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ABSTRACT

Two problems involving electromagnetic scattering from irregular
interfaces are treated, both deterministic and statistical irregularities
being considered.

First, reflection of a partially polarized plane wave from a plane
interface with large irregularities is studied using geometrical optics.
Matrix transformations relsting incident and reflected waves are obtained
for reflection from a single specular point and from an extended area
containing many independent reflectors. The properties of a wave re—
flected from a diffusely illuminated rough interface are found, and these
results are used to study reflection noise reduction when a polarization-
sensitive detector viewlng nezr the Brewster angle i1s used in infrared
temperature measurements.

Second, the method of small perturbations is used to study
gcattering of an arbitfary completely polarized wave from an irregular
interface of general underlying shape. The irregularities are replaced
by equivalent surface currents and then the field in space is found
using the dyadic Green's functions of the unperturbed problem. The re-
sults obtained are valid when the irregularity has small slope and ampli-
tude small compared to fhe wavelength and local radil of curvature. T[o
facilitate applications, the theory of dyadic Green's functions is de-~
veloped, and the necessary functions are evaluated for simple gecmetries.
As an example, the [irst perturbation is calculated for scattering from a

perfectly conducting cylinder with sinusoidal irregularities.
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PART 1

GENERAL INTRODUCTION

The theory of scattering of waves from irregular interfaces®

has been studied continuously since the late 19th century, with in-
terest especially intense during the last twenty-five years. A
great amount of work hag been published, mostly in Journal articles,
and a book is expected shortly (1).

The best bibliography on the subject is contained in a survey
paperiby Lysanov (2). Additional references may be found in Parts IT
and ITI of the present paper and in papers by Twersky (3), Feinberg
(4), Rense (5), and Aksenov (6). Articles of interest not cited in
any of the above blaces include those of Hufford (7), Jacobson (8),
Lysanov (9), Grasyuk (10), Lapin (11), Barkhatov et al. (12), Gulin
(1%), Lippmann (14), Marsh (15), Urusovskii (16), and Barantsev (17).

Degpite the great amount of work done on scattering from
irregular interfaces, there are still many problems of immediate
practical interest which have not been solved satisfactorily. One
reason for this situation is that a unified approach is not possible;
there are four distinctly different methods of solution, each being
the best for some problems but inapplicable or undesirable for others.
Furthermore, these basic methods appear in varicus modifications de-

pending on. the specifics of the problem and the results desired.

*By an irregular interface is meant an interface of somewhat
complicated geometrical form which can be considered as a distortion
of & simpler geometrical form. The irregularities may be "regular”
in the sense of being periodic.



Finally, most problems have a scalar (acoustical) and a vector (electro-
‘ .magnctic) form, thé llatter being more diffiicult to treat.

In order to put the material of Parts II and ITT in context, let
us consider here the four basic methods of solution. First we have the
gecmetrical optics (or acoustics) approach, useful when the wavelength is
sufficiently small. The usual procedure is to assume that the effect of
the interface curvature can be neglected in calculating the reflected and
transmitted fields‘right at the interface; then the fields everywhere in
space can be found by well—knoWn technigues. In many cases the interface
may be considered as made up of small specular areas which scatter in-
dependent beams; this assumption simplifies the problem considerably.

In a modified form ofvthe geometrical methed, the field 1s ex~
panded in an asymptotic series in the wavelength, the usual geometrical
optics solution being the zero order term. Reference 8 gives an example
of this approach.

At the other end of the spectrum, for wavelengths large compared
+o the interface irregularities, the method of small perturbations is
useful. Here the change in Tield due tTo the irregularities 1s assumed
to be small and is calculated by expanding the field in a series and
requiring that each term satisfy appropriate boundary conditions. The
vector form of this tcchnique i; treated in detail in Part III.

In problems where neither the assumptions of geometrical optics
nor those of the mgfhod of small perturbations hold, an integral equa-
tion approach is usually necessary. That is, an integral eguation formu-
lation of the problem must be considered directly‘and solved by some
approximate technique. Variations of this method are given in References

14-18.



Tn the fourth method, the problem is attacked from a different

. point of view. Sufface corrugations of simple shape are considered and
a boundary value problem is solved--exactly or approximately--for the
particular shape. This approach 1s discussed by Lysanov (2) under the
two headings, "The Method of Images" and "The Method of Matching Fields."
The approach is of course adapted only to very special problems. How-
ever, in cases where it can be used, it facilitates a study of the tran-
sition from short Wavelength to long wavelength conditions.

The problems treated in this paper involve applying the first
two methods--geometrical optics and perturbation theory--to vector
problems. In Part IT, the reflection of a partially polarized plane
wave from a plane interface with large irreéularities is studied using
geometrical optics with the simplifying assumption of independent
scattering from small specular areas. in Part III, the method of
small perturbations is used to ‘study écattering of an arbitrary
completely polarized electromagnetic wave from an interface of general
shape with small irregularities.

The problem of Part II has no scalar counterpart. The scalar
problem analogous to the problem of Part III has not been treated be-
cause‘it lies outside the realm of electromagnetic theory; it will be

discussed in a forthcoming paper.
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PART IT

REFLECTION OF A PARTIALLY POLARIZED WAVE FROM A ROUGH

PLANE INTERPACE-~GEOMETRICAL OPTICS THEORY

1. Introduction

As already noted, in recent years a great amount of study has
been devoted to optical reflection from irregular plane interfaces.
The extended geometrical optics of Luneberg (l), has been used by
Primakoff, J. Keller, and H. Keller (2,3) to develop formulas for
opticél reflection and transmission of field components at an arbi-
trary curved interface. Longuet-Higgins (4,5) has studied the reflec-
tion of a scalar wave from a plane with Gaussian random roughness of
small slope. Beckmann (6), using technigues similar to those to be
developed here, has calculated the rotation in polarization when a
completely polarized plane wave is reflected from a rough plane.

Many other workers have treated tﬁe rough jﬁterface problem, but all
have either used scalar representations of iight or have considered
only completely polarized light. There has been no treatment of un-
polarized or partially polarized light.

| Iﬁ this paper we shall give such a treatment. Specifically,
we shall study the intensity anq polarization properties of light
specularly reflected from a rough plane interface between two linear,
homogenéous, isotropic media when a partially polarized plane wave isg
incident. Unpolarized and completely polarized incident waves will
appear in our formulation as special cases of partially polarized

waves.



The properties of a'light wave will be described in terms of

its coherency matrix J (7) defined by

I11 J12 By
J = = [E*, Egj,] =
Io1 Iop B ’
EXl E*! EXI E?y-(-!
s (1.1)
Ey, EX, Ey, E§,
or, equivalently, in terms of its power matrix
1 41
W== —J (watts/m®) . 1.2
5 oo d (vatts/n®) (1.2)

Here’ E 1is the eanalytic signal belonging to the electric field, e,

and py are’ the matsrial parameters of the medium of propagation, and

< ... > indicates time averaging. The direction of propagation is
identified with the z'-direction, and the (x',y',2') coordinate system
is right-handed. The matrix J or W describes completely the in-~
tensity and polarization state of the wave; convenience determines which
of the. two is used.

Two closely related problems will be studied: reflection from
the neighborhood of a single speéular point and reflection from an area
containing many specular points. In treating the latter problem, it
will be assumedvthat:we‘can neglect interference effects, shadowing,
and multiple reflection and refraction. ZEmphasis will be placed on‘

far (Fraunhofcr) zonc calculations.



It will be shown that the ccherency matrix of the wave reflected
in a given_directidn is related to the ccherency matrix of the incident

wave by a linear matrix transformation of form

Jrefl — P Jlnc 5* (1.5)

The 2x2 transformation matrix P 1is a function of the material param—
eters of the media and of the directions of incidence and reflection;

. P 1is the same whether we consider a single gpecular point or an ex-
tended area. The scalar mn 1is the product of a function depending on
the interface geometry with a function.of the directions of incidence
and reflection.

| In Sections 2 and 3 we calculate P and 17 . In Section L
we consider the important case in which the roughness is described
statistically. In Section 5 we apply our resulfg to a problem, of
practical interest in infrared temperature measurement, involving the
polarization properties of the field reflected from a diffusely illumi-

nated interface.

2. An Auxiliary Problem--Reflection from a Tilted Plane

2.1 Analysis in Angular Coordinates

We shall now solve an aukiliary problem, evaluating a matrix P
which in Section 3 will be identified with the P of Equation 1.3.
Figure 1 gives ﬁhe éeometry of the auxiliary problem. Two linear, homo-
geneous, isotropic media, M; and Mp, are separated by the boundary plane,

which is characterized by the unit normal vector =n (from M; to Ms).

Medium M; is a lossless dielectric (op = 0) but M, may be lossy.



REFERENCE 874-2

BOUNDARY
PLANE

srefl +X

Fig. 1. Geometry of the Auxiliary Problem
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We esteblish a Cartesian reference coordinate system C , charac-

‘terized by the unit vectors e

& Sy g, > and designate the plane 2z =0
as the reference plane. In general, the boundary plane is tilted with
respect to the reference plane.

Let a homogeneous plane wave s e incident on the boundary
inc

plaﬁe from M This wave shall be described by the unit vector s

1 -

in the direction of propagation and the ccherency malrix

Jo%= EX BX | ). (2.1)

The components of E are measured in the incidence coordinate system

CO -characterized by the unit vectors

inc inc inc
(eZ x 8 )x s e, X8 inc
e - Pal el
= - , € = ———— e =g . (2.2)
~X inc ~y inc ~Z ~
o} !e X 8 ] o} Ie X s
~Z, ~ o~ ~
The vector e, can be expressed in the € system by
A\
o)
inc . . .
e, =8 = cos  sin © e, + sin $ sin 6 e_ + cos 6 e, (2.3)
o Y
. inc cps . .
here © is the angle between s and the positive z-axis, and ¢ is
e ine - ine | . R
the azimuth of s . If the wave § is considered incident on the

reference plane, then EX is the fleld component parallel to the plane

0
of incidence and Ey 1s the component perpendicular to the plane of
o
incidence.
. refl .
We designate the reflected wave as S , described by the
refl

unit propagation vector s and the coherency matrix
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The field components are meagured in the reflection coordinate system

C, , characterized by

2
refl refl refl
(e x s ) % s e X s
c T ~ ~ . e _ Nz o~ s e _ Srefl (2 5)
= 5 = 3 = . .
Xy liz < E?efll Yo li % Srefl ~Zy o A~

The vector g, can be expressed in the C system by

2
refl 1o ' ] 1o t 1
= 8 = cos $'sin®' e + sin P'sin @' e+ cos 6' e . (2.6)
/\Z2 -~ ~X J\y ~Z
. . refl L. . .
Here 6 is the angle between s and the positive z-axis, and. ¢
is the azimuth of Srefl' If the wave Srefl is considered reflected

from the reference plane, then EX is the field component parallel to

: 2
the plane of reflection and E is the component perpendicular to the
‘ 2
plane of reflection.
Both §¢ ana Srefl will also be represented in the boundary

coordinate gystem Cl , characterized by

inc refl inc refl inc refl
2 t3 5 oxs g -8
Sx. T inc Tefl, ° Ey - inc Tefl; ° Rz inec refl
1 ls + 8 1 ]E X 8 ] L s - 8 i
(2.7)

To understand the significance of Cl , we write the law of reflection

in the vector form

4 =T e Tefl; sz, ’ (2.8)
|s S | "™

inc refl
s 8

~ -~
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and note that

inc refl ‘inc refl
nxs nxs s X s
incy; refl inc _refl ~y (2.9)
lax s Jaxg7 s s |
Now it is clear that when gthe and Srefl are considered respectively

incident on and reflected from the boundary plane, then Ex lies
1

parallel to the boundary plane and in the plane of incidence (and re-

flection), Ey lies parallel Lo the boundary plane and perpendicular to
. 1 :

the plane of incidence, and Ez is perpendicular to the boundary and
l N

thus in the plane of incidence.
The problem of reflection from a smooth plane is usually solved
in the boundary coordinate system. The incident and reflected fields

at the surface are.then related by the simple equation

Eiefl - R Einc , (2.10)

where R 1s the diagonal matrix

-R 0 0
[
R = 0 ‘R_L o . (2.11)
0 0 R
I ]
Here‘ Rll and :%L are the Fresnel reflection coefficients, given by

(u1/po)n cos Qi - cos O,
(u1/u=)n cos Qi + cos @t ’

‘RH = (2.12)
Rl ] cos 6, - (b1/pz)n cos 6, ; (5.15)

cos Qi + (p1/pe)n cos @t
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and the index of refraction n is given by

v 1/2
5 .
W €2 pp + 1W T Up
n = ] 2.14

[ w2 €1 W1 } ( )

The angle @i is the angle of incidence with respect to the boundary
plane, the angle between s¢ and n 5 1t lies in the first quadrant

and is given by

[1 - cos © cos 6" = cos(@' - @) sin 6 sin 6'].(2.15)

I

cos®o, =
i

- The angle Qt (in general complex) is given by Snell's law,

(2.16)

gin 8, = n sin O
i t

Now let us introduce the three-dimensional coherency matrix in

the C system,

1
—Jil T2 J15T rExl\
I = |95 Jgé J25 = Eyl Ezgl E?;:L Ezl .(2.17)
T30 Jzp I3 | -Ezl-
Then from Equation 2.10 we obtain
Jierl = R 57 RE . (2.18)
Furthermore, we note that
Jinc YR el ' (2.19)
grett _ g Jieﬂ N, (2.20)

where M is the real 3 x 2 matrix which transforms the incident field

from the CO system into the »Cl system and N ds the real 3 x 2 matrix



1k

which transforms the reflected field from the C 'system into the C

2 1

systen.

Combining the last three equations yields the important result

grefl _p gine g (2.21)

where P 1s the 2 x 2 matrix
P=NRM. ‘ (2.22)

The matrices M and N can be expressed in terms of cimpler matrices

by

M=TL ,N=TL,, (2.23)

where T dis the 3 x 3 matrix which transforms a vector from the C

system into the Cl systemn, Lo is the 3 x 2 mabrix which transforms

the incident field from the CO system to the C system, and L

o is

the 3 x 2 matrix which transforms the reflected field from the C, system

2

to the € system. Invoking the rules of orthogonal coordinate trans—

formations (8), we obtain

T =[e e e 1, (2.24)
o th
LO - [EXO /e\.yo] ? (2'25)

where the matrix eléments are all to be expressed in the reference

system C .



15

We can now calculate P in terms of the Fresnel coefficients and
of the two pairs of angles, (0,@) and (0,@'), which designate the direc-
tions of incidence and reflection in.the reference system. The computa-

tions, which are rather tedious, are outlined in Appendix 1. The result

is
BprR]i + BBBMRL BBsR|| - B?Busl
P = % , (2.27)
BBR|| - B1B5Rl BBR|| * BlBERl
where
K =1- [c§s 6 cos ©' + cos(@' - @)sin © sin 6'1° (2.28)
B, = cos © sin 0' - cos(f' - $) sin © cos O (2.29)
B, = cos(f' - @) cos © sin ©' - sin 6 cos O , (2.30)
B, = sin(¢' - @) sin o | (2.51)
B) = sin(@’ ; @) sin © _ - (2.32)

and the Fresnel coefficients are given by Equations 2.12-2.16. Thus P
can be expressed as a function of two material parameters—-n and pl/pg——
and three independent angleg--9, 6', and (¢' - ¢).

The five gquantities in EQuations”2.28—2.52 are related by

K =B + B = B2 + B2 ; (2.33)

the fact that only three can be chosen independently corresponds to the

fact that the five quantities depend on three independent angles.
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2.2 Representation in Mixed Coordinate Systems

" Thus far we have cdnsidered P as a function of the directions
-of incidence and reflection, these directions uniquely determining the
slope of the boundary plane. However, as we shall see in Section 5,
there are problems in which it ie desirable to express P in bterms of
the slope of the boundary plane and the direction of incidence (reflec-
tion),bconsidering the direction of reflection (incidence) as thus
uniquely determined. Eguation 2.27 will still hold, but we must now
express K , the four Bj , and Qi (which determines R]‘ and 3L )
in terms of the new ihdependent variables.

