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ABSTRACT

In this paper the theory of dissipative linear operators in
‘Hilbert space developed by R, S, Phillips has been applied in the
study of the Cauchy problem

;(t) + A(t)x(t) = £(t£), %(o) = %

where A(t), t ¢ [0,T], is a family of unbounded linear operators
with a common dense domain D in a Hilbert space H, £ ¢ 94 , the
Hilbert space of measurable functions on [o0,T] with values in H
which have square integrable norm, and x € H, It is assumed that
for each t ¢ [o0,T] A(t) is maximal dissipative, satisfying for each
x ¢ D, Re (A(E)x,x) = & | x]?, & > o0, and A(t)x is strongly
continuous and has a bounded measurable strong derivative on J,

Let Ao be any maximal dissipative linear operator with domain D
satisfying Re (on,x) 2 o |xl? for all x ¢ D, Then

B(t) = A(t)A;1 is a one~to=-one continuous linear transformation of
H onto itself, It 1Is assumed that B-l(t) is bounded on [0,T] .
Under these conditions it is shown that, first, there exists a weak
solution to the Cauchy problem, and, second, that the weak solution
is a unique strong solution which is the limit of a sequence of
classical solutions, The theory is applied to a time=-dependent

hyperbolic system of partial differential equations,



1.

I. INTRODUCTION

This paper is concerned with a class of operator differential
equations in Hilbert space. An operator differential equation is an

equation of the form
x(t) + A(t) x(t) = £(t) (1.1)

where A(t), t €[0, T], is a family of operators whose domains and
ranges are in a Hilbert space Hl, and f is a function on [0, T] with
values in H. A classical solution of such an equation is a strongly
differentiable function x on [0,T ] such that x(t) € ,O(A(t))z, %

is the strong derivative of x with respect to t, and (1.1) is satis-
fied for t e [0, T]. The Cauchy problem consists in finding a solution

to (1.1) satisfying the initial eondition x (0) = x_ & HA(0)).

The prototype of equation (l.1) is a partial differential
equation, or a system of partial differential equations, where A(t)
is the differential operator with respect to space variables in some
region £2 , and t corresponds to the time variable. The domain of
A(t) is determined by boundary conditions on £2 , and A(t) is a closed

unbounded operator with dense domain in L, (£1). Accordingly, we shall

1 The inner product of two elements x, y, in H w111 be denoted by
(xsy). The norm in H is denoted by Ixi = (x,x)1

2 4 (A) denotes the domain of the operator A,



assume in the abstract problem that A(t) is a closed unbounded operator

with dense domain in H. The case in which A(t) is a bounded operator

on a Banach space has been studied at length by Massera and Sch;ffer[16]
It often happens that the definition of a solution to (1.1) given

above is too restrictive, It is necessary to broaden the definition

of a solution if many reasonable Cauchy problems are to have solutions,

To this end the concept of a weak solution has been introduced, This

concept takes many forms. A classification is given in Lions ( [10] 5

Chapter I)., The form of the weak solution which we shall define here

is related to the notion of a formal adjoint,

Definition, Let T be a linear operator with dense domain in a Hilbert
space 94 , with inner product < x, y >, A linear operator S,

dI)cH , is said to be a formal adjoint of T if for all x ¢ JF(T)

and all y ¢ F(8) <Tx,y>=<x,Sy>,

An operator T with dense domain has at least one formal adjoint
with dense domain if and only if it is closeable, If T is closed and

S=Tk, and if < z, y>=<x, Sy > for all y ¢ F(S) then x is in

the domain of T and T x = 2z, Generally S € T* and we define a weak

solution of the equation T x = z as follows:

Definition, If T is a linear operator with dense domain in the Hilbert
space ¥ , and if S is a formal adjoint of T we say that x ¢ H is
a weak solution with respect to S of the equation T x = =z, z ¢ W,

if for all y ¢ JJ(S) we have < x, Sy> =<2z, 75>,



The case where A(t) = A, independent of t, leads to the theory of
semi=-group solutions to the homogeneous equation

x+Ax=20 (1.2)

The development of the theory of semi-groups is due largely to the
efforts of E, Hille [ 1] , If =A is the infinitesimal generator of
a strongly continuous semi=-group of bounded linear operators U (t)
then the solution to (1,2) with x (0) = X € () is U () g
Necessary and sufficient conditions that a closed linear operator with
dense domain be the infinitesimal generator of a semi=group of bounded
linear operators on a Banach space are given in a theorem bearing the
names of Hille, Yosida, 'and Phillips (see e,g., [12] VIII. 1. 13).
Starting with the semi~group solution Kato [ 6] constructed
solutions of the homogeneous equation {l,1) by means of a Riemann
product integral, He assumed that, for each t, =-A (t) is the
infinitesimal generator of a strongly continuous semi=-group of
bounded linear operators on a Banach space, that the domain of
A (t) is independent of t, and that the bounded operator
B(t,s)= [I+A@] [ 1T+AC@G)] -1 is uniformly bounded,
i,e. there exists a constant M > 0 such that f B (t, s)lI =< M for
all s, t., Other assumptions were made in order to obtain convergence
of the product integral and strong solutions to (l1,1). The product
integral leads to an operator=-valued function U (t, s) such that
U(t, s) =U(t, vIXU( T ,s8)fort=zT =2s, and U (t, t) =1
for all t ¢ [0, 7] . Such a function is sometimes called a

" fundamental solution,"



In order to study weak solutions to (l,1) in Hilbert space, it is
ﬁore convenient to start with the theory of dissipative operators
rather than the semi-group theory, The operator T with domain in the
Hilbert space % is said to be dissipatives if for all x t ﬁ'(T)

Re < T x, x> 2 0, and to be maximal dissipative if it is not the
restriction of any other dissipative operator, Phillips [ 7] has
shown that an operator is the infinitesimal generator of a strongly
continuous semi-group of contraction operators on a Hilbert space if

and only if it is maximal dissipative with dense domain, Phillips'
theory of dissipative operators is developed in his paper on dissipative
operators and hyperbolic systems of partial differential equations,[7] .
In the following we shall lean heavily on this theory, using such facts

as the following:

Theorem 1,1, Every dissipative operator T, with dense domain in an_

has a (closed) maximal dissipative extension T, The range of

T+ & Iis all of ¥ for any & > 0, [7] (Theorem 1.1,1)

Theorem 1,2, If T is maximal dissipative and closed it has dense domain,

[7] (emma 1.1.3)

Theorem 1,3, If T is a maximal dissipative operator with dense domain

then so is its adjoint, T%, [7] (Theorem l.1.2).

 E—
The term "dissipative" has also been applied to A if Im

<A x,®x>20(<£0) or Re <A x, x> < 0, These usages correspond

respectively to consideration of the equations +1i x+Ax=0, or

x = A x, Our usage is governed by the form of The differential equalion

x+Ax=0,



Theorem 1,4, If T is a dissipative operator with dense domain, and

S, = To‘«'f, then there exists maximal dissipative operators T and S,
adjoints of each other, such that T> T, and S€5, * (7]
(Corollary to Theorem 1,1.2)

Our assumptions on A (t) in the following will be similar to
those of Kato, inascmuch as we Ghal.l accume that A (t) is maximal
dissipative with dense domain for each t (Re (A (t) x, x ) =
oL t x| ®, & >0), and that (A (t)) is independent of t,
Moreover, we introduce assumptions equivalent to the unliform boundedness
of Kato's B (t, s). We introduce the Hilbert space 9@ consisting of
measurable functions on [ O, ‘f'] _ with values in H and having square

integrable norms, The inner product on 94 is given by

< x, y>=fT<x 1), ¥ () ae.
0

We seek solutions to (l.l) for f ¢ 94 . We have placed sufficient
conditions on the A (t) to enable us to define a maximal dissipative
linear operator Q& with dense domain in 94 , such that

A x (£) = A () = (£) a.e, for each x ¢ S ( & )., Section II is
devoted to the definition of (X and to a discussion of its properties,
In Section IIL we consider the Cauchy problem for x (0) = 0, The linear
operator T , with dense domain in N4 , is defined by
TO p (t) = ; (t) + A (£) x (t) where o ¢ ,D'(To) is strongly

The notation T > T0 (T0 € T) means that T is an extension of To.



continuously strongly differentiable with values in D, the common domain
of the A (), and ¢ (0) = 0, T, is then a dissipative linear operator,
satisfying Re < Ty, v, 0> = Xl wl|l ®. A formal adjoint S, of T, is
defined by S, ¥ (t) = -& (£) + A% (£) v (t) for ¥ ¢ W , where F is

a class of weakly differentiable functions such that ¥ (&) e ﬁ(A* ),
Y (1) =0, and A* (o ) ¥ ( «)c % ., Then T, x = f will have a weak
solution, with respect to S,, for any £ ¢ 9 .

We note that if the range of T, is dense in 04 then its closure T
(which exists in consequence of the general theory of dissipative
operators) is maximal dissipative, and the equation T x = f has a
unique solution x ¢ F (T). Imposition of the condition that A (t) x
have a pounded strong derivative (& (t) %), which is measurable on
[ 0, T J , for each x ¢ D is sufficient for T to be maximal dissipative,
Then A () A-i ( « ) will be bounded linear operator on'ﬂ# o Formally

differentiating (1l,1) and writing x = y we have

y+Ay+Ax=f (1.3)

wl

Then, substituting from (l.1), x = A (£ = y) we have
L4 L4 -t ° L] -
y+Ay=-AAT y =f-AAT £ (1.4)

We then show that there is a weak solution to (l.4). That is, there

is a continuous function y such that

<y,_xy+a~kqf—.(AA-l)*'y>=<f-AA-l £, v > (1.5)



forallve W, fe C} (3, H®°. Now replace ¥ (t) by

-
x (t) jt w @ dv, pe¢ W . Then (1.5) reduces to

.
<a” (f-y>,(;o>=-<y,ft o @) 4> (1.6)

t
let x(t) = Jlo y (*) d ., Then, integrating by parts,

T
“<Y=Jt o () dr> =<x, r>, Hence

<a-l (f"Y):C3>= <X,Cp>o (107)

Since o ¢ Y is arbitrary, and ¥ is dense in M4 we have x = - (f~y),
or >.<+ A x = f. And this for any £ ¢ G (’5 (J, H)., Hence T is

maximal dissipative and generalized solutions, called 'strong'"

solutions, to (l.,1) will exist for any f ¢ % , and they are unique,

As motivation for the method by which we introduce non-zero initial
conditions in Section IV we take v ¢ oF(Ty), % ¢ D. Then in (1,1),
setting x = %, + ¢ we have c;) (£) + A (£) (% + o (£)) = £ (t)s Or,
considering %, as the constant function on [0, 7] 5 % (A, and

Ty o + A x, = £, This suggests introducing the Hilbert space &= %X H .

We define the linear operator ﬂ‘o on pairs [x, xO] € 9" , such that

5

By C o (J, H), 0 £ n £ », we denote the set of all strongly
continuous functions on J = EO, T] with values in H which have n
strongly continuous strong derivatives, ¢ & (3, H) denotes the
subclass of functions with compact support on J, We also write
c® J,H) = Cc@W,H, c2 @,B)= ¢, (J, B,



' X = % + ¢ where x, gDandcpeﬁ(To), by.g"o [x, XO] =
[ T, (2 = %) + dxo, xo] . g‘o is then a dissipative linear
operator with dense domain in ?satisfying
Re<al;fx.,'ﬁ>9( = ,8"9‘"2 » 8> 0, for all ¢ F(F3). The
closure Qr’of ‘7‘0 will be maximal dissipative in ﬁr'if and only if
T, the closure in %of T, , is maximal dissipative in % « It follows
that if T is maximal dissipative then for arbitrary [£, %] ¢ P
there are sequences X, € D, ¢p € aO (T,), such that x, (£) =
%n T ©n (t) converges uniformly to a continuous function x (t) while
;n (£) + A (£) x, (t) converges to £ (t) a,e. and x, (0) = Xon
converges to %, ¢ H,

" In Section V we define the fundamental solution operator U (t, s)
and represent the generalized solution in terms of it, Namely,

r t
x (£) = U (g, 0) x, + g U (t, s) £ (s) d s
In Section VI we apply the theory of the operator differential

equation to a time=dependent hyperbolic system of differential equations,



II. THE OPERATOR d .

Let J be the interval 0 € t € T { o0 , and let {A(t):teJ} be
a family of unbounded closed linear operators, each with the same
domain D, dense in the Hilbert space H. We shall assume the following:
(A) There exists a constant oL > 0 such that for each x €D,
t €J, we have
Re (A(t)x,x) 3 X IXI™ (2.1)
(B) TFor each t€J A(t) is maximal dissipative,

(C) Tor each x€D A(+)x is strongly continuous on J and has a
bounded measurable(s) derivative on J,

Let A, be a maximal dissipative linear operator with domain D,
satisfying Re (Agx,x) x 1%l% for all x &D. (Ao could be, for
example, one of the A(t).)

It follows from Theorem 1.1 that Ag, or A(t), is a one-to~one
mapping of D onto H. A;l is then bounded linear transformation
mapping H onto D. Let B(t) = A(t)Aal, t€J, Since A(t) is closed and
A;l is bounded B(t) is closed. It follows from the closed graph theorem

that B(t) is bounded, since it is defined on all of H. We state this

result as

Lemma 2.1 B(t) is a one-to-one continuous linear transformation of H

onto itself,

We introduce here an additional assumption.

6The term measurable is used in the sense of Dunford-Schwartz [12],
Definition III,2.10.



10,
(D) 'B'l(t)' is bounded on J.
Let By(t) = (1/h) (B(t + h) - B(t)), t, t + h € J, By assumption

(C) 1lim  By(t)x exists for each t € J, x € H. Denoting this limit by
h-»o

B(t) x we have
Lemma 2,2 ﬁ(t) is a continuous linear operator on H for each t € J,
lé(t)[ is bounded on J.

Proof: Since 1im Bp(t)x exists for each x € H it follows from [12],
h-»o

Theorem II,1.17, that B(t) is a continuous linear operator on H. é(t)x
is bounded on J for each x € H., It follows from the uniform bounded-

ness principle ([12], Corollary II.3.21) thatlé(t){ is bounded on J.

Lemma 2.3 B~1(t)x is strongly differentiable on J for each x € H and

d

-1 = .p-1 R -1
Tt B™(t)x B™H(t)B(t)B™+(t)x

Proof: First we show that B Ll(t)x is strongly continuous on J for

each x € H. Let B-1(t)x = Y (t). Then for t, t + h & J we have
Bt +h) [y (t+h) - W(t)]=x-B(t+hBLt)x. Ash — o
B(t + h)B-1(t)x —» x strongly for fixed t. Hence, since|B=1l(t)|is

bounded
fpiten) - 9ol £ |31t + )] | x - Bt + n)BH(t)x]

- O as h —» o.
Now, for t, t + h € J, we have
(1/b) (871t + h) x - B7L(t)x] = - B~1(t + n)Bh(t)B"1(t)x. Since
Bh(t)B'l(t)x = é(t)B'l(t)g + Zﬁ where Z;, —» o as h —> o, the state-
ment of the lemma then follows from the strong continuity and uniform

boundedness of B~l(t).
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Remark: It follows by a direct computation that B(t) qJ (t) and
Bo‘ (t) (P(t) are strongly differentiable for each ? € C'(J,H) with

respective derivatives

. o .
d (B @EN= B(1)  (£) + B(H) P (1)

d -1 . ‘ - n-l N -1
Tt (B (t)(?(t))-B (t)‘P(t) B™% (t)B(t)B™+ (t) <p(t)

B%(t) (P(t) and B*-! (t) ?(t) are weakly differentiable for each

P e C'(J,H). That is, for all ZeH

d (p# = (B 4 ’
g, BHO) @ (), 2) = (BA(t) @ () =+ B* (1) P (1), 2)

d -1 = (pa~t r - gt R %=1
3c (B* = (t) ?(t), 2) = (B (t) @(t) - B+ = (t)B*(t)B ()P (1),2)

Since By(t)x converges as h —» o for each x, sup |Bh(t)‘ < oo
h

([12], Theorem Il.3.6). Thus there exists a constant M » o such that
|B(t + h) - B(¢t)| € Mlhl. That is, B(t) is continuous in the uniform
operator topology. We then have the following theorem, which is a
special case of one due to Bartle and Graves, [15] (Theorem 4).
Theorem 2.1 The mapping (P —» B(- )tP(') is one-to-one on C(J,H) onto
C(J,H).

Lemma 2.4 If U(t), téJ, is a family of bounded linear operators on H
such that U(*)x is measurable and bounded on J for each x €H, then
U(*)f(+) is measurable on J for every measurable function f on J with
values in H.

Proof: By the uniform boundedness principle JU(t)| is bounded on J,
say lU(t)l £ M. Let fn be a sequence of simple functions ([12],

Definition II1I1.2.9) such that lim fo(t) = £(t) a.e. on J. Since
n~-» o0

U(-)y is measurable for cach y € H, U(.)fy(-) is measurable for each



12.

simple function fn' We then have

JUCE)EL () - U()E(t)] € M|E,(t) - £(t)} Hence U(t)fp(t) converges
a.e. to U(t)f(t). It follows from [12], Corollary III.6.14, that
U(+)f(.) is measurable,

On the Hilbert space 94 of measurable functions on J into H with
square integrable norms ( £ x,yD> = f”(.x(t),y(t)dt, it = (x,x)llz)
we define the linear transformation s by Bx(t) = B(t)x(t) a.e.

Lemma 2.5 @ is a one-to-one bounded linear transformation of N
onto itself.

Proof: By Lemma 2.4 Bx(+) is measurable for each xg%. Moreover,
HB x}| € Milx}t where M is the bound on J of )B(t)]. If x =0
then B(t)x(t) = 0 a.e.; hence x(t) = 0 a.e. (Lemma 2.1). Thus B is
a one-to-one continuous linear transformation on @ into 9%. Since
C(J,H) is dense in M we see from Theorem 2.1 that the range of B
is dense in¥. Ify =@8zx x(t) = B’l(t)y(t) a.e.; hence
N8 ~1yll € njjyll where m is the bound of |B=1(t)} assumed in (D).
Hence the range of @ is closed, and this proves the lemma.

We define the linear transformation é on %% by (ﬁ x(t) =
B(t)x(t) a.e.
Lemma 2.6 G is a bounded linear operator on N,

Proof: By Lemma 2.4 and assumption (C) B(*)x(°) is measurable. Since
Ié(t)l is bounded on J (Lemma 2.2), say | é(t)l £ M, we have
@ <1l & Mixy .

We now define the linear transformation & on % by € y(t) =

-1
Ay y(t) a.e. for vyeM. Then €yeY. Let 9 be the range of @.

Lemma 2.7 € is a one-to-one bounded linear transformation of 9 onto

LH. o is dense inY.
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Proof: [[@ylf = [ﬂ.Aal y(t)lzdt]'/z $ 183t uyl
o

If €y = 0 then A;l y(t) = 0 a.e. Hence y(t) = 0 a.e., and thus &
is one-to-one., To show that o2 is dense in % , suppose y G.O"L
so that { x,y)> = 0 for all x €L . In particular, {@y,yp =0z
Re {@y,y» = Re Jn('A;l y(t),y(t)) at T Kileyll 2 Hence Cy =0,
and y = 0 since eois one~to-one. This proves the statement of the
lemma.

Let a°= C-l. Q, is closed, since (@ is closed, and has the
dense domain oY and range 9. A, is maximal dissipative:
Re L Ax,x7 2 ol x#t* for all x e .

Define the linear transformation & on &0 by d=8Ad, , i.e.
A=x(t) = A(t)x(t) a.e. The following lemma shows that d is a maxi-
mal dissipative linear operator on WM .
Lemma 2,8 A is a one-to-one closed linear transformation of d onto
6. For all xed? Re £ Ax,xP > txllx]lz . A "1 is bounded.
Proof: Let xp be a sequence of elements in .D, xn —> x € M . and
Axn —> 2 EH. Then Ag %, = ﬁ-‘a Xn —f1z since@".l is
continuous. Hence, since o is closed, x €% and A o x =B 1z,
Hence A x = @3 d,x = Z, and A is closed. Since , is one-to-one
on & onto 4 , and B is one-to-one on H onto B, @ is one-to-
one on o onto 9. Hence (' is a bounded linear transformation
on . Forall x € &5

T
Re { A x,x = Re { (A(t)x(t), x(tPhdt
2 «lix| 2

Since @ ( Qo) is maximal dissipative with dense domain o in

‘M its adjoint @ * (A, *) is maximal dissipative with dense domain

T #(%) in Y , as was stated in Theorem 1.3.
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(a5 = ( @)% ([12], Lemma XII.1.6).
& = (Aagl y:> Azl gq®s i.e. ag'l a®, defined on 9%, has
' the bounded extension @B ¥#,

In succeeding sections we shall be concerned with functions in &
which arve differentiable with respect to t. We define the class of
functions @ by

P = {cy : Q= C(Bly/ s Ye C'(J,H) and w(o) =0} (2.2)
Each function in § has a strongly continuous strong derivative with

values in D, For let c?(‘t) = Agl ' (t), LV € C'(J,H). Then, since

A3l is continuous, (P(t) = Azl \P (t) is the strongly continuous strong
derivative of 9)(1:).

Theorem 2.2 @ is dense in N,

Proof: For any x € % we can construct a sequence xp € C'(J,H), by

means of the Friedrichs mollifier, such that xp —» x. Let P be a

continuously differentiable positive function on R! with F (t) =0
O

for |ti > 1, fp(t)dt = 1. Define ?é (t) = i?( t/¢), € >0. x1is
= oo €
defined a.e. on J. Let its domain of definition be extended to R! by

setting x(t) = 0, t % J. The convolution of P‘__ and x is defined by

Oo

?*x(t) = J F(‘t—’t’) x (T)A7T. Clearly ?*x(t)eC'(J,H) (2.3)
€ - € €
Moreover, j)*x —»x in 9 as € —»0., (See e.g. [17] p. 367), and
€
I Pe? Il < =il
Since 9 is dense in 9N there exists for any x €N a sequence

yn- €d7 such that [ x-ynll —»0 as n —» +e2. Since Yy € o2 there exists

Zn € H with yp =aal Zn (Lemma 2.4), Now

oo
ﬁ:’: yn(t) = _£ﬁ(t" ) Aal Zn (T)av
Aalf"‘ P (t-7) Zy(T)d%
-“ e
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Hence ﬁ* yn€C'(J,HDNH , and [ ® y;l —yn @S €¢-»0. Given

§ > o there exists, for each n, €(n) >» o such that

I Rivn- vyl < 3/, Then IQ% yn - x|l < IRk yn - ynl* lya = x1f .
For sufficiently 'large njjyn - x|| < 3/, . Hence ”Pﬂi)yn - x || < Jif
n is sufficiently large. Let §, be a positive continuously differen-
tiable function on J with 8,(0) = 0, 8,(t) = 1 for t;.nl. and

o 8, (t) €1 for all t €J. Then

9nf=’-‘ Yn € (ﬁand an* Yn —»x as n —»+ go ,
€(n) €(n]
which proves the theorem.

We shall also be concerned in succeeding sections with functions
in J % which are weakly differentiable with respect to t. We define
the class of functions T by
T={yp:yp-= a*"?, e C'(J,H),?(’T) =0} (2.4)
Lemma 2,9 W is dense in %H.

Proof: Suppose there exists z € ‘H such that < a*‘l

cf »z = 0 for

all c?e C'(J,H) with (]J(’T) = 0, Then, since this class is dense in

‘H, 6{"1 z = 0., Hence z = 0, and this proves the lemma.
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ITITI, CAUCHY PROBLEM WITH VANISHING INITIAL CONDITION

We now consider the Cauchy problem

x + Adx=£, % (0) =20 (3.1)

where x is in some sense the derivative of x with respect to t,.

The differentiation operator applied to @ is a dissipative linear
]
operator since if x ¢ @ and x is the continuous strong derivative

of x we have Re < x, x > = = ¢T)l ® =0, It follows that

N

the differentiation operator with the dense domain Q is closeable
in 'N .« Let Dt be its closure, Now consider the linear operator J,
defined on 94 by

t

@£ (&) = fo f@adw (3.2)

t
Since |(T £) (t)]ZSth lt@l 2dw = THe] 2

we have ” SEl =T Il £)] . Thus ¥ is a bounded linear operator

_ -1 ) )
on W‘ « Moreover f = Dt »I=73; Dt f, hence Dt = 3, ~, and Dt is maxie

mal dissipative, We now define the linear operator 7 on 0H by
T
CFx £) (x) = ft £ () do (3.3)
Then for all £, g € ﬂ we have

T
-<Yi,g>+<£,¥Fg> = fo %(Ef(t),ﬁg(t))dtw
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Thus, justifying the notation, Z * is the adjoint operator of I, and
Dt-k = f}k"l. It is observed that Q < c,(3‘(])1:*) and Dt* ¥ = -"; where
‘J:' is the weak derivative of ¥ ¢ W,

Ifxe ,O(Dt)n T (A) and Dt x + & x = £ we shall say that x

is a classical solution to (3.,1). In general we cannot expect a

classical solution of (3,1) for every f ¢ ’H « In order to broaden the
concept of a solution we define the linear operator T, on @ by

T, o= 0+ a (pe We have
Re < Ty 0, 0>=% [ (T)] ® +Re<dyp, 0>2 &Kol 2

Hence T, is dissipative with dense domain in 04 , and it has a closure,
which we shall denote by -T-O =T, Clearly T also satisfies

Re < Tx, x>2 Xl x{{ ® for all x ¢ J(T). We shall say that

x is a strong solution to (3,1) if x ¢ LT (T) and T x = £,

We shall see below that with the conditions we have imposed on A(t)
there will be a strong solution to (3.1) for every f ¢ ‘H . First,
however, we shall show that there are always solutions in the following
broader sense, We define the operator 5, on the class of functions
by S ¥ = = i.f + Q*Y = Dt* ¥+ (* Y. It is seen that S, is a formal

adjoint of T, We shall say that x is a weak solution of (3,1) with

respect to S, if for all ¥ ¢ W we have
<% S ¥>=<f ¥> (344

The following theorem shows that there is always a weak solution to

(3.1) in this sense,
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Theorem 3.1, If S, is a dissipative linear operator with (not necessarily

dense) domain in a Hilbert space 9 which satisfics
Re < S ¥,¥>= XKUY ® for some & > 0, then for any £ ¢ H

there exists x ¢ W satisfying < x, § ¥ > =< £, ¥ > for all ¥ ¢ 3(5,)

Proof: WSyl il yll 2Re<S y,y>2 X [y | ® for all
v € ﬁ (8 ). Hence Sy is one-to-one on ﬁ(So) onto & (5,), and
S = , defined on R (S;), is bounded, So-lhas a unique extension to a
bounded linear operator R, with domain m, and R, may be extended to
a bounded linear operator R on ¥ , by setting Ry = 0 for y ¢ R (SO)-L
for example., Then if y ¢ o0 (5) and S, vy = z, y = R z and we have
<f,y>=<£,Rz>=<R¢¥f, z>=<R¥f, S5 y>, Thus x = R* £
satisfies the statement of the theorem,

The next theorem reveals some of the properties of a strong

solution,

Theorem 3.2, T is a one-to-one mapping of oI (T) onto a closed

subspace of P, If xe¢ fF(T), T x = £, then x is equivalent to a

strongly continuous function on J and

Tt
Jx (&) S'JO e XD ) ax

Proof: For each x ¢ oI (T) we have
bzl N Txl 2Re<Tx,x>2 () xf %o0r JTxl =2 }x| .
Hence T is one=to=one onto ® (T) and T , defined on R (T), is bounded,

Since T is closed so is T-l, and it follows that R (T) is closed.
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For x ¢ @ , I, x=£¢ H,
(2 (6), = () )+ (A= (&), = (£) )
(£ (1), x (£) ) a.e.

- Re (A (£) x (), x (£) ) +Re (£ (), x (t) )

(T, = (), = (£) )

It

Irm

1
or %

Jx ()] %

[« 9

t
<o Jx @} 2+ £ @l P!

If |x ()] # 0 we conclude that
Llx@] =-alzm® + |f® ae.
(This also holds if |x (t)l = 0 since we then have

Lixol =]lzm] = Jro v
By Gronwall's lemma, then,

[t
| x ()] SJ e *E-D ) : ()] da.

0

Now if x ¢ J(T), T x = £, there exists a sequence x € @ such that

X e—p» x T x =f 9 £ Then
n n n

[t
= (£) =x ()} = J R =T JE (D -£ (D] dT

A
gy

Fh
o]

[}

Hh
B
=

Thus the convergence of X to x is uniform in t, and hence x is

equivalent to a continuous function which satisfies the inequality

"t
lx(t)ISJO e"'D((t"T) lf(ﬁ)ldf
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It is clear that a classical solution to (3.1) is also a strong
solution, It follows that if there is a classical solution of (3,1)
for every f in a dense linear subspace of % then the range of T is
dense in % , and hence R (T) = N since R (T) is closed (Theorem 3.2).

We stale this result as

Lemma 3,1, If there exists a classical solution to the Cauchy
problem (3.1) for every f in a dense subspace of ¥ then T is maximal
dissipative, and there exists a unique solution to the equation T x = f

for any f ¢ “H .

Let C (t), t ¢ J, be a family of bounded linear operators on H
such that C («) x () ¢ 94 for every x ¢ % . Define the linear

transformation G on H by @ x=C () x (+), The following

theorem shows that if T is maximal dissipative we do not lose strong

solutions to (3.1) by perturbing it with @ .

Theorem 3,3, If T is maximal dissipative then for any f£f ¢ 9 there is

a unique x ¢ J (T) such that Tx + @ x = f,

Proof: Let @, = €+ J& | I. Then @, is a bounded dissipative
linear operator, We now show that T + (¢ ; is maximal dissipative, We
have Re < (T + @ ,) x, x>= Ol x| ® for all xe¢ O (T). Since T
is closed and @, , is bounded it is clear that T + @_1 is closed, more-

1
over R (T +@,) is a closed subspace of 94, Suppose z ¢ R(T+@,) .
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Then z ¢ ,ﬂ((T + € )%) = BH(1*), and T*z + @ 1% z = 0, But T*
is maximal dissipative (Theorem 1,3) and satisfies Re < T* z, z >

= ®K{ilzW?, henceRe < (T* +&1%) z, z>2 e Wl zU?, and z = 0,
Thus for any g ¢ Y™ there is a unique v ¢ o (T) such that

(T + Cl) y = g. Define the bounded linear transformation o on ‘M

el «

by c g (£) = e g (t) a.,e, Obviously o is one=to-one on ‘M
onto itself, Let x = o y, and let Y, be a sequence of elements of @
such that y ~+ yand (T+ &)y =g —» g.
Then(T+®)a"yn=G(T+ igl)yn=c7gr-1 Setg=c-lf.

As n = t®oy —»x,08 —» f, and (T+ € ) x=f, Sincey
is uniquely determined so is x,

Even 1if T is not maximal dissipative there is a weak solution to

the equation (T + @ ) x = £ in the following sense,
Lemma 3,2, For any f ¢ ‘W there exists x ¢ 94 such that
<, (S +CFY¥Y>=<f,VY> forallVe W

Proof: S, + € *+ ||@) I satisfies the conditions of Theorem (3,1).

Hence for any g ¢ %H there exists y ¢ 9 satisfying
<y, (5 +C*x+ JEf 1)YVY> = <g,¥>forallVye ¥ , (3.5)

Now, as in the proof of Theorem 3.3, let the bounded linear

el t

operator ¢ be defined on 9¥ by o £ (t) = e f (t) a.e, on J.

Take v ¢ ¥ Thenoqo:‘ife-y and S5 ¥ =0 (S, o= U o).
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Thus <y, 6 (S v+ &% o) > <g, o>

i

or <oy, (S +C*) o> <o g, o> forall me ¥ ., Letting
g =0 f, x=0y, we have the statement of the lemma,

We are now in a position to state conditions for the existence of

unique strong solutions to (3.1).

Jheorem 3.4, If A (t) satisfies assumptions (A), (B), (C), and (D) then

T is maximal dissipative,

[ 2 - L -l
Proof: Take f ¢ Cé (J, H), Since® @ tox (£) = B (£) B () x (t)
a,e, = lBB_l satisfies the conditions on the operator € of Lemma 3.2.

Hence for any £ ¢ G (J, H) there exists y ¢ %4 such that
L J - L] * -1
<y, S, Y -BB ) VY> = <f-B@® £, ¥> forall¥ e W . (3.6)
For any o € .,D'(Dt‘l'»‘) we have

Dt‘k a*-.l 0

- -l
t* @ " do* )

i

™1 IR =1 8 a1 . . -l ta =1
B Q4 c” Dtn w+ @ ma @ Ao* @
-1 - N
or (Dt* - B* @B )a*x o = aw® Dt‘c o

-1
Since A "* o ¢ T for any v ¢ LD (Dt*) substitution of ¥ = & ~* ¢ in

(3.6) gives

- hd - . ° . -7
<y, (DF - @ @) AT ot >e<f-BB® L, AY o> (3.7)

-l - * - - -1
or<y, q*¥ D¥*opt+o> =<Q@ F- AT BB £, 0>
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" Now D, A7 t=AQ" £- A7 @B f. Hence (3.7) becomes

i

-1 -
<y, p> = -<aq y’Dt*QO>+<Dtalf>Cp> (3.8)

i

or <y, ©> <a™ (- y+ £), Dt* > for all o ¢ nD'(Dt*),

Let x = 3 v, ThenDtx=yand

<x, D¥g> = < a™t (-y+f),Dt~k;p> (3.9)
for all w e L (Dt*). Since R (Dt“«'f) = ® we have x = Q - (= y+ £)

or Dt x+ d x = £, That is, x is a classical solution to the Cauchy
problem (3.1). It follows then from Lemma 3,1 that T is maximal

dissipative since G5 (J, I1I) is dense in 9N .
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IV, GENERAL CAUCHY PROBLEM

This section deals with the Cauchy problem with non vanishing
initial conditions:

x+ Adx=f , x0) = x (4,1)
It is convenient to introduce the Hilbert space 9= 9H x H with the

inner product

< E,%,1, [g,yoil>’l = {£,8> + (%5570) (4.2)
where f,g ¢ N s X0,¥o € H. We define the linear transformation U by

LW = {xix=x%+y, 7€ J(T), x, €D} (4.3)
and Ux = [x,%,] € ¥

(Since the funetions in 4 ( T ) are only equivalent to continuous func-
tions we define U by means of the continuous representative of x)
Lemma 4.1 R (U) is dense in %t .
Proof: Let [g,Vo] be an element of & . Since ¥ is dense in W
there is a sequence @Pn € ®  such that Pn —> g-yoe N .
Since D is dense in H there is a sequence yp € D such that yp —> vg.
Let xn = yn + Pn € H(V). Then Uxn = [yn + @Pn,ynl —>[g,yol as
n —»+oo. Since [g,yo] is an arbitrary element of @ it follows that
R (U) is dense in % .

We define the linear operator o on RU) by To [x,%0] =

[ T(x-x%0) + A xo,%0]. Writing Ux = & & (T ) we have

2 |
Lemma 4.2 Re { 4 % ,f)o)g‘ 2 A llfbll@, for all X € )»
where ﬂ = min (1 s &),

2
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Proof: Ifx=xo+? . xoeD,?e@,/X,=[xo+?,xo]and

Re <G:%,¢>9‘=Re<q5 +t AP + %)y P+xo> + %01
= Re{dx, x>+ 5 (D] + x]%)

> ol xl?+ 22& E

2
N
> Ay,
It follows from Theorem 1.1 that 4, is closable. Let its

closure be denoted by E—'o = ,G' R

Theorem 4,1 & is a maximal dissipative linear operator with dense
domain in 9 if and only if T is a maximal dissipative linear
operator in H,
Proof: Suppose first that T is maximal dissipative in 94 . Then if
[f,x0] € # with %o € D, let y = -1 (f- A %0)y ¥ = % + vV, and we
then have & Ux = [fy%0]. It is clear that “H ¥ D is dense in ¥ ,
and since the range of & is closed R (F ) = @,

If T is not maximal dissipative then @R ( ¢ ) lacks all elements
of the form [f,0], f & R(T )-'-"', and the theorem is proved.

A function x & C(J,H) satisfying @ Ux = [f,x,]1 e Dt will be

called a strong solution to the Cauchy problem (4.1), We may define

weak solutions with respect to the linear operator Jo defined on
pairs [ ¢, Y ()], e T byd, [y, y()I=1(5 y,ol d, is

a formal adjoint of & , for if Ux ¢ F( @, ) we have

<Gux,L vy, \’J(o)]>9{

T (x=xo)) + Ax(0), Y
+ (»(o), '«'U(o)_)
< V.J + a-.':su> + {x(o0), ‘P}
+ (X(o)g LP(O))
<UX, d,[ L] ( )]
poy o),
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Let x be a sequence in [(U) such that U#n —> X e Y,F00 Usn—"Tx.
Then < 7% »[ ¥, w(o>1>9‘ = x.do Ly, ¥ (o)]>9, for all
ve U .

A function x €C(J.H) N £O( A ) is a classical solution to (4.1)

if its distribution derivative % is in % , x(o) = %o € D and

x + Ax=f, A classical solution is a strong solution since then

FUx = [T (x%) + QAxos Xol

[x+ A%, %]

[f, xo]

Theorem 4,2 If x is a strong solution to the Cauchy problem (4.1)

then x is equivalent to a strongly continuous function, x(o) = %o, and
bxo)] € € %Fixgle J;rgj‘*”"f)f ()] ax

Proof: Let xp € D be a sequence such that xn —» % as n —» + oo,

Let ‘?n be a sequence of elements of @ such that q?n —> X-¥0.

[T(Pn + A xpyy%p]
(2, + d Zns *p1]

Then & U(x, + P n)

where Zn = %n + ‘?n- We have [Zn,xpn] —> [x,%0] in @ , and
in + A2y =, —> fin %4 ., In a manner similar to that used in

Theorem 3,2 we may show that

-t v _ -
|zl €l r [ ST o) ae (4.4)
[}
and that
/.
1Z0(t) - Zn(t)! € | %0 ¥m)] + T2 || fn - £nl (4.5)

It follows from (4.5) that Z, converges uniformly to x; hence x is con-

tinuous and x(o) = lim Z,{0) = lim xy = x%o. From (4.4) we obtain,
n->+oe n->+oe

in taking the limit as n — + 0o,
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S T e (t-7)

() ¢ e | %o +fog l£(2)| ax

As in the case of vanishing initial conditions we may perturb
(4.1) with a bounded operator (¢ on N which is defined through a
family of bounded operators C(t), t € J, by €x = C(*)x(*). For con-
venience we introduce the bounded linear operator @ defined on 9f
by @ [xsxo]=[ &x+ WCH x,0] for [x,x.] e 2¢€is then dissipa-
tive linear operator on 2, and &+ @ is a dissipative linear
operator with dense domain with the formal adjoint e?. + @ #* which
satisfies Re <J°nj + @-‘e,y,,\d >@( P /3”/\;”; for all
ﬁj =Ly, L}J(oﬂ,tp ¢ ¥ . Hence (Theorem 3.1) the equation

(g + @) nu= f has a weak solution for any § e % in the sense that

M %a. \ :/ﬁ /IIS .
w /} /? \u’ a/%
Writing 2 = [y,yols /¥= Ly, l,U(o)] f= [g,x,] this becomes

Vs Sy + C*yp + MCIY > =g, Y + (x5, Y(0)) Now, as

in Theorem 3.3, we let \P(t) = g 9‘) (t) = C”e“t CP (t). Then

{9» TGo @+ C*P)> = g TGP + (%, (o) or
{0y 8% 9F + C*e > o8 ¢ + (%55 Plo) . Ve state

this result as

/L& 1 + ine S A 1‘1 <+
r hd 5 .b\lﬂ’v°'?

Lemma 4.3 For any f %% , xo € H, there exists x ¢ % satisfying
s So W+ @*xp> = £, \P> + (%9, Y(0)) for all Y € v .

We can now state conditlons [or the existence of a unique classical
solution to the Cauchy problem (4.1).
Theorem 4.3 If A(t) satisfies assumptions (A), (B), (C), and (D)
there is a unigue classical solution to the Cauchy problem (u4.1) for
every f & C(J,H) whose distribution derivative f is in % and %o € D.

Proof: By Lemma (4,3) there exists y ¢ 94 such that
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Kyo - @+ aty - @By (4.6)
= E-B@L £, PD + (£0)-A(0)xg, Y (0))
for all Y€ W . Take @ e LI(D}). Then a*'lqa ¢ U and, setting
y=a*le , Y= atlg-@™8 a*lg= a*1p - @6 Ly
Substitution in (4.6) then gives
Lys-a™ g+ 9> ={at (B8 ), 9P (4.7)
. + (£(0) - A(0)%5,A71(0) P (o))

Set x(t) = %o + Jﬁ y (T)dT . Then y is the distribution derivative of
o

x. Moreover, a'l(f - é@'l f) is the distribution derivative of a'lf.

Integration of (4.7) by parts then gives

< %, Di:q9> = <At (£-y), Di?> (4.8)
Since the range of D¥ is %™ we have x = & 1(f-y). Hence x is a
classical solution to the Cauchy problem since y = x, the distribution

derivative of x, %(0) = 0, and % + A x = £,
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V. THE FUNDAMENTAL SOLUTION

In the previous argument we could have considered an interval
[s,T1, o € s < T, instead of [o, T ]J. With assumptions (A), (B),
(C), and (D) we then obtain a unique continuous solution to the Cauchy
problem

2(t) + A(t)x(t) = 0, x(e) = x5 € H, (5.1)
If %o € D the solution x(t) is a classical solution. Otherwise, for
%o %D, it is a strong solution in the sense that ¢ [x,x(s)] =
[0,%,]). It is clear that the mapping %, —>=x(t) is a linear contin-
uous mapping on H since we have [ x(t)| < e—D((t—s)! Xo| from
Theorem 4.2. We shall write x(t) = U(t,s)xs; [U(t,s)]| £ e~ *(t-s)

Now suppose that o £ ¥ <& s < T , x, € D. U(t,7T)x,, restricted to

[s,7] is a classical solution to (5.1) and is equal to U(s, T)xo €D

for t = s. Hence U(t,s)U(s, T)xo = U(t, T)x,. for all t e (s, T],
Xo € D, since both sides are solutions to (5.1) with the same initial
condition on [s,“T]. Since the operators are continuous and D is
dense in H we have

Ut,T) = U(t,s)U(s, T), (5.2)
foro ¢t £ s £t £ T.

For all x € H, 0 & s €« s +h £ t, we have

Jutt,s + hx, - U(t,s)x,) = [ UCt, s + h) (%, - U(s + h,s)x,)]

£ [ %5 - U(s + h,8)x, [
and this tends to zero as h —» o, Hence U(‘c,s)xO is continuous from

the right as a function of s. Again, supposing %, &€ D we have
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T
U(t,s)xy = % = f A(TIU(7,8)x,d7
S
Hence

U(s + h,s)x, = x5 - hA(8)x, + o(h)

since A()U( v ,s) is a strongly continuous function of 7. Then
(1/h) [U(t,s + h)xo - U(t,s)xo] = U(t,s + h) [A(s)xo + o(1l)] and
this tends strongly to U(t,s)A(s)xo as h ¢ o. Hence U(t,s)xy has a
strong right-hand derivative (3/as)+_U(t,s)xo = U(t,s)A(s)xo for all

Xo €D, 0 £ s £t €T . For each xg € D [U(t,s)A(s)xo] is
bounded on 0 € s ¢ t < T (Assumption (C)). Thus for each % D
there is a positive number M"o & oo such that ’ (a/és}g(t,s)xol < My e
It follows that U(t,s)x, is uniformly continuous from the right for
each x5, € D. Let x, € D and t € J be fixed, N a positive integer,

Sph = %.t, n =0, 1l +o.y N. We define the step function fn by

fn(s) = U(t,spn )xo for sp & s < spyy,n =0, 1, ..., N-1, Because of
the uniform continuity from the right fp(s) —» U(t,s)xy as N —» + o0
for each s € [o0.t]. Hence U(t,s)x, is measurable as a funection of s
on [o,t] for each x, ¢ D, t € J, Moreover, if x, is a sequence of
elements of D such that x, —» %, €H as n —> + 92 , then U(t,s)x,—>
U(t.s)x,. Hence U(t,s)x, is measurable as a function of s for all

X5 € H.

Theorem 5.1 If f € & is continuous there is a unique classical solu-

tion on [0, T ] to the Cauchy problem

x(t) + A(t) x (t) = f(t) , x(o) = x, € D (5.3)
given by
T
x(t) = Wt,0)xs + f U(t,s)f(s)ds {(5.4)
°

Proof: Since U(t,s)y is measurable as a function of s so is U(t,s)f(s)
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(Lemma 2.4). Thus the expression for x(t) makes sense. Moreover,
foro £ s £t £ 7T, %tU(t,s)f(s) = -A(t)U(t,s)f(s). Thus,
taking the strong derivative of (5.4) we have

x(t) = ~A(t)U(t,0)x%, - LA(t)U(’c,s)f(s)ds + £(t) = -A(t)x(t) + £(t)
which proves the theorem,

Theorem 5.2 If ff:aN, Xy € H, the strong solution of Cauchy problem

x+ dx

[}
H

f, x(o) = x5, is given by

x(t) = U(t,0)x + fU(t,s)f(s)ds (5.5)

o *
In particular, if f € C(J,H) with distribution derivative f & a)’/ .
xo € D, then (5.5) gives the classical solution.
Proof: Since the continuous functions in /9 are dense in 9% there

is a sequence fp of these functions such that fy —> f as n — + e ,

Let Zn be a sequence in D such that Zpnp —» X0 @as n —ip + <o,

Then
+

*n(t) = U(t,0)Zn + j U(t,s)fn(s)ds

©
is a sequence of classical solutions such ;hat av[xn(-), Zn] =
(fns2p]. Now lim  x,(t) = U(t,0)x,+ fU(t,s)f(s)ds = x(t)
n->+.00 >
Hence g/[x(-), 5] = [£,%,] since avis closed; that is, x(.) is the
strong solution to the Cauchy problem.

If f €C(J,H) with f € ¥ , %o €D, then the strong solution is a

classical solution, by Theorem 4.2.
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VI. A TIME-DEPENDENT HYPERBOLIC SYSTEM

In this section we present an application of the preceding theory
to a time~dependent symmetric hyperbolic system of partial differential
equations, Let {2 be an open connected set in m~dimensional real
enclidean space R s with points § = L EL, B2, tee §mj « Let
J = [ 0, 7 } be the time interval for which we are to find a solution,
x ( E, £ ) will denote a function on £ x J with values in k-dimensional
complex enclidean space Ck « We shall consider the initial value

problem

>'<=E'1L(,eAix)i+Bx],x(§,0)=xo(g) (6.1)

where the usual summation convention is used for repeated indices,

and the subscript i denotes differentiation with respect to Ei « The
symbols E, Ai , and B represent k x k matrix-valued functions, E and

Ai being functions of £ alone, B being a function of € and t, /3 is

a positive scalar function of £ and t, E is positive definite and the
Ai are hermitian, We assume that the elements of E are continuous on £ ;
the elements of Ai are continuous and bounded on {} and continuously
differentiable with respect to %i; the elements of Ai and B are
continuous and bounded, and the elements of B have continuous

derivatives with respect to t which are bounded on { x J., We assume

that /3 ( €, t ) has continuous bounded derivatives with respect to

t and the gi . /6 i'has a continuous bounded derivative with respect to &,
and there is a positive comstant @B, such that B (E, t ) = ﬁo >0

for all £, t, For x, y ¢ Ck we denote the iunner product x" ;1 by
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{x, y] s xl, yl, i=1, 2, seea , k, being the components of x, y,

respectively, We assume that for all x ¢ Ck, E ¢ £ we have

{Ai(g)x,x} =0 (6.2)

-First, however, we consider the time-independent system

x-E-l

i
A" =), (6.2)

This system has been given a physical interpretation by Wilcox . 8 J o
The form ) =% { E (&) x, x } is interpreted as an "energy

: 1 i —_ 1 i .
density," The forms J; = = =% { AT (8B ) x, x } are interpreted as
the componcnta of a "Poynting vector' describing the flow of power,

i i . .

Thus 77 /% = v~ may be interpreted as the velocity of energy flow,
The speed at which energy propagates is bounded above by

i

- {a

E ) ,x}n
(8

X, X}

e § 2o

i

c = sup {
. k . i, i i _

where the supremum is over x ¢ C, § ¢ &} , and unit vectors n” (n n = 1),

In order to assure that ¢ be finite we assume that there exists a constant

P > 0 such that

{ECE)=x} = pfx, x} (6.5)

for all § ¢ Q , x ¢ Ck « Then ¢ < + = since the elements of A' are
bounded,
Using the energy as a norm we are led to the Hilbert space H with

inner product

(x,y)=J {E(E)x(E),y(E)} 4dE (6.6)

f
Q
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The Hilbert space of functions x on ) with values in Ck such that

(%, %) Le—‘& {x(e), =(e)} de<+o (6.7)

will be denoted by L, ( Q). Because of (6.,5) we have

(X,X) (EX’X)LEZP(X’X)L:-;G (6'8)

It follows that E = is a bounded operator on L 5, ( ) . We shall

denote its norm by | ET | L e We have | ™ Y L. SUp .
2 2

Let C" ( &) be the set of n - times continuously ditterentiable
, . . k n . }
functions on § with values in C ., CO ( Q) will be the subset of
functions with compact support in f .,

Let L 5o be the linear operator with domain Cé ( Q) defined by

ey at (zy=x ey, (6.9)

Loo x (E)==E i

Assuming for the moment that the boundary of £ ( 9§ ) is

sufficiently regular we define an outward normal v = [ Ve s Ve s soey Vm] s

v' v" = 1. Then by the divergence theorem we write
j{Alx,y}id€=f {Alx,y}uldc (6.10)
Q 280

for any x, vy 2 C (QINLs (). Thus for x, y ¢ C3 ( Q) we have

fﬂ{(Aix)i,y}d€=-fﬂ{x,Aiyi}dg " (6.11)

We observe that (6.11) holds even if @  is not regular since we can
enclose the support of x or v in a cube and apply the divergence theorem
to this region, Defining the linear operator M ,, with domain ()
by

i

Moo ¥y = E A ¥ (6,12)
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we then have

Loo %, ¥)=(x, Moo ¥) (6.13)

Since G ( Q) is dense in L 5 ( £ ) , hence a fortiori dense in H,
O i Sa————

it follows that L 5o and M ,, are closeable in H, Let their closures

als

be denoted respectively by L, and M o, Let L, = Mg s M, =L O .
Clearly L, D L, and My 2D M, ,
Again supposing for the moment that d {} is sufficiently regular

we see from (6,10) that for x ¢ C > () A L, ( &) we have

)

2Re.J {(-Aix).,x}d§=J‘ {A]:'x,x} d§+J{Aix,xgvidG
Y * a EY)

or (6.14)

-J {Aix,x} vidd
82

HAH

2Re(le,x)=-J{A:§'x,x}d
Q i

Because of (6,2) we then have
2Re(L1x,x)ZJ Tyt do (6.15)
20

If the flow of energy is outward at each point of 3{, then,

Re (L, %, x) =0, This motivates the following definition,

Definition, A closed dissipative linear operator L such that
L€ L € L, will be said to be locally dissipative if for each
xe LHEL) ¢@xe H(L) for all continuously differentiable real 49

with compact support in R,
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We assume that L and its adjoint M are locally dissipative, This
implies that L and M are maximal dissipative, L, € L &€ L, and
My &M <My o

Now, for arbitrary t ¢ J, let the linear operators L ( t ) with
domain S (L ) and M ( £ ) with domain B ( M ) be defined

respectively by

1l

L(t)x=-E" (o) (ACwe t)A (L)x(.)); (6.16)

M(t) x

Il
=
—~
.

) B Cay t) AT Cudx (W)
Let the linear operator C ( t ) be defined by
() B, Co,ed)a (L)) (61D

. i . .
Since the elements of A™ and /5 i are bounded continuous functions on £

C ( t) is a bounded linear operator om H,

Theorem 6,1, L ( £ )+ C ( &) is a maximal dissipative linear operator

with dense domain QP ( L ) in H, and M (t ) + C ( t ) is its (maximal

dissipative) adjoint.

Proof: Because /5 (Z,t)=2 B, > 0 and is continuous and bounded on
€2 x J the mapping x -~ /3 x is a one-to-one continuous mapping of H
onto itself, We have for x ¢ & (L)
- - -1 i oo = i
L((t) =x /S E (A x )i i) I&; i AT x

= BLx~-2C(t)x



37.

Hence L ( t ) is closed, Similarly we have, for y ¢ LI (M),

M(t)y= My

Thus M ( t ) is closed, We note that L* (t)y=Mpa3 -2 C,M* (t) = LB,
That is, z ¢ £I(L ~ (t) ) if and only if B zec ¥ (M) and
z ¢ GD'(M*(t))ifandonlyif/:)zs L (L),

Now let { be a continuously differentiable positive function with
compact support on L 0, +® ), 4 (t ) =1for 0<t=<1, Fore >0
define Be(E,t)="9, C € [E] ) B (E, t) where
,5] = §i§ij%.ThenforanyyeH,xe,,O(L)wehave

-g{( /-iAiX)i,Y} dg = g\x‘i {(ﬂAiX)i,y} dE

+ €£l‘2i/3Aix,yzl€{i¢ld§

Hence as e — (0
g {C B %), v} d%ﬁi{(ﬁAlx)i,y} dEg
Now since ﬁexe (L) for each x ¢ (L) we have

g [a" Box); ,v]) ag = EE{ Bex Aty ] a

for each x ¢ H(L) , vy

(O]

J(M )., Hence, letting —> 0 we have

'«&j_z{(Alﬂ x)i,y} d g = é{x,ﬁAlyi}dg
or (L(t)x,y)=(x,M{(t)y) for all

xe HO(L) ,vye L(M) . HenceL(t)(M*(t)and

M(t)C L (t).
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Since Jﬁ:xe L(L) for xe S (L) we have

Ref{-(Aifﬁ—x).,m:x}di

€ i
&

Re‘_l {-( ﬁ‘Aix)i,x}dﬁ
)

(e
A

+ X Y {Aix,x}ﬂeidg

Q
Reg{-( o A=), ,x}dE

+%J Aix,x , dE
L by

1, i F
+ée£2{A x,x §18 |, BV 45

Taking the limit as e—>»0 we have Re (L (t ) x , x ) +
(C(t)=x,x)=0
i,es L (t)+C (t) is dissipative,

Similarly, since ‘/ﬂe vye (M) for ye (M) we have

0 < Re g{Ai(m y)i,wfﬁ—: y } 4
= Re .L{@Aiyi,y}d§+%£{1%iy,y}ﬁeidg

Jg9

As before, letting € ~—» 0 we obtain

Re(M(t)y,;y)Jr(C(t)y,y)ZO

Thus M ( t ) +C ( t ) is dissipative,
Suppose L ( t )+ C ( t ) is not maximal dissipative, Then
R(L(t)+C(t)+ o I) is a closed proper subspace of H for

any o > 0, ( I is the identity operator on H ). Thus for each® > 0
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thereisaze,Of(L*(t)),(z,z) 1 such that
(L*(t)+Cc(t)+ &I )z=0, OrM Bz-C(t)z+ax&z=0,
HenceRe(Mﬂz,/&z)+ O((z,/Sz)=(C(t)z,ﬂz).

Now Re M @Bz, 82)20,and X (2,48 2z)2= a‘ﬂo(z’z)= o‘-ﬁo
Thus o ﬁo s(Cc(t) z, Bz Yo But the right side of the inequality
is bounded., Taking sufficiently large then leads to a contradiction,
Similarly, supposing ™M ( t ) + C ( t ) not to be maximal dissipative,

for & > 0 there is z ¢ ,O’(M*(t))suchthat(z,z)=1and
(M*(t)+C(t)+ &I)z~-0, HneceL Az+C (t)sz+ez=0,
andRe(L,Gz,/sz)-i— o(,(z,ﬁzk)=-(c(t)z,/sz). As before
this implies X 8 o s~ (C(t) z, Bz ), leading to a contradiction,
It follows that M ( £t ) + C ( t ) is maximal dissipative, And since

L* (t)+C (t) is a dissipative extension of M (£t )+ C ( t ) we
have L~ (t)+C (t) =M (t)+C(t) HenceM (t) =1L " (¢t)
and L () =M (t) .

Let L 5 ( J, H) be the space of Lebesgue measurable functions on J
with values in H whose norms are square integrable, ¢t (J, H) will
denote the space of strongly continuous functions on J with values in H
which have n strongly continuous strong derivatives, Since the elements
of B (5, t) (as in (6,1) ) are bounded and continuous on {2 x J the

linear mapping x e E' B x is continuous on H into itself, We denote

its norm by |l Ezl.) B (e, t )] Take > 0 and take

k=& + sup fl EZy B (. t)ll +sup NG (e

teJ teJ
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For x ¢ (L) we write

ACt)x==ECy [CAC e)a" (I x (), +B (- 0 x () +kx

L(t)=x+ E- Bx+kx

Then' A ( t ) is maximal dissipative for each t ¢ J, with the dense
domain JLO(L ), and Re (A (t ) x, x) = &®(x, x)o (Theorem 3.,3),

Moreover, for each x ¢ (L )

Feym=-a3y (2, erat x@r &3 (et x (e

Since /3 , /3 i and the elements of B have continuous bounded
derivates with respect to t it follows that A ( t ) satisfies assump~-

tion (C), Hence we have

Theorem 6.2, The Cauchy problem

x+A (t)=s==f(t),=(0) ==, (6,18)
has a unique solution x ¢ ¢ (J, H) for each fe L, (J,H), x, ¢ H,
In general x is a strong solution, but if f ¢ ¢ ( J, H ) with
f(t)e (L) foreach te Jand x, ¢ H(L), or if

fecC (J, ) and x 0o € (L), then x is a classical solution,
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