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ABSTRACT

In the following we investigate; theoretically, the interaction
of microwaves with gyroelectric élasmas of finlite extent, particu-
larly those having cylindrical or spherical boundaries. Within the
latter class of problems, only those involving the axially
magnetized column with circular cross section are amenable to
rigorous analysis. We find that one of the important effects of
the anisotropy is to induce changes in the polarization of the scat-
tered field resulting from interaction with an obliquely incident
plane wave.

A8 a means of solving problems which involve uniform but
arbitrarily directed magnetization, we develop the perturbation
theory of microwave interaction in which the static magnetic field
is regarded as a small perturbation of the isotropic plasma. The
field equations are derived for all orders but only those of first
order, linear in the magnitude of the static magnetic fileld, are
solved. This solutlon is carried out in general, the only restric-
tion being that the fields for the isotropic problem are assumed to
be known.

The first order theory is then applied to cylindrical and
spherical problems. When the approximate solution for the axially
magnetized column ie compared with the exact result, agreement is
obtained provided that the static magnetic field is weak, as
expected. Finally we consider the problem of a magnetic dipole

radiating from within a weakly magnetized plasma sphere.
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I. INTRODUCTION

In the following report we present the‘results of a theoretical
investigation into certain aspects of microwave interaction with a
bounded gyroelectric plasma, i.e., a plasma in which there is maintained
a gtatic magnetic field®, Such a medium may be characterized, within
the framework of a phenomenological theory, by a relative permeability
equal to unity and a relative permittivity given by a second rank
tensor, the latter reducing to a scalar tensor in the limit of vanishing
magnetic field.

The interaction of microwaves with gyroelectric plasmas has been
the subject of many investigations. These have been directed toward,
for example, the explanation.of various geophysical phenomena such as
ionospheric double refraction and whistler propagation and toward the
use of microwaves to analyze fundamental processes in gases. However,
because of the complexity of Maxwell's equations for such a medium, most
of the theoretical work has been limited to one~-dimensional problems
- which involve planar boundaries. It should be recognized, however, that
there are many practical situations in which the plasma is finite with
curved boundaries. Wé are thus motivated to consider several itwo- and
three-dimensional problems, specifically ones involving cylindrical or
spherical geometry.

It appears that the early work concerning the interaction of micro-

waves with cylindrical gyrotropic structures was for a gyromagnetic

*We regard as outside the scope of this work a discussion of the manner
by which the gas is contained or the origin of the static field.
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rather than a gyroelectric medium. Motivated by interest in a device
known as the ferrite isolator, Suhl and Walker (1), and later Epstein
(2), preéented the relevant equations for the field components in an
’axially magnetized cylinder. Papas (3) shoved that the permittivity
of a magnetically bilased plasma is alsoc & tensor, mathematically
analogous to the permeability of a ferrite. Hence the work previously
referred to may be applled to this type of medium as well.

Several years later Platzman and Ozaki (4) solved the problem
of scattering of a normally incldent plane wave by a cylindrical,
axially magnetized plasma with circular cross section. Wilhelmsson
(5), interested in electron beam inferaction, discussed the more
general case of oblique incidence. However, in both instances, empha-
sis was placed on the effect of the magnetic field on the scattering
cross section. In the present work we shall be interested in the
change in polarization of the scattered field rather than in its

‘intensity.

Examples involving spherical boundaries, on the other hand,
have received little attention. These are of interest to radio
astronomers since celestial microwave sources are plasmas which may,
‘as a first approximation, be consldered spherical in‘shape. In
addition, there is some evidence of Faraday rotation of the waves
emitted from such bodles which suggests that they have gyroelectric
properties (6). This effect might be exploited in the determination
of their'physicaliparameters, such as electron density, magnetic

field, etc., so that theoretical work in this area is of more than

academic 1nterest.‘
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The report is divided into five main parts., In the first we
- examine the propertiés of a gyroelectric plasma and derive an expres-
sion for the tensor‘permittivity. The second part contains a
rigorous analysis of the fields inéide a cylindrical plasme with
application to the problem of scattering of an obliquely incident
plane wave by an axially magnetized column. The third consists of a
development of the perturbation theory of microwave propagation in
gyroelectric plasmas in which we regard the static magnetic field as
a small perturbation of the isotropic medium. In the fourth part
perturbation techniques are applied to cylindrical systems with the
axially magnetized column considered as a special case. As antici-
pated, the results compare favorably to those of the exact analysis
provided that the validity criterion of weak magnetic field is satis-
fied. Finally we employ a perturbation method to find the field of a
radiating magnetic dipole immersed in a gyroelectric sphere. This
structure is sugéested as a crude model for a celestial microwave
source.

The rationalized MKS system of units and a time dependence of

the form exp(-iwt) will be used throughout.
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IT. PROPERTIES OF A GYROELECTRIC PLASMA

A. TIntroduction

We use the term plasma to denote a gas which is at least par-
tially lonized. There are therefore some free electrons which are
free to move under the influence of an ambient electromagnetic field
and, in the case of a gyroelectric plasma, a static magnetic field

Eo as well. Maxwell's equations for such a medium are

4
e
&
i

ﬂnuo H

<
®
e
i

-ip € E - Nev ‘ (2.1)

where v 18 the average induced velocity of the electrons, of which
there are assumed to be N per cubic meter.

We confine this investigation to the so-called "cold" plasma,
which 1s a lossless medlum since collislons between electrons and
other particles are ignored. In addition it will be assumed that the
frequency of the electromagnetic field is high enough that the induced
motion of the positive ions can be neglected. Thus the only effect
of these heavier particles is to make the total average charge den-
sity zero.

Since v will turn out to be a linear vector function of E ,

it is convenient to write the second of Maxwell's equations as

VxHE =-1lwe Kk *E (2.2)



thereby defining an apparent relative dielectric temsor & . Our

objective in this chapter is to present a formula for k 1in terms

of the physical parameters of the medium.

B. The Equation of Motion for Electrons

In order to derive the expression for the dielectric tensor we
must examine the motion of electrons in a combination of time depen-
dent electric and static magnetic fields. From Newton's law of

motion and the Lorentz force equation we have that

—= =-¢eE - evx Eo . (2.3)

Note that the effect of the alternating magnetic fileld on the motion
is ignored. This is a valid approximation provided that the magni-
tude of the eléctron velocity is smell compared to the speed of light.

We prefer to write 2.3 in the form

(2.4)

®
|<
i
]
Hlo
1=

where wg is the gyro-frequency of the electron and e is a unit
vector in the direction of the static magnetic field. If it is
assumed that the latter is uniform, then the equation for v is a
linear equation with constant coefficients.

A more convenient relation can be found by exploiting the

algebraic properties of the linear differential operator. Using the



Heaviside notation p = d/dt wve write 2.4 as

L) *v =-_E (2.5)
where
Lip) = - o, ey x (2.6)

and U 1is the unit dyadic. The next step is to invert L(p) . This
may be done by using a matrix representation in rectangular coordinates,

treating p as an algebrailc variablé. The result, cast back Into vec-

tor form, 1s

2 2
PU+ompeX+0H_ e e
-1 = -3 =B —B
L (o) - = £ : (2.7)
- pT t®, P

The interpretation of 2.7 is that v satisfies the differential equa-

Under an assumed time dependence exp(-iwt) , the steady state solution

to 2.8 is

e . 2 2
v o= mm(mz- mg) [ iw _@_V-Hnmg eg XE + img EB(EB _E_)J . (2.9)
g
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C. The Dielectric Tensor

From the solution for the electron velocity v in terms of
the electric field E , the expression for the dielectric tensor may
be derived by making use of 2.1 and the defining equation 2.2. Using

2.9 in 2.1 we obtain, for the right hand side of the equation,

o) 2 2 2
_p "o % 2% .
8 g g
(2.10)
leading directly to
2 2 2 2
“p 1op g “p %
R LES S TR B Y
g ' g g
where mb denotes the so~-called plasma frequency
o2 1/2 |
wb = -ﬁzg . (2.12)

As anticipated, the relative permittivity is a tensor. 2.1% 1is
a convenient representation wﬁich is invariant under transformation of
coordinates and, if we set mg = 0 , reduces to the well-known result
for an isotrﬁpic plasma

lim x = (1- _-g.)u . (2.13)
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In order to si‘mplify the subsequent equations we introduce the

following symbols:

2
W
Ky = 1- P
o - W
2 2
o
K =
3 mz(m-wE
&
m2
- =1 - 2
K,e = nl+n3—l 5
®
wza) .
g = _%.5_? , (2.1k4)
w(n™- mg)

The inverse of the dielectric tensor, whick is also a useful
quantity, is found most easily by employing a matrix representation
“in a rectangular coordinate gsystem oriented with its z-axis parallel

to the static magnetic field. In this system xk 1s given by

[ Ky ig 0 ]
K = ~-ig “l 0
O O Ke » . (2'15)

The inverse of x , denoted by the symbol 7 , is



10 =ih 0 .
q o= ih Ul o
i 0 0 Tng s (2.16)
Where
= -
1 2
Ky g
1
ot
2
n = -—é-g--ﬁ . (2.17)
Rl - g

It will be useful to represent 7 in a form analogous to the expres-

sion 2.11. This representation is

3 = nU+ihg x * 38 & (2.18)

where .
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IITI. THE FIELDS IN A GYROELECTRIC

CYLINDER-RIGOROUS THEORY -

A. The Fields in an Isotroplc Dielectric

Before proceeding to the main problem of this chapter we dis-
cuss the more familiar one of solving Maxwell's equations in homogeneous,
isotropic materials. Having done this will make the effect of the aniso-
tropy more discernible.
| For a source-free region Maxwell's equations are, assuming no

induced magnetic dipole moment,

<
»
=
i

iu)uog

- <
X
=]
i

-1lw eO kE . (3.1)

When there is a boundary separating two media with different dielectric
’constants, the technique generally used is that of obtaining solutions
in each medium separately, but in such a form that boundary conditions
may be satisfied. There 1is some arbitrariness in the choice of condi-
tions; we will require that the components of E and H tangent to
the interface be continuous.
Eliminating E from 3.1 and using the fact that H 1s sole-

noldal, we obtain the equation for the magnetic field,

2 2
VEH+kKH = 0 (3.2)
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Boundery value problems associated Vith the vector wave equa-
tion 3.2 are difficult to sclve for several reasons. First, with
the exeeption of rectangular coordina.tes s the Laplaclan operates on
the unlt vectors as well as the components. The result is that the
scalar equations corresponding to 3.2 usually contain more than one
of the components of H . For example, in cylindrical coordinates

these equations are (13):

OH, H
VQHp——E-Q-—Sg-—%+k2Hp = 0
P p |
e R T O
o o— = + k = 0
g 27 e ¢
| 2
v2H2+kHZ - 0 . (3.3)

ObsérVe that only in the third equation does & component appear by
itself, this being because 2z 15 also a rectangular coordinste.
Furthermore, we would like the solutions to be in such a form that
boundary conditions may be satisfied. This not only dictates the
choice of coordinate system but also requires separability with res-
pect to behavior along the coordinates of the interface; a very
stringent regquirement 1in all but a few select cases,

A nuﬂber éf golutions to the vector wave equation may be found
by exploiting two important commutative properties of the Laplacian

operator. Let u denote any of the rectangular unit vectors SN
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e , e or the (normalized) radius vector k r , k being the vacuum
- =z To— [o)

wave number w/c . Then the following are valid identities.

