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Abstract

This dissertation lays the foundation for practical exponential stabilization of drift-

less control systems. Driftless systems have the form,

T =Xi(z)ur + - + Xpn(z)um, z€R

Such systems arise when modeling mechanical systems with nonholonomic con-
straints. In engineering applications it is often required to maintain the mechanical
system around a desired configuration. This task is treated as a stabilization prob-
lem where the desired configuration is made an asymptotically stable equilibrium
point. The control design is carried out on an approximate system. The approx-
imation process yields a nilpotent set of input vector fields which, in a special
coordinate system, are homogeneous with respect to a non-standard dilation. Even
though the approximation can be given a coordinate-free interpretation, the ho-
mogeneous structure is useful to exploit. Since implementing a controller requires
choosing a coordinate system, there are extra benefits to be gained by choosing co-
ordinates in which the approximation is homogeneous. The feedbacks are required
to be homogeneous functions and thus preserve the homogeneous structure in the
closed-loop system. The stability achieved is called p-exponential stability. This
extended notion of exponential stability is required since the feedback, and hence
the closed-loop system, is not Lipschitz. However, it is shown that the convergence
rate of a Lipschitz closed-loop driftless system cannot be bounded by an exponential

envelope.



The synthesis methods generate feedbacks which are not smooth on R" \ {0}.
The solutions of the closed-loop system are proven to be unique in this case. In
addition, for many driftless systems the control inputs are often velocities. A more
appropriate formulation of the stabilization problem has the control law specifying
forces instead of velocities. We have extended the kinematic velocity controllers to
controllers which command forces and still p-exponentially stabilize the system.

Perhaps the ultimate justification of the methods proposed in this thesis are
the experimental results. The experiments demonstrate the superior convergence
performance of the p-exponential stabilizers versus traditional smooth feedbacks.
The experiments also highlight the importance of transformation conditioning in
the feedbacks. Other design issues, such as scaling the measured states to eliminate
hunting, are discussed. The methods and problems in this thesis bring the practical

control of strongly nonlinear systems one step closer.
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Chapter 1

Introduction

This thesis studies the problem of locally exponentially stabilizing analytic driftless

control systems. Driftless systems have the form
T =Xi(@x)us + - + Xp(z)uy, z € R, (1.1)

where the control inputs u; are real valued and the X; are analytic “input” vec-
tor fields. A diverse set of mechanical systems may be modeled as driftless control
systems. The special form of the model is often the result of nonholonomic con-
straints that the kinematic variables of the system must satisfy. A mobile robot
with wheels that roll without slipping is an example of a system with nonholonomic
constraints [24], [32]. Dextrous manipulation with multifingered robotic hands is
another application where driftless control systems arise from nonholonomic con-
straints [27], [26], [35]. Reorientation of rigid bodies with zero angular momentum
through internal motion may be studied as a driftless control system. In this case,
the angular momentum constraint enforces a nonholonomic-like constraint on the
system model [25], [21], [12]. Finally, nonholonomic actuators are studied in [5].

A problem of practical interest is how to transfer the system to some desired final
state. The change in state may be affected by two different approaches. The first
approach is an open-loop strategy. This involves defining the control inputs as func-
tions of time so that the initial state of the model (1.1) is transferred to the desired

final state. Initial efforts to control driftless systems were directed at open-loop path



planning. The literature in this area is large. A recent paper containing a compre-
hensive reference list is [32]. However, the limitations of an open-loop methodology
restrict its use in physical systems: without feedback the system performance is de-
graded by modeling errors and external disturbances. In other words, small errors
in the initial state measurement or the model resulted in poor performance (the
performance being measured by the deviation from the desired final condition for
the physical system). The second strategy then, is to feed back the state of system.
Thus, feedback stabilization is a process in which the desired final state is made
an asymptotically stable equilibrium point by proper choice of the control inputs.
The feedback should impart some measure of robustness to the modeling errors and
measurement errors noted above. This thesis concentrates solely on the feedback
problem and assumes that the controller has access to the measured state in real-
time. A well known result by Brockett [4] implies that driftless systems cannot
be asymptotically stabilized about any desired point with continuous autonomous
feedback. Appendix A contains a precise statement of Brockett’s theorem.

Several research groups have derived discontinuous feedbacks. Brockett’s condi-
tion does not apply when the closed-loop system is not continuous. Bloch et al. [3]
derive piecewise analytic feedbacks to stabilize Chaplygin systems. Their controllers
have the advantage of returning the system to the desired state in finite time. How-
ever, the control action is of bang-bang type. Since the control inputs are velocities
for many driftless systems, such a control is not physically realizable. Canudas de
Wit and Sgrdalen develop piecewise smooth controllers for a set of low dimensional
physical examples [9]. However in several of their examples the desired equilibrium
point is not stable even though it is attractive.

The primary advantage of continuous control laws is the fact that problems of
chattering and infinitely fast switching are not an issue. Samson demonstrated that
continuous time-periodic feedbacks could stabilize a nonholonomic cart [40]. This
result motivated much research into continuous time-varying feedbacks for stabi-
lizing general driftless systems. Coron showed that for a large class of driftless

systems there exists a smooth time-periodic feedback that renders the desired equi-



librium point globally asymptotically stable [7]. Coron’s result is an existence result
and does not provide a constructive procedure for obtaining the feedback. Pomet
was able to adapt the ideas in Coron’s proof to provide an algorithm for deriving
time-periodic smooth feedbacks for a more restrictive class of driftless systems [37].
Teel et al. [44] gave explicit expressions for time-peiodic smooth control laws which
asymptotically stabilized the special “chained-form” driftless systems.

While these algorithms are useful for understanding the structure of driftless
systems, the rates of convergence cannot be bounded by an exponential envelope.
The authors in [33] showed that slower than exponential rates are always obtained
with C! feedbacks. This thesis extends this result to include all Lipschitz feedbacks.
Improvements in the convergence rates are desirable in order to make the algorithms
more practical and applicable to real world applications. Sgrdalen [38] and Canudas
de Wit and Sgrdalen [10] consider the problem of exponential stabilization with a
slightly modified notion of exponential stability. Their methods rely on piecewise
analytic feedbacks and are not continuous functions of the state. Another existence
result by Coron [8] states that controllable driftless systems may be stabilized to
the origin in finite time by a continuous time-periodic feedback which is smooth
on R*\ {0}. Coron’s work is germane to the results in this dissertation and are
reviewed more thoroughly in Appendix A.

The work of Hermes is perhaps closest in spirit to the approach presented in
this thesis. Hermes’ paper [17] relies on homogeneous approximations of the control
system and generalizes the notion of the linear regulator to a homogeneous nonlinear
regulator for the approximate system. The systems he considers are two-dimensional
small-time locally controllable systems and certain three-dimensional systems. This
class of two-dimensional systems automatically satisfy Brockett’s condition as does
the three-dimensional example. Although Brockett’s condition fails for driftless
systems the homogeneous approximations still play a very important role.

This thesis is concerned with the the exponential stabilization of driftless analytic

control system with time-periodic continuous feedback. The contributions are:

i) Explicit construction of p-exponentially stabilizing feedbacks. Two



ii)

iii)

iv)

methods are presented for deriving exponentially stabilizing feedbacks for a
large class of driftless systems. One method is an extension of Pomet’s algo-
rithm to the framework presented in this thesis. The other method specifies
sufficient conditions for a smooth stabilizer to be rescaled into an exponential
stabilizer. The latter method is attractive from an implementation point of
view since it requires only slightly more computation than the smooth control

law from which it was derived.

Proof that non-Lipschitz feedback is necessary for exponential sta-
bilization. The stabilizing feedbacks are degree one homogeneous functions
which are not Lipschitz since the dilation is a nonstandard one. The non-
Lipschitz character of the feedbacks is shown to be a necessary feature of the

control law if exponential stability of the driftless system is desired.

Analysis results for homogeneous differential equations. Several anal-
ysis results are also proven for homogeneous systems. For example, the feed-
backs derived from the synthesis methods result in unique solutions of the
closed-loop system. This fact is not automatic since the closed-loop vector
field is not Lipschitz. In addition, an averaging theorem for degree zero ho-
mogeneous systems is proven. This extends the usual stability results for C?

systems to degree zero vector fields.

Extension of kinematic controllers to allow torque inputs. The control
outputs are often velocities in driftless models. It is shown that servo motors
may be used to command torques instead of velocities for these systems while
maintaining exponential rates of convergence. Furthermore, the sensitivity of
the control signal to sensor noise is exacerbated by the non-Lipschitz nature of
the feedbacks. Low pass filtering of the state variables may be used to smooth
the input into the controller. The effect of inserting a low pass filter into the
loop is quantified with a singular perturbation result for homogeneous degree

zero systems.

Experimental verification. The theory is experimentally tested on a mobile

robot. Comparisons are made with controllers derived by other means. The



superiority of the exponential stabilizers is clearly demonstrated.

The thesis is organized as follows. Chapter 2 introduces the background neces-
sary to understand the results in the thesis. In particular the definitions and prop-
erties of homogeneous functions and homogeneous vector fields are reviewed. These
concepts are central to understanding how the feedbacks exponentially stabilize the
system. Every set of controllable vector fields may be locally approximated by a
controllable nilpotent set of vector fields. Furthermore, in special local coordinates
the approximating vector fields are homogeneous with respect to a dilation associ-
ated with the growth of the Lie algebra of the vector fields. This approximation
theory is also central to the exponential stabilization problem and is briefly covered.
Chapter 2 ends with a review of converse Lyapunov results for homogeneous sys-
tems. Homogeneous degree zero systems are of particular interest and it is shown
how the current converse results which exist for autonomous homogeneous systems
extend only to the time-periodic homogeneous degree zero case, a counterexample
being given for situation when the degree of the vector field is different from zero.
The converse theorems imply a simple stability result for perturbed systems.

Chapter 3 opens with a proof of uniqueness of solutions of homogeneous degree
zero vector fields which are locally Lipschitz on R™ \ {0} (the origin is assumed to
be an equilibrium point). The requirement that closed-loop solutions of the control
system be unique is of practical importance: numerical simulations are often the
only way to assess the performance of a nonlinear system and uniqueness of solutions
guarantees continuity of the flow with respect to the initial condition. Finally, an
averaging theorem for homogeneous degree zero systems is proven. The averaging
result is not required for the subsequent analysis however it is of interest in its own
right since it extends the stability results of C? dynamical systems to a class of
non-Lipschitz vector fields.

In Chapter 4 the formalism of Chapter 2 and the analysis results of Chapter 3 are
combined to obtain time-periodic, continuous, exponentially stabilizing feedbacks
for a large class of analytic driftless systems. The non-Lipschitz property of the

feedbacks is shown to be a necessary ingredient for the exponential stabilization



of driftless systems. Moreover the closed-loop system solutions are unique. The
sensitivity of the closed loop system in the vicinity of the origin to sensor noise
is mitigated by filtering the measured state variables. The singular perturbation
results are used to demonstrate that exponential stability is still maintained after
the introduction of low-pass filtering.

