solution containing the stagnation point occurs on the unstable solution branch.
It seems that the Brown-Lopez criterion is not a sufficient condition for the formation of a stagnation
point on the vortex axis at least for the steady Euler equations, although it does explain why the
vortex core rapidly decelerates. Considering the limit of decreasing the core radius (rg/a — 0) as

again being the limit of a pipe flow becoming like a free-stream vortex, this conclusion must hold

for free-stream vortices also.

For this study, inlet quantities were considered in the ranges, Wa/W: € (0,2.0) and ro/a €
(0.2,1.0). The behaviour of the solution was found to be qualitatively similar throughout the pa-
rameter space. Plots showing a comparison between the Brown-Lopez values and the results of the
quasi-cylindrical calculations are given in figure (5.6). This illustrates the Brown-Lopez boundary
curve and the values of the Squire number for which a stagnation point formed in the quasi-cylindrical
model for selected Wo/W; with ro/a = 0.5 fixed. Figure (5.7) reverses the roles of the two inlet
parameters (W»/W7 = 1.0 is now fixed). The two models disagree and the extent of this is demon-

strated in figures (5.3)-(5.5). For the case (ro/a = 0.5, W5 /W; = 1) the Brown-Lopez critical value
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of the Squire number is Sgpr = 0.708. It is seen in figure (5.4) that the quasi-cylindrical model does
not form a stagnation point on the pipe axis even when Sq = 0.75 (in fact it predicts the change
in behaviour from a wall stagnation point occurs at S¢ =~ 0.81). The uniform axial velocity inflow
case Wo/W1 = 0 is for both models. This is shown in figure (5.6), where an axial stagnation point
is always predicted to be able to form. Another feature of the free-stream vortex limit (ro/a — 0)
discussed above is suggested by figure (5.7) where both the Brown-Lopez and quasi-cylindrical re-
sults indicate that Sq. decreases towards zero in this limit and hence that an axial stagnation point
might always be expected for these flows. Although the trends are the same and the two models
give values which are reasonably close to each other, the predictions of Brown-Lopez are always less
than those of the quasi-cylindrical model. This reinforces the notion that the criterion is only a
necessary one. A second deviation between the two models is the fold which appears in many of the
quasi-cylindrical cases before the axial stagnation point is formed. A change of stability accompanies
the fold and therefore the solution branch with the stagnation point is unstable. This suggests that
a solution with backflow would not normally be realised using these inlet conditions. In order to
find a physically realisable solution beyond the fold, solution of Navier-Stokes equations with the

addition of all the viscous terms would seem to be indicated.

Comparison between Brown-Lopez and criticality

A procedure identical to that performed in section 4.3 is followed to calculate neutral-wave
speeds on the quasi-cylindrical solutions above. The Squire number is replaced with the pipe radius
as the continuation parameter. This allows the criticality of the various states described previously
to be examined. The three cases discussed in the previous section (ro/a = 0.5, Wy/W) = 1,
Sq = 0.65,0.75,0.85) may be considered illustrative of the behaviour of the solutions over the full
inlet parameter range. All three show wavespeeds which mimie the behaviour of the minimum axial
velocity (wmin) to a large extent. For the cases which result in reversed flow occurring at the pipe
wall (figures (5.3b) and (5.4b)), the decrease in the wavespeeds results in a graph which is concave
up, caused by the rate of decrease in w(r = b) decreasing as it approaches zero. Calculations are
performed as far as possible in the parameter b/a for each of the three slowest wavespeeds (c,,
n = 0,1,2). The wavespeeds coalesce and approach Wi, so that the critical condition as defined
by the slowest wavespeed becoming zero occurs at the same pipe radius as the stagnation point
appears at the pipe wall. One difference from the earlier wavespeed calculations is that the speeds
are well separated when the continuation procedure begins at b/a = 1 which allows initialisation

of the procedure which follows them to pfoceed more simply. The case shown in figure (5.5b) is
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more complicated than the previous two. The wavespeeds initially come together as for the lower
swirl cases; however, when the axial velocity of the baseflow at the walls starts to increase at the
fold, the slowest wavespeed (the only one continued this far) continues to decrease. The wavespeed
co reaches zero velocity before (at larger b/a) that at which the flow forms a stagnation point.
Therefore, criticality is attained at neither the solution fold nor when a stagnation point occurs.
Since continuation is performed in the geometry of the solution domain, the requirement that a

wavespeed going to zero at the fold is not necessary, just as in the free-vortex flow of Chapter 3.

These results for the wavespeeds show that although they are a reasonable measure of the
quasi-cylindrical model’s proximity to whatever form of failure, the two do not occur at the same
parameter values in all cases. The wavespeeds indicate a critical state occurs in advance of the
appearance of a stagnation point forming on the vortex axis. Although when stagnation occurs at

the pipe walls, the state does become critical at the same parameter values.

Comparison between Brown-Lopez and axisymmetric Euler flows

Continuation in the pipe diameter for the axisymmetric problem makes less sense as a physical
experiment than for the quasi-cylindrical case where successive solutions can be considered down-
stream profiles in a diverging pipe. Instead some general conclusions can be drawn from a survey of
the results of the Euler calculations in section 4.3 and how these relate to the Brown-Lopez criterion
as represented by equation (5.3). Thus this discussion will consider the Euler calculations performed

in the previous chapter which employed continuation in the Squire number for a fixed pipe geometry.

First it is noted that as discussed in section 4.3, for some of the combinations of parameters b/a,
Wy /Wi and ro/a examined, a solution was not able to be computed for the zero swirl case. This was
due to the appearance of a region of reversed flow adjacent to the pipe wall at the outlet requiring
additional boundary contstraints there from the outset. By decreasing the pipe divergence b/a, the
velocity decrease of the entire downstream profile lessens (by continuity) and the problem disappears.
Equation (5.3) predicts that for the case of no swirl, it is not possible to generate negative azimuthal
vorticity and hence a stagnation point cannot be induced on the pipe axis simply by increasing the
pipe divergence ratio. This conclusion is therefore consistent with the axisymmetric calculations
for S¢ = 0. When swirl is added to these flows, the effect is to lessen the decrease in the axial
velocity near the pipe walls and to decelerate more rapidly the flow at the centre of the pipe. If the
flow originally had large regions of backflow at the walls, then a large amount of swirl is obviously
required to cause the profile to change significantly enough so that the entire profile is positive and

even more swirl is required to cause the flow to generate an axial stagnation point. This trend is
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also consistent with the predictions of Brown-Lopez.

The quasi-cylindrical model as was shown in figure (4.16) achieves both a fold in its solution
and an axial stagnation point at lower values of the Squire number than the Euler calculations. The
results tend to the quasi-cylindrical values only as L/a becomes large. In the previous section it
was seen how the critical values of the quasi-cylindrical calculation (S¢s and Sgo) are themselves
larger than the threshold value predicted by equation (5.3). Thus, the results discussed in the
quasi-cylindrical section apply equally well here, in particular that the Brown-Lopez criterion is
only necessary. Also it takes no account of the downstream geometry which now involves the rate of
the flow expansion (L/a) as well as the total divergence (b/a) used in the quasi-cylindrical model.

A final point which emphasises the limitations of the Brown-Lopez criterion may be made by
considering flow through a converging pipe. It has been reiterated several times that the criterion
takes no account of the flow geometry at all. Therefore it can only predict that breakdown is possible
or not given some set of flow conditions at a certain axial station. If the downstream flow were to
consist of a converging pipe, breakdown as it has been defined in this section would definitely not
occur, thus emphasising the role of their criterion as only a necessary one. The mechanism elucidated
by Brown & Lopez, however, appears to be validated by the studies conducted here. There is a
definite change in behaviour which occurs at flow parameter values close to the critical values as
defined by their criterion. The rapid deceleration of the core flow relative to the “outer” flow observed
in breakdown is well described by their model. As such, they have proposed an appealing extension
of the Batchelor tilting vortex lines argument enunciated at the start of Chapter 1, showing that a
positive feedback process exists and leads to a very sudden transition from the upstream cylindrical

state in a slowly expanding swirling flow.

5.2 The criterion of Spall, Gatski & Grosch

Another recent discussion of the prediction of vortex breakdown was presented by Spall, Gatski
& Grosch (1987). They defined a local Rossby number Ro; = 1/Sqi = w/vmas which can be
computed for many of the published experimental (both physical and numerical) studies of vortex
breakdown. Noting whether a given flow has broken down or not (the existence of an axial stagnation
point), they plotted its location in Rossby number/Reynolds number space (figure (5.8)). A line was
then drawn defining the boundary between flows which did or did not undergo breakdown. It was
found that as the Reynolds number increased, an inviscid limit of Ro; = 0.65 (S¢; = 1.54) appeared

to be reasonable. To define the local, non-dimensional parameters, SGG located the maximum
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azimuthal velocity v, at a given axial station and denoted the radius at which it was found by
r*. The axial velocity at r* was represented by W. Hence a Reynolds number was defined as

Re = Wr*/v and the Rossby number by Ro = W/vpmer = W/r*Q where Q was a characteristic

rotation rate of the flow.

