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ABSTRACT

The assumption that the spectral absorption coefficient
is independent of frequency in problems involving radiant energy
transfer in hot gases is examined. A particular case, that of the
hypersonic wake, is treated in some detail, and a non-gray
transfer equation involving two mean coefficients is developed.
One mean absorption coefficient is related to emission, and the
other to absorption.

The problems arising from lack of chemical equilibrium
are discussed, and a modification of the equations used for pre-
diction of the spectral absorption coefficient (for diatomic
species) is suggested, wherein two distinct temperatures are
utilized. Sample calculations for one nitrogen band have been

made and the results presented graphically.
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LIST OF SYMBOLS

Einstein coefficient for spontaneous emission

Angstrom units = 10_8 cm (formerly written A )

integral of Planck's Function ( = & ¢ T4) (see end of this list)

3|

rotational constant
Einstein coefficient, induced absorption
Einstein coefficient, induced emission

difference of rotational constants, upper minus lower state
velocity of light (2. 998 1010 cm/sec)
constant of integration

specific heat
rotational constant (2nd order)

base of natural logarithm
energy

exponential integral function (Eq. 26)

electronic oscillator strength (experimental value)

degeneracy (no. of physically distinguishable states with
same energy)

-27
Planck's constant (6. 6234 10 2 erg sec)

rotational constant {3rd order)

intensity
rotational quantum no.
emissivity

Boltzman's constant (1. 38 ° 10716 ergs OK‘I)



() with subscript - conductivity

K mass absorption coefficient or absorption cross-section

(dimensions: cmz)

K _ degrees Kelvin
In natural logarithm
L total thickness, or characteristic depth
n unit normal vector
N number density (cm-3)
Pyt mgtrix element,' square of vibrational overlap integral
(dipole moment integral; Reference 28)
q heat flux
9 ryn Franck-Condon factor
Q partition function (Eq. 74)
r radius, radial coordinate
r, classical electron radius (2.82 ° 10713 cm)
B linear distance coordinate along a ray
t time (sec.)
T temperature (OK)
el electronic stz‘lte term value (Reference 29)
U internal energy
v velocity
\4 vibrational quantum number
v volume \
x coordinate along preferred direction in one-dimensional
problems
NO(7) " nitric oxide gamma bands (Reference 29)
Y scattering function (Reference 6)
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an increment

angular coordinate (see Figure 1)

wavelength (usually cm unless specified as A or M)

Photon mean free path

cos 6

viscosity (Section IV only)

units - microns = 10-4 cm (on graphs)

spectral absorption coefficient ( = pK
per unit volume

w !
-1

frequency (sec )

3.14 ...

3
gas density, particles/cm

standard sea level value of p
photon density (Section IV only)
radiation energy density (see below)

Stefan-Boltzman constant (in U’T4_)
(0.567° 10" % erg/sec cm? k%)
séattering coefficient

element of area

optical depth { j(p K}’ dx )

angular coordinate see Figure 1
N

wave number = A

vibrational constant
vibrational constant (anharmonic term)

vibrational constant (third order)

vii

per unit wavenumber,



dw element of solid angle

Subscrigts

e electronic
f wake '"'front'' (see Figure 2)
i dummy index
g - Bgas
J rotational state
1 lower state
P photon
r radiation; radial
R ‘ rotational state
total
u upper state
\ vibrational state
w ’ wake, or wall
A per uni‘t wavelength
v per unit frequency
A per unit wavenumber
Superscripts

upper state
" lower state

- mean value
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I. INTRODUCTION

The rapidly increasing importance of radiation in the field
of gas dynamics has brought forth a number of excellent papers
on the problem of accounting for the effects of energy transfer by
this mode (e.g., see References 1, 11, and 14). However, for
the most part grayness is assumed in treating this phenomenon --
that is, the absorption coefficient is assumed to be independent of
wave -length for the purpose of predicting the energy transfer
{including absorption phenomena). The intent here is to examine
this assumption in some detail and to determine at least qualita-
tively the effect it has on the solution of the transfer equation.

Along with the gray gas assumption, the assumption of
local thermodynamic equilibrium is almost universal. This
assumption means that at any given instant (or location) the flow
field can be described by a single characteristic temperature,
and furth'er that the local radiant intensity is proportional to the
Planck value for that temperature. Even when substantial
chemical non-equilibrium is assumed, the radiation is treated
from the local thermodynamic equilibrium point of view, and
only one temperature is used (usually the kinetic temperature).

It is not intended here to minimize the other difficulties
to be encountered in dealing with radiant transfer, e.g., the
problem of averaging over the angle 6, but merely to concen-
trate for the moment on these two aspects of the gray assump-

tion. It should be pointed out that in most engineering problems
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the greater difficulties lie in getting any reasonable mean value of

the absorption coefficient for the gases of interest.
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1I. THE TRANSFER EQUATION

In dealing with problems involving the transfer of energy by
radiation, the quantity usually considered is the spectral intensity,
I)\, which may be defined, for volumetric emitters (i.e., hot gases)
as the following limitl*

o, dE |
1. = A
» Lo e dV dwdx dt |

dV,dw di dt — o (1)

where dE)\ (or more precisely, d7E),) is the energy flux from an
element of volume dV, in an element of solid angle dw (about some
direction L), in the increment of wavelength d\ about a wavelength
A, in an increment of time dt, from a substance of density p, in a
direction ® with respect tc some as yet undefined coordinate system.
The corresponding definition for emission from a surface2 (which

is more commonly used) is
6
E.
I} = fim ‘ d t;
I Coe €& dv dw d2 dt

. (2
"do,dw d) dt — 0 )

where do is the element of surface area, and 0 is the angle with
respect to ;, the unit normal to do. In most practical problems
one is ultimately desirous of calculating the energy flux across
some bounding surface of a volume of gas; hence the two definitions
become quite compatible when the unit volume is expressed in
terms of the element of surface area do and an angle 8 with respect

to the unit normal n to do, i.e., (see Figure 1)

% Superscripts refer to references listed at the end of the text.



dV = do cose da (3)

It is an experimental fact that the above limits do exist (provided,
of course, that the elements of volume, time, etc., are properly
chosen; Osborn and Klevens3 show that the element of volume must
have characteristic dimensions larger than the greatest wavelength
to be considered; correspondingly then, dt must not be less than
this longest wavelength divided by ¢, the velocity of light, etc.)
The spectral intensity is typically a function of the temperature,
location, direction, frequency, and, of course, the species.