The control inputs of driftless models often correspond to velocities in the phys-
ical system. It is unreasonable to insist that the velocities may be specified exactly
since the motion in a mechanical system is realized by application of forces and
torques. With this in mind, the “kinematic” velocity controllers are extended to
torque controllers for the system augmented with a set of integrators to model the
actuator dynamics.

Chapter 5 presents the results obtained with the nonholomobile, an experimen-
tal mobile robot constructed at Caltech. The objective of the experiments is to
compare the performance of the exponential stabilizers derived using the theory in
this dissertation to the more traditional smooth feedbacks proposed by other re-
searchers. The experiments also verify that torques may still be commanded with a
non-Lipschitz velocity controller and that the driftless kinematic models for robot
systems are suitable for control design. Chapter 6 concludes with some open prob-
lems and other areas of importance for the stabilization of driftless control systems.

Appendix A reviews the controllability properties of driftless systems and the
implications of Brockett’s necessary condition for driftless systems.

Appendix B presents an algorithm, implemented in Mathematica, for computing
the local diffeomorphism necessary to place the driftless system into the coordinates
where the nilpotent homogeneous approximation are the leading order terms in the
input vector fields.

Appendix C contains a proof that a control law used throughout the dissertation

to illustrate certain concepts is p-exponentially stabilizing.



Chapter 2

Introduction to Homogeneous Systems

The approach to exponential stabilization in this thesis relies on the notion of ho-
mogeneous functions, homogeneous vector fields and homogeneous approximations
of sets of vector fields. The most familiar definition of the homogeneous property
scales each coordinate function by the same amount. However, nonisotropic scalings
may also be defined. An expanded definition of homogeneous functions and vector
fields, where the coordinates are scaled by different factors, is reviewed below. The
usefulness of these definitions becomes apparent when it is recalled how a set of
analytic vector fields which generate a full rank Lie algebra (interpreted here to be
the input vector fields of a controllable driftless system) may be approximated by
a nilpotent set which, in special coordinates, is homogeneous. A slightly modified
notion of exponential stability, called p-exponential stability, is defined. This defini-
tion allows for non-Lipschitz dependence on initial conditions in the case where the
equilibrium point is exponentially attractive and uniformly stable and reduces to
the usual definition of exponential stability when there exists a linearization at the
equilibrium point. Homogeneous approximations of vector fields are discussed in the
references [13, 18, 1, 42]. Applications which utilize the homogeneous form of the
approximating control system may be found in [17, 20]. These papers consider two-
dimensional small time locally controllable systems and certain three-dimensional
systems.

Finally, a converse Lyapunov theorem is reviewed for time-periodic homoge-

neous vector fields with asymptotically stable equilibrium point. The Lyapunov



results are used to show that higher-order perturbations (in the sense defined be-
low) do not locally affect the stability of the equilibrium point. Stability theorems
for homogeneous systems where first proven by Hermes without the use of Lyapunov
functions [16]. His results where extended by Rosier who proved a general converse
Lyapunov for autonomous homogeneous systems [39].

To establish some notation, functions will be denoted by lower case letters and
vector fields by capital letters. We will occasionally abuse notation and define the
differential equation ¢ = X(¢,z) in local coordinates on R" associated with the
vector field X (more properly the direction field in the nonautonomous case). The
flow of a differential equation is denoted v where (¢, £, 7¢) is the solution, at time
t, which passes through the point z at time t;. When it is necessary to distinguish
between flows of vector fields a subscript will be used; i.e. ¥ x is the flow of X, ¢y

is the flow of Y, etc.

2.1 Definitions and Properties of Homogeneous Sys-

tems

2.1.1 Definitions

This section reviews dilations and homogeneous vector fields. A dilation A" : R” x
R* — R” is defined with respect to a fixed choice of coordinates = = (21,3, ..., z,)
on R" by assigning n positive rationals r = (ry =1 < ry < -.- <r,) and positive

real parameter A > 0 such that
= (A"z1,...,A""z,), A>0.

We usually write Ay in place of Af.

Definition 2.1 A continuous function f : R x R* — R is homogeneous of degree

1 > 0 with respect to Ay, denoted f € Hy, if f(t,Axz) = N f(t,z).



Definition 2.2 A continuous vector field X (¢,z) = Y a;(t,2)9/0z; on R x R* is

homogeneous of degree m < r, with respect to Ay if a; € Hy, .

The variable ¢ represents explicit time dependence and is never scaled in our

applications.

Definition 2.3 A continuous map from R™ to R, z — p(z), is called a homogeneous

norm with respect to the dilation Aywhen
1. p(z) 20, p(z)=0 < =0,
2. p(Axz) = Ap(z) YA >0.

For example, a homogeneous norm which is smooth on R \ {0} may always be

defined as,
p(@) = |25 + a5 -+ 2/, (2.1)

where c is some positive integer evenly divisible by r;. We are primarily interested
in the convergence of time dependent functions using a homogeneous norm as a
measure of their size. When a vector field is homogeneous it is most natural to use
a corresponding homogeneous norm as the metric. The usual vector p-norms are

homogeneous with respect to the standard dilation (r; = 1).

2.1.2 Properties of homogeneous functions

In the sequel we will define continuous homogeneous functions which are differen-

tiable everywhere except the origin. We state some properties of these functions.

Property 2.4 Suppose f : RxR™® — R is continuous and differentiable with respect
to z on R™ \ {0}, homogeneous of degree m with respect to the dilation Ay. Then
a%i (f) (t,z) is a homogeneous function of degree m — r; with respect to A,. If
m — r; > 0 then we define 5% (f)(t,0) = 0 in order to make the new function

continuous with respect to z on R”.
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The following property shows how the magnitude of homogeneous functions may be

estimated with the homogeneous norm.

Property 2.5 If f(t,z) is degree m (possibly < 0) and continuous with respect
to z on R™ \ {0} and continuous with respect to ¢ then there exists a continuous

function Mj : R — R such that

[f(t,2)] < My(t)p™ ().

When f(z,t) is continuously differentiable with respect to  on R™ \ {0} then

I af < MZ(t)pm_ri (113) 1= 17 EEPRLT

oz;

where Ma(-) is continuous. When M; or M, is bounded we define M; = sup, M;(t).

Proof: Define M (t) = max,)=1 |f(t,y)| and y = Ay, so

lf(.’L‘,t)[ = ’f(LAp(a:)y)'
= p"(2)|f(t,)]
< M (t)p™ ().

If m < 0 then f is unbounded in every neighborhood of the origin. However M;
is still defined since f is continuous on the homogeneous sphere p(z) = 1. For the
differentials we define Ms(t) = max; max, )1 |0f/0z;(t,y)| and apply the same

scaling as above. |

Property 2.6 Let f : R x R* — R be homogeneous of degree m > 0 with respect
to Ay and continuous in all arguments. Let g : R x R" \ 0 — R be continuous and
homogeneous of degree [ > —m (in particular, g may be unbounded with respect to

z in every neighborhood of the origin in R™), then the function h defined by,

f(t,x)g(t,z) zeR\{0}
0 =0

h(t,z) =
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is homogeneous of degree m + [ and continuous on R" x R.

Proof: Set M (t) = max,;)— |(fg)(t,z)|, where p is a homogeneous norm. Choose

€ > 0, fix t, and compute A > 0 such that A"+ M(t) = e. Define the set

Ui ={z € R*|0 < p(z) < A}

For z € Uy, l
m+
£ese) = (B2) 7 iret, 8 o)
_ 2@\
__( X ) Nt A LA o)
p(:c) e m+l
< (——/\—> N ()
B p(CC) m-+I1
B <"X—> ‘
< e since z € U
Thus lim,_,o |fg(t, )| = 0 for all ¢. [ |

The preceding lemmas are useful when defining a new function as the Lie derivative
of a homogeneous function with respect to a homogeneous vector field. Suppose
X : R* — R* is a continuous homogeneous vector field of degree [ and f is a
continuous homogeneous function of degree m differentiable on R™ \ {0}. Lx f is a
homogeneous function of degree m — [. If m is greater than [ then the new function

is continuous on R" if it is defined to be zero at the origin.

Property 2.7 If f : R® — R is a continuous positive definite homogeneous degree

[ function, differentiable on R™ \ {0}, then V f # 0 for all z # 0.

Proof: Suppose Vf(Z) = 0 for some T # 0. Let v(t) = AT, t € [0,1), be a

parameterized path with non-zero velocity. Then

<10(0) = VF60) 0

= Vi(A1-T) -+ (1)



12

= V(@) diag ((1-1)""") /(1)

=0 V ¢t€]0,1).

Thus f(y(t)) = 0, since f(0) = 0 and f is continuous, so f cannot be positive
definite. ]

Definition 2.8 The p-homogeneous unit (n — 1) sphere is defined as the set
Sk = {alo(z) = 1},

where p is a homogeneous norm.

Definition 2.9 The Euler vector field corresponding to a dilation Ay is defined as,

0
Xg(z) = 27‘13’115;3—

)

Thus the images of trajectories of the system & = Xg(z) are the A-homogeneous

rays obtained by scaling the points on the sphere SZ'I with the dilation.

2.1.3 Stability definitions

The fundamental definitions of stability are reviewed below. They are contrasted
to a slightly modified definition of exponential stability. The point z = 0 is taken
to be an equilibrium point of the differential equation & = X (¢,z). The trajectory

of this differential equation passing through (¢9,z) is denoted (¢, tg, zo).

Definition 2.10 The equilibrium point z = 0 is uniformly stable if for all € > 0
there exists a 6 > 0, which may be chosen independent of ¢y, such that ||z <

e = ||¥(t, to,z0)|| < § for all t > tg.

Definition 2.11 The equilibrium point z = 0 is uniformly asymptotically stable if
it is uniformly stable and in addition for all €, > 0 there exists T' > 0, independent

of tg, such that on” <€ = |]1/)(t,t0,x0)]| <6 Vt>T +tg.
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The usual definition of exponential stability is recalled to contrast it with a modified

definition used in this dissertation.

Definition 2.12 The equilibrium point z = 0 is locally ezponentially stable if there
exist constants o, 8 > 0 and a neighborhood U of the origin such that the trajectories

of the system are bounded by
19(t; t0, z0)l2 < Bllaollze™ ") Wt > 19, Vag € U.

| - ll2 is the Euclidean norm.

The Euclidean norm is not crucial: || - |2 may be replaced by any other vector p-
norm. The concept of exponential stability of a vector field is now defined in the

context of a homogeneous norm. This definition was introduced by Kawski [20)].

Definition 2.13 The equilibrium point z = 0 is locally exzponentially stable with
respect to the homogeneous norm p(-) if there exist two constants «, 8 > 0 and a

neighborhood of the origin U such that
p((t,to, m0)) < Bp(we)e ) Vi > 1y, Vap € U.

This stability type is denoted p-ezponential stability to distinguish it from the prior

definition.