Let us write the equation of the boundary plane as

F=3z- (fxx + fyy) =0 . (2.3k4)
Then
n = VF/|VFP| = [e, - (f,e + fygy)]/ [vr] . (2.35)

Comparing this with Equétions 2.3, 2.6, and 2.8, we find

s . _ cos @' sin ©' - cos @ sin ©
X cos @' - cos © ’
. . . 1 . N
f - _ 8in ¢! sin €' sin @ sin O ] (2.36)
y cos ©' - cos ©

Now we define the guantities

A= fX cos g + fy sin ¢ , A= fx,cos g+ fy sin @' ;
ko= fX sin ¢ - fy cos @ , ' = fx sin @' - fy cos g' ;
2 2 2 2 2 2 2

pS = AT+ kT = AT+ kT = fx + fy . (2.37)
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Then it can be shown by the method illustrated in Appendix 2 that, in

. terms of (fx’fy) and (9,0) , we have

00329i = (N sin © - cos @)2/(1 + pg) 5

2(\ sin © - cos Q){(l%pg)-(k sin © - cos ©)[2A sin Gw(l—pg)cos 9]}
B. = - b
(1 + ug) {(l + Mg)g - [2A sin 0 - (1 - pz) cos Q]2§1/2

B, = -2(A sin 6 — cos 6)(A cos © + sin ©)/(1 + pg) 5
. 2
B, =2k (A sin © - cos 9)/(1 + u°)
B, = 2k sin (A sin © - cos 9){(1+p2)2-[2A sin © —(l—ue)cos 9]2}_1/2,

K =U4(N sin 6 - cos 9)2 [(A cos 6 + sin 9)2 + KE]/(l + lJJE)E'

(2.38)

In terms of (fX,fy) and (6,¢') , we have

cosEQ:,L = (A" sin 6°' —‘cos 9')2/(1 + pg) 5
B, = 2(A" sin ©' - cos ©')(A' cos ©' + sin ©')/(1 + HQ) s

2(N'8in@’-cos Qf){(l+p2)—(%'sin@'—cosg‘)[2%'sin©’ - (l—pg)cos @']}
%2 T (1 + pg)g(l + M2)2 - [2A'sin 0'- (1 - 92) cos 9,12}1/2 ,
BB = - 2k'sin 8'(A'sin 0'- cos‘Q'){(l+u2)2—[2A'sin 9'—(l—p2)cos 9’]?}—1/2,
B, = -2k' (A' sin @' - cos Q")/(1 + pg),
K = L4L(A'sin ©' - cos @')2 [(A' cos ' + sin 9')2 + n’g]/(l + ME)E.

(2.39)
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2.3 Simplification for Unpolarized Incident Light

. In many impoftant practical problems such as that of Seetion 5,

the incident light is completely unpolarized. In this case

1 o)

Wt =W , (2.

where WO is a constant. Then Equation 2.21 becomes

Lo)

[R‘[IQ Bi + IRLIQ Bi (IR]|I2 - lele)BlBu

wrefl 0

2 2
Bl+Bu

=W, P P*= | |
T P E e

(2

The reflected power density is given by

Z/; =W (IR‘llE + lRllg) . (2

If we speclalize further to the case of perfect reflection, then

ey 17 = Im P =1 e

and Equation 2.41 becomes

1 0
refl ine |

=
i
=
I
=

0 1

this is in accord -with the well-known result thaﬁ reflection from a

(.

1)

A2)

L3)

1)

perfectly conducting plane doee not change the nature of unpolarized

light.
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" 3. The Rough Plane Problem

5.1 Preliminary Remarks

We shall now give a completé delineation of the problem of re-
flection from a rough plane as considered in this paper. In this state-
ment we shall adhere closely to the conventions and nomenclature of
Section 2 and Figure 1, for indeed this formalism has been devised pri-
marily for use in the rough plane problem.

Again we consider two linear, homogeneous, isotropic media, Ml

and Mé , Where Ml is lossless and Mé may be lossy. These media are

separated by a rough boundary, the préfile of which approximates the

plane 2z = 0 ; the equation of this boundary will be written

F=2z-7T(x,y) =0. (3.1)

The unit normal n to the boundary is still given by Equation 2.35,

but now fX and ‘fy are functions of x and y .
The plane =z =0 1s again designated as the reference plane and

plays the same important role as before. The incident field is, as
before, a plane wave s™¢  witn arbitrary ccherency matrix, traveling

through Ml in direction ilnc ;3 the wave will again be described by

the angles (9,¢) and the coherency matrix in the Co system. The

wave Srefl reflected in the direction Srefl will be described by

the angles (@L¢') and the coheresncy matrix in the 02 system.
"It is assumed that the interface géometry is such that we are
Justified in using the ideas of Luneberg's extended geometrical optics

(1) (this essentially means that the boundary curvature cannot be too

great near a point of interest).
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As in classical optics, the rays travel in straight lines and obey the
iaws of"reflectioniand refraction. Furthermore, the incident, reflected,
and refracted fields at any point on the boundary are related by the Fresnel
formulas calculated for a plane interface; in other words, the reflected
(and refracted) field at a given point of the boundary is found by replac~
ing the rough interface by a tangential plane interface through the point
and then performing the calculation.

The fictioﬁal tangential plane plays the same role as the boundary
plane in Section 2. Fixing the direction (Q,¢) of Sinc and the slope
(fx’fy) at a point of the boundary determines the dilreclion (9‘,¢') in
which energy is reflected from the neighborhood of the point. Likewise,
if we know the energy is reflected in the (0',§') direction, we may
determine (fx,fy)[(©,¢)] if (@,¢)[(fx,fy)] is given. The coordinate
transformation Equation 2.%6 still holds;

From the above, it 1s clear that at every point on the boundary

the coherency matrices of the incident and reflected wave are related

by Equation 2.21, with P the same as invSection 2. However, now P 1is
a function of position on the boundary. Iurthermore, because of the
curvature of the boundary surface, the coherency matrix of the reflected

wave éhanges in magnitude with distance away from the boundary.

3.2 Reflection from a Single Specular Point

Consgider the light reflected from the neighborhood of a single
refl

specular point on the rough surface. Let JO be the coherency matrix
of the reflected wave measured at the boundary and let JEefl be the co-

herency matrix measured at distance D Tfurther along the wave. Then

B, (3.2)

Jﬁffl -1 Jisfl S TP J
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where I is a scalar given by Equation 10 or 14 of Reference 3 [where
it is designated by tﬁe notation J(%%)]. Comparing Equation 5.é with
Equation 1.3, we see that for a single specular point 1 =1 .

The most important special case is observation in the far zone.

There we readily find from Equation 14, Reference 3, that

R Dl (3.3)

where Gg is the Gaussian curvature at the reflection point and is

o

~given (9) by

o - Q2 _ (COS @‘— CcOB @'))-l- Q (3')_!-)
& (l+fi + f§)2 L[1 - cos 9 cos 6' - cos(f'-@)sin 6 sin @']2

and
2
Q=T fw - fx_y . (3.5)
For problems involving only the far zone, it is desirable to
suppress the range factor l/D2 . Thus we define the far zone normalized

coherency matrix

Jrefl’ = 1lim (DQ Jrefl) (5.6)

D — oo D

and the assoclated normalized power matrix

refl! 1 € refl!
W =5\/> g : (3.7)
M1
refl!

The trace of W is the average power per unit solid angle crossing
the wavefront.

We can now write the very important result
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1 * ~
JI'efl i i P Jlnc 5% _

kel

[1 - cos 6 cos 6" - cos(@' - ¢)sin © sin o' 1? lgl-l p Finesx | (3.8)

(cos © - cos 9")

where the gquantity § dis to be determined from Equation 3.5.

5.5 Reflection from an Extended Area

Two complications arise in passing from reflection from a single
specular point to reflection from an extended area. The first is the
possibility that multiple point geometric effects are important, i.e.,
that a significant amount of light reaches the observer by multiple
reflection or refraction or falls to reach him because gpecular points
are shadowed. These effects are important when the angle of incidence
or of reflection is close to grazing and when the roughness is steep.
We shall exclude such situations from our analysis and assume that no
specular points lie in shadow and that every ray once reflected or re-
fracted travels in a straight line to infinity.

The second complication is the possibility of interference among
the réturns from the various specular points. This effect may be neg-
lected when the roughness is sufficiently random and the gcale is large
compared to the coherence length (10) of the light. We shall assume .
such roﬁghness here.

Given these assumptions the coherency matrix of the light
reflected in direction (0',§') from illuminated area A is found

simply by summing the ccherency matrices of the reflections from each
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contributing specular point. In the far zone, which is of major interest,

we obtain the normalized coherency matrix

refl’ ine ~
JZ = N5 pJd B* p) (59)
with
2
[1 - cos © cos 6" - cos(¢' - @)sin © sin ©F -1
Ny = (¢ ¢> ] ZA]‘QJI H (5-10)
(cos @ - cos 6')

the summation ig taken over all appropriate specular points in A .
Equation 3.10 can be converted to an alternate form which is
usually more useful, especially when the interface is described statis-

tically. Consider the two-dimensional incremental

P (fx,fy)A af, dfy

which we define as the sum of the projections onto the reference plane

of all illuminated areas of the interface with slopes in the range

1 1
(fxi§dfx,fyi§df)

If we represent the projection of an infinitesimal area of appropriate
slope by dxj dyJ , then we can express the definition mathematically

as

p(__fx,fy) Aaf dfy =z, dxj dyj . (3.11)

It is clear from the above that

o0 o0
ar._ =1 . .12
4 Jf % Jf dfy P(fX;fy) 1 (3.12)
~Q00 -0
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An incremental area de dyj can also be expressed in terms of

slope incrementals by

-1
dx. dy. = |U. ar_ ar_ .1
3% IJI x Uy (.13)

where Uj is the Jacobian

) 0 £
o(f_,f ) ox. “x ox, Ty
U, =g——————7X oo J J =, . (3.14)
a i‘ a f
Syy % dy. "y
dJ d
Comparing this with Equation 3.11, we find
5, e ]‘l = p(f_,f )A . (3.15)
ATy Ty

Thus Equation 3.10 can be written

_[1 - cos 6 cos 0" - cos(f' - @)sin © sin o' ]°

(cos © ~ cos ")

g p(f, T )4

(3.16)

3.4  An Alternate Notation

Thus far we have defined n and P 1in Equation 1.3 in a manner
which is very convenient from the point of view of derivation. However,
in application it will often be aesirable to use an alternate factoriza-
tion |

inc

grefl _ o prgine Tk (3.17)

in which n' does not depend explicitly on the angles of incidence and

reflection. Then P' may be expressed in terms of P as
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_1-cos @ cos @ - cos(ff' - @) sin © sin O

P'
(cos © - cos @')2

P. (3.18)

1

For a single specular point, 7q is given in the far zone by

nto=1 = (0F|a)7 (3.19)

and for an extended area A ,

,fy) A . (3.20)

4, Statistical Roughness

4.1 Introductory Remarks

In many problems the equation of the interface is not known
but a statistical description of it is available. Such problems may
involve the light reflected from a single specular point--for example,
a glitter on the sea surface—-or the light reflected from an extended
area—-for example; an illuminated patch on the sea.

In Equation 5.8 we see that |Q]~l is the only random quantity
‘ . . R . refl’
on the right-hand side. Thus the statistical properties of J can
be Tound in a straightforward manner from the corresponding properties
of |Q|—l._ Likewise, from Equations 3.9 and 3.16, we see that the sta-

s refl! . A
tistics of JZ can be found directly from the statistics of

p(fx’fy) . The most important statistical quantities are the ensemble

averages of !Ql_l and p(fx’fy) , which will now be stated.
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4.2 Ensemble Average of IQl_l

© The ensembievaverage {Iﬂl*l}av‘ will in general be a function
of fX and fy and thus of the angles of incidence and reflection.
However, the average 1s independent of slope in the very important case
where f(x,y) [or the‘instantaneous values of f(x,y) for a fluctuating
surface] can be considered as a sample function of a Gaussian process.

This case has been studied by Longuet-Higgins (4,5,11,12,13). He finds

-1 -1/2
{lal b, = (5) / N, (k.1)
here
2
@
W = Jr E(u,v)e® v¥ du av , (k.3)
-00

and E(u,v) is the spectrum of f(x,¥y),

00, OO/

E(u,v) :ﬁé%?; jﬁ —[‘ dxdy cos(ux+vy){f(x+x‘,y+y')f(x',y‘j}av ()

The quantity NK is a function of
x(—;%? , (4.5)
where
"u0 Bzy T
A= mgy I, M| (4.6)
ele) B3 ol
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Longuet~-Higgins has shown that
23y >0 20 (%.7)

and that over this range N, (simply N in his notation) decreases
monotonically from 1.571 to 1.500, a change of less than 5%; a table
of 'NX versus A is included in Reference 4. For an isotropic surface--

one with statistics independent of the choice of x-, y-axes--A takes on

its maximum value and

NX,ISO. = 1.5 . (k.8)

The quantities H and A have physical significance, for il can

be shown that*

3H ~{Qg}av ?
6A:{95}av . (1.9)

4.3 Ensemble Average of p.

The ensemble average of p(fx’fy)' is readily found for any
homogeneous probability distribution——i.ef,'any distribution which is
independent of x and'y;— for it is just the value of the probability
density fgnction g(fx’fy) for the appropriate values of fx and fy .
If the distribution is not homogeneous, we have the slightly more compli-

cated expression

{p(fx,fy}av -7 fdA’ﬁ (£,,T05%,7) 5 (4.10)
A .

*Equation 4.5.14 of Reference 11 gives 6H = {Qg}av’ but this is a

typographical error.  The correct relationship appears everywhere else in
Longuet-Higgins's work. '
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that is, the ensemble average of p 1s found by averaging @ over

the area A .

If the slope distribution is homogeneous and Gaussian, then

CPlegt)),, Bt -

y
(QnA;/g)_l exp{;(mogfi - 2mllfxfy'+ mzofi)/EA} s (k.11)
where
oo M1
A = . | (4.12)
my o B

For an isotropic surface, this simplifies to

{p(fx’fy)}av = (gﬂmoe)_l eXp {;(fi * fi)/gmoé} =

_ . 2 c 24 _ v . . 1
(251, ) 1 exp {~ sin“6 + sin"o 2 cos (9 ;Zﬁgsm 0 sin © } (h.13)
Emoz(cos O - cos 9')

5. Example--Reflection of Diffuse Illumination

5.1 Analysis

In this section we shall extend our previous work to find the
. Arefl’ , . ‘ . . .
matrix 'WZ which describes the power per steradian reflected in a
given direction from an area A on a diffusely illuminated rough inter-
face. Then, using this result, we shall study the noise introduced in an

infrared temperature measurement by reflections from the surface of the

body being observed.
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Diffuse illumination will be defined as completely unpolarized
"and independent of direction (isotropic) for all directions with © < ﬂ/2.

Then the power per unit area of wavefront incident in solid angle dw is
1
1 dw =3 W dw 5 (5.1)

where the constant WO gives the power level.
Using Equations 3.7, 3.8, 2.41, and 3.16, and integrating over

the appropriate range of dw we get (on the average)

WA /2 En

frefl' , o, 4oy _ O . A
WZ (¢ )¢ ) = ( ) ) sin © de ag P(fxyfy)

x g(0,@;0',9" )P B*¥,  (5.2)

where

_[1 - cos 8 cos ©' — cos(¢f' - ¢) sin © sin 0 1°

(cos 6 - cos ©')

g (5.3)

and PP* is given by Equation 2.41. In deriving Equation 5.2, we have
assumed negligible the errors dué to shadowing and multiple pelleclion
at near-grazing incidence; this assumption is satisfactory for a moderate
degree of roughness.,

Usually it will be simplestkto evaluate Equation 5.2 if we elimi-
nate (9,¢) coordinates and integrate over an appropriate range of

(f_,f.) . Thus we write
Xy

dw = sin 6 @6 af = |Y|™* sin o ar,ar (5.4)
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where Y 1is the Jacobian

S(f_,T )
Y = (g} L, (5.5)

Evaluating Y from Equation 2.36 and combining 5.3 and 5.4, we find

g sin 60 d0 af = g Y] sin o ar, af -

1 - cos © cos ©' - cos (§' — ¢)sin © sin Q'
cos © - cos @'

6, 8F . (5.6)

- Further applying Equations 2.15, 2.39, and A2:3, we can reduce this to
g sin 6 do df = (N\' sin ©' - cos @‘)dfxdfy . (5.7)

The integration must be taken over all (fx’fy) for which
cos @ > 0 . Reference to Equation A2.3, shows that the area of integra-
tion is the disc & in (fx’fy) space given by
' t s 1 2 1
2\' sin ©' - (1 - p7)cos 6' >0, (5.8)

or equivalently,
. 2 . . 2 , _
(£, cos €' + cos ¢* sin 6')° + (fy cos ©' + sin @' sin ©')7 < 1 . (5.9)

In interpreting thils equation it must be remembered lLhal cos 8' 1s
never positive.