The transfer equation is simply a statement of the conser-

vation of energy4 in terms of I

(3, y&) = €¢I, - €K I, (Bouguer's law) (4)

that is, the change in I, over a distance ds, in the direction of 8,
equals the gain from emission minus the loss from absorption.
Here J)\ is the emissivity, per unit mass, and Kx is the mass

absorption coefficient. As will be shown later, J, and K}\ are

A
related to the Einstein coefficients for spontaneous emission, and
induced emission and absorptionsu As written above, Eq. 4 does
not show directly that both the emissivity and the absorption co-
efficient are lumped parameters which inciude scattering terms
as well as the soc-called true emission and absorption. The com-

plete statement isd’ 6,7

==
o+
§

L
<

|-
QaLQ.»
o+ ey

a1 o .
+ 5—: = f[IA+4—37;frI}dwi _—<K)+O;)IAJ (5)

U‘

]
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where Ty is a scattering coefficient and ¥ (;, w-»w') is a scattering
function. In the case of surfaces the scattering terms become re-
ﬂection‘terms. The time derivative term is rarely considered
since in most problems it is negligible. This can easily be seen
if one notes that the ratio of the time derivative term to the space
derivative term is a ratio of velocities: (M/a% . The -g% term is
some characteristic physical velocity, and c is the velocity of light.
Thus unless one is dealing with a problem involving relativistic
velocities (i.e., velocities comparable to the speed of light) the
time derivative term is negligible. Furthermore, in the usual
hypersonic problem the scattering terms are small compared to
the energy production and absorption terms and are also neglected.
Induced emission is small and is lumped into the absorption term,
although it may be accounted for separately quite easily (see
Appendix I). Scattering terms become important, for example,
when one is considering a cold gas irradiated by a hot source,
such as is the case with the earth's atmosphere under the influence
of the sun.

The first observation to be made about Eq. 4 is that in
perfect thermal equilibrium the derivative is identically zero and
hence

J, = (K1) = K8 (6)*

A A lEzun’ibrivvﬁ

* More precisely Jy=1 )Z\K)\B)\ where " N the refractive index.
(Kirchoff's law).
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where B)\ is the Planck function given by

da
B,d» = MZ‘;;‘ e )
exe )|

This function, which is the quantum-mechanically correct equilibrium
intensity distribution, is well verified experimentally (especially for
enclosures with solid surfaces). Planck's function5 will not be derived
here but will constitute a basic assumption. Equation 4 may now be

written as

- = fK)(BX‘Ij\j (8)

It should be noted that in the general case the ratic

o = (9)

is referred to as the source functionzi In perfect thermal equilibrium
it is identical with Bxu The distance element ds in Eq. 8 is written

with a vector sign to emphasize that it is the distance along some par-
ticular direction. Although in some problems ds may be conveniently

identified with a radius vector r in a spherical polar coordinate sys-

temg, more commonly it is written as
(j]f = - SecHd dx = —(d%/‘} (10)
where x is an appropriately chosen linear coordinate. This relation

is especially useful when (as frequently happens) a coordinate system

may be selected such that the temperature is a function of only one
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coordinate (x). This one dimensional case is referred to as the "plane

parallel atmosphere" 2. The transfer equation is written as

oI
A = —_
bl (11)
where
G-, = ] kG ds (12a)
or
dty, = £ K, dx (12b)

Eq. 11 is probably the most common simple statement of the trans-
fer equation. The quantity '[')\ is referred to as the optical depth
(note that it is along the preferred direction x). Eq. 11 is a’linear

differential equation for Iy with the general solution4’ 6

h

I, = [C.‘(c,n -
3

where CI(T1 )\) is determined by the boundary condition at Z")\ = Zl X

B, (¢ ¢ f‘/-} ] o 1/ (13)

A

To illustrate the basic exponential nature of the absorption process,
let CI(O) = 0 and consider a region of uniform temperature. Eq. 13

then may be integrated to give

z; \
" T 7
1,\ = :_2'&/ C‘t/'“ de - € i = B, (1-e ) (14)

o
or using Eq. 10 freely

- -0k &
I, = B, (1-e™") (15)
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That is, as one moves into a layer of gas in a direction 6 the radiant
intensity of a wavelength A, in the direction 6, is 0 at the boundary
and approaches the equilibrium value B)\ exponentially with increas-
ing optical depth pK)\;. Obviously, the physical depth s at which
the equilibrium value is essentially reached depends directly on the
magnitude of the absorption coefficient K,. In cases involving
enclosures (e.g., furnaces) where the walls are in equilibrium

with the gas, eq’uilibrium densities are closely approached, but

it is rare in hypersonic aerodynamics that a gaseous layer is of
sufficient optical depth to achieve this. Note that the depth s re-
quired (at a given value of p) varies inversely with K,- For example,
from References 9 and 10, the pK)‘ term varies irom 7 cm.1 at

A= 2150 Ato 1072 cm™} at A = 2050 A, back to 5 cm ™) at \=2250 A,

and to less than 10—4cm"l -8

for A > 2900 A [A = Angstrom = 10 cm]
(See also Figure 7.) These values are for NO(7) band emission in
air at one atmosphere and at 2000°K. In other words, over a
relatively short wavelength interval of a few hundred angstroms

the absorptivity may vary by four or five orders of magnitude. As
temperature and density increase the variation of pr becomes
less pronounced, but is always considerable when compared to that
encountered in enclosures. Even gaseous bodies as large as the
sun show considerable deviation from the Planck function. In fact,
it is the non-grayness of the sun and the other stars that permits

determination of their composition (i.e., by observation of distinct

absorption and emission lines).