This notion of stability is important when considering vector fields which are ho-
mogeneous with respect to a dilation. The convergence of trajectories is naturally
studied using the corresponding homogeneous norm. This definition is not equiv-
alent to the usual definition of exponential stability except when the dilation is
the standard dilation (r; = 1). This is evident from the following bounds on the
Euclidean norm in terms of the smooth homogeneous norm (2.1) on the unit cube

C={z:|z;) <1l,9=1,...,n} (recall ¢ > 2 in Definition 2.1). The lower bound is,

pla) =Y o <> 2=z} zec
i

i
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— () < |l

An upper bound is computed to be,

p(e) = Yo"
i
> fo/rl forz € C
i

> M”.’Bug/rl where M = HnHlinl x:/n_
Il|ig= P

Both bounds yield,
I2(2) < |lolls < —=—p"t(z) zEC
P > |22 = M /CP T .
Hence, the solutions of a p-exponentially stable system also satisfy

-2-7.‘1
lzol* e~ rett=to), (2.2)

9, 20, )l <

Thus, each state may be bounded by a decaying exponential envelope except that
the size of the envelope does not scale linearly in the initial condition as in the
usual definition of exponential stability. Furthermore, p-exponential stability al-
lows for non-Lipschitz dependence on the initial conditions. To illustrate how this
non-Lipschitz dependence on the initial condition is often necessary, consider the

following two-dimensional system,

:1"/'1 = =1 +’)’ ‘J)Q’

i)g - —I3.

The equations are degree zero with respect to the dilation Ay(z) = (Az1, \2z9)

and, by computing explicit solutions, the system is p-exponentially stable with the

homogeneous norm p(z) = |z% +23|'/* i.e. ¢ = 4 in equation 2.1. In addition, it can
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be shown that there exist initial conditions arbitrarily close to the origin such that

sup a1(0)] = 2L fizo(0)]

The bound in equation (2.2) reflects this behavior since the exponent on the Eu-
clidean norm of the initial condition is 2r;/c = 1/2. It is in this sense that the

bound (2.2) is tight.

2.1.4 Properties of homogeneous degree zero vector fields.

Some useful facts concerning degree zero vector fields are reviewed in this section.
The notion of a symmetry of a vector field is first introduced. The differential of a

map f: M — N, where M and N are manifolds, is denoted f,.

Definition 2.14 Suppose the map f : R* — R” is a diffeomorphism. A vector field
X (t,z) is said to be invariant under f if £, X(t,z) = X (¢, f(z)) for all z € R*. f is
called a symmetry of X.

There is a more general definition which subsumes invariance as a special case.

Definition 2.15 Let X s and Xy be vector fields on smooth manifolds M and N,
respectively, with dimM > dim N. Suppose g : M — N is a smooth map. The
vector fields are said to be g-related if they satisfy

g Xy =Xnog.

A vector field which is invariant with respect to a one-parameter group of sym-
metries, denoted G, is often w-related to a vector field on the quotient manifold
N = M/G where 7 : M — N is the projection operator defined by identifying all
points in M which differ by an element of G. A homogeneous degree zero vector

field X (¢, z) is invariant with respect to the dilation,

(A)\)*X(t,.’t) = X(t, A)\.’E) A> 0.
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If we set M = R" \ {0} then the quotient space M/A) becomes the homogeneous
sphere S%! naturally embedded in R*. The projection operator m : R" \ {0} —

S7%1is given by

1= (- )

Explicit computations are carried out below to determine the components of the
induced vector field on S%™!. The vector field X (¢,z) may be written as X (t,z) =
>iai(t,)0/0z;, where a;(t, Ayz) = Aig;(t,z) since X is degree zero. The cor-
responding differential equation is #; = a;(¢,z),7 = 1,...,n. The induced vector
field, denoted X, is determined by differentiating the coordinate functions of the

projection operator,

d ( x; ) Z; Ti cfrp—1 1
— = — T — —ag(t, T
i\r@) S @ TR e )

) noo, c/rp—1
T; T3 T
= ai(t, Ayp)t) — == > — ( 5 ) ar(t, Ay p@)T)

(@) 2= \pe(2)
= ai(t, 7(2)) = mi(x) 3 (mp(@)) ™ Lap(t,w(z)), i=1,...,n
k=1'k

where m;(z) denotes the i*» component of 7. The vector field

X(t.y) = X alt, )00y

leaves the sphere S%™! invariant since the Lie derivative of the function g: St
R : g(y) = p(y) with respect to X is zero. Thus, X and X are w-related, i.e.,
mX (t,2) = X(t,7(x)). The flow of X may be computed by solving the set of
differential equations ¢; = a;(¢,y),7 = 1,...,n with initial conditions on SZ”I. The
solutions of the original vector field X are recovered from z;(t) = p"i(¢)y(t). Thus
the differential equation specifying p(t) is required. This equation is obtained by
differentiating p(z(t)) with respect to ,

n /e
d d e/rx
- . E 2.3



= p(2) 3 (i ()™ g (8, () (2.5)
k=1 Tk
= (Z iyZ/T’Howc(lt,y)) p(z). (2:6)
k=1 Tk

This scalar equation is linear in p with a time-varying coefficient which depends
only on the solution of the sphere equation ie. p = Q(¢,y)p, where Q(t,y) =
Yohe1 %yz/rk_lak(t,y). Thus p(t) may be computed by quadratures after y(¢) has
been determined. The usefulness of this reduction procedure for degree zero systems
lies not in solving the equations but rather the connection it makes between uniform

asymptotic stability and p-exponential stability.

Lemma 2.16 If X(t,z) is a homogeneous degree zero vector field, then local uni-
form asymptotic stability is equivalent to global exponential stability with respect to

the homogeneous norm p(x).

Proof: Hahn [14] deals with the case in which the dilation is the standard dilation.
His proof extends to the case with the nonstandard dilation. The key observation is
that uniform asymptotic stability implies that the integral of the coefficient in the

p equation (2.6) has the following bound
¢
| Qty®) < K- Kot —t0) KieRK; >0,
to

where K; and K> are independent of #y. This aspect of the proof is worked out in
detail in Hahn [14]. The bound implies that p — 0 exponentially. In other words,
z = 0 is p-exponentially stable.

Global stability follows from the fact that the equation is degree zero. Suppose

1); represents the i'® component of a solution (%, tg, zg). A trajectory scaled with
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A satisfies the original differential equation,

d d
— AT i\l L0, = A"t — i\l L0,
dt @b (t t() .’Bo) A dtw (t t() 330)

= A”ai(t,lp(t,to,wo)) 1= 1, sy T2

Since the initial condition of the scaled solution is Ajzo then (t,tg, Ayzg) =
Axtp(t, to, zo). Thus a trajectory with arbitrary initial condition has a “local” ana-

log which may be obtained via the dilation. [ ]
The following example illustrates these properties on a linear system.

Example 2.17 Consider the linear system & = Az, where A € R"*". This system
1s invariant with respect to the standard dilation Ayz = Az since (A)) Az = Mz =
Az = AA)z. A convenient homogeneous norm to use is the Euclidean norm || - |o.
Hence, the quotient manifold is the sphere ||z||2 = 1 embedded in R”. The projection
onto the sphere is 7 : R* — S~ ! y = n(z) = z/||z||2. The vector field defined on

the sphere is computed to be

y = Ay — (y, Ay)y, (2.7)

where (,) is the standard inner product on R". The corresponding equation for
p(z(t)) is p = (y, Ay)p. If v is an eigenvector of A corresponding to the eigenvalue o,
then the point & = n(v) € S""! is an equilibrium point of the sphere equations (2.7)

since
gy = A0 — (9, AD)0
=00 — o(0,0)0

= 0.

The p equation becomes p = op with solution

p(t) = exp(at)p(0)
= exp(at)p(v)

= exp(ot)[[v]|2-
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Reconstructing the full solution z(t) = p(t)y(t) where y(t) = v/||v||2 yields z(t) =
exp(ot)v which is, of course, the correct answer. Finally, Lemma 2.16 merely reaf-
firms the well known fact that uniform asymptotic stability and exponential stability

are equivalent for linear systems.

2.2 Homogeneous Approximations of Vector Fields

This section discusses nilpotent homogeneous approximations of sets of vector fields.

The vector fields are the input vector fields of the controllable driftless system,
& =Xi(2)ur + - + X (2) . (2.8)

The entire analysis is local so we assume that vector fields are defined on R*. Fur-
thermore, the vector fields are taken to be analytic. A brief review of Appendix A
may be helpful at this point to familiarize the reader with some terminology and
definitions. We are interested in obtaining an approximation, in the sense described
below, of the set of vector fields {X7,...,X,,}. The Lie bracket of vector fields is
).

Let £(X1,..., Xy,) be the Lie algebra generated by the set {X1,..., X,,}. Every

element of £ is a linear combination of repeated Lie brackets of the form,

]:X"rk’ [Xﬂ'k~13 [ o [Xﬂ27X7T1] e ]]]7

where X7, is in the set X;,..., X, and £ =0,1,2... [36].
For any algebra A, a countable family of subspaces F; is a filtration of A if

{(})=FRcrhc.. A=|F, F FiCFuy
7=0

The following definition specifies a special filtration of the Lie algebra of a finite set

of generating vector fields.

Definition 2.18 The control filtration, FX, of L(X1,. .., Xm) is a sequence of sub-
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spaces defined as,

Fo = {0},
F¥ = span{Xi,..., Xn},

Fst = span{X1,..., Xpm, [X1, Xa], -, [X1, Xa), .o, [ X1, Xim]},
(2.9)

F¥ = span{all products of i-tuples from {X1,..., X, },for i < k},

and fX = {ij}jZO-

From the characterization of elements of £ and the definition of the filtration it is
easy to see that

FrF = FF A
L=\JF",

i>0
so that FX is indeed a filtration.
The set of vector fields is approximated about a specific point, zg € R", which
is a desired equilibrium point here. Now let F;(zo) be the subspace of R® (more
precisely the tangent space, T;,R", of R" at z() spanned by Z(z) where Z € F/X.

This yields an increasing sequence of vector subspaces,
{0} = Fy(zo) C Fi(mo) C -+ C Fy(zp) C --- C R™.

This sequence must be stationary after some integer since it is assumed that the
Lie algebra has full rank at zp. In other words, since the system (2.8) is con-
trollable dim Fj(zg) = n for all k£ greater that some minimal integer N. Now we
count the growth in the dimension of the subspaces and set ny = dim Fy (zg),n2 =

dim Fa(zg),...,ny = n = dim Fx(zg). The following dilation is defined,
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Definition 2.19 The dilation adapted to the filtration (at the point zg) is the map,
o= (A", , AT T,),

where the scalings satisfy r; =1 for 1 <i <nj, r; =2 for ny +1 <14 < ny, etc.

Henceforth, in order to simplify the notation in the expressions to follow it is as-
sumed that o = 0. This is achieved with a translation of the origin of the coordinate

system.