Now we can rewrite Equation 5.2 as

Arefl’
W (8,1) =W AQ

_;L_ st o 1y D D%
Q=5 _ji[‘dfxdfy(K sind cos 9') p(fx,fy)PP
G

(5.10)
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In evaluating PP* we use the expressions of Equation 2.39 for the Bj

- For the usual situation in which = Ky s the Fresnel coefficients

Hq

ere reedily found to be

n?(A'sine’ - cos ©') - [(a°-1)(1 + 1) + (A'sin @' - cos 9,)2]1/2

n?(A'sind' - cos ©') + [(ng—l)(l + Mg) + (N'sin ©' - cos @')2]1/2

(A'sin®' - cos ') - [(ne—l)(l + pg) + (A\'sin @' - cos 9')2]1/2

R, = .
1 (A\'sin®' - cos ©') + [(nz—l)(l + pe) + (A'sin @' - cos @')2]1/2
(S.ll)

5.2 Application to Infrared Measurements

Consider a body composed of homogeneous lossy dielectric material
and having a rough plsne surface. It is assumed that the other boundaries
of the body are sufficiently remote that they have no appreciable effect
on elther reflection or emlssion from the fough surface. A sbandard method
of determining the temperature of such a body is through measurement of the
infrared radiation emitted across the surface.

One form of noige limiting the accuracy of the measurement is in-
frared energy from external sources which is reflected from the surface
and enteré the detectér. Often it is not possible to control the external
sources, and thus any suppression of reflection noise must be accomplished
at the detector. We shall now discuss & suppression technique.

If the surface were perfectly plane, the medium nonconductiné and
nondispersive, and the detector field of view very narrow, then complete
elimination of reflection noise could be obtained by viewing the surface

at the Brewster angle with a polarization-sensitive deleclor which rejects
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the E-field componeﬁt perpendicular totthe plane of reflection. This fact
_ Suggests that even when roughness, conductivity, dispersion, and detector
field of view must be considered, it may be possible to reduce reflection
noise by viewing the sﬁrface at or near the Brewster angle* and rejecting
the berpendicular—polafized E-field.

” When the surface is illuminated diffusely--a situation frequently
encountered in practice--the noise reduction can be studied gquantitatively
by use of Equation 5.10. va we take into account roughness and condﬁctiv—

"itys consider observation at angles other than the Brewster angle, but still
assume a nondispersive medium and a very narrow field of view, then the re-
flection noise polarized parallel to the plane of reflection is proportional

to and the perpendicular—polarized reflection noise is proportional

to The effect of a finite field of view may be found by comparing

Gp -
values of the Qii for slightly different angles of observation; disper-

sion may be studied by comparing values calculated for different frequen-

cies.
Some calculations of practical interest are displayed in Figures
2-6. An isotropic Gaussian slope distribution is assumed; that is, we
set
A 1 2 2 2 '
p (f.,f ) = 5 exp {— (£= + £7)/2¢ }. (5.12)
Y 2ng * J
*For a lossy:material the Brewster angle is defined as that angle

for which RII ‘is a minimum. For losses of the order to be considered

here, a good approximation to the angle is ©% = (180° - 9') = tan“l[Re(n)].
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Then Qll and Q22 (Q22 is always the upper curve) are plotted against
'02 with the angle

*

0" = (180° - o") | (5.13)

as a parameter. Each Tigure corresponds to a different Value of n , the
values chosen corresponding to the values for water at 8, 10, 11, 12, and
13 microns wavelength as given by Centeno (14). The range of 0'2 is
greater than that encountered in water waves in the absence of whitecaps.
In interpreting the curves in terms of improvement in signal-to-noise
ratio, it should be remembered that the thermal radiation is approximately
unpolarized and thus a polarizer excludes half the useful signal power.
Tnspection of the data shows that, over a fairly‘wide range‘of %
around the Brewster angle, rejection of Q22 improves the gignal-to-noise
ratio by at least 3db.. As would be expected, the improvement is greatest
for small values of 02 ; an increase of 10 to 25db. in signal-to-noise
ratio is possible‘for surfaces with 702 < 0.01 provided a small enough
field of view and a nafrow enough bandwidth are used. A more detailed

discussion of the data is contained in Reference 15.

6. Concluding Remarks

Let us now review what has beeﬁ accomplished. Within the frame-
work of geometrical optics, expressicns have been derived giving the in-
tensity and polarization of the light reflected frpm a single speculér
point on a rough interface when a plane wave of arbitrary polarization is
incident. Similar expressions have been found for the properties of the

light reflected from an extended area on a rough interface; here, however,
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it has been necessarybto require that the roughness not be too steep,
that the angles ofvincidence and reflection not be too near grazing, and
that the return from each specular point be an independent beam.

The above~mentioned expressions constitute our most important
resqlts. It is significant to note that despite the great amount of al-
gebraic manipulation necessary to derive the expressions, the final forms
are falrly simple and compact, especially so in angular coordinates. The
expressions, besides enabling us to find numbers, aid us in visualizing
the phenomenon.

Special attention has been given to the case in which the inter-
face is a sample function of a Gaussian random process. The average sta-
tistics of the reflected field have been found through use of some re-
sults of Longuet-Higgins.

The field reflected from a diffusely illuminated interface has
been anaiyzed, and the results have been used to study the suppression
of reflection noise in infrared measurements. In the specific case con-
sidered, we find appreciable suppression is obtained by filtering out
the perpendicular-polarized E~field and viewing the surface at an angle
not too far from the Brewster angle.

No attempt has been made to extend the results to rough curved
interfaces. Such an extension is straightforward in many individual

cases, but a general treatment would be somewhat messy.
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In closing, we remark that the matrix P of Equation 2.27 is
potentially useful in the synthesis and analysis of optical systems in-
volving tilted plane reflectors. For example, it can be used in studying

the effect of varying the angle of a beam—splitter in an interferometer.
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APPENDIX 1
COMPUTATION OF THE MATRTX P

The derivation of Equations 2.27-2.32 requires the multiplica-
tion together of five malrices and simplification of the results. The
process involves repeated use of standard vector and trigonometric
identities. No attempt will be made to include these details here, but
the calculations will be outlined in sufficient depth to enable the
reader to reconstruct them.

Combining Equations 2.2, 2.7, and 2.23-2.25 gives

1
M= inc
2 * 2|
(iinc+ E?efl).[(iz < Slnc)x Einc] (ilnc+ E?efl).(ez % Slnc)
]sinc + E%efll ,IE}HC + E?efl]
. 1 . : . :
(ElncX E?e )'[(EZX ilnc)x Elnc] (E}ncx E.refl)_(eZ % ilnc)
X inc refl inc refl =
|s X8 J ]E x5 |
(E}nc_ Efefl)_[(izx Elnc)x E.:an] (Elnc_ ,S\'refl)_(e < E;nc)
inc refl : inc refl
s -2 27 -2
-
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B:'L . o
lSinC+ Jrefl !Sinc+ srefl!
1 -2 261 L
Py ry ~ v .. e 2

|§Z Xilnc‘ li;nc+ E?eflllﬁénc_ Erefl] |i1nc+ E'refl”ilnc_ E?efll

-B. o
i
liinc_ E?efll is\:’an_ E?efl (Al.l)

where the second form is obtained by using various vector identities and

defining
@=c (E;HCX ﬁréfl) = sin(@'-@)sin © sin O (A1.2)
and
Bi —e [EincX (E;ncx ﬁrefl)] ) (A1.3)

By an analogous procedure, we obtain

~ 1
N = l refl
e, x5 7|
[ ~Br -0 ~Sr
lﬁénc+ E?efl} iinc+ E?gfllliinc‘ E?efl Iﬁ;nc_ E?efll
X ;
-C J EBr , ’ ~C
Iiinc+ Erefl liinc+ E?eflliiinc_ irefll E-inc_ E?efll

(AL.L)
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where

- l ’
Br ey 'A[E?eflx (ilncX E?ef‘)] ] (A1.5)

Then Equation 2.22'gives'

P = 1 '
le < sinC]]e « Srefll
~Z ~ 7, ~
6lBif>rRH + 52 O?R_I_ , 6lOCBrRH - 62(?(,61]31
X | , (A1.6)
51065iRH - SEO@I'RJ_ ‘ 6lOF R” + 628iBI'RJ_
where
o, = — = y—= s
1 inc refl 2 inc refl 2
RSl B -
i
8, = - . (A1.7)

Isinc+ Srefl|2 Isinc_ Srefl 2 ‘

o~ s~ o~ o~

Now we define ¥ by

y - ilnc. Srefl_ (e . iinc)(e

refl
¢ S
A~ -~

) = cos(@'-¢)sin 6 sin ©' . (A1.8)

:./\ ~Z

Then 1t is easily shown that

Si = 7 cos O - sin29 cos O
(A1.9)
Br = cos 8 sin29' - ¥ cos @'
8 =08, = [ 1- (cos 6 cos o' +7)2 17t
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Also,

1 1

inc retl, . N ) (41.10)
,e\zxi HEZXE ] sin 6 sin ©

The next step is to substitute Equations ALl.9 and Al.10 into Equation Al.6
and express 'P as a function of &, 7y, © and ©' . Then we use Equations
Al.2 and Al.8 to convert this expression to the form given by Equations

2.27-2.%2. The detalls can readily be supplied by the interested reader.
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APPENDIX 2
TRANSFORMATION TO MIXED COORDINATE SYSTEM

We shall calculate B

, in terms of (fx,fy) and (e',¢') .

The other calculations leading to Equations 2.38 and 2.39 are very
similar.
First Bquation 2.3%6 is written as
cos ¢ sin 6 = cos @' sin O' - fx(cos © - cos 0') ,

sin @ sin © = sin @' sin 6' - fy(cos 9 - cos 8") . (A2.1)
Squaring and adding these two equations we obtain

1 - cos™0 = sin0' + pg(cos 6 - cos 9')2 - 2\' sin ©'(cos © - cos 9') ;
(A2.2)
this 1s a quadratic equation for cos © . Solving and rejecting the
extraneous rootv cos ©' , we find
cos © = [2A" sin ©" -~ (1 - “2) cos '1/(1 + ug) 5

cos © - cos @' =2(A\' sin ©' - cos 0')/(1 + p2> . (A2.3)
From Equation 2.30 we have

B, =cos @' sin ' cos @ cos © + sin @' sin 6' sin ¢ cos © - cos @' sin O
(a2.4)
Using Equations A2.1 and 2.37, we obtain
, . 2y Vel At N/
B2 =3cos 6 sin"©'~cos ©' sin 6-)\'sind' cos6 (cos 6-cos 9)}/s1n 0 =

(cos © - cos ©') [1 - (A" sin@’ - cose")cos 6]/sin 6 . (A2.5)
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Substituting from Equation A2.3 into Egquation A2.5 gives the result

. cited in Equation 2.39.
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PART ITII

SCATTERING OF ELECTROMAGNETIC WAVES FROM AN

INTERFACE WITH SMALL IRREGULARITIES

1. Introduction

We present here a theoretical study of the scattering of an
arbitrary time harmonic electromagnetic field from an irregular inter-
Tace between two linear homogeneous isbtropic media. More specific-
ally, we treat the very important case in which the interface can be
represented as the mathematical superposition on a smooth underlying
(unperturbed) interface of small scale irregularity. ' By small-scale
irregularity, we mean irregularity of amplitude small compared to the
wavelengths of interest and compared to the local radii of curvature
of the unperturbed surface, and of slope small compared to unity. For
practical applicafion of the results, it is further necessary that the
underlying interface bé of simple enough shape so Lhal Lhe unperlurbed
'scattering problem can be treated adequately. Problems of the type
described occur in connection with radio wave propagation over the
ocean, background clutter in radar observations, reflection of radar
signals from natural and artificial bodies in space, scattering of
1ight by polished but slightly irregular mirrors and lenses, and many
other situations ofvpractical importance.

Our treatment is based on the method of sméll perturbations,

a technique first developed by Lord Rayleigh (l) for a similar problem,
reflection of a scalar wave from an irregular plane wall. In this

method, the irregularity of the surface is characterized by a small
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displacement parameter- € , and the field is calculated as a power series
in el, the constant term being the field in the umperturbed case. Usually
oniy the first or first few coefficients of the power series are actually
calculated. In many discussions of the method, including Lord Rayleigh's,
the small parameter € 1is not expressed explicitly.

The method of small perturbations has already been applied success-
fully to scattering of a vector wave at an irregular plane interface. Bass
and Bocharov (2) have solved this problem for an arbitrary wave incident
- on a perfectly conducting interface; Rice (3) has solved it for a plane
wave incident from the dielectric side on an interface between a dielec-
tric and an arbitrary medium. Quite different representations of the
results are obtained in the two solutions.

.There do not appear to be in the literature any satisfactory
treatments of vector problems in which the underlying interface is not a
plane. Two inferesting papers on the analogous scalar (acoustical) prob-
lem have been published recently by Kur'yanov (4) and Lapin (5), but their
approaches are not as general as that to be presented here for the vector
problem.

The approach introduced in this paper can best be ﬁnderstood
against the background of the work of Bass and Bocharov and of Rice. Theilr
wofk is therefore recapitulated in Section 2, with emphasis on the features
common to both analyses. |

In order to proceed to a more general analysis, we adopt a point of
‘view different from that of either of the background papers. We look upon
the perturbation technique as a method of mathematically replacing the sur-—

face irregularities by appropriate electric and magnetic surface currents
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imposed on the unperturbed interface. Once these currents have been de-
termined, the fields anywhere in Spacevcan be found by using dyadic Green's
functions (henceforth.abbreviated d.G.f.;s).

Thege ideas are déveloped in Sections % and . In Section 3 we
treat the theory of 4.G.f.'s, including bothlmaterial which is used di-
rectly in later sections and material of general interest. Some of this
material has not appeared in the literature previously or has appeared in
incorrect form.

Section 4 contains the most important results: general expressions
to second order in € for the effective surface currents and for the per-
turbed fields. In an appendix to this.section, it is shown that the re-
sulls of Rice and of Bass and Bocharov are in agreement with the more gen-
eral theory.

In Section 5, we extend ﬁhe analysis to problems in which the inter-
face irregularity‘is described statistically. Specifically, we calculate
various significan% averages of the perturbation fields in terms of the
mean and correiation function of the interface irregularity.

To illustrate the spplication of the theory, in Section 6 we cal-
culate to first order fhe field scattered when a plane wave is incident on
a perfectly conducting cylinder with sinusoidal surface irregularities.

Harmonic time dependence e"imt is to be understood everywhere.
e+ia¢

Since Rice and Bass and Bocharov assumed a time factor , the re-

sults cited here will be the complex conjugates of the original forms.
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2., A Survey of Previous Results

2.1 Method of Bass and Bocharov

Bass and Bocharov's derivation (2) is rather short and shall be
repeated here in full, with somewhat modified notation. Let the equation

of a perfectly conducting irregular plane interface S Dbe
— t ’ ! — | S Yy . - L1,
Q=2'-z (¥y')=2" -2z (z))=0, (2.1.1)

and let the propagation constant in the upper half-space be k= . The
function z, is constrained to take on values small compared to the wave-
length of the incident field. The small parameter ¢ may be identified
with the maximum absolute value of Zg the RMS value of Z, » OT any
other convenient measure of the magnitude of the irregularity.

The perturbed electric field is written
ES(r') =B%(z') + AE (r') =B°(z") + 8B (z') + & E (z') + - , (2.1.2)

vhere E° is the total unperturbed field--incident plus reflected--and
'8 is the perturbation field of order Zg , l.e., of order €' . The

field at the irregular interface is also expressed as

. [ -
E (ﬁé + e, ZO) =

~

9 1 2
BE(rl) + 5or B5(x)) 2, + 5 (5%) E(z)e2 + o (2.1.3)

Furthermore, since vEE must vanish tangent to the interface, we have

o €. e 9
B+ By 557 %, =0 Ey, +E_, 57 %o = Oons . (2.1.4)
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Combining the above equations, we obtain for the effective first and

‘second order fields at the unperturbed interface

? o _o o o
1 —_ —
6 E)(‘;yl(r‘o) - ZO 521 EX')yl EZ! XI;yT ZO 2
& E (f‘);—z‘g—é 5 E - 3 E 0 z (2.1.5)
Xl)y! ~O o Z' X'}y' Z‘ X;y' o » .

These Tields correspond to effective magnetic surface. currents

3) ~-e ,x8E , FK =-¢,xFE . (2.1.6)

K
~n ~Z ~ ~m ~Z

The field everywhere in the upper half-space can be found by

applying to Equation 2.1.5 the Kirchhoff formulas

5 f 1 1 T
EX)y(}:) =-25 as EX,}y,(j,{o) G, (mszl) (2.1.7)
8
\ Q
e , 9 : :
EZ(E) =2 “[ as [5§T EXKEO) oy Ey,({o)] Gy (E’Eo) . (2.1.8)
So
Here SO ig the unperturbed interface ' =0 , and Gf is the scalar

‘Green's function for an unbounded region.