-9-

1II. THE GRAY GAS; PLANCK'S MEAN

If the assumption that Kx is independent of wavelength is made,
the solution of Eq. 11 is considerably simplified. Let K, be a function

only of the temperature T

K, =K() (16)

A

Then Eq. 1l may be integrated with respect to wavelength

fe Sk =178 (17)
where

I = flxda (18)
and

B = [OBAJA = .0;7_"’4 (19)

Since in all practical cases K)\ is a strong function of A\, a suitable
mean value must be chosen. The absorption coefficient is directly
related to the energy emitted by the gas (in equilibrium) by virtue

of Eq. 6. The total emitted energy will be correctly given then by

the mean value of K)\ if that value K is defined by

[J% d) =/ KABA dy = K8 (20)

]

where
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-]

- - 0T4
B = fB) d) = o (21)

(]

Hence the definition of K (a function of T) is given by

K(T) = = (22)

With this definition, K is referred to as the Planck mean absorption

coefficient. The solution to Eq. 17 then is simply

T
4 - )
I- [c,m«—f ot e de ] (23)
m /\A

T

H

To get the heat flux q to a surface (this is the end product usually
desired) it is necessary to return to the definition of I for a surface,
Eq. 2. Since the heat flux is the energy crossing a surface, per

unit area, per unit time, it is given by

{ = /:/)/Jw I, 6 (24)
v A

Usually the heat flux q is broken up into two parts -- the flux towards
the wall, g , and the flux away from the walli, qJr . 10 Using this nota-
tion, the heat flux to the wall for the plane parallel atmosphere is

) *
given by A ~

R oo ’/ ¢ r "‘3‘[t"t’> 3
Z:enz‘fg(r,)e’“mfﬂ —/ﬂqL[e A ol',u; je |

v ] ]

® T
§ I3 i
= 27 C,(T,)/e-% Mdp  + 2/¢T4[ Le'gﬁ—g J/uJ dt

(¢
*Here, as is common in re-entry problems, it is assumed that only

one boundary consists of a wall, the other being either a transparent
shock, or at co.

(25)
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Note that because x is oppositely

\<{:¢

\\\\\]\7)] NN N NN
T

directed from ;, the limits on 6
for the q integration are 77 and
T/2; hence p is bounded by -1,0.

This sign convention is the usual

one. For q+ the limits are 1,0.

By introducing the exponential functions2

1 X
E, (x) = [/u""a e” dp (26)
Eq. 25 may be written
r
T = 2WC(T)E(T) + o[ crTQ!E (z-t) dt 27
7 = (6 £, J (27)
z:

If the layer is also isothermal so that T is not a function of T, then

the flux is

$ [ 3 :af.i v 2T Clr) E(T) (28)

4

g
i
n
9
n..'
—
M
-~
~3
~N
N
}

Similar expressions may be derived for q+ . The exponential functions
are tabulated in Reference 2. In the solution of problems involving
transfer of energy in a hypersonic flow field, an expression similar
to Eq. 27 is commonly used, e.g., see References 12, 13,and 14.

" Note that for the isotropic case (intensity independent of u)

the relation between q and I is

£ =

§° = er| Ipds

(-]

»I° (29)

H
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Hence

I= =3 (30)

is frequently used.

If Eq. (28) is applied to a very thin layer of gas, of thickness
L= ZZ - Z'l, then, using the asymptotic expa.nsion2 for E3(L), and
letting CI(Z'I) = 0, the usual expression7 for the emissivity of such

a layer is obtained
3= 2ot i-ek -4
4
= -20T ¢kL (31a)

This relation is frequently used to define an emissivity per unit
length, €' = €/L = 2pK, so that q is sometimes written as

- . 4 - 4
z = - € oT L = fU“T (31b)

The Planck mean absorption coefficient is valid for at least general
cases:
{a) if the variation of K)\ with A is small in the region of
interest, or
{b) if I).z B)\ in the region of interest, or
{c) if pK)\s is 80 small for all wavelengths that absorption
can be completely neglected. |
If the condition for case (c) above is satisfied, then it can be seen

from Eq. 28 that error involved in using Eq. 31, for pKL £ 3, say,

is less than about 30%.
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IV. THE GRAY GAS; ROSSELAND'S APPROXIMATION

Another commonly used gray approximation is the Rosseland
approximation. In this instance the gas is assumed to be optically
very thick. In this case, IK(T)z B)\(T) at each point in the field
(except near boundaries). The transfer equation, Eq. 11, is written

as

Pasl 31}
o s - ~B
sK, dx I =5 (32)

If this equation is integrated over all frequencies to give a gray

equation
M I [ B
- — = [-
Y (33)
then the correct mean value of pKX is given by
o
i J1 / ‘)I) A}
gL - | L 22 (34
K ox [m ax )
<]

Knowledge of I)\ depends on the solution of Eq. 32; however, for the
optically thick case it may be reasonably assumed that I)\(T) is similar

to Bk(T)' Hence B, is substituted for I, in Eq. 34, yielding

A

J9B (T, 3B
5K ax ’"[{R} Y, 1 (3%)

o

Now, since T is a function only of x (again, for the plane parallel
atmosphere), Eq. 35 may be multiplied by (8T/8x)-1 (noting that B
is a function only of T)

| dB_ ._-,j,Lé’ﬁ.olg

ﬁ{— a7 (36)
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or

}2

@
A | 9
=] £ 32 d (37

o

Here, B(T) and B)\(T) are known functions of T, hence K can be ob-
tained as a function of T. A more precise derivation of this quantity
is given in Reference 2, as well as a discussion of several other
mean values of K)\ related to the two just discussed (e.g., Chandra-
sekher's mean, and Unsold's mean).