Definition 2.20 The local coordinates adapted to the filtration FX (denoted by Y)
are related to the original coordinates (denoted by z) by the local analytic diffeo-

morphism derived from composing flows of vector fields from the filtration,

r=0(y) = Y o o---opl (0), (2.10)

where 9% (zo) = 9x (t,0,70) denotes the flow of the vector field X and,

i) X, € fJ-X for n;_1+1<14<ny,

i) dim{X,,,..., X, } =n.
A vector field written in a local coordinate system will explicitly show the depen-
dence, ie., X(z) is written in z-coordinates while X (y) is the same vector field

written in y-coordinates. The importance of the local coordinates adapted to FX

is explained by the following theorem,

Theorem 2.21 (Theorem 2.1, [18]) Let £ be a Lie algebra of vector fields on R™
and F = {F;};>0 an increasing filtration of L at zero with Ay the dilation adapted
to F and y the local coordinates adapted to F. Then if X € F,

Xy)=X'+X )+ X2@) +--,

where X7(y) is a vector field homogeneous of degree j with respect to Al
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In other words, if X (y) € F; is expanded in terms of vector fields which are homoge-
neous with respect to Ay, X(y) = 3275 X7 (y), then X" (y) = --- = X*1(y) =0
and the “leading order” vector field, X'(y), is degree | with respect to Ay. This
leading order vector field is termed the F-approzimation of X € F; in the F-adapted
coordinates. An important property of the F-approximation is given by the follow-

ing proposition,

Proposition 2.22 (Corollary 2.2.1, [18]) Let F = {.’F]X} be the control filtration
of L(X1,...,Xm) and {ff}jzo be the equivalently defined filtration of L(Y1,...,Y)
where Y; is the F-approzimation of X;,i = 1,...,m. Furthermore, let FlX and Fly

be the corresponding increasing sequence of vector subspaces of R*. Then,
FX(0)=F"(0), 1=0,1,....

Remark 2.23 Some readers may find it irksome that the approximation process
relies on a special local coordinate system. In other words, the approximation
described above does not seem to have a coordinate free representation. This, how-
ever, is not the case. Bellaiche et al. [1] have defined the notion of local order
which they use to give the approximation a more intrinsic meaning. Their approx-
imation coincides with the F-approximation when the vector fields are written in
local coordinates adapted to F. In addition, the F-approximation of the generating
set are homogeneous degree one vector fields and generate a nilpotent Lie algebra

themselves [18, Proposition 2.3]. Nilpotency is a coordinate free property.

When implementing a feedback law the equations must be written is some coordinate
system. Coordinates adapted to F are chosen in this thesis since the homogeneous
nature of the F-approximation are exploited. A simple example may help to clarify

some of these points.

Example 2.24 Consider the two vector fields on R? given by,

X1(z) = 0/0z1 + 0/ 0z



23

Xo(z) = (a + 21)0/0z3 + (ab+ aza + bxy + 7122)0/ O3,

An homogeneous approximation of {X;, X5} around z = 0 is desired for various
values of @ and b. For a # 0 the dimension of F; is 2. The Lie bracket of X; and
Xy at z = 0 evaluates to be [X7, X2](0) = —0/0z2 — (a + b)0/0x3 so dim Fy = 3.
The dilation scaling powers are r; = r9 = 1 and 73 = 2. The coordinates adapted
to F may be computed using the formula in equation (2.10), however the linear

transformation z = A,y with

1 0 0
Al - 1 a 0 ’
0 ab 1

suffices in placing X; and X5 into suitable coordinates since,

X1(y) = 8/0yx

Xo(y) = (1 +y1/a)0/0y2 + (ay1 + a®y2 + 43 + aYiy2)d/dys.

Thus the F-approximation of these vector fields is,

Yi(y) = 8/0y

Ya(y) = 8/0yz + (ay1 + a’y2)9/dys.

These vector fields are homogeneous degree one (since X1, X € F{¥) with respect
to the dilation Ay = (Ay1, Ays, A%y3). The terms which are truncated from X, (y)
and Xs(y) are higher order with respect to this dilation.

When a = 0 and X2(0) = 0, more brackets are required since the dimensions of
F1 and F3 drop to 1 and 2 respectively. In particular [X;,[X], X3]](0) = 20/0z3
suffices since the set {X;(0),[X1, X2](0),[X1,[X1,X2]](0)} is linearly independent.
In this case n; = 1, ny = 2 and n3 = 3 so the new dilation scaling powers are r; = 1,

ro = 2 and r3 = 3. The F-adapted local coordinates may be used to calculate the
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linear mapping = = Asy where,

1 0 0
Ar=11 -1 0 |,
0 —b 2

which places X and X5 into the form,

X1(y) = 9/0n

1
Xo(y) = 110/0y2 + 51/1(2/1 — y2)0/0ys.

The F-approximation are the vector fields,

Yi(y) = 0/0n

1
Ya(y) = y10/y2 + 5.@%3/ dys.

Both of these vector fields are homogeneous degree one with respect to the new
dilation. To conclude this example, the filtration, dilation and F-approximation
may change from point to point, however the approximation is always defined at a

particular point if the Lie algebra has full rank there.

2.3 Lyapunov Functions for Homogeneous Degree Zero

Vector Fields

This section reviews converse Lyapunov stability theory for homogeneous systems
and gives an extension for degree zero periodic vector fields. These results are
important since the feedbacks derived in this dissertation exponentially stabilize
an approximation of the driftless system and the higher order (with respect to a
dilation) terms neglected in the approximation process are shown to not locally
change the stability of the system. The main theorem by Rosier in [39] states that
given an autonomous continuous homogeneous (with respect to some dilation Ay)

vector field £ = f(z) with asymptotically stable equilibrium point z = 0, there exists
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a Aj-homogeneous Lyapunov function smooth on R \ {0} and differentiable as
many times as desired at the origin. Rosier defines the new homogeneous Lyapunov

function as

I Wlﬁ(f oV)(h"zy,...,hmzp)dh if =z € R\ {0},
0 if =0,

V(z) = (2.11)

where V(z) is a smooth Lyapunov function whose existence is guaranteed by the

converse theorems in Kurzweil [22] and f : R — R is a smooth function satisfying

;= 0 on (—o0,1],

1 on [2,00),

with f’ > 0. The integer k > 0 controls the degree of differentiability of V'(z) at the
origin.

Rosier’s converse theorem extends to the class of continuous, time-periodic, ho-
mogeneous degree zero systems, £ = X (¢, z), with asymptotically stable equilibrium
point z = 0. This fact is stated as a proposition. In coordinates X is written as

X(t,z) =3 ai(t,z)0/0x;.

Theorem 2.25 (extension of [39]) Suppose the differential equation & = X (t,z)

satisfies the following properties,
i) X is continuous in t and z,
it) X(¢,0) =0 Vi,
i) X(t+T,z) = X(t,z) Vz,
i) X is homogeneous degree zero (in x) with respect to the dilation
Ay = (A"zg, ..., ATmxy,),
v) the solution z(t) = 0 is asymptotically stable.

Let p be a positive integer and k a real number larger than p - maxr;. Then there

exists a function V : R x R* — R such that,

a) V(t,z) is smooth for z € R* \ {0}, and CP at z =0,
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b) V(t,0) =0, V(t,z) >0z #0
¢) V is degree k with respect to Ay i.e. V(t, Ayz) = NV (¢, 7),
d) V(t+T,z) = V(t,z) Vo and smooth with respect to t,

e) &(t,z) = 9 (t,2) + VV(t,z) - X(t,x) < 0¥z #£0.

Proof: The Lyapunov function V is constructed from a smooth Lyapunov function
V(t,z) which has the property that dV/d¢t < 0 for all z # 0 and V(t+T,z) =
(t,z) Yz [22]. The construction of V is given by equation (2.11) with V(z) replaced
by V(t,z). The proof of properties (a) to (c) are identical to the proofs in [39].
The periodicity of V with respect to ¢ is easily verified from the definition. The
j* partial of V with respect to ¢ for z # 0 may be computed explicitly from the
definition by differentiating under the integral sign. The important fact to note is
that the integrand is a sum of products between 9, i=1,... ,k and 8iV/6:Ui,i =
1,...,k where f® ig the i*" derivative of f. Since the derivatives of f have compact
support then the integral is well defined. Smoothness follows since every term in
the integrand is smooth. Finally the derivative of V along solutions of X is,
dv ov

n a—
FCURS U WACU RS

% ] - oV
= [ Ve A S A

e ov
+Z:1/O thf'(V(tyﬁth))ai(taw)‘a;(t,Ahw)dh (2.12)

)

— [T v )
v & ov

i=1

The integrand is nonpositive since V (t,z) is a Lyapunov function for & = X (¢, z).

Thus, the time derivative of V (¢, ) is negative for all ¢,z # 0. [

It is tempting to believe that this converse theorem holds for any continuous,
time-periodic, homogeneous degree 7 > 0 vector field instead of the 7 = 0 case which

is studied here. However, as demonstrated above this construction is guaranteed to
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yield a Lyapunov function for & = X (¢, z) only when it is homogeneous degree zero.
To see this, suppose X (,z) is degree 7 > 0. The total time derivative of V (¢, x)

along nonzero trajectories of & = X (¢, ) is,

n

dv © 1. v 1 ov
‘Cg(t,m) =/0 syl (V(t, Apz)) [_at_ + F; (f—(-ﬁ)] (t, Apz)dh.(2.13)

The sign definiteness of 9V /3t and ¥, f;0V /Ox; as separate entities is not known
and when 7 # 0 the terms in the integrand of (2.13) are weighted by different
amounts due to the presence of the 1/h7 factor. Thus, even though V(z,t) is
positive definite for any 7 > 0, the sign definiteness of its total time derivative is
not known in the 7 # 0 case. An example illustrating the failure of this construction

in the case 7 # 0 is reviewed below.

Example 2.26 The scalar system
= (—a+cost)z® a>1, (2.14)

is globally uniformly asymptotically stable. The vector field defined by equa-
tion (2.14) is also homogeneous degree —2 with respect to the standard dilation.
Any autonomous positive definite function on R is a Lyapunov function for this
system, however to demonstrate the precise failure of the algorithm a time-periodic
Lyapunov function is required. This Lyapunov function is constructed in the stan-
dard manner: integrate a positive definite function along solutions of (2.14) with
the initial condition and starting time as parameters. These calculations are carried
out explicitly below. The general solution of (2.14), denoted (¢, to, zp), is given by

the formula

To

\/(2a(t — to) — 2sint + 2sinto)ad + 1

’l,/)(t, to, ZEO) =
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Define the following function

Vibz) = /t it ) (2.15)
_— ,/t ((2a(r —t) — 2sin7 + 2sint)z? + I)QdT (2.16)
4

T

ds. (2.17)

o0
B /0 ((2as — 2sin(s + t) + 2sint)2? + 1)2
The 4" power is used in the integrand to ensure convergence. It is easily ver-
ified that this function is positive definite and 2m-periodic with total derivative
dV/dt = —z*. Hence equation (2.17) defines a Lyapunov function for the system in
equation (2.14). The partial derivatives of V are required for the analysis to follow

and are given by,

/00 —235%(—2cos(s +t) + 2cos t) d
promes S’
0 ((2as — 2sin(s + t) + 2sint)z? + 1)°
0 4333
/ (2.18)
0 | ((2as — 2sin(s + t) + 2sint)2? + 1)*

425 (2as — 2sin(s + t) + 2sint)
((2as — 2sin(s + t) + 2sint)z2 + 1)°

V' is clearly not homogeneous. In order to “homogenize” V', Rosier’s algorithm is
applied. This requires picking a smooth function f : R — R so that the new positive
definite homogeneous function, denoted V (¢, ), may be defined by the expression

given in equation (2.11). The candidate

0 t € (—o0,1]
f@)=9 t-1 te1,2 (2.19)
1 t€[2,00)

is not smooth at the points ¢ = 1,2. However it is possible to smooth f in a
neighborhood of these points so that function given by (2.11) with the “smoothed”
[ approximates arbitrarily closely (2.11) defined with (2.19). Thus for computations

we may use (2.19) instead of a smoothed version. The newly constructed function
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V is positive definite and homogeneous. The partial derivatives are

ov ov
(t,z) —— f'(V(t,hz)) - —(t, hx)dh
at / hk+1 ot (2.20)

V ) / hkf hz)) - %%(t,hx)dh.