Also plotted on their graph was a line attributed to the theory of Squire (1960). Squire proposed
that vortex breakdown occurred when an upstream supercritical flow reached a critical state where
infinite-length standing waves could first appear. He analysed a free-vortex flow in an inviscid fluid
described by w(r) = W and v(r) = K/r(l — exp(—r?)) and found that the flow was no longer
supercritical when S¢ > 1.0. Spall, Gatski & Grosch introduced an extra length parameter into
Squire’s vortex and found the best curve fit to the experimental profiles used in their study. This
generalisation of Squire’s work lead to a predicted critical Rossby number of Ro = 0.57. Since

Squire’s model was inviscid, the criterion as it appears on figure (5.8) is independent of Reynolds

number.

Obviously, by changing the flow profile being considered, the local Rossby number at which a
critical state occurs must also vary. SGG have implicitly shown this by plotting one Ro/Re diagram
for leading-edge vortices and another for trailing vortices. The critical values for each case were
substantially different. In the calculations performed in sections 3.2, 4.2 and 5.1, the value of the
inlet Squire number at which the critical state of a flow was reached was found to vary as the flow
parameters were changed. Each of these critical values could be plotted as a horizontal line on figure
(5.8), representing the critical value of the Rossby number = 1/Sq for that particular flow. Two
questions are considered here in relation to the work of SGG. The first is how does the inlet Rossby
number compare with the local Rossby number measured at the downstream cross-section? The
second asks whether the critical value of Ro = 0.65 proposed in their work falls within the range of

the profiles considered in this study.

In fact the inlet and downstream Rossby numbers do differ from each other, although there
seems to be no simple relationship between the two. Sometimes one is larger and sometimes the
other is larger. The downstream Rossby number has one interesting feature which always occurs
even for calculations which don’t exhibit a solution fold. Initially, Ro; always decreases but then
reaches a minimum value and starts to increase just before the flow either develops a stagnation
point or the solution path encounters a fold. Thus the minimum value of Ro; is achieved at a
point before the state at which the flow solutions calculated here are deemed to have failed. This is

illustrated in figure (5.9) where the local (downstream) Rossby number is plotted as a function of
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the inlet Rossby number. For orientation, the downstream, on-axis, axial velocity is also plotted as
a series of crosses. Since the Rossby number is the reciprocal of the Squire number, the zero swirl
case appears as Ro = co. Therefore, increasing the inlet swirl corresponds to following the curves
from right to left. The change in direction of Rojecqar can be seen to occur before the fold upon close
inspection.

The answer to the second question is simply yes, Ro = 0.65 is within the range of critical Rossby
numbers for the profiles considered. It is not within the range of the linear profiles of Chapter 3;
however, gaussian core vortices do encompass it (figure (5.9)). Typically, most solutions in this study
have values of Ro.;; which are larger than 0.65 but decreasing the core size and increasing the size
of the expansion experienced by the vortex can result in very small values of Ro. Interestingly, since
decreasing the core size of the gaussian vortices of Chapter 4 is suggestive of the free-stream vortex

case, one would expect these results to approach the generalised version of Squire’s vortex.
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Figure 5.1- Critical Squire number (Sqpr) as a function of the axial velocity parameter Wy/W;
using the Brown-Lopez criterion for the core parameter ro/e = 0.1,0.5,1.0.

Figure 5.2- Contours of the critical Squire number (Sqpy) as a function of both the axial velocity
parameter W5/W; and the core parameter ro/a using the Brown-Lopez criterion.
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Figure 5.3a- Downstream axial velocity profiles for low inlet swirl case showing evolution in pipe
diameter to ring-backflow, ro/a = 0.5, Wy /Wy =1, Sq¢ = 0.65. b/a = 1.0, 1.279, 1.511, 1.729, 2.183.

Figure 5.3b- Minimum axial velocity (here wpi, = w(r = 0)) versus pipe diameter. Also plotted are

the slowest three neutral-wave speeds, ¢, n = 0, 1,2. Inlet parameters are ry Ja=05, Wy /W) =1,
S¢ = 0.65.
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Figure 5.4a- Downstream axial velocity profiles for low inlet swirl case close to transition in be-
haviour, showing evolution in pipe diameter to ring-backflow, ro/a = 0.5, Wy /W) = 1, Sq¢ = 0.75.
Sg = 1.0, 1.161, 1.557, 2.016, 2.295.

Figure 5.4b- Minimum axial velocity (here wp,;n = w(r = 0)) versus pipe diameter. Also plotted are

the slowest, three neutral-wave speeds, ¢,,n = 0, 1, 2. Inlet parameters are ro/a = 0.5, Wy /Wy = 1,
Sq = 0.75.
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Figure 5.5a- Downstream axial velocity profiles for high inlet swirl case showing evolution in pipe

diameter to on axis backflow, ro/a = 0.5, Wy/W; = 1, Sq¢ = 0.85. Sq¢ = 1.0, 1.177, 1.346, 1.720,
1.776, 1.763, 1.645, 1.585.

Figure 5.5b- Minimum axial velocity (wmin ) and the velocity on the pipe axis (w(r = 0)) versus pipe
diameter. Also plotted are the slowest three neutral-wave speeds, ¢,,n = 0,1,2. Inlet parameters
are ro/a = 0.5, Wo /W1 = 1, Sq = 0.85.
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Figure 5.6- Critical Squire number versus the inlet axial velocity ratio for core radius ro/a =
0.5. The solid line is calculated using the Brown-Lopez criterion; crosses indicate values of the
Squire number which result in a stagnation point for the quasi-cylindrical calculations. (Wa/W; =
0,0.5,1,2)

Figure 5.7- Critical Squire number versus the vortex core radius for inlet axial velocity ratio
Wy /Wy = 1. The solid line is calculated using the Brown-Lopez criterion; crosses indicate values of
the Squire number which result in a stagnation point for the quasi-cylindrical calculations.



83

Numer{cal Experimental

O Grabowski & Berger O Garg & Leibovich, bubble type
1.0 ~ O Kopecky & Torrance 4 Gorg & Leibovich, spiral type

< Benay Q uchtda et ol
A Hafez et al 0 Singh & Uberol
0.8 o present study
A 8 - —— Theory, Saulre
Rossby numper 0.6 TP . SEA § 4 & _

(7
reea 0.4 |

Open symbols - no breakdown

0.2+ Solid symbols - breakdown
0 1 pa el ! SIS B a1l ) NN
10 102 103 104 105
Reynolds number (ﬂ\}-)
2.0
w(r=0)=+
+
1.5 N
+
+
Rolocal
1.0 *
+
Sk
+
i
0 & - .
2 3 4 5 6
Rojn1et

Figure 5.8- Taken from Spall, Gatski & Grosch (1987) showing location in parameter space of
various numerical and physical swirling flow experiments (for wing-tip vortices) and whether vortex
breakdown was observed.

Figure 5.9- The local downstream Rossby number (Roiocat = W/vmas) plotted as a function of the
inlet Rossby number (Rojocqt = 1/Sq). Shown as crosses is the downstream axial velocity on the
pipe axis. Flow parameters Wo/Wi =1, ro/a = 0.2, b/a = 2.0.
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6. Conclusions

This work has investigated how inviscid, swirling flows behave when an adverse-pressure gradient
is applied. Specific attention was paid to the boundary conditions required for a unique solution
to be found and how these constraints affected the solution. Failure of the solution by either the
appearance of a fold bifurcation or the formation of a stagnation point leading to lack of uniqueness

was examined as a function of the various flow parameters available in the problem description.

Quasi-cylindrical model

The simplest model of an inviscid swirling flow examined employed the cylindrical form of the
Squire-Long equation which was solved on a one-dimensional domain. The domain size was allowed
to vary, nominally as a function of the axial co-ordinate in a pseudo-simulation of a slowly diverging
flow. Three scenarios were studied. The first and simplest considered flow through a pipe with
specified divergence ratio and inlet velocity profiles. The profiles consisted of uniform axial velocity
and swirl proportional to the distance from the centreline of the pipe. Behaviour was as intuitively
would be expected: the downstream axial velocity on the pipe centreline decreased as the Squire
number was increased until a stagnation point occurred. Further continuation of the solution could
not be performed due to the need for additional boundary conditions to be supplied to ensure that

the solution obtained was unique. Increasing the divergence ratio of the pipe caused the value of

Sqg to decrease.

The diverging pipe was replaced by an infinite, irrotational fluid decelerating from uniform axial
velocity Wi to a slbwer uniform axial velocity Wy in which the vortex was embedded. This resulted
in a more complex problem than the “linear” pipe flow above. Again the downstream axial flow on
the pipe axis decelerated as the Squire number increased; however, a fold developed in the solution
with the velocity w(r = 0) still finite at the bifurcation. Continuing the solution onto the unstable
branch, eventually this flow also developed a stagnation point. The difference between the Squire
numbers at which the fold and stagnation point occur was most pronounced as the free-stream

velocity deceleration decreased towards unity.

Flow through an expanding pipe was also considered for inlet velocity profiles described by an

axial jet with azimuthal swirl component fitted to experimental data using a gaussian distribution.