Although Rosseland's mean has been applied to problems
involving the flow of hot gases about bodies (e.g., Reference 15),
it is fnuch less likely to apply than Planck's mean, which is used
for optically thin cases.

Consistent with the above definition, in which it is basically
assumed that optical mean free path is comparable to the molecular
mean free path, is the Rosseland approximation to the radiant
transfer equation. A heuristic deviation, as outlined in Reference
6, is based on the assumption that the radiation can be represented
by a "photon gas", and the heat transfer described by Fourier's law
in analogy to the kinetic theory of gases. The heat flux then is given
by

7 = k(50 (38)

where kT = kg + kp’ kg being the ordinary molecular conductivity

and kp being the photon conductivity. The conductivity is given by

—_ 3
ﬁf = M ¢ (39)
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where Pp is the viscosity and c, specific heat of the photon gas. The

viscosity then is
Moo= 3 5T (40)
where, for the photon gas

pp = photon density

¢ = velocity of light

<4
i

>l
1

1/pK = photon mean free path.

The specific heat of the photon gas (for radiative equilibrium) is

oU Al oT ) )
CV B a‘T—!wl - F?' ﬁ( ‘ TT ‘41)
Thus
/5<7~7"3
&= e (42)
P
and
A S5 ST
r T 33K 3, 37K (43)

4

Therefore, the Rosseland approximation to the radiant transfer equa-

tion is

_ ko TT T . T
ZP - 3¢k 9x T EFS—E (44)

This is the expression used, for example, in Reference 15. A much

more elegant derivation is given in Reference 16.
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V. THE NON-GRAY GAS -- THE THIN LAYER

The basic problem in dealing with radiation from hot air in
hypersonic flow is that the absorption coefficient of air varies

strongly with frequencyg’ 10

, and both shock layers and wakes tend
to be optically thin. Yet at the high velocities (say greater than
25,000 ft/sec.) radiation provides a significant mode of energy

14, 17. The proper accéunting of this phenomena, in-

transport
cluding absorption, becomes essential to the solution of the shock
layer probleml4. Unfortunately, because of practical limitations,
it is essential to use some sort of frequency averaged absorption
coefficient ~- usually taken to be the Planck mean value. To
examine the general validity of this approximation would require
an impractically large digital computer program if a frequency
dependent absorption coefficient were to be used. However, there
are some particular cases18 in which a simpler approach may be
used.

In Reference 18 the particular problem treated is that of
the wake behind a hypersonic re-entry bodyZO. The wake is con-
sidered to be a long (semi-infinite) cylinder of radius Te and to
be at a uniform temperature TW. Using an expression for the heat
flux similar to that given in Reference 8, the flux to a point on the
centerline of the wake at the beginning of the wake (i.e., near the

base of the body) is (see Figure 2)
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n
"

Wt -[ gk, dn
[ j §Ky B, € amBCmodndedy (450
0 ©

§ = ‘[2%[

It is assumed that the boundary of the wake is perfectly transparent.

The solution of Eq. 45 is'®

i = T [1-26 (pknp] (46)

where K is the Planck mean absorption coefficient. For a typical
wakezo the temperature may be of the order of 2000°K to 4000°K
out to some hundreds of body diameters. The density in the wake
is low [(p/po) = 10_3 for the case examined in Reference 18] , and
the wake is narrow--r, being about equal to the body radius, or
less, for a considerable distance. Hence, using Kivel and Baileylg
it is easily seen that the wake is optically thin, at least when the
~10" % for r, ~ 1 foot).

f f
The thin layer approximation to Eq. 46 is exactly that obtained for

Planck mean absorption coefficient is used (pKr

the plane layer (Eq. 31) with L replaced by T

. 4
J.o= 2rknp ol (47)

Furthermore, it was established in Reference 18, by expanding the
exponential integral E3 in Eq. 46, subtracting the right hand side of

Eq. 47, and ratioing the difference to Eq. 47, that the error involved

* Note from Figure 2 that r is the radial coordinate in a set of spheri-
cal polar coordinates, r,(0) is the value of r at the outer boundary of
the wake, and ry is the value of ry(6) at 8 = T/2. The value of r, was
taken to be one %oot simply because this is the value used in Reférence
20.
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in neglecting absorption is of the order of

58, . . _ 4
_.3.3:_ = —éq[c—b(g)] = 7, =lo (48)

that is, one hundredth of one per cent.

Now, in the above development the mean value of the absorption
coefficient was taken to be Planck's mean -- this being essentially
the value reported in Reference 19. However, if one examines the
spectrum of air10 for temperatures of the order of 2000°K to 40000K,
it is readily apparent that virtually all of the energy emitted comes
from the infra-red bands of nitric oxide. The primary band is at
about 5. 5/‘4 , and the first overtone at 2. 8/4 . Apout 85 O/co of the
total energy is emitted in the 5.5 4 band, and about 10 0/o in the secondary
band (see Figure 3). These are relatively narrow bands occurring well
off the black body peak which, at 3000°K, lies at about 1 M . The mass
absorption coefficient¥* of the primary band islo

-2

Y°K2 = /0 cm! (49)

It is apparent that this band will suffer absorption much more strongly
than would be anticipated from the Planck mean value of 10‘4 cm’ l.
Because of the relative narrowness of the bands it is possible to develop -

a form of the transfer equation which will show approximately the

magnitude of the above effect.

¥ The mass absorption coefficient of a given species --
neglecting certain pressure effects -- is normally independent of the
density, p. In a mixture of gases, however, the species concentration,
Py /p , will depend in general on p; hence so wﬂl K . Usually this
dependence is very weak. The absorption coefficient in Reference 10
is normalized to the sea-level value.
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The transfer equation is

I
;f—;—: = £k 8, - FK,I, (50)

This equation may be formally integrated with respect to frequency to

give
— = §K,B - ¢K,I (51)
where the two mean coefficients are defined by

FK, = ‘E‘;‘fﬁ’KABaoM (52a)

and

e = 1 sk 1, da - (52b)

Using these two means, the solution of Eq. (51) is

T i .
I = ;c, + | BK ety e’ (53)
[ ’ T yK&

where

n

r-z =f$’7<2 dn’ : (54)

n,

That is, there are basically two averages involved -- one is an
emission mean, the other is an absorpticn mean. The fact that these
mean values are generally different reflects the fact that, basically,

hot gases rarely attain true thermal equilibrium. Unfortunately, the
precise evaluation of p—Kz depends on the sgolution to the prbblem.
However, for the case where Kﬁ. is virtually constant over some wave
length range, 8% , and is zero outside of that range (a square pulse),

both pK, and pK, may be evaluated. The evaluation of pK, rests on
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the observation that if the absorption coefficient is essentially zero
over any wave length interval, then the emission in that interval is
also zero. Hence, if the only source of radiation is the gas, then I)
will be zero at all frequencies at which K, iszero. Eq. (52b)

then may be written
a~¢i§);

. ngAIAJZ ( ‘ ?KMIAD,)
f—R-Z = 00 — A.'A'iszjk){ , (55)
IR j I, 4
A- 46N,

and, if K, is approximately constant, then
4

L

le = 5Ky, . (56a)

On the other hand, B, is defined for all values of } , and pKl is

just the Planck mean. This mean is approximately given by

_ B, §,
fK, = S’Kzi(“‘-*g ) (56b)
for sufficiently small §A; . For the case considered above, Y;R_‘
4 -1 2 -1

is 10" " ecm ~ , and ﬁ—K—a is 100 em™ . Now, for the isothermal

case, with a null boundary condition, the solution (Eq. 53) becomes

_ 4
. K oL ~fkn
I= ¢ S (i-e ™) . (59)
and for the thin gas this result simplifies to
1 = pR It
- - fK‘ _—777”‘ 44 » (60)

that is, to a form involving only Planck's mean, as it should. On the

other hand, as r —>» w the intensity becomes
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— 4 4
_ KT, _ ’Z.i':l_‘w
I =% = I3 . (61)

Thus, if the gas emits only in some narrow band of frequencies, then
the maximum integrated intensity is limited by absorption to a value
much less than the black body value, as is intuitively obvious. Atomic

lines (the sodium D line, for example) frequently reach the local black

4

.

body limit, but rarely provide even a small fraction of o T
Actually, however, no substance can emit only between specific narrow
limits. Heisenberg's uncertainty principle requires a non-zero prob-
ability of emission for all frequencies. Furthermore, air is a com-
plicated mixture of species and has bands covering virtually all wave-
lengths. Consequently the upper bound attained above is not correct

for sufficiently large r. Therefore, consider as the next approximation

the case where a substance emits in a number of distinct bands, i.e

 J

D =38), £ )£ ) +48) K, = K
! v 2 ; b A A

LS hEAEN P80, K = K (62)

2

A3-ZL§AB £ A e et
If the bands are reasonably distinct (do not overlap), then there will be
no interaction between them* (note that the basic transfer equation is
monochromatic), and one can therefore write a series of (independent)
transfer equations. These will all have the same form as Eq. (51), and
the solutions will all be of the same form as Eq. (53). Up to this point,

the angular dependence of the transfer equation (i.e., Eq. 51) has been

* Strictly speaking this statement will not be true in a gas with
collisions, since the collisions act to distribute the energy within the
molecule over all frequencies.
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ignored. However, assuming isotropy, this dependence may be inte-
grated out also. The net result of the above operations is to give the

result, for the wake problem

7.(T,) = B g (—%)[z £, (¢, n) 1]

() [eg, (FRun) =) + -

2

(63)

To illustrate, consider a special case where there are only two such

bands. One is the strong narrow band previously considered, where

(K/R ), = 10 ° (oz2)

and
fK, = 107% e (62b)

Let the other band be a continuous gray band covering all frequencies

(except those of the narrow band above) such that

(RA; /‘,2 - 0.99 (65a)

* K = o (65b)

2

that is, 99 %o of the total emitted energy ( K,, + K,, ) lies in the

narrow band, and the ratic of the narrow band absorption coefficient,

K,, to the background band absorption coefficient Kee , is

= = o (66)

Eq. (63) may be written for this case as
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5.0 )
S e [2E,(5)-1] + 0.99[2E, (001 T0) - 1] (67)
where
= R o

This result is plotted in Figure 4, along with the solution using
Planck's mean, and the solution using only the thin gas formula. It
happens that for the sample wake (p/po) = 10-3 and hence the actual

optical thickness is only

N o= 40 07t o = 0.3 go‘B (69)

(% )5k,

N

so that the absorption is still not significant. Note from the graph how-
ever that even for relatively small optical thicknesses (based on the
Planck mean value) the error is significant, e.g., a factor of 2 or
more at Z} = 0.01. At moderate thicknesses the error becomes very
large. |

It would of course be desirable to examine, in some similar
manner, the stagnation point region. However, there the situation is
not sc simple. The number of important bands seems to be considerably
larger, especially since fairly strong temperature gradients, as well
as concentration gradients, will exist in this region when the radiation
becomes really important, {(e. g., see the following sections). One
perturbation approach does suggest itself however. If the gas were
very thin, then as a first approximation the absorption term can be
dropped from the transfer equation. Thus

91
5_5. = fK,B, (70)
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and hence

n
= = 71
I, {kaB) dn f i, By 2 (71)
for the igothermal case. This result may be used to generate a simple
minded perturbation solution, i.e., let
oI
= B
= - 72
*J*au €KyBy — fk (¢K, B,n) (72)
This equation is integrated to give
_ 2 /ZZ
I, = S$KBr = (k) B, - (73)

for the isothermal case. The same result may be obtained by simply
expanding Eq. (15) and retaining only the first two terms. By integrating

with respect to A , one obtains
— — 1 )
I= %K Bn - YKSB/E‘-— (74)

where T—R‘ is the Planck mean and
_ ¢'ks B, d)

fK, = /"m 2 (75)
| 5k, B,d

is the absorption mean as before. This procedure, of course, requires

a digital computer program for evaluation. However, our simple
square pulse can again be used to illustrate the effect. Let KA‘. = constant

in some range SAL about 35 . Then

_— J, (%%,)°8, da I -
[ 9k,8, 41
$A

as before. Thus the absorption term will tend to emphasize the contri-

butions from the strong bands. Numerical evaluation of this method
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for a practical case has not been accomplished as yet. Note that the

above mean is an ""emissivity' mean, i.e.,

. fj’KAJ) dA
£k =

. (72)
[ 7, da
It assumes that the gas is sufficiently thin that the intensity is directly
proportional to the emissivity.

One general conclusion may be stated from the above work:

the use of Planck's mean always underestimates the effect of absorption.
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V. COMPUTATION OF SPECTRAL ABSORPTION COEFFICIENTS;

THE EQUILIBRIUM CASE

The mass absorption coefficient {or absorption cross-section)
used in the transfer equation is a computed quantity, with an experi-
mentally measured scale factor, or strength. A brief development of
the equation for the absorption coefficient associated with electronic
transitions is given in Reference 25. The model used for electronic
transitions is the "just overlapping line' model (the same result is

obtained with the "smeared rotational line model"zs‘ 2'8.

In this model
it is assumed that the rotational structure consists of a set of closely
spaced, fully developed lines which may reasonably be replaced by a
continuous distribution. This approximation should be especially

good at the higher temperatures where the rotational modes are fully
excited, KEssentially, the rotational quantum number is replaced by a
continuous variable. Further, the band origin is assumed to coincide
with the band head {also good at high temperatures for many species).
The result of these two approximations is to obtain a band for each
electronic-vibrational transition which has zero intensity for all fre-
quencies to one side of the band head freQuency, jumps to a maximum
value at the band head, and then decreases exponentially with frequency
the other side of the band head (See Figure 7). An electronic transition
occurs when electron changes its orbit about a molecule, resulting in

a change of the potential well in which the atoms of the molecule are
vibrating. This orbital jump forces a change in the vibrational and

rotational quanturn states (see Figure 5 for a typical potential diagram).

A typical electronic transition band will consist of a fairly large number
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of such vibrational bands (e.g., typically between 10 and 1000),
although most of the energy tends to be concentrated in a relatively
small number of these bands.

The integrated line absorption coefficient for the given transi-
tion &) f"»a sy’ is proportional to the number of molecules in the given
lower state ~"j" |, and to the probability that such a transition will

occur, ‘f

oon g The fraction of molecules in the given lower state

(assuming a Boltzman distribution of energies) is equal to

¢ . _ - 'n‘& »
v -8, TGRS B TR
oy o= e C b € b ¢ (73)
N Qc" Qrv- . QJ
where
g " = the degeneracy of the lower electronic state
e
gv“ = the degeneracy of the lower vibrational state (always unity)
gj” = (2j"" + 1) = the degeneracy of the lower rotational state

and the Q's are the partition functions of the various states, given by

cdus. _ f_&
Q. = ) ne¥ (74)
t': o
Here Ei is the energy of the ith lower state (corresponding to
j(“(];el) 8," Ac j ¢t ). For virtually all gaseous species considered, the
electronic partition function is equal to g, , the degeneracy of the
electronic ground state of the molecule, because the other term values,
fic 'Té'* {for the upper states) are very large compared to kT. The
vibrational states are non-degenerate. The rotational partition function

can be nicely approximated by an integral, yielding
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_RT
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The transition probability 1(”.”, »j 18 usually written as

£,”;,9' - § /)o/\//\/' (76)

where the 73,‘,‘,\,- are the squares of the dipole moment integrals and
are related to (and frequently approximated by) the Franck-Condon
factors. These factors give the relative probability of a given ar"— A’
transition occurring and are well tabulated in the literature for most

of the transitions of interest3l’ 32 . The quantity f is called the
electronic oscillator strength (or "f-number") and is basically an

experimentally determined number for each band considered. The

mean spectral absorption coefficient for a given transition is

e K, g kT
R— - n‘n _21” e “_T e E_‘“% Ei_ _@L ‘.’Uﬁ)ﬁ a .
w. e 4 o N“,“ fc ﬂ(: T 08 6 ( )
wn's s Z e ar () o
M e _!

The rotational quantum number j" is eliminated from the above expression

by using the relation

] ’ G)‘-WH."
1(3"«1) = - ABB”” (78)

where (A)BH ig called the band head wave number, and where w is a
i

continuous variable. The mass absorption coefficient at any given wave

number & is obtained by summing Eq. (77) over all v', v'' states which

contribute to the absorption at that wave number
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- & —%E t ‘F —f"‘c'<(d-&) B Re
Tn -2 —_ M pruer T &7 = bg-
Ty QNE > bt )% e Y (29)

This is equated to the absorption coefficients given in References 10, 19
for example, simply by multiplying it by the number density of the given

, - Rew
species. In Reference 10 a factor of ({ - e &7 )

is inserted in order
to account for the effects of induced emission; however, this term is

generally very small (see Appendix 1) for wave numbers of interest.
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VII. COMPUTATION OF SPECTRAL ABSORPTION COEFFICIENTS;

THE NON-EQUILIBRIUM CASE

In all the above discussion, as is practically universal in all
similar discussions, the assumption of local thermodynamic equilibrium
is explicit in that only one quantity identified as temperature appears.
All the modes of absorption of energy are assumed to be excited to the
same degree, éven though chemical equilibrium may not be assumed.
f‘or example, in Reference 21 an accounting is made of the fact that an
excess of molecules (of N2 ) OZ , NO) may be present because of
dissociative relaxation phenomena, but only a single temperature is
used (i. e., the kinetic temperature). On the other hand, in solving
the basic non-equilibrium flow field problem (especially the very high
altitude or low density problem) the effects of vibrational relaxation

may be accounted for as well as the dissociationzz’ 23.

It is interesting
that while in the solution of problems in chemical relaxation and in
spectroscopic work with flame 324 and shock t;ubes‘27 the use of

several independent temperatures is common, very little effort has
been made to predict spectral structure utilizing these several tem-
peratures. There is one very recent paper on this topic, Reference 33.
This lack of effort is probably due for the most part to a rather sub-
stantial lack of basic physical theory on such processes (as they relate
to spectra), 20 and also in part to the fact that when these processes
become significant (in re-entry), the overall level of radiant energy is
quite low. As is evident from Eq. (73) of the previous section, the

temperature dependence of the absorption coefficient comes in only

through the Boltzmann factors which describe the relative populations
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of the various quantum states. The transition probability factors come
from the solution of the wave equation which in no way requires the
specification of a temperature. In the solution of the non-equilibrium
chemistry problem, however, it is by just these same Boltzman factors
that the various temperatures are defined. Therefore, to be consistent
with the assumptions made in calculating these various temperatures,

Eq. (77) must be written as

. BT a7 @) -3 0% 8
Ko oo =T & ¢ e s e € ’ £ f,v.,.,u (80)
W { . fj 6 & (g f Ty
wize

where T, , 7, , and T, are, respectively, the electronic temperature,
the vibrational temperature, and the rotational temperature. If the
induced emission is to be accounted for, then Eq. (88), Appendix I,

must be used. The basic absorption process here is the electronic

jump. The effect of the vibrational and rotational transitions in this
process is essentially to distribute the transitional energy over a broad
frequency range, rather than to add to probability of the transition
occurring. Using the above concept, and data obtained from References
29 and 30, the absorption coefficients for the NZ (2+) band were calculated
for three different cases: (1) Tp = 14000°K, T =T = 2000°K ;

(2) TR = TV = Te = 2000°K ; (3) TR = Tv = Te = 14000°K . In addition
the emissivity, jw , was calculated for cases (1) and (3). It should

be noted that the calculations were made by slide rule so that the accuracy
is correspondingly limited. The P iy matrix was obtained from
Reference 30, the oscillator strength, f, from Reference 10, and the

29

various molecular constants from Herzberg The choice of bands

was arbitrary, and was based mostly on the availability and compactness

E
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of the P 1yn matrix.

Case (1) corresponds approximately to conditions on the stagnation
streamline just behind the shock (see Figure 6). The shock separation
distance was chosen to be 4 cn.  From Reference 22 this case
corresponds to a shock radius of 60 cmm. The altitude is 250, 000 ft.
and the Mach number is about 22. The electronic and vibrational
temperatures are assumed equal, while the rotational temperature is
equated to the kinetic temperature (these are the usual assumptions
made in solving the chemistry problem. Rotational relaxation times
are much less than vibrational relaxation times, but not much informa-
tion is available on the electronic relaxation rates.) The vibrational
temperature was obtained by a simple sc:a.ling35 of the results of
Reference 22. Note that the Py i matrix used is not the Franck-Condon
array, but rather includes the effect of variation of the dipole moment
with internuclear separationzs’ 30.

It can be seen both from the graphs (Figures 7 - 11) and from
Eq. (80) that the chief difference between cases (1) and (2) is in the
distribution of intensity, along with a slight change in peak intensity
values (about a factor of 10). On the other hand case (3) is drastically
different from (1) and (2), being about 1015 times stronger. This
result is traced to two different effects. First, because the lower
state (B31vg) in this transition is not the ground state, the electronic
temperature enters exponentially through the Boltzmann factor, which
gives the relative number of molecules in this state. Second, the Planck
function now corresponds to a 14000°K source rather than a 2000°K

source (a fourth power factor from this) and, in addition, the change in
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T has shifted the band from one side of the black body curve over to the
center (peak). Note the difference in the two black body curves of
Figures 8 and 11.

Although the effect of non equilibrium conditions was to
drastically change the radiation for the particular cases considered
above, it is not possible to draw any general conclusions for the whole
flow field without carrying out more detailed calculations. Note, for
example, from Figure 6, that the electronic-vibrational temperature of
O2 may substantially exceed the kinetic temperature of the flow, and
tends to lag above it as the translational temperature relaxes toward the
equilibrium value, According to Reference 21, binary scaling causes
the net non-equilibrium effects to be approximately independent of altitude,
and indeed, if a species concentration is plotted vs. P t, Poo bein’g the
freestream density and t the transit time behind the shock, § t = -l—f_{l
o = shock point, x = distance along streamline } , a curve which ios :rru,ie-
pendent of altitude is obtained35.

Several other questions arise in connection with these non-
equilibrium cases, e.g., questions concerning the validity of the
Boltzmann distribution function, especially when the so called
"Collision limiting" is important. More fundamentally, it is not clear
that the dipole moment integrals or Franck-Condon factors are useful
under these (non-equilibrium) conditions. These factors are based on
the Born-Oppenheimer approximation (i. e., separation of variables
in the solution of the wave equation). The fact that the r-centroid
factor 330 can significantly modify the Franck-Condon arrays means

that there is some measurable interaction between the modes. Even
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though the temperature does not enter into the solution of the wave
equation, the internuclear potential certainly does, as well as perturbation
potential terms due to local radiation fields (in fact it is the latter

that gives rise to the dipple moment integrals), and these terms may be
functions of the excitation level of the various modes. Even in the
equilibrium case the interaction terms can be fairly significant for

certain molecules (e. g., those in which one of the atoms is a hydrogen

36, 37

atom) . It is possible that the interaction terms may become more

important under non-equilibrium conditions.
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VIII. SUMMARY

The use of the Planck mean absorption coefficients always
underestimates the effects of absorption. The introduction of two
distinct mean values, one for emission and one (or more) for absorption,
can significantly change the result when considering absorption processes.

Similarly, under certain flow conditions, the use of distinct
electronic, vibrational, rotational, and kinetic temperatures can
significantly modify the calculation of the absorption coefficient.

This occurs in part by modifying the population of the excited states,
and in part by modifying the black body function.

It is planned to investigate both of these non-gray aspects of the
radiation transfer problems further. In particular, an effortis
being made to determine whether the multiple absorption coefficient
concept is useful in the stagnation region. Also, the various effects

of considering relaxation phenomena will continue under investigation.
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APPENDIX

THE EINSTEIN COEFFICIENTS AND INDUCED EMISSION

Consider a system of N particles (atoms or molecules) in a
radiation field of density P, - At any instant of time, N, of these
particles may be in a low level energy state ¢ corresponding to some

set of quantum numbers e'", v', ', ..... , and Nu particles may be

in a higher energy state u corresponding to a set of quantum number

e', v', j', ... , such that the difference in energy of the two states is
E,u = Eevvljt - Ee”v"j" = h‘j“ . (81)

The probability that a particle in the excited state u may spontaneously
drop to the energy level £, in unit time, is called A,, , the Einstein
coefficient for spontaneous emission. The probability that a particle

in the upper state u may collide with a photon of frequency 1{, and

u
consequently drop to the energy state f , in unit time, is 6% Buy
Note that the photon emitted by the particle will have the same frequency
and direction as the colliding photon. B,, is the Einstein coefficient
for induced emission. The probability that a particle in the state f will
collide with a photon of frequency %,, and jump to the upper state u,
thereby absorbing the colliding photon, in unit time, is f‘{u Blu
where B, is the Einstein coefficient for induced absorption,
These coefficients are intrinsic properties of the particles, hence
they are independent of the temperature, the number of particles, and

the radiation density. They are, however, related to each other.

Since they are intrinsic properties of the particles, they may be
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evaluated under any convenient set of conditions, e.g., thermal
equilibrium. This evaluation yields the following relation between

.theae coefficients

_ 8w }
Aul = =7 Ay, B (82)
and
4 8¢ = 3.8 (83)

Now while the Einstein coefficients are not functions of temperature,
the ratio Ny /Nu certainly is. The absorption coefficient which

appears in the transfer equation (Section II) is proportional to the

difference of the products N, B)I and N B , l.e.,
4 u " ug
K~ (NB.-N.B,) = NGBy (1~ 5 ) (84)

Assuming the states are populated with a Boltzman distribution,

Eq. (84) is equal to

R,

- g (85)
Kv N!Bw(!_cﬂT >
where the term in the brackets accounts for the effect of induced

emission. The black-body function

B, dv = 2& _wdv_ _ 28 gt Adx
v c 4*?(*%7)*1 C eip (R¥g ) -1 (86)

is a function of T and x = (V/T); hence at any given temperature T the
equilibrium distribution of radiation energy is a known function of x.

Therefore, since the term in brackets in Eq. (85) is also a function
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only of x, its equilibrium value is known for every point on the black
body curve. For example, the peak of intensity of the black body
function is at AT = 0. 29 em®K. At this point the exponential factor

has the value

_ o~ (1.44/0.29)

(1 ) = 0.993 (87)

that is, induced emission is less than one per cent of induced absorption
at the black body peak. Toward the blue it is even less, while toward
the red it gradually increases; however, by the time the induced
emission equals 10 per cent of the induced absorption, the black body
intensity has fallen to about 10"4 parts of the peak value.

Practically speaking, the effects of induced emission cannot be
separated from the effects of induced absorption -- one always measures
the difference. Lowering the temperature of the system being measured
will minimize the effect, as well as minimizing the effect of spontaneous
emission, but this is not always either possible or even desirable.

.
In any case, the net absorption coefficient is what is needed in the trans-
fer equation.

Note that under non-equilibrium conditions, the relative magnitude
of the induced emission term may be either increased or depressed,
depending on the population ratio NQ/NI . In most (but not all) situations
in hypersonic flow, this ratio tends to be less than equilibrium, thus

depressging the induced emission. The absorption coefficient is

related to the Einstein coefficients, under non-equilibrium conditions,

by



_fc STe’ £ S, B Sw,
Kv"'Nth[__{e LA }{C w7, }{6 fzﬁjj

(88)

where STQ" , g(‘)m,, and gwj-n are the differences of the term
values for the electronic, vibrational, and rotational upper and lower

states.
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