As in the computation of V, the partials in these equations may be approximated
as closely as desired since f is modified on a set of arbitrarily small measure and is
smooth as required there. Since V is positive definite and nondecreasing for every
fixed t the set {x € R: V(t,z) = 1} consists of two points z, and z; for every ¢.
Furthermore, V' is symmetric so |z, = |zp|. Define [(t) as the magnitude of the
points which solve V(t,z) = 1 for every ¢t € [0,27). Similarly, define u(t) as the
magnitude of points which solve V (t,z) = 2 for ¢t € [0,27). The expressions for the

partial derivatives of V reduce to

v )%

o (h) = I R Bt

u(t) 1 9V 2.21
= fﬂflk /l(t) Sk+1 gt —(t,8)ds ( )

——(t, hz)dh

_ o1 (U0 10V (2.22)
— sgn(z)|z[! /l( =97 (4 5)ds
= sgn(z)|z|* " Q2(2)

where we have used the fact that OV/0t(t, —z) = 0V/0t(t,z) and OV/dz(t, —x) =
—0V/0z(t,z). The integrals in (2.21) and (2.22) are merely 27-periodic functions
of time, denoted by @1 and Q2. Since 8V /dz(t, )% is order k + 2 then for some
neighborhood of the origin the term OV /0t(t,z) = |z|*Q,(t) dominates the total
derivative dV /dt. Thus, the sign of Q; determines the sign of the derivative of V
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t mod 27

Figure 2.1. 27-periodic coefficient in %.

along trajectories of (2.14). @Q(¢) is computed numerically from the expressions
in equations (2.21) and (2.18). The results are shown in Figure 2.1. a = 1.1 in
this example. Note that Q; changes sign so that dV /dt is not sign definite at the
origin. Thus, even though V is a positive definite homogeneous function it is not a

Lyapunov function of the system (2.14).

The most important case for the analysis in this thesis is the converse Lyapunov
theorem for degree zero systems.
An important theorem concerning the stability of perturbed degree zero vector

fields wraps up this section.

Proposition 2.27 Let z = 0 be an asymptotically stable equilibrium point of the
T-periodic continuous homogeneous degree zero vector field & = X (t,z). Consider

the perturbed system

& = X(t,2) + R(t, z). (2.23)
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Assume each component of R(t,z) may be uniformly bounded by,
Ri(t,2)| < mp™ (@) i=1,...,n, zEU,

where U s an open neighborhood of the origin and p(-) is a homogeneous norm com-
patible with the dilation that leaves the unperturbed equation invariant. Then z = 0

remains a locally exponentially stable equilibrium of the perturbed equation (2.23).

Proof: By Theorem 2.25, there exists a positive definite, decrescent, T-periodic in
t, continuous homogeneous degree [ > 0 function which is smooth on R" \ {0} with

a negative definite derivative along trajectories of the unperturbed equation,

dv ov - ov

Note that dV/dt is homogeneous degree . Setting

dv
M = _av
te[O,’JI“r)l,lpl%m):l dt (‘1‘7 ) > 0,
we obtain,
P
?;‘ti < —Mpl(z) Vi #0.

Evaluating V along trajectories of the perturbed equation (2.23),

v
5‘3;(3% t)

% < =Mp )+ > |Ri(z, 1)
(2.23) i=1

< —MpH(x) + nmmp™ ) Vt, Va,

where the bound |8V /0z;| < mp!~"i(z) is derived from the fact that homogeneous
degree p functions, continuous on R” \ {0}, may be majorized by the homogeneous
norm raised to the power p. V has the bounds ap!(z) < V(t,2) < Bp'(z) for some
a, 8 > 0. Choose ¢ > 0 such that

~Me + nmmc TV < 0,
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and define,
U = {z|pl(z) < c}.

Thus for z € U, ¢t € [0,T), V is decreasing along trajectories of (2.23). Start with
zo € {z]p'(z) < Fct C U. The solution 4(t, tp, 7o) will remain in U on some interval

t € [to, s] with s > 0. During this interval,

IN
<l

RQRImRI=RIm

pl(d)(tat()ax())) (ta¢(t,t0,$0))

< =V (o, z0)

IA
8

(=]

~—

P

IA
o

However this implies that the solution remains in U for all ¢ > t4. Since the function

—Mz+nmmz' 1! is majorized by (—M +nimimc!/!)z for z € [0, ¢] then the following

bound holds for all ¢ > ¢y and for all z € U,
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Chapter 3

Analysis Results for Homogeneous Systems

This chapter presents analysis results which are useful for establishing some proper-
ties of the closed-loop systems derived in Chapter 4. The feedbacks in this thesis are
not Lipschitz functions. Hence, existence but not uniqueness of the system solutions
is guaranteed. However, conditions on the feedbacks are given which are sufficient
to ensure unigqueness.

An averaging result for time-periodic homogeneous degree zero differential equa-
tions is proven. The motivation for this theorem comes from the synthesis approach
which uses perturbation arguments to derive exponential stabilizers for driftless sys-
tems. For example, a small parameter is introduced into the feedbacks which allows
the designer to approximate the system solutions. A set of differential equations of
lower dimension is obtained with the parameter as a scale factor multiplying the
vector field. This new set of equations is not Lipschitz but is still homogeneous.
Since the equations exhibit explicit time dependence, they may be averaged to ob-
tain a “simpler” system. The averaging theorem is applied to conclude asymptotic
stability of the original system given asymptotic stability of the averaged system for
sufficiently small parameter values.

The synthesis approaches in this thesis rely on Lyapunov analysis rather than
approximated solutions of the closed-loop equations so the averaging result is not
applied in latter chapters. However it is included because it is a general result for

degree zero systems.
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3.1 Uniqueness of Solutions

Uniqueness of solutions of ordinary differential equations is an important property
for a mathematical model of any physical process. Uniqueness of solutions gives a
precise mathematical interpretation of the physical concept of determinism. The
models of the driftless systems considered in this thesis are analytic so the only pos-
sible way for nonunique solutions to arise occurs when the control designer specifies
feedback functions which do not have sufficient regularity to guarantee uniqueness
in the closed-loop model. Of course, the physical system implemented with these
feedbacks will exhibit deterministic behavior. Thus, the problem is with the mathe-
matical model and its capacity to predict the future behavior of the physical system.

Virtually the only way to analyze the performance of nonlinear control systems
is through extensive simulation. The simulations require a mathematical model of
the physical process. A numerical simulation of a model with nonunique solutions
exhibits discontinuous dependence with respect to initial conditions on any finite
time interval. Thus, the numerical simulation may not give a good indication of
physical system response.

Homogeneous degree zero systems are of primary interest to us. An example of
a degree zero closed-loop driftless system with nonunique solutions is given below
but first the mazimal and the minimal solutions of a scalar differential equation are

recalled.

Definition 3.1 Consider the scaler differential equation §y = f(¢,y) where f is
continuous in [t — a| < T, |y — ¢| < K. Then there exists a mazimal and a minimal
solution yas(t) and y,(t) such that v, () < y(t) < yar(t) for any other solution y(t)
such that y(a) = ym(a) = ym(a) [2].

Example 3.2 Consider the three state driftless system
.’i71 = U1

ii23 = ToUj.-
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This system is the prototype driftless control system which will be used in numerous

examples throughout the thesis. An asymptotically stabilizing feedback is,

Ul = —T1 + /T3C08E

ug = —xg + 4/|z3|sint,

where /- is the “signed” square root,

Vi t>0
Vi=< 0 t=0 .

/] t<o

The closed-loop system is homogeneous degree zero with respect to the dilation with
the scalings r = (1,1,2). The system may be rigorously shown to be p-exponential
stable. The feedbacks are continuous but not Lipschitz and it is shown below that
there are solutions which are not unique. First consider the following differential

equation,

¥ = au(t) + a2(t) /v, (3.3)

where «;,1 = 1,2 are continuous functions. There are two cases to consider,

i) Assume «;(0) > 0 and a2(0) > 0. Then there exists some ¢ > 0 and T > 0
such that as(t) > c for t € I = [0,T]. The function c/y is a lower bound for
the right hand side of equation (3.3) for ¢ € I and y > 0. Thus the maximal
solution of (3.3) with y7(0) = 0 is an upper bound for all solutions of & = cy/z
with 2(0) = 0 for ¢ € I [2, Chapter 6]. Since z(t) = %(ct)2 is one solution then
ym(t) = z(ct)?.

ii) Now assume «;(0) < 0 with the same assumptions and bounds for ay. The
function c/y is an upper bound for the right hand side of equation (3.3). Thus
the minimal solution of (3.3) with y,,(0) is a lower bound for all solutions of
& = /T with £(0) = 0 50 Y (t) < —1(ct)? for t € I.

To illustrate nonuniqueness of solutions of the original system (3.1) with feed-
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back (3.2) consider the initial conditions z1(0) = 0,22(0) > 0 and z3(0) = 0. Let
(71(0),z2(t), z3(t)) be a solution with these initial conditions. Regardless of the be-
havior of z1(t) and z3(t), the equation for z3, i.e., &3 = z2(—21 + /T3 cost), may be
viewed as the system (3.3) and falls into either case i) or ii). Hence, there must exist
at least one solution of the system that satisfies z3(t) > }(ct)? or z3(t) < —1(ct)?
for some time interval and some ¢ depending on z2(0). However, another solution
with the same initial condition is (z1(t) = 0, z2(t) = 22(0) exp(—t), z3(t) = 0) (this
may be verified by direct substitution into the closed-loop equations).

Numerical simulations demonstrating the nonunique behavior are shown in Fig-
ure 3.2. The difference in initial conditions in these two simulations is 2¢729. The
solutions do not approach one another even as the minute difference in initial condi-
tions is further decreased. Thus, the solutions do not exhibit continuous dependence

on the initial conditions.

This situation is to be avoided and we would like to specify conditions on the
vector field which guarantees uniqueness. A homogeneous vector field is completely
specified by the values assumed on the set {z : p(z) = 1} so any smoothness imposed
on the vector field here is automatically extended to R™ \ {0} via the dilation. In
order to avoid the uniqueness problems demonstrated above we may assume the
vector field to be locally Lipschitz on R* \ {0}, i.e., for every z € R" \ {0} there
exists a neighborhood of z and some 0 < L < oo such that the vector field satisfies
| X(t,y) — X(¢,2)|| < Lly— 2| for all y and z in this neighborhood. This does not
imply that the vector field is Lipschitz in any neighborhood of the origin. This is

stated in the following lemma for degree zero vector fields.

Lemma 3.3 Let X(t,z) be a continuous homogeneous degree zero vector field, Lip-
schitz on R™ \ {0}, with the dilation scalings ri =1 < --- <r,. The vector field is

not Lipschitz in any neighborhood of the origin if r; > 1 for some 1.