1

G (z3r') = o ey B (i kel - x']) . (2.1.9)

~

2.2 Rice's Method

Rice's derivation (5) is quite different in form. It is a direct
extension to vector problems of Rayleigh's scalar solution (1) and is thus
based on a mode representation of the scattered fiéld. Details of the
analysis are lengthy, so we shall only outline the procedure and cite the

results here.
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The intefface is again described by Equation 2.1.1. A plane wave
is incident from the upper medium Mo ; characterized by permeability uso
and real prbpagation constant ko . _The‘lower medivum M, dis character-
ized by pl.and ki1, where k; may be complex. The irregularity function
Z i1s assumed periodic in x and y with very long period L so that we

can write the Fourier series expansion
zo(x’,yf) =3 m,n P(m,n) exp [- 1 2 (mx' + ny')] , (2.2.1)
where
a = 2n/L (2.2.2)

and the sums run from - oo to + oo . The angle df the incident plane wéve
is cbnstrained to be such that the incident field has period L in both
x and y . The periodicity requirements are important to the derivation,
but in practical applications we can treat non-periodic roughness and
arbitrary angle of incidence by letting L approach infinity.

The perturbation field is assumed to be of the form

A’E(ﬁ):: ann.[ix Amn + &y B te, Cmn] E(m,n,z) , =z > z, s
AE(x) = Zm,n [e, Cop + &y B + 8y L) Flmmn,z) , z< zZ - (2.2.3)

Here the mode functions are the plane waves

E(m,n,Z) = expdi a (mx + ny) + i b(m,n)z} s

]

F(m,n,z) = exp{i a (mx + ny) - i c(m,n)z} 5 (2.2.4)
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where
b(mn) =+ [ - a® (uf )12 Cmn) =+ [ - a2 @ + 02) 1Y 2(e.0.5)

The first step in determining the six sets of unknown coefficients

is to expand each coefficient as a power series in € ; thus, for example,

A=A (1) + A (2) + A () + o, (2.2.6)
mn o mn mn mn
where Amn(ﬂ) is of order ¢ ¥ Next, the E(m,n,z) and F(m,n,z) are
expanded in power serics in =z . Then the tangential fiecld boundary con-

ditions are written to second order and the expansion of [&E. igs dinserted.
Terms of the same order are equated, and we thus obtain a set of linear
algebraic equations for the first and second order approximations to the
coefficients of Equation 2.2.3. The solution of these equations is
straightforward.

Rice gives the results for a vertically polarized (no Hz) plane
wave incident on a perfectly conducting interface and for a horizontally
pélarized (no EZ) plane>wave incident on a medium M; with k; arbi-
ﬁrary but i = po .

In thevvertical polarization case, the unperturbed field in

Medium Mp is, for an incident wave of unit emplitude,
E9(z) = 2 expli kp & X}[- iysin (ke 7 2z) e, +@cos (ke y2) e, 15(2.2.7)

here v ¢ =sin®, y =cos & , (2.2.8)

and © 1is the anglé between the positive z-~axis and the direction of

propagation of the incident wave. The coefficients are
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I

A ) __ 2 i (d am-k )P (mn-v,mn), an(l) =-2i0anP(m- v,n),

i

'.C ‘(l).~ o4 pt (n,n) [a (v - m) ko - @ b® (m,n)] P(m - v,n) ;

Am(g) 2 I, ,la" (k) (v-k) ko + (kp - G & m) b2 (k, H] Qlmnk, )

B ) 20 5 o (- H(v-k) ke - @0 B2 (5, 4)] Ak, 5

mk - nif ke

C () _ op™t (m,n) Zkiﬁéa (k-v) (m® + n®

+aloa @+ 10°) - m ko] B2 (k,,@}Q(m,n,k,z) s

o Mg @ g M)y @) W) @ (2.2.9)
Here
av =%k &, Q(m,n,k, £) = bt (x,2) P (k~v, ) P (m-k, n-4). (2.2.10)

In the horizontal polarization case, a plane wave of unit amplitude

incident at angle © gives rise to an unperturbed field

]:3\8 :Tex‘p{i kl Q' x - 1k1 7’ Z}’e\y 3 Z<O;

(2.2.11)

here

kl)" kl'}’r =1 kl
R = — =t 1 = =21 +
@ koY ) @+ k27 ) 7 E (

71 =1
Koy )s L+ R =T, (2.2.12)

and

kK =k Q' =k , ¥ =[1- (oz')2]l/2 . (2.2.13)
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The first order coefficients are

1) - (1) 2 1iUa®mn Plo-v,n)
Amn( ) - Cm - d(m,n) Do

1 1 2 iUP(mv,n)| a®n®
R =y

. (1) __21Uenc(mn) Pla-v,n) ’ I&) o l‘iéﬁ.ﬁi’i) o W e

mn d(m,n) Dm[l

The second order coefficients can be determined from the six equations

a m Amﬂ(g) +an an(g)k+ b(m,n) Cmn(g) =0,
am Gmn(g) +an Hmn(g) - c(m,nj Imn(z) =0,
2 @) g (2)—1@1, 5 (@) _ g @)y,

& m (Cmn(g)k - I (2>) - b(m,n) Amn(g) - c(m,n) Gmn(g) =hy . (2.2.15)

Here
U=5T (55 - 63) ; (2.2.16)
d(m,n) = bm,n) + c(m,n) , Dy = af(m® + n®) + b(m,n) c(m,n) ; (2.2.17)
and
. 1

hy =-1iam zkﬂ,(ck Z(l) - Ik,@( )) P(m-k,n-g¢) ,

he = I, /Z[U P (k-v,£4) - i an (ck z(l)~ Ikz(l))]P(m—k;n~£) ,

ho =~ 5, Uk 7 POev, ) + 1 (5 - 18) B (V] Plark,n-g)

hy = -i (¥8 - x8) ZMAM(:L) P(m-k,n-4) . (2.2.18)

Rice'sk paper contair;a the solutions to Equation 2.2.15, but we shall not

repeat them here.



57

2.3 Similarities of the Two Methods

~In»both methods, the perturbed field-near the interface is ex-
panded in a double series in € and in the coordinate normal to SO
Then this expansion is inserted into the tangential boundary condition
at the perturbed interface, and the resulting equations are solved to
givenan intermediate result from which the perturbed field can be cal-
culated. In the method of Bass and Bocharov, the intermediate result
is the effective tangential field at the underlying interface, and the
© field everywhere is found using Kirchhoff's formulas. In Rice's method,
the intermediate recsult is’the oix sets of mode coefficients, which are
readily seen to be the coefficients of a Fourler series expansion of the
effective field at the underlying interface. The field everywhere is
feund by multiplying these coefficients by the appropriate mode func—
tions and summing.

The similarity of the two methods suggest that they could be
generalized to more complicated problems if & general technique were
available for expressing the field everywhere in terms of the tangential
field at an interface or, equivalently, in terms of surface currents
on the interface. In the next section we shall discuss Jjust such a

technique, the use of dyadic Green's functions.
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5. The Dyadic Green's Function

3.1 A Short Review of Electromagnetic Field Theory

In this paper we are interested in problems involving two linear
homogeneous isotropic media M; and Mo separated by an interface 8.
When the order of the media is not important, we shall deéignate one by
M. and the other by Mb . Medium Mq will be characterized by the ma-

a
terial parameters pq and kq , and the volume filled by Mq will Dbe

called VCl . Maxwell's equations in MKS units are then
vx () -1 eug B = - 4,0
K2
-9 - .
v x E({) T Hy E({) = {e(;:) ; T in Vq 5 (3.1.1)

where gé is an electric current distribution and Qﬁ 1s a magnetic
current distribution. The magnetic current has no physical existence,
but effective magnetic currents appear frequently in the mathematics of
electromagnetic theory.

The two parts of Equation 3.1.1 can be combined to give the

gecond order forms

— 2‘ :. —
VXVXE KIE 1wpq£e gx d_ o,
k2
-~ K Hg=-—9
vV xvxH kqg TG uqf{ervxv‘Ze . (3.1.2)

In a source-free region, the operator (§7X‘7X) can be replaced by (—<72).
If neither medium is a perfect electric or magnetic conductor,

then the boundary conditions at S are

g« (B2 -H) =K, , nx (Be-E1)=-K (5.1.3)



59

here o 1is the unit normal from ¥y to Vs , and E{»e and Km are re-—
o~ N
-spectively electric and magnetic surface current source distributions

on the interface. When one medium, say M; , is a perfect electric

2

conductor (Ei infinite) , then electric surface current sources induce
1 SYRoMER

equal and opposite surface currents and thus have no net effect. The

field in Vi is zero, the boundary condition for E becomes

nxB =-K , (3.1.4)

and the elcctric surface current ig then uniquely determined. Simi-
larly, when M; is a perfect magnetic conductor (ui infinite) ,
then magnetic surface current sources have no effect, the field in Vi

is again zero, the boundary condition for H is

nxHe =K_, (3.1.5)

and the magnetic surface current is uniguely determined.

It is important to note that in all cases the fields are unchanged
(except infinitesimally close to the interface) if a surface current source
is shifted an infinitesimal distance into Vs ; by making such a shift we
can always eliminate §é and §m in Equétions 5.1.3-5. 1In some situa-
tions this is the most convenient viewpoint, whereas in others it is

desirable to retain the sources on the interface.

3.2 Dyadic Notation

The theory of dyadics has been treated adequately by Gibbs (6)
and by Morse and féshbach (7), and we shall not reﬁroduce the material
here. It is necessary, however, to say a few words about notation.

The letter © will be used for a general dyadic, I will be

used for the unit dyadic, and I will be used for a d.G.f.; other
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dyadics will be identified in context. The transpose of & will be
written. @T , the com@lex conjugate will be written &% , and the
Hermitian conjugate (@*)T will be written @

The standard notations for a dyadic are

®y3 ®12 P13
3
= > |- . .
o o E ey ®ij g D21 Dop Doz | 5 (3.2.1)
i,J=1
D31 Pao P33

here (e1,es,e5) and (el,ed,el) are two sets of orthogonal unit vectors,
not necessarily both corresponding to the same coordinate system. A row

vector of ® will Dbe designated by

G [ 2.2
and a column vector by
o, = % e, O . (3.2. ))

These vectors are related to @ by

¢= % e, 0, = %, 0. e, . (3.2.4)

The concept of the curl operating on a dyadic from the right will

prove useful. This operation is defined by
~ TN D ) ) =
exve-(yx0) = Spexe ¢t 5y 0 x & * 3z ®xe . (3.2.5)

The definition is consistent with the standard practice of treating the

operator V as a vector, for it is analogous to

©oxA=-(Ax @T)T . (3.2.6)
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3.3 Theory of the Dyadic Green's Function

.The theory of the d.G.f. in a homogeneous region with perfectly
cohducting boundaries has been developed‘by Schwinger (8,9). Tai (10)
has attempted to extend the theory to problems involving two media, but
same of his results are incorrect; the errors appear to be due to his
using an incorrect analysis by Morse and Feshbach (11).

It is not difficult to find the correct extension to two medis
and we shall do go here. In order to identify sourceg directly with

-currents, we use a normalization of the 4.G.F. different from that of

Schwinger. Thus the I“(l) of Reference 9 is 2L I’ in our notation,

, 1w e
and I‘(E) is (— lC—D—L‘—L)l" .
k2| ™

Let us first consider é problem in which all sources are elec-
tric currents. We take as a set of canonical sources, from which all
others can be constructed by superposition, three mutually perpendicular
unit &function currents at each point in space. These currents are
chosen to lie along the axes of some convenient orthogonal coordinate
system (e1,e2,¢3) -

Now let the column vector E?Z,j (E;E'). denote the electric
field at r due to the canonical electric current at E’ parallel to

1

g5 - The electric d.G.f., I, (r;r') , will be defined by

T, (mr') = % ,ljefJ (zsz') ¢]

o~

(3.3.1)

It then follows by the principle of superpoSition that the electric field
due to an arbitrary electric current source distribution ie(r') in

volume V is

(') (3.3.2)
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if the source distribution extends to infinity, it may be necessary to
interpret the integral as a limit.

A partial differential equation and boundary conditions for I,

are found by applying Equations 3.1.2-5 to the Egj. . We obtain
2
vxyx I (zr') - ¥ T (mr') =1opId (r-r'); (3.3.3)
n(r) x I 2(r;r’) =0, r on S, My perfect electric conductor; (3.3.4)

n(r) x [vx I 2(r;r')] =0, r on S, My perfect magnetic conductor;(3.3.5)
A A ’ ol P

e vty et -
a(@) x [T, 5 (mx) - I, (el =0,

4 Yooty _ 2t STRY B
n () X[iwua vxI, 5 (;,3 ) s VAL 1 (rsr )}— 0,
r on S, no perfect conductors. (3.3.6)

Here k and p are evaluated at r and it is assumed for simplicity that
Mo dis never a perfect conductor.

In deriving Equations 3.3.3-6, the éource point E’ is assumed
to lie in one medium or the other but not exactly astride S . This as-
sumption is necessary because T (K;I') is discontinuous in »' at S .

FaY

However, the dyadic
ol (mz) == [0, (mr') xn &)lxn(z'), 2 on s, (3.3.7)

which represents the response to sources parallel to the boundary, is un-
ambiguously detf'ined.
The dyadic Ig| plays an important part in the perturbation

theory, for it gives the field due to a canonical electric surface current.
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We can calculate Ig' from Equations 3.3.3-6, but it is simpler and more
natural to use a formulation in which the source is indeed tresated as a

surface current. Thus, using BEquations 3.1.2-5, we obtain

V XV X Ié" (ﬁ;ﬁ‘) - k2 Ig’ (r;r') =0, r not in V' ; (3.3.8)
Ig' (E;E’) =0 , My perfect electric conductor ; (3.3.9)
n(r) x L vx T, (r;r') = (e,,e,, +e ,e ,)(n,,h )_l 8(E-£')d(n-n")
A iUle.g 6,2 A)A ""E"‘E' AT]'A’]’], ér nl T] 2
(3.3.10)
r on 5 , M; perfect magnetic conductor ;
I et} - h 1=
n(r) x [Pejg (z5r") A (rsr')l =0,
n (r) x [—;—— vx ol (z57) - —l——-:7x ol (r5e)] = (3.3.11)
~ A i{,l_)p,z 6)2 A id)“'l e)l A Tt

(e..e,, + e ,e ,)(b,,h ,)_l &(e-¢')8(n-1") , r on S, no perfecl conductors.

Here V' 1is a small sphere around r' ; (&,1,¢) and (&',n',¢') are co-

ordinates in a righthanded orthogonal system with metrics hg” nr,, h
J

CI ’.

and , . =g (3.3.12)

Now let us consider the magnetic d.G.f. Iﬁ (r;r'). Its defini-
tion is the same as that of ‘Ié except that magnetic currents replace

electric currents. The equations analogous to Equations 3.3%.2-11 are:

H (r) =fd v Lo (wr') -4 (') (3.3.13)
v

where Jm is a magnetic current source distribution;
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\ ' k=
. . ! — 2 > ! T e — ! .
V‘XVX r (rsr ) -k T (z3r') Ton T8 (r-r') (3.3.14)

n (r) x L, (rsr') = 0, r on 8, My perfect magnetic conductor;  (3.3.15)
F) Ea

n (r) x [vx L o (r;r')] =0, r on S, My perfect electric conductor;
~ o~ 5 o~ o~ o~ . 4
(3.3.16)
] 1 .
n (I‘) x [T o (£)£ ) - rm,l (/I::;f; )] =0,
n (xr) X[ ey o, (z5z') Hlgx T 1 (}\,}\')] =0,
kS g k% ’
r on S, no perfect conductors ; (3.3.17)
I‘H? (r5r') = - [T (wr') xn ()] xn (z')r onsS; (3.3.18)
and
VXVX I‘Hy (Jl:,';'\‘) - K& I‘m" (/I:;E') =0, rnot in V' ; (3.3.19)
I“H!i (/r\;‘/r\’) = 0, My perfect magnhetic conductor ; (3.3.20)
iopp " [ A . -1 P
n(r) x 2 Ve LN, (mr') = - (gpg, + gnign,)(hg,hn,) 8(&-£")8(n-1",
r on/S, M; perfect electric conductor ; (3.3.21)

n(r) x [l“m'ig (rsr') - I‘m“,JL (zsr)l =0,

2 AT~

n(r) X[wz vrx ol @) - 2 ox (ﬁsi')J -
kg 4 kl 2

‘ -1 g ' '
- (Egligv + ,e\nx__cint) (hgthnx) o (&"‘& ) 5 (ﬂ‘ﬂ ) 3

r on 8, no perfect conductors . (3.3.22)
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In a general problem, both electric and magnetic current sources

~are present, so that the total field is given by

E(r) = de' L (r3z') - J (r') + =22 gx de‘ L (r;r') = J (x")
o~ [ A~ A ~L o~ k_2 m ~T ~
Vv v

(3.3.23)

‘ 1
H(r) de' L (zsz') - g, () + Top V ¥ jdV' o (zz') - 4, (z')

v v

(3.3.24)

- The curl operator and the integral sign may be interchanged for r any-
where but exactly at the interface or at a source discontinuity. Equa-
tions 5.5.25,24 are the basic equations for determining the field when
the d.G.T.'s are known.

The d.G.f‘. may also be used in formulating integral equations
relating the field in a homogeneous region to its value at the boundary
’of the region. The appropriate equations, which are derived in Appendix 1,

are
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E(r) = de'[;{e (x') - -1—(1—“- v (z )}’ I, (z'sz)
v
1
- ﬁ fds’ Ta() x BE)1 v'x T(esz) + [alz') = vx B@)] g
S,
€
(3.3.25)
V.
1
(3.3.26)
_ Ao [dS'{[n(r') x H(r')]* v/x T (r'so)+n(x') x v'x H(x")]-T (T’Sr)}~
2 J o\ A my~ CRYTAMA ~ me~ =~
Y1

Here Vi is an érbitrary volume throughout which the medium is linear,
homogeneous, and isotroéic, and Si is the/boundary of Vi . The d.G.f.'s
I; and Iﬁ are required to satisfy Equations 3.3.3 and 3.3.14 respectively
everywhere in Vi 5 but’no specific boundary condition is imposed at Si

In practice, Si usually coincides with thé interface & , and the d.G.f.'s
for unbounded space are usually employed. The formulation of Rquations
3,%.25,26 is primarily useful in finding the field due to a specific source

distribution or incident wave without calculating the d.G.f. of the problem.
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3.4  Properties of the Dyadic Green's Function

In Appendix 1, we outline the proof of the three important rels-

tions v
Nze') =T (2's ) (3.1.1)
_.'1‘_ PR | _ iﬂ)p‘! . ol ! . ~
g VX I (mrt) - )2 L (zr')xv', (3.%.2)
i) 1 .
iji v x L (/1:;{‘) = T I ({r\;/}f) x v’ . (3.4.3)

Equation 3.4.1 indicates that Equation 3.15 of Reference 9 can be extended
to two medium problems. FXquations 5.4.2,5 are the extension, in our nota-
tion, of Equation 3.16 of Reference 9; these relations can also be written

in the explicit form

k2 o ‘

o T (z5r') = %‘1%; Vx L (mz') x V- Te(z-z'),  (3.4.4)
. ' 1

iop T (rs5z') = T VXL (rsr') x v’+‘ I 8(r-r') . (3.%.5)

Using the above formulas, we can determine both Ié and Iﬁ com-
pletely if the six independent dyadic elements of either one are known for
all r and E' . This, however, is much morc information than we actually
need.v Let us therefore now consider the guestion of determining the T
everywhere from more limited inflormation.

To this end, we write Ié as the sum of an incident and a scattered

field; thus



© = pihe, pseat (3.4.6)
,Where

B (rsrt)

il

0 NN . .
I (r;r') for r,r' in the same mediunm ,

O'j

it

0 for T,r' not in the same medium . (3.%.7)

Here I;O is the electric 4.G.f. of an unbounded medium, which is given by

Equation 3.5.1. Equation 3.3.6 now becomes

n(z") x[ref';at ("5r') - refiat (3"5;;')} - a' (") x reo (z";5z')

n 1 o scat Mooy 1 " scat moory|
n(z") x[imug Vix Lo (2 ) - VE LT (& )J— (3.%.8)

o~ ~

1 0
- n' (I‘”) X[W V"X -Fe (/I\.H;,I:I )]’

where ' lies on & , n'(x") is the unit normal at r" into the
o~ SN N

medium in which {‘ is located, and Iéo is evaluated for the medium in
which =»' is located.

Comparing these results with Equation 3.1.3, we see that the field

Iéscat is the field due to effective dyadic surface current distributions
ny n 1 ” 0 N
K, (r") = -n' (z ) x o vV o* L (r"5z')
K (") =n (") x 1:30 ("5z') . (3.4.9)
scat ' . . , .
Thus. I can be found from Equation 3.3.23, with the volume integrals

e

C

reducing to surface integrals. Adding Iéln to this result, we find

T inc el " " 1 1 1 L 0 1 ‘
L(zr') = I,7 (oz )_+[d8 Lzl (") = g v I (2%5z)]
S .
ooy ‘ .
-+ = VX Idsn rm(;.\;{,l)'[,ri’ (£11) % reo (/I\'"};E:')] R (B.LL.:LO)
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which can be written in terms of the Idl as

. ) ‘ : inc L 1 ) It Y o]
I\e(?\,;\‘l) _ l-\e lb(ﬁ;ﬁy) _ m »fdsl [rél (£;£1) % Et (_:E”)]' AV AR l-\e (3{"33{')
S .

+ ES& v x jrdS” [Ig?(£;£”) x E'({")]'Iéo(ﬁ";f') . ’(B.M.ll)
k S

Thus I; 1s determined if we know Ié“ and I&“ ; that is, if wé can

evaluate the d.G.f.'s for sources on the interface parallel to the inter-

» face, then we can evaluale the d.G.[.'s everywhere.

Furthermore, in Equation 3.4.10, we can replace Ié({;{") and
Iﬁ({;;”) by I;T(£"5£) and IﬁT(£"5£) respectively. The latter two
quentities can then be expsnded in terms of the I*l(ﬁ";ﬁ"') vhere "
and E”' both lie on S . Thus we cbtain the interesting result:

T E(i) X Ig’ (£5£') and E({) X Ig' (ﬁS{') are known
for all r and £’ on 8 , then explicit expressions can be found for
Ié (r;r') end I% (fsﬁl) everywhere. The expressions in question ave

lengthy and will not be recorded here.

4.5 Some Important Dyadic Green's Functibns

| In this section we shall compile some of the more important
a.¢.f.'s énd related éuantities. TQ avold unnecessary repetition, we
note that an expression for Iﬁ‘ can be obtained by replacing 1wy by

2
B in an expression for I; . As noted before, k®/u is infinite

ioop
in a perfect electric conductor and u is infinite in a perfect magnetic
conductor.

Where the d.G.f. i1s of complicated form,'we shall tabulate IJI

and Vx I‘" rather than the full d.G.f. These quantities are sufficient
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for our purposes; being the functions that actually appear in the perturba-
‘tion equatipns to be aerived; furthermore, we have already shown that T
caﬁ be calculated everywhere when the 'l are known.

The d.G.f.'s for an unbounded region and for a half-space with
perfectly conducting béundary have been taken from Reference 9. The Ig
and ﬁ'x Igl for the general plane, cylindrical, and spherical boundaries
have been calculated by using known mode expansions of the field (see
Ref. 12) and matching the discontinuity in tangential 2} at the inter-
face; the straightforward but tedious details will not be given here. Re-
sulte are presented in order of incrcasing geometrical complexity.

A. TIn an unbounded medium

L (zz') = l“eO (zsr') = dop (I - g—avv') Gp (z3z') , (3.5.1)

where the scalar Green's function Gf 1s given by Equation 2.1.9.
B. In the half-space =z > 0, when the plane 2z =0 is a

perfect conductor,

H
~~
I
a
H
) —
1
=
O
~~
3
I
p—_
+
|
O
-~
5
"
|
A
[
H«
0]
N
o
™
=
i
>
X0
N
5@
N
g
~~
AN
\J1
N
j

In accordance with Equation 3%.3.9,

|
o

re" (zsz') =0 ; ' (5.5.3)

we also find

o ,.
hwe) =2 gl wr) c (getee) 220, (3.5.4)
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The image method.used,to obtain kgquation j;b.E can.be used to find in
-closed form the d.G.f. for any wedge éf angle n/n with a perfectly
cdnducting‘boundary.

| C. When the halffspéce z < O‘ is filled with Medium M; and thc
half space z > 0 is filled with Medium Ms, then for r in Medium M.q

we have

i st - : i ety o
reJ (r;r1) = LQL Tq Y/ 'x %;q(,r\,;: ) = LCl W (3.5.5)

A

4"

. Here Lq is the operator

+00 +00 )
. Sabe ’[~ dudv exp iu(x—x')+iv(y—y')+ihqz} L---] - o~
ho® ~So -0 (uzhi-pihe) (poheki-pihiks)
(3.5.6)
and
‘ 2
[neha (kE-u?)-uihi (kz-u?) ] uv (u1hy - pshs) o}
Tq_= wv (uihy - pehz) [peho (kF-vBpahy (KB-v2) ] o1
uhih hih
= i 2 (uzhy - pihz) - T ﬁ 2 (pzhy - pihz) 0
L : 4
iuvpe (kB-k%) - ==[k2hihp (pshy-pihe )+ h u? (k5-k7) ] 0
a hq q q aq
W =|=[k2hihs (uzha-pihe )+ b v (kB-kF)] -iuvyp (k5-k5) o1,
q hq q a q q
i v (uihik3 - ushokf) : -~ 1 u (uihik3-pshoks) ©

(3.5.7)
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with
(e1,22,88) = (ei,ed,28) = (g08.58,) > (3.5.8)
1/2 | . 1/2
by = - [ - (08 4 v@)IY2 , np s 1B - @@+ @NY2 L (5.5.9)
The expression for Ig'q is not quite correct at r = r' . Here
3 N Cad

it is necessary to add a term equal to the irrotational part of the source
function. This term, however, has no effect in the perturbation theory,
and we shall thus not consider it further. The same comment applies to
the Igl for the cylinder and sphere.

D. When the interior of the circular cylinder p =a dg filled
with Medium M3; and the exterior is of Medium Mp, then for r 1in Medium

~

M  we have
a

b fpapry o 1
'y Gozt) =L lg (e)g, + k g (P )
ol (er) =1 [x a +t , 5.
vl (zz) [k 5,(P)d, + 5 (P)g,] (3.5.10)
Here L 1is the operator
too T
[ = Wkikenips z: ,[ dh exp{i n(6-0" )+i h(z—z')%[vagJ (V‘J_)I-I(l)(vg)r2
 he® n=-00 _<_ n n

: -1

{ ar-la( 1 _}_)2 l}:i Jl;,(vl) 4o Hr(l}')'(Vg)}[ K2 JI'I(V:L) 12 ngl)’(Vé)]

Vi Jn(vl) V2 H(l) (va) ) LH171 Jn(Vl) " pavs H(l)(VZ)
n n o

[-+-]; (3.5.11)

and

_inq _ 9 .4 )
g (p) = = Zn,(%qp) €5~ 55 Za (qu) & (3.5.12)
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., 9 .4 _nh g 2 .4 .
bale) =1h 5527 (%qp) & " 7 I (%qp) g * Ay By (NP g, s (3.5.13)

{ 2h2§V1—V2 J (v1 )[H( )(Vz) K2V1V2 3 (1) [H( )'(Vz)]2

kikopo Tkidz

-+

’ 2 2
S e (e ’% o + 2R s i ez,

. :Q{Eféfﬁzizig-,[J (va) 12 (w2) + ELYLY% L3, (v2)1% W) (551w

kikoug

3 2/ 2 2
_ kovive T (1), nhv3 (ve-vy) 2. (1)
P Jn(vl)Jn(vl)Hn (va)ta Sor * P [Jn(vl)] H- (Vg)iz ;

SO PP 3. (va) &, ; (3.5.15)
a3 kg n b=} o 0 Y2 k. 1 > e D

_ [V._J_-. I (Vl) H(:L) (Vg) _ \_f_g J.n (Vl) ngl)l (Vg)] anh /e\ex

~0 M2 1 n M1
+ (23 () 1M () - i2 g1 (v.) 1 (v)] vives, s (3.5.16)

= = 5—2' ..l
v, =8 +ayf£q n2 (3.5.17)

z; =J, (Bessel Function), zi = Hﬁl) (Hankel Function) ; (3.5.18)

(ﬂ——ﬂﬂ (3.5.19)

E. When the interior of the sphere r =a dis filled with Medium

M; and the exterior is of Medium Mp, then for r in Medium Mé we have

()R ()],

o '
Ig o (Lsz ) =L le® (T)Ap 2,-m(& )+ dg ‘n D, n(E

o«»q,,@m ~q,4,m

(3.5.20)

Lz )+ k2 (r)8 (x")]

“ eont Y -1
v I} (z5z')= Lle n (z)m 2, e,m @8,

~g, Lym A P £

(3.5.21)
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Here T 1is the'operator

.- e %Oo in=- g %i%%—) - (3.5.22)

and
n (@) = 2500) [eg Simg ¥y 0 (08) - gy a5 ¥y (G0  (5.5.23)
Aq,ﬁ (T =3 [pzq(p)] [eg a@ s (& g) + & 5%55 o (& 1, (3.5.24)

n (x) = e, Eﬁfiil z% (e) fﬂjm_(9,¢) + éq,

~g, £,m ~

(x) (3.5.25)

£,m

o
|

= H2h§l)(pé)[pl i, (o)1 - 3, (P1) [pzhél)(pz)]; ,  (3.5.26)

(1)

wakBn,~ (e2)lend (o) 1" - w2 K1 ,(e1) 02 hél)(pz)]’ , (3.5.27)

Q
H

0 =k7T , 0y =k 2, | (5.5.28)
Lezy(e)1 = g% Lz, ()] - (3.5.29)

The radial functions are

zz =3, (Spherical Bessel Function) , zi = hél>(8pherical Hankel Function),
(3.5.30)
and the Y are the spherical harmonics of angular momentum theory (12),

4,m

which can be expressed in terms of the more common assoclated Legendre

functions by

. 1/2 .
W08 = ()" [%@] P (cos 0) o™ (5.5.51)
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, Calcﬁlation of the Perturbation Field to Second Order

L1 Inﬁroductory Remarks

The perturbation in the scattered field caused by interface ir-
regularity can be reproduced approximately by a distribution of electric
and magnetic surface currents on the underlying interface. 1In this sec-
tion we shall determine these effective surface currents to second order.
Then the field will be found to second order everywhere in space by using
the results of Secfion 3.

The approach to be used is general, valid for underlying inter-
faces of any shape and not dependent on any particular representation of
the solution to the unperturbed problem. However, in order to avoid ob-
scuring the basic simplicity of the approach by the details necessary for
generality, we precede the general derivation with a treatment of the

simple case of an irregular plane interface.

4.2 The Plane Interface

The configuration of interest is shown in Figure la. As in

Section 2, the upper Medium Mo is divided from the lower Medium M;

by the almost plane interface S with equation

Q=2z" -z (x',y") = '~z (Eé) =0 . (.2.1)

That is, a point Eé on the unperturbed surface SO is perturbed into
a point
r =r +e z_ (k.2.2)

~€ ~0 ~Z O

oﬁ S . The volume below S .is designated by Vf , Tthe volume above S
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b) General Interface

Perturbed Interface Configuration
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by Vg . Similérly, the volume below So is designated by V? , that
'above by Vg . The points common to th regions will be denoted using
tﬁe standard mathema£i§al symbol for an intersection n ; thus, e.g.,
VE n vg is‘the set of péints common to Vi and VZ .

It is convenient to introduce the small parameter e by setting

20 (23) = o (z)e - (e2)

where Wb is a gpecified function with the properties

Mﬁx{iwo(gé){} <1, Max {|§7%Wo(£;)r} <B . (L.2.4)

(here B 1s a positive constant, and ﬁ,i is the two-dimensicnal gradient
tangent to So)' Then the single parameter € describes the magnitude
of the perturbation.

Now let E; be a field vector, either E or H , evaluated in
medium Mq when the interface is uhperturbed. then, for z' of order ¢,
we write formally
T )=y ¢ r e B () B ()2 (52) B () + 0 (<), (h2.5)
where E’ and. Eé differ only in their z' coordinate. If E’ lies in
V; B then Equation 4.2.5 is a statement of fact. Otherwise, the equation
defines the continustion of the field Ez outside V® . The conditions
under which the continuvation is‘meaningful are discussed in Appéndix 2.

Next, let us formally define the perturbed field E; by

FE(r')=F(z') + AF (r') =F (') + & (2') + & F (') + 0 (%) .
F(x) =B (') + 62,(x') = F (z') + &, (z") B (z') + 0 (e)

(k.2.6)
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Here SQFq is the perturbation field of order " and satisfies
Maxwell's equations for Medium Mq. Assuming that &F and &F
also have expansions of the form of Equation 4.2.5, we can rewrite

Equation 4.2.6 as

2
CORHEPREIE S {CRE NCRIE O CRE MO

+z' 0 oF (r')%azF (r')] + 0(e®) .2.7)
dz' “~g ‘A0 ~g Ao
for z' of order € . The conditions under which this equation 1s

valid depend on the concept of continuation, for the discussion of
which the reader is again referred to Appendix 2.

The boundary conditions on S are
€ 'y € '
n ({e) xATF (£e) =0 . (4.2.8)
Here QE is the unit normsl to S from Vi to VS and is given by
.
n(z)= v o/[viel, vie=v'lzt-z ()] = ¢, - vz (z)) ; (k.2.9)
A;E is the discontinuity in field across the interface,
Yy N ! .
AF (z)) =Tz (1) - Fa (x)) ; (4.2.10)

and Ee takes on the values Eé and EE.

The effective surface currents on So are found by setfing
Equations 4.2.7 and 4.2.9 into Equation 4.2.8, multiplying tlhe resull-
ing equation bj IK}'Q] , and equating terms of the same order. Thus

we find



o)
+ Al:s-—, (6@\)]} ; (4.2.12)
o, (x0) = g, x A (8) = - ¢, x [ (BB )gh o + 2 & (o ) (h.2.13)
K (r') = e XA(&ZH)——GX'];Z2A[(a)2HO]+[A(6H Viv . =
~e‘no! T Rz =T Rz 2 %o dz’ z! T "o
oz A[S—i—;— (6@]} . (4.2.14)
Here all quantities on the right hand side are evaluated at /I\‘é . The
identity
o o 0 _o d 0\ _
A5 T, :—A(g}-c—,—FX, +$Fy‘) =0 (k.2.15)

is used in deriving the second order expressions.
The per‘turbatioh fields are found by applying Equations 3.3.23

and 24, Thus we find

— ! Weeant y, 1 iep 1 Wt . '
&8 (r)= de Tlxsz! ) 8K (x)) + = v X de Dzsrl)-og (x!)
SO‘ ‘ SO

= - ' " RN B = 1 M_ ' “ et Y. a2 ry.
&E (r) fds re(;:,}:o) 5 ge(io) Rl £ de rm(ﬁ’}io) & §m(£o),(M.2.l6)

S k S
(o] O
1 | IS 1 -
S(z)= fds teszl) ok (2) + g5 v x de'I;!’(}:s}:g) C ok ()
S g

e} O
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Iwop
S .8
o ol

tb 1 ) lv 1 1 1
H(z)= de'I“Ir‘l[(,I;;{O)-62,I§m(,1:O) + = VX de Ig'(ﬁ;fo)-%zﬁe(ﬁo)-(uf-lﬂ

The ™ are those of Section 3.5C or, if M; is a perfect conductor,
of Section 3.5B.

Let us now congider the conditions under which these results are
valid. An obvious constraint is that no source may lie in Viflvg or
v§f1v§ , the volumes through which the surface is perturbed. Also, in
order for the difference in field at corresponding points on S and SO
to be small, € must be small compared to the wavelengths in M; and Mp.*
Finally, the slope between corresponding points on S and SO must be
small, for otherwise the ficld lincs would bc distortbd too scverely.
The discussion in Appendix 2 does not introduce any additional condi-
tions, but reinforces the ones cited.

The material presented above can be applied'readily to verify

the results of Bass and Bocharov and of Rice. This is done in Appendix 3.

‘4.3 The General Interface

The general case is 1llustrated (with the irregularity exag-
gerated) in Figure 1b. An orthogonal curvilinear coordinate system
(£',n',0') 1is chosen such that 8, 1is a coordinate surface (' =0
and €' >0 in Vs . The metrics of. thc system, (hE"hn"hC')’ arc
in general functions of position. The coordinate system need not be
defined everywhere in space, but the perturbed interface must lie within

the volume in which the system is defined.

*If, however, one medium--say Mi—-is gquite lossy, then the
wavelength in M3 is of no consequence in determining whether the
perturbation theory can be used in Mo .
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The eguation of the perturbed interface S is

Q'~0

Q=18 -t (ghn') = -t (x)) = ¢-w () e=0. (h3.1)

Here LS (or éo) is to be considered as defined in a volume but inde-
pendent of £'; il satisfies the inequalities
1
Max{hc,(i')lwo’}f 1, Mox {'hg,(/r\’)‘vT wo]}_<_ B, (h.3.2)
3 . € _ .0 . € .0
where the maximum is taken over the volumes Vi [Vs and Vs llvy . A

point on 8 will be denoted by ré

Now consider a point

~0

r'=rl+Ar =xlo+ 8’ o+ 0(e®) = xr! + dg“hg, g¢ (4.3.3)

which differs from- ré only in its ' coordinate and i1s such that the

curvilinear distance

Cr
a =[ at' n (k.3.4)

1
o ¢
between the points is of order ¢ . It is readily shown that
o
6{‘ =h§, (EC')) ¢ ié! s (Li‘55)
where
| el - e (=) (5.3.6)

Thus to first order Ax{' is a straight line segment.
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The extension Of Equation 4.2.5 is now found to be
RIS WY ._ 0 1 9 o 1 L y2 0 \ZLor . 3
F, () =14 (x)) + ¢ st Iy (x)) t 3 (¢) (5¢7) P;q(;:o) + 0(e3)(%.3.7)

Combining this with Equation 4.2.6, which still applies in the general

case, we obtain
€ 1 o . 1 t 8 O 1 H
r, (&) =Ey (xl) + [C Sem By (z)) + &8, (,I;o)}
l 1 a 2 H 1 a 1 1 .
+ {g (¢ )2(5?*) E; (zl) + ¢t so %y (xl) + SEEq(ﬁo)} + 0(e®);(4.3.8)

this equation is the generalization of Equation 4.2.7. As before, the
legitimacy of the formal result depends on the existence of the appro-
priate continuations of E;, égq , and SEEQ , a matter discussed in
Appendix 2.

As in the plane case, we designate by £€<£é) the unit normal
to S from Vi to V; . The boundary conditions of Equation L.2.8
are still valid, but now the expression for Ee is more complicated.

We must take account of the fact that the operator v ' depends on

1

r' and thus write
2 ) = (7Rl (+.5.9)
It is convenient to replace Ee by the vector
X (z) = (h?v'@"){':ﬁé ; (4.5;10)
which has the same direction as Ee everywhere on 8 . Expanding X

in the same way as E; , we Cobtain
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A - (v it = {80 oty TR e b
+ % ¢ (gag—r)z Ser T W (hg,v o & )} C,)+ 0 (%) ; (k.3.11)

here‘vi is to be interpreted as the two-dimensional gradient normal to

f'rom Equation 1.3.6 of Reference 7, we find

e

wggx = '“v.i. hgx . (br.f.lg)

~ Use of this in Equation 4.3.11 leads, after some simplification, to

AO

X(r,) = {gél =V (hc‘éo) 2 B'C_‘ v (hcxé )} 0 (e9) . (4.3.13)

Setting Hguations 4.5;8 and 4.3.13 into the boundary conditions,

we determine the effective surface currents on SO to be

o, () = - 5 %o L&) = ofy x {[2 B, (2] alay L)

p e (6590 E° @)I], (h3.1k)

~1 " ~0

&®K (r') = - eg,X A [62E(r )] = eg, x{z eela (5—)2 E° (x)]

P 218G (1)) 53 Vg0 ) ¢ g B VL Ve (apit)
#1888, )1V, (a8) + & [A-a%— 5 B(z))1} (4:3.15)

() - ¢ x & TG0 - - o xflasl vy Goty)

+ b [Ag%—ﬁo (£)1], (4.3.16)
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O

.62 K. ({é) = iz, x A H (ﬁé)] =-gp ¥ g%‘gi [L;(S%T)E Eo (Eé)]

RN Hy, (2] ga_@-vf (b 2 + [A% Hy, (1)) tvg (pity)
Lo, (z)lvg (e b)) + & [Ag%—x o (z)13 (4.3.17)

where AT ds defined by Equation 4.2.10 and the :7% terms are evalu-
ated at fé .

>The perturbation filelds are calculated using Bquations 4.2.16
“and 17 with the Tl appropriate to the umperturbed pfoblem. The condi-
tions under which the results are valid are the same as for the plane
interface with one addition: the irregularity must be of amplitude
small compared to the local radii of curvature of the underlying surface.
This condition is necessary, among other reasons, because the field
varies rapidly with position near a region of large curvature. At a
sharp edge, the field is usually infinite, and no perturbation at all

is allowed.
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5. Scattering from Random Interface lrregularities

5.1 Pfobiems ol Tuterest

In‘many practical problems,'the objectivé is to relate the
statistics of random interface irregularities 'and the statistics of
the field scattered from the irregularities. Such problems are of two
types: those’in which surface statistics are used to determine field
statistics and those in which field statistics are used to determine
surface statistics.‘ |

The firsf type of problem is straightforward; explicit equa-~
tions for the important statistical averages of the I'ield are readlly
derived from the results of Section 4. On the other hand, problems
of the second type tend to be difficult. 1In general, the cbserved
data must be supplemented with additional facts or assumptions about
the nature bf the surface, and then integral equatiocns must be solved
for the surface statistics. When possible, it is desirable to work
with statistics‘of the field which, at least to‘lowest order, involve
only 6§ and not 62E . Other details of’the approach depend strongly
én the individual problem.

o Fach of the tWO types of problems may be further divided into
three‘classes according to the nature of the interfaces being cbserved.
First, there are problems involving observations on various fixed ir-
regular interfaces* that afe all samples of the same statistical ensemble;

clearly ensemble statistics is the appropriate tool in such problems.

*Note that observation of the instantaneous configuration of a
slowly fluctuating interface is equivalent to observation of a fixed
interface. : :
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Second, there afe problems involving observation over a long period
“of time of = single interface with sldwly fluctﬁating irregularities
(fhe fluctuations must be slow enough so that the scattered field can
be considered monochromatié). Here time statistlics are obviously ap-
propriate; however, in many casges ergodicity may be invoked to replace
certain of the time statistics by equivalent ensemble statistiés.
The third class comprises problems involving a single fixed
interface for which the following three statements are valid:¥
1. The intersection of the underlying interface with any
surface &' = const.is the same curve except for displacement and
rotation.
2. For L sufficiently large but still small compared to the
total range LO of E' , the integral

£+

; 1 ! vt t 1
G(e1sx5nime) - § f agr & (Bimi)t (ewxsmd)  (5.1.1)
e}

31

is approximately independent of gf and equal to

L

®(xsn1sm2) = lim fd&‘l b (E,ni)e (Eirxonz2).  (5.1.2)
I,—€>Ib o

ol R

3. If x> Xo , where XO is very small compared to LO , then

®(x;ni,m2) RO . (5.1.3)

*Tn the following discussion, &' and n' can be interchanged,
provided we do so throughout.
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Under these circumstances, @i(x;ni,né) is a correlation function de-
"scribing the surface irregularity. Furthermore, for all practical pur-

pdses wWe can assune
G (s niome) =R (X3 nim2) S (5.1.4)

where I{(x;ni,ﬂé) is the correlation function of a statistical ensemble
the sample functions of which include all the shifts of the irregularity
function §0(§'+c,n'). Thus there exists a situation quite similiar to

ergodicity; indeed, if LO is infinite, true ergodicity may occur.

5.2 Relaxation of the Boundedness Condition

The results of Section 4 have been derived under the assumption
thaet the set of admissible interface perturbation functions is uniformly
bounded in both amplitude and slicpe. Thils assumption is necessary for a
rigorous theory of small perturbations.

‘On the other hand, it is often desirable from a computational
point of view to consider an ensemble of perturbation functions which
is not uniformly bounded, perhaps not even bounded, in amplitude and
slope; an important example of such an ensemble is that associated with
a Gausslan process.

The resulting dilemma, serious from the theoretical point of
view, is usually resolved easily in practice. Consider a statistical
procéss Tor which the probébility is almost unity that a randomly chosen
sample function has: satisfactorily small amplituderand slope over a very
large proportion of the underlying interface. This process is a mathe-

matical model of a physical situation and tends to be least accurate at
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extreme values; indeed, the mathemétical model usually exaggerates the
ocecurrence Qf extremelvalues because limiting non-linearities have been
neglected. Therefore, little dccuracy Should be lost by replacing the
original statistical process by a similar process with‘truncated ampli-
tude and slope distribﬁtions. Then the analysis of Section 4 can be
applied to the new process. But results obtained in this manner will
usually be almost unchanged from those obtained by formally applying
the analysis of Section 4 to the original process. Thus calculations
“can be done in exactly the same way as when dealing with a bounded

process.

5.3 Engemble Statistice of the Scattered Field

Having pointed out in Section 5.1 the importance of ensemble
statistics in all classes of problems, we shall now discuss such sta-
tistics. The first order averages® of the perturbation fields are
e (r) end 8H(r) ;‘the second order averages are OE(r) , &H(r) ,

and the matrices
6 € (zasze) = [&(z)@@*(z2)1, oY (asre) = [OH(ri)a* (z2)]

8.8 (risze) = [8B(zi)ou"(x2)]_, s | (5.3.1)

i

oF  (r1sze) = [88(x)&(x2)] ., ©®H, (rasze) = [8H(ra)ef(z2)]__ ,

oG, (zasze) = [®(xa)ed(za)],, - (5.3.2)

*Insemble averages will be denoted by a bar over the quantity
averaged or by the subscript av .
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The matfices of Equation 5.3.1 are analogcus to Wolf's time

" correlation matrices (14) and will tﬁus be called ordinary ensemble
correlation‘matrices; the matrices of Equation 5.3.2 will be called
modified ensemble correlation matrices. Following the terminology of
Born and Wolf (15), in the special case ri=rz we refer to ccherency
matrices instead of correlation matrices. Coherency matrices arise in
connection with obseﬁations by a single antenna,® correlation mabriceé
in connection with interferometer observations.

The field averages enumerated above are not all independent;
some can be calculated from others using Maxwell'sg equatiqns. A con-
venient basic set of field averages comprises ég, SQE, 3} gav’ and
SEav ; these are the quantities which appear in analyses in which the
receiver is considered sensitive to the eleétric field. Since only
six terms each in © 8av and 6Eav are independent, the first and
second order field statistics are determined by eighteen independent
functions.

Knowing these functions enables us to calculate to second order
such important statistics as the mean and variance of the observed field
and the mean and variance of the observed power. Indeed, we can calculate

to second order the average of any function of form

£ =Zi.7Tj L By (zss) (5.3.3)

i 1]

where Li is a linear operator and the Fij are fields, complex

conjugates of Tields, and real and imaginary parts of fields.

*¥The term "antenna" here refers to not only those devices usually
thought of as antennas, but also to optical receivers such as telescopes.
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In practlical problems, the number of independent funclions Lo be
considered is usually many fewer then eighteen. We usually deal with

irregularities which have zero mean:

M

t(x) =0, allrl ; (5.3.4)

it then follows from Equations 4.2.16 and 4.3.14 and 16 that

i

BE(r) =0 , all r . (5.3.5)

. In addition, it is often possible to choose a coordinate system in which
the components of 6§ and ng along one coordinate are negligible or
zero. Under these conditions, the numbers-of non-zero independent
Tunctions is elght. Furtherm&re, Lhe information desired in a given
problem may involve only one or a few of these eight functions over part
of‘their range. A case in point 1s the example of Section 5.4,

Using the results of Section Lk, we can express the field averages
in terms of the mean surface displacement Eo (which, as noted previously,

is usually zero) and the displacement correlation function

()1 _ . (5.3.6)

We obtain for the first order average

S - sooll (rer" Y 8K (! dap f R CI T '
BE () J(db I (E’EO) éﬁe(ﬁo) + 2 v X as Iﬁ(ﬁ’io) §§m(£o) 5
' 5 S
o . o

(5.3.7)

where



.
5, (x) - gf {mg,wnv (0 T) + T, 1857 26,
R () - - o5 % {1, DIV, ) + T, (g B (5:3.8)

The ordinary ensemble correlation matrix is given by

& (r13r2) = de’ de” {ré'(;l;;('))-[age(;é)ag(gg)]av-[re"(;;g»;;;)]’f

O

Loy * 1 1 1
b (B Ty ) L (et ()], - [ve x Tlzesz))]

ioop I o ont ' " . "
+ 2on x Drasz)) - (e ()at ()], [Tl(zpsx0) 1

Loy L) 3
Y (XY 7y x Dlzasz)) ek () ()], lve x l“n'l'(ﬁzs;g)]’f} ;

(5.5.9)

where

Lo, () () ], -
e x{la m )AL DI v (0 mR)
b I8 H, ()19 (0 R s BT
» a o] 1 8 Qyp 1y % O
+ b5 B )L 57 T EODTRYx e

[6K (r )BK*(r”)]

~o’av 7
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- g = {18 DI EG (019 197 )

"

f[A Hz, (;\(’))]v%(hg,R)[As% go(go)ﬁ[aé% A CIRRIVA EZ,,(gg)l*v;(hcuR)
b 1o S5 10114 s9r B2(2]) TR ) x o
ST = Yo ST R Yo N

[Sﬁm(ié)agz(ig)lav -

1

ef x {188 GBIV (vn(, b pR)

HA S, ()19 A 52 G

E (x)] + 4 5% EO(E;H[A EZ”(E;)]*V%(E&R)

0]
"

+ [a % EO(E;)][A % EO(}:;)]*R} X op (5.3.10)

. . . . . 1
In interpreting these equations, the four position vectors r1,T2,X
Cal ) N

and ,1:; must be distinguished from each other even when two or more
coineide. All v operators have been tagged to indicate with respect to
which coordinates they - operate.

The modified ensemble correlation matrix SEav can. be deter-
mined from Equations 5.3.9 and 10 by removing all complex conjugate
symbols (¥*) and replacing the Hermitian conjugate (l““)T with the
trans'pose‘ (I"“)T . |

The second order average is
8°E ()= de'Pe"(Esgg)-SZIEe(ﬁg) + i—‘;—“ v x de'l“H‘f({s;é)'SEEm(;é) -

IS . 5
o} o}

(5.3.11)

where
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Ry (r ) = ecx x {;’ (& (5%-)2 B°(z )R + % [A Ez,(}:;)] g%v%(hglRoo)
. [A%E‘g,%mvgjw@. BEE-S S W

A fds,,,e\cg' C Tl - @, @)1,
av

. -]:92& f n O v ot .t . { " 1 ' }
tATE JaSle, 1V x LNz sz) 6§m<£o)VT[hg'§o(£o)]

+ A de”{ga— r"( ro) - e (D)6 (z))]

o'~0’ "av
S

e}

+ Eﬁ% ger [V x o5zl - Lo (20D 6 (x)) av}%
K _(z) =—§O§ { [A(gEF)ZH ()1 R

b HAEL ] $5 Ty (pReg) + 1650 B ()L ) - B by vy By
‘s f s g% Tl () - (e, vy Dy DT,

) 1 w O . v ... .{ 1 1 ' }
tAg fds V' TE%,) e (26)V gl 6z oy

+ A Id—s"{géé- I‘"(r , ) [E)K (r”)§ (TO)]aV ]_O];M % [v' X re“(f\!og_{;)]t.

S
(o]
B " ,
Lok (r)) ¢ (x O)]a% (5.3.12)
Here .
—_— ! — ' . !
Ry, = Bo(z)) = R(zls5x) (5.3.13)
(R to be interpreted as a function of a single position vector) and

e]e]
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,{8 K, (E0) 7 glng 6, (2], =
S x {la sl z)1v 4o g (hg,hg,,R) ¥ [Ag%w B°(z0)19 (0 R))
R ITRT N

- g x (LA ()v vy (b bpR) + [As%r 1 (2 )1V g (0 R},

Ll

5 1, (0) 6 (e, = o {8 BB (20)] v () + [Ayacw E°(z,)1R},

(5.3.14)

It is obvious from these formidable expressions that it is highly desirable
to be able to neglect &E when determining surface statistics from field

measurements.

5.4 An Important Special Case

We now discuss briefly a simple problem of great practical impor-
Lance. Consider o power-measuring antenna at point EL in the radiation
zone which is observing the field scattered from a finite irregular inter-
face illuminated by a’known source. The observation point I, is chosen
so that if the interface were upperturbed, then the sgcattered electric
field at I, would be linearly polarized along En . The antenna is

polariZation sensitive, passing only the g-component of the electric

field.
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To second order, the average power observed by the antenna is

P = BBy ()) - (o, ()t () = 8 (), (5.n1)

where Eig'is the coherercy matrix corresponding to B g . Thus in this
case the average power observed is.equal to a single element of the or-
dinary coherency matrix.
This simple problem arises frequently in connection with noise
suppression. Furthermore, the configuration is a convenient one for
- making measurements to determine surface statistics. A similar convenient
interferometer configuration can be set up along a line of linear polari-

zation,

6. Example¥~8cattering of a Plane Wave from a Perfectly

Conducting Cylinder with Sinusoidal Irregularities

In most cases, application of the theory developed above leads
to rather complicated expressions for the field perturbations and even
more compiicated expressions for the statistics of the field. Although
such expressions can often be treated by existing aﬁalytic and numerical
methods, a great deal of effort may be required to obtain a useful form.

Oﬁ the other ﬁand, there are some problems of considerable inter—
est in which it is fairly simple to calculate at least §§ . The plane
interface problem 1s one example; we shall now consider ancther.

The geometry of the unperturbed problem is shown in Figure 2. A

plane wave

+00
inc ~ikx .y in(e-n/2)
E =e E e =e E_ Z Jn(kp) e , (6.1)
n=-0o
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8:=0 W
ginc . e Eoe-ikz

Fig. 2. Geometry of the Unperturbed Problem
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travelling in the negative x-direction, is incident on a perfectly con-
‘ducting cifcular cylinder of radius a. The scattered field is readily
calculated to be
+00
- 1 i —7
B o pon M )1 B (x0) g (e)e® v2) (6.2)

n=-00

In the far zone this can be rewritten as

Escat “ e, Eo(kp)_l/e ei(kp—ﬂ/M) M(O,ka) (6.5)
- where M 1is the field pattern
4 Je FOO _ . _
u,ke) = - @Y% 5 EM(a)1 5_(xa) 2O (6.1)
n=-00

In Pigure 3, the magnitude and phase of M are plotted for ka=6 and
0° <6 <180° ;

only half the pattern is needed because M 1is an even function of angle.
The apparent discontinuities in phase angle are caused by telescoping a
cohtinuous phase curve into a range of 360°.

Now let us introduce a sinusoidal interface perturbation so that

the equation of the new interface is

Q = (p-a) - p, = (p-a) - b cos(pe+y) = 0 . (6.5)

Here the perturbation,amplitude‘ b is small compared to both the wave-
length and the radius (which are approximately equal at ka=06), the pési—
tive integer js) isfthe number of full sine waves impressed around the

cylinder, and the phase aﬁgle YV depends on the position of the maxima

ol the Iinterface perturbation.
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Using the fact that the cylinder is a perfect conductor, we

find from Equation 4.2.16 that

IS - .]:_w_“_; f t “ Lt L 1
=L L vaD(z;r ) - oK () (6.€)
' o]

where, from Equation 4.3.1k,

' o] 8 O
61’{\m (’I:O) = - %I pO §pr EZ =
+00
o 2ib . (1) -1 in(e'-x/2)
et Tr 5 B cos(po'+v) fzaoo[Hn (ka)] ™ e . (6.7)

The dyadicVvx IH' can be obtained from Section 3.5D. However,
rather than insert the dyadic dircectly into Equation 6.6, let us rewrite

that equation as

T .
_deu o ' Lt
BE = e de aeg, + 8K (rl) G(zz)) » (6.8)
) ~ 1
with
+00
. o
g (mzx)) = de’VX I“HP (zszl) - egr - (6.9)
-00

In Equation 6.9, the integration over =z eliminates from the Green's
function all waves obligquely incident on the cylinder, the dot product
with Eg, reduces the dyadic to-a vector, and the fact that the cylinder

is a perfect conductor leads to further simplifications as compared to

Section 3.5D. Thus we obtain without difficulty

1 k2 +00

G=¢ 5= oo by [Hr(ll)(ka)}‘l Hr(ll)(kp) ein(g'@') . (6.10)
n=-qoo
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Using Equations 6.7 and 6.10 in 6.8 and performing the integra-

tion, we obtain

+00 Hr(ll)(kp) ein(@;ﬁ/Q) Jlon/2+y)  ~i(pn/2+y)

b i ’
BE=e E == 1% v + (6.11)
~zooam ot (ka) H(l) (xa) H(l) (k=)
n n-p n+p
Some algebraic manipulation leads to the more elegant form
b .
8B =¢ B = [Pe cos ¥ + P_ sin vl o, (6.12)
where
P +00 ‘ cos n o
e i ( - -
22057 W ey 583 eyt 51 gy oElnrRIn/2 . (6.13)
T n n+p i} .
Po‘ 1=-00 v sin n ©

Now let us set =0 so that ©OE depends only on Pe , and let

us consider only the far zone. We find

OF = g, By (ko) ei(kp"“/“>[§ M= (9,ka3p)] S (6.14)

where

2

Me(Q,ka3p) =i (;)3/2 ;?O [Hél)(ka)Hiig(ka)]_l e—i(n+p/2)ﬂ cos n ©.(6.15)

n=-00
The field pattern analogous to M of Equation 6.4 is g M€ .

In Figures 4L-8, the magnitﬁde and phase of ME(Q,kagp) are
plotfed for ka=6 and p=1,4,8,12,18. Since we have set sz,Me is an
even function of angle and thus again only half the pattern is required.
In calculating Me , the number of terms necessary for a glven accuracy

is reduced considerably by rearranging the series representation as

follows:
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ME(0,ka;2641) = 2(%)5/2 cos (s + %)@1' ;o [4(s,0)1 7" cosl(n + 3)e] , (6.16)
. . : n=o
with
A(s,n) = (~l)S.Héig+l (ka) Héig (ka) , n f s ,
et e B ), azens (6.17)

M€ (6,ka;2s) = (—1)8(2)5/2 cos s@{[Hél)(ka)]—2 + 2 ;? [B(s,n)]ul cos n Q},

n=1
(6.18)
with
B(s,n) = Héig (ka) Héig (ka) , n<s,
_ (-1)ny"S ng)l (ka) Hr(lfg (k2) , n> el . (6.19)

The rearranged series exhibit clearly the facts that the perturba-
tion field pattern‘has p evenly spaced nulls and that there is associlated
with each null-—cxcept the one which occurs at + 180° when:. p is odd--a
phasebdiscontinuity of 180°. For consistenéy all these discontinuities
have been plotted as decréases.*

Iet us now compare the data for M€ with the data for M. We
see that the magnitude of M 1is greatest in the forward direction whereas
in all éases the magnifude of M is greatest for back-scattering (6=0°).

Furthermore, for all but the highest value of p considered, the magnitude

of M€ ig considerably greater than that of M at 6=0°. Thus, for p

*More precisely, the discontinuities would appear as decreases if
the curve were not telescoped.
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sufficiently smali, & small surface perturbation produces a relatively
’large change in the‘tdtal back-scattered field. The nature .of the change
depénds on the relative phases of M. and M° . For b/a =0.0L, 6 =0°,
and p = 1 , the change in phase is 6.9° but the change in magnitude ié
only 0.7%; for b/a = O;Ol, © =0°, and p =4 , the magnitude decreases
by 6% and the phase changes by 5.6°.

We have already noted that as p increases the number of nulls
of the perturbed field (and thus the number of lobes in the field pattern)
increasses. Furthermore, we see that the directivity of the perturbed
field pattern increasesg and its maximum magnitude decreases. As p is
increased above 18, the magnitude decreases very rapidly. Thus our
theory indicates that the scattering pfocess is not sensitive to pertur-
bations of wavelength short compared to the wavelength of the field.*

The results we haﬁe cited here are of considerable interest in
Thelr own right. Much more significant, however, 1is thevfact that we
have iﬁdeed in a simple. and straightforward manner obtained useful in-
formation in a problem involving a perturbed curved interface. This

verifies the usefulness of our theory.

*Tt may be that perturbations of very short wavelength are im-
portant, their effect being to make the cylinder scatter as though it
were smooth but of radius (atb). Our theory, however, cannot be ex-
pected to predict this, for the assumptions are violated when the slope
of the irregularities is steep enough to produce such an effect.
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7. Concluding Remarks

Let us now feviGW'the material which has been presented. The
principal result is a mefhod of.calculating the first and second order
field perturbations fbrvscattering of an arbitrary time harmonic electro-
magnetic wave from an irregular interface of arbitrary underlying shape.
The method is valid provided that the slope of the interface irregulari-
ties is small compared to unity and that the amplitude of the irregulari-
tieg ig small compared to both the wavelength and the local radii of
éurvature of the underlying interface. Unfortunately, we have not ob-
tained any quantitative information on how small the amplitude and slope
must be.

The method essentially‘consists of two steps. The first is re-
placement of the irregularitiés by a system of currents on the unperturbed
interface whicﬁ gives the same effect (tq some order). In carrying out
this step, it is necessary to know the value at the interface of the un-
perturbed fields and of their derivatives. The sccond stcp is deter-
mination of the field in space from the surface currents by use of the
dyadics I;“ and Igl for the unperturbed’problemJ At both steps, the re-
quired information abogt the unperturbed problem may be in either analyt-
ical of numerical form.

It has been shown that treatments of the irregular plane inter-
Tace by Rice and by Bass and Bocharov are special cases of our method.
Even in these cases :the new development represents an improvement in
‘ that we have Justified the assumptlon lwmpliclt in the earlier work that

the fields have continﬁations across The interface.
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To illustrate the workings of the method in a problem involving
a curved underlying interface, we havevevaluated 6E for scattering of
a plane.wavé from a perfectly conducting‘cylinder-with sinusoidal irregu-—
lérities. No evaluations of SZE have been given, for these involve
considerably more work even in the simplest cases.

The basic meﬁhod has been extended to problems involving statis-
tical irregularity. The emphasis here has been on the "philosophical"
aspects: delineating the types of problem which are of interest, deter-

.mining a basic set of field averages in terms of which other averages
can be represented, and Jjustifying the use of statistical distributions
which allow large interface.perturbatiéns. The actual derivation of
expressions for the field averages is straightforward.

The field averages, especially the average of the second order
field, are given by rather long and complicated expressions. Fortunately,
simplifications occur in many problems. We have given one example along
this line, a practical situation in which the average power received by
én antenna can be calculated to second order without considering the
statistics of the second-order field.

A considerable amount of material has been presented on the
dyadic Green's function, some of it not directly related to the develop-
ment of our method. We have included this material because, on the one
hand, facility in handling d.G.f;'s is 1mportant in the application of
the method and, on the other, there is little reliable information in
the literature on thé 4.G.f. for problems involving two media. In our
discussion of the d.G.f., little effort has been made to distinguish

among old, new, and corrected material.
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Definitioﬁs, equations, and boundary conditions have been given
for T, and T , and also for Iland I;I!' . The use of d.G.f.'s to
‘expfess an érbitrary Tield in terms of thé source distribution and to
éerive integral equations for the field has becen discussed. Reciprocity
relations for the d.G.f.'s have been derived. The dyadics Im and v x Tl
have been evaluafed for some common configurations.

The most interesting result of our study cof d.G.f.'s i1s the fact

that if the two four-element dyadics
n(r) x OV (xz') end a(x) x TN (r,z')

are known for all r and {' on the interface, then by explicit opera-
tions Ié and Iﬁ can be calculated everywhere in space. Equation B.Mﬂl
tells us that one of the off-diagonal terms in each 'l is redundant;
thus we see that any scattering problem involving two linear homogeneous
isotropic media is in principle solved by determining six scalar func-
tions on the interface. . Furthermore, it is not clear that all six func-
tions are necessary; indeed, there are considerations (too intuitive to
express here) which lead us to suspect that only four functions are

needed. This matter shall be investigated in the near future.
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APPENDIX 1
DERIVATIONS IN SUPPLEMENT TO SECTION 3

The technigue to be used here is taken from Reference 8. It

involves use of the vector Green's theorem (16) in the two equivalent

Torms
de'(Q-V' xV'xP-P v' xv' XQ:) =[as'n'-(Pxv' xQ-Qxv' xP),
v s

(AL.1)
[dv'(Q.v’ x7' x P -y’ x Q-v' xP) = -]dsgg&g xv' xP) . (A1.2)
v ' S

Here V 1is a volume bounded by S5 , n is the outward normal to 8 , and
Q and P obey centinuity conditions which can be assumed to hold for field
vectors in a homogeneous region.

To prove Equation 3.3.25, we use Equation Al.l with

V=V, ,P=E{),Qq=TI(rsr)e, (81.3)

1 o~ et o~ o~

where ¢ is an arbitrary constant vcetor. The volume integral is then
Cal

fdv'{[fe(r':r%i]-v,' xg" x B(r') - E(r')- v’ xv' x L(z'sz) - elf=

Vi
de'{[k2§(£*) +iow g (x') -vi x g ()] - I (x'sp)
Vi '
CEGD P (hn) e 18 (2n)lf g -
{ -0z (@) +de’[iwu o @) -v' =g @)L @)oo (aLk)

V.
1
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The substitution into the surface integral can also be made so that e
is a postmultiplierﬂ Then ¢ can be suppressed altogether, and Equation

3.%.25 is obtained. The derivation of Equation 3.3.26 is similar, with
P=H(),q=L (z'sz) ¢ . (AL.5)

To prove Egquation 3.4.1 for I = Ié , we Iirst consider the case

in which both media are lossy. In Eguatiocn Al.l, we set

1 1
o L &hr') st Q=g I (2h) - 2 (A1.6)

where E” is the integration variable and E' and e are arbitrary con-
stant vectors. Theh we apply the equation to Vi3 and Vo . The surface
integrals on S cancel when the expressions for Vi and Vs are added,
and the surface integrals at infinity vanish because the media are lossy.
The remaining volume integrals are readily evaluated, and the constant
vectors are then suppressed to give Equation 3.4.1. The extension to
lossless media follows by taking the limit bf both sides of Equation

3.4.1 as the losses go to zero.

.The proof for I& is the same except that we set

. 1t . 1
P== @) -e,q=32_1 (";r)

e Al.
-~ (k")z m' -~ ~ o~ ~ (k")2 m -~ ~ ~ ( 7)
Equation 3.4.2 is proved using Equation Al.2 with
; 1 :
P = L () - g, @=v" =L (£z') - ¢" - (A1.8)

(I{” )2
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Again we first consider the lossy case, apply the Green's theorem to Vi
‘and to Vs , and a2dd the resulting expressions. Again all surface inte-
- grals cancel and the desired theorem is obtained by evaluating the volume

integrals. Equation 3.4.3 is proved in the same way using

2T i)a Lo(Emz) - g @=Vi x o () - g (41.9)
k
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APPENDIX 2
MATHEMATICAL CONTINUATION OF FIELDS

The formzal development of perturbation theory in Section hoig

valid only when the equations

2 () - 22(x') = Eo( 0t 5o Eo(z) + 3 (802 (53902 Zlx)) + 0 (<°),
(A2.1)

Br (2) = () = () U sg 05, (21) 0 () (a2.2)
&FF (') = &F (z)) + 0 (%) , (a2.3)

are meaningful everywhere on the perturbed boundary S . That is, there
must be a unique mathematical continuation through V;flvo to S5 of
the fields E;, §Eq , and 62Eq , which exist physically only in Vz .
Since the continuation is to be expressed in a Taylor series, there must
be no singularities in nglvg .
The simplest examples of continuation arise in problems which
can be solved by the method of images; in such problems, the field can
be confinued mathematically into any volume which does not contain an
image source. Also, in the famous conducting half-planc problem, the
field can be conbinued across the plane onto another sheet of the Riemann
surface, butb no’continuation is possible across the knife edge, at which
the field is singular. When a plane wave is reflected from a plane inter-

face, the field on either side may be continued everywhere in space; Rice

(3) uses this fact in his development of the perturbation theory.
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If the cdntinuation were always as readily found as in the cases
cited, then results derived formally cbuld easily be checked. In préctice,
however, calculation of the continuation’is often very difficult, especi-
ally for QEq and 62Eq . Thus 1t would be helpful to find some general
rules which 2id us in determining whether the continuation exists, but
which involve no calculation.

To thie end, let us consider a continuous deformation of the inter-

face accomplished by increasing €  from zero in
_ et _ ! - A~
Q=t wo(r ) e=0. (A2 . k)

The upper limit on € 1is set by the sfronger of the two conditions:
() The field SnEq must have a regular continuation in
V(iﬂvg H
(b) None of the sources of the unperturbed problem lie in
v§nvS or ven vy .
The former condition is by far the more important, and we shall consider
only the case in which it is critical.

Now, for any admissible value of ¢, it is possible to establish
the field SnEq in V§[1VZ- by the combination of a volume source dis-
tribution'indepeﬁdent'of ¢ and a surface current distribution on & .
Furthermore, it cannot be possible to establish the field in this menner
for € greater than the upper iimit. Taus it follows that the critical

condition determining the upper 1limit 1s the necessity of introducing a

new volume source into VZ{lVS . But such a source camnot suddenly appear
in the interior of V;flv; . Therefore, at the critical value of ¢ the

ficld must be singular at some point on S .
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We immediately obtain the very important result that any Sgﬁq
which is not singular on So can be continued for some distance beyond
SO . The continuation, which can easily be shown to be unique, is the

Tield produced in VEflV;, by the sources necessary to produce 6§Eq

q
in v&nvz . |
‘ Another important consequence of the above is that no continuation
at all is possible across a knife edge or other geometrical feature at
~ which the field is singular; it i1s possible, however, as already noted
in the half-plane problem, to make continuations acfoss surfaces having
such features elsewhere than at the features.
Let us now ask why it eventualiy becomes necessary to introduce
a volume source into vgflv; .’ The answer is that the spatial variation
of amplitude of the field somewhere on SO is s0 rapid that it cannot be
maintained by sources farther removed. This point of view leads to the
following imporlant generalizalion:
‘The more rapid the spatial variation of amplitude of the field
Sggq near a point on SO , the smaller the depth is to which the function
can he continued near that point.
Since the field varies rapidly near a point of large curvature,
we have the corollary that the depth of continuation tends to be small
where the curvature is large. Another corollary is that the depth of
continuation will tend to increaée as the sources move away from SO H
this dees not impose any new restriction on our theory, for we have
treated the incident.field as a-.given quantity.
In general, &Eq will represent finer details of the field

than will E; , and thus SFq will usually have the more rapid spatial
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variation. Likewise, ,62?:(1 will tend Lo vary more rapldly than OF ,
. n+% . ' . n

and by extension O ¥ will tend to vary more rapidly than &'F

Thﬁs, as the order of perturbation increases, the depth to which the

field can be continued tends to decrease. This suggests that in many

cases the technique deVeloped in Section L4 gives an asymptotic approxi-

mation to the perturbed field rather than a convergent one.
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APPENDIX 3

VERIFICATION OF THE RESULTS
OF BASS AND BOCHAROV

AND OF RICE

A3.1 Bass and Bocharov's Results

Tangential Eo is zero at the perfectly conducting unperturbed

interface, and thus
o o o 0 2] .0
e, x (5;7)% B2 =-¢, % [(35)2 + (gyT)2 + kz]Ee =0 on z' =0; (A3.1)

furthermore, Eg =0 . It follows that the expressions for Bgm and 62§m
in Equations 2.1.5 and 6 are equivalent to those in Equations %.2.11 and
12. Then by comparing the Kirchhoff formulas of Equations 2.1.7 and 8
with Equation 4.2.16 and noting that Ig' = 0 , we reduce the verification

process to a proof that the two Kirchhoff formulas are equivalent to

E(r) = - =2y xde' o (e;e) - e xEB(x')] . (23.2)
S ,
o]
Expressing Iﬁi by means of Equations 3.5.4, 3.5.1, and 2.1.9,
and performing some straightforward vector and dyadic algebra,” we obtain

from Equation A3.2 the equlivalent expression

- a 1 ' ,‘ ' t 1 1 Lt
E(r) = -2 57 [a8'E ()G (mx)) + ¢, 2 [aS'[V B (z )] (m5z,)
‘ S . S :
© o)
- e, 2 desrv v, [Gf(E;E;) Etan(ﬁé)} . (A3.3)
S
o

*Note that the interchange of integration and differentiation is
valid. :
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But it can be shown that

deS"V' . [Gf ({;{é) E (r!)] =

~tan ‘»o0
S

o

H
O

e, .de' le, gv‘((}fEX)] - e, -fds'[gz xv ' (GE )] (A3.%)

S S
0 o]
Thus Equation A%.3 reduces to two terms which can immediately be identified

with the Kirchhoff formulas, and the verificaticn is complete.

A%.2 Rice's Results

We shall consider directly only the case in which Zo(x',y’) has
an ordinary two-dimensional Fourier transform. In this case we shall
demonstrate the equivalence of the results obtained from the theory of
Section 4 and the limit, as the fundamental period L goes to infinity,
of Rice's results. The verification can be extended to the case in which
zo(x',y') has no ﬁransform by considering zo(x',y') as the limit of =
sequence of truncated fﬁnctions.

The two-dimensional Fourier transform of w(x,y):w(ﬁo) will be

designated by ¥ oor W

and will be normalized in the form
Trans

+00 +00

”N
w(u,v) = Jr dx dy exp{— iux—ivy}w (Eo) 5
~00 —00

: +00 +00
4

w({o) =’uﬁ2

du dv exp Jiux +rivy}ﬁ (u,v) . (A3.5)
~00 —00

To facilitate comparison with Equation 2.2.1, we also introduce

p(u,v) =y—= 2z (u,v) . (a5.6)
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Here u is equivalent to Rice's (am) and v to (an), so that p(u,v)is
equivalent to a =P(m,n) and

‘ +00 +00
N
des cee = du v --- i equivalent to a®X
" e

~00 -0

The equivalents to Equations 2.2.3-6 and 2.2.17 are

A
AE(,I:) :[dS[EXA(u}V) + EyB(u:V) + EZC(U-:V)]E(U-:V;Z) ; 27 Zy 5
" .
S

4 E(r) :J[dg[ixG(u;v) + EyH(u,v) + le(u,v)]F(u,v,Z) > 2<zg; (A3.7)
N i <
S

E(u,v,z) = expiiux + ivy + ibz}; F(u,v,z) = exp{iux + ivy - icz}; (83.8)

b = +[k§—(u2+v2)]l/2 ; o=+ [k?-(u2+v2)]l/2; d=b+c ; D=uZ+vZ+be ; (A3.9)

Alu,v) = A(l)(u,v) + A(E)(u,v) + A(5)(u,v) + -++, ete. (A3.10)

Here A(u,v) is equivalent to a_gAmn , ete.
Let us consider the set )% of all scalar functions g(Efré), de-
fined either in 2 < 0 or in z > 0 , which in the region of defimition

can be expressed in the form

g(r-r') = = er§ exp{iv(x-x') + iv(y-y') + ihz}é(u,v)‘, (A%.11)
~ ~0 )‘HTZ A o] o] .
, S
" . : . . A
where g(u,v) is the Fourier transform of g(EO) . If W({O) is a

function with Fourier transform ﬁ(u,v) , then it is readily shown by

the convolution theorem that



121

f as'g(r-r. Jw(z)) =.;£2— fd§ exp fiwx + vy + inz}B(u,v) F(u,v) . (43.12)
78 : ' ™= Ta :

©

From Equation 3.5.6 it is clear that the set & includes all
scalar components of the rll ana vV X Id‘for the plane interface problem.
Also included in 2 is Gf(rgﬁé) of Eguation 2.1.9 and all its derivatives;

gpecifically, we note

- (23.13)

Now we are ready to deal with the vertical polarization, perfectly
conducting interface case. Using Equations A3.12 and 13, we reduce Equa-
tion 2.1.7 to the simple form

" ~
= 1 . . 'Y
Ex,y(ﬁ) " e AdS cxp{lux + ivy + ibz Ex,y(u,v) . (a%.14)
S

Then, using Equation 2.1.5 with E° determined from Equation 2.2.7, we
find

) ﬁx(u,v) A(l)(u,v) =-21(2u-ks)p (u-kao,v) ,

N
) Ey(u,v) B(l)(u,v) =-21iavyp (u-ks,v) ; (£3.15)
and from the divergence condition we obtain

a@wn)=J“@N>:2ifﬂaé—u@—a@)mu—@umk(ﬁia

Prom the above we readily Tind by convolution of transforms



122

Saﬁg(u,v) = A(a)(u,v) =

A : . 1 1 [N
2 fds'[(u—u'ﬂoc kpu' iz + (- ) b2 (ut v ) ISR e Vvt
A ’ 2
’ |

azbﬁy(u,v) = B(E)(u,v)yi

[ 45 () (@ kom' o - 0 v BP0 )] RLETERT IOtV T) 5 )
S

and the divergence condition gives

&7 ﬁz(u,v) = C(E)(u,v) =

2 2 t_ == R p— 2,2 2¢(41 t §
BTGIVWL[FS {(u Okp ) (WP+v2-uu't-vv' ks + [a(uZ+vE) - uks] BE(u',v')t X
S

?(u'_kZQ;V')P(u“u':V"V')
blut,v')

(43.18)

The expressions in Equations A3.15-18 are readily seen to be equal to the
expressions obtained from Equation 2.2.9 through multiﬁlying by a and
takiné the limit as L‘ goes to infinity. Thus Rice's results for verti-
cal polarization are verified.

Now let us consider the horizontal polarization case. The un-
perturbedvfield EO; is given by Equation 2.2.11. 'Using the constraint

that W 1is the same in both media and the fact tThat EO has only a

y-component, we obtain



o 0 o .0 d 0
AE) =0, AH) =0, AxH =0, 058 =0,
Aa g© . 20 imx | (83 19)'
dz “x ~ 7 Tun ? ’

here & is defined by Equation 2.2.13 and U by Equation 2.2.16. Thus

Equations 4.2.11 and 13 become

Ty vy 20U Y 1xx -
Oy (z5) =0, 8K (x) = ¢ T zo(z.) e . (A3.20)

Equation A%.14% holds for & E , and with the aid of Equation A%.12 we find

A 20U i , 1kx
° Eq(u,v) T odwp [re (Eo’o)'fy]‘l‘rans[zo(’l:o)e ]Trans’ (a5.21)
where the transforms are teken with respect to I, - Inserting the d.G.f.
of Bection 3.5C into Dquation A3%.21 gives
) ;E!tg(u,v) = EXA(]')(u,v) + in(l)(u,v) + izc(l)(u,v) -
2 iU plu-k,v) 5
- = [ixuv + iy(v -D) + e,V c I (A3.22)
® ﬁl(u,v) = EXG(l)(u,v) + in(l)(u,v) +e, I(l)(u,v) =
e M vy 4 gyB(l)(u,v) e, 2 oMy (23.23)

As expected, these results are equivalent to Rice's first-order results
given in Equation 2.2.1k,
Instead of verifying the second-order Tields directly, we shall

confirm the six parts of Equation 2.2.15. The first two parts, indeed,
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are Just the divergence conditions and need no confirmation. In confirm-

ing the other four parts, we use the equations
2’l\ o ~ B 1 i P ”n
(6 Ea—a El)X}y = lUJ}.L [\[ Vv X l_‘ (r ’O)]Trdl’ls . .P’Em‘ X,y s
2 -2 f (L I : . @ B }
(0 Bt ), (g A Ve Il (o), - T AL, (e

Ao

which are derived from Equations 4.2.16 and 17 by use of Equations 3.3.1l,

3.%.22 and A3.,12, It is readily shown that

R 1 " B _

i A.[kz vx I (TO’O)]Trans ~ e Sy t oy Sy

—_ A ] - ' - o
Ton {vx I“ (r ,o)]Trans e ey ey x (a3.25)

82 K = cX_[ég'{U p(u’—n,V')—iv[C(l)(u’,v')~I(l)(u‘,v’)]}p(uﬁfsv—v')

~n ~
~

S

! fv‘deg' frate® v 1M e, v )1 ot v
S

2A_. __l_ ' () 1 !
& K, =e, T a8 2x3) AV (u', v )p(u-ut,vv')
S

a8 [~1Ukyy’ p(uf-k,v' )+ (k2-k3) B(l)(u',v’)]p(u—u‘,v—v') . (A3.26)
S

+

Setting Equations A3.25 and 26 into Equation A3.2Lh, we obtain



12y
28 -~z f - a®(uv)-a®u,v) -
i vdé\'[c(l)(u',v')~i(l)(u‘,v')]p(u—u‘,v—v'),
2 f, R =53 (uv)-1®) (o) -

fdg’ {U‘p (u'-x,v! )——iV'[C(l)(u', v')-I(l)(u' ,v! )]}p(u—u' ,v-v')
S

on(? B, 2 B ) = v1e® (01?0108 wr)-en(® ) -

-eré'tvklf'p<uf-n,v‘> + 10528 (v ) Ip(uut v )

!
. (82 ﬁ2;y_62 ﬁl,y) - u[c(g)(uyv)*I(E)(u:v)]_bA(g)(u;V)—CG(g)(uJV) =
J[gé'[i(kf—kg)A(l>(u’,v')]p(u—u',v—v') . (a5.2()
S

These results are equivalent to those of Equation 2.2.15, and thus the

verification of Rice's results is complete.
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