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ABSTRACT

Two problems involving electromagnetic scattering from irregular
interfaces are treated, both deterministic and statistical irregularities
being considered.

First, reflection of a partially polarized plane wave from a plane
interface with large irregularities is studied using geometrical optics.
Matrix transformations relsting incident and reflected waves are obtained
for reflection from a single specular point and from an extended area
containing many independent reflectors. The properties of a wave re—
flected from a diffusely illuminated rough interface are found, and these
results are used to study reflection noise reduction when a polarization-
sensitive detector viewlng nezr the Brewster angle i1s used in infrared
temperature measurements.

Second, the method of small perturbations is used to study
gcattering of an arbitfary completely polarized wave from an irregular
interface of general underlying shape. The irregularities are replaced
by equivalent surface currents and then the field in space is found
using the dyadic Green's functions of the unperturbed problem. The re-
sults obtained are valid when the irregularity has small slope and ampli-
tude small compared to fhe wavelength and local radil of curvature. T[o
facilitate applications, the theory of dyadic Green's functions is de-~
veloped, and the necessary functions are evaluated for simple gecmetries.
As an example, the [irst perturbation is calculated for scattering from a

perfectly conducting cylinder with sinusoidal irregularities.
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PART 1

GENERAL INTRODUCTION

The theory of scattering of waves from irregular interfaces®

has been studied continuously since the late 19th century, with in-
terest especially intense during the last twenty-five years. A
great amount of work hag been published, mostly in Journal articles,
and a book is expected shortly (1).

The best bibliography on the subject is contained in a survey
paperiby Lysanov (2). Additional references may be found in Parts IT
and ITI of the present paper and in papers by Twersky (3), Feinberg
(4), Rense (5), and Aksenov (6). Articles of interest not cited in
any of the above blaces include those of Hufford (7), Jacobson (8),
Lysanov (9), Grasyuk (10), Lapin (11), Barkhatov et al. (12), Gulin
(1%), Lippmann (14), Marsh (15), Urusovskii (16), and Barantsev (17).

Degpite the great amount of work done on scattering from
irregular interfaces, there are still many problems of immediate
practical interest which have not been solved satisfactorily. One
reason for this situation is that a unified approach is not possible;
there are four distinctly different methods of solution, each being
the best for some problems but inapplicable or undesirable for others.
Furthermore, these basic methods appear in varicus modifications de-

pending on. the specifics of the problem and the results desired.

*By an irregular interface is meant an interface of somewhat
complicated geometrical form which can be considered as a distortion
of & simpler geometrical form. The irregularities may be "regular”
in the sense of being periodic.



Finally, most problems have a scalar (acoustical) and a vector (electro-
‘ .magnctic) form, thé llatter being more diffiicult to treat.

In order to put the material of Parts II and ITT in context, let
us consider here the four basic methods of solution. First we have the
gecmetrical optics (or acoustics) approach, useful when the wavelength is
sufficiently small. The usual procedure is to assume that the effect of
the interface curvature can be neglected in calculating the reflected and
transmitted fields‘right at the interface; then the fields everywhere in
space can be found by well—knoWn technigues. In many cases the interface
may be considered as made up of small specular areas which scatter in-
dependent beams; this assumption simplifies the problem considerably.

In a modified form ofvthe geometrical methed, the field 1s ex~
panded in an asymptotic series in the wavelength, the usual geometrical
optics solution being the zero order term. Reference 8 gives an example
of this approach.

At the other end of the spectrum, for wavelengths large compared
+o the interface irregularities, the method of small perturbations is
useful. Here the change in Tield due tTo the irregularities 1s assumed
to be small and is calculated by expanding the field in a series and
requiring that each term satisfy appropriate boundary conditions. The
vector form of this tcchnique i; treated in detail in Part III.

In problems where neither the assumptions of geometrical optics
nor those of the mgfhod of small perturbations hold, an integral equa-
tion approach is usually necessary. That is, an integral eguation formu-
lation of the problem must be considered directly‘and solved by some
approximate technique. Variations of this method are given in References

14-18.



Tn the fourth method, the problem is attacked from a different

. point of view. Sufface corrugations of simple shape are considered and
a boundary value problem is solved--exactly or approximately--for the
particular shape. This approach 1s discussed by Lysanov (2) under the
two headings, "The Method of Images" and "The Method of Matching Fields."
The approach is of course adapted only to very special problems. How-
ever, in cases where it can be used, it facilitates a study of the tran-
sition from short Wavelength to long wavelength conditions.

The problems treated in this paper involve applying the first
two methods--geometrical optics and perturbation theory--to vector
problems. In Part IT, the reflection of a partially polarized plane
wave from a plane interface with large irreéularities is studied using
geometrical optics with the simplifying assumption of independent
scattering from small specular areas. in Part III, the method of
small perturbations is used to ‘study écattering of an arbitrary
completely polarized electromagnetic wave from an interface of general
shape with small irregularities.

The problem of Part II has no scalar counterpart. The scalar
problem analogous to the problem of Part III has not been treated be-
cause‘it lies outside the realm of electromagnetic theory; it will be

discussed in a forthcoming paper.
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PART IT

REFLECTION OF A PARTIALLY POLARIZED WAVE FROM A ROUGH

PLANE INTERPACE-~GEOMETRICAL OPTICS THEORY

1. Introduction

As already noted, in recent years a great amount of study has
been devoted to optical reflection from irregular plane interfaces.
The extended geometrical optics of Luneberg (l), has been used by
Primakoff, J. Keller, and H. Keller (2,3) to develop formulas for
opticél reflection and transmission of field components at an arbi-
trary curved interface. Longuet-Higgins (4,5) has studied the reflec-
tion of a scalar wave from a plane with Gaussian random roughness of
small slope. Beckmann (6), using technigues similar to those to be
developed here, has calculated the rotation in polarization when a
completely polarized plane wave is reflected from a rough plane.

Many other workers have treated tﬁe rough jﬁterface problem, but all
have either used scalar representations of iight or have considered
only completely polarized light. There has been no treatment of un-
polarized or partially polarized light.

| Iﬁ this paper we shall give such a treatment. Specifically,
we shall study the intensity anq polarization properties of light
specularly reflected from a rough plane interface between two linear,
homogenéous, isotropic media when a partially polarized plane wave isg
incident. Unpolarized and completely polarized incident waves will
appear in our formulation as special cases of partially polarized

waves.



The properties of a'light wave will be described in terms of

its coherency matrix J (7) defined by

I11 J12 By
J = = [E*, Egj,] =
Io1 Iop B ’
EXl E*! EXI E?y-(-!
s (1.1)
Ey, EX, Ey, E§,
or, equivalently, in terms of its power matrix
1 41
W== —J (watts/m®) . 1.2
5 oo d (vatts/n®) (1.2)

Here’ E 1is the eanalytic signal belonging to the electric field, e,

and py are’ the matsrial parameters of the medium of propagation, and

< ... > indicates time averaging. The direction of propagation is
identified with the z'-direction, and the (x',y',2') coordinate system
is right-handed. The matrix J or W describes completely the in-~
tensity and polarization state of the wave; convenience determines which
of the. two is used.

Two closely related problems will be studied: reflection from
the neighborhood of a single speéular point and reflection from an area
containing many specular points. In treating the latter problem, it
will be assumedvthat:we‘can neglect interference effects, shadowing,
and multiple reflection and refraction. ZEmphasis will be placed on‘

far (Fraunhofcr) zonc calculations.



It will be shown that the ccherency matrix of the wave reflected
in a given_directidn is related to the ccherency matrix of the incident

wave by a linear matrix transformation of form

Jrefl — P Jlnc 5* (1.5)

The 2x2 transformation matrix P 1is a function of the material param—
eters of the media and of the directions of incidence and reflection;

. P 1is the same whether we consider a single gpecular point or an ex-
tended area. The scalar mn 1is the product of a function depending on
the interface geometry with a function.of the directions of incidence
and reflection.

| In Sections 2 and 3 we calculate P and 17 . In Section L
we consider the important case in which the roughness is described
statistically. In Section 5 we apply our resulfg to a problem, of
practical interest in infrared temperature measurement, involving the
polarization properties of the field reflected from a diffusely illumi-

nated interface.

2. An Auxiliary Problem--Reflection from a Tilted Plane

2.1 Analysis in Angular Coordinates

We shall now solve an aukiliary problem, evaluating a matrix P
which in Section 3 will be identified with the P of Equation 1.3.
Figure 1 gives ﬁhe éeometry of the auxiliary problem. Two linear, homo-
geneous, isotropic media, M; and Mp, are separated by the boundary plane,

which is characterized by the unit normal vector =n (from M; to Ms).

Medium M; is a lossless dielectric (op = 0) but M, may be lossy.



REFERENCE 874-2

BOUNDARY
PLANE

srefl +X

Fig. 1. Geometry of the Auxiliary Problem
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We esteblish a Cartesian reference coordinate system C , charac-

‘terized by the unit vectors e

& Sy g, > and designate the plane 2z =0
as the reference plane. In general, the boundary plane is tilted with
respect to the reference plane.

Let a homogeneous plane wave s e incident on the boundary
inc

plaﬁe from M This wave shall be described by the unit vector s

1 -

in the direction of propagation and the ccherency malrix

Jo%= EX BX | ). (2.1)

The components of E are measured in the incidence coordinate system

CO -characterized by the unit vectors

inc inc inc
(eZ x 8 )x s e, X8 inc
e - Pal el
= - , € = ———— e =g . (2.2)
~X inc ~y inc ~Z ~
o} !e X 8 ] o} Ie X s
~Z, ~ o~ ~
The vector e, can be expressed in the € system by
A\
o)
inc . . .
e, =8 = cos  sin © e, + sin $ sin 6 e_ + cos 6 e, (2.3)
o Y
. inc cps . .
here © is the angle between s and the positive z-axis, and ¢ is
e ine - ine | . R
the azimuth of s . If the wave § is considered incident on the

reference plane, then EX is the fleld component parallel to the plane

0
of incidence and Ey 1s the component perpendicular to the plane of
o
incidence.
. refl .
We designate the reflected wave as S , described by the
refl

unit propagation vector s and the coherency matrix
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The field components are meagured in the reflection coordinate system

C, , characterized by

2
refl refl refl
(e x s ) % s e X s
c T ~ ~ . e _ Nz o~ s e _ Srefl (2 5)
= 5 = 3 = . .
Xy liz < E?efll Yo li % Srefl ~Zy o A~

The vector g, can be expressed in the C system by

2
refl 1o ' ] 1o t 1
= 8 = cos $'sin®' e + sin P'sin @' e+ cos 6' e . (2.6)
/\Z2 -~ ~X J\y ~Z
. . refl L. . .
Here 6 is the angle between s and the positive z-axis, and. ¢
is the azimuth of Srefl' If the wave Srefl is considered reflected

from the reference plane, then EX is the field component parallel to

: 2
the plane of reflection and E is the component perpendicular to the
‘ 2
plane of reflection.
Both §¢ ana Srefl will also be represented in the boundary

coordinate gystem Cl , characterized by

inc refl inc refl inc refl
2 t3 5 oxs g -8
Sx. T inc Tefl, ° Ey - inc Tefl; ° Rz inec refl
1 ls + 8 1 ]E X 8 ] L s - 8 i
(2.7)

To understand the significance of Cl , we write the law of reflection

in the vector form

4 =T e Tefl; sz, ’ (2.8)
|s S | "™

inc refl
s 8

~ -~
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and note that

inc refl ‘inc refl
nxs nxs s X s
incy; refl inc _refl ~y (2.9)
lax s Jaxg7 s s |
Now it is clear that when gthe and Srefl are considered respectively

incident on and reflected from the boundary plane, then Ex lies
1

parallel to the boundary plane and in the plane of incidence (and re-

flection), Ey lies parallel Lo the boundary plane and perpendicular to
. 1 :

the plane of incidence, and Ez is perpendicular to the boundary and
l N

thus in the plane of incidence.
The problem of reflection from a smooth plane is usually solved
in the boundary coordinate system. The incident and reflected fields

at the surface are.then related by the simple equation

Eiefl - R Einc , (2.10)

where R 1s the diagonal matrix

-R 0 0
[
R = 0 ‘R_L o . (2.11)
0 0 R
I ]
Here‘ Rll and :%L are the Fresnel reflection coefficients, given by

(u1/po)n cos Qi - cos O,
(u1/u=)n cos Qi + cos @t ’

‘RH = (2.12)
Rl ] cos 6, - (b1/pz)n cos 6, ; (5.15)

cos Qi + (p1/pe)n cos @t
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and the index of refraction n is given by

v 1/2
5 .
W €2 pp + 1W T Up
n = ] 2.14

[ w2 €1 W1 } ( )

The angle @i is the angle of incidence with respect to the boundary
plane, the angle between s¢ and n 5 1t lies in the first quadrant

and is given by

[1 - cos © cos 6" = cos(@' - @) sin 6 sin 6'].(2.15)

I

cos®o, =
i

- The angle Qt (in general complex) is given by Snell's law,

(2.16)

gin 8, = n sin O
i t

Now let us introduce the three-dimensional coherency matrix in

the C system,

1
—Jil T2 J15T rExl\
I = |95 Jgé J25 = Eyl Ezgl E?;:L Ezl .(2.17)
T30 Jzp I3 | -Ezl-
Then from Equation 2.10 we obtain
Jierl = R 57 RE . (2.18)
Furthermore, we note that
Jinc YR el ' (2.19)
grett _ g Jieﬂ N, (2.20)

where M is the real 3 x 2 matrix which transforms the incident field

from the CO system into the »Cl system and N ds the real 3 x 2 matrix



1k

which transforms the reflected field from the C 'system into the C

2 1

systen.

Combining the last three equations yields the important result

grefl _p gine g (2.21)

where P 1s the 2 x 2 matrix
P=NRM. ‘ (2.22)

The matrices M and N can be expressed in terms of cimpler matrices

by

M=TL ,N=TL,, (2.23)

where T dis the 3 x 3 matrix which transforms a vector from the C

system into the Cl systemn, Lo is the 3 x 2 mabrix which transforms

the incident field from the CO system to the C system, and L

o is

the 3 x 2 matrix which transforms the reflected field from the C, system

2

to the € system. Invoking the rules of orthogonal coordinate trans—

formations (8), we obtain

T =[e e e 1, (2.24)
o th
LO - [EXO /e\.yo] ? (2'25)

where the matrix eléments are all to be expressed in the reference

system C .
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We can now calculate P in terms of the Fresnel coefficients and
of the two pairs of angles, (0,@) and (0,@'), which designate the direc-
tions of incidence and reflection in.the reference system. The computa-

tions, which are rather tedious, are outlined in Appendix 1. The result

is
BprR]i + BBBMRL BBsR|| - B?Busl
P = % , (2.27)
BBR|| - B1B5Rl BBR|| * BlBERl
where
K =1- [c§s 6 cos ©' + cos(@' - @)sin © sin 6'1° (2.28)
B, = cos © sin 0' - cos(f' - $) sin © cos O (2.29)
B, = cos(f' - @) cos © sin ©' - sin 6 cos O , (2.30)
B, = sin(¢' - @) sin o | (2.51)
B) = sin(@’ ; @) sin © _ - (2.32)

and the Fresnel coefficients are given by Equations 2.12-2.16. Thus P
can be expressed as a function of two material parameters—-n and pl/pg——
and three independent angleg--9, 6', and (¢' - ¢).

The five gquantities in EQuations”2.28—2.52 are related by

K =B + B = B2 + B2 ; (2.33)

the fact that only three can be chosen independently corresponds to the

fact that the five quantities depend on three independent angles.
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2.2 Representation in Mixed Coordinate Systems

" Thus far we have cdnsidered P as a function of the directions
-of incidence and reflection, these directions uniquely determining the
slope of the boundary plane. However, as we shall see in Section 5,
there are problems in which it ie desirable to express P in bterms of
the slope of the boundary plane and the direction of incidence (reflec-
tion),bconsidering the direction of reflection (incidence) as thus
uniquely determined. Eguation 2.27 will still hold, but we must now
express K , the four Bj , and Qi (which determines R]‘ and 3L )
in terms of the new ihdependent variables.

Let us write the equation of the boundary plane as

F=3z- (fxx + fyy) =0 . (2.3k4)
Then
n = VF/|VFP| = [e, - (f,e + fygy)]/ [vr] . (2.35)

Comparing this with Equétions 2.3, 2.6, and 2.8, we find

s . _ cos @' sin ©' - cos @ sin ©
X cos @' - cos © ’
. . . 1 . N
f - _ 8in ¢! sin €' sin @ sin O ] (2.36)
y cos ©' - cos ©

Now we define the guantities

A= fX cos g + fy sin ¢ , A= fx,cos g+ fy sin @' ;
ko= fX sin ¢ - fy cos @ , ' = fx sin @' - fy cos g' ;
2 2 2 2 2 2 2

pS = AT+ kT = AT+ kT = fx + fy . (2.37)
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Then it can be shown by the method illustrated in Appendix 2 that, in

. terms of (fx’fy) and (9,0) , we have

00329i = (N sin © - cos @)2/(1 + pg) 5

2(\ sin © - cos Q){(l%pg)-(k sin © - cos ©)[2A sin Gw(l—pg)cos 9]}
B. = - b
(1 + ug) {(l + Mg)g - [2A sin 0 - (1 - pz) cos Q]2§1/2

B, = -2(A sin 6 — cos 6)(A cos © + sin ©)/(1 + pg) 5
. 2
B, =2k (A sin © - cos 9)/(1 + u°)
B, = 2k sin (A sin © - cos 9){(1+p2)2-[2A sin © —(l—ue)cos 9]2}_1/2,

K =U4(N sin 6 - cos 9)2 [(A cos 6 + sin 9)2 + KE]/(l + lJJE)E'

(2.38)

In terms of (fX,fy) and (6,¢') , we have

cosEQ:,L = (A" sin 6°' —‘cos 9')2/(1 + pg) 5
B, = 2(A" sin ©' - cos ©')(A' cos ©' + sin ©')/(1 + HQ) s

2(N'8in@’-cos Qf){(l+p2)—(%'sin@'—cosg‘)[2%'sin©’ - (l—pg)cos @']}
%2 T (1 + pg)g(l + M2)2 - [2A'sin 0'- (1 - 92) cos 9,12}1/2 ,
BB = - 2k'sin 8'(A'sin 0'- cos‘Q'){(l+u2)2—[2A'sin 9'—(l—p2)cos 9’]?}—1/2,
B, = -2k' (A' sin @' - cos Q")/(1 + pg),
K = L4L(A'sin ©' - cos @')2 [(A' cos ' + sin 9')2 + n’g]/(l + ME)E.

(2.39)
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2.3 Simplification for Unpolarized Incident Light

. In many impoftant practical problems such as that of Seetion 5,

the incident light is completely unpolarized. In this case

1 o)

Wt =W , (2.

where WO is a constant. Then Equation 2.21 becomes

Lo)

[R‘[IQ Bi + IRLIQ Bi (IR]|I2 - lele)BlBu

wrefl 0

2 2
Bl+Bu

=W, P P*= | |
T P E e

(2

The reflected power density is given by

Z/; =W (IR‘llE + lRllg) . (2

If we speclalize further to the case of perfect reflection, then

ey 17 = Im P =1 e

and Equation 2.41 becomes

1 0
refl ine |

=
i
=
I
=

0 1

this is in accord -with the well-known result thaﬁ reflection from a

(.

1)

A2)

L3)

1)

perfectly conducting plane doee not change the nature of unpolarized

light.
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" 3. The Rough Plane Problem

5.1 Preliminary Remarks

We shall now give a completé delineation of the problem of re-
flection from a rough plane as considered in this paper. In this state-
ment we shall adhere closely to the conventions and nomenclature of
Section 2 and Figure 1, for indeed this formalism has been devised pri-
marily for use in the rough plane problem.

Again we consider two linear, homogeneous, isotropic media, Ml

and Mé , Where Ml is lossless and Mé may be lossy. These media are

separated by a rough boundary, the préfile of which approximates the

plane 2z = 0 ; the equation of this boundary will be written

F=2z-7T(x,y) =0. (3.1)

The unit normal n to the boundary is still given by Equation 2.35,

but now fX and ‘fy are functions of x and y .
The plane =z =0 1s again designated as the reference plane and

plays the same important role as before. The incident field is, as
before, a plane wave s™¢  witn arbitrary ccherency matrix, traveling

through Ml in direction ilnc ;3 the wave will again be described by

the angles (9,¢) and the coherency matrix in the Co system. The

wave Srefl reflected in the direction Srefl will be described by

the angles (@L¢') and the coheresncy matrix in the 02 system.
"It is assumed that the interface géometry is such that we are
Justified in using the ideas of Luneberg's extended geometrical optics

(1) (this essentially means that the boundary curvature cannot be too

great near a point of interest).
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As in classical optics, the rays travel in straight lines and obey the
iaws of"reflectioniand refraction. Furthermore, the incident, reflected,
and refracted fields at any point on the boundary are related by the Fresnel
formulas calculated for a plane interface; in other words, the reflected
(and refracted) field at a given point of the boundary is found by replac~
ing the rough interface by a tangential plane interface through the point
and then performing the calculation.

The fictioﬁal tangential plane plays the same role as the boundary
plane in Section 2. Fixing the direction (Q,¢) of Sinc and the slope
(fx’fy) at a point of the boundary determines the dilreclion (9‘,¢') in
which energy is reflected from the neighborhood of the point. Likewise,
if we know the energy is reflected in the (0',§') direction, we may
determine (fx,fy)[(©,¢)] if (@,¢)[(fx,fy)] is given. The coordinate
transformation Equation 2.%6 still holds;

From the above, it 1s clear that at every point on the boundary

the coherency matrices of the incident and reflected wave are related

by Equation 2.21, with P the same as invSection 2. However, now P 1is
a function of position on the boundary. Iurthermore, because of the
curvature of the boundary surface, the coherency matrix of the reflected

wave éhanges in magnitude with distance away from the boundary.

3.2 Reflection from a Single Specular Point

Consgider the light reflected from the neighborhood of a single
refl

specular point on the rough surface. Let JO be the coherency matrix
of the reflected wave measured at the boundary and let JEefl be the co-

herency matrix measured at distance D Tfurther along the wave. Then

B, (3.2)

Jﬁffl -1 Jisfl S TP J
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where I is a scalar given by Equation 10 or 14 of Reference 3 [where
it is designated by tﬁe notation J(%%)]. Comparing Equation 5.é with
Equation 1.3, we see that for a single specular point 1 =1 .

The most important special case is observation in the far zone.

There we readily find from Equation 14, Reference 3, that

R Dl (3.3)

where Gg is the Gaussian curvature at the reflection point and is

o

~given (9) by

o - Q2 _ (COS @‘— CcOB @'))-l- Q (3')_!-)
& (l+fi + f§)2 L[1 - cos 9 cos 6' - cos(f'-@)sin 6 sin @']2

and
2
Q=T fw - fx_y . (3.5)
For problems involving only the far zone, it is desirable to
suppress the range factor l/D2 . Thus we define the far zone normalized

coherency matrix

Jrefl’ = 1lim (DQ Jrefl) (5.6)

D — oo D

and the assoclated normalized power matrix

refl! 1 € refl!
W =5\/> g : (3.7)
M1
refl!

The trace of W is the average power per unit solid angle crossing
the wavefront.

We can now write the very important result
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1 * ~
JI'efl i i P Jlnc 5% _

kel

[1 - cos 6 cos 6" - cos(@' - ¢)sin © sin o' 1? lgl-l p Finesx | (3.8)

(cos © - cos 9")

where the gquantity § dis to be determined from Equation 3.5.

5.5 Reflection from an Extended Area

Two complications arise in passing from reflection from a single
specular point to reflection from an extended area. The first is the
possibility that multiple point geometric effects are important, i.e.,
that a significant amount of light reaches the observer by multiple
reflection or refraction or falls to reach him because gpecular points
are shadowed. These effects are important when the angle of incidence
or of reflection is close to grazing and when the roughness is steep.
We shall exclude such situations from our analysis and assume that no
specular points lie in shadow and that every ray once reflected or re-
fracted travels in a straight line to infinity.

The second complication is the possibility of interference among
the réturns from the various specular points. This effect may be neg-
lected when the roughness is sufficiently random and the gcale is large
compared to the coherence length (10) of the light. We shall assume .
such roﬁghness here.

Given these assumptions the coherency matrix of the light
reflected in direction (0',§') from illuminated area A is found

simply by summing the ccherency matrices of the reflections from each
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contributing specular point. In the far zone, which is of major interest,

we obtain the normalized coherency matrix

refl’ ine ~
JZ = N5 pJd B* p) (59)
with
2
[1 - cos © cos 6" - cos(¢' - @)sin © sin ©F -1
Ny = (¢ ¢> ] ZA]‘QJI H (5-10)
(cos @ - cos 6')

the summation ig taken over all appropriate specular points in A .
Equation 3.10 can be converted to an alternate form which is
usually more useful, especially when the interface is described statis-

tically. Consider the two-dimensional incremental

P (fx,fy)A af, dfy

which we define as the sum of the projections onto the reference plane

of all illuminated areas of the interface with slopes in the range

1 1
(fxi§dfx,fyi§df)

If we represent the projection of an infinitesimal area of appropriate
slope by dxj dyJ , then we can express the definition mathematically

as

p(__fx,fy) Aaf dfy =z, dxj dyj . (3.11)

It is clear from the above that

o0 o0
ar._ =1 . .12
4 Jf % Jf dfy P(fX;fy) 1 (3.12)
~Q00 -0
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An incremental area de dyj can also be expressed in terms of

slope incrementals by

-1
dx. dy. = |U. ar_ ar_ .1
3% IJI x Uy (.13)

where Uj is the Jacobian

) 0 £
o(f_,f ) ox. “x ox, Ty
U, =g——————7X oo J J =, . (3.14)
a i‘ a f
Syy % dy. "y
dJ d
Comparing this with Equation 3.11, we find
5, e ]‘l = p(f_,f )A . (3.15)
ATy Ty

Thus Equation 3.10 can be written

_[1 - cos 6 cos 0" - cos(f' - @)sin © sin o' ]°

(cos © ~ cos ")

g p(f, T )4

(3.16)

3.4  An Alternate Notation

Thus far we have defined n and P 1in Equation 1.3 in a manner
which is very convenient from the point of view of derivation. However,
in application it will often be aesirable to use an alternate factoriza-
tion |

inc

grefl _ o prgine Tk (3.17)

in which n' does not depend explicitly on the angles of incidence and

reflection. Then P' may be expressed in terms of P as
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_1-cos @ cos @ - cos(ff' - @) sin © sin O

P'
(cos © - cos @')2

P. (3.18)

1

For a single specular point, 7q is given in the far zone by

nto=1 = (0F|a)7 (3.19)

and for an extended area A ,

,fy) A . (3.20)

4, Statistical Roughness

4.1 Introductory Remarks

In many problems the equation of the interface is not known
but a statistical description of it is available. Such problems may
involve the light reflected from a single specular point--for example,
a glitter on the sea surface—-or the light reflected from an extended
area—-for example; an illuminated patch on the sea.

In Equation 5.8 we see that |Q]~l is the only random quantity
‘ . . R . refl’
on the right-hand side. Thus the statistical properties of J can
be Tound in a straightforward manner from the corresponding properties
of |Q|—l._ Likewise, from Equations 3.9 and 3.16, we see that the sta-

s refl! . A
tistics of JZ can be found directly from the statistics of

p(fx’fy) . The most important statistical quantities are the ensemble

averages of !Ql_l and p(fx’fy) , which will now be stated.
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4.2 Ensemble Average of IQl_l

© The ensembievaverage {Iﬂl*l}av‘ will in general be a function
of fX and fy and thus of the angles of incidence and reflection.
However, the average 1s independent of slope in the very important case
where f(x,y) [or the‘instantaneous values of f(x,y) for a fluctuating
surface] can be considered as a sample function of a Gaussian process.

This case has been studied by Longuet-Higgins (4,5,11,12,13). He finds

-1 -1/2
{lal b, = (5) / N, (k.1)
here
2
@
W = Jr E(u,v)e® v¥ du av , (k.3)
-00

and E(u,v) is the spectrum of f(x,¥y),

00, OO/

E(u,v) :ﬁé%?; jﬁ —[‘ dxdy cos(ux+vy){f(x+x‘,y+y')f(x',y‘j}av ()

The quantity NK is a function of
x(—;%? , (4.5)
where
"u0 Bzy T
A= mgy I, M| (4.6)
ele) B3 ol
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Longuet~-Higgins has shown that
23y >0 20 (%.7)

and that over this range N, (simply N in his notation) decreases
monotonically from 1.571 to 1.500, a change of less than 5%; a table
of 'NX versus A is included in Reference 4. For an isotropic surface--

one with statistics independent of the choice of x-, y-axes--A takes on

its maximum value and

NX,ISO. = 1.5 . (k.8)

The quantities H and A have physical significance, for il can

be shown that*

3H ~{Qg}av ?
6A:{95}av . (1.9)

4.3 Ensemble Average of p.

The ensemble average of p(fx’fy)' is readily found for any
homogeneous probability distribution——i.ef,'any distribution which is
independent of x and'y;— for it is just the value of the probability
density fgnction g(fx’fy) for the appropriate values of fx and fy .
If the distribution is not homogeneous, we have the slightly more compli-

cated expression

{p(fx,fy}av -7 fdA’ﬁ (£,,T05%,7) 5 (4.10)
A .

*Equation 4.5.14 of Reference 11 gives 6H = {Qg}av’ but this is a

typographical error.  The correct relationship appears everywhere else in
Longuet-Higgins's work. '
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that is, the ensemble average of p 1s found by averaging @ over

the area A .

If the slope distribution is homogeneous and Gaussian, then

CPlegt)),, Bt -

y
(QnA;/g)_l exp{;(mogfi - 2mllfxfy'+ mzofi)/EA} s (k.11)
where
oo M1
A = . | (4.12)
my o B

For an isotropic surface, this simplifies to

{p(fx’fy)}av = (gﬂmoe)_l eXp {;(fi * fi)/gmoé} =

_ . 2 c 24 _ v . . 1
(251, ) 1 exp {~ sin“6 + sin"o 2 cos (9 ;Zﬁgsm 0 sin © } (h.13)
Emoz(cos O - cos 9')

5. Example--Reflection of Diffuse Illumination

5.1 Analysis

In this section we shall extend our previous work to find the
. Arefl’ , . ‘ . . .
matrix 'WZ which describes the power per steradian reflected in a
given direction from an area A on a diffusely illuminated rough inter-
face. Then, using this result, we shall study the noise introduced in an

infrared temperature measurement by reflections from the surface of the

body being observed.
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Diffuse illumination will be defined as completely unpolarized
"and independent of direction (isotropic) for all directions with © < ﬂ/2.

Then the power per unit area of wavefront incident in solid angle dw is
1
1 dw =3 W dw 5 (5.1)

where the constant WO gives the power level.
Using Equations 3.7, 3.8, 2.41, and 3.16, and integrating over

the appropriate range of dw we get (on the average)

WA /2 En

frefl' , o, 4oy _ O . A
WZ (¢ )¢ ) = ( ) ) sin © de ag P(fxyfy)

x g(0,@;0',9" )P B*¥,  (5.2)

where

_[1 - cos 8 cos ©' — cos(¢f' - ¢) sin © sin 0 1°

(cos 6 - cos ©')

g (5.3)

and PP* is given by Equation 2.41. In deriving Equation 5.2, we have
assumed negligible the errors dué to shadowing and multiple pelleclion
at near-grazing incidence; this assumption is satisfactory for a moderate
degree of roughness.,

Usually it will be simplestkto evaluate Equation 5.2 if we elimi-
nate (9,¢) coordinates and integrate over an appropriate range of

(f_,f.) . Thus we write
Xy

dw = sin 6 @6 af = |Y|™* sin o ar,ar (5.4)
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where Y 1is the Jacobian

S(f_,T )
Y = (g} L, (5.5)

Evaluating Y from Equation 2.36 and combining 5.3 and 5.4, we find

g sin 60 d0 af = g Y] sin o ar, af -

1 - cos © cos ©' - cos (§' — ¢)sin © sin Q'
cos © - cos @'

6, 8F . (5.6)

- Further applying Equations 2.15, 2.39, and A2:3, we can reduce this to
g sin 6 do df = (N\' sin ©' - cos @‘)dfxdfy . (5.7)

The integration must be taken over all (fx’fy) for which
cos @ > 0 . Reference to Equation A2.3, shows that the area of integra-
tion is the disc & in (fx’fy) space given by
' t s 1 2 1
2\' sin ©' - (1 - p7)cos 6' >0, (5.8)

or equivalently,
. 2 . . 2 , _
(£, cos €' + cos ¢* sin 6')° + (fy cos ©' + sin @' sin ©')7 < 1 . (5.9)

In interpreting thils equation it must be remembered lLhal cos 8' 1s
never positive.

Now we can rewrite Equation 5.2 as

Arefl’
W (8,1) =W AQ

_;L_ st o 1y D D%
Q=5 _ji[‘dfxdfy(K sind cos 9') p(fx,fy)PP
G

(5.10)
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In evaluating PP* we use the expressions of Equation 2.39 for the Bj

- For the usual situation in which = Ky s the Fresnel coefficients

Hq

ere reedily found to be

n?(A'sine’ - cos ©') - [(a°-1)(1 + 1) + (A'sin @' - cos 9,)2]1/2

n?(A'sind' - cos ©') + [(ng—l)(l + Mg) + (N'sin ©' - cos @')2]1/2

(A'sin®' - cos ') - [(ne—l)(l + pg) + (A\'sin @' - cos 9')2]1/2

R, = .
1 (A\'sin®' - cos ©') + [(nz—l)(l + pe) + (A'sin @' - cos @')2]1/2
(S.ll)

5.2 Application to Infrared Measurements

Consider a body composed of homogeneous lossy dielectric material
and having a rough plsne surface. It is assumed that the other boundaries
of the body are sufficiently remote that they have no appreciable effect
on elther reflection or emlssion from the fough surface. A sbandard method
of determining the temperature of such a body is through measurement of the
infrared radiation emitted across the surface.

One form of noige limiting the accuracy of the measurement is in-
frared energy from external sources which is reflected from the surface
and enteré the detectér. Often it is not possible to control the external
sources, and thus any suppression of reflection noise must be accomplished
at the detector. We shall now discuss & suppression technique.

If the surface were perfectly plane, the medium nonconductiné and
nondispersive, and the detector field of view very narrow, then complete
elimination of reflection noise could be obtained by viewing the surface

at the Brewster angle with a polarization-sensitive deleclor which rejects
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the E-field componeﬁt perpendicular totthe plane of reflection. This fact
_ Suggests that even when roughness, conductivity, dispersion, and detector
field of view must be considered, it may be possible to reduce reflection
noise by viewing the sﬁrface at or near the Brewster angle* and rejecting
the berpendicular—polafized E-field.

” When the surface is illuminated diffusely--a situation frequently
encountered in practice--the noise reduction can be studied gquantitatively
by use of Equation 5.10. va we take into account roughness and condﬁctiv—

"itys consider observation at angles other than the Brewster angle, but still
assume a nondispersive medium and a very narrow field of view, then the re-
flection noise polarized parallel to the plane of reflection is proportional

to and the perpendicular—polarized reflection noise is proportional

to The effect of a finite field of view may be found by comparing

Gp -
values of the Qii for slightly different angles of observation; disper-

sion may be studied by comparing values calculated for different frequen-

cies.
Some calculations of practical interest are displayed in Figures
2-6. An isotropic Gaussian slope distribution is assumed; that is, we
set
A 1 2 2 2 '
p (f.,f ) = 5 exp {— (£= + £7)/2¢ }. (5.12)
Y 2ng * J
*For a lossy:material the Brewster angle is defined as that angle

for which RII ‘is a minimum. For losses of the order to be considered

here, a good approximation to the angle is ©% = (180° - 9') = tan“l[Re(n)].
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Then Qll and Q22 (Q22 is always the upper curve) are plotted against
'02 with the angle

*

0" = (180° - o") | (5.13)

as a parameter. Each Tigure corresponds to a different Value of n , the
values chosen corresponding to the values for water at 8, 10, 11, 12, and
13 microns wavelength as given by Centeno (14). The range of 0'2 is
greater than that encountered in water waves in the absence of whitecaps.
In interpreting the curves in terms of improvement in signal-to-noise
ratio, it should be remembered that the thermal radiation is approximately
unpolarized and thus a polarizer excludes half the useful signal power.
Tnspection of the data shows that, over a fairly‘wide range‘of %
around the Brewster angle, rejection of Q22 improves the gignal-to-noise
ratio by at least 3db.. As would be expected, the improvement is greatest
for small values of 02 ; an increase of 10 to 25db. in signal-to-noise
ratio is possible‘for surfaces with 702 < 0.01 provided a small enough
field of view and a nafrow enough bandwidth are used. A more detailed

discussion of the data is contained in Reference 15.

6. Concluding Remarks

Let us now review what has beeﬁ accomplished. Within the frame-
work of geometrical optics, expressicns have been derived giving the in-
tensity and polarization of the light reflected frpm a single speculér
point on a rough interface when a plane wave of arbitrary polarization is
incident. Similar expressions have been found for the properties of the

light reflected from an extended area on a rough interface; here, however,



39

it has been necessarybto require that the roughness not be too steep,
that the angles ofvincidence and reflection not be too near grazing, and
that the return from each specular point be an independent beam.

The above~mentioned expressions constitute our most important
resqlts. It is significant to note that despite the great amount of al-
gebraic manipulation necessary to derive the expressions, the final forms
are falrly simple and compact, especially so in angular coordinates. The
expressions, besides enabling us to find numbers, aid us in visualizing
the phenomenon.

Special attention has been given to the case in which the inter-
face is a sample function of a Gaussian random process. The average sta-
tistics of the reflected field have been found through use of some re-
sults of Longuet-Higgins.

The field reflected from a diffusely illuminated interface has
been anaiyzed, and the results have been used to study the suppression
of reflection noise in infrared measurements. In the specific case con-
sidered, we find appreciable suppression is obtained by filtering out
the perpendicular-polarized E~field and viewing the surface at an angle
not too far from the Brewster angle.

No attempt has been made to extend the results to rough curved
interfaces. Such an extension is straightforward in many individual

cases, but a general treatment would be somewhat messy.
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In closing, we remark that the matrix P of Equation 2.27 is
potentially useful in the synthesis and analysis of optical systems in-
volving tilted plane reflectors. For example, it can be used in studying

the effect of varying the angle of a beam—splitter in an interferometer.
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APPENDIX 1
COMPUTATION OF THE MATRTX P

The derivation of Equations 2.27-2.32 requires the multiplica-
tion together of five malrices and simplification of the results. The
process involves repeated use of standard vector and trigonometric
identities. No attempt will be made to include these details here, but
the calculations will be outlined in sufficient depth to enable the
reader to reconstruct them.

Combining Equations 2.2, 2.7, and 2.23-2.25 gives

1
M= inc
2 * 2|
(iinc+ E?efl).[(iz < Slnc)x Einc] (ilnc+ E?efl).(ez % Slnc)
]sinc + E%efll ,IE}HC + E?efl]
. 1 . : . :
(ElncX E?e )'[(EZX ilnc)x Elnc] (E}ncx E.refl)_(eZ % ilnc)
X inc refl inc refl =
|s X8 J ]E x5 |
(E}nc_ Efefl)_[(izx Elnc)x E.:an] (Elnc_ ,S\'refl)_(e < E;nc)
inc refl : inc refl
s -2 27 -2
-
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B:'L . o
lSinC+ Jrefl !Sinc+ srefl!
1 -2 261 L
Py ry ~ v .. e 2

|§Z Xilnc‘ li;nc+ E?eflllﬁénc_ Erefl] |i1nc+ E'refl”ilnc_ E?efll

-B. o
i
liinc_ E?efll is\:’an_ E?efl (Al.l)

where the second form is obtained by using various vector identities and

defining
@=c (E;HCX ﬁréfl) = sin(@'-@)sin © sin O (A1.2)
and
Bi —e [EincX (E;ncx ﬁrefl)] ) (A1.3)

By an analogous procedure, we obtain

~ 1
N = l refl
e, x5 7|
[ ~Br -0 ~Sr
lﬁénc+ E?efl} iinc+ E?gfllliinc‘ E?efl Iﬁ;nc_ E?efll
X ;
-C J EBr , ’ ~C
Iiinc+ Erefl liinc+ E?eflliiinc_ irefll E-inc_ E?efll

(AL.L)
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where

- l ’
Br ey 'A[E?eflx (ilncX E?ef‘)] ] (A1.5)

Then Equation 2.22'gives'

P = 1 '
le < sinC]]e « Srefll
~Z ~ 7, ~
6lBif>rRH + 52 O?R_I_ , 6lOCBrRH - 62(?(,61]31
X | , (A1.6)
51065iRH - SEO@I'RJ_ ‘ 6lOF R” + 628iBI'RJ_
where
o, = — = y—= s
1 inc refl 2 inc refl 2
RSl B -
i
8, = - . (A1.7)

Isinc+ Srefl|2 Isinc_ Srefl 2 ‘

o~ s~ o~ o~

Now we define ¥ by

y - ilnc. Srefl_ (e . iinc)(e

refl
¢ S
A~ -~

) = cos(@'-¢)sin 6 sin ©' . (A1.8)

:./\ ~Z

Then 1t is easily shown that

Si = 7 cos O - sin29 cos O
(A1.9)
Br = cos 8 sin29' - ¥ cos @'
8 =08, = [ 1- (cos 6 cos o' +7)2 17t
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Also,

1 1

inc retl, . N ) (41.10)
,e\zxi HEZXE ] sin 6 sin ©

The next step is to substitute Equations ALl.9 and Al.10 into Equation Al.6
and express 'P as a function of &, 7y, © and ©' . Then we use Equations
Al.2 and Al.8 to convert this expression to the form given by Equations

2.27-2.%2. The detalls can readily be supplied by the interested reader.
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APPENDIX 2
TRANSFORMATION TO MIXED COORDINATE SYSTEM

We shall calculate B

, in terms of (fx,fy) and (e',¢') .

The other calculations leading to Equations 2.38 and 2.39 are very
similar.
First Bquation 2.3%6 is written as
cos ¢ sin 6 = cos @' sin O' - fx(cos © - cos 0') ,

sin @ sin © = sin @' sin 6' - fy(cos 9 - cos 8") . (A2.1)
Squaring and adding these two equations we obtain

1 - cos™0 = sin0' + pg(cos 6 - cos 9')2 - 2\' sin ©'(cos © - cos 9') ;
(A2.2)
this 1s a quadratic equation for cos © . Solving and rejecting the
extraneous rootv cos ©' , we find
cos © = [2A" sin ©" -~ (1 - “2) cos '1/(1 + ug) 5

cos © - cos @' =2(A\' sin ©' - cos 0')/(1 + p2> . (A2.3)
From Equation 2.30 we have

B, =cos @' sin ' cos @ cos © + sin @' sin 6' sin ¢ cos © - cos @' sin O
(a2.4)
Using Equations A2.1 and 2.37, we obtain
, . 2y Vel At N/
B2 =3cos 6 sin"©'~cos ©' sin 6-)\'sind' cos6 (cos 6-cos 9)}/s1n 0 =

(cos © - cos ©') [1 - (A" sin@’ - cose")cos 6]/sin 6 . (A2.5)
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Substituting from Equation A2.3 into Egquation A2.5 gives the result

. cited in Equation 2.39.
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PART ITII

SCATTERING OF ELECTROMAGNETIC WAVES FROM AN

INTERFACE WITH SMALL IRREGULARITIES

1. Introduction

We present here a theoretical study of the scattering of an
arbitrary time harmonic electromagnetic field from an irregular inter-
Tace between two linear homogeneous isbtropic media. More specific-
ally, we treat the very important case in which the interface can be
represented as the mathematical superposition on a smooth underlying
(unperturbed) interface of small scale irregularity. ' By small-scale
irregularity, we mean irregularity of amplitude small compared to the
wavelengths of interest and compared to the local radii of curvature
of the unperturbed surface, and of slope small compared to unity. For
practical applicafion of the results, it is further necessary that the
underlying interface bé of simple enough shape so Lhal Lhe unperlurbed
'scattering problem can be treated adequately. Problems of the type
described occur in connection with radio wave propagation over the
ocean, background clutter in radar observations, reflection of radar
signals from natural and artificial bodies in space, scattering of
1ight by polished but slightly irregular mirrors and lenses, and many
other situations ofvpractical importance.

Our treatment is based on the method of sméll perturbations,

a technique first developed by Lord Rayleigh (l) for a similar problem,
reflection of a scalar wave from an irregular plane wall. In this

method, the irregularity of the surface is characterized by a small
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displacement parameter- € , and the field is calculated as a power series
in el, the constant term being the field in the umperturbed case. Usually
oniy the first or first few coefficients of the power series are actually
calculated. In many discussions of the method, including Lord Rayleigh's,
the small parameter € 1is not expressed explicitly.

The method of small perturbations has already been applied success-
fully to scattering of a vector wave at an irregular plane interface. Bass
and Bocharov (2) have solved this problem for an arbitrary wave incident
- on a perfectly conducting interface; Rice (3) has solved it for a plane
wave incident from the dielectric side on an interface between a dielec-
tric and an arbitrary medium. Quite different representations of the
results are obtained in the two solutions.

.There do not appear to be in the literature any satisfactory
treatments of vector problems in which the underlying interface is not a
plane. Two inferesting papers on the analogous scalar (acoustical) prob-
lem have been published recently by Kur'yanov (4) and Lapin (5), but their
approaches are not as general as that to be presented here for the vector
problem.

The approach introduced in this paper can best be ﬁnderstood
against the background of the work of Bass and Bocharov and of Rice. Theilr
wofk is therefore recapitulated in Section 2, with emphasis on the features
common to both analyses. |

In order to proceed to a more general analysis, we adopt a point of
‘view different from that of either of the background papers. We look upon
the perturbation technique as a method of mathematically replacing the sur-—

face irregularities by appropriate electric and magnetic surface currents
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imposed on the unperturbed interface. Once these currents have been de-
termined, the fields anywhere in Spacevcan be found by using dyadic Green's
functions (henceforth.abbreviated d.G.f.;s).

Thege ideas are déveloped in Sections % and . In Section 3 we
treat the theory of 4.G.f.'s, including bothlmaterial which is used di-
rectly in later sections and material of general interest. Some of this
material has not appeared in the literature previously or has appeared in
incorrect form.

Section 4 contains the most important results: general expressions
to second order in € for the effective surface currents and for the per-
turbed fields. In an appendix to this.section, it is shown that the re-
sulls of Rice and of Bass and Bocharov are in agreement with the more gen-
eral theory.

In Section 5, we extend ﬁhe analysis to problems in which the inter-
face irregularity‘is described statistically. Specifically, we calculate
various significan% averages of the perturbation fields in terms of the
mean and correiation function of the interface irregularity.

To illustrate the spplication of the theory, in Section 6 we cal-
culate to first order fhe field scattered when a plane wave is incident on
a perfectly conducting cylinder with sinusoidal surface irregularities.

Harmonic time dependence e"imt is to be understood everywhere.
e+ia¢

Since Rice and Bass and Bocharov assumed a time factor , the re-

sults cited here will be the complex conjugates of the original forms.
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2., A Survey of Previous Results

2.1 Method of Bass and Bocharov

Bass and Bocharov's derivation (2) is rather short and shall be
repeated here in full, with somewhat modified notation. Let the equation

of a perfectly conducti