Proof: A vector field is Lipschitz if each component is Lipschitz. Denote the first
component as a(t, ). The function a is continuous and homogeneous degree one.

Choose g € R™ \ {0} and suppose a has Lipschitz constant L in some neighborhood
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Figure 3.1. Nonunique solutions.
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of z = (z1,...,2,). Define the upper right Dini derivative [30],

D;}-a(m) — limsup a’(mh cee axi—lyh + Tiy Titl, - - - 73771) - a(:c)
h—0+ h

Assume that D} a(z) = ¢ # 0. Note that |¢| < L by virtue of the Lipschitz bound.

Furthermore,

D a(Ajz)
_ Jimsup AN wy, . AT g R AT, N ATy — a(An)
h—0t h

= limSUP Al—ri a(xlv <oy Ti—1, h/)‘n + Ty, Tigd,y - ,.’En) - a’(x)
h—0+ h/)‘”

= AT,

If ; > 1 then limy o |D; a(Axz0)| — oo. Hence, a cannot be Lipschitz in any

neighborhood of zero. ]

Hence even with the assumption that the vector field is Lipschitz on R \ {0} it
is not necessarily Lipschitz at zero. It is still possible to conclude uniqueness of

solutions in this case though. This is proven in the next lemma.

Lemma 3.4 Suppose X (t,z) : RxR™ — R™ is an homogeneous vector field in x of
order 0 with respect to a given dilation Ay, uniformly bounded with respect to t and
z = 0 an isolated equilibrium point. Furthermore suppose that X is locally Lipschitz

everywhere except x = 0, where it is continuous. Then the flow of X is unique.

Proof: The point = 0 is the only point where uniqueness may fail since X is not
necessarily Lipschitz there. However no solution through a point p # 0 can reach
the origin in finite time because this implies that p(1(¢,t9,p) — 0 in finite time.
This is not possible since the equation describing the evolution of p is p = Q(¢,y)p,
where () is a continuous function of y and uniformly bounded in ¢. The point y

evolves on a compact set so the there always exists a bound

M = sup|Q(t, y)|.
(t.y)
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The following inequalities on p hold as a result of the bound on Q,
ere” MU0 < pla(t — 1)) < cpe™ ),

where the ¢;’s are positive constants. Similarly a solution cannot leave the origin in
finite time. If this were possible then the time reversed vector field (which has the
same bounds on p(z(t — ¢o)) as its forward time counter part) has a solution which
reaches the origin in finite time. This contradicts the above result. Thus solutions

cannot leave or reach the origin in finite time. |

3.2 Averaging Results

In this section we present an averaging result which will be useful for analyzing the
closed-loop equations. First we introduce the class of systems of interest. Consider

the differential equation
T =eX(t,z,¢€), (3.4)

where X is a continuous map from R* x R” x [0,€) into R, T-periodic with respect
to t and X(¢,0,¢) = 0 for all ¢ in (—oo,00). Time is rescaled so that the period
is always 2m. We further restrict our attention to a class of homogeneous degree
zero vector fields (with respect to the dilation Ay = (A"zy, A"229,..., An2,)). A
solution of (3.4) through the point zo at time ¢y is denoted (¢, g, zo).

In the averaging theorem we will infer stability (instability) of the zero solution
of equation (3.4) from stability (instability) of the zero solution of the averaged

system,
i = eXo(x), (3.5)
where

Xo(z) = lim % /0 " Xtz 0)dt. (3.6)

T—r00
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The vector field in (3.4) is 27m-periodic in ¢ so the average in (3.6) is equivalent to

1 2w
Xo() = 5= [ X(t,@,0)dt.

Note that Xg is homogeneous of order zero with respect to the dilation Ay. Before
the averaging result is stated we prove a lemma.
Define the one-parameter family of diffeomorphisms on the extended phase space

of equation (3.4) which leave it invariant,

Ty : S xR = ST x R”

(t,z) = (£, Ax(z)) A > 0.

We also define three nested homogeneous balls in the extend phase space
B, ={(t,z) € ' xR*|p(z) < i} i=1,2,3,

where ¢; > cp > ¢3 > 0 and p is a homogeneous norm compatible with A .

Lemma 3.5 (Scaling Lemma). For time periodic homogeneous order zero vector

fields (3.4) and given the B, ’s defined above, suppose we know the following facts,

1. (to,xo) € Be, implies (t,4(t,ty,20)) € B, for all t > 1y,

2. there exists a T > 0 such that (to, o) € Be, implies (¢,1(t,t0,20)) € Be,
for allt > T,

3. the trajectories of the system (3.4) are unique.
Then the zero solution of (3.4) is asymptotically stable.

Proof: We first prove stability. Start the system (3.4) with initial conditions in
Be,. Then (t,9(t,to,z0)) € B, for all t > tg. In other words, p(xy) < co implies
p((t,to,z0)) < 1 for all ¢ > ¢p. This condition may be extend to any neighbor-

hood using the mapping Ay. Suppose the bound p(¥(t,19,20)) < e; for all t >t
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homogeneous ray

48

Y

Figure 3.2. Homogeneous balls used in proof: use the dilation to
map 2 to z1 thus extending the trajectory starting at z;.

is desired, then restrict p(zo) < e1 2. This is demonstrated below,

Pt t0,70)) = p (B(t:t0, Ac, jor (Acy e (20))))
= (Acr/er (B(t:10, (Aey e, (20)))) )
oWt At (20)))

. C1 C1 C2
<ep since p(Ac, /e, (20)) = —p(x0) < — €1 = co.
(4] €1 C1
This is stability of the zero solution. See Figure 3.2 for a picture.
To demonstrate asymptotic stability we proceed in a similar manner. Define the

annulus,

Ay = B, \ Be,.

We know that solutions with initial conditions in As enter B, in finite time T and
remain there. Since the differential equation is invariant under ¥ then we may
map the annulus As to another annulus that sits inside As and shares a common
boundary. This way solutions starting in As are extended into the new annulus
(because of the invariance) and can only remain in the new annulus for a finite
time. Since the system trajectories are unique then the extended trajectory must

be the continuation of the initial trajectory.
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Define the sequence of nested annuli,
Ai =V e, (Aio1), 1=23,4,....

Note that the outer boundary of A;, denoted 9°A;, is the inner boundary of A;_;,

denoted 0" A;_,, because,

aoAi - \1103/02 (80Ai—1)
— ) 0
pra W(CS/CZ)'L—Q(@ AQ)
= \I/(CB/CZ)i—B (\1’03/@ (BDAQ))

= U ey-s (042

= 8iAi~1.

The properties of solutions with initial conditions in A are shared by the other
annuli. Hence, an initial condition in A; must enter A;,; in time T. Extending this

to the larger annulus defined by

Yy = U A;, N>2
i=2,..,N
implies that solutions with initial conditions here will enter the set Ay in a time
no less that N7 and can never reenter ¥y. Thus we pick A = ¢y and for e > 0
~ — m
choose t = mT where m satisfies (%) < €. This is equivalent to asymptotic

stability. |

Remark 3.6 This lemma actually demonstrates ezponential stability of the zero
solution because the time taken to leave any given annulus is independent of the
“size” of the annulus (this is a result of the vector field having degree zero with
respect to the dilation Ay). At time ¢ > mT any solution may be bounded by a
homogeneous ball with size proportional to (%;)m Hence, this bound plus stability
of the solutions may be recast as an exponential stability result with respect to the

homogeneous norm p.
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Theorem 3.7 Assume that the solutions of the equation (3.4) are unique. Suppose
y = 0 is an asymptotically stable fized point of the associated averaged system y =
eXo(y). Then for e > 0 sufficiently small, the solution T = 0 is exponentially stable
for the full equations (3.4).

This result is already well known for C'* vector fields where 2 = 0 is a hyperbolic fixed
point. Proving the theorem when the vector field is differentiable is straightforward
since the standard averaging change of coordinates places the vector field into a
form where the time-varying part is bounded with an arbitrarily small Lipschitz
constant (by making e sufficiently small). Hence, if z = 0 is a hyperbolic fixed point
of Xy then the stability of the full system is determined by the stability of X, for
e sufficiently small. Unfortunately this proof does not extend to our case since the
averaging change of coordinates tends to “mix” the new coordinates so that the
transformed vector field is no longer homogeneous. However we may get a total
stability result in the new coordinates which will imply certain strong behavior of
the solutions of the original homogeneous system. The idea of the proof uses the
fact that in the new coordinates we may choose € small enough so that we may
make a ball about the origin attractive and invariant. Mapping this ball back to
the original coordinates implies the same for solutions of equation (3.4). Now we
may use the homogeneity of the vector field to extend the solutions to an arbitrarily

small attractive neighborhood of the origin. The details are now presented.

Proof: We first recall the usual averaging results. The reader is referred to Hale [15]
(Lemma V3.1, Lemma V3.2 and Lemma 5 of the appendix). For any compact
set € in R™ there exists an ¢y and a function u(t,z,€) such that the averaging

transformation,

z=y+eult,y,€) (Ly,e) € RxQx[0,¢6), (3.8)

applied to (3.4) yields the equation

y= 6f0(y) + 6F(t7y7€)? (39)
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where X is the averaged vector field as defined above. F(t,y,¢) is continuous for
(t,y,€) € R x Q x [0,¢p) and F(t,y,0) = 0. The function u possesses the following

properties on R x € x [0, €g):

1. u(t,z,¢€) is periodic with period 27 (same period as the vector field),

2. has continuous derivatives with respect to ¢ and derivatives of an arbitrary

specified order with respect to x.

3. eu and 6% approach 0 as € — 0 uniformly in ¢t € R* and y € Q.

The solution y = 0 of (3.5) is asymptotically stable so there exists a Lyapunov
function V : R* — R with the following properties [22],

1. V is as smooth,
2. V(0) =0,V (y) >0 for all y # 0, and V is radially unbounded,

3. VV - fo(y) <0 for all z # 0.

Consider the compact sets defined by
Dy ={yeR"\V(y) <a} a>0.
The boundaries of these sets are denoted dD,. Given D, define constants

o - ma; = in .
0D, yeagap(y) Ip, ygéDap(y)

Choose c¢; > 0 such that D, C Q. Now find ¢z, and corresponding D,,, such
that op,, < g D, /2. This may always be done because V is positive definite and

continuous. Evaluating V' along solutions of the transformed vector field (3.9) yields

% =eVV - X0($) +eVV - F(t,y,e).

On the compact set D¢, \ D, calculate

= min -—-VV- ,
B e2n, fo(y)
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which is clearly greater than zero. We also define M () as

M(e) = VV - F(t,y,e€).
() yEDrg?geSll (t,y, €l

M (e) is continuous because F' is a continuous function of € and M(0) = 0 since
F(-,-,0) = 0. The averaging transformation will not, in general, respect the dilation
scaling. Hence the vector field F'(¢, z, €) will not be homogeneous. For example we
may be forced to bound F' with homogeneous functions of lower order than X, and
hence asymptotic stability cannot be concluded with this Lyapunov analysis. On
the annulus D, \ D, the time derivative of V is bounded by

s <e(=B+ M(e)).

