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ABSTRACT

The relative freguency spectrum meﬁmi of plasma wave
resonances in the positive column of a low pressure mercury dis-
charge tube has been shown to depend upon the parameter riJ/xg

where T is the radius of the column, x§ is the Debye length
defined in terms of the average electron density, and m§ is the
sguare of the average plasma frequency. This paper presents obeer-
vations of both dipole and quadrupole rescnance spéctra made on
several discharge tubes with T ranging from 0.30 to 0.87 cm.
For these measurements ri//zg varies from about 102 to 105,
and the best fit electron temperatures are found to be of the
order of 3 ev. The average electron densitles are directly mea-
sured using a cavity perturbation technique. The results of
thése observations are found to be in good agreement with the
theory (1,2) based upon the first two moments of the cbrrelation-
_ less Boltzmann equation in conjunction with Parker's electron
density profile (3) for a low density positive column.

The results of a preliminary investigation of the effects
of an axlal, static magnetic field on the dipole resonance spec-
trum are also presented. These results indicate that in the
presence of an axial magnetic field not only does the lowest

resonance (approximately predicted by the cold plasma theory)

split, but the next higher drder resonance also splits. For the



lowest resonance, it is found that Au%/wgzz .8 * .1, vhile for
the next higher order resonance Aao/wg ~ .5 + .2 , where u.\.g ia
the cyclotron frequency. These preliminary results are in good
accord with calculations made by Parker (1), again using the moment

equation approach.

(1) J. V. Parker, PhD Thesis, California Institute of Technology,
June 1964.

(2) J. C. Nickel, J. V. Parker, R. W. Gould, Phys. Rev. Letters 11,
183 (1963).

(3) J. V. Parker, Phys. Fluids 6, 1657 (1963).



TABLE OF CONTENTS

ABSTRACT

IT.

III.

Iv.

INTRODUCTION

1.1 Description of the Problem

1.2 Separation of the Fleld Solutions Exterilor to the
Plasma Region from the Solutions within the Plasma
Region

1.3 Early Plasma Models
1.4 Objectives of Our Experiments

THEORY OF A HOT NONUNIFORM PLASMA COLUMN

2.1 TIntroduction
2.2 Basic Equations
2.3 The Static Radial Density Profile

2.4 Properties and Solutions of the Plasma Wave
Potential Equation '

EXPERIMENTAL TECHNIQUES

3.1 Description and Constructlon of the Plasma Tubes
3.2 Low Frequency Observational Techniques

3.3 High Prequency Observational Techniques

3.4 Average Density Measurements

3.5 Methods of Taking Data

EXPERIMENTATL RESULTS

4.1 Reduction of the Data
4.2 Experimental Results
4,3 Discussion of the Results

RESONANCES OF THE POSITIVE COLUMN IN AN AXTAL STATIC
MAGNETTC FIELD

5.1 Introduction

17

19

19
19
ek

31

36

36
39
Lh
Ll

25
63

63
N

69

73

73

5.2 Theory of a Hot, Nonuniform Magnetized Plasma Column 77

5.3 Experimental Results

80



VI. SUMMARY AND CONCLUSIONS

6.1
6.2

6.3

APPENDIX A

A.l
A.2
A13

APPENDIX B

APPENDIX C

c.1l
c.2

Cc.3

C.k

APPENDIX D

D.1
D.2
D.3

Comparlison of Theory and Experiment
Plasma Wave Resonances as & Dlagnostlc Tool

Proposed Problems

Introduction
The Moment Equations

Example of the Adiabatic Approximation

Introduction

Determination of the Average Electron Density n
in a Plasma Column Using the TMyyn Mode of a

Cylindrical Cavity

Determination of the Dielectric Coustant of a
Dielectric Rod Using the TMy;n Mode of a Cylindrical
Cavity

Determination of the Third Moment of the Electron
Density Distribution Tw 3
n(r)r-dr

0]

Using the ™ Mode of a Right Circular Cavity

110

Introduction

Admittance of the Split Cylinder Capacitor

Equivalent Circuits

91
91
93
96
98

98
a8

P

102

105

112

112

113

118

119

122
122
126



-1-

I. INTRODUCTION

1.1 Description of the Problem

In 1951 Romell (l) published the results of a scattering
experiment conducted on the positive column of a mercury discharge
tube. In this experiment a discharge tube 3.2 c¢m in diameter and
80 cm long was bathed with 30 cm. radiation, and the scattered
radiation was observed as a function of'the discharge current in the
plasma tube. His experimental arrangement was similar to that shown
in Figure 1.l. Romell found that if the incident field was polarized
with the electric vector perpendicular to the column, the scattering
amplitude displayed a series of peaks or resonances as a function of
discharge current, (Figure 1.2). However, if the incident field was
polarized such that the electric vector was parallel to the plasma
column, no such resonances were observed. In 1958 Boley {(2), using
apparatus similar to Romell's, investigated the angular dependence of
the observed series of resonances and found that the three largest
resonances observed in the free space scattering experiment were all
dipolar in nature. In 1957 Dattner (3) performed a set of scattering
experiments in a 6 cm. waveguide with the plasma column placed across
the guide such that the electric field of the incident wave was per-
pendlcular to the colum axis. | Again he found resonances in the
scatiering cross section similsr to those found by Romell. Although
the experiments of Romell, Boley, and Dattner graphically describe
the problem, these men were not the first to observe the phenomenon.

It was first observed in 1931 by Tonks (L), and has received
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Figure 1.1  Experimental arrangement similar to that used by Romell
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Resonance spectrum obtained by Romell
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considerable attention since (5-15).

It has been the purpese of the present investigation to
examine the properties of thils serles of resonances as a function of
the exciting frequency and the plasma parameters. We have also
investigated a similar series of resonances which are quadrupolar in
nature, and finally we have made a preliminary investigation of the
effect on the resonances of a static magnetic field parallel to the

column axis.

1.2 Separation of the Field Solutions Exterior to the Plasma Region
from the Solutions within the Plasma Region

The problem of analyzing the scattering experiments of Romell,
Dattner, and others, as well as experiments performed in this investi-
gation, resolves itself into two parts. In the region outside the
. plasma column the source-free Maxwell's equations hold (neglecting
exciting elements). -Inside of the column currents can flow and
charges can bulld up so that in this region sources must be included
in Maxwell's equations. It 1s possible at the outset to separate
field solutions exterior to the plasma region from those within the
plasma region. As an example, let us analyze Romell's experiment.
Using the notation of Figure 1.1, we see that outside of the plasma
all of the fields (Er and Eé) can be derived from B, where B,
satisfies |

(v2 + a2)13Z = 0 (1.1)

% = Pl e (1.2)

and where



BB
i 1
E, = === (1.3)
¥ oy eToe
~1 .aBz |
E = nivr— » (lch’)
® op e Or
o]
In Region IT (r > h) we ecan write, assuming efiuyt time dependence
BT - plne, g8cet | f 3. 5.1°) {7 (B.r) +8. 51 (8 r)} cos no
z Yz TP - 2o o1 n'\"2 nn 2

(1.5)

where Bo is the magnitude of the incident magnetic fleld and

1 ns=20
o) =
n
2 n#o0 .
Thus
®
E:IEI S Z (Bobnin)n {Jn(ﬁzr) + Snﬂil)(ﬁzr)} sin né

W €EY n=90
°0° (1.8)

o ———ez-- Z (B ) in) {J (B ) + SnHI(ll)'(ser)} co8 no .

o , (1.7)
Similarly, in Reglon I, (r_'7 <r <b) Wwe can write
I i = n
E, = — Z (Boﬁni. )n {%Jn(ﬂlr) + BnNn(ﬁlr)} sin no
p.o Elr n=0
_ (1.8)
s B (35 1%) {AJ'(B.r) + B N'(B.r)}cos no .(1.9)
Eg = P on n'n' 1 nn" 1 A
®Hs%1L n=0

At r=Db and r =1, the tangential electric fields and the normal
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electric displacements must be continuous. Let us assume that inside

of thé plasma we can write

H
i

2 E. (r) sin 0o (1.10)

il

%

2: Egn(r) cos ne (1.11)

where the functions Egn(r) and Egn(r) can depend upon the plasma

parsmeters. If we define the quantity Ln as

_ K B
L = —.2 I (1.12)
n r P
W E
en

where .Kp is the relative dielectric constant of the plasma region,

we can write the boundary conditions at r = r, and r=5b as

L = G ATa(Byr) © B, (B (1.13)
n ca : ' ’
P Aan(BLrw) * BnNn(Blrw)
- (1)
Aan(Blb) + BnNn(Blb) = Jn(Beb) +8 H (Bp) (1.14)
. K.B
t 1 — l 2 1 (l>'

Aan(ﬁlb) + BnNn(Blb) = -—51- {Jn(ﬁeb) + 8 H (Bab)}( )

1.15

where Kl is the relative dielectric constant of Reglon I. These
equations, 1l.13, 1.1k, 1.15, can be solved for the scattering ampli-
tude Sn . In the experiments considered ,Blrw’ ﬂlb, B2b < 1l . If
we make the small argument approximation in the various Bessel func-

tions and look for the scattefing amplitude S, , we find



2n
ﬁBa

n
1 2% ni(ae1):

5
r rL
.g_’[:rin(Kl+l) - ben(Kl-l)] - X2 [rin(Kl+l) +b2n(Kl-l)]
X — i . (1.16)
: er r DOn r r_oon
E-r:g-[(-gb (1) + (Ko1)| + 2 (x01) - (D) (kD)
1

The scattering amplitude becomes large oxr a resonance occurs when the

denominator of 1.16 vanishes or when

b )n 1 rw n 1

) - (B D)
L =--2 K kL . ©(1.17)
T e ey o (P -1

G Gyrd) (70

Defining the effective dielectric constant Keff as

r
()" +1) - () (1)
K oo = K ki : (1.18)
| P aen) + (< (. -1)

r, 1 b 1

we can write the resonance condition as

n
R ""'"'K . -
Ln T eff (1.19)

t € &
We note that 1 Keff Kl approaches the value Kl when

b >> r. and has the value unity when b = T The resonance con-

dition would be the same if the plasma were surrounded by an infinite

nmedium having the dielectric constant Keff .
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The left heand side of expression 1.19 depends only upon the
field solutions in the plasma region, while the right hand side
depends only upon the field soluxioﬁs external to the plasma region.
Thus in this sense the problem we are considering can be divided into
two parts. We shall see (Chapter ITT and Appendix B) that for all of
the experimental arrangements considered, the resonance condition can

be written in the form given in equation 1.19 where Ké depends on

T

the spparatus surrounding the plasma column.

In all of the following asnalyses of the plasma region we shall
use the quasi-static approximation. Since the wavelength of the
exciting radiation is much longer than the diameter of the plasma
column, we shall assume that li is derivable from a scalar potential

or that

E =-V§ . (1.20)

If we then assume that in the plesma region @ can be written as

#(r,0) = Y ¢g(r) sin no (1.21)
n

where the functions ¢ﬁ(r) can depend upon the plasma parameters, we

£ind that
P
o K ED R AC
n - P 4P dr r=
Ty EGn ¢n(rw) w

We shall refer to Ln simply as the logarithmlic derivative.



1.3 Rarly Plasma Models

We can consider our plasma to be composed of electrons, lons

and neutrals (the plasma is usually less than 1% ionized for experi-

2 times

ments considered here). Since the ions are approximately 10
as magsive as the electrons, we shall assume that for high frequency
disturbances considered here the ions remain at rest. Thus for our
purposes we shall consider the plasma as consisting of an electron gas
moving in a "stationary" background of ions. We shall, in general,
describe the electron gas by the density n(sgt) , the velocity
v(r,t) , the scalar pressure p(r,t) and the temperature T (assum-
ing the gas to bc Maxwcllian). For our plasmas n is on the order
of 109—1010 elec/cc and T 1s on the order of several electron
volts. One of the fundamental problems 1s to describe the motion of
this clcectron gas. |

One of the first methods (1) of describing the motion of the
electron gas was to use the hydrodynamic equations (Appendix A),
neglecting the pressure term,coupled with Maxwell's equations. That
is, we assume for the electron gas

3y
ot

+ (- Vy==-=F (1.23)

Hio®

where we neglect the magnetice force. Linearizing this equation and

.
’

~-Iwt
assuning e 0 time dependence, we find
»\Y- oN e ‘E‘L (1.02)4-)

from which we see that



ine2
J =-ney = - E . (1.25)
Then from Maxwell's curl equation
= - o2
VxB poﬂ‘_ iw poeog‘._ (1.26)
coupled with 1.25, we can write
VxB =-iop €E (L.27)
where
2
mP
€ = EO(l - —é‘) (1'28)
w
and
w2 _ ne (1.29)
P me -29

1s called the plasma frequency. Thus in this approximation the
plasma can be described by a dielectric constant given by equation
1.28. If we now assume that our plasma column of radius ro is
described Ey e uniform dielectrie constant € and we write for the

potential in the plasma region

#° = ) AT sin 0o (1.30)

we find for the logarithmic derivative Ln
2
: n wp
Ln = ’T (l - -EI) . (1031)
W w
Substituting 1.31 into the resonance condition (equation 1.19), we

find & single resonance occurs at
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mE
0 = P (1.32)
,l+—Keff

There have been several attempts (l6-19) to explain the resonance
phenomenon in terms of & dlelectric constant, but all predict only
oné resonance instead of the series observed. Kino and Crawford (9)
have shown, usling & variational technique, that i the dlelectric
constant is allowed to vary with r (corresponding to a radial

electron density gradient), the dipole resonant frequency is given

by
w2
o® ='lp (1.33)
*Kerr
where
_ -2
wf) = 5’2‘; (1.34)

and n 1is the average electron density. It is found that at high
electron densities (Chapter IV), equation 1.33 predicts the largest
resonence of Figure 1.2 (at the highest current) with reasonable
accuracy. It still predicts, however, only one resonance. During
the rest of this paper we shall refer to the resonance predicted
approximately by the dielectric model as the maln resonance.