~

VE_VXEW} = VXE[Vzle (3.h4)

1

V2 Vx(uxVv WE):l = Vx [E x V(VEWE)] (3.5)

L

where Wi and We are arbitrary scalars. The proofs are given in

Appendix A.

These identities are used in the following way (7): Assume

that a solution to 3.2 may be written as®

1 1
E = E.-VXBW1+-1-§-;§-V2;(HXVW2) . (3.6)

Substituting back into the vector wave equation and employing 3.4 and
3.5 we find that 3.6 will be a solution provided that Wl and Wé

each obey the scalar wave equation

VZW+k2w = 0 | (3.7)

which 1s considerably easier to solve than 3.2, The process of

"scalarization”, i}e., determining scalar functions such as Wi and

*This contrived form is employed so that Wi and. Wé will turn out
to have the same dimensions, namely those of magnetic field.
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W2 which will generate soiutions to Maxwell's equatlions, is a very
'powerful technique in solving boundary value problems.

For the case of cylindrical geometry with generatrix in the =z

direction we let u = e, - In addition we assume that the 2z depend-

ence is exp(iykoz) so that using some vector identities (equations
A.3, A.4) we can transform 3.6 into
o

1 ir 2
E=- {Sz x k V%Wi Tk V%Wé T e WZ} (3.8)

where V% is the traneverse gradient,

d d -
V% = % Ey.§§

and v 1s the transverse index of refraction

o (AR (3.9)

<
|
|

0o

Furthermore, because of the exponential dependence on =z , The functions

Wl and Wé now satisfy the two-dimensional Helmholtz equation

(V§+Bg)w = 0 | (3.10)

where B = vk
o]
The corresponding expression for E can be found from 3.8 and

Maxwell's equations, with the result that



~1h-

3 | 1 iy
E =12 n{:nez X k V Wy + o E Vi te LV Wi} (3.11)

From inspection of 3.8 and 3.11 we conclude that the function

wl generates waves in which the magnetic field is transverse to Ez
while WQ generates waves in which the electric field is transverse

to e . Referred to as TM (transverse-magnetic) and TE (transverse-
electric) modes, they are linearly independent solutions of the vector

wave equation for cylindrical geometry with z-directed generatrix®. As

will be demonstrated later, similar results are obtained for spherical

problems.

B. The Fields in a Gyroelectric Medium

In order to determine the fields in a gyroelectric medium we
follow a procedure similar to the one used by Epstein for ferrites.
The details are given in Appendix B.

Maxwell's equations for a gyroelectric plasma are

<
»
=
i

impog

VxH = iwm

i €rE (3.12)

from which it is straightforward to show that H satisfies

Vx(qVxH) - K H (3.13)

¥In general, the designation TE and TM will be used for waves with
electric and magnetic fields, respectively, transverse to the vector
u in 3.6. Thus W; 1s sald to generate a TM wave and Wo a TE wave.
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A rigorous analysis is possible 6nly when the two preferred
directioné, i.e., those of the magnetic‘field and the generatrix of
ﬁhe cylinder, coincide. ‘we shall therefore be limited,in what fol-
lows, to this particular case.

Under the assumption of a z dependence exp(irY ka) the
linearly independent solutlons to the wave equation 3.13 are derived

from scalar functions V., and V_ which satisfy the two-dimensional

1 2
Helmholtz equations
AR FBPV = 0 | (3.14)
Tl 171 *
VoV, +BV, = 0 (3.15)
t ‘2 2 "2 T ) :

The transverse propagation constants Bl and ﬁg are related to the

physical parameters of the plasma as follows:

2
k
ﬁi = —é9 o+ V@ - up (3.16)
2
K
2 o) 2
B, = = |@-Va -k (3.17)

where

2.2
Mt et 7 [h = n (ng+ )1 A
g - "t 1 T 2 (3.18)
M %
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r = » . (3.19)
Ty Mo '

The magnetic field is then given by

E’—"[EZ kV(TV+TV)+ V(V+v) (3.20)
0]

2 -
+e(v v +v2V2)J

using the notation

( 2 2
. vy +¥) -1
1 oy
2 2
Ty = o . (3.21)

In order to determine the corresponding expression for the electric

field we employ Maxwell's equation,

E = °nVxH (3.22)
=

together with the vector form for 7 which is given by 2.19. The

—

result is
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. - 2 .2
E = 17 {e XV, [(nl(vl +7) - YTlh)Vl+ (ﬂl(V2'+Y')-‘YT2h)V2]
1 2 20\ 2, 2
+ = Vt[(i’”ﬂl‘ (S + )+ (rmyn - 1(5+%))v, |

2 2
* g, [ Tt Tavale'a ]} ' (3-23)

Some insight into the effect of the static magnetic field can be
gailned by finding the limiting forms taken by 3.20 and 3.23 as BO

vanishes. For the relevant parameters we find that

o ™ 1 (3.24)

where the right hand sldes are the isotropic quantities which have
been previously defined. Having established these limits it is
straightforward to show that in the limit of vanishing static mag-

netic field 3.20 and 3.23 become
RS S 1 e 2
E=- [ko Vt(vl'+ VE) + \/? g, % ko Vt(VE- Vl)+ Ev (Vl"‘ VE)] (3.25)

and
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1 iy 2
E 1201{.{ _e_ZXE(Vl+ V2)+\/—n—ko V (V- V) + e e v(V-v)| (3.26)

respectively.

Comparing 3.25 and 3.26 with 3.8 and 3.11 we observe that the
golutions in the gyroelectric medium reduce, in the limit of vanish-
ing static magnetic field, to linear combinations of TE and TM modes.
This is to be expected since the latter are the fundamental solutions

in an isotropic medium. The generating functions Vv, and V_ are

1 2
related to Wi and W2 s in the limiting case, by the transformation
1
Vl—e_ (nwg—wl)
K
1
V2 = g"—;— (V& W2+ Wl) . (3.27)

Thus one effect of the static magnetic field is to "couple" the
TE and ™ modes so that these no longer are the independent solutions
to Maxwell's equations. More will be said about this point of view
when we discuss the problem within the framework of perturbation
theory.. Furthermoré, the combinations so formed are "split" in the
sense that they have associated with them different transverse propaga-
tion constants. This splitfing has been observed in the lonosphere

where it is referred to as lonospheric double refraction.

C. PFormal Solution of the Scattering Problem

Having obtained an analytical description of the fields inside

an arbitrary cylindrical plasma, we proceed to the problem of scattering
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of an obliquely incident plane wave by a homogeneous, axially mag-
netized column with circular cross section. There are several
reasons for considering this particular exémple. First, since the
Helmholtz equation is separable in this coordinate system, we may
calculate rigorously the effect of mode coupling on certain polari-
zation properties of the scattered field. In this way our

objectives are somewhat different than those of other investigators,
who were primarily interested In the effect of the static magnetic
field on the scattering cross section (4),(5). Furthermore, the
exact results serve as a check for those which will be obtained using

a perturbation procedure.

The coordinate system is shown in Figs. 1 and 2. It is assumed
that the propagation vector of the incident wave lies in the x-z plane
at an angle © with the x axis. The cholce of polarization with
E(inc)

perpendicular to the plane of incidence is made to emphasize

the effect of the static magnetic field.

The expression for the magnetic field of the plane wave is,

under the assumption of unit amplitude,

(1inc) . ] ,
= i - i. O * SO- .2
H [exp(lkop cos © cos @ + 1koz sin 6)|- (e co e sine) (3.28)

and for the electric field

E(inc) B EEQ
Tk

ey exp(ikbp cos © cos @ + ikoz sin @) (3.29)
o}
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from which it is straightforward to show that the appropriate

generating functions are

w&im) =0 (3.30)
W(inc) I S (1k p cos @cos P+ ik z sin ©) .(3.31)
2 T T Cos 6 TRPLEEP o? B (3.3

In order to represent the field components in terms of cylindrical

functions we employ the identity

o n ing
exp(ic cos §) = 5 1 g (a)e (3.32)
. ND=-=00
where Jn stands for the Bessel function of the first kind of order

n . The expression for W2 "is then

(inc) 1 BN
Y = " cos © = Jn(kbp cos Q)Fn(¢:z) (3.33)
n=-00
with
Fn(¢,z) = exp(inf + ik z sin o) . (3.34)

The cylindrical components are calculated from 3.8 and 3.11 using the

representation for the gradient

b}
Vi = 0% T3

ol

% . (3.35)
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The results are, for the nth terms,

nﬁéinc) B [ n sin ©

J (k p cos O)F
kbp cos © n' o n

nﬁiinc) = 1" [cos ) Jn(kbp cos Q)Fn }
“Eéinc) = -17_ 1‘{ J(k p cos O)Fn}
mgline) _ o . (3.36)

The p components are omitted since they do not enter into what follows.

We proceed to expand the fields inside the column in a similar

way. Opserve that 1n order to satisfy the boundary condltions at the

surface of the cylinder it is necessary to have
vy = sin o (3.37)

for both the internal and scattered fields.

Let the generating functions Vl and V2 be written as a sum

of solutions to the Helmholtz equation in cylindrical coordinates,

+0
1T L BT,
+00
v, = ) v I (BO)F, (3.38)

n=~00
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where {31 and (32 are given by 3.16 and 3.17 with y = sin 6 . The

‘ ¢ and =z componenté are calculated using 3.20 and 3.23 and are found

tb be
n_(tr) ny_ ' ny
B = ke n(Blp) T 9 (Be)| & AE—- n(Bap)= T I (Bp)| P Fy
nﬂitr) = -{[vi Jn(ﬁlp)} a + [vz Jn(ﬁep)} bng F (3.39)
o (tr inq
g(5t ) _ 1Zo {(T2+ vi)[ v Jv(B p)+ k 5 J (;3lp)Ja + iyr [ = 2; Jn(Blp) +
e}
1hvlJr’l(Blp)}an+ (+%+ v )[nl vJ (B,0)+ n 5 J (ﬁep)} n Y
‘ inn,
me[ 5 J_(Be)+ ihveJr'l(ng)an} . Fn(¢,z)
(tr’ .
’®, 7 1Z, {["2 1" n(Blo)]a * ["2 2 2‘3r (320)] } " Fal8r2) (3.00)

The superscript (tr) denotes that it is the field transmitted into
the column.

Finally, the same procedure is carried out for the scattered field

which is assumed to be generated by w( 5¢) " ana Wésc) given by
(sc) = "g? c H (k p cos 0)F (@,z)
S BB O n'’
wise) _ gio d H (k p cos Q)F _(d,z) : (3.41)
2 - ngn of n\#s% : 3.

i=~00



) T

Hn » denoting ﬁhe Hankel function of the first kind of order n s
is used to give outgoing waves at infinity under the assumed time
dependence exp(-iwt) , in accordance with the Sommerfeld radiation
condition. The components of the scattered field which are impor-

tant for the subsequent calculations are:

1

nHéEC) - _{i[cos ) Hﬁ(kbp cos Q)]cn-[:EES%E_Q Hn(kop cos Q)]dn} P

ng(sc)
Z

- [ 0032G Hh(kbp cos G)]thn (3.42)

(se) _ -n s8in © ] , ]
”E¢ = 17 [ s H (k_p cos 6) cn+[cos o H!(k p cos 0)ja | F_

nEisc) = iz [cosae Hn(kbp cos O)] ann (3.43)

In order to determine the unknown coefficients & bn’ c and
dn we invoke the conditions that at the surface of the cylinder the

tangential components of the electric and magnetic fields be continuous.

Thus, at p = a

H(inc) . H(sc)

)
gltne) | gloe) ﬁitr) (3.4k)
Eéinc) N Eésc) _ Eétr)
gline)  glee) _ glem) (3.15)
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Using the previous results we obtain four equations in the four

unknown coefficients. They are most conveniently represented in the

matrix form

= f (3.46)

where ‘Xn denotes the column vector

n (3.47)
and En the column vector formed from the H,, HZ, E¢ and EZ com~
ponents of the incident wave, respectively.

BBIC 5y s ) |
koa cos @ 1O

cos 8 J (k a cos ©)
n‘'o

- J'(k_a cos @)
n‘o

! 0 ; (3.18)

The matrix of the coefficients én is given on the following page.
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D. Polarization of the Scattered Field

That property of the scattered field of particular interest
is its polarization in the plane of incidence, since an important
difference hetween the isotropic and gyroelectric cylinder is here
;n evidence. Assume that a TE wave, such as considered in the pre-
vious section, is obliquely incident on the column. Then, whereas
in the case of the isotropic scatterer the field in the plane of
incidence is also TE, if the column is gyroelectric it will be a
combination of TE and TM, the magnitude of the TM component depend-
ing on the strength of the static magnetic field. After considering
the problem in mathematical detail we will investigate the physical

origin of this effect.

As discussed previocusly, the scattered field is derived from

sc) and Wésc) by employing 3.8 and 3.11

two scalar functions W§
with y = sin 6 . The components of the electric field are, in

cylindrical coordinates,

1
3k p) kP O

BW(SC) BW(SC)
g(5¢) _ 4y {1 sin © 2 }
p o

gl8¢) _ 4, |1s8ing BW§SC) aWéSC) }
g0 T Txp THF Tk p)

Eiﬁc) - 120[ coso w§s°)] (3.50)

Consider the far zone field. Employing the asymptotic formulas

for the Hankel function of the first kind, we find that the generating



functions may be written as

w§_SC) Y ﬂkopzcos o exp(ik p cos 6 + 1vk z sin O)gl(gé) * @f(p'3/2)

(se) _ 2 -3/2
W = W exp(ikop cos 6+ iyk » sin G)g2(¢)+ e )

(3.51)

where gl(¢) and ge(;é) are the functions which are left in 3.41

after the radial and z dependences have been factored out. They are

+00
Z e, exp[+in(¢ -n/2) - 1 %:—:'

==C0

®

HA

-

S
I

+00

Z d exp[in(gi -x/2) - 1 ]’I‘] . (3.52)

n=-m

[¢]
mr\
RN
S
"

Neglecting the terms of order p Y2 we determine that in the
far zone of the cylinder the electric field components are related to

the generating functions in the following way:

E‘()sc) = 17, [-sin 0 cos © wf‘c)]
g(8¢) _ 17 [1 cos © wgsc)]
Eésc) = iZO [cosQQ w:(Lsc):‘ . (3.53)

In order to obtain & better physical description of the field we make

a transformation to the ¢,#,8 coordinate system indicated in Fig. 3.
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This is a right-handed system with the unit vectors Eg’ §¢ and
: 25 where e5 1s in the direction of specular reflection. The unit
vectors of the original cylindrical coordinste system are related to

the new unit vectors by the equations

-2 8in 6 + e_ cos &
~p —t —5

()
"

% -

]
]
[

cos @ +e_sin 8 . (3.54)

&

It follows that the field components in the new system are related to

those in the old by

=
n

-3in @K + cos @R
o] Z

g

cos O B + sin 6 E_ . (3.55)

=
=
]

=
#

Using 3.53 together wilth the above we arrive at the simple result that

in the far zone

g sc)

é 17, [cos o w§3°)]

sc)

i

: (se)
iZo[i cos O W, ]

5]

(
p

é = 0 . (3.56)

=
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From Maxwell's equations i1t can be shown that the electric and magnetic
fields are related by
E(SC) -z e XE(sc) , (3.57)

agalin neglecting higher order terms. Thus the far zone scattered field
consists of a TEM wave propagating in the & direction. This is the
cylindrical version of the familiar law of reflection. We shall be
concerned with the polarization in the plane transverse to the direc-
tion of propagation.

In general, for a monochromatic TEM wave, the tip of the elec-
tric vector, in the transverse plane, traces out an ellipse as shown
in Fig. 4. The parameters of thie ellipse are functions of the mag-
nitudes and relative phase of the components E¢ and Eg . For

example, the angle ¢ Wwhich gives the orientaticn of the ellipse may

be calculated from (8)

2ls,| - |nl

tan 2§ = cos{arg E;, - arg E ] (3.58)
2, 17 1212 ‘ :

where arg denotes the argument of the complex number. In terms of

generating functions the above may be written as

2IW. 1 - W
v g 2] 1)

TR cos[arg W,- arg W+ g] . (3.59)
- lw
1 2

Using this formula, it is straightforward to show that for the far
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zone scattered field in the plane of incldence (¢ = n) , the angle

is determined by the expression

2la,| - |oyl

7
tan 2y = ! |2- B [2 cos[arg o, - BYg 0, + 2] (3.60)
where Ul and 02 denote the series
+00 a
o = Z e, (3.81)
n=-co
+00 n
g, = z: ita .
N==00

Another important property of the ellipse is its eccentricity,
i.e., the ratio of the lengths of the minor and major axes. In terms
of Gl and 02 the eccentricity, denoted by e , may be calculated

from

e = tan A (3.62)

where the angle A 1is defined by

2loy| - Iyl .
sin 2\ = S ~ sin[arg o, - arg o, + 5] . (3.63)
!Ull + Iggl

We observe that the eccentricity may be elther positive or negative.
If e 1s positive then the electric vector is rotating in the counter-
clockwise direction and 1f e 1s negative the electric vector rotates

in the clockwise direction.
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E. Numerical Results and Conclusions

Numerical results were obtained for the angle of orientation ¥
and the eccentricity e of the polarization ellipse as a function of
the parameter wg/w s Which is a measure of the strength of the
static magnetic field. The calculations were performed on a digital
computer, the IBM 7090, meking use of a version of FORTRAN which
permlts the direct use of complex srithmetic. The procedure was
straightforward, consisting essentially of an inversion of the system
of linear equations for the coefficients c, and dn followed by
summation in accordance with 3.61. The subroutines for calculating
the Bessel and Hankel functions Involved a series suwmmation, with the
values compared to exlsting tables as a check. The over-all results
vere checked by comparing them in the limit wgﬁm‘* 0 , to those
obtained for the isotropic problem which was solved and programmed
independently (éee Appendix C).

The results are indlicated in Figs. 5 and 6, where values are
given corresponding to the parameters wb/m = .67 , ka=2 and
6 = 20°,

These diagrams exhibit an interesting effect of the gyroelec-
tric character of the plasma. In the isotropic case wg/& = 0 the
far zone scattered field, in the plane of incidence, is linearly.
polarized in the same directlon as the incldent wave, but as the
static magnetlc field increases the scattered wave becomes ellipti-
cally polarized. Both the orientation and eccentricity of the
ellipse depend on the strength of the magnetic field, the relations

being linear to first order in the parameter wgﬁn .
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Although the interactions which take place inside the cylinder
between the electron, the transmitted wave and the static magnetic
fleld aré very complicated, we may give a plausible physical explana-
tion by considering the cylinder as a secondary source and focussing
our attention on its electric dipole component, as viewed from the
plane of incidence. 1In the isotropic case we have seen that in this
plane under the assumed polarization of the incldent wave the fleld
of the scattered wave is polarized in the horizontal direction. The
effect of the incident wave, then, is to induce y-directed dipoles
which in turn radiaste. The situation is as depicted in Fig. 7.
Observe also that due to the oblique incidence the dipoles are out
of phase. The picture changes when a longitudinal magnetic field is
applied; the electrons, which were (apparently) moving along the
y direction, interact with Eo and acqulre a component of motion in
the x direction. The result is to produce a component of dipole
moment in the x direction, as shown in Fig. 8. These moﬁents are
also out of phase and may combine to produce a vertical component of
electric field.

The situation is different when there 1s no dependence on =z ,
i.e., the case of normal incidence. Here the vertical component of
the electric field vanishes due to symmetry and the original polari-
zation is retained. This case was discussed by Platzman and Ozaki (W),

In addition to 1ts theoretical interest, the existence of a.
cross-polarized component in the far zone electric field may prove to
have some practical value. Since the properties of this component

depend on the parameters of the plasma as well as the operating
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frequency and the strength of the magnetic fleld, the results of an
experiment in which the cross field is measured as a function of, say,

mgﬁm might yield information concerning the plasma frequency, assum-

ing that all other parameters were known.
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IV. THE PERTURBATION THEORY OF MICROWAVE INTERACTION

WITH GYROEILECTRIC PLASMAS

A. Introduction

The absence of a general technique, such as the one outlined
in Section IIT.A for isotroplc media, for determining rigorous solu-
tlions to Maxwell's equations in arbitrarily magnetized plasmas
prompts us to search for approximéte methods. In this chapter we
shall develop one such method, applicable when the static magnetic
field is "small" in a sense to be defined more precisely later on.
To use the vernacular, we shall regard the static magnetic field as

a perturbation of the isotropic plasma.

Perturbation theory has enjoyed a rather remarkable history as
a technique for solving physical problems not amenable to rigorous
analysis. For example, in quantum mechanics it has been used success-
fully to determine both stationary and non-stationary states when the
Schroedinger equation involves a complicated Hamiltonian. The Born
approximetion of atomic scattering theory is representative of this

class of problems.

The perturbation which is of interest here is more complicated
than usugl because it is a vector perturbation of a vector field.
Nevertheless, this approach is useful here as well since it yields,
within the limits of applicabllity, solutions to problems which cannot

be analyzed rigorously using presently avallable techniques.
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B. Pover Series Eggﬂpsion of the Dielectric Tensor

In this section we shall derive an expansion of the dlelectric
W
tensor in powers of the parameter 1 7%‘ » Which is a measure of the

strength of the static magnetic field. The series 1s somewhat uncon-

ventional in that the terms are matrices rather than scalars. However,
this presents no essential mathematical difficulty since the theory of
functions of a matrix is analogous in many respects to the correspond-

ing theory for scalar variables.

To begin, we recall the equation of motion for an electron

acted upon simultaneously by a harmonic electric field E e-nbt and

an arbitrarily directed static magnetic field Eo s

ionv = eE~-eB XV (k.1)
A4 E 2 * =
or, alternatively,
®
£ _ &E
[1—_* o EEBX} Y5 Tem (4.2)

We may then, by invérting 4.2, write that the velocity vector is

given by

o

% 17t

which is equivalent to 2.9.



We now regard the operator

. w
the matrix 1 -£ e
w =B

ordinary complex varisble s = (¢ +‘iB .

W -1
U-1 £ ¢ x) as a function of
= o B

x 1in analogy with the function (1-3)":L of the

There exists a matrix-scalar correspondence principle (9) which

states that if f(s) has a Taylor series expansion
& n
£(s) = Z% & 8 (4.4)

then the same function, but with a matrix S substituted for the

scalar, will have the power series expansion

n

0
f(s) = ), a8 (4.5)
- n=0

Ne==

vwhich converges provided that the eigenvalues of § all lie inside
the circle of convergence of 4.k,

Since the circle of convergence of the series
-1 X n
(1-8) ~ = 2: ) (k.8)
n=0
is the unit circle centered about the origin, it follows that the

representation

w

mg -1 o0 o n
[E -1 TD-EB X:l = ngo (i E— _e_B X) (Ll-.7)

is valid provided that the eigenvalues Ay (i=1,2,3) of the matrix
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[44]
i TD% e, x satisfy the inequality

ixii < 1 i=1,2,3 . _ (4.8)

In calculating the eigenvalues we take advantage of their
invariance under rotation of coordinates and use a system in which
the z axis is in the directlion of the static magnetic field. 1In

such a system the matrix representation is

[$4]
0 -i & 0
w
[4}] : w
L 2oy %= 1€ o 0 (4.9)
L 0 0 0

for which the secular equation is

2
2 (D
M- = o (4.10)
w
[41] O
with roots M =0, A.=-2, A =--£ | The criterion for the
1 2 o 3 w

validity of 4.7 is thus that mgﬁn <1l , and it will be assumed in
what follows that this condition is satisfied.

Employing 4.2 in a manner similar to the calculation in Seétion
II.C we obtain tﬁe following series expansion for the dielectric

tensor



iy

(b.11)

Hm
]
m
—
1]
1
[V 3
I8
)
ot
P
éum
ta
o —
B

where

m
H

0)2 wg
eo(l - ;%) s g =1 = t =

It is straightforward - to show that, in a coordinate system aligned

with the z axls along EB 3

same results as an expansion, element by element, of the formula

the first few terms of 4.1l give the

derived in Section II.C.

C. Expansion for the Field in a Gyroelectric Plasma in Terms of
Partial Fields

Using the result of the previous section we write Maxwell's

equations in the medium as

VXE

il

imp.o_I:I (4.12)

g (e, X)n} " E

18

VxH —imeg+iwe§[

n=1

We next assume that there exists an expansion for the electric and

magnetic fields of the form

E - z g™ E(m)
m=0
B 5 g E™ (4.13)
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(m)

where E and E(m) are referred to as the mth order partial
fields. Substituting 4.13 into 4.12 and equating powers of the
expansion parameter, we conclude that the partial fields satisfy

the following equations:

(o) (o)

v X_E_ = ]'_Ci)p.og
v x g(o) = -iwe g(") (L.1%)
7 x E(n) _ i“’“og(n)
n-1
v x g(n) = -iwe g(n)+ toet ). (e x)* % g(m), n >0 (4.15)
m=0

The formulation in terms of partial flelds differs from the
conventional statement of Maxwell's equations both mathematically
and physically. From a mathematical point of view it represents a
change from the problem of solving a pair of homoégeneous partial
differential equations which involve a tensor operator toc a problem
of solving an infinite sequence of inhomogeneous equations where the
source terms depend on solutions to the equations of lower order.
Physically, we have introduced a description of the electromagnetic
field in the plasma in which we regard the total field as being com-
posed of a sum of fields. These are arranged in a hierarchy of
complexlty in which those of lower corder "interact" with the static

magnetic field to produce the ones of higher order.
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The present formuletion has thg advantage that if the static

' magnetic field is weak, the more complex fields may be ignored since
they are of higher order in g . In this work we will consider in
detail only the zero order field which, as can be seen from 4.1k, is
that which would exiét if there were no static magnetic field, and
.thé first order component which is linear in g . It is thus assumed
that B, 1s small enough so that terms of order (mg/m)2 are neg-

ligible. Before SPecializing, however, we will say more about the

general problem.

D. A Note on Boundary Conditions

In what follows we shall be considering problems which involve
a boundary between a plasma and vacuum, as indicated in Fig. 1.

According to 4.13 the fields inside the plasma will be given by

E = E§_O) + gEil) + gEE,_,(LZ) + oo
L Eéo) te Es(Ll) * 8ZE§1) Foee (4.16)

Because of the boundary conditions there must exist a corresponding

field on the vacuum side of the ilnterface of the form

B Eéo)}ggél)’fgz.ﬁ_’ég)*—"'

- Eéo) *gﬁil) +€2§é2)

+ e (k.17)
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and equating tangential components we obtain the result that

Ein) _ E§n)
t t

| all n (4.18)
H‘(;:) _ Hﬁ:)

Hence the boundary conditions must be satisfied at each step of the
perturbation procedure. Physically this means that the internal
interactions between the flelds of a given order and Eo produce
waves which are, in turn, partially transmitted and partially

reflected at the plasma-vacuum boundary.

E. On the Criteria for Validity of the Perturbation Expansion

In general the solution to a physical or mathematical problem
depends on several parameters and hence an asymptotic form is rarely
uniformly valid, i.e., applicable in a range of one of the parameters
regardless of the values of the others. For example, the conven-
tional asymptotic formulas for the Bessel functions with large argu-
ment do not apply when the order is of comparable magnitude.

It has been implied that the perturbation theory for gyro-
eiectric plasmas is applicable provided that the magnetic field is
weak in the sense that mg/m << 1 . We now explore the question of
validity criteria more thoroughly in order to determine how the other

parameters, namely the plasma frequency and physical dimensions of the

lnteraction zone affect the convergence of the expansion 4.13.
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Dependence on Plasma Frequency

In order to determine the effect of plasma frequency we elimi-

nate g(n) in 4,15 and obtain as the equation for g(n)

n=-1
vaXﬁm-k%m)=-f§Z gBﬂmmﬂm : (4.19)
=

Using mathematical induction we can show that the particular solution

for the nth order field (n > 0) will be of the form

S N (1.20)

2 2
vhere ¢ = ak“/m - wi , 50 that in the expression for E(n) there
will be a term proportional to gn . This parameter becomes large

at frequencies Very close to the plasma frequency and we reason that
here the convergence of the perturbation expansion will be poor.
' However, since the original model proposed for e cold plasma 1s
itself inaccurate near the plasma frequency, this limitation should

not be regarded as serious.

Effect of Physical Dimensions of the Interaction Zone

Because of the difficulty of attacking a completely general
problem we demonstrate the effect of physical dimensions by consider-

ing the specific example of a TEM wave propagating in the direction
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of a static magnetic field. The conclusions which are extrapolated

nevertheless seem plausible on physical grounds.

The coordinate system and the unperturbed wave g(o),§<o)
are indiceated in Fig. 2.
The equations for the first order fields are, from 4.15
vV x E{l) = iop H(l)
- o—
v x _]_E_(l) = —imeg:_(l) +iw eg_e_B x E(O) (k.21)

and setting ey = &, Wwith E(o) =e, Eoexp(ikz) , 4.21 becomes

1 1
vxe® - tapa®
1 .
7V x H( ) -iw sE(l) +imeR t e R (k.22)
1
Eliminating E(l) we obtain the inhomogeneous equation for E( )

72 (1) k2§(l) - gk? B ikz

E + oSy (k.23)
which has the particular solution
£ E kz
E(l) = e 2 eikz (L.2k)

-p -y 2i

The corresponding first order change in the electric fleld is obtained
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Direction of Propagation

Figure 4.2 Unperturbed TEM wave propagating in the direction
of the static magnetic field
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[¢64)

after miltiplication by 1 —f— and is glven by

wt E kz
g o  ikz k.2
—e-y 20 € y (k.25)
This term, proportional to kz, produces a rotation of the
electric vector in the transverse plane, an effect known as Paraday
rotation.

(2)

In & similar manner it may be shown that E will have a
term proportional to (kz)° , B3 to (kz)3 and so on. Thus the
larger the value of kz the more significant will be the higher
order terms. Consequently énother limitation on the validity of
the perturbation procedure has to do with the physical silze of the

plasma. For a slab the characteristic dimension would be its width,

and for cylinders and spheres it would be their respective radii.

On the basls of these results we reason that it is not suf-
ficient that mgﬁw << 1 ; the static magnetic fleld, operating
frequency, plasms frequency and physical dimension I must be such
that

w
Q-f—;kL «< 1 . (4.26)

If this inequality is satisfied then the perturbation theory should

yield good results.
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FF. Solution for the First Order Fields

Having established what appear to be sufficient conditions
for validity of the perturbation theory, we proceed to determine

the general solutions for the first order fields, which satisfy

(1) (1)

VXE

i(bpog

v x _I_I(l) —iweEu) +iwet e, x E(c’) (k.27)

The general solution to 4.27 consists of two parts, a parti-
cular integral and a complementary integral. TFor problems involving
bounded plasmas, which aré of Interest here, both parts have physi-
cal significance. The particular solution is the field which arises
directly from the interaction between the zero order wave and the
static magnetic field. On the other hand the complementary solution
which satisfies the homogeneous equations

(1)

(1)
v x Ec H

lon B,

1

v x H(l) = -lwe E(l)
—-C -C

is superimposed in order to éatisfy boundary conditions and thus may
be interpreted as that part of the particular solution which is |
reflected from ﬁhe boundary back into the plasma. Although the re-
quired complementary solutions may be obtained by methods already

discussed (Section III.A), the particular integral presents a more

formidable problem.
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We partition the field Eél) into two parts, one accounting

for the divergence and a remainder which is solenoidal. The firet

is found by using the divergence operator on the second equation of

4.27, from which we find that

- 1.3_;1) stve[exg9] . (4.28)

We are led to write that

ey (0)

E, »2lY (.29)

6 e XE

where gél) is solenoidal. From substitution of 4.29 into L4.27

and elimination of E(l) it is determined thsat Eél) satisfles
(1) () _ _. 2, . Vy.(0)
vgga + kap_a = -1 7tk (e ko)g . (4.30)

Assume now that the fields for the isotropic problem are known and

that, in accordance with Section III.A , E(O) is given by

(0) v (0) v v _(0)
H | xuW o+ x (u x = ¥ (4.31)
o} o o]
where u=e , e , e or k r . Furthermore, let E(l) be repre-
- =X’ =y -z o —a
sented as

BN =1z g(ey ) [%Z—; e u Ve o (wx él)} (t.32)
o o] [e]
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where V£l) and Vél) afe scalar functions. It then follows from

the fact that Sp is a constant vector, and from the commutative

properties of the Laplacian given in Appendix A, that 4.32 will be

the solution to 4.30 provided that the scalar functions Vil) and

V(l) are related to the functions W§l) and Wél)

> by the differ-

ential equatlons

vﬁvil) + kzvil) = -kf Wio)
vzvél) + kgvél) = -k w(o) . (4.33)

Combining these results we determine that the particular solution

to 4.27 is

El()l) = {eBx 50, 17, (eg5° ——) [E— x (u Vil))+ T:Y-x(uxl_:— (l)J}
o

£ ) °
(4.3k)
where E(O) is the zero order electric field and V§l> end Vgl)

are derived from the generating functions for the zero order magnetic

field as prescribed by 4.33.

(1)

It is important to note that the function Vi generates a
(1)

TE wave while V generates a TM wave, the opposite from their |
¢
respective zero order counterparts Wgo) and Wé ). This shows

very clearly vwhy TE and TM modes alone cannot, in general, be solu-

tions to Maxwell's equations for a gyroelectric plasma; a TE mode
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will "interact" with go to produce a TM mode and vice versa. The
physical origin of this interaction is of course the effect of the
statlc magnetic field on the motion of the electrons, but to
examine the field structure on the basis of the individual orbits
would be prohibitively complicated. The macroscopic, or phenomeno-

logical, approach is a convenient alternative.

An example worth mentioning at this point 1s the case of a
plane TE wave normally incident on a longitudinally magnetized
column. Here ege V=0 and ep X E(O) is in the transverse plane
so that the TE character of the incident wave is retained throughout.

This problem was discussed in the previous chapter.

G. Summary and Conclusions

The purpose of this chapter has been to present a theory of
microwave interaction with gyroelectric plasmas in which the biasing
magnetic field is regarded as a perturbation. In this approach we
represent the electromagnetic field as being made up of a sum of
partial fields arranged in order of increasing complexity. The
fields of lower order are presumed to interact with the static mag-
nefic field to produce those of higher order. Such a formulation
has the advantage that under suitable conditions the more complex
fields may be neglected. These conditions are that the ratio mgﬁw
be less than unity and that the other physical parameters, i.e.,
the plasma frequency and characteristic dimension I be such that

the inequality
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be satisfied. Together they are equivalent to the physical require-
ment that the static magnetic field have a relatively small effect,
i.e., that the additional fields which result from the gyroelectric
character of the plasma be small compared to those which would exist
if the medium were isotropic. This 1s to be expected since, if such
were not the case, the static magnetic field could hardly be regarded

as a perturbation.

By solving formally for the first order fields we find that
TE and TM modes are not, in general, solutions to Maxwell's equations
for a gyroelectric medium. The physical reason for this is that the
effect of the static magnetic fleld on the electron motion induced by
a wave of one type will be such as to produce a wave of the other
type.

The application of first order theory to cylindrical and

spherical problems will constitute the remainder of this report.
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V. FIRST ORDER THEORY OF CYLINDRICAL SYSTEMS

A. Introduction

In this chaptér we will apply first order perturbation theory
to éylindrical plasmas with circular cross sectlon. Such examples
might arise, for example, in geophysics where one is studying radar
echoes from meteor tralls in the earth's magnetic field. Also, as
was mentioned earlier, applylng an axial magnetic field to a labora-
tory plasma and observing its effects may have value as a disgnostic
technique.

| 0f the present class of problems only the one where the mag-
netic field is along the axis of the cylinder is amenable to exact
analysis. This is because for this example there is only one "pre-

ferred" direction, i.e., the vectors u and e, are both equal to

B
e, and furthermore the solution has exponential dependence in the

-z direction. The resulting equations are relatively simple and the
problem may be scalarized. However, the situation becomes consider-

ably more complicated when the static magnetic field is off the axis

and we must resort in such a case to an approximate method.

B. Geometry of the Problem

Fig. 1 gives the coordinate system and the orientation of
the plasma cylinder and static magnetic field go . It is assumed

that the vector EB has direction cosines gx 3 zy and zz with



(VA

Figure 5.1 Cylindrical geometry with arbltrarily directed
’ static magnetic field
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the respective coordinate axes, so that

e. = ge +Le + 4e (5.1)
yy

or, in terms of the cylindrical coordinates p,{,z

ey = (E_ei¢+ 14+e‘i¢)2p + i(ﬂ_ei¢— £+e-i¢)g¢ v L.e (5.2)

wWhere
£ = g +1iyg . (5.3)

The reason for this designation will become clear later on. In addi-
ivk z
tion we suppose that the dependence on 2z is again e © 5o that

the operator e - vykb is given by

i( g ei¢— £ e'i¢)
- +
—+1T

} +
+ 8(kop) kP op (5.0)

C. The Exyressions for the Flrst Order Fields

As was mentioned earlier, the first order fields can be determined
cnly after the isotroplc problem is solved. Assume that this has been

done (See Appendix C for an analysis of scattering by an isotropic
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cylinder) and that the zero order electric field is given by

o] o]
whére
+@
WO o T &l g (s0) B (8,2) (5.6)
n=-@
+Q0 (O
R w9 5 (80 7 (4,2)

' 1
Calculation of the First Order Generating Functions V§ ;

The first order generating functions Vil) and V2
1
which we determine the field Eé ) are the particular solutions to

the differential equations

vzvgl) N k2V§l) I w(0) (4.33)

1l

vavél) + kQ’Vél) - -kcp; wéo) )

Since both Wéo) and wéo) have the same form, given by 5.6, it is

sufficient to solve

1n¢ + 1Yk z
2 2
\72un +Eu_ = k5 5 (Bo)e o (5.7)
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It may be shown that the ¢ and 2 dependence of u is the same
n

as on the right hand side, so we represent the solution as

ing + ivk =z
u (Bp,$,2) = R (Bp) e ° : (5.8)

Substituting 5.8 into 5.7 we determine that Rn(Bp) must satisfy

the ordinary differential equation

a°R (v) drR (v) 2
2 n n 2 2 _ v
v V2 s (Ven) R (V) =-S5 M (5.9
dv v
where Vv = fp . The above is an inhomogeneous form of Bessel's equa-

tion and is examined in Appendix D, where it is shown that the

solution is

R(v) = —5ai(v) = Bai(po) . (5.10)
2y 2v
It follows that the expressions for Vil) and Vél) are
+00
V§l) - By aﬁo) J:(Be) ¥ (B,2) (5.11)
2V n=-
+00
IS ol 51(eo) 7 (B,2)

2v2 n=-co n
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We next consider two specific examples designed to illustrate
the application of these results. They are (1) scattering by an
axially magnetized cylinder and (2) scattering of a normally incident

wave by a clrcular cylinder with the statlc magnetic field perpendi-

cular to the axis.

D. Scattering by an Axially Magnetized Cylinder

In order to ascertain the validity of the perturbation proce-
dure, we consider once again the problem of scattering by an axially
magnetized cylinder with cireular cross section. As an application
of the approximate method this example turns out to be particularly

gimple, since e_ = &, and therefore

Voo
& "% < iy . (5.12)
o)
The particular solutions to the first order equations 4.22 may be
obtained by applying 4.34 and Maxwell's first equation. The results

for the ¢ and 2z components are, in terms of the generating func-

tions,

(1)
"o

[ d
1258 i:'i_ 3% 7= i) - 1y 3(k_p) (- vy )]

Ez(,:;) = -1205 ‘ iY(WéO) + v2v£,_l)} (5.13)
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D _ (28 (0, ), iy Ve

_ ot Y - T

e T tEp W T o)J

Hi;) = iyt [v2V§1)+ (1 - HVE)“é?)} . (5.1h)

2
k .
nEép =1zt {E_E {Jn(ﬁp) - Y2v°p Jl'l(Bp)} br(lo)

ivk 2
- {irvn Jr‘l(fi»o)+w2°p (1- PR )T (Bp)} ar(lo)} Fn(¢,2)
(5.15)
. { EACORE SHCS) (0)} r ($,2)
(l i kP
A - {“T [nJ (B0)- 2 3 n(m)} (o),
) 1Zkop [(l - 112 2)J (Bp)} b 0)} F
L (o) ™ =)on
(5.16)

n

nﬂg) = 1irg {L £ 51 (pp)+ (1- mP)3 (Bo)jl a.lgo)} ¥

Following what was sald in Section IV.C we assume that, due to

the boundary, the fields corresponding to the particular solution excite

additional waves inside and outside the plasma. These secondary fields
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satisfy the hoﬁogeneous forms of Maxwell's equations in the respec-

tive media and so are derived from

(tr)wil) - aél) 3 (BO)F_

(tr)wél) _ Zbr(ll) 3_(BO)F_ (5.17)

and

(Sc)w£l) = 2: cgl) Hn(kbp cos Q)Fn
(sc)wél) = E: aél) Hn(kbp cos Q)Fn (5.18)

as prescribed by 3.8 and 3.11. The unknown coefficients are deter-
mined by invoking the conditions that the ¢ and z components of

E(l)‘ and E(l) be continuous at the surface of the cylinder.

Under the approximation

Wgsc? ) (sc)w§0) .1 ‘_‘;g_ ((sc)wil))
weee) - (se)y(o) g %g- ((Sc)wél)) (5.19)

we may proceed to calculate the first order effect of EO on the
polarization of the scattered field. The calculation was done, again

by machine, yielding the results shown in Fig, 2. For purpcoses of
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Figure 5.2 Orlentation angle, ¥ , of the polarization
ellipse. Comparison between exact and first

order results.
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comparison, the results of the exact theory, also computed for rela-

tively small values of magnetic fleld, are also indicated. As
anticipated the perturbation theory correctly predicts the linear

portions of the curves.

Admittedly, the use of a specific example to demonstrate the
validity of the perturbation theory does not constitute a mathemati-
cal proof. The use of a vector problem, however, does make the
method plausible. A rigorous analysis would require a series expan-
sion of the exact solution in powers of 1 %% and subsequent com-
parison between the coefficient of tﬁe linear term and the first order
solution calculated via the approximate method. Unfortunately, the
complexity of the equations for arbitrary angle of incidence makes
such a task impractical for the general case. For normal incidence,
however, the algebra is manageable and, as shown in Appendix E, the
series expansion and perturbation methods give the same first order

results.

E. An Example Tnvolving Off-Axis Magnetization

In order to demonstrate the effect of a static magnetic fiecld
which i8 not aligned with the axis of the cylinder, we consider the
problem of scattering of a normally incident T™M wave in which &y = &

In the absence of a magretic field the TM character of the
incident wave is retained throughout. Hence the field in the plasma,

to zero order, is derived from
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0 F 0
(tr)wéo) = 0 . (5.20)

Thé first order generating functions for the particular solution will

then be, from 5.11

(L _x T (0 1ng
1= =3 2. 8 Jn(kp)e
2V n=-
(1)
V7 =0 (5.21)
from which we derlve the solenocidal field
(1) v, 1 (1)
E = 1Zo§(33‘ E‘) [——E-Vx(_e_z Vit e (5.22)
o o
Alternatively,
(1) _ Yoo . X1
E~ = -izo§ g, x 3 (EB E A Y1 . (5.23)

5.23 describes a TE wave whose appareﬁt generating function is propor-

tional to the expression

o Tyl
(eq ko)vl (5.24)
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For the present example, & = CH ‘and Y = 0 so that from 5.4

o ei¢ - e”1¢ 3
a(kop) + 1 —-————-————-kop ga . (5-25)

e_»

& k- (o105 &71)

Combining 5.25 and 5.21 we obtain the result

+00

(eg° E‘Z)vil) = % ). Gn(kp)ein¢ (5.26)
[o] Nn==00
where
(kp)2- n{n-1) (o) (Kp)z— n(n+1) _(0)
G (kp) = = a 1 Jn_l(kp)+ o a 1 Jp,1(ke) .
(5.27)

Thus, in addition to the coupling between TE and TM modes, an off-axis
magnetic field causes an interplay between eigenfunctions of different
order. This interplay results from the terms Involving £+ and £_
in 5.4, the former coupling to eigenfunctions of order n+l and the
latter to eigenfunctions of order n-l1 . The physical explanation of
this behavior is in the fact that an off-axis magnetic field destroys
the cylindrical symmetry of the structure. The existence of eigen-
functions whose angular dependence is exp(ing) is due to an
invariance under votation by an angle 2x/n and when the symmetry

is removed, as 1ﬁ the present example, these functions are no longer

appropriate.
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VI. FIRST ORDER THEORY OF SPHERICAL SYSTEMS

A. Introduction

As the final application of perturbation theory, we
consider the effect of a weak magnetic field on spherical waves.
It appears that regardless of the relative orientation such a

problem is not amenable to exact analysils.

Since the introduction of a preferred (rectangular) direc-
tion into a spherical problem destroys the original symmetry, we

expect that in addition to coupling between TE and TM modes,
there will be interaction among the eigenfunctions of different
order such as occurred in the case of the cylinder with off-axis
magnetization. This is in fact the case, as will be demonstrated

later on.

The geometry 1s as I1ndicated in Fig. 1 with the coordinate

system oriented so that §o is In the =z direction.
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Figure 6.1 BSpherical coordinates
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B. The First Order Solution

In accordance with Section III.A we assume that the unper-
turbed alternating field inside the plasma may be derived from a
set of functions W§O) and Wéo) which satisfy the scalar Helm-
holtz equation. The zero order magnetic field is then given by

, (0)

H =EJ--VX(E Vx[_u_.xvi W;O)J (6.1)
o

where u=kr .
— O__

In spherical coordinates these solutions take the form

. 0 +n

1W§O) ) EZ;O mggn aigg Zn(kr) Pi(cos Q)eim¢ (6.2)
© +n

iwéO) ) nZ‘o m=-n bI(llon) Zn(kr) P:(COS g)eim¢

where zn(kr) denotes any spherical Bessel function and Pﬁ(cos Q)

an associated Legendre polynomial. As prescribed by the theory in

1 1
Chapter IV we solve now for V§ ), Vé )

o

. If, for example, we rep-

resent in the form

Qo L

V§1) = ) a0) w(r,0,p) (6.3)

o m
n=0 m=-n n

then we are led to solve the egquation
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Zm 2 2
Fut + B = K% (kr) P%(cos 6)el™ (6.4)
n n on n

Similar results follow for Vél) .. 6.4 TDbecomes, after substitution

of the expression for the Laplacian in spherical coordinates,

‘19 ,.2 auﬁ 1 9 3“2 1 BEuE 2m
—~ (r ) + — (sin @ —5-) + +kKu =
T 3 or rosin o ¥ rPeing B¢2 8

.2 m imd
== kozn(kr) P e (6.5)

Assume now that the © and @ dependence is the same as on the

right so that

u (kr,0,8) = R (kr) S(0,0) (6.6)
where

s:(g,¢) = Pﬁ(cos Q)eim¢ (6.7)

Using the eigenfunction lidentity

™ 3%gm
1 d n 1 n__ _ m
TS (sin © 5 ) + Singg a¢2 = n(n+l)Sn (6.8)

we determine that Rn must satisfy the ordinary differential equation

o 4B (¥) &R 2
v

—— + 2v —a% + [ve- n(n+l)] Rn(v) = - 25 Zn(v) (6.9)
dv ' v
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with v = kr and v = k/ko . We next make the substitutions

b

R(v) = /5 G (v) (6.10)
z (v) = %’_Zmi(v) (6.11)

with 6.11 being merely the definition of the spherical Bessel
function in terms of its half integral cylindrical counterpart.
By substituting 6.10 and 6.11 into 6.9 we find that the function

Gn(v) must satisfy

o
o
o
o
Mo

v2 g + v —E% + [v2~ (n+= } Gn(v) = - XE Z (v) (6.12)

1
n+=
dv V )

This is the same result as was obtained in the previous chapter,
equation 5.9, except that the Bessel functions are now of half
integral order. However, the analysis given in the appendix still

applies and we write, by inspection,

@ (v) = =52 1 (k) (6.13)

fler,0,8) = [T 7.3 0 Sp(e:9) (6.14)
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C. An Application of the First Order Theory

One problem to which the first order theory might be applied

is that of radiation by a celestlial plasma. Investigators have found
that the polarization of the electromagnetic waves emitted from these
bodies has a different orientation at radio frequencies than at
optical frequencies and have attributed this difference to a static
magnetic fleld existing within the source. This explanation is
plausible since at optical frequencles we would expect that gyro-
electric effects are negligible while in the radio wave region the
terms accounting for the change in polarization are much larger. In
this section we discuss this phenomenon quantitatively.

Unfortunately, the physical models for celestial plasmas are
themselves controversial. On grounds of expediency we shall use the
crude model shown in Fig. 2 which, despite its simplicity, exhibits
the desired effect. It is assumed that the plasma is spherical in
shape and has properties which are independent of the angle ¢ .
Furthermore, the magnetlc field, which lies in the z direction, is
taken to be uniform inside the body with the return lines somehow
passing outside the source. This configuration would approximate a
field set up by currents flowing in the ¢ direction.

In order to account for the emitted radiation we imagine that
there 1s a distribution of electric and magnetic multipoles located
at the center of the sphere. In this discussion we shall be concerned

with the magnetic multipoles; analysis of the other type is similar.
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The field emitted by a magnetic source is derived from the
scalar function

Swéo) = n_(kr) Pn(cosle) (6.15)

where hn(kr) is a spherical Hankel function of the first kind,
used to give outgoing waves under the assumed time dependence
exp(-imt). The components of E and H are derived from 6.1 and

Maxwell's equations and are

s7(0) _ _ n(n+l) n,(kr) _(cos 6)

Yy kbr
dP (cos @)
SHéO) - . [vhr'l(kr) + -1%1: hn(kr)} ndzo
s (0) _ . -
B 1z h (kr) "&'g (6.16)

Due to the interface at r = a there will be an additional
internal field due to reflection and an external field due to trans-

mission at the boundary. These may be derived from, respectively,

iwéo) = bflo) 3, (kr) B_(cos ©)
ewéo), = déo) b (kr) P (cos 6) : | (6.17)

and have corresponding field components
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15(0) _ b(?) n(‘”l) 3, (k) P_(cos o)
iHéo) = b( ) vil(kr) + 2= l = 3, (kr) | —=
1 éo) _ iZob'I(IO) 3 (i) % (6.18)
eH§~O) _ _dgo) 9_}&_1_1_:71_)_ By (k_r) P, (cos 9)
- [ om0 2
E_ ,
EE;ESO) _ iZodI(lO)h (k_r) dzg (6.19)

From the conditions that E¢ and H.g be continuous across the sur-
face of the sphere, we may solve for the constants bgo) and déo)

The results are

5(0)::Vhﬂ(ka) hn(koa) - hh(ka) hﬂ(koa)
" hi(ka) 3 (ka) - vh (k&) §(ke)

al0) - “1v (6.20)
T (k8)” (vl (ka) b (k&) - h!(k a)j (ka))

In order to determine the first order effect of Eo on the
field inside the plasma we employ L4.3L and 6.13. After considerable
manipulation we can show that the first order particular solution has

the form
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22 17, {a, 00 22 b g 0 SR

5 -

Hé%) = 0

R (o2

Equation 6.21 describes the field due to a combination of
n-1 and n+l order multipoles of the electric, rather than the
magnetic type with which we began. Although the radial functions
“are different from those uéually obtained, the solutions which we
vould assume to be transmitted outside the sphere, in order to
satisfy the boundary conditions, would be those corresponding to
‘ conyeﬁtional electric dipoles. We conclude that the effect of go,
as viewed by an observer outside the sphere, is to produce a field
different from the original one in both character (magnetic z elec-
tric) and order. This fact explains fhe previously mentioned
changes in the polarization of the radiated field since the addition
of a cémponent perﬁendicular to the original electric field changes
the properties of the polarization ellipse.

Since the general forms of the radial functions in 6.21 are
very complicated% we shall specialize to the case of n = 1 (dipole).
Furthermore, it will be assumed that the radius of the sphere is

much larger than the vavelength of the radiation. To insure the
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validity of the perturbétion theory, 1t must also be that

the magnetic fieid is very small and that the frequency is well
‘above the plasma frequency. It seems appropriate at this point
to present some numerical values in order to justify these
assumptions. Consider the case of the Crab Nebula. Typical

parameters are (6)

10 -
6.3x10 sec,l (3 cm. waves)

® =

mg = .3x 1019 gec™? (N~ 1 cm—3)

w, = 1.8 x10° sec™t (BO ~ 10"8 Webers/m?)
1k

L ~ 5100 m

and we calculate for the smallness parameter

2
(Dg (ﬁp
— =z . 2 .
w 2 2 KL 00
w - W
b

|

On the basis of these figures, the first order theory should apply.

‘Letting n = 1 and employing the asymptotic formulas for
the spherical Bessel and Hankel functions, we find that the first

order particular solutigns near the surface of the sphere are

&

6 d

©

gL | e {L%g- [ieikr- bJ(LO) sin kr]} —2  (s.22)

H(l) ~ g¢ {,%; [eikr + bio) cos kr ] } i;é .
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In order to satisfy boundary conditions we assume an additional

internal and radiated field derived from, respectively,

i (1) (1) .

W) = a, Je(kl‘) Pe(cos e)

ewil) - cél) hy(k_r) P,(cos 0) (6.23)
The coefficients aél) and cél) are determined, as usual, by

requiring that Eg and H; be continuwous at r =a . The
expression for cgl) which determines the perturbation in the

radiated field, 1s found to be, in the limit ka -»

1(2k -k )a
c(l) . ltka e o [v cos ka -1 sin ka]
2 Bv

2 2
ika v cos ka + sin ka
+i(v-1)e (6.24)
i cos ka + v sin ka -

A further simplification is possible if we assume that the
frequency of interést’is much higher than the plasma frequency of
the body. The figufes previously given indicate that this is a
valid approximation. Expanding the formulas of 6.24 in powers of

the ratio mg/wa we obtain the result that

m2 k a
. o . E._E_EE_
e, ~—5— © . (6.25)
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To the same degree of approximation, dgo) =1 so that the total

far zone fields are, to first order in the parameters mgﬁmz and

mgﬁn ,

a:%a
ik (r -
. eikr‘ koamwe ] S E;}g‘)
H = €g [ sin © + e gp sin 20
T TP kT P 1w k r

(6.286)
E = -z e xH (6.27)
- o —T -

from which the properties of the polarization elllpse may be deter-
mined. An interesting feaﬁure of this result is the dependence of
the firat order field on the angle 6 , which is of the form sin 26
as compared with sin @ for the zero order field. Analogous resulis
were obtained by Kuehl (13) who considered the problem of an electric

dipole radiating Into an infinite, anisotropic plasma.
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VII. CONCLUDING REMARKS

As was stated in the introdﬁction to this report, our
purpose has been to study, within the framework of a macroscopic
formulation,‘some of the effects of a static magnetic field on
the propagation of electromagnetic waves in a plasms, with parti-
cular emphasis on the solution of boundary value problems. This,
the final part, will be devoted to a summary and evaluation of
some of the general results of this investigation. In addition
we shall comment on possible extensions and on other applications

of the ideas which have been presented.

The essential effect of introducing a static magnetic field
into the plasma is to couple together the TE and ™M modes, which
might otherwisé exist independently. The physical explanation for
this is that under the influence of a TE or T™ mode and the biasing
field, the motion of an electron will be such as to generate a
field of the dual type. This phenomenon was demonstrated rigor-
ously in the problem of the axially magnetized column and then in
‘general'using first order perturbation theory.

The apparent value of the perturbation technique lies in
the fact that it permits, with Jjust a moderate amount of additional
labor, the extrapolation from isotropic to anisotropic problems. |
However, such a téchnique may be used only when certain criteria

are satisfied. These are that the operating frequency be greater
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than the gyro-frequency of the electrons and furthermore that the
‘plasma frequency and size of the interaction zone be such that

the inequality

is satisfied. This criterion is equivalent to the physical

requirement that the effect of the static magnetic field be small.

Regarding other applications‘we should note that since the
expansion of the dielectric tensor is an algebraic point function
it is valid, under the given convergence criterion, even if S5
is not a rectangular unit vector. Therefore, perturbation tech-
niques may be applied to problems which involve curved and

| possibly inhomogeneous static magnetic fields, both of these having
thus far received very little attention.

Finally, we might mention the propagation of electromagnetic

waves in gyrotropic crystals (10). The dielectric tensor of a
‘crystal in the presence of a magnetic field is similar to that of

a gyroelectric plasma, so that the results obtained here would

apply in the case of crystals as well.
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APPENDIX A

SOME_COMMUTATTVE PROPERTIES OF THE LAPLACIAN OPERATOR

In this section we wish to show that if u stands for any
of the unit vectors 'ex, gy, Sz or the radius vector r , then the

following are valid identities:

vz[v X (.Ew)] = Vv x[E(VZW)] (A.1)
VE[VX (ngw)] = Vx[ExV(VEW)] (A.2)

wvhere W 1is a scalar function.

Other formulas which will be useful are stated here for refer-
ence. They may be found in text books on vector analysis.

let f, g and ¢ be two arbitrary vectors and an arbitrary

scalar, respectively. Then,
Vx () = pVxE - £xVP (4.3)

Vx (£xg) =1I(Veg) - g(V-£) - 2(£:V)g
+V(_f_;_g_) -£x (Vxg)-gx(Vx£) (Ah)

VeVxf = V(- £) - §72_:_':'_ . , (A.5)

We will prove A.1l first. OSince the divergence of the fileld

generated by a curl operator vanishes, the left hand side of A.l may
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be written as -V .xV x V x (uW) . Using A.3 and the fact that

- u is irrotational we have that

-VxVxVx (W = VxVx(uxVW) (A.8)

Furthermore, from A.%4, using the fact that the curl of a gradient

vanishes,
-VXvaX@m=Vng%-megg-angﬂ (A.7)

But V * u is a constant, 0 if u=e

e & &, oand 3 if

Z

u = r . In addition, it can be shown that in each case
v x [(5 . v)‘vw:] = 0 (A.8)

so that the proof is complete. Equation A.2 is proven in essen-

tially the same way. We have that

Vg[Vx(ExVW)] = -VxVx9Yx(ux VW)

]

-Vx V x[g VZW— (VW)(V+ 1) - 2(u -V)VW] (A.9)

_vx[v x (u Vew)}

and employing A.3 we obtain the desired result.
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APPENDIX B

FIELD RELATIONS IN A HOMOGENEOUS GYROELECTRIC PLASMA

In this section we derive the necessary relations for the com-

ponents Hx, Hy and HZ in a homogeneous, gyroelectric plasma.

The vector wave equation for the magnetic field H is

V;c[gvxg]-kig = 0 (B.1)

where 17 1is the symbol for the inverse of the dielectric tensor. In
rectangular coordinates the scalar equations corresponding to B.1l
constitute a set of coupled, linear partial differential equations

with constant coefficients. Hence Hx’ Hy and Hz all satisfy the

same equation.

- Assume that the direction of the static magnetic field Eo
is described by the direction cosines ﬂx, Ey and zZ . Then it

can be shown that the matrix representation for 7 is

-

P ]
nl+ ﬂ3ﬂx' n3zxzy - ihzZ n3£x£z + 1h£y
= £ £ +1ihg + ﬂz £ L -~ ihg
2 = |y z a3y 3% x
18 4 = ihp N, 4 £ +ihg + 1 £ (B.2)
3%z Ty 3%z X ™ 3%, J *

where the parameters e and h have been defined in Chapter I.

M3
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scalar equations corresponding to B.l are

P 5 - S oH_ BEHX 3%
K Yk b |iyk B - 2 —X__ | . )
nVH K H S+ Tk i Tk B ay} + g - axay] 0 (B.7a)
22 r 3H . om
- h - ———ien - 0
1 Hy+ ks Hy K, iTkon TXJ + 33[ N Oxdy 0 (B.70)
o 5 ‘ aHy OH_
- h| el = 2 = .7
NV H + k H, Tk o Sy 0 (B.7c)
Operating on B.7a with 0/0x , on B.7b with O/dy and adding,
2 22
anQP + k P+ iy ko hq = O (B.8)
Operating on B.7a with -9/dy , on B.7b with 9/dx and adding,
2 22 .
TllVZQ +k Q+ n3V§Q + 1Y k bP - yh vﬁ H =0 (B.9)
where we have introduced the notation
OH aﬁy
P = 242 (B.10
ox oy )
BHX aHy
T i - — B.11
o dy. ox ( )
) 0

1T TS Y (5:12)
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All the functions H B, H,P and q will satisfy the
same differential equation, since they are related by linear
operations in a systeﬁ of differential equations with constant
coefficients. It is convenient, however, to focus attention on
one of them, namely Hz .

From the divergence condition V - H=0 ,
P = —ivkaZ (B.13)

Using B.8 to solve for Q in terms of HZ and then substituting

into B.9 we find that H_ satisfies

2, 2
I ofng*t nt ¥ (7= (g + 0,00,
vV, H+ k V- H
t Tz o) t 7z
M1 Mo
2.2 24
p (L= y7)"- %y
+ ko : HZ = 0 (B.1lk)
1
or, more concisely
L 2 2 L
vt Hz+koavt HZ+kOI‘HZ = 0 . (B.15)

The above may also be written in the factored form

(Vf + Bf_)(vi + 62)112 = 0 (B.16)



-92-

wWhere
K —
8 = 2 (a+ Vof - )
k2
2 _ o _ 2 .
By = = (a Va© - i) (B.17)
2 2
B.15 will be satisfied by HZ = Hil)+ Hi ) where Hil) and Hi )

satisfy the corresponding Helmholtz equations

1]
(@]

Vﬁ + Bl)H

(% + g2rl?

I
o

(B.18)

(1,2)

- Once HZ
o(1:2) o(1:2)
X v

is known, we can determine the components
and It can be shown that the transverse field

is related to HZ by the matrix equation

- ; - «.(1,2)
H(l,2) ] irv _ Tl,2 1 aHz 1
X 'v2 ,V§ ox
L 1,2 1,2
2
(1:2) - iy OH,
bg V2 vZ oy
. o L 1’2 1’2 o L J
(B.19)

where
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1 2 2 ]
T z —— - -
1,2 Thr ["1("1,2 r)-1
2
2 Py,2
Vv ' ] (B‘QO
1,2 2 )
O
In vector notation B.19 may be written as
(1,2) i (1,2) 1,2 (1,2)
gt . 2 vg\he), e e x gy HY (B.21)
=t & V2 t z x v2 % tz
o 1,2 01,2

The most general magnetic field wiil be some linear combination
of E(l) and 5(2) » These bheing the independent solutions of
B.1.

In order to cast the above results into a form similar to
the expressioqs given for an isotropic medium, we define two func-

tions A and V. as follows:

2

(1,2) 2 '
_ . .22
o V1,2 V1,2 (B.22)

where‘ vl and vé are the transverse indices of refraction, In

terms of Vl and V2 the expression for the magnetic field is

iyr '
(1,2) 1 1,2 2
I — ] —_— . 2
H &2 Xk g0 E_ VeV1,2t &¥10",0 (B.23)
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APPENDIX C

SCATTERING BY AN ISOTROPIC PLASMA COLUMN

Since the results are referred to in the text, we include a
section on the prdblém of scattering of an obliquely incident
piane wave by an isotropic plasma cylinder with circular cross

section. The column is assumed to be described by the constitu-

op

tive parameters p =p_  and € = € (1 - ~5) . The geometry is
o o o
indicated in Fig. 1, Chapter III.

As shown, the plane wave is incident at an angle with the
normal and is polarized with the electric vector perpendicular to
the plane of incidence. We assume that the incident magnetic
field is of unit amplitude. It can be shown that such a wave is

derived from

(inc)
Wy ne

|
®]

w,éinc)

= exp(ikop cos © cos @ + ik z sin 0) (c.1)

C.1l may be written in separated form as

w(inc) = L Ef? i%7 (k p cos 6)F (8,2) (c.2)
2 -~ T cos © n' o n'"’ )
N==00
where
Fn(¢,z) = exp(ing + ik z sin ©) .

The incident wave causes a field inside the plasma as well as a

scattered field. These are derived from the respective generating
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functions

+00 -
W) RIREEACOROD
W) = T v (Be)E_(8,) (c.3)
wgsc) - z: ann(kOp cos G)Fn(¢,z)
wésc) = z: dan(kbp cos O)Fn(¢,z) (c.k4)

Hh denotes the Hankel function of the first kind, used to give out-
going waves at infinity in accordance with the Sommerfeld radiation

condition.

The conditions that H¢, Hz’ E¢ and EZ be continuous across
the surface of the cylinder provide, for each value of n , a set of
four equations involving &’ bn’ N and dn . They are conveni-

ently represented in matrix form by

A-x = f (C.5)
ford -n -1
where
a
n
bn
N (c.6)
n
d
n
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-

[ S Jn(koa cos 9)

k a cos ©
6]

cog O Jn(koa cos 0O)

= ' (c.7)
- Jﬁ(koa cos 9)

and the matrix of the coefficients of the unknowns A is given

on the following page.

Since the formulas fOr the coefficients for arbitrary e
are quite complex, they will not be exhibited (14). Besides, it
is much simpler in using a digital computer to program the indi-
vidual matrix elements and instruct the machine to invert the

syétem of equations.

The results for the special case of normal incidence,
hovwever, are required. Using Cramer's rule it is straightforward

- to show that, for y =20

:  aen+l
b - 21

| nka[Hn(koa)Jﬁ(ka)— Hﬁ(kba)Jn(ka)]

e = 0

0 an(ka)Jﬁ(koa) - Jn(kba)Jﬁ(ka)
dn = i ' (009)
ﬁn(koa)Jn(ka) - vHﬁ(koa)Jn(ka)
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APPENDIX D

THE_SOLUTTON OF AN INHOMOGENEOUS FORM OF BESSEL'S EQUATION

In this section we solve the inhomogeneous, ordinary differ-

ential equation

2 aF () oaF 2 2 >
x = +x —2 + (x5 u)F = X7 (%) (p.1)
dx2 ax K W

where ZM(X) is itself a Bessel function of the first, second or
third kind, and thus satisfies the homogeneous form of D.1l. Note

that the order u 1is not necessarily an integer.

We shall use the method of variation of parameters. Iet

1 2
Gi ) and Gé ) be any two linearly independent solutions to the
homogeneous equation and let C be defined by the appropriate

Wronskian identity

1 1
M M K H X
Then the solution to D.1 may be represented as
cF (x) = _G(l)er G(E) Z dx + G(2) X G(l)Z dx (D.3)
M e M M K o

Furthermore, since- Gﬁl’z) and ZM all satisfy Bessel's equation

the above integrals may be evaluated. The results are (11)
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ijx 62 gy - L A D) {2&2), 2@, 2
m TR " Lol

+l p, S T

Z +1J (D.k4)

and
~(2) (1) _ 2 (2 1 1 1 '
G, fx(}u Zudx'%(ﬁg )[QG;(L ) Z -G (_{_1 Z 1" Géizu+l} (D.5)

Using these results we find that

2
. X (1) 5(2) _ 4(2) 4(2) o) 4(2) ) (2)
er, () 'T{ (G Gl -G Gt Zu+l( G-17 %1% ]
(D.6)
We next employ the identities
potl x )
o) _ ug(h2) (1,2)
H- X p [
which, vwhen combined with D.6 give
X
Fu(x) =-3 [zu_l u+l} (p.8)

or, alternatively

FM(X)

x 1
-3 ZH(X)
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APPENDIX E

A SPECIFIC VERIFICATION OF FIRST ORDER PERTURBATION THEORY

It was stated in Section V.D that first order perturbation
theory gives the linéar term of a series expansion in powers of the
pa¥ameter img/m 5 of the electromagnetic flelds. We shall now
verlfy this conjecture for the special case of the field scattered
by an axially magnetized column when the plane wave is normally
incident. The geometry is as indicated in Figs. 3.1 and 3.2, with
® = 0 . The limiting forms taken by the coefficlents for this
examplé are obtained by setting 1 = 0 . The coefficients corres-~
ponding to the scattered fiéld then become, using the formalism of

Chapter TIT,

. . nh
. Jn(Bla)Jn(koa) - Jn(koa)[anIJn(Bla) + K J (Bya)]
a = -i ‘ (E.1)
-3 (Bye)E (k a) + K (k a)[n v, J! (B a) + E"i—{; 3 (Ba)]

The next step is to differentiate dn with respect to i(bg/m

In carrying this out we observe that

oBy5vi5m))

;_SEE;ZEY__ = 0 (E.2)

w =0
g

and
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- ?h = - it | | (E.3)
(1wg/w) v
2 2
@, w
where { = 5 P 5 -and q= The final result is
@ - O m - @
2
adn _n o n Jn(ka) i
2 1 t
3w fo) . #(k_a) [Hn(koa)Jn(ka) -an(ka)Hn(koa)] m1)
g N

The first order theory will now be employed in an attempt to

duplicate E.4. The zero order electric field is given by

RO NN N0
o | 3(k_p) T kP T (:3)

(tr)(0) _

from which we obtain the first order particular solutions

' ’ (tr)..(0) (tr).(0)
e} W, . d W
(1) (tr)_(0) _ 2 . L 2
A R T s
| (E.8)
and
H(l) = 0 . (E.7)
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Furthermore, it was determined in Appendix C that

vhere
bx(].O) _ 210+t ] (E.9)

ﬂka[Hn(koa)J];(ka) - vH;l(koa)Jn(ka)]

Assume now that the waves generated inside the plasma due to
the interaction between the zero order field and ]_30 are partially
reflected and partially transmitted at the surface of the cylinder,

giving rise to

(tr) Wél) ) “{f’ bI(ll) Jn(kp)ein¢
N==®
-+ .
(SC)Wél) = Z d'r(ll) Hn(kop)e1n¢ (E'lO)

Then in order to satisfy the boundary conditions we must have that

VeJn(ka)br(ll) = dlgl)Hn(kéa)
v J;l(ka)bl(ll)- Zn Jn(ka)br(lo) - dr(ll)Hr'l(koa) (E.11)

k a
o
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L)

from which we determine the following expression for n

.
.

L) _' itny br(10) Jﬁ(ka)

N - ‘ " (B.12)
k a [H (k a)J!(ka) - vJ (ka)H!(k a)]

Substitution of E.9 into E.12 leads to the same result as given in
E.4, thus verifying our conjecture concerning the interpretation

of the first order solution.
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