Now choose € € (0,¢q) such that M(€) < g The choice of € renders D., and D,,
invariant. Trajectories through points in D., \ D, will reach D, in a finite time no

greater than
2(61 - 62)
e’

because V < —eB/2 on D, \ D.,. Choosing any ¢ € (0,€) does not change the

T=

invariance or attractive nature of the sets. The only modification in this case is
T. The functional relationship of T is exactly the one given above with € replaced
by the new €. In the y-coordinates we can’t say anything more about the stability
of the zero solution. However, we may map the D;’s back to the extended phase
space of (3.4) with the diffeomorphism (3.8). This will result in a warped version
of ' x D;’s. We would like to bound these warped sets with homogeneous balls
and apply the scaling lemma to conclude asymptotic stability. This is worked out
in detail below.

Recall the map z = y + eu(t, y, €) is at least a C'! diffeomorphism for (,y,¢€) €
StxQx [0,€p). As € — 0 this map approaches the identity. Since u is 27 periodic in

t it is useful to define the following diffeomorphism between S x Q and the extended
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phase space of the vector field in (3.4), S* x R”,

Qoe(t’ y) = (t,y + EU(t7y7 6))

Define the compact sets in S* x R”,

E, = (Pe(t7DC1) E., = ‘PE(tach)-

For fixed ¢, E.; — (t,D,;) as € = 0. The boundaries of E,, are denoted dE,,. As

for the sets D,, we define the quantities,

2 - max T a P mln ).
Ee; (t,x)€EDE, (z) “he; (t,x)EDE,, plz)
Note that
OF., 0D, Qg = 2D, (3.10)

as € — 0 since 9F,, — (t,0D,,) for each t € S'. It is possible for OB, > O, for
the choice of € made above (at different times of course). The relations in (3.10)
imply € may be further decreased to ensure OE., < 4R, Sinceog,, = 0p,, as € — 0
(recall 5p,, < a D,, /2 from the choice of ¢; and ¢p). Hence 0E., N OE,, = 0. Now
we may define homogeneous balls that are proper subsets of one another. Define

the homogeneous balls in S x R,

B

QECI

= {(t,z) € S' x R*|p(z) < gEq}
Bay, = {(t,2) € ' x B|p(s) < 7, }

Bz, ={(t,z) € S' xR*|p(z) <7g,, }.

The previous choice of € leads to the following inclusions,

ECZCB_ CB

IEc, Q_Ecl

- Ecl C BEEcl .
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Now we will say a few words about solutions with initial conditions in these sets.
E., is invariant under (3.4) because D,, is invariant under (3.9) and the diffeo-
morphism (3.8) takes D, into E.. Furthermore, solutions of (3.4) with initial
conditions in E,, will reach the set E., in no less than time T and remain thereafter
because these corresponding facts hold for D, and D,, and the (3.9) maps D,, to
E.,. Hence, solutions through points in B, pe, 3T€ constrained to remain in BEEq
and furthermore must enter BFECZ in finite time, T, and remain there. Now apply

Lemma 3.5 with B,, = Bz, , Be, = B, and B,, = Bz, to conclude asymp-
1 Ecq 2 a 3 Ecqy

Ecq

totic stability of the zero solution. |

Remark 3.8 The same arguments may be used to show that trajectories moving
from B3 to the outer boundary of By imply the origin is unstable. Furthermore
this theorem is only sufficient to guarantee p-exponential stability of the original

system. For example, the homogeneous degree zero (with respect to r = (1,1,2))

system
. z3
Z1 = e(—xz1 + —— cost)
p(z)
(-2 £ 5 sin)
T9 = e(—x9 % sint
p*(z)
. z3
&3 = e€xo(—x1 + —— cost)
p(z)
pla) = (21 +a3 + )",
is p-exponentially stable for the choice of “+” in &5 and unstable for the “—” case

even though the averaged system for both cases is stable (but not asymptotically

stable),
.’f)I = —€I]
.’i‘z = —€IL9
I3 = —€X1X9.

This is in contrast to the results for C? systems where local exponential stability of
the averaged system is necessary and sufficient for local exponential stability of the

original system for € sufficiently small.
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The following example illustrates the application of the averaging theorem.

Example 3.9 Consider the following ordinary differential equation

. 1 o 2

T —3%1 + - cos i

T ] = jﬁm oz) ‘ €> 0, (3.11)
T9 —531@—+:c%cost+:cgsmt

where p(z) = (2] + 23)1/*. This system is homogeneous with respect the dilation
Ax(z) = (Az1,A%z2), smooth on R™ \ {0}, 2m-periodic with respect to ¢ and not
Lipschitz in any neighborhood of the origin. Uniqueness of solutions follows from

Lemma 3.4. The averaged system is

1 1z
I —=T1 + 5
=e| 37, 27 (3.12)
. 1 z722
T9 —5—1—/)

A positive definite function and its derivative along solutions of the averaged system

are,
V= :z:‘l1 + :c%
dv 4 4 _xdry  2ial
-67{ - € <——3'.’131 + 2 — 72'— .

Since both functions are homogeneous with respect to Ay, each function is uniquely
determined by its values on the homogeneous sphere S}. A plot of dV/dt on S}
(parametrized by the angle 6 from the positive z; axis in a counterclockwise di-
rection) is shown in Figure 3.3 (e is taken to be 1 in this plot since it only scales
the value of dV/dt). dV/dt is negative semidefinite so asymptotic stability cannot
be concluded without further analysis. However we show below that the system
is asymptotically (and hence p-exponentially) stable by invoking LaSalle’s theorem.
The set in R* \ {0} at which dV/d¢ = 0 are the points where dV/dt = 0 on S} scaled
with the dilation for all A > 0. This set is invariant if the vector field is tangent to
this set. A necessary condition for this occurrence is that the inner product between
a tangent vector to this set and a normal vector to the vector field at this point be

zero. A tangent vector to the set where dV/dt = 0 is just the Euler homogeneous
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Figure 3.3. Lyapunov function derivative on S}.

vector field evaluated at the correct point: Xp = £,9/0z1 +2220/9z2. On the other
hand, a normal vector to the vector field at the point where dV/dt = 0 is merely
D.V. Since (Xg,D;V)(z) = 4V (z) then the vector field is always transverse to
the set where dV/dt = 0 for all z € R™ \ {0}. Hence the system is p-exponentially
stable. Thus we conclude that the original system is p-exponentially stable for €
sufficiently small. Figure 3.4 compares the solutions of the original and averaged
system for ¢ = 0.1. The simulation in Figure 3.5 verifies that the system (3.11) is

unstable for € = 1.
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Figure 3.5. System (3.11) is unstable for ¢ = 1.
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Chapter 4

Applications to Driftless Control Systems

The objective of this chapter is to apply the material introduced in the previous
chapters to produce algorithms that yield p-exponential stabilizers for the driftless

control system,
T =X1(CI})’U,1 +---+Xm(m)um. (4.1)

However, before discussing the algorithms, Section 4.1 shows that the rate of con-
vergence of an asymptotically stabilizing Lipschitz feedback cannot be bounded
by a decaying exponential envelope. The algorithms rely on a local homogeneous
approximation of the input vector fields. Section 4.2 applies the approximation pro-
cedure reviewed in Section 2.2 to driftless systems. The first algorithm discussed
in Section 4.3 is an extension of a result by Pomet [37]. The second algorithm
gives sufficient conditions for a smooth stabilizer to be modified to a p-exponential
stabilizer. Both algorithms yield functions which are homogeneous degree one with
respect to the dilation specified during the approximation process. The dilation
must have some scaling power greater than 1 since a least one level of Lie brackets
are required for controllability. The feedbacks are not Lipschitz at the origin in this
case. However, given the fact that Lipschitz feedback cannot exponentially stabilize
a driftless system it is remarkable that the non-Lipschtiz nature of the p-exponential
stabilizers is a result of requiring the functions to be degree one with respect to the

dilation. Choosing the feedbacks to be homogeneous is natural since it preserves
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the homogeneous structure of the approximation.

The chapter ends on a practical aspect of p-exponential stabilizer design. Many
driftless systems are based on kinematic models of mechanical systems. The control
inputs are velocities for these models. The velocities of mechanical systems cannot
be exactly specified since the control action is realized be the application of forces.
Section 4.4.2 proves that p-exponential stabilizers may be extended to systems with
actuator dynamics modeled by integrators. The extended controllers command
forces and still p-exponentially stabilize the system. This section also demonsrates
that filtering the state measurements do not destabilize the system if the filter

bandwidth is sufficiently high.

4.1 Limitations of Lipschitz Feedback

Before discussing various synthesis methods a result on the regularity of exponen-
tially stabilizing feedback functions is proven. In particular it is shown that feed-
backs which are Lipschitz in the state cannot exponentially stabilize, in the usual
sense, a controllable driftless system to a point. The following theorem is the main

result of this section.

Theorem 4.1 Suppose the input vector fields of the driftless system (4.1) are C!
and the feedbacks u;(t,z),i = 1,...,m, which are measurable in t and Lipschitz with
respect to x, asymptotically stabilize the point z = 0. Then there does not exist an

B >0 and o > 0 such that,

(2, to, 7o) 2 < Bllol2e= "),

This theorem states that in order to achieve exponential stability the feedback must
necessarily be non-Lipschitz.
Before proving Theorem 4.1, some results from nonsmooth analysis will be re-

viewed [6].
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Definition 4.2 The generalized Jacobian at x € R™ of a Lipschitz function F :
R* — R™ is defined as the set:

OF (z) = co {lim DF(z;)|z; = z,z; € Qp},

where Q0 is the set of measure zero where the standard Jacobian of F, DF, is not

defined.

In general, OF is a set valued map when F is Lipschitz but not C*. Set valued maps
are also called multifunctions. Some useful properties of OF are:

i) OF is upper semicontinuous and

ii) OF (z) is a convex compact subset of R™ for all z € R™.
Additional properties are given in [6].

When X (t,z) is measurable in ¢ and Lipschitz in z denote the flow of the cor-
responding differential equation £ = X (¢,z) as ¥(¢,7,z). If X is not C* in x then
there is no notion of the classical linearization about any solution. However us-
ing the definition of generalized Jacobian a natural extension of the linearization is

called a differential inclusion.

Definition 4.3 The linearization of X about the trajectory ¥(t, 7, z) is represented

by the differential inclusion

y(s) € 0, X (s,9(s,7,2))y(s), s€]|rt].

The right-hand side, 9, X (s,9(s,7,x)), is a set valued map which depends on the
parameter s and as a consequence there is a set of “solutions” of the differential
inclusion associated with any given trajectory (¢, 7, z) of the original system. The
solutions of the differential inclusion are defined in the following manner. A mea-
surable selection of 0,X (s,v(s,7,)) is a measurable function v : [7,t] - R" such
that v(s) € 9;X(s,¢(s,7,2)). The existence of such functions is guaranteed by

the hypothesis on X. Define ¢(¢,7) as the set of all linear matrix solutions to the
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system,

for some measurable selection y. The plenary hull of ¢(¢, 7), denoted R(t,7), is the

set
R(t,7) = {M|{v, Mw) < max[(v, Nw)|N € ¢(t,7)] Vo,w € R"}.  (4.2)

The utility of the preceding definitions becomes apparent in the following relation-

ship between the generalized Jacobian of the flow and the plenary hull,

Theorem 4.4 ([6],Theorem 7.4.1) The map F(z) = (t,7,x) is Lipschitz for
all t,7 and satisfies OF (x) C R(t, 7).