The description of the plasma in terms of a dielectric con-
stant ignores several important features of the plasma. In this zero
temperature aspproximation, longitudinal plasms waves of finite phase
veloclty and non-zero group velocity are not supported by the plasma.

One might suspect that these plasma waves could play an important
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role in our resonance problem. For example, one might imagine
radially propagating plasma waves which are somehow reflected at

the glass boundary r = ro giving rise tq standing waves. The
observed resonances might correspond to different half-wavelengths

in the standing wave. In 1959 Gould (20) showed that if the thermal
velocities were taken into account in a uniform plasma by a scalar
pressure term in the hydrodynamic equations (Appendix A), a series of
resonances could be obtalned. These resonances do, in fact, corres-
| pond to radial standing plasma waves. Gould's analysis assumed the

following set of equations

on

S+VeoaL =0 (1.35)

ov e 1

SrLcVL - V- Ve (2:30)

VY = - f’; [n,(r) - n(r)] - (2.37)
E =-v¢ | | (1.38)

vhere n(r,0,t) is the electron density and ni(r,O,t) is the ion

density. These equations were then linearized

=-1at

n(r,8,t) = no + n(r,0)e (1.39)
ni(r’g"t) - ni(r,G) - ni = econst. (1-14'0)
p(r,q,t) = Py + 5’(1',9)6-10313 (1.41)
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~ -iwt
¢(r191t)= ¢(r19)e (1.42)
(r,6,6) = F(r,0)e " (1.43)
and the pressure related to the temperature (Appendix A) through

po = nokT ( 1. )4')-5')

P kTR . (1.45)

The above set of equations was combined into a single equation for

the potential as

F(P+ )F(x,6) = o (1.16)
where
2 (1)2 - (1)2 1 2
K° = = R | (1.47)
we 312 w2
D o
W o 3T (1.48)
m
5 eok'l‘ ),
= . (1.49)
7“D- D.062

Solutions of equation 1.46 can be written in the form

3 T (ir)
¢§(r,@) = {An(%)n + 3B, -&i(-l:r——;)%sin ne . (1.50)

Gould next specifies the boundary condition that &t r = r_ the

normal component of the electron current J - noe Vr must vanish.
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This implies that

3%§ e ) 2 ~p
,.é_;-(?_-a—;(v o =0 (1.51)
P

and gives a relatlon between Ah and Bn . Using 1.51 the potential

of equation 1.50 can be written as

- J_(kr) rk 22 J'(kr.)
¢§(r,9) =B 2 - z (L + k Z n_¥ (g;)n sin no .
qn(krw) O Jn(krw) v (1.52)

The derivative of the potential may now be calculated and the logsr-
ithmic derivative L. (equation 1.22) computed. It should be noted
that K@ is set equal to one in equation 1.22 since in thls analysis
the effects of the electron motlon are treated explicitly rather than
through an equivalent dielectric constant. If this logarithmic deri-
vative is inserted in the resonance condition of equation 1.19, one

finds that the conditions for resonance are determined by the solution

of
J (kr ) 2 2
n n w _ ® 1 w
B Ty - 2t X (-1 (1.53)
W o W U)P eff OJP
where again
1 [Ty of 1/2
kl‘w = e | —— —-E - l .
YR

Solving equation 1.53 graphically using large values of rw/xD which

one expects, one finds a single resonance

(1.54)
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below the plasma'frequency (corresponding to the main resonance
discussed previously) and a series of resonances at the plasma fre-

guency and above given by

nZ
2 _ 2 D L2
® = wb(l + 2 X)) (1.55)
W

where X. ~ 5.3, X_=~ 8.5 , etec. Thus by considering radial plasma

1 2
standing waves one can generate a series of resonances. It is
found, however, that when the resonant frequencies predlected by

equation 1.55 are compared with experiment, their relative spacing

is much smaller than than experimentally observed. That is,

o
o 2 o My o >
O "% = @ —;§ (Xn+l - xn) (1.56)
W

is smaller than that observed. Furthermore, it is experimentally
observed that several of the resonances seen above the main reson-
ance lie below the average plasma frequency ;E . This is in
contradiction to equation 1.55 which states that the plasma wave
resonances lie above the plasms freguency. One can see from equa-
tion 1.56 that the frequency spacing could be increased if somehow
r, were smaller than we thought it was. That is, perhaps not all
of the tube is active in supporting these plasma waves. One can
conceive of this situation by assuming that the plasma column has a

radial electron density profile. Consider the radial density pro-

file shown in Figure 1.3. If the column is excited at a frequency
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Figure 1.3

® less than the center freqpency; plasma waves can propagate only

in the region r >r where r, 1is determined by mﬁ(rc) = .
For r«< r, wve wlll have wb > m vwhich implies an imaginary propa-
gation constant Kk or evanescent waves (assuming a dispersion
relation similar to equation 1.47 is valid with @, depending

upon r). In this case we might lmaglne the standing waves to be

set up between T, and T,
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In 1960 Gould (21) employed a WKB type method to determine the
spectrum of plasma wave resonances assuming a radial density profile

2

given by n = no(l - Q EE) where n is the density on the axis

r
W

r =0 and « 1is a parameter between O and 1 . He found that indeed
the relative reeonant frequency specetrum could be made larger and,
furthermore, it increased with inecreasing ¢« . Thus it appears that
to explain the observed resonance spectrum, at least several important
propertles of the plasma column must be considered. First, the lher-
mal properties of the plasma must be included to allow propagating
radial plasma waves (so that multiple resonances can be predicted at

all). Second the radial plasme density profile must be considered.

1.4 Objectives of Our Experiments

In 1962 Parker calculated theoretical density profiles (22)
for a mercury discherge similar to that used by us and others. These
profiles are found to depend upon the parameter rg/fzg (Chapter II)
where ;E = eokTe/ii'e2 is the Debye length defined in terms of the
average electron density n . We shall refer to ;g as the average
Debye length in the remainder of this paper, but it should be noted
that it is the'Debye length defined in terms of the average eléctron
density n . The profiles obtained by Parker are shown in Figure
2.2, It is seen that the shape of the density profiles change only
slightly in the range lOufs ri,/zg <oo. It is ;ust in this range
that most of the previous investigators have concentrated thelir

efforts. One might expect from what has been said in previous sec-

tions, that the relative frequency spectrum might not vary appreciably
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in this region. We have concentrated our efforts on the range
2x10° < ri />:_12; < J.olL in order to investigate the role of the
density profile on the resonances. |

It is also apparent from the discussion of Section 1.3 that
not only should the n = 1 or dipole series of resonances exist,
but the n = 2,3,4 «++ (quadrupole, sextupole, +-+) series should
also exist. We have therefore investigated the n = 2 or quadru-
pole resonance spectrum. Finally, we have made & preliminary
investigation of the effects of a static axial magnetic field on the
dipole resonance spectrum. |

In Chapter ITI we shall discuss the theory of a hot nonuniform

plasma column which is used in the interpretation of our data. Chap-
ters III and IV will be devoted to a discussion of experimental
techniques and results for the zero magnetic field case. Chapter V
will discuss preliminary work on the finite magnetic field case and,
finally, Chapter VI will be devoted to a summary and proposals for

further work.
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II. THEORY OF A HOT NONUNIFORM PLASMA COLUMN

2.1 TIntroduction

Ilet us consider an infinitely long plasma column of radius
r =T - It is the purpose of this chapter to examine the simultane-
ous solution of the plasma dynamical equations and Maxwell's equations
in order to determine the logarithmic derivative L, (equation 1.22)
at the surface of the plasma colum (r = rw) . As in Section 1.3, we
shall assumé that the plasma consists of an electron gas moving in a
"stationary" background of ions. We shall again describe the elec~-
tron gas by its density n(r,t), its pressure p(r,t), its velocity
x(g,t) and its temperature T (dssuming the gas to have a Maxwellian
velocity distribution.) In this chapter, however, we shall assume
that the electron density has a radial density prqfile where, in the
absence of any disturbances, n = nof(r) (nO is the density at r =0).

All dissipative effects will be ignored.

2.2 Basic Equations

We take for the dynamical equations describing the motion of
the plasma, the first three moments of the Boltzmann equation (23),
assuming & scalar pressure. The chain of moment equations has been
terminated by neglecting the divergence of the heat flux tensor in
the third moment. This assumption allows us to maké an eappropriate
relation between the assumed scalar pressure p(a,t) and the den-
sity n(r,t) in the second moment, thus yielding a closed set of
equations. The method of obtaining these equations from the Boltz-

menn equation is discussed in Appendix A. We have for the dynamical
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equations:
on
— +V nv = 0 2.1
= v | (2.1)
oy, e 1y 5.0
S—;_+(X~-V)Xv=-5(§+‘y‘x]3) -=Vp . (2.2)

Egquations 2.1 and 2.2 must be solved simultanecusly with Maxwell's

equations. Since in our experiments the wavelength of the exciting
fields is so long (10 cm or greater) compared to the diameter of the
plasma colum (2 cm or less) we shall assume that E 1is derivable

from a scalar potential or that

E = = \7¢ ‘- (2‘3)

Ana

This quasi-static assumption reduces Maxwell's equations to the

Polsson equation

V= - - S -] (2.4)

(o] C

S +HL-VL = E[Vfé-xxB]—;nl—n-Vp . (2.5)

m

Equations 2.1, 2.4 and 2.5 form a set of coupled nonlinear
equaltlons whlch is dlfficull Lo sovlve outright. Let us assume that
the applied filelds induce only small perturbations in the appropriate

equilibrium quantlities and write
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n(r,t) T =N ;[‘(I‘) + ﬁ(};)ehi(b‘t
- o)

n, (&%) = ()

p(r,t) = p(r) + iﬁz)e'iwt

Bz t) = g(r) + FpeT

V(EJt) = E(E)e-Lmt
B(z,) = B(x)e ™"

where it is assumed that n(r) << n £(r) , P(r) << p(r) ,

(2.8)

(2.7)

(2.8)

(2.10)

(2.11)

B(r) << ¢O(r) . If equations 2.8 through 2.11 are substituted in

equations 2.1, 2.4 and 2.5 and only terms linear in the perturbation

quantltles are retained, the following set of zerc and first order

equations are obtained:

Zero Order

S

enof(r) v ﬂﬁo

= - -ée-*[ni(r’) - nof‘(r)]

o]

<
=N
i

Firsﬁ QOrder

-ion +V - nof(r)i = 0

]

iwmnof(l‘)ff: - enof(r) v +Vp - eEVQﬁO

B

e
Ve = =
o]

(2.12)

(2.13)

(2.1k)

(2.15)

(2.16)

The zero order equations 2.12 and 2.13 together with an appropriate
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boundary condltion at »r = e and an assumption concerning ni(r)
will be employed in Section 2.4 to determine the statlc electron den-
sity profile f(r) . The first order equations 2.1k, 2.15, and 2.16
govern the wave phenomena in the plasma. It is shown in Appendix A
that if we assume the electron gas to have a Maxwellian velocity dis-

tribution, we can relate the pressure to the density as

i)
1§

nof(r)kT (2.17)

r~

P = YKI'E  (2.18)

where ¥ = 3 . Equation 2.17 simply states that the electron gas

follows the perfect gas law while equation 2.18 states that the per-

turbations obey the adiabatic law
* (2.19)

Since we are going to be considering plasma waves traveling in the
radial direction, the choice of ¥ = 3 which is appropriate to 1
degree of freedom is reasonable. Using equations 2.12, 2.17 and 2.18
the first order equations 2.14k, 2.15 and 2.16 can be combined into a
single fourth order partial differential equation for the potential

perturbation ¢ (24) :



®
Ppo
v (2.20)
-—-¢--V¢-Vf = 0 .
"o
whefe
€ kT
2 fa)
= =g
XDO 2 ( 21)
n e
)

is the Debye length at the center of the discharge and

w = (2.22)

is the plasma frequency at the center of the discharge. In solving

equation 2.20, we demand as a boundary condition tkat the normal com-
ponent of the electron gas current density Er = nof(r)év; vanish at
the wall r =r_ (as in Section 1.3). Since nof(r) does not vanish
at r=r_, Ve must have ‘V; =0 at - The vanishing of V& at

r = rw demands that the potential satisfy

2 7
R (v°g) - Laf :?5‘_ -fézl—‘ég =0 at r=1r_ . (2.23)
T Tf dr dr w
Tpo
Before equation 2.20 can be solved, a suitable expression for
the static radial electron density profile f£(r) must be found. Such
an expression has been found by Parker (22) using the complete plasma-
sheath equations of Langmuir (33). The Langmulr formulation of the

equations governing the static electron density profile and their
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solutions will be discussed in the following section. We shall then

return to discuss the solution of equation 2.20.

2.3 The Static Radial Density Profile

Consider the cross section of the cylindrical plasma columﬁ as
shown on Figure 2.1. Langmuir assumes that equilibrium exists within
the colum with a potential distribution ¢0(r) through which the
ions fall to the wall. We choose ¢ (r =0) =0 . Let the number of
ions generated per unit volume per unit time be denoted by S(r) .
Then 1if we consider a unit length of column, the number of ions
generated per second in the volume between p and p + dp 1s given

by

no. of ions per second per unit length

generated between p and p + dp = S(p)2rp dp . | (2.24)

The number of ions per second passing through the surface at r which

originate in the volume between p and p + dp will be
(a7)A = dn,(r) V _(7,p)pmr (2.25)

where .vr(r,p) is the ion velocity at r . The ion density ni(r) at

r can be thought of as arising from all volume elements with p <1 .

The contribution to the ilon density dni(r) due to the generation in

the volume between p and p + dp can be obtalned by equating equa-

tions 2.24 and 2.25

S(p) 2np dp = dn,(r) V_(r,p)2nr (2.26)

or
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Figure 2.1 Geometry for density profile calculation



.8 e . :
an, (r) Xer ik ap (2.27)

Thus the ion density at 1 can be written as

r

n, (r) =f Sle)  eg, . (2.28)

r
Vr(r.ap)

Using equations 2.12 and 2.17 we can write for the electron density:

n(r) = n e . (2.29)

From equation 2.13 Polsson's equation must also hold or

v9¢o = - & n,(x) - a(x) (2.30)
[¢]
ox | A
_ & KT _e | 8(p)
Vg (x) = €eo nge " zo‘(/:"r(g’p) = dp . (2.31)

Equation 2.30 has been referred to as the complete plasma-sheath
equation (33). We now make two sssumptions concerning the ions in
our plasma which allow us to relate Vr(r,p) and S(p) to the poten-

tial ¢0 . These assumptions are:

A. The iong are formed at rest and fall to the wall
through the potential without making any collisions.

B. The ions are generated at a rate proportional to the

electron density or S(r) = a n(r) .



27~

~From assumption A we can write

tn Vne) = e[d (o) - 8 ()] (2.32)
or
v (me)= Y2 [ge) - 0] Y2 (2.33)

i

From asswnptlon B we have

S(r) = an(r) = ane . (2.34)

With equations 2.32 and 2.33 .the complete plasma-sheath equation

becomes
ef_(p)
o, (x) S-S
—~m ozn e m e =
V() = ne T - (2e)l/ef L a.(2.39)
o 0 0 [g_(n) - h(x)

The properties of equation 2.34 can be made more spparent by introduc-

ing the dimensionless variables (33)

ep
n o= - Trrg , (2.36)
8 = a(%)l/a r (2.37)

If these variable changes are made in equation 2.34%, the dimensionless

complele plasma-shesath equation becomes



8
Y {s &y, En} - [ o e ) (2.38)
2 ds 1/ :
p” { as o [1(e) - n(a)]
wheré
2
2n e
;R (2.39)
Y mié'o

Thus the dimensionless potential distribution q(s) 1s seen to depend
upon the plasma parameters through the dimensionless parameter 52 .
Glven a value of BE equation 2.37 can he integrated to give n(s)
for 0€e <.

The location of the wall or boundary of the plasma column will
be determined by the boundary condition that the electron current

equal the ion cwrrent at r = Ty * The lon current can be wrliten as

by
Ji(r) A = 2mr Ji(r) = _[RS(p) 2np dp (2.40)
0
ox
r
g (r) = f s(p) 2ap . (2.41)
0

The electron current density is taken to be the random current density

of a Maxwellian gas of local density n, or

ale) @1/

2VF;‘ e

Thus the boundary condition at r = rw‘ becomes

Je(r) . (2.42)
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(x.) fd
n(r
v’ (26D 1/2 o
. (=) =f s(e) = dp (2.43)
7 e
0
or
e¢0(rw) / Ty e¢o(p)
Er kT 1/2 XT  _p_
e ) = e o gp . (2.1)
e W
0]
In dimensionless form the wall condition 2.43 becomes
I3
mo 1/2  a(sy) [
(—=) / e ,( e~Me) o do (2.45)
lmm Sw ’
e 0
where again
m
5. = a(——-i-—)l/2 r (2.46)

The complete plasma-sheath equation together with the wall determina-

tion has been solved by Parker (22) for a number of values of 62 .

The density profiles obtained in his calculation for a mercury plasms

are shown in Figure 2.2, while Table 2.1 tabulates the important

results for a mercury plasma which are pertinent to our experiments.
It i1s interesting and a;so important to note that for many

conglderations the ionization coefficlient ¢ does not need to be

known. From equation 2.45 we can write

2
o 2kT, Sy
= (“E;);é . (2.47)
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Table 2.1
2 <n> : 2,2 2, 2
g v o rw/)‘DO rw/)‘D
2 } 2
10 1.787 0.225 3.19 x 10 7.18 x 10
2x 102 1.527 0.270 L.66 x 102 1.26 x J.o2
3.33x10° | 1.38 0.312 6.3% x 10° | 1.98 x 10°
103 1.147 0.392 1.32 x 103 | 5.16 x 10°
2 x 105 | 1.050 0.LLY 2.21 x 103 | 9.79 x 10°
3.33%203 | 1.000 0.480 3.33 x 103 | 1.60 x 10°
10 0.910 0.547 8.28 x 105 | 4.53 x 10°
2x10* | 0.874 0.581 1.53 x 10% | 8.89 x 103
10° 0.822 0.637 6.76 x 107 | k.31 x 107
exlo5 0.809 0.653 1.31 x J.o5 8.54 x :Lobr
108 0.789 0.678 6.23 x 10° | 4.22 x 10°
© 0.772 0.698
Then using equation 2.46 in equation 2.38 we have
5 2n0e2 mi ri 1 r: no 1 ri
. ——— D e = — —— . 20
B me, @ 27 27F (=) 27 (2.48)
0 W w Mo w D

Since no/ﬁ' and Sw are calculated for each value of ﬁg, we see
from equation 2.47 that the density profile curves can also be

. 2,.2 2,2 2
labeled by their valugs of rw/ Ao OF rw/'ND as well as by B .

2.4 Properties and Solutions of the Plasma Weve Potentlal Equation

From Parker's density profile calculation comes the radial

density profile function f£(r) = Eéfl needed for the solution of the
o
plasma wave potential equation 2.20. To shed more light on equation
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2.20, let us introduce the dimensionless variable
T
g - 'r_- . (2-1"9)

We can then write

_3 g L3 1 3. 1 3. L
v —Br£r+r§§ - r, a§£r+rw§ 89';1' - rwvg (2.50)
where we define
d 13 |
= = [ -
vg 5 -r+gE~I-9 . (2.51)

We can then rewrite the potential equation 2.20 as

~ V.t ~
A RETEA R
lri 2 N v, 2 23
=L I - v A 2.52
+{r)\2 2 ]ra f}§¢ (2.52)
DO ~ PO
lr2 ~
.= X vg-vr = 0 .
Y 22 §¢ 3
DO

The boundary condition, equation 2.23, can be written as

2
3 (R La2y £ af _
3t e P -3 §V§¢-Y~):E—dg-mo at g=-1 - (2.53)

Thus we see that the equations governing the behavior of the plasma
2
depend upon the dimensionless parameters rw/ Xgo and wa/coio as

vell as the electron density profile function f . As we have seen
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in the previous section, the density profile function f depends upon
62 or equivalently ri/ Xﬁo . Also from Section 2.4 we see that we
can use the parameters rﬁ,/;g and’ w2/;§ instead of ri/ Xso and
wzﬁmgo respectively (since for each ri/xgo we can calculate
no/?ﬂ. Expressing the results in terms of r§/’Z§ and mgﬁms is
more convenlent for comparison with experiment. Parker (24) has

golved equations 2.52 and 2.53 for a mercury plasma column to obtain

the ratio

— /o (e) = ol(e)/ o (&)

——

2, 9 :
as a function ol /a):p for a number of values of the parameter

ri/khs where he has assumed that

Be,0) = o(e)e™ . (2.54)

From equetions 2.52, 2.53 and 2.54 we see that the solutions depend
upon the integer n . Thus different solutions are obtained depending
upon whether we are considering the dipole, guadrupole, sextupole, +--
(n = 1,2,3,"**) modes.

" We note that the resonance condition (equations 1.19 and 1.22

with Kp

1) can be written as

it

o~ o~

L - 1 d¢n(r) _ 1 d¢n
S NS IS AT

1 o'
= —;;T(%= ..-i‘l;l;Keff (2'55)

or
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o' (8) _
TORE -n Keff . (2.56)

The theoretical curves of &'/@ as a function of me/mg for
a number of values of ri / 7:-% for both the dipole and quadrupole
(n = 1 and 2) cases are given in Parker's thesis (24). As an example
of the results he obtains, Figure 2.3 shows '/® as a function of
wz/c—n—g for ri/-k—]e; = 1580 and n = 1 (for mercury). Also plotted on
this figure is the curve (dashed line) ¢'/d = -n Kpp = -2-1 (n=1

in this case and hence Ke = 2.1). The intersections of this

£f
curve with the @'/d curves give the solutions to the resonance con-
dition, equation 2.56. The intersection at the lowest value of

we/ ;)—S corresponds to the main resonance, thé intersection at the
next to lowest value of mg/;f corresponds to the first resonance,

2.2
etc. By considering other values of rw/}“D , the resonance spectrum

2, 2
me/mi as a function of rw / XD can be synthesized.
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ITI. EXPERIMENTAL TECHNIQUES

3.1 Description and Construction of the Plasma Tubes

The experiments described in the following sections were per-
formed on & series of mercury filled discharge tubes constructed as
the one shown in Fig. 3.1. The cathodes used were of the oxide~
coated variety and are the same type used by General Electric 1in
thelr 6011710 thyratrons. The anodes were kovar cups sealed on the
end of the barrel. The processing of the tubes followed standard
procedures. The tube envelope and anode were constructed and chemi-
cally cleaned. The cathode was attached and the entire tube was
pumped and baked (35000) to an ultimate pressure of about lO_7mm Hg.
The oxide cathode was then activated, and the tube was rebaked and
pumped. Finally the mercury was added. This was accomplished either
by breaking a mercury capsule after the tube had been sealed off or
by distilling mercury into the tube from an external vessel and then
sealing it off. After the tube was processed, there was about 1/4" of
mercury in the mercury well (Fig. 3.1). The vapor pressure of the
mercury vapor in the well could be controlled by controlling the tem-
perature of the well. In our experliments the mercury well was placed
in a dewar of water which assumed the room temperature of about 2100
which corresponds to a well vapor pressuwre of about 1.3u Hg. The

neutral gas density n, in the well is given by

n, = e (3.1)

where Py is the mercury vepor pressure in the well, Tw is the
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temperature of the well, and k is the Boltzmann constant. For our

13 3

operating conditions n_ = 4.3 x 107 atoms/cm”. If there are tem-
perature gradients between the barrel and the well, the number density
in the barrel n_ will not be equal to that in the well. Dushman (34)
‘(page 65) shows that if the barrel is at a temperature Tg , then the

barrel number density is given by

T .
0, = nw(f-]‘;’)l/2 . (3.2)

For our discharges Twew Tb so that no~n .

One of the useful properties of these plasma tubes is that the
average electron density n is approximately proportional to the
current flowing through the discharge. Since the current density J_
is given by gmz Eéx where Vv 1s the drift velocity along the axis
of the tube, we have for the total current I , I = JA = nevA where
A 1s the cross sectional area of the column. 1In these plasma tubes
the voltage drop across the tube remains practically constant over a
wide current range. Thus the electric field and hence the drift
veloclity v remain practically constant and I <7 . Therefore we
can adjust the average current density in the column merely by adjust-
ing the discharge current. In our experiments the average density in

9

the column varies from about 10 'electrons/cc to about 5 x lOll elec~
trons/cc. Thus the percentage of ionization ranges from about l% to
less than .01% .

In performing experiments oﬁ these tubes it was found that they

showed a negative resistance characteristic of low currents. Below

certain currenta they rvesonated with the external ecireunitry and hroke
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~ into oscillation, and these oscillations seriously interfered with
the primary measurements. It was found that a 500 ohm resistor
placed directly at the anode eliminated the oscillation problem quite

satisfactorily.

3.2 Low Frequency Observational Techniques

In the low frequency region,from sbout 200 mc to 1500 me, the
plasma wave resonances were observed using the split-cylinder and
wire multipole devices shown in Figure 3.2. The radii of these
devices is kept much smaller than the wavelength of the exciting
radiation so that the quasi-static approximation is appropriate in
their analysis. If the oppoéite electrodes in the dipole devices
are fed 180O out of phase, then the fields produced by them near the

ino
axis are proportionsal to re where n = 1,3,5,*** . Thus such

a device 1is capable ol excliting the n = L,3,5,°'* radial plasms
modes. It 1s found experimentally, however, that if the radius of
the device is kept about three times larger than the radius of the
column, only the n = 1 plasma mode will be apprecilably excited.
Thus, in practice, the dipole device can be used to investigate the
n = i or dipole plasma mode. It is also found that if the adjacent
electrodes of the quadrupole devices are fed 180° out of phase, the
fields neér the axis are proportional to rneinO where n = 2,6,10,+
It is also experimentally verified that if the radius of the device
is greater than approximstely 2r,w , only the n = 2 or guadrupole
plasma mode is excited. Therefore the quadrupole devices can be

used to investigate quadrupole plasma modes. To insure the electrode
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. phase conditions in the quadrupole devices, adjacent pairs of elec-
trodes were fed from two equal length sectione of coaxial cable. The
two.sections of coaxial cable were then Joined at a tee and fed from
a common generator. It was found that if the proper phase relations
were upset by making the sections of coaxlal cable unequal 1ln length,
the dipole mode was observed in addition to the quadrupole mode.

The experimental arrangement Incorporating these multipole
devices 1s shown in Figure 3.3b. The multipole devices were fed
through a directional coupler and the reflected signal was monitored.
The resonance detection method 1s baSed upon the fact that at
resonance the fields in the column become large and the tube absorbs
a more than average amount of power due to dissipative phenomena (not
discussed in Chapter 2). The power in the reflected signal will be
that of the incident signal minus any power dissipated in the column,
radiated from the multipole device, or dissipated in the lines. 1In
the off resonance condition the column will absorb relatively little
energy. However, when the electron density in the column is adjusted
(by adjusting the discharge current) to give a resonance condition,
the plasma column will absorb more energy and a decrease wlll be noted
in thé reflected signal. Thus by monitoring the reflected signal, we
can obtain an absorption spectfum of the positive column.

Tt is shown in Appendix B that the resonance condition for a

plasma column in the split cylinder geometry (Figure 3.2a,c) may be

written &s:
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(D" x+e) - (D - e)

< w - B
Ln - r, K b .n T r Keff(K’rw;h’c)
(;‘) (K +g) + Cj;) (X - g)
w (3.3)

whefe ;n is the logarithmic derivative defined in Chapter I, K 1is
the relative dlelectric constant of the surrounding glass and

1+ (% 2o
g = ;f——zggéa (3.4)
c

measures the influence of the metal cylinder (g - 1 when the cylin-
der is removed). r_s b, and ¢ &are the inner and outer radii of the
glass tube and the radius of the device respectlvely, and the integer
n in the above expressions denotes the angular dependence (eing)
As in Chapter I, the left hand side of the resonance condition is
dependent only on the solutlon oI the equations Tor the plasma and
the electromagnetic field in the plasma region, while the right hand
side is dependent only on the electromagnetic field solution exterior
to the plasma.

- In a similar msnner, the resonance condition for the ideal wire

multipoles may be written as (Appendix B):

(" (k + 1) - (D ( - 1)
W n

)
]
'

H‘h

= - K (K,r_,b,c=00).
b \n Tuyn r, eff W
W (;;) (K + 1) + QTT) (K - 1) (3.5)

It is seen from equation 3.5 that the resonance condition for the ideal
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“wire multipoles should be independent of the wire position c¢ .
Experimentally it is found that the resonance caondition is somewhat
dependent on c¢ , especlally for the main resonance. This may be due
to the finite size of the wires, an effect which would be difficult

to include in the calculation.

3.3 High Frequency Observational Technliques.

In the high frequency region between 2300 mc and 4000 mc the
resonances were observed using a wavegulde arrangement similar to
that used by Dattner (3). A schematic of the apparatus used ls shown
in Figure 3.3a. The plasma tube is placed across & section of S-band
waveguide operating in the dominant TEOl mode such that the electric
field is perpendicular to the column. When the electron density is
adjusted to resonance (using a pulse technique described in Section
3.5), raaiation is scattered out of the forward direction and a
decrease is noted in the transmitted signal. To isolate the scatter-
ing section from the generator and to reduce spurious resonances, an
attenuator was placed between the scattering section and the exciting

wavegulde to coax adapter.

3.4 Average Electron Density Measurements

As stated iIn Chapter II, we must measure the frequency spectrum
we/;z as a function of the parameter ri,/zg . In both the multipole
device and waveguide arrangements, the incldent frequency is held
constant and the average electron density in the column is adjusted

2,2
to resonance. Thus at each resonance we must measure o ﬂnp and
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2
ri,/XD . The radius r_ and the frequency ® can be measured in a

straightforvard manner, but to determine the quantities ws and xg

we must know the average electron density n and the electron tem-
perature Te . As will be dlecussed in Chapter IV, the electron
temperature will be determined by a best £it technique. The average
density n , however, is directly measured using a cavity perturbation
technique. We use a right circular transmission cavity oscillating in
the TMOlO mode. If a plasma column is placed along the axis of such a
cavity, the resonant frequency of the cavity will be shifted, and this
frequency shift can be related to the average density in the plasma.
The exact mechanics of relafing the frequency shifts to the average
electron density in the column is given in Appendix C, but for con-

venience, some of the main features are repeated here.

Consider an empty cavity having a resonant frequency woo and
field distributions given by ~§0Q£) and 430(5) . If we now introduce
a piece of dielectric (of dielectric constant €) into the cavity,
the frequency will be shifted to a new value «w and the field con-
figurations will be given by EKED and B(r) . Tt can be shown (31)

that the exact frequency shift of the cavity is given by

j:;.e EX - E dv

@ = %o Yo
ot = B* B (3‘6)
o .
‘ Jﬂ} EX . %+ ° ]dv
0o ¥p A& Mg
vo

where A€ = € - eo and v, is the volume of the cavity. In general,

E(r) and B(r) arc difficult to determine exactly. In equation 3.6
Ay A E i 4
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~let us write MA€ instead of A€ where 0 £ A £ 1 . ILet us then
expand the perturbed quantities w , E(r) and B(r) in power series

in LA ¢

E(x) = E(2) + A, (x) + NE(x) + -+ (3.7)
B(r) = B_(z) + XB,(z) + \By(x) + ++- (3.8)
w = woo+kml+xgw2+ . (3.9)

If equablons 3.7, 3.0 and 3.9 are substltuted in equatlion 3.6, one

obtains to first order (neglecting all terms of O()\.g)):

fAc-;E* . B av f/_\eE*- E dv
® - © O aw0 -0 =0
jalal v v
Q o s
W B* . :_‘B‘ 8We
00 ﬂ:e E¥ . R +:_.°...._.,.9]dv
o*o 0 HO
v
o (3.10)
where
T o= f¢ g .pave ¥ == [B .3 av (3.11)
e 4 o | *0 ~o e Ly -0 0
v ° 3
o) o

is the average stored electric fleld energy in the empty cavity

W_=W_ at resonance).
(W, A esonance )

The specific experimental arrangement which we have used for
making average electron density measurements (utilizing a right cir-
cular transmission cavity operating in the TMblO mode) is shown in
Figure 3.4. The plasma colum (r £ rw) is characterized by the

effective dielectric constant
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| ai(r) 2
e(r) = € {l - 5 } = € [l - s n(r)} . (3.12)

Thus for the plasma region

e, = -y —2pal . (3.13)
mEO(,\)

The glass tube surrounding the plasma column is characterized by the

relative dielectric constant K . Thus for the glass region

£r £5h
(rw r )

Q&e)g = €e-¢€ = eO(K - 1) . (3.14)

Now the TMOlO cavity mode is characterized by having only an axisl
(z) component of the electric field (neglecting the effects of the

end holes where the column enters and exits) which is glven by

g..r
E_(r) = AJO(-%-:— (3.15)

where is the first zero of Jo(x) . By employing equations

Po1
3,13, 3.14 and 3.15 in equation 3.10 we can calculate the expected
frequency shift produced by the glass and plasma. If, in calculating
the integral in the numerator of equation 3.10,we use the small

argument approximation of JO( r/a) for r € b (that is,

‘ %Ol
E,~A for r b or approximately uniform), we can write (see

Appendix C) :



@ - O 1 2 r-o b -r
o ST {%(%4%“'(*‘3‘1)*2—& . (3:16)
00 2Jl(BOl)

Let the resonant freguency with the plasma off (n = 0) be w, - Then

W -0 2 _ .2
o oo X (K-l)uE . (3.17)

2 2
00 231(501) a

If equation 3.17 is now subtracted from equation 3.16 we have

w - w 2 r2
- [o] _ 1 1 e W oo
®o0 B QJQ(B ) w2 (m o) a.2 : } ‘ (3.18)
1701

It is shown in Appendix C that to the same order retained in this

perturbation calculation

- ] (3.19)

In our arrangemept ® and W, typically differ by about 150 me
out of 3000 me which might lead to an indeterminacy of about 5% in
the density measureménts employing equation 3.18. 1In order to shed
some light on this problem we performed a series of experiments
nmeasuring the dielectric cbnstént of a luclte rcd both with and
without & surrounding glass tube {the lucite rod simulating the
plasma, except that we could remove the glass envelope.)

It is shown in Appendix C that the frequency shift produced

by a dielectric rod (no surrounding glass tube) 1s given by
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®' - ® -1
~ K-l)
w 2 ( L
00 EJl(BOl) a

rol o

(3.20)

where ' 18 the resonant frequency of the cavity with the dielectric
rod, wbo 1s the resonant frequency of the empty cavity, KL is the
relatlve dielectric constant of the rod, and ry is the radius of
the rod. It 1s also shown in Appendix C that the freguency shift
produced by & dielectric rod of radius r, surrounded by a glass

tube of inner radius r, and outer radlus b 1is given by

» - r2 b2» r2
00 1 W W
2

%oo N 2J2(B ) {; (KL- ;) a - - a®
1*7o1 (3.21)
where again KL is the dielectric constant of the rod and K is the
dielectric consﬁant of the glass tube. If we now remove the dielec-
tric rod from the glass lLube {egulvalent to extinguishing the plasma)

and call the resultant resonant frequency @y vwe have

b2
w - 1 -I'w

. - : (3.22)
00 233(Boy) a”

If we subtract equation 3.22 from equation 3.21 we have

o 1

l\)l i!HhJ

(K, - 1) (3.23)

m - D
00 2J1(B01) a

which brings us back to the same problem encountered in equations

3.18 and 3.19. Again, to the order retained in the calculation



_ = —2 (3.2L)

which is more appropriate to use in the denominator of equation 3.24
moo or mo . In one experiment we used Jjust & lucite rod and a
cavity. We measured o', ®o? T, and & and determined the dielec-
tric constant KL of the rod using equation 3.20. This we called

the standard KL . In another experiment we employed the same lucite
" rod in conjunction with a closely fittedvglass tube. We first mea-
sured the resonant frequency of the cavity ® with both the glass

and the lucite present. We then measured the resonant frequency ®
with only the glass tube presént. KL was then calculated using

3.23 and 3.24% for the two possible values of w in the denominator

of equation 3.2k, ® o and ®, and the results were compared to the
standard KL determined by the first experiment. We found ®, to
be the more appropriate value to use, glving an agreement with the
standard K to Weil within 1% . If w_ Were used in the denomina-
tor of 3.2k, the two values of K

value of KL for lucite determined in this manner was 2.47. The

would differ by about 4% . The

accepted handbook value is 2.58 (37).
In view of the results Qf the experiments with the lucite
rod, we chose to use wb in the denominator of equation 3.19. Thus

equation 3.18 could be written as

2
r
~—s =5 ;T) -a-ga (3.25)
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. Qr o o
_ 8x me Jl(z.uos) 22
n = = — £, AF (3.28)
e I‘W

where fo is the resonant frequency of the cavity with the glass but
no plasme and Af = £ - fo where f 1s the resonant frequency with
the plasma. Equation 3.26 was used in all of our experiments to

relate the cavity frequency shifts to the average electron densities.

For our experimental arrangement one would expeclt Lhe periur-
bation treatment to converge rapidly. Since the plasma column and
glass tube are parallel to EZ and since at the interfaces of these
media Ez mist remain continuous, the rields should not be drasti-
cally disturbed by the column.

In deriving equation 3.26 it was assumed that in the TMOlO
mode the only component of the electric field 1s along the axis of
the cavity. OSince the plasma column must pass through the cavity,
there will be some perturbation in the field configuration near the
holes in the end plates. To minimize this effect, the cavities were
constructed as long as poesible, consistent with good mode separation.
The cavities used were about three inches in diameter, 3.5 inches
long, and resonated at about 3000 mec. The holes in the end plates
were Just sufficient to allow ﬁhe tubes to pass through.

As shown in Figure 3.3a,b, a cavity ﬁas placed adjacent to
the resonance deteéting device so that the average density n and

the resonant frequency o could be measured simultaneously. It was

determined experimentally that the longitudinal variations (along the
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" column) of the average electron density were negligible for the
larger tubes. Thus in these cases the electron density measured at
the site of the cavity could be equated to the density at the site of
the resonance detecting device. For the smaller tubes some longitue‘
dinal variations were found and the cavity was actually moved over
the site of the resonance detecting device in measuring the density.

For the range of densities investigated, the frequency shifts
Af varied from about 0.5 me to 30 me. To measure these small shifts,
a Hewlett-Packard model 524D electronic counter and Model 540B trans-
fer oscillator were employed. The cavity was set to resonance by
observing maximum-transmission through the cavity wlth a Hewlett-
Packard Model 425A microvoltmeter. The resonant frequency was then
determined directly with the counter arrangement. It was found that
the resonant frequency of the cavity could be determined to within
0.1 me. Thus the frequency shifts could be determined to within about
0.2 mc.

Another series of experiments was carried out in an effort to

measure the third moment of the electron density profile I

r
W

I3 = -[‘ n(r) r3ar (3.27)
0

3

but due to a lack of experimental resolution, the results were nega-
tive. The motivation behind such experiments was‘to make a direct

experimental determination of rs//zg . In his work on the electron
density profiles, Parker defines a quantity M(rs/’ki),(o £ M £ 0.5)

as



- 5)+_

r
w .
Jﬂ n(r)r3dr
0 “s
M = rw = & -~ . (3.28)
rs “[. n(r)rdr ry B

0

If we assume these profiles to be correct, then each profile corres-
ponding to a given value of rid/zg (Chapter II) can be equally well
labeled by its value of M . Thus if we can measure the value of M
for our column, we can determine ri‘/zg and hence the density pro-
file by means of Parker's calculations. It is seen from equation
3.28 that we can measure M by simultaneously measuring 13 and the
average density n . Thne method of neasuring n has been discussed
in the preceding péragraphs. 13 can be measured in a similar
fashion by observing the frequency shifts produced by the plasma in

a right circularvcavity operating in the T™ mode, It is shown in

110

Appendix C that I can be related to the frequency shift in the

3
™ |, mode by
1om me, Ji(Bu) 4
I, = 72 a’ r_Af (3.29)
11
where Bll is the first root of Jl(x) » £, 1s the resonant fre-

guency of the cavity without the glass, and Af = f - fo where T
1ls the resonznt Lreguency wlth the pluasma present. The frequency
shifts observed were on the order of only 0.2 mc (which is to be

expected from equation 3.29 if reasonable values are substituted for
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I, a, and fo) which makes the measurement impractical in light of

3
the experimental uncertainty (about 0.2 mc) present in the cavity

shifts.

3.5 Methods of Taking Data

It was found that the best method of taking data was to keep
the incident frequency constant and vary the average electron density
n by varying the current to obtain the resonances. If the electron
density was kept constant and the freguency varied, it was found that
frequency variations 1ln the radiation resistance of the multipole
devices; and impedance mismatches in the waveguide system, made inter-
pretation of the data very difficult.

In the low frequency region (using multipole devices), the
current required for observing the resonances varied from a few
milliamps to about 200 milliamps and in this range the tubes could be
operated continuously withoul excessive anode heating. The current
was controlled by a current controller shown in Flgure 3.5 which has
two modes of operation. The first mode, which was used in obtaining
all of the zero magnetic field data, allowed the current to be
adjusted manually by'changing Rl . Thus the electron density in the
tube could be adjusted for resonance by varying Rl and its average
value could be measured simultaneously. In the second mode of
operation the current could be swept between fixed values by applying
a sweep voltage frém a generator on terminals A and edjusting R

1

and R2 . A voltage proportional to the current in the plasms column

1s availeble across R and can be used to drive one axis of an X-Y

3
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recorder. In using the swept mode with the multipole devices, the
reflected signal can be fed into the x axis Input while the y axis
is driven by the voltage developed across R3 . Thus an absorption
spectrum is traced out by the X-Y recorder. If several spectra are
obtained at different incident frequencies, we obtain the positions
of the rescnances as a function of current. Figure 3.6 shows the
dipole absorption épectra for tube No. 1 at three different frequen-
- ¢les taken with a split cylinder capacitor. The current is swept
along the horizontal x axis and goes from 0 to 200 ma. The verti-
cal y axis measures the povwer absorption with the dotted line
indicating total absorption. Figure 3.7 gives an amplified absorption
spectrum taken with the same tube and the same arrangement. The
average density as a function of current n(I) can be obtained by
now feeding the output of the cavity into the x axis keeping the
current sweeplng as in the resonance measurements. By changing the
freguency of the cavity input sigral and tracing the cavity response
as a function of current (maximum transmission corresponding to
resonance of the cavity at that frequency), we can obtain H(I)
using equation 3.26. ‘Hence we can obtain the resonance positions as
a function of n .

In the high frequency measurements (—~ 3000 me) ; the current
needed for suitable electron densities was on the order of one Ampere.
Since at these currents the tubes could not be operated continuously

due to excesslve anode heatlng, they were pulsed. Figure 3.8 shows a

schematic of the thyratron controlled RC pulser employed. In the
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experiments reported here the RC time constant was 1.65 x :LO-lL seconds.
This time constant 1s long compared to the 4 usec electron density
decay time constant (38), so that steady state conditions are approxi-
mated. The pulse method of obtaining data is much the same as the
continuous sweep method. The x axis of a dusl trace oscilloscope is
triggered as the pulse is initlated. The waveguide output is fed into
one y axis and a voltage proportional to the tube current (from termi-
nals A in F'iguré 3.8) is fed into the other y axis, and both traces
are photographed. Figure 3.9a gives an example of two such absorption
spectra taken on tube No. 1. The top spectrum was taken at 2923 mc
while the bottom spectrum was taken at 2720 mec. The exponentially
decaying curves are signals proportional to the current. Thus we
obtain scattering spectra as a functlon of the tube current. Once
again we calibrate the tube current as a function of the average elec-
tron density by observing the cavity response as a function of current.
Here the cavity output (transmission cavity) is fed into the y axis
previously fed by the waveguide output. The cavity resonance and hence
the average‘electron density (employing equation 3.26) can now be
determined as a function of current. Figure 3.9b gives an example of
the cavity transmlssion measurement. In the upper trace the incident
cavity frequency was 2945.8 mc while in the lower trace it was 2941.5
me. Again the exponentially decaying curves are signals proporticnal

to the tube current.

The shot to shot errors (reproducibility) were less than those

introduced in reducing the data.
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IV. EXPERIMENTAL RESULTS

4.1 Reduction of the Data

It vas shown in Chapter IT that if a value of X, 1s given

bip il
for an experimental arrangement, Parker's caleulations {24) prediet
theoretically wz/;E as a function of ri/‘zg « In observing the
resonances we have an experimental measure of the resonant frequen-
cles, the average electron densities n » the radius of the column

' rw , and Keff . We do not, however, have an experimental measurement
of the electron temperature Te ‘and thus we cannot determine ;E by
direct measurement. It is well known, however, that for our type of
mercury discharge the electron temperature Te is approximately

3 ev. (29) Since we have not measured the electron temperature in our
experiments we could either

(a) assume Te = 3ev and see how well the measurements

agree with the theoretical predictions

or

(v) take the assumed temperature as a parameter to be
adjusted to secure the best fit between experiment

and theoretical predictions.

We have chosen the latter approach, although it is not clear that the
small deviations from Te = 3 e# are really significant in view of
the other limitations of the theory and experiment.

In plotting fhe data we plot rs,/zg on & logarlithmic scale

(Figures 4.1, 4.2, 4.3 end 4.4). This has the advantage that since



L=

r o n egri

- log T_ (4.1)

adjusting the temperature simply moves all of the experimental

points linearly parallel to the ri/ xi axis. Thus for a given
Keff we can determine & set of theoretical curves (solid lines in
Figures 4.1, 4.2, 4.3 and 4.4). We can then assume a reasonsable
value for Te (say 3 ev) and redgce the experimental data. Then by
simply moving the entife body of experimental points to the left or
to the right, obtaining best agreement with the theoretical curves,

we can determine the best fit electron temperature Te .

4.2 Experimental Results.

Figure 4.1 shows the dipole spectrum of tube No. 1 which has
the radius >rw = 0.5 cm. The solid lines are theoretical curves,
while the circles are experimental points. .The data for
ri/lzg > ma” was taken in & waveguide apparatus (Figure 3.3a),
while that for ri,/zg < lOu was taken with the mu}tipole devices,
For ri//;§-< th the maln resonance was measured with a split
cylinder device (as>were all of the main resonances in this range
since a well defined Ke could be calculated. From Figure 2.3

ff
we see that the main resonasnce is particularly sensitive to Kéff.)
The first and second plasma wave resonances were nmeasured with both
split cylinder and wire multipole devices. The nest fit electron
temperature of 3 ev was determined by considering both the dipole

spectrum and the quadrupole spectrum of the same tube. The
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quadrupole spectrum is shown in Figure 4.2. The dashed line in
Figure 4.1 is the theoretical prediction of the cold plasma theory

for the main resonance:

ma/ ;ﬁ N S . (4.2)

Figure 4.3 gives the dipole spectrum of tube No. 4 which has
a smaller radius (rw = 0.3 cm). Here the best fit electron tempera-
ture is slightly larger or 3.7 ev. Once again the dashed line is the
cold theory prediction of the main resonance. Finally, Figure L.k
gives the dipole spectrum of tube No. 6 which has a larger radius
(rw = 0.87 cm). The circles in Figure L.4 are data points taken in
the manner discussed in Section 3.5. The average electron density is
adjusted for'resonance and the average density is simultaneously
measured by the cavity method. The squares are data points taken by
an extrapolation method. It is assumed for low currents that the
average electron density n is directly proportional to the current
I or that n = CI where C 1s a constant. The constant C is
determined at reasonably high currents, where the cavity method can
be employed with some precision. The densities at lower currents can
then be obtained as a function of I using the above relation. Here

the best fit electron temperature is 3.1 ev.

4,3 Discussion of the Results

There are several aspects of these results which deserve

special attention. The genérally good agreement between theory and
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experiment over such large ranges of ri,/zg is indicative of the
validity of both the electron density profiles and the moment equation
approach used by Parker (24) and discussed in Chapter II. Thus the
resonance phenomena seem to definitely arise from standing radial
plasma waves assoclated with the hot plasma model.

One of the first features that one observes 1n examining the
results shown in Figures k4.1, 4.2, 4.3, and 4.4 is that for any given
resonance (main, first, second), the ratio wz/(-xg increases for
decreasing ri / ;g . Furthermore the relative spacing between the

resonances (main and first, first and second) increases for decreas-

ing ri / ;—5 « The fact that for a given resonance w2 / a)i increases
for decreasing ri / Ag 1s partially due to the fact that the ratio
E/no (Table 2.1) decreases for decreasing rs/ —):g . We can remove
the effect of changing H/no by assuming the validity of the
theoretical density profiles and plotting wz/wf)o instead of
wz/wg . Figure 4.5 gives the theoretical dipole spectrum for tube
No. 1 where we/wio has been plotted as a function of rs/xgo .
It 1s seen, although to a lesser degree, that for a given resonance
2, 2 . 2 5.2
N / wpo 8till increases for decreasing T / )"DO (especially for the
first and second plasma wave resonances). It is also seen that the
relative spacing between the resonances increases for decreasing
2,2
rw/ XDO )
We have seen 1n equations 2.52 and 2.53 that the resonance
2,2
spectrum ® [ wpo depends both on the parameter rz / )‘1%0 and the

density profile f(r) = n(r) /no . Furthermore, we have seen that
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the density profile f£(r) also depends upon ri,/xgo . To take into
account the effects of ”31/*§o and f(r) on the resonance spectrum
m21/¢§o and to rigorously describe the salient features of Figure
L.5, as well as Figures 4.1 through 4.4, we must resort to the actual
solutions of Parker's equations discussed in Chapter II.

We note also in the dipole spectra, Figures 4.1, 4.3, and L.k,
that the divergence between the experlmental data and the cold plasma
prediction (dashed line) of the main resonance becomes smaller as

2, 2 .
rw/ )"D increases.
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RESONANCES OF THE POSITIVE COLUMN IN AN AXIAL STATIC

5.1 Introduction

MAGNETIC FIELD

The effect of a static magnetic field on the plasma wave reson-

ances has been studied off and on for a period of about thirty years

(4,25,26,27).

The major effort, both experimentally and theoretically,

has gone into a study of the main resonance. It has been shown (25)

that the main resonance splits into two distinct resonances with the

application of a relatively weak (~20 Gauss in our case) axial mag-

" netic field.

It is the purpose of this chapter to presént some pre-~

liminary data indiecating that not only the main resonance, but the

first plasma wave resonance as well, splits in the presence of an

axial magnetic field.

cribe the plasma by a dielectric tensor (28)

where

it

€
1 %
-62 Gl
0 0
2
“p
eo [l -5
m -
D
w
le g ©p
o , 2

Until quite recently the theoretical approach has been to des-

(5.1)

(5.2)

(5.3)
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w2
€5 = Eo[l“%} (5.4)
w
eBO
mg = . (5.5)

In the above description 1t 1s assuwmed thal the plasma has a unliform
electron density n and that there is a uniform magnetic field B
directed along the axis of the column in the +z direction. This des-
cription in terms of an effective dilelectric tensor is equivalent to
the zero temperature model discussed 1n Section 1.3. Thus we would
only expect to obtain the approximate behavior of the main resonance
from this model. The higher order plasma wave resonances are

excluded.

Inside of the plasma the electric fields must satisfy

v-£=v-(§~§)=o . (5.6)

If we once again invoke the quasi-static approximation and write

B = -V¢ , equation 5.6 becomes
e, Vg = 0o . (5.7)

Thus if el # O , the potentisl in the plasma region must satisfy

Laplace's equation

Ve = o . (5.8)
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Let us write for the potential in the plasma region (r < rw)

n *ino
fo(r,0) = AT e : (5.9)
Then
D _ p P _ n-1 +1ing
Dar = S1%ar T %2%no nAT © (el - i€2)' (5.10)

Now the resonance condition, equation 1.22, written in terms of the

normal displacement becomes

P
L = -« — =
n fo) £f
60 ¢n r=rw w ©

(5.11)

I
l -

H}ﬁ
=

Thus the resonance condition for a magnetized plasma column becomes

€. + ie

11— "2

——— = - K (5.12)
o

or

2 2
w 4V (Dp

1- L2 7% =-K : | (5.13)

2) eff

Taking the (+) sign, we have

(1.')12) 2

w - W PER U AR () kb

U)+( + g) 1+K o ' (5 )
eff

o ®y 1,2 2.1/2
(D+ = -és- + -';é(mg + LKDO) / (5‘15)
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where w, is the resonant frequency in the absence of a magnetic

field. Taking the (-) sign, we have

w? 5
(D._((D- + wg) = M.“—E‘—“ = (Do (5 016)
1+ Kéff
or
®
l, 2 2,1/2
o - - F §(wg +ha) / y (5.17)

Thus the cold plasma model predicts that the main resonance 1s split
into two resonances o, and w_ depending upon the sign of the
assumed éiinQ angular dependence. The introduction of the static
magnetic fleld has given a preferred direction to the plasma which
causes the left and right handed polarizations to couple differently.
Crawford (25) has applied the above equations to the main resonance of
the nonuniform case by using ;f for ao§ in equations 5.1 and 5.16.
It is clear from the results of Chapter IV that such an approach will
be invalid for low values of ri/’zg since mﬁ = wi/l + Keff does not
adequately describe the main resonance in the absence of the magnetic
ficld. We shall show in Section 6.3 that the above theory describes
the main resonance reasonably weil if we take ms to be the zero mag-
netic field resonant frequency predicted by the hot plasma model rather
than “’(2, = _;2:/(14- Keff')'

If the hot plasma model is employed, not only do the difficul-
ties with the main resonance disappear,'buttheAhigher order resonances

are satisfactorily taken into account. Parker has made calculations

based upon the hot plasma model discussed in Chapter II which agree



-77-

quite well with the experimental results. In these calculations he

includes a v, x_@o term in the momentum transfer equation to account

for the static magnetic field Bo;—z .

5.2 Theory of a Hot, Nonuniform, Magnetized Plasma Column

We assume the magnetic field to be given by B = Bogz . Since
we use the same model discussed in Chapter II, equations 2.1k, 2.15
and 2.16 hold, except that we must add a Lorentz force

en £(r) B, x I %o the force equation 2.15. These equations are:

-ion + V ¢ ng f(r)y. = 0 (5.18)
iwmn f(r)y = -en £(r) Va +en f(r) ByxI (5.19)
f

+ YXT Vo - kT —

v - 2 3 (5.20)

il

where all of the sbove quantities are defined in Chapter II. If we

cross equation 5.19 with »«];z and observe that wxlz) x;z = -V,
we obtain
en f en B
YkT
nfyxI (vﬁxx —.-—.--..-—-..v+———(van
o *~ -~ iwm ) wn Ao iwm )
k Rad
SER grx1) (5.21)
iw ~z

Equation 5.21 can now be substituted into equation 5.19 to obtain an
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equation for noff__ :

nofx,= °V¢+—-——-Vn--—-~g
(1- “’g/w ion iom
o jo ~
+ ¢ ool gy (ML op L KIRVE{ 1 | (5.22)
(l-(i?b2) iom iom iom £ ~z

If equations 5.20 and 5.22 are now substituted into equation 5.18, we

obtain a single equation for the potential:

v + —-——————-E-m ° (V x A) 0 (5.23)
—5 5" vV« A+ VxA) I = .
(l-cn/a) - 1(1- m/m) ~ Tz

where
m2
A= j%[-fv¢+miov(vgg) -2 VQE%-} : (5.24)
®
If we now assume that
-~ - j-_inG
§(r,0) = g(r)e (5.25)
and introduce the dimensionless parameter
e = r/r, (5.26)

so that
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2 2
14, 4, n 1,ld, 4 n° _ 1_2
Vf = (Z 7&(r 32)- —§)=—§('§'a€(§ a‘g)-—é)=—§‘7g (5.27)
r r ¢ r
w w
we can write equation 5.23 as
2,2 2
X ~
2y Oy /e DO 1d 5df} o~ df af
_wo® {0 Llé safy| 2y af (5.28
V§¢+1-w2/w2 * r2§dg(f T ga at ag )
g W
2 2
3
0o R 2y . Molard (2
Vg 53— = (Vv
T2 e ? r2fdgdg(g¢)
w W

An inspection of equation 5.28 yields several interesting facts. The

potential @(¢) depends not only upon the density profile f£(¢) and
. . 2,2 2,2

the dimensionless parameters rw/kDO and /abo (as in Chapter II),

but also upon the dimensionless parameter w/&g . Furthermore, it

depends (as in Section 5.1) upon the sign chosen in the assumed eilne

angular dependence. It should be noted that equation 5.28 reduces to

equation 2.52 in the limit that B - O . One can now assume values of

2, 2 2,2
rw/kDO , @ ﬁnpo

, wﬁmg and f , and proceed to determine ¢ , subject
to the boundary condition that the normal electron current must vanish.
One can then compute the logarithmic derivative Ln and determine the
resonance spectrum from the resonance condition of equation 1.19.

Parker (24) has solved equation 5.28 for various values of the

plasma parameters, and some of these results will be discussed in the
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next section. In these calculations one important assumption has
been made which limits the validity of the solutions to weak mag-
netic fields. For the radial density profiles £(¢) Parker uses the
profiles obtained in the zero magnetic field case (Section 2.4). One
might rightfully argue that the application of a static magnetic field
would change the density profiles from thelr zero magnetic field
values, especially when the electron cyclotron radius approaches the
tube radius. In our experlments the electron cyclotron radlus of an

electron having the veloeity v =v varied from about 2 to 4 mm,

while T, was 5 mm. Thus we are probably pushing the limit of

valldity of the density profiles.

5.3 Experimental Results

A series of magnetic field experiments were carried out on tube
No. 1 (rw = 0.5 cm, Te = 3 ev) with the two values of magnetic field
20 and 40 Gauss. The magnetic field was obtained from a solenoid 10
inches long and 2.75 inches in diameter (inside diameter), and was
measured by a Radio Frequency Laboratories Model 1890 Gaussmeter. 1In
these experiments the plasma column was first aligned along the axis
of the solenocid. Then a split cylinder capacitor (for the main
resonance) or a wire dipole (for the first plasma wave resonance) was
placed around the tube and positioned so as to lie in the middle,
lengthwise, of the solenoid. The wire dipole was used for observing
the first plasma wave resonance because a closer device-column coupl-
ing could be obtained convenilently. Again the split cylinder capaci-

tor was employed for observing the main resonance because a well
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defined value of Ke could be computed. It will be recalled

£t
(Chapter II) that the theoretical predictions of the main resonance
are relatively sensitive to the value of Keff while the first plasma
wave resonance is relatively insensitive to this value.

Thé current in the tube was swept in time in a manner des-
cribed in Section 3.5, and the data was taken in the following way.
_With the tube and resonance detecting device in place in the solenoid,
a set of resonance curves was taken with zero magnetic field. This
process conslsted of repeatedly changing the input frequency, allowing
the current to sweep through the resonances, and displaying the
absorption spectrum on an X-Y recorder (Section 3.5). The same
process was then repeated for B = 20 and 40 Gauss and was done
separately for the main and first resonances (since a split cylinder
device was used for the main resonance and a wire device for the first
resonance). Figure 5.1 illustrates a typical absorption spectrum for
an incident frequency of 500 mc and an axial magnetic field of 20
Gauss. Note the small resonance occurring at about 23 ma. (between
the main and first resonances). This small resonance, barely percep-
tible with zero magnetic field, seemed to be enhanced with increasing
magnetic fleld. This resonance remains unexplained. Figure 5.2
illustrates the absorption spectrum for three values of axial magnetic
field BO(Bo = 0,20, and 40 Gauss). Here the incident frequency is

550 mc. Note again the anomalous resonance (and its enhancement for

increasing B ) at about 30 ma.
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Figure 5.3 Dipole Resonance Spectrum for B = 20 Gauss
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Figure 5.4 Dipole Resonance Spectrum for B = 40 Gauss
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By comparing the zero magnetic field spectra with the zero
magnetic field theoretical results, one can calibrate the sweeping
current in terms of the average electron density. It was found in a
separate experiment using a set of Helmholtz coils, a cavity, and tube
No. 1, that the average electron density in the column did not change
detéctably as the magnetic field was changed from O to 40 Gauss. This
is not to say that the density profile did not change, but at least the
average density n remained invariant. Thus it makes sense to use the
zero magnetlc field density versus current curves in the non-zero
magnetic field cases also. This is precisely what was done, and the
results for B = 20 and 40 Gauss are shown in Figures 5.3 and 5.k4.
Once again the parameter mzﬁgg is plotted versus ri/ZE . We have
again chosen Te = 3 ev as the electron temperature. In contrast to
the zero magnetic fleld case we see that each resonance is now split
into two resonances. We have labeled the branches of these split
resonances by means of (+) or (-) B (for example, +20 Gauss and -20
Gauss). We see from equation 5.28 that choosing +B 1is eguivalent to
choosing the (+) sign in the assumed eiing angular dependence;
similarly for the (-) sign. The points are experimental results while
the solid lines are theoretical results appropriate to this particular
tube, calculated by Parker (24). No theoretical curves are drawn
through the zero magnetic field experimental points since in the
process of determining the average density n , those points have been

chosen so they fall exactly on the theoretical curves. The dashed

curves indicate the theoretical results based on the cold plasma theory
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of Section 5.1 where the value of wi predicted by the hot plasma

2
model instead of mg = mp/l + Ke has been used in equations 5.1k

ff
and 5.16.

The cold plasma theory (equations 5.15 and 5.17) states that
for a given ri/;§ the main resonance should be split by wg with
the application of Bo . It is interesting to see how much both the
main and first resonances split compared with wg . Figures 5.5 and

5.6 present the same data given in Figures 5.3 and 5.4. Here, how-
ever, we plot the actual resonant frequency f as a function of
[rs/;gjl/z. For the 20 Gauss case (Figure 5.5) fg = mg/2ﬁ is 56 mec,
while for the L0 Gauss case fg = 112 mc. We note that for both
values of magnetic field the main resonance is split by slightly less
than w_ . The split in the first plasma wave resonance, however, is
significantly less than ®, - For the data presented we have

£ -f

-+ -
f Im meme—— S 008 + OOl &nd Af f = . + .2 .
/%, T £ /Eg = 5k

main

More data is needed to determine the actual dependence of Af/fg upon
Bo and ri/xg .

It is interesting to note that in order to observe the split-
ting of the higher order resonances, the axis of the column must be
aligned quite carefully parallel to the magnetic field. In our first
attempts to observe the splitting of the resonances, & Helmholtz type
coil was used as a source of magnetic fleld. In this arrangement the

magnetic field was not totally parallel to the axis of the tube over



the length of the resonance detecting device. It was observed that
the main resonance split as predicted but the first resonance simply
broadened and disappeared. It 1s also found in the solenoid that if
the column is oriented even at a small angle with respect to the mag-
netic field, the first resonance broadens and dissppears. Thus one
might conclude that the behavior of at least the higher order

resonances 1s sensitive to a perpendicular component of Bo’
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VI. SUMMARY AND CONCLUSIONS

6.1 Comparison of Theory and Experiment

The generally good agreement between theory and experiment in the
zero magnetic field case is indicative of the validity of both the
electron density profiles and the moment equation approach used by
Parker (24) and discussed in Chapter II. The resonance phenomena
arise from standing radial plasma waves associated with the hot plasma

——

model. We have seen that the resonant frequency specirum wz/wg

2,2
depends upon the parameters rw/xD and Keff where Kéff measures the
influence of material exterior to the plasma column. For a given Keff

and rw , changlng ig (by varying the current ln the column) has two

effects. The first effect is to change the propagating wavelength
everywhere in the propagating region, while the second effect is to
change the shape of the electron demnsity profile (which changes the
effective propagating region; see Section 1.3). To properly take
these effects into account, one must call upon the moment equations and
density profiles used by Parker. It should be noted that the cold
plasma theory not only fails to predict the higher order rescnances,
but for rs/zg £ 3006 fails to accurately predict the main resonance.
_It must be kept in mind, however, that we have not performed a
"elosed" set of experiments in checking the theory. For example, we
have not directly measured the density profiles n(r) as a function
of ri/zg . ~As mentioned 1in Chapter III, such a measurement was
attempted by trying to measure the third radial moment of the density

profile using the TM mode of & circular cavity, but the frequency

110
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shifts were so small that the measurement was not feasible. Further-
more, no direct measurement of the electron temperature Te has been
made. The electron temperatures quoted 1n Chapter IV are best fit
temperatures. As mentioned in Chapter IV, however, measurements made
by Klarfeld (29) and measurements that we have made on similar tubes
indicate that the best fit temperatures of ~ 3 ev are quite reason-
able. The fact that in any given tube, a single temperature yields
good agreement betweenvtheory and experiment over such a large range
of ri/zg (lO2 - lOk) is indicative of the validity of the theory.
It 1s perhaps fortuitous that the theory and experiment agree
so well in the two magnetic field cases discussed in Chapter V. It
is recalled that in making the magnetic field resonance calculations
Parker used the zero magnetic field density profiles (24). Since for
our cases the electron cyclotron radius is of the order of the column
radius, we are probably pushing the validity of the electron density
profiles. There are several conclusions that can be drawn from this
preliminary study of the effect of an axial magnetic field on the
resonances. The first is that the first plasma wave resonance as
well as the main resonance splits into two resonances upon the appli-
cation of the magnetic field. To our knowledge the splitting of the
first plasma wave resonance has not been reported. It should be
remarked that there is no reason to suspect that the higher order
resonances (second, third, etc) would not be split also. The second
conclusion 1s that the hot plasma model and consequently the plasma

wave plcture is valid and will adequately describe the results.

Clearly, much work remains to be done on the magnetic field case to
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determine when the zero magnetic field density profiles prove inade-
guate. One would then need to calculate adequate profiles and

incorporate them into the hot plasma model in order to predict the

resonances. Finally, one can conclude that for a given value of

ril/kg » the actual frequency splitting of the first plasma resonance

is conslderably less than the splitting of the main resonance. For

= » + . = . . .
our data Afmain/fg 0.8 £ .1 while Affirst/fg 0.5 + .2
Again, more work needs to be done in order to determine the depend-

ence of the splitting on the plasma parameters.

6.2 Plasma Wave Resonances as & Diagnostic Tool

The plasma wave resonances appear to be gquite a useful diag-
nostic tool for dctermining the properties of the low density
positive column. For example, consider a plasma column operating
at some current I , with no static magnetic field, and suppose we
wish to determine its parameters (density profile, temperature,
etc.). If we know the radius of the column and K pp then, in
principle, we need to measure the frequencies of only two plasma
wave resonances to determine these parameters. We would use the
first and second plasma wave resonances since they are relatively

. Suppose we measure

insensitive to Ke and @y 5 the fre-

gy 1

guencies of the first and second plasma wave resonances, respec-

tively. Then the theory tells us that

(D2 r '
1 { W )

— =t (6.1)
5 1

w
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Knowing Keff we can plot a theoretical curve of f2/fl as a function

of rs/xg . We can now determine the value of rs/;%' vhich satisfies

equation 6.3. Once ri/); has been( determined, both fl and f2 can
2 2 2 —
be determined. Then from @, = wl/fl = m2/f2 » 0 can be determined.
. 2 - 2,2
Finally, since we know r_, n and rw/kD , T_ can be determined.
Such a method has several difficulties. First, it is difficult to mea-
sure the resonant frequencies at fixed current. Second, and more
. 2,2 . _
important, the ratio meﬁwl (shown in Figure 6.1 for K_., = 2.1) is
, 2,2 _
only a weak function of rw/kD . For example, for Kéff = 2.1

2,2 2, 2
mz/ml varies only from about 1.69 to 1.5 in the range of rw/kD = 70

to rs/;g = 5000. Thugﬁimall errors in the measurement of mgﬁmi lead
to large errors in ri/xi . A more useful diagnostlic technique would
be to use & cavity and make measurements over a wide current range Just
_as described in Chapter TII. By comparing these measurements with
theory an accurate determination of the temperature could be made. Then

if we wished the density profile at any particular current, we could

make a measurement of the average density at that current; knowing
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2 -
rw’ n and Te , we could determine ri/zg and hence the profile

(assuming the theory to be correct, of course).

6.3 Proposed Problems

There are several problems whiéh remein unsolved and which seem
worthy of further study. One of the most interesting problems is the
direct measurement of the logarithmic derivative L, @89 function
w2 /;:_g and rs/:g » In the theory presented in Chapter II, no damping
was taken into account and the theoretical values of Ln were entirely
real. In the real problem, however, there would be damping (colli-
sional and perhaps Landau damping) and Ln would be complex. By
actually measuring Ln &s a function of we/;g and ri/;g , one would
obtain a further check on the theory and perhaps an experimental deter-
mination of the damping. One scheme for measuring Ln is presented in
Appendix D . There we consider a split cylinder dipole device with
¢ > 3r (Figure 2a) so that only the dipole mode is appreciably
exclted. If Y is the input admittance to the device with the plasma
on, and if Yo is the input admittance with the plasma off, we find

r Ll -1
Y - Yoz 1WA, — (6.4)

1
rwpl ¥ Keff

where Al is a constant defined in Appendix D. Thus by measuring the

) 2,2 2,2
input admittance to the device as a function of w ﬁwp and rw/xD ’

one could obtain Ll . The same information could be obtained by car-

rying out free space or waveguide scattering experiments. The wave-

guide scattering experiment might be complicated by the necessary
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variation of applied fields along the axis of the column.

Another interesting problem would be the investigation of the
plasma wave resonance spectrum in gases having different ion masses.
Although the plasma wave phenomenon 1tself is strictly an electron
gas phenomenon, the density profiles and hence the spectra are in-
fluenced by the ion mass. Equations 2.38 and 2.45 show that while
the equation for the potential itself depends on ri/zg (or 62), the
equation determining the wall depends on the ion mass m.i .

Finally, énother problem would be the investigation of propaga-
tion effects along the axis of the column. The theory we ha#e used is
z independent, and the devices used have been constructed so as to
make the applied fields as z independent as possible. Several authors
(30,39) studying the main resonance have shown that if these restric-
tions are relaxed, multipolar waves can be propagated along the axis
of the colum. Thus if we think in terms of an w-p diagram (B corres-
ponding to an eiaz dependence), wWe could say that our experiments
have been done in the £ =0 limit. The propagation effects of the

higher order resonances have never been systematically studied.
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APPENDIX A

A.1 Introduction

The first part of Appendix A will be devoted to sketching the
"derivation of the moment equations from the correlationless Boltzmann
equation. In the second part we shall discuss the adiabatic approxi-
'mation and attempt to justify the choice of y = 3 1in equation 2.18
by considering one-dimensional waves propagating in a rectangulgr

coordinate system.

A.2 The Moment Equations

In a quite general way we can describe the electron gas by the

distribution function f(r,w,t) where

av = £(z,5t)a’r a’y (A.1)

3r at position

——

is equal to the number of electrons in the volume d
r with velocities between ¥ and ¥ + dy at time t . We assume

that f(r,w,t) satisfies the correlationless Boltzmann equation (23)

..a.?..*_w.Vf-E[E-i-WxB]'v:E:O (A-2)
ot T r om= "UE W
where
d 3 )
T AR TAY RS -

3 9 d
VE=I -""+I""'"+I'§w— . (A.h-)



If we take moments of equation A.2 with respect to various functions
of the velocity w , we generate an infinite set of equations in
terms of macroscopic quantities such as the density n(};,t) , the
average velocity y(r,t), the pressure tensor P(r,t), etec.

From the definition of f(‘x:_,y_,t) glven in equation A.l, we can

write for the average density n(r,t) at the point r at time ¢t

+®

a(5,t) = f £(rwt)ddy (4.5)

-0

The average velocity of the electron gas at r and t 1s

+00
v(r,t) = <¥> = %[xf(zjbt) d31 . (A.8)
-0

In general the velocity average of any scalar quantity Q(EJ yjt} is

given by
+aD
1
<Qr,wt) >= = f Unwt)t(rwt) ady - (A.7)
-0

If we now multiply equation A.2 by Q(}; B ln_?/.t) and integrate over the

velocity space, we obtain

%E n<Q> ~-n< %%>+Vr *n<QW>-n< V£Q°1> (A.8)

e

en
+ = <(E+xxB) V}!.Q> = 0 |,



-100-

The various moment equations are generated by choosing suitable func-
tions Q(r,w,t) .
If we set Q = 1 1in equation A.8 we obtain the equation of

continuity:

g-%+v-ny,=o . (A.9)

By setting Q,(x,}'_,t) = wx’wy and v, , respectively, and adding

the results to form a vector equation, we obtain the momentum transfer

equation;
v 1
-~ ' e .
CRICARSIEEEIFESEE I EE-- A AR SR

where P 1s the kinetic stress tensor defined by

+00
pij =m f uiu.j £(z,¥,t) d33_ (A.11)

=00

and u 1s the peculiar velocity defined by

u
P

= i" “Yb . (AtlE)

The tensor divergence V‘I‘ - T 1is defined by

d 3 d
VT'gz[&Pxx+$Pm+§z-sz]ﬂlx+'.' ) (4.13)

By setting Q(w,r,t) = wu, u

u,u u, etc. and combining
x y x z

the results, vwe obtain an equation for the kinetic stress tensor:
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(%_E-PV .V+V.X)E+VX‘£+(VX‘.,E)T
+V-g = E (A.1k)
where
+00
Upe = f Uty T (20,08 (A.15)
-0

is the heat flux tensor and

H = —%[(z{xI ) - @, "B+ (BxI)- le'é)]
. (A.18)

Vy ¢« P 1is the scalar product of the two tensors Vy and P where

Bvx avx avx
ox dy dz
va bvy va ’
Vy = 5> S 5 (A.17)
v v ov
zZ z z
ox oy oz

The above procedure can be carried out ad infinitum, yielding an
infinite set of moment equations like equations A.9, A.10 and A.lk. One
characteristic of this set of equations is that each successive equa-
tion contains a new unknown quantity. For example the equation for
n (equation A.9) contains the new quantity Y wvhile the equation for

v (equation A.10) contains a new quantity P . Similarly, the equation
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for P (equation A.14) contains a new quantity Q, and so on. To
obtain a finite closed set of equations, the moment equations must be
terminated at some point. For the theory presented in Chapter II, the
moment equations have been terminated by neglecting V *Q in equation
A.1%. This is the so-called adiabatic approximation. By setting

v - g.n O , one can determine the behavior of the pressure tensor I

A

by using equation A.lk.

A.3 Example of the Adiabatic Approximation

As an example of the adisbatic approximation, and as an
attempt to Jjustify the choice of 71 = 3 in equation 2.18, let us
conslder the propagation of acoustic waves along the z direction in
the plasma. We shall assume that in the absence of any disturbances
the electron velocity distribution is isotropic. Then the off

diagonal terms of the pressure tensor vanish and we have, for example:

+00
o 2 . .3 2 1 2
Pxx" mfuxfdw=nm<ux> =-§nm(u) | (A.17)
-0
where
2 2 2 2

If we assume the electron gas to be Maxwelliasn, we can write

2
P = -;: nm(u) = mkT = P_ | (A.19)

where Po is the electron gas pressure. Similarly we have
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P =P =P = PO . Thus in the absence of any disturbances, the

pressure tensor becomes

P 0 0
Q

P = 0 P 0

= (o]
0 0 P (A.20)

(ewiwt

If we now consider wave propagation in the z direction time

dependence), the pressure tensor will become weakly anisotropic:

o~ ~iwt -iwt -ipt
P+ Pxx(z)e P_(z)e P_(z)e
§;== ﬁyx(z) ~lot P +P (z)emimt Py (z)e'imm
~ -1mt -1t -iwt
P, (x)e sz(z)e P+P Z(z)e
(A.21)

where we assume that the perturbed quantities are much smaller than

Po . If we write

n = n + F e it (4.22)
~imt
y = v, e I, , (A.23)

linearize equation A.l4 using A.21, and invoke the continuity equation

we find that
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£ - P = £ .2k
Pxx(z) Pyy(z) kT n (A.24)
P (2) = kT TH (A.25)
PiJ = 0 , 143 . (A.26)

Now only 'ﬁgz(z) is important in the momentum transfer equation,

since

Bﬁzz
" E 5 I, (A.27)

<
o]
]

and does not involve g;x or ‘5;y . Thus if we were to describe this

~ ~1lwt
problem using & scalar pressure P = PO + P(z)e , 1t would be appro-

priate to choose

P, = nkT (A.28)

P 3nkT (A.29)

vhich is analogous to equations 2.17 and 2.18. There we are, however,
considering waves traveling in the single r direction rather than
the =2z direction.

It is interesting to note that retaining higher and higher

order terms in the moment expansion is equivalent to expanding mzﬁmg
kv

) 2
thermal speed) or in povers of (759) where

wave speed

in powers of (

2 2kTe

v =
[ m

with that obtained by directly integrating the Boltzmann equation and

(35). Except for Landau damping, this expansion agrees

expanding the resulting plasma dispersion function (36).
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APPENDIX B

The purpose of this section is to derive the resonance condi-
tions used in Chapter III for'the split cylinder and wire multipole
devices. The devices considered and the noﬁenclatdre used is shown
in Figure B.la,b,c,d. Since the dimensions of the devices are small
compared to a free space wavelength, the quasi-static approximation
will be used throughout.

For all of the devices considered we can write:

Region I (r £ rw)
I rs w? I r 2
@ (r,G,—E.—-, _—.5—) = Z ¢n(r,_.%., %)sin(n@ + ¥) (B.1)
XD wb n XD mp
Region II  (r €T £D)
¢ (x,0) = T [Bn(f;)n + Fn(%)-n] sin(no + ¥) (8.2)
n
Region ITI (b€ r € ¢)
1l r,0) = [Dn(%)n + sn(g)‘nJ sin(né + ¥) . (3.3)
n

Resonance will occur when the fields in the plasma become large or
when Sn has a pole. This agrees with the resonance condition dis~
cussed in Section 1.2, since Sn is analogous to the scattering

amplitude.
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Figure B.l Multipole Device Geometry
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Nowat r = T, and r = b the potentials and normal dis-

placements‘must be continuous, or

2
r 2 r .
I W w W\ v,
¢n( w::2“; —_-?-) B (—:5— F ( b) (B.h)
A ®p
D
I 2
K d¢n ( rw U.)z ) - ‘@ B (r n l F (‘I_‘E' -n-1
p ar B3’ T3 b |'n'B’ T a'®
®
o % e, (5.5)
B +F = D +8 (B.6)
n n n n ,
K(Bn - Fn) =D - 5, (B.7)

where KP and K are the relative dielectric constants of the plasma

region and glass regions respectively. Tf we define the logarithmic

derivative L. (as in Chapter I) as

K d¢i
Ln = gf—ar— (B.8)
n r=r
W
we can write D in terms of L and S as
n n n
D = pS (B.9)

where
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nK
- W w . (B.10)

rL r p
;’Kn [(K+l)(—5‘1) + (K~1)(-};)n

L r n r
i “[(m)(-"l}-)ﬂ (K-1) (%)nJ . [ (K+1) (1'1}-) - (K-l)(..gi)“J

n

rw n b \n
(k+1) (57 - (k-1) (;:;> -
Thus in Region III we can write
#(x,0) - ¥ {pn@n + <—§)’“} S_ sin(nd + V) (B.11)

To determine Sn we must investigate the conditions at r = c.

Case A. Split Cylinder Devices. For the split cylinder

devices (Figure B.la,c), the potential is specified on the cylinder
r=c¢ . Let us choose V¥ =0 so that the angular dependence in the
above equations goes as sin ne . Then by evaluating equation B.1ll
at r = c, multiplying both sides by sin me d6, and integrating from

=0 to O =2n , we obtain

2n
8 = = j‘ ¢III(c,O)sin no 4o (B.12)

T

where ¢III(c,G) is the value of the potential on the cylinder
r = ¢ . For the dipole case

2v
) = o n= 1;3;5:..' (B-l3)

: nx {pn(%)n + (%)'n}
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vhile for the quadrupole case,

b~
s = ° n=26,10,""* ., (B.14)

: nx {pn(%)n + (%)-n}

We see that for the dipole and quadrupole devices (as well as for

higher order devices) the poles in s, oecur when
c\n c\~-n
pn(:.;) +() =0 . (B.15)

Equation B.1l5 thus determines the resonance condition for the split

cylinder devices. If this equation is solved for Ln we obtain

b .n rw n
(7)) (x+e) - (5) (k-8)

o =- 0
Ln = - -I-'; K — rw - = rw Keff(rw,b,c,K)
(77) (x+8) + () (X-g)
W (B.16)
1+ (b/c)®®
vhere g= ——— (B.17)
1 - (b/e)

and
b.\R rw n
(77) " (k+g) - (5) (K-g)
Keff(K’rw’b’c) = K bw = . (B.18)
() (kvg) + (£)"(K-8)

Case B. Wire Multipole Devices. To handle the wire multipole

devices oriented as shown in Figure B.lb,d, we assume ¥ = x/2 1in
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equation B.ll and introduce a potential in Region IV of

¢Iv(r,9) = E: Qn(%)-n cos no (B.19)

We further assume that the wires carry a charge per unit length ¢
~lwt
(arranged as in Figure B.lb,d with an e time dependence). At

r = ¢ Wwe must have

1,00 = ¢V (e,0) (B.20)

v o
BV(e,0) - B (e,0) - L20) (.21)
[s]

where o(c,8) 1is the charge density on the cylinder r = ¢ . With

equations B.19 and B.1l (with V¥ = x/2) these boundary conditions

reduce to

o(c,8)
€

o)

2n c\n
> -E'pn(59 5 cos m6 = (B.22)
= .

Again we determine Sn by multiplying equation B.22 by cos mg 4o ,

and integrating from © =0 to @ = 2x which gives:

2x
S =& (byn . ]
n " Erp e (c) .jﬁ o(c,0)cos no 4o (B.23)
no 0

For the dipole device we can write

o(c,0) = 2 {s(o) - 8(0 - n)} (B.2Y4)
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which yields

n 1
= 4 ("') —_— n=1,35°""". (B.25)
P
n
For the quadrupole device we have

o(c,8) = %[a(e) - 8(6 - %) + 56 - 1) - (6 - 225)] (B.26)

which gives

S = 29 (E)n =+ n=2,6,10,°""° (B.27)
B pge © Py
o
We see that for the wire multipole devices the poles in Sn occur

when

p. = 0 . (B.28)

Using equation B.1l0 we see that equation B.28 holds when

r
(&) ()" - (1) ()"

Keff(

H‘ﬁ

L =->K K,r ,b,c = 0) .
T W

; DR L (1) (L
() ()7 + (1) (5) (8.29)

W

Equations B.16 and B.29 are Just the resonance conditions used in

Chapter III.
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APPENDIX C

C.1l Introduction

Let us consider an empty cavity having a resonant frequency
w .- and field distributions given by go(a) and .90(2) . Let us
now introduce a piece of dielectric of dielectric constant € 1into
the cavity. The resonant frequency will now be «w and the field
distributions will be given by E(r) and B(r) . It can be shown

(31) that the exact frequency shift of the cavity is given by

.jAeE*~Edv
“o e

o0 _ _ _©
3 = - Bg 7B (c.1)
€ . -
J[ o2 T2 " av
v Q
o)
where
= € - 2
NG e (c.2)

and A is the volume of the cavity. Let us write A€ in C.l as
MA€ vwhere A 1is an expansion parameter with 0 € A €1 . We see
that 1f 'x =0, m= oo vhich effectively removes the dielectric
from the cavity, and if XA = 1 we have the problem which we are

trying to solve.

Let us expand the perturbed quantities E,B and w ina

power series in A .
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2
E = §o+)»§l+)~§2+ (c.3)
= x O] .)4
B = B +\B + 2§2+ (c.4)
® = W +Aw T (c.5)
00 1 2

I we cubstitute the above expressions into equation C.l, we obtain

to first order (neglecting all terms of O()»a)):

IAG E - Eadv fae EY *E dv
®= 00 Vo __Av
® -7 BX . B - 8w (c.8)
oo ﬁe EXe B + 22 ~o] dv e
00 “0o "
v
o]
where
— 1 * - 1 *
= € . dv = W = —— « B dv C.7
We .II o fgo “E'O v B )'H-L f‘wo “0 ( )
v °v
o o)

is the average stored electric field energy in the empty cavity

¥ =W t resona .
(we p &t reson nce)

C.2 Determination of the Average Electron Density n in a Plasma
Column Using the ™H10 Mode of a Cylindrical Cavity

Let us now conslder the speclific case of a plasma coluwmn along
the axis of a right circular cylindrical cavity operating in the TMOlO
mode which is illustrated in Figure C.l. We assume that the electron
density n(r) in the plasma reglon has a radial gradient. The plasma

will then be described by the dielectric constant
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w2 (r) 2
e (x) = ec[l-.?,‘,_} e {1- ~ n(r)] . (c.8)

G m e

Thus in the plasma region

eoe2
(AE)P = e, - € =~ 5 n(r) . (c.9)
me w
(o]
In the glass region
(8€) 1ags = €= & = lK-1) (c.10)

where K 1s the relative dielectric constant of the glass. For the

™) o mode ve can write (32)

B..r
0l )T
a

I, (c.11)

E,=E(x)I = AJ(

vhere B,, 1s the first root of J,(x) and a is the radius of the

cavity. This ylelds for the average stored elecirlc energy

enLa2 2

— _ fe) 2
v, = = A Jl(BOl) (c.12)

where L 1s the length of the cavity.
We can now use equations C.9, C.10, C.11 and C.12 in equation
C.6 to determine the frequency shift of the cavity. In evaluating

the numerator of equation C.8, we take the small argument approxima-
Po1®
a

tion of Jo( ) or assume that EZ ~ A . Thus we assume that over

the glass and plasma regions the electric field is approximately
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uniform. If we observe that the average value of n(r) 1is given by

Ty
— 2
n o= —5 f n(r)dr (C.lB)
e o
we find that
: 2 2 2
w - w 2 r b - r
00 1 1 ,e W= w
= —3 = &) 58 - (K-1)—5 } (C.14)
o 2Jl(501) ® o a a

where r. and b are respectively the inner and outer radii of the

glass tube.

Now let @ be the resonant frequency of the empty cavity,
w, be the resonant frequency of the cavity with the glass tube but no
plasma, and o be the resonant frequency of the cavity with theiglass

and the plasma. Then

- o ' 2 I"2 62 re
- 1 1l ,e - =
= =3 = (G 5 B - (k-1) --g——") (c.15)
00 235(B..) (w o a a
1701 .
w w 02 1‘2
- . - x
- - — (k-1) | —5 : (c.18)
00 2Jl(501) a
Subtracting C.16 from C.15 we have
2
w - w 2 r
(o) 1 1l ,e W -
= = 5 E{e'“) — B . (c.17)

2
o0 QJI(BOI) ®» o a
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If we remember that =w00 + ml + e+ and (uo :(Doo +M_)Ol + ot

we can write

® - o _ X&ul- wOl) k(wl- wOl) @
wOO (DOO wo wOO
Mo, - o) ® W, - W W, - W
_ lw o1 [l+x mOl] ! w o1, ,2%" %01 ny -
o] 00 o d)o moo

Thus to the order that we have been keeping, we can write

(o] (o]
® = . (Cola)
00 (@)

Using the right hand side of equation C.18 in equation C.17 (which we

have seen in Section 3.4 is appropriate for dielectric measurements),

- We can write

2
1 e2 rw -
mb(w - wo) = 5 — 5 1 (c.19)
2J1(501) o a
or 5
277(B,,) .2
B o= g rar (c.20)
e /hn me_ T
or
n - 6.686 x 1073 9—2_ £ &f (c.21)
r
w
where

H

AT £-£ - (c.22)
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Equation C.20 is the relation which was discussed in Section
3.4 and which was used to relate the cavity shifts to the average

electron densities.

C.3 Determination of the Dielectric Constant of a Dielectric Rod

Using the ™p10 Mode of a Cylindrical Cavity

Let us consider a dielectric rod of relative dielectric

constant KL and radius rw which is surrounded by a glass tube of
relative dielectric constant K and with inner and outer radii r.
and b respectively. The calculation of the frequency shift pro-

duced by this arrangement 1s done exactly the same as Iin Sectlion C.2

with one exception. In the region r = r. we no longer have plasma

but a real dielectric. Thus in this region

(ne) =€ - € = eo(KL- 1) . (c.23)

dielectric [e]

Again

(Ag)glass = €-¢ = e (k-1) . (c.2k)

If we again make the approximation that EZ ~ A for r <b and use

equation C.6, we find that

2 2 2
w-u 1 rw b- rw
_ oo _ —— - (KL- 1) — - (k - 1) 5 . (c.25)
00 2‘Jl( BOl) a &
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For a dielectric rod alone (without the glass mantle), we can set

b = ry and obtain

2

2-° it (KL- 1) f% (c.26)
a

oo
W -2
00 2Jl(501)

where w, is the resonant frequency of the cavity with only the

dielectric rod.

C.k Determination of the Third Moment of the Electron Density Distlrl-

Tw
bution I, =J[ n(r)rddr Using the M), Mode of & Right Circular
Cavity 0
Again the method is similar to that used in Section C.2. We
employ equation C.6 to calculate the frequency shift of the cavity.

For the TM,;;, mode we can write (32)

BT
E, = A Jl( > Ycos 6 (c.27)
E, = E, = 0 . (c.28)

This ylelds for the average stored electric energy:



* . o 2
CEV = e T (B, ) (c.29)

H
-

m

&4

w
e

where ﬁll is the first root of Jl(x). As in equation C.9, we take

for Ae 1n the plasma region

e

B, = - S5 () (c-30)
mw

and in the glass region

(Be)g = &gk - 1) - (c.31)

Using equations C.26, C.28, C.29 and C.30 we can now evaluate equation
C.6 for the frequency shift of the cavity. In evaluating the numera-

tor of equation C.6 we make the small argument approximation to

B,
J,(=5=) or ve assume that

1

A
1T

. 55— ©o8 o for r<b . (c.32)

Then 1f we remember that

I‘w 3
o}
equation C.6 yields
5 2 i
® - o 2 p I P oo
oo  le 111 3 o (p.qy 1L Y. (c.3W)
o B mE, ot Wt J2(B ) 3_6,12(5 ) at
o] o\P1q 2711

Again 1if we let W be the resonant frequency of the cavity with the
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glass present but the plasma off, we have

®;- @ Bil o' r:
00 16J2(ﬁll) a
Subtracting equation C.35 from C.36 we have
W - w w - N I
"o . __ o i ey, 1 "3
~ 2 e (c-36)
00 o) o a ® Jz(ﬁll)
or
2 2
167" me_ J(B..)
_ o 2" 1L L
13 = 32 5 a fOAf (c.37)
11 ©

where fo is the resonant frequency of the cavity with the glass
-present but the plasma off, Af = f - fo and f 1is the resonant
frequency of the cavity in the presence of the glass. Equation C.37

is the relation discussed in Section 3.5.
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APPENDIX D

D.1 TIntroduction

In this section we shall investigate a method of directly
measuring the logarithmic derivative Ln as a function of the plasma
parameters by making admittance measurements on the split cylinder
arrangement. In the first section we shall relate the logarithmic
derivative to possible admittance measurements, while in the second
section we shall investigate some equivalent circuits of the plasma-

split cylinder system.

D.2 Admittance of the Split Cylinder Capacitor

We shall consider the split cylinder dipole device shown in
Figure B.la. It was shown in Appendix B that the potential in Region

III (b £ r € ¢) is given by

2 e
) - 5 :o PG+ (5

- sin ne (D.1)
n=1,3,5"* pn(%)n + (%) -n

where P, is defined by equation B.10.

We can write for the input admittance Y of this device

Y = = (D.2)
o
where
I = iwg (D.3)

and q 1is the charge on one of the plates. We first calculate g

in the following manner. The charge density on the upper plate, for
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instance, is given by
a¢III
0(9) = - 60 Er(c’e) = 76 -——g]—;—- . (D-)'l')

The total charge on the upper plate is then

™ 2v T, e p. (@ @7 T
q = 0(9) Leds = ____?_____2 sin ne 4o
| " n=1,3,5p (9% ™
o nd’ T 0
b2n
i hvoL € 1 P, - (Z) (
I 1,3,5 °  bm D-5)
n= ) o
7+ (Q)

where I 1s the length of the capacitor (neglecting end effects).

Thus:
p - (5>
R UL D YN - TG (D.6)
=1 b
o n=1,3,5 Pt (c
We can write
Y = LY (D.7)
n=1,3,5
where
p - (R0
" - (2
Y = 1iwe "'"I—J L c ¢ . ) (D'S)
n m by 20
P+ (=
n [

Let us introduce the dimensionless parameters
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r
- - w 2n
Cln = 1 (——b-') (p.9)
r
wy\an
B, = 1+ (’B") (p.10)
KBg+a
Xn = 2= e 2 ' (D'll)
K Bn ng
and
Kag+ B
K Bng + 05

where once again K 1is the dielectric constant of the surrounding

glass and

1+ (-‘{l)&1
g = m‘i-g . (D.13)
1- (D)

We can then rewrite equation D.8 for Y es

Y = iwe %—X;ﬂ :"in : fm (D.1%4)
wn o eff
where Keff is the effective dielectric constant defined by equation
B.18.
Now if there 1s no plasma the logarithmic derivative at r = r
becomes

(D.15)

so that we can write



MX r1+xr
Y = ioc n:[ n_] (D.16)
l+KeffJ
Iet us now form the difference Yn - Yon :
e r L + nkK¢ 1 +KF |
Y -Y = AY = iwe n[wn 2. n} (D.17)
n “on n O nx | r L + nK 1 +K
wn eff eff

rL -n
wn

2 2
c 1+ Keff rWLn+ n Keff

).

= iu)Eo 2
rur(Kﬁn+ ang)

In the following discussion we shall write

rlL -n
Y -Y =AY = io A {(—2B ) - (p.18)
n r L + ok
wn eff

where

2 2
16K Leo(g+l) (rw on ( 1

A = (=) (=) . (D.19)
B nn(KB_+ & £)2 ¢ 14 Kepp
n n
Since Y =Y +AY , we can write
n on n
Y o= ), Y =) Y+ LAY =Y &3 AY (D.20)
n=1,3,5 n n n
or
Y-Y = ) AY, (D.21)
n=l)3)5

We see from equation D.21 that we can experimentally measure

Z AY by measuring the difference in the input impedance with the
n
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plasma on and off respectively. The coefficients An in the expres-
sion for AYn decrease very rapidly with increasing n . For
example, if we consider tube No. 1 in the split cylinder dipole
device discussed in Chapter III (rW = .506 cm, b = .616 cm,

¢ = 1.905 em, L= 7.6k cm, and K = 4.74), then A = 1.28 x 10713

and A3 = 1.85 x 10-16. Thus if we arc working near a dipole reson-
ance (n = 1), Ay, will be the only important term in ZAYn . Since

for the dipole devices used we apparently cannot see the n = 3

resonance, AY:L may be the only important term throughout the range

of plasma parameters observed.

D.3 | Equivalent Circuits

We have seen that the input admittance to the split éylinder

dipole device can be written as

Y=Y + ) AY (D.22)
n

In the ideal case (neglecting radiation), Y~ will be the admittance
of a capacltor and the input admittance can be represented by the

equivalent circuit of Figure D.l1.

— — — — o—— —— —— -

AYs {EYM.'I

IR
[~
-~

L —d

3
h“&

Co —

Figure D.1
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If we assume that we are near a dipole resonance so that A'Yl is

the dominant term, then we have the circuit shown in Figure D.2.

G |av,

Figure D.2

A certaln amount of insight can be gained by examining the case

in which the plasma is assumed to be described by a lossy dielectric

constant:
€ m2 vw2
Kp = _6.2 = l - .% -1 ——-'-—g ) (D '23)
o w w

where v 1s the collision frequency. Here we assume the plasma to

2
be uniform and that 1’-2- <<'1 . The logarithmic derivative will then
(4]
be
K 1 w2 vw2
Ll = ——.E- =  — l - -‘—P- - i "'—“"P * (D‘Ql")
r r .2 3
W w w w

From equation D.18 we have
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2 2
(Dp v U)p
- I
| lw Al(m2 + —3 )
AY, = 5 5 (p.25)
w0, ve
(1+Keff - —é') -1 3
w ®
and
| 2 2
% “p
L (l+ Keff - ;—2-) -1 ;3'
A2, = = = 1 5 5 . (D.286)
1 AY, w3 vay
o Al(—§ ti—g )

If we rationalize equation D.26 and again neglect vzﬁne with respect

“to 1, we can write

1 +K 1+KXK
AZ - iw eff . 1 V(LK) . (p.27)
1 2 iw A A @
Al w . 1 1@
1 p P

The impedance function AZl looks like the impedance function of a

series IRC circuit where

L = —L (D.28)
P A w2
1°p
1 +X
R = v fo)=vL : (D.30)
P
Al w
P

Thus for this case the equivalent circuit of the plasma device arrange-

ment looks like that shown in Figure D.3.
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3
e D
Figur

l"'KrFf
Wpe
L= —
= A,
Cp=
R=vL
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