85

Three additional flow parameters entered through the additional complexity of the profiles. The
inviscid mechanism of deceleration of the on-axis axial velocity held here also. Details of the be-
haviour varied between the one-to-one correspondence with the swirl seen in the linear pipe case
and the fold observed in the free-vortex model. Small vortex core to pipe inlet ratios are suggestive
of the free-vortex model and behaved in a manner consistent with this. Larger ratios tended to the
linear pipe model behaviour. Increasing the strength of the jet component of the inlet axial velocity
relative to the uniform velocity component did little to affect the qualitative behaviour of the flow.

The linear pipe flow case can be reproduced as a limit of the gaussian profile model by taking the

core radius to be large and the axial velocity to be uniform.

These results reproduce the features of the quasi-cylindrical approximation of the Navier-Stokes
equations put forward as a model of vortex breakdown by Hall and others. They noted in particular
that eventually their solutions were unable to continue beyond certain combinations of parameters.
This inability to be able to continue the solution has been found here to be due to fold in the solution
path, which has not previously been noted except indirectly by Ludwieg. At the fold or point of
“failure” of the model, the on-axis axial flow was still finite in many cases. The proponents of failure
of the quasi-cylindrical model as a precursor of vortex breakdown have not separated the two types
of cases observed here, (i) the quasi-cylindrical flow is continued until a stagnation point appears and
(i) the quasi-cylindrical solution develops a fold before the stagnation point fails. This difference
clearly has bearing on the interpretation of their results. These two features of the solution have
been observed in this study using an inviscid flow model where, as mentioned, previous calculations
have used the Navier-Stokes equations (Bossel matched a combination of inviscid and viscous flow

regions). Thus the inviscid nature of the solution fold development and stagnation point formation

are important results confirmed here.

Wavespeeds

The speed at which infinitesimal wave-like disturbances travel on cylindrical swirling flows has
been proposed to be fundamental to the description of the behaviour of those flows. Indeed, many
of the changes in the properties of the baseflows generated using the quasi-cylindrical model are
reflected in some manner by the wavespeeds. For instance, on the linear profiles of Chapter 3 both
in the pipe and the free-stream cases, the critical state of the baseflow was achieved at the same
Squire number as a stagnation point formed. In these linear flows, two countable families of waves
could be found. One faster than the maximum axial velocity and the other slower than the minimum

axial velocity of the baseflow. The critical state of all flows is defined by the slowest wave decreasing
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to zero speed. For the linear baseflows of Chapter 3, all the members of the slow family coalesced
and converged to wpmin when the flow on the pipe axis decelerated to a stagnation point. The fold
which developed in the free-stream flow occurred while it was still supercritical (the wavespeeds were
all > 0, as was the axial velocity of the baseflow) which was somewhat unexpected. The wavespeeds
continued to decrease on the unstable solution branch and once again converged on Wmin as it was
retarded to a stagnation point. It is often argued that when a solution fold develops, the speed of at
least one neutral wave must become zero. This argument assumes a point in parameter space where
two steady base-solutions exist and hence the small difference between them may be considered a
perturbation with speed zero. When wavespeeds were calculated on the gaussian flows of Chapter
4, this was in fact the case with cg (the slowest wave) going to zero at the fold. However, two
examples of this not occurring were also found, in the free-stream vortex case and when the solution
was continued using b/a in section 5.1. These situations do not violate the argument given above
and Trigub’s analysis because in both situations the solution domain changes with the continuation.
The perturbation between two solutions in these cases actually represents flows in two different

geometries which could not be achieved by an infinitesimal standing wave in the same flow.

The idea that criticality is a fundamental property underlying vortex breakdown suffers from
inconsistencies similar to those highlighted in the quasi-cylindrical model summary. Associating vor-
tex breakdown with the appearance of infinitesimal standing waves is an overly simplistic description
of the problem. For the inviscid, quasi-cylindrical model, a distinction must be made between how
the appearance of a stagnation point and the failure of a solution due to a fold relate to vortex
breakdown. Added to this problem is complication that although wavespeeds reflect much of the
behaviour of the underlying flow, a critical state does not necessarily always occur with any one
particular phenomenon.

Another serious limitation of the wavespeed calculations performed here was the requirement
that they be done on a cylindrical baseflow. Although upstream of experimentally observed vortex
breakdown the flow appears to be well approximated by this assumption, in the vicinity of the
phenomenon this is not at all the case. It would be useful to be able to define wavespeeds on non-
cylindrical flows such as those calculated using the full Squire-Long equation. Of particular interest

is the magnitude of the influence that downstream events have on the flow upstream. These issues

are raised in the next section.

Axisymmetric Euler

The axisymmetric Euler equations were studied using linear inlet profiles which resulted in
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a linear form of the Squire-Long equation, as well as the more physically representative gaussian
profiles. Both studies confirmed that the quasi-cylindrical model reflects most of the behaviour of the
more complicated description. In all cases the quasi-cylindrical solution reached points of interest
such as folds and stagnation points at Squire numbers lower than the values for the Squire-Long
form. Thus it would seem useful as a predictive tool particularly for flows where the axial gradients

are known to be small, since in that limit the results converge.

Care was taken to ensure that the inlet boundary conditions were consistent with the problem
being solved and the ones chosen gave satisfactory results. Three different outlet boundary conditions
were employed and for most cases (all linear flows calculated and the first two boundary conditions
employed in the gaussian profile studies) the effect on the behaviour of the solution was found to be
small. Although features such as no radial flow at the exit obviously changed quantitative details, the
values at which folds and stagnation points occurred varied only by small amounts. These differences
lessened as the length to deflection ratio of the flows increased (the quasi-cylindrical limit). The
third, pressure corrected boundary condition gave results which differed significantly from the other
studies when applied to the vortex flows modelled using gaussian inlet distributions. Instead of
the usual deceleration of the axial flow to a central stagnation point, the core was accelerated.
Deflection of the streamlines near the pipe exit employing this boundary condition suggested that
it might not be consistent with the rest of the flow solution. Although this might be the case, an
important conclusion to be drawn from this result is that the behaviour of a flow may not necessarily
be predicted only using conditions measured upstream. Downstream variations however small can
be expected to have a bearing on the entire flow, suggesting that vortex breakdown needs to be
considered as a global problem. This once again highlights the need for an understanding of how

significant upstream influence is in these flows and a means of measuring it.

In light of this work, the proposal by Hall that the failure of the quasi-cylindrical equations
describing the evolution of a vortex core is an indication that the axial gradients in the flow have
become significant is less promising. The failure which Hall alluded to was shown to be a fold
in the solution path whether the flow was continued in the pipe divergence ratio b/a or the swirl
Sgq. When the equation describing the flow was extended to allow for axial flow variations, the
same bifurcation structure was observed. Since the axisymmetric Euler equations as solved here
are unable to capture the phenomenon of vortex breakdown, it seems that the description of the
flow must be broadened further. The introduction of the full viscous equations might be required

to determine subsequent flow behaviour. This would seem to lessen the strength of the analogy to
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the two-dimensional boundary layer as outlined by Hall.
Predictions of breakdown

The Brown-Lopez criterion for the appearance of a central axial stagnation point was seen
to be qualitatively correct for the flows studied. It also goes some way to explaining why the
axial deceleration is often rapid. However, it fails to distinguish between the variety of different
phenomena seen in this study including the appearance of folds which would preclude the appearance
of stagnation points in many flows. By failing to take account of the flow geometry, the criterion
also limits its role to one which is only necessary for the formation of a stagnation point.

The criterion proposed by Squire based on his model of criticality and extended by Spall, Gatski
& Grosch was compared with the quasi-cylindrical and Euler models. The criterion was found to
depend significantly on the form of the vortex velocity profiles. A difference between the local and
upstream Rossby numbers was noted and the non-uniform way in which the two varied suggested that
one could not be used to predict the behaviour of the other. The local Rossby number calculated at
the station where a stagnation point formed was found to achieve a minimum before the stagnation
point appeared and then to increase. Thus, specifying a minimum value of the Rossby number as
the condition at which vortex breakdown occurs does not seem particularly encouraging.

The results of the many parts of this study when combined lead to the conclusion that there
are a number of factors which cause inviscid models of decelerating, swirling flows to “fail.” Careful
attention must be paid to boundary conditions particularly at the flow inlet. Rather than being
a jump between two states, it is suggested that when equations of the type studied here can no
longer be continued, then a more general description must be employed such as allowing for viscous
effects. The development of a stagnation point rather than being a catastrophic change between two
fundamental vortex states seems instead to be a natural development of the inviscid flow dynamics
when certain parameter ranges are incurred.

An interesting extension of the work done here would be to calculate the stability of the ax-
isymmetric Euler flows, in particular, in the vicinity of the solution folds. These studies might show
the way to a determination of the question of upstream influence. Also, flows which proved to be

unstable to non-axisymmetric disturbances might provide hints of a pathway to the spiral form of

breakdown.
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Appendices: Methods of solution

The details of the numerical methods employed are given in these appendices. Both Chapters
3 and 4 employ the codes which are described here. The linear inlet conditions of Chapter 3 allow a
number of analytic results to be derived which were used as tests to verify the computations. The
nonlinear computations could be checked by substituting the linear profiles into the general codes

and comparing these with the results of the simpler calculations.

A. Quasi-cylindrical model

The quasi-cylindrical model as given by equation (2.10) with boundary conditions at » = 0 and
r = R(L) = b forms a two-point boundary value problem. The terms on the right hand side are
known at least in principle. Although for the gaussian profiles of Chapter 4 the relationships are
implicit. A number of parameters are available: for the linear case, b/a or Wa/W; and Sq = Qa/W
and for the flows with gaussian inlet profiles, b/a, Wy /W1, ro/a and Sq = Q/aW;. The approach
used to solve this problem is described here.

The domain [0, R(z)] was mapped onto the unit interval and discretised there with a uniform
grid. Second-order central finite differences were employed on the interior of the domain. The
values of the stream function were known at both boundaries, ¥(0) = 0 and ¥(1) = Q. Hence the
resulting matrix was tridiagonal and the matrix equation could be solved directly using the Thomas
algorithm. For the general problem, the right hand side introduces non-linear terms involving 1.
Newton iterations as described in Appendix D were used to calculate the solution.

The calculation of the right hand side of equation (2.10),

dH  _dC
b(r,¢)=r2w— ) (A1)

requires some explanation. The Bernoulli function H and the circulation function C are known as
functions of the stream function when ¢ € [0, Q], if the inlet boundary conditions as described in
Chapter 2 are employed, and so long as there are no regions of recirculating fluid or backflow present.
For the linear problem of Chapter 3, the inlet uniform axial velocity profile may be integrated simply

to obtain # in terms of rinie4, the radial coordinate at the inlet and then inverted to form an explicit
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equation for rije: in terms of . The two quantities H and C may also be written in terms of
Tinler UsIng the expressions supplied for the axial and swirl velocity. Hence rinier = finzet(i,b) can be
substituted into these and equation (A.1) can be written explicitly. For the gaussian inlet profiles
of Chapter 4, the same relationships exist however when the expression for the axial velocity profile
is integrated, the resulting equation for ¢ = 9(rinier) is transcendental and cannot be inverted
explicitly. Since as for the linear profiles case, H and C are explicit functions of rinies, their values
for a given ¥ are calculated by solving for ¢ = 9(7sn1.:) using Newton iterations and substituting for
Tinlet iito the two functions. These calculations involve considerable computational effort since not
only does equation (A.1) involve derivatives of the Bernoulli and circulation functions with respect
to 1, but the Bernoulli function itself requires an integral of the circulation function. All terms in
(A.1) are calculated using a grid much finer than that used to discretise the full quasi-cylindrical

equation, typically 1000 points were employed.

The quasi-cylindrical model was studied in two ways. First, for a fixed pipe geometry (b/a
fixed) the two-point boundary value problem was solved initially at S¢ = 0 and then this solution
was continued in the swirl parameter . Pseudo arc-length continuation was performed using the
methods discussed in Appendix E and Newton iterations presented in Appendix D. The second

approach which was adopted in section 5.1 was to fix the swirl (Sq fixed) and continue in the pipe

radius (b/a) starting from b/a = 1.

All calculations for the quasi-cylindrical model were performed using N = 200 points across the
domain. In general this was found to be sufficient, although for flows with large radial gradients
and curvature, some degradation in the solution accuracy was observed. An example of this can
be seen in figure (4.6) where downstream axial velocity profiles are shown for a narrow vortex core
(ro/a = 0.1). For values of the swirl where the profile is either strongly jet-like or suffers from an
equally strong velocity deficit in the centre of the pipe, the slope of the profile should be zero at
r = 0; however, due to the large curvature in the vicinity of this point, the coefficient multiplying
the order (67)? error term is also very large causing the deviation of the profile which can be seen
in the segment closest to r = 0. The resolution of the grid was increased and found to alleviate
the problem; however, the global behaviour of the solution was found to be quite insensitive to
this factor. The solution can be considered well resolved and was included to maintain consistency
between all the calculations as well as highlight the limitations of the numerical computations.
Several example calculations were run with grid discretisations varying from N = 100, 200,400 to

ensure that solutions were converged. Results given are accurate to the number of figures quoted
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for values such as the critical Squire numbers.

B. Axisymmetric, Euler flows

The approach to solving the axisymmetric, Euler equations is much the same as that described
for the quasi-cylindrical model, although the calculations here are performed over a two-dimensional
region. The domain over which the problem is solved is not square owing to the diverging wall of
the pipe which is described by (3.11). This domain, defined by (r,z) € [0, R(2)] x {0, L] is mapped
onto the unit square. The governing Squire-Long equation (2.9) is discretised using second-order,
centered finite differences. These involve a nine-point computational molecule on the interior of the
domain due to appearance of cross-derivatives which enter from the coordinate transformation. The
right hand side of the Squire-Long equation is described by (A.1) also and is treated in exactly the

same manner as described in the previous appendix.

Continuation was only performed using the swirl parameter on this problem, starting initially

from Q = 0. Pseudo-arclength continuation is employed here again as it allows the singular matrix

ecountered at solution folds to be overcome.

Two-dimensional problems are computationally a much greater challenge than the one dimen-
sional boundary value problem described above. Not only do the number of points at which the
solution must be calculated and hence the size of the matrix problem increase, but the bandwidth of
the matrix also expands. For the solutions computed in this investigation, a grid of Ny X N3 = 40x 40
points was used. This proved sufficient for a majority of cases; however, for some parameter values
it was insufficient and so these were omitted. For example, the gaussian profiles with rg/a = 0.1
calculation proved difficult to perform in the quasi-cylindrical formulation when N = 200 and hence
was not attempted here. Several problems such as the double length domains (z € [0,2L]) were
performed with Ny x Ny = 80 x 40 points to maintain a consistant grid resolution. Tests were
carried out to compare results at half the standard resolution (N7 x Ny = 20 x 20 for the “single”

length domain and Ny X Ny = 40 x 20 for the double) and convergence was found to be satisfactory

(agreement to the number of figures quoted).

C. Neutral-wave speeds

The solutions of the quasi-cylindrical model form the baseflow upon which a perturbation is

applied to find the neutral-wave speeds. Two methods were employed to find the neutral waves
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and their speeds. The first of these performed a broad sweep of the wave-speed range but did not
calculate the wave shapes, while the second continued a selected wave mode in a flow parameter

such as the baseflow swirl.

(i) The wave mode solution 9’ = 0 clearly satisfies equation (2.20) for all values of the flow
parameters involved. This is true for either the free-stream or pipe flow cases since the problem is
homogeneous and linear. Therefore, having selected a particular baseflow (all flow parameters fixed),
the trivial solution for the perturbation may be continued in its wavespeed by increasing ¢ from zero.
At certain values of ¢ (the eigenvalues of the problem), non-trivial wave solutions branch off. These
bifurcations may be detected by monitoring the determinant of the Jacobian for the discretised form
of (2.20) and noting where it changes sign. Each change of sign corresponds to a simple bifurcating
solution branch and hence to a neutral wave, ¢f,. The value of ¢ = ¢, at these points gives the
speed of that particular wave. If the baseflow is supercritical, increasing ¢ from zero will result in
all wavespeeds being detected, at least in theory. In practice, due to the finite step size of é¢, only a
few of the eigenspeeds can be resolved since in most of the cases studied, the majority of them tend
to be grouped close together. Fortunately the slowest wavespeed - the one which defines the critical

state of the flow - is the most separated and hence the most easily detected.

In Chapters 3 and 4, the sweep procedure consists of fixing the Squire number and calculating
a quasi-cylindrical baseflow. The bifurcation detecting code is then swept through a likely range of
wavespeeds- from ¢ = 0 to the minimum axial velocity calculated in the baseflow. The swirl is then
increased and the process repeated starting with a calculation of the new basestate. In practice,
the baseflow is advanced using pseudo-arclength continuation so that solutions may be found in the
vicinity of and around folds. For certain ranges of the swirl (e.g., near 2 = 0 for calculations in
Chapter 3), the wavespeeds coalesce together and cannot be differentiated using this coarse method.
However, it serves as a useful way to see trends in the speeds as well as providing good starting
guesses for the ¢’s calculated using the second method (below.) Typically up to six slow waves
could be resolved. The same procedure was employed in calculating wavespeeds in Chapter 5 for
comparison with the Brown-Lopez test. Instead of continuation in swirl, however, this was fixed

before the calculations commenced and the flow was continued in the pipe divergence b/a.

(i1) The second method for calculating wavespeeds also determines the shape of a given mode.
Continuation in the baseflow is carried out by precisely the same algorithm as described above. How-
ever, added to the Newton procedure which calculates solutions to equation (2.20) is an additional

constraint that the amplitude of the wavemode be normalised, ||/ ]| = 1. An initial guess for the
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wavespeed (using values from method (i)) and the waveshape (rsin[(n + 1)rx/b]) is used to find the
mode at one value of the baseflow continuation parameter. Then when the baseflow is continued,
the wavemode is effectively continued also, using the previous solution as a first guess for the wave
on the new baseflow.

Unlike the linear case where the baseflow can be expressed analytically, the non-linear flows
studied are generated numerically and require some care to ensure that the baseflow is known
accurately enough to be used to determine solutions to the wave perturbation problem. Steps taken
to this end include using fourth-order (five point) finite difference stencils in the calculation of the
base flow and grid stretching (r = Ry(?) to cluster points near the vortex axis where gradients are
largest in the solution. Numerical convergence studies were conducted to check that results were
consistent and properly converged. In solving the perturbed problem (2.20), the accuracy of baseflow
becomes an issue since it enters in the term $?(r). Constructing this term, it is necessary to form
fourth derivatives of the baseflow stream function which would not be accurate if the baseflow is only
known to fourth-order. To circumvent this problem, equation (2.10) can be used to form the fourth

derivative of ¥(r) using the right hand side of the equation and lower order derivatives (second and

below), specifically,

d*o(r) 1 b
drt ;(br -3

r

The numerical code evaluations required for calculating the non-linear profile wavespeeds can
be tested on the linear problem and this has been done. Results can be repeated to any number of

significant figures using sufficient numbers of grid points and the values quoted are accurate to the

number of figures given.

D. Newton iteration

Equations (2.9), (2.10) and (2.20) can each be expressed in the general form,

G(¥;\) =0, (D.1)

where A is some parameter. Rather than change notation, this form will also be used to represent
the same problems after they have been discretised. Finite differences were employed so that ¢ = ;
are the stream function values at the grid points z;,j = 1,2,..., M and G = G’ are the function

evaluated at the same locations. One iteration of Newton’s method consists of solving the linear

system of equations,

Gy(¥'; )89 = —=G(¥'; X), (B.2a)
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B = gt 69 (B.2b)

to give ¥¢*! the update to the previous estimate ¢ of the solution to (D.1). If a sufficiently good
initial guess is known (¥°), then repeated application of this calculation will result in it converging
to the true solution 5. The Jacobian matrix Gy = dG'/di; represents the finite difference operator
for the linear parts of G and numerically evaluated derivatives of the nonlinear functions. Iterations

are repeated until some norm of the residuals becomes tolerably small,
IG(%; Ml < e.

Newton’s method is attractive since it is easily implemented and usually robust given a suffi-
ciently good initial guess and a well conditioned Jacobian. Typically a solution can be found in just
a few iterations since the convergence rate is quadratic. In Chapter 3, the inlet profiles were chosen
so that the right hand side of equations (2.9) and (2.10) were linear in 3. For these equations the so-
lution calculation took just one iteration. Once a system of equations was constructed, it was solved
using a direct, banded matrix solver which incorporated partial pivoting. In practice the iteration
process was stopped when the residuals decreased below ¢ = 10™8 and for almost all calculations,

€ = 10719 The determinant of the Jacobian was monitored to detect badly conditioned matrices

which are a sign of matrix singularity.

E. Solution continuation

By computing the solution to (D.1) at successive values of the parameter A, a solution path
() is formed and this process is referred to as “continuation.” One method of continuation is to
simply increase A by some small increment from a known solution which can then be used as an
initial guess for the calculation of the solution at the new value of A = A+ 6A. However, when a fold
occurs in the continuation path, not only is it difficult to determine which solution of ¢ for a given
A will be selected by (say) Newton’s method, but the Jacobian Gy is singular at that point. To
overcome this difficulty, pseudo-arclength (Keller (1987)) was employed in a number of the studies
described in Chapters 3, 4 and 5.

The solution path is parameterised in terms of the arclength variable s, so that (yT(}),))
is written as, (¥1(s), A(s)). The pseudo-arclength algorithm assumes that some previous solution
(1#;5, Ap) is known together with the tangent to the solution path at that point, (;b;g, 5\,,) where the

({3

” denotes derivatives with respect to s. The system described by equation (B.1) is augmented
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by the additional constraint,

N =9ty — ) + 3 (A = Ap) — As = 0. (E.1)

The values (¥f,)) are the new point on the solution curve being sought a distance As from the

previous solution. The resulting system to be solved in each Newton iteration is, therefore,

(Gy, GA) (6¢> _ (—G> (E.2a)
i %) \e) =) |
1/)i+1 — wi + 5’([) )\i+1 — )\i + 86X (E.Qb)

This may be solved around a fold since the augmenting column, G}, is linearly independent of the
original Jacobian Gy and the enlarged matrix is non-singular. Equation (E.1) in effect requires that
solutions to (B.2) lie on a plane perpendicular to the path tangent (1/};, /'\p). The matrix appearing
in equation (E.2a) may also be used to solve for the tangent vector once the new solution (1, ) is

found since it satisfies the equation,

Gy G ' 0
1@; Ap A 1
The first M rows of which are just equation (D.1) differentiated with respect to arclength, namely,

Gy()P(s) + Ga(s)A(s) = 0, (E.3)

and the final row specifies that the new tangent have at least some component in the direction of
the previous tangent. The new tangent vector is normalised to complete its calculation. Reversal of
the sign of the tangent enables the direction in which the path is being computed to be be switched.

Plotting solution curves for M components of the solution % is not possible for M > 1, so
typically some scalar function F (%) such as the vector norm is used. In this study the usual quantity

plotted was the axial velocity on the pipe axis at the outlet of the pipe, which using second-order

finite differences is

w(N1,0) = Y(N1,2) — 2¢2((1(;fr1),21) +9(IV1,0)

An adaptive method of choosing arc-length steps, As was used which enabled small steps to be
taken in the vicinity of the solution-path fold as well as near the point where a flow stagnation
point was detected. To ensure these features were well resolved, steps were limited to be less than
As < 0.0005. Away from these features, the arc-steps often become quite large which is indicative

of a coarsely defined solution curve rather than a reflection of the accuracy of the solution itself.
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1. Introduction

In a paper in 1974, Brown & Roshko suggested that within the random nature of turbulence
can often be seen artifacts of some basic underlying flow. As evidence, they showed pictures of two-
dimensional vortex rolls which consistently may be found in turbulent mixing layer experiments. An
approach to modelling turbulence as a somewhat deterministic process of coherent structures gained
some momentum from this viewpoint and resulted in ideas such as the Perry & Chong (1982) model
of wall turbulence being constructed of superposed “hairpin” vortices. Actually, the approach to
understanding turbulence as a collection of vortical structures randomly distributed in some fluid
volume predates Brown & Roshko by many years (Townsend (1951), Synge & Lin (1943)). One of
the strengths of the model is that it can be used to explain the intermittency of signals observed in
even quite “homogeneous” turbulent flows. This approach has received more support in recent years
through the observation of distinct structures forming in the numerical full simulations of turbulence
in periodic domains (Ashurst, Kerstein, Kerr & Gibson (1987)).

In his model Townsend considered the statistics of both a collection of vortex tubes and vor-
tex sheets to calculate an analytical energy spectrum for small scale motions where energy enter-
ing these scales is approximately equal to that being dissipated by viscosity. Both the tubes and
sheets were local solutions to the Navier-Stokes equations exhibiting a balance between an imposed
three-dimensional stretching strain and viscous dissipation (Burgers (1948)). By assuming that the
interaction between the structures and the effects of large scale motions elsewhere in the fluid were
accounted for in the action of the strain field, he found the energy spectrum to be described by
k~!exp(—k?) for the tubes and k~2 exp(—k?) for the sheets (k is the wavenumber). Using the same
model Lundgren replaced the steady tube structure with a time evolving spiral, still subject to an
axisymmetric strain. He was able to show that for a general class of spirals, the spectrum behaved
like k=5/3 exp(—k?). This work was the first analytical derivation of Kolmogorov’s result for the
inertial, large-wavenumber range, although it has been observed previously both in experiments and
numerical simulations. The source of the result appears to be the transfer of energy to smaller
length scales via tightening of the spiral arms caused by a differential rotation rate coupled with
the compressive effect of the strain field in the plane of the vorticity. Pullin & Saffman (1993) have

examined Lundgren’s model in considerable detail, extending it to predict a number of higher order
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velocity moments such as hyperflatness and hyperskewness. In order to do so, they fix a number of

the parameters in their model based on physical arguments as well as observations in recent works

by Jiminez et al. (1992) and Ashurst (1991).

This work examines two aspects of the Lundgren model. The first being how well his spiral
vortex model approximates a solution to the full Navier-Stokes equations. This is done by using his
model at an early time to generate an initial condition used in a numerical Navier-Stokes solver. The
two models are then compared at later times. Lundgren makes a number of assumptions in order
to reduce the integrals required in the energy spectrum calculations to an analytically tractable
problem. These assumptions are examined in the second part of this study. In particular, energy
spectra calculated without the aid of these assumptions are compared with Lundgren’s asymptotic
predictions. The physical arguments used to justify these assumptions may be assessed in this

manner. This study has implications for the Pullin & Saffman extensions which build substantially

on the earlier work.

Chapter 2 of this work introduces the details of the Lundgren vorticity model and gives the
equations describing the spiral adopted by Pullin & Saffman. Next the procedure by which the
vortex tube description is manipulated by Lundgren to give an energy spectrum is outlined in
Chapter 3. The approximations used to derive various analytical results are given along with the
results themselves. Chapter 4 outlines the numerical methods used to evaluate the “analytical”
spiral and perform the energy integrations. The discussion in Chapter 5 addresses both aspects of

the investigation: the spiral model and the analytical approximations of the spectrum calculations.

2. The vorticity field

A three-dimensional, isotropic, homogeneous, turbulent flow is considered. The motions of the
fluid are assumed to be described by a collection of vortex filaments or tubes each with axial length
scales significantly larger than its cross-sectional size. Each tube is taken to be “similar” in that all
tubes can be described by the same (local) vorticity field w = w(r, 8, t)]tc_ where 7 is the radial distance
measured from the axis of the tube aligned with k. The axial dependence of the vortex is neglected
since it is taken to be slowly varying in that direction. Although tubes have the same vorticity field,
they are assumed to be at different stages in the time evolution of this field. This allows the ensemble

average over all tubes within a given volume of fluid to be replaced by a scaled time integration of a
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single vortex, as will be shown later. In Townsend’s work, he assumed that the tubes all consisted
of steady, Burgers vortex solutions so that the time integration was unecessary. Lundgren extended
the model by including the time dependent vortex spirals described here. Initially a spiral consists
of wide turns of concentrated vorticity. It evolves by winding up under the action of differential
rotation at different radial values, while simultaneously the narrow bands of vorticity diffuse. The
energy cascade behaviour resulting from a specific choice for the shape of the spiral is affected only
in the multiplicative constant in front of the spectrum and not in the functional form of the energy

spectrum.

The vorticity field is described using a Fourier series in the azimuthal direction,

o0

w(r,0,t) = Z wn(r,t)ei"‘g, (1)

n=-—00

where the Fourier components are given by Lundgren as,
wn(r,t) = €% f(p) exp(~inQ(p)T — vn?A%(p)r3/3), n >0,
wo(r,t) = eat[f(p) ™)+ 9(p, )l
p(r,t) = re®/?, (1) = (% — 1)/a. (2¢,d)

(2a,b)

The functions f, g and Q are related through the equation,

;g/;[ “Q(p)] = f(p) + 9(p),

which represents a spiral evolved from the roll up of a vortex sheet. Variables p and 7 are radial
and temporal variables for a strictly two-dimensional flow. This two-dimensional solution may be
mapped to a corresponding three-dimensional flow with variables » and # respectively using the
relations (2¢,d). The three-dimensional model has an axisymmetric strain field imposed on i,
us = —ar/2¢ + azk, which acts to sweep the vorticity towards the axis of the spiral countering the
process of viscous diffusion. For any finite initial distribution of vorticity, the action of the strain field
eventually results in the axisymmetric Burgers balance between vicosity and strain intensification.
Note that although Q depends continuously on both time and the radial variable p through f and g,
the temporal dependence is neglected so it is assumed that Q{p, 7) = Q(p,0). Lundgren has shown
that this approximation is accurate to O(r~2). Thus the form of € is fixed for all time at the outset
of the calculations. The term involving A(p) = dQ/dp is an asymptotic viscous correction to the
inviscid solution also valid for large 7.

The forms of the functions which will be used in this study for the analytic spiral are those

given by Pullin & Saffman. The functions are scaled in the following way,

f0) = 30O, 9(0) = 759(6), (30,0)
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r r
Q) = A, Alp) = 75 AE), (3¢,d)
where £ = p/R. Then the non-dimensional functions

1

L P
(1 + %)E ©

1) =

1., ;s
9(§) = —;526 &, (3e, f)
completely determine the spiral as described by the relations above. The parameter T'o is a measure

of the strength (or circulation) of the vorticity distribution and R is a spatial scaling parameter.

3. Calculating the energy spectrum

3.1 Formulation

The three-dimensional energy spectrum E(k,t) may be related to the vorticity correlation func-

tion Ry,w(p,t) via its Fourier transform ¢u., (k,t) for homogeneous turbulence via the expression,

Bk, 1) = 220l = o [ g k2R,
where dk is an infinitesimal section of solid angle in wavenumber space. Strictly, this relationship
also contains surface integral terms when performed on a finite volume, but these are negligible in
comparison and tend to zero in the limit of k going to infinity if the volume of integration remains

fixed in size.

Since the vorticity is assumed to be independent of location along the vortex axis, the correlation

function must be also. Then, summing over all vortex tube segments,

1 l: 27 oo p2m ) 2
Ekt)=—Y -+ do —ikrcos(6—0x),(p g ) rdr df

= 257 2 rotk, 17 + 23 Ik, )P
j n=1

(4)

where
[e9)
Li(k,t) = / Jn(kP)wy(rt) rdr, (5)
0
using an integral identity for the Bessel functions.
Here L is the length of a side of some cube of fluid over which the spatial integration is performed.

All the vortex tube segments are assumed similar in type; that is, they are all described by the two-

dimensional vorticity field outlined in Chapter 2. It is assumed that these tubes are created at a
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uniform rate N, so that there are spirals within the fluid volume uniformly distributed over the
lifetime of one spiral. Initially, the tubes are of length Iy, but under the action of the strain field
they extend according to I(t) = loe®’. Hence if the turbulence is stationary in time, the ensemble

average of equation (4) can be replaced by a time integration over the life of a single vortex,
Nw 2 at 2 = 2
wp7¢fhwumgmwht (6)

putting N = IgN./L?® which is the rate of creation of vortex length per unit volume. The time
limits of the integration depend on the particular vortex model employed. It is useful to divide
the spectrum into two contributions, the non-axisymmetric part which decays with time and the
axisymmetric component which becomes increasingly dominant as the spiral evolves towards its
final state (equation (8)). For the spiral introduced in equations (3), the total circulation is zero
so that the axisymmetric vorticity eventually cancels and thus both terms of the spectrum can be
integrated to t = oo. The initial time ¢; for the calculations must be finite for the integrals of this

vortex distribution to converge, since the spiral is derived from a singular vortex sheet at ¢ = 0.

This results in

o0
EM:%LJWM%, (6a)
ONT [®
m@?%LWZWmm. (60)
1 n=1

3.2 Dissipation

Typically, energy spectra are presented in the (non-dimensionalised) form E(k)/(ev®)'/?, where
€ is the rate of energy dissipation. In this work the results are expressed in the dimensional form
used by Pullin & Saffman (E(k)). However, the energy dissipation is a useful quantity since it
supplies a kinematic identity which serves as a useful check on the numerical calculations of the

energy spectrum. Specifically, the energy dissipation due to the vortex spiral is

o 12 27 o0
€= 21// E*E(k) dk = NV/ / / w?(r,6,t) rdr df dt. )
0 o Jo Jo

Just as in the energy spectrum calculations, the dissipation can be divided up into the contributions
from the axisymmetric and non-axisymmetric components of the spiral. There is also a contribution
to the energy dissipation from the strain field itself, but this is constant in time and insignificant

(€s = 3a®*v) when compared with the spiral contribution during the lifetime of the spiral. It is not

discussed further.
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3.3 Analytical Results

An exact solution to equation (6a) can be found for the case when instead of the spiral given

in Chapter 2, the steady Burgers’ solution,

Toa —ar? /4y
w(r) = 4%}-6 /4 (8)

is used to describe the vortex structures comprising the turbulent flow. This results in the Townsend

spectruin,

Eo(k) = K~ %12 9)

where K = 2vk/a. Since the solution (8) is independent of time, the time integral separates out
of equation (6a) and gives rise to the exponentially growing “stretched” time 7, which is just the
integral of the strain term €. The corresponding dissipation is

arNT?2
STO. (10)

€p =

For the more general spiral case, the axisymmetric contribution can be determined by solving

the initial value problem for this component,

6(.00 ar 30.)0 v 8 8(.00

—_— i ——(r—). 11

ot 2 Or +aw0+r6r(r or (1)
Pullin & Saffman solve this equation exactly for their spiral using Green’s functions. The result in-
volves confluent hypergeometric functions from which they are able to find an asymptotic expression

for the spectrum at large values of the wavenumber,

Eo(k) = Bo(@)NR*T2a=20~12K exp(—K?/2), (12)

with
1
k2R?

s

Bo(a; kR) = 5/
0

H?*(kR, o;v)dv,

1 —k2R2 k2 R? [s% —k?R?
H(kR’a’”)_%eXp(4(l+v)>[ : ‘1‘7’M(‘5’1’4(1+v))]‘

where M(a, b, ¢) is the confluent hypergeometric function. The coefficient By becomes independent

of kR for kR >> 1 and hence is treated as a parameter dependent only on the specifics of the spiral

shape employed (namely, a).
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For the rest of the terms comprising the spiral, the evaluation of equation (6b) also cannot be

performed explicitly. Asymptotic results have been obtained when the wavenumber is large. By

substituting in

Jn(kr) )1/2[( i)n+1/26ikr+(i)n-{-l/ze——ikr]+O((k,',)—1)’

2 wkr

the integrals of equation (5) may be rewritten as
(o0}
In(k’,t) — / Wn(T', t)[(_i)n+1/26z'kr—inﬂ(p)-r + (i)n-{-l/ze-—ikr~inn(p)r]dr.
0

At large values of k and ¢, this expression was approximated by Lundgren using stationary phase.

For the dominant term, the derivative of the exponent is zero at the point r, which satisfies
0=—k—ne®2 Q' ?r,) 1.

Substituting r,, back into the integral for each corresponding mode results in the following asymptotic

solution for the spiral contribution to the energy spectrum,

E, (k) = Ak~5/3 exp( 2Vk

)s (13)

where

4w |f(P){ pdp -4/3
A= —Na'/3 /
3¢ /0 A Z

Using values for the Pullin & Saffman spiral (Chapter 2) results in the non-axisymmetric energy

spectrum,
E,(k) = Do(a)NR? T2 a=%/% v=12K exp(—K?/6), (14)

so that the specific spiral form chosen influences only the shape factor,

_ 2B | F(E)1PdE N
Pafe) = = | s 2

Note that the relative error in this result is of order &~! which comes from the Bessel function
expansion as here, again, the results have relied on Rk >> 1 and at >> 1.

Pullin has recently found a correction to the spiral energy spectrum for early times which he

calls the vortex sheet epoch,

Ey(k) = —Qo(a)NR Ty a™'vK~*Ei(—ar K?/6), (15)

o [ e
Qofe) = 87 G
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where ar; = e*** — 1 and Ei is the exponential integral. This form of the spectrum dominates for
ar < 1. As the initial time ¢; decreases towards zero, the expression (15) diverges so that it must

be fixed at some finite value.

4. Numerical calculations

4.1 The vorticity field

To calculate the spiral represented by equations (1-3), it is simply a matter of defining a spatial
grid (in polar coordinates) and times at which the terms are to be evaluated. This is sufficient for
all Fourier components; however, it was found to be simpler to solve equation (11) as an initial value
problem for the axisymmetric component rather than construct the appropriate hypergeometric
functions (Pullin & Saffman). The initial condition for wo(r,t) was constructed using f(p) and g(p)

at t = 0F. A mapping,
r=R; tan(r(), ¢ € [Oa 1/2): (16)

where R, is a stretching parameter, was used to reduce the problem onto a finite domain. Fourth-
order finite differences in ¢ were then employed together with a second-order, explicit Runge-Kutta
time marching scheme. The entire Fourier expansion for w was then assembled at the points defined
by equation (16) and equally spaced increments in the azimuthal coordinate 6.

A two-dimensional infinite-domain Navier-Stokes code (Buntine & Pullin (1989)) was also em-
ployed to calculate vorticity fields. Initial conditions were supplied to the algorithm using the
Lundgren spiral solution described above. Since the code uses a polar grid and employs Fourier
decomposition in the azimuthal direction, the output is in the same form as required for the energy

spectrum calculations. The same grid stretching is also employed in the radial direction.

4.2 Energy spectrum calculations

The vorticity field was advanced to times 6t = 0.01 apart where it was used to update the
spectrum and dissipation integrals. The Bessel functions used in the calculation of the I,(k,t)’s are
oscillatory and hence some care is required when integration of their products with the vorticity
components is performed particularly at large values of the wavenumber.

For k < 1, the Bessel functions oscillate slowly enough that the product of a vorticity component

(wn) with the appropriate J, can be calculated at the grid points defined by (16) and integrated
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accurately using a fourth-order Simpson scheme in ¢. Since half of the grid points under this
stretching are clustered between R, and the origin, sufficient resolution can be obtained in this
region while very few points are used far out where the vorticity decays like exp(—r?). For larger
values of the wavenumber, the vorticity is not sampled at enough points between zeros of the Bessel
functions to enable accurate evaluation of the integrals using the previous method. The integrals
instead are broken up into segments defined by the zeros of the particular Bessel function being used.
Within each of these segments, trapezoidal quadrature is performed using products of the fourth-
order, interpolated values of the vorticity field and the Bessel function. This procedure is marched
outwards from r = 0 until it is determined that the vorticity has decayed sufficiently for further
contributions to be negligible. For the largest wavenumber at which the spectrum is evaluated,

k = 10, up to 160 segments are employed.

Having obtained the I,,(k,t)’s, they are integrated using second-order trapezoidal quadrature

in time and summed to obtain the final energy spectra, F,(k) and Eo(k).

5. Numerical results and discussion

5.1 Evolution of the vorticity distribution

Numerical simulations of the Navier-Stokes equations by Buntine & Pullin (1989) show merging
events between like-signed vortices which exhibit features similar to those in the spiral vortex model
of Lundgren. These events are also subject to the same three-dimensional, axisymmetric strain
field he employs. The simulations were calculated at Reynolds numbers ranging from I'/v = 10
to 10%. Ashurst (1991) and Jiminez et al. (1992) have proposed that flows at quite low Reynolds
numbers might represent fundamental mechanisms in the dissipation of turbulence. Their analy-
sis of turbulence simulations has highlighted the formation of large vortical structures surrounded
by anisotropic strain fields. The vortices are roughly cylindrical in shape and appear to be ap-
proximately in the strain/diffusion equilibrium represented by Burgers’ exact solution. Given these
observations, Ashurst suggested “a finite length Burgers’ vortex with circulation 9671 may be the

dissipative structure of turbulence.” His numerical estimate was based on the strength of the local

strain field.

The spiral described in Chapter 2 was proposed by Lundgren using spiral solutions of the Euler

equations. He added the viscous correction which is asymptotically correct in the limit of infinite
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Reynolds number. To test his solution, Lundgren ran simulations of the Navier-Stokes equations
using the spiral as an initial condition and compared the results of both the vorticity contours and
energy spectra with analytical calculations. The Navier-Stokes solver employed a periodic domain
with care taken to avoid effects due to the finite boundary. The three simulations he published
consisted of different initial vorticity distributions all at a Reynolds number (= T'/v), of 25,000.
Good agreement was found between both the vorticity fields and the derived energy spectra. The
work described in the previous paragraphs suggests that it would also be interesting to compare

these two calculations at lower Reynolds numbers.

Several free parameters exist in the spiral model described by the equations given in Chapter 2.
These include the Reynolds number Re = T'g/v, two spiral shape parameters ¢ = \/R_%—m and
o and the starting time of the simulation ¢ = a7e. There is also some freedom in how the initial
distribution of vorticity can be arranged. The spiral which was eventually adopted, fixed o« = —0.5
and ¢ = 0.476. The strength of the strain field was chosen to be a = 4. For the calculations
performed in this section, the length parameter ¢ = 20. All calculations were performed on a grid

consisting of 256 points in both the radial and azimuthal directions.

Having fixed the quantities above, the only parameter left is the Reynolds number. Calculations
were performed at three values, Re = 102, 103 and 10%. The first of these being close to that proposed
by Ashurst and the final one is approaching that employed in Lundgren’s numerical study. Figure 1
shows the evolution of a vortex spiral as described by the Lundgren model of Chapter 2 at a Reynolds
number of 100. Initially the vorticity distribution is quite rough. This is a result of the very narrow,
sheet-like distribution of vorticity at early times. Particularly further out from the origin, the polar
grid is unable to smoothly resolve the vorticity field and Gibbs’ phenomenon-type oscillations result.
As time advances the vorticity diffuses under the action of viscosity and is swept inwards towards
the origin by the strain field. Both of these effects help the plotting routine to better resolve the
subsequent times. At a time of af = 4 a small contour of negative vorticity appears (the dashed
lines), and this grows at subsequent times as it is concentrated by the strain field. By time ot = 7

the two signed vorticity distribution has all but completely cancelled itself.

The Lundgren model calculation performed at Re = 103 is shown evolving in figure 2. There is
a larger radial distribution of vorticity and the early lack of grid resolution is more clearly seen to
be decaying oscillations. Since the vorticity is relatively stronger with respect to the strain field in
this model, the vorticity rolls up more quickly into an axisymmetric distribution which then slowly

diffuses away. Finally, figure 3 shows the Re = 10* Lundgren spiral evolution. There is much more
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structure in the vortex even at the earliest time and by at = 3.5 the distribution is rolled up into
a circular shape. Hence the time scale for the non-axisymmetric modes decreases as the Reynolds
number is increased, while the axisymmetric modes linger longer.

The Lundgren spirals calculated at ¢ = 0.476 (at = 0.389) were used as initial conditions for
the Navier-Stokes solver mentioned above. For Re = 10%, figure 4 shows the result. Very quickly
the viscosity smears out the near singular initial distribution so that by at = 1.0, the vorticity is
quite diffuse, although still aligned along a horizontal band. Later the strain field sweeps in both
the positive and negative distributions and a rather uneventful cancellation takes place. Unlike the
Lundgren model where the vorticity is constrained to remain about the centre of the strain field, the
positive and negative vorticity distributions in the Navier-Stokes calculation form an asymmetric
vortex pair which self-convect away from r = 0. As the pair cancels this self-induced velocity weakens
and the strain field returns the remaining vorticity to the origin. In figure 5 the self-convection is
stronger due to the stronger vorticity present. This also results in more roll up of the initial sheet of
positive vorticity which in turn wraps the negative voriticity around it. The Navier-Stokes solution
also appears much less axisymmetric at comparable times than the Lundgren model.

As the Reynolds number is increased, the Navier-Stokes solutions begin to resemble the Lund-
gren model more, suggesting that the model is suitable at high Reynolds numbers (which has been
verified by Lundgren). For lower Reynolds numbers, the asymmetric distribution of vorticity result-
ing from fewer interleaving turns between the negative and positive vorticity results in the formation
of a vortex pair. For a time these convect away from the centre of the strain field while they con-
tinue to cancel each other. It may be possible to reduce the translation of the vorticity distribution
at low Reynolds numbers corresponding to those given by Ashurst, etc., by discarding the negative
component of the field (the function g). However, this will not overcome the problem of the viscosity

being too strong for the spiral turns to undergo significant rotation before they are diffused together

into a single vortex core.

5.2 Energy spectrum calculations

The comparisons performed in the previous section suggest that the Lundgren spiral might be a
reasonable approximation to the solution to the full Navier-Stokes equations for Reynolds numbers
in excess of 103. As a result, this section studies the behaviour of the energy spectrum derived from
this model while two parameters are varied. Table 1 shows the values of the Reynolds number and
g for which solutions were computed. The variation between each case is illustrated in figure 6 at

the same early time (at = 1) and gives an indication of the influence that the two parameters have.
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Moving across a row of plots from left to right involves increasing ¢q. The effect this has on the
vorticity distribution is to straighten out the spiral form and move vorticity further out from the
origin. As the circulation (Reynolds number) is increased (down the figure), the spiral is much more
curved, developing more turns which Lundgren claims are the basis for the —5/3 spectrum range.
However, in order for the spiral arms to be well resolved, a balance needs to be made between the
increase in the circulation and ¢q. The case Re = 10*, ¢ = 20 is the most convincing example of a

well defined spiral.

Fo/U
q 102 103 10%
5 X X X
20 X X X
50 X X X

Table 1. Parameter values

The final forms of the two components of the energy spectrum, axisymmetric and asymmetric,
for the case I'g/v = 103 and ¢ = 20 are shown in figure 7a and b. Both are presented together with
the asymptotic predictions, equations (12) and (14) respectively. Agreement in the axisymmetric
spectrum is extremely good both in the inertial range where the behaviour is like K! and in the
largest wavenumber (dissipation) range where the drop-off is exp(—K?2/2). The low wavenumber
behaviour of the numerically generated spectrum grows like K2 which cannot be expected from the
asymptotic result since it required the assumption that K be large. Although the symmetric and
asymmetric calculations are fundamentally different, this result might be used as a guide for what is
a “large” wavenumber. For the energy spectrum of the asymmetric modes, the asymptotics are not
in such good agreement over any range of K. At low wavenumbers this wouldn’t be expected since
once again the asymptotic result is not valid there; however, in the inertial K =5/35 range, although
the numerics seem to be qualitatively tending to the asymptotics, there is a small difference. The
drop-off of the two results also disagrees with the numerical spectrum decaying slower than the

e~ K*12 predicted.

To demonstrate how the asymmetric energy spectrum develops during the evolution of a vor-
ticity distribution, plotted on figure 8 are the cumulative spectra at various times. This is also the
Re = 103, ¢ = 20 case and corresponds to the vorticity contours plotted in figure 2. The non-
axisymmetric component of the distribution disappeared relatively quickly and this is reflected in
the spectrum development where the final spectrum is close to its final form by at = 2.5. Since in

its final stages the vorticity is close to axisymmetric in form, this spectrum component takes much
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longer to be completed and occurs over a similar time period for all the parameter cases studied.
The non-axisymmetric component varies in its lifetime. Pullin & Saffman give an estimate for the

lifetime of their spiral as

at = R2I‘52/3.

This is supported by the calculations conducted in this study. A constant of proportionality of

approximately 1.5 seems most appropriate.

Figure 9 shows the spectra resulting from the non-axisymmetric components of the spiral for all
of the cases in the parameter space listed in table 1. Also plotted as dashed lines are the asymptotic
spectra predicted by Lundgren. A K =5/3 range clearly develops when both parameters ¢ and I'g/v
are large although at a lower value than predicted by the asymptotic result. The correspondance
between the formation of an inertial range and the well defined spiral structure seen in figure 6 is
significant. The inertial range fails to appear in the large Reynolds number (10%) low ¢ (5) example
where there are many spiral turns but they overlap and cannot be resolved. In order that the inertial
range is well developed, the Reynolds number must also be at least 103, Hemnce these results support
the conclusions of the vorticity contour plot comparisons made in section 5.1. They suggest that
the analytical approximations made in forming the spiral model are consistent with the range of
Reynolds number for which the asymptotic spectrum calculation is in reasonable agreement with
the full numerical evaluation. Interestingly, the results agree better with Lundgren’s prediction than

with Pullin’s correction which does not appear to contribute in the range of parameters examined.

An important difference between the asymptotic and numerical spectra is the drop-off which fol-
lows the inertial range. The numerical results clearly indicate that it is much less than exp(—K?/2).
In fact in figure 10, the spectrum for the case T'o/v = 10% and ¢ = 20 is multiplied by K* and plotted
versus K. The almost horizontal segment of this line strongly suggests a region of K~* behaviour

not predicted by the Lundgren analytical result.

A test of the spectrum calculations was conducted using the energy dissipation relation (7).
This can be calculated by either of the two integrals shown in this result. Since the second integral
deals directly and exclusively with the vorticity field, it is totally independent of the Bessel function
convolutions required to form the energy spectrum used in the first integral. Very good agreement
was obtained over the nine parameter space cases surveyed in this section, with differences always

less than 5 percent for the asymmetric components and 0.5 percent for the axisymmetric parts.
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6. Conclusions

In Chapter 5 it was found that the Lundgren spiral model is a reasonable approximation to
Navier-Stokes solutions for Reynolds numbers greater than 1000. This was verified by direct com-
parison of vorticity distributions. The analytical solution was then used to numerically calculate an
energy spectrum for homogeneous turbulence. Here again, the Lundgren approximation to this was
found to be in acceptable agreement for Re > 1000.

The Pullin & Saffman extension to Lundgren’s model requires that the core contribution to the
energy spectrum be less than the spiral term at least in the inertial range. The calculations above
(figure 7) show that this is not possible for the spirals employed in this study. In order for the
5/3’s range to appear, the Reynolds number must be at least 1000, but the axisymmetric spectrum
becomes increasingly dominant as the Reynolds number is increased. This may be attributable to

the tendency of strong distributions of vorticity to convect themselves into a symmetric form.
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Figure 1- Contour plots showing the evolution of the Lundgren/Pullin & Saffman spiral. To/v =
102, ¢ = 20, a = —0.5, @ = 4.
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Figure 2- Contour plots showing the evolution of the Lundgren/Pullin & Saffman spiral. Ty/v =
103, ¢ =20, a = —0.5, ¢ = 4.
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Figure 3- Contour plots showing the evolution of the Lundgren/Pullin & Saffman spiral. Ty/v =
10%, ¢ =20, = —05,a =4.
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Figure 4- Contour plots showing the evolution of a Lundgren/Pullin & Saffman spiral initial con-
dition using a Navier-Stokes solver. To/v = 102, ¢ = 20, a = —0.5, a = 4.



120

10 T T v T T

" at=0.389]

'at=9.0

—10 L L 5 £ . 2 . : . : N L 1
-10 0

Figure 5- Contour plots showing the evolution of a Lundgren/Pullin & Saffman spiral initial con-
dition using a Navier-Stokes solver. T'o/v = 10%, ¢ = 20, a = —-0.5,a=4.
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Figure 6- Contour plots for nine vorticity distributions calculated using the Pullin & Saffman spiral
at time at = 1.0. To/v = 102,103,104, ¢ =5,10,20, o = —0.5, a = 4.



122

1072 107} 10° 1ot 1072 1071 10° 10t 102

E(K)

sl g111

Figure 7a- Axisymmetric (n = 0) component of energy spectrum calculated using spiral vorticity
model, T'y/v = 103, ¢ = 20. Dashed line is Lundgren’s asymptotic prediction.

Figure 7b- Non-axisymmetric (n # 0) contribution to energy spectrum calculated using spiral
vorticity model, T'g/v = 103, ¢ = 20. Dashed line is Lundgren’s asymptotic prediction.

Figure 8- Cumulative plots of the non-axisymmetric (n # 0) contribution to energy spectrum
calculated using spiral vorticity model, at increments of §(at) = 0.5. To/v = 103, ¢ = 20. Dashed
line is Lundgren’s asymptotic prediction.
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Figure 9- Non-axisymmetric (n # 0) contribution to energy spectrum calculated using spiral vor-
ticity model. Results are shown for I'y/v = 102, 103, 10* and ¢ = 5, 20, 50. The results are plotted
in the form E(K)K5/3. The dashed lines are Lundgren’s asymptotic predictions.
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Figure 10- Non-axisymmetric (n # 0) contribution to energy spectrum calculated using spiral

vorticity model, T'g/v = 103, ¢ = 20. The result is plotted in the form E(K)K*. The dashed line is
Lundgren’s asymptotic prediction.