The idea behind the proof of Theorem 4.1 is as follows. If the flow 9 satisfies an ex-
ponential stability criterion then there exist elements in F that cannot be in R since
R has a special form for driftless systems with Lipschitz feedback. This contradicts

the statement of Theorem 4.4. Theorem 4.1 is proven using two propositions.

Proposition 4.5 For the system (4.1) with Lipschitz feedback, there exists a set of
coordinates such that all elements of R(t,7) about the solution z(t) = 0 have the

form,

* *
3 (4.3)

O(n—r)xr Iy
where O(n—p)xy 18 an (n—1) X1 matriz of zeros, and I,_, is an n—r identity matriz.

Proof: Define the matrix B € R**™,

B=1 X100 X200) ... Xn,(0) |,
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and r = rank(B) < m. The closed-loop system is denoted # = X (¢,z). We first

show that the generalized Jacobian of f(¢,z) with respect to z has the form,

8X(t,0) = BAU(t,0),

where OU (t,0) is the generalized Jacobian (with respect to z) of the control map

U(t,z) = (ui1(t,z),...,un(t,z)).

Define the C'* map,
G:R"xR" - R
(z,v) = X1(z)v1 + - + X (2)vm,
and the Lipschitz map with parameter ¢,
B R*" > R'"xR"
y = (4, U(ty))
E4(0) = 0 since = 0 is an equilibrium point of the closed-loop system. Applying
the generalized Jacobian chain rule to,

X(t,x) = G o E(x),

results in 0X (t,0) = DG(E(0))0E;(0) [6, Theorem 2.6.6]. G is continuously differ-
entiable so DG(E;(0)) = (0,,xn|B) . Using the definition of generalized Jacobian,

OE4(0) = co {lim DEy(x;)|z; — 0,z; & Qu}

I
= ¢co { lim e |z; = 0,z; € Qu

DzU(f, .I‘Z)

I’I’LXTL

CcO {hmDIU(t,a:l) ll‘, — 07167; ¢ QU}
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ITLXTL

U (t, 0)

The set Qp is a set of measure zero where the derivative of U with respect to z is

not defined. Hence,

I?’LXTL
OX(t,0) = [Opxn | B]
U (t,0)

= B-0U(0,1).

Thus, the differential inclusion of equation (4.1) about the solution z(t) = 0 is the
system,

y(s) € B-9U(s,0)y(s).

B is a rank r matrix and may be expressed in suitable coordinates as,

O(n—r)xm

Thus, any measurable selection of BAU(0,t) is a function of the form,

*
v(t) = )
0(n~7‘)><n

and all so elements of ¢(¢,7) must fix the last n — r coordinates directions,

Let M represent an element of the plenary hull of ¢(¢, 7). Partition M as

My Mo
My Moo

3
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where My, € RT%", My € R My, € (n=1)xr Moo € RTXT, Choosing the

vectors v and w in definition (4.2) as

0 ~ w
U= ”UERR_T w = 7U~)€RT)
& 0
implies
(17, M21’LZ)> < 0= M= O(n—r)xr'
Similarly,

(’5,M221I)> < (f),’lfl) Yo € Rn_r,’[[) ERY = My =1, _,.

Thus any element of R(¢,7) must have the form

0 In—r
n

The last proposition required for the proof of Theorem 4.1 is established next.
Assuming that the closed-loop system (4.1) with Lipschitz feedback is exponentially

stable then there exists the following bound on the solutions,
lp(t 7, 2)| < Bllalle= =,

where o > 0 and 8 > 0. The difference ¢ — 7 may be chosen large enough so that
the constant Ge®®~7) < 1/2. The map F(z) = (¢, 7, ) then satisfies,

IF@) < ¢zl (14)

This bound leads to the last proposition.
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Proposition 4.6 Suppose a Lipschitz map F : R* — R"™ satisfies the bound (4.4).
Then for any v € R there exists Z € OF(0) such that || Zv|| < 1/2||v||.

The proof of this proposition uses a mean value theorem for set valued maps,

Theorem 4.7 ([6],Proposition 2.6.5) Suppose F : R" — R™ is a Lipschitz map
then,
F(y) — F(z) € co OF ([z,y])(y — =),

where the set co OF ([z,y]) is the convez hull of all points in OF(z) with z on the

straight line segment joining ¢ and y.

Proof of Proposition 4.6: We first show that given e > 0, there exists a § > 0 such
that
co 0F ([y,z]) C OF(0) + eB,V|z| < 4, |y| <,

where B is the unit ball of n x n matrices. From the upper semicontinuity of the

generalized Jacobian, given € > 0 there exists 4 > 0 such that,

OF (z) C OF(0) + eB,V|z| < 6.

Pick z and y with norm less than § and choose arbitrary elements X € 9F (z),Y €

O0F(y). Combining the following relationships,

tX € t(OF(0) + eB)

(1—1)Y € (1 —¢)(0F(0) + eB),

yields with ¢ € [0, 1],

tX + (1 —1)Y € co {0F(0) + eB}.

However, the set {OF(0) + eB} is convex since dF(0) is convex. Thus the convex

combination of any matrices in 0F(x) and OF(y) is also in the set 9F(0) + eB.
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Since

bl

co OF ([y,z]) = co [ U OF(z)

z€[z,y]

then
co OF ([z,y]) C OF(0) +eB, V|z| <4, |y| <.

An arbitrary vector v € R" may be scaled by A > 0 so that ¥ = A\v has norm |3| < 4.
Since

F(9) € co 0F(]0,7])0,

then there exists Z € codF([0,0]) such that F(9) = Z©. However, the map 7 is
e-close to F(0) and the bound (4.4) implies that |Z9| < 1/2|5] or, what is the
same, |Zv| < 1/2lv|. By shrinking € to zero and scaling the point v to be in the
corresponding J-ball, we obtain a sequence of matrices {Z;} which contract v by at

least a factor of 1/2 and satisfy
Zj € co OF(0) +€eB, Ve>0,7 > N(e),

for some integer N(e). The sequence {Z;} is bounded so there exists a conver-
gent subsequence {Z, } which must converge to a member of JF(0) since OF(0) is

compact,

lim Z, = Z € 0F(0).
1300

Finally,

20| < |Zrol +1(Z = Z, 0]
1
< 51“[ +e¢, 1> N(e)

1

Theorem 4.1 is proven with Propositions 4.5 and 4.6.
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Proof of Theorem 4.1: Proposition 4.5 implies that every element of R(¢,7) must
fix n — r directions for all ¢, 7. However, assuming exponential stability of the flow
implies, for sufficiently large ¢t — 7, that there exist a matrix Z € GF(0) which
contracts an arbitrary vector v € R* (Proposition 4.6). This contradicts the state-
ment of Theorem 4.4 when v is chosen as a vector fixed by R(t,7) since the matrix

Z € OF(0) which contracts v cannot be in R(¢, 7). [ ]

4.2 Homogeneous Approximations of Driftless Control

Systems

Instead of working with the original set of input vector fields of the control sys-
tem (4.1), an approximation that makes sense in terms of stabilization about a
desired point z¢ is desired. The Jacobian linearization of this system about any
point is not useful in any control theoretic context since the linearized system is not

controllable. For example, the linearization of equation (4.1) about the point g is
£= Xi(wo)ur + -+ + X (20) s, (4.5)

where z = £ + zp. Since the number of inputs m is less than the state dimension n
then,
rank[ X1 (zo) -+ Xpn(z0)] < m,

and so the linearized system (4.5) is not controllable. However if the Lie algebra of
the set of analytic input vector fields has rank n at 2o then the results reviewed in
Section 2.2 show that there exists a homogeneous degree one approximate system

written in the (new) coordinates as
g =X{(Wur + -+ X (). (4.6)

Furthermore dim FX (zo) = dim F* (z¢) so that controllability of (4.1) is transferred

to the approximating driftless system (4.6). The natural dilation associated with the
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system depends only on the dimension of the span of the subspaces of the filtration.
Thus, the scaling powers in the dilation depend only on the point about which
the approximation is made and not on any particular coordinate representation
(although the homogeneous structure is evident only in the coordinates adapted to
the filtration).

The use of homogeneous feedback is strongly motivated by the existence of a
controllable homogeneous approximating system (4.6). If homogeneous degree one
control functions u;(¢,y) can be found such that y = 0 is a uniformly asymptotically
stable equilibrium point of the closed-loop system then y = 0 is exponentially stable
with respect to the homogeneous norm p since the closed-loop vector field is degree
zero (Property 2.16). Thus, the stability type is not the familiar exponential stability
definition but rather p-exponential stability. As pointed out in Section 2.1.3, p-

exponential stability can be locally recast into the bound,
/o _—a(t—to)
[ (¢, to, zo)ll2 < Mlzolls’ "€ for some M > 0, > 0,0 > 1,

where 1) represents the flow of the system. Thus each state is bounded by a decaying
exponential envelope but the dependence on the initial condition is allowed to be
more general than that in the usual definition of exponential stability. The higher
order perturbing terms, present when one considers the full set of equations in y-
coordinates, do not locally change the stability type of the origin. In other words

the original control system with feedback,
g = (X1() + X0() + - Jurlt,y) + -+ X y) + X @) + - Jum(t,9),

is still locally p-exponentially stable. This is a consequence of the converse Lya-
punov theorem for homogeneous vector fields (Proposition 2.27) and is proven in
Proposition 4.10. The standing assumption in the remainder of the thesis is that
the system (4.1) has been transformed to the adapted coordinates and that a degree
one homogeneous approximation has been computed. This approximation will be

used exclusively in the sequel. An example of the approximation process is given in
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Appendix B.

The quest for (locally) p-exponentially stabilizing feedback has been reduced to
the search for time-periodic asymptotically stabilizing degree one functions for the
approximate system. The dilation associated with the input vector field approxima-
tions and feedbacks will always have r, > 1 since at least one level of Lie brackets is
required to achieve controllability of the system. Thus the degree one feedbacks are
not Lipschitz at the origin even though they may be locally Lipschitz on R \ {0}.
The proof of this fact is essentially the same as the proof of Lemma 3.4. The
non-Lipschitz feedbacks seem more reasonable in light of the facts established in
Section 4.1. Since the closed-loop system is not Lipschitz it becomes apparent why
a broader notion of exponential stability, namely p-exponential stability, is required
for the systems.

The coordinates adapted to the filtration are found by composing the flows of
n nonlinear differential equations. The calculations may be performed by hand for
any given system. For large systems this can be an arduous task and so automated
computation with a computer is desirable. An algorithm which performs this task
is given in Appendix B.

Finally, certain systems may be transformed exactly into a nilpotent homoge-
neous form. In other words, there exists a diffeomorphism of the state and input
such that the new system representation is its own nilpotent homogeneous approx-
imation. In this situation no approximation is involved and the model is valid up
to the boundary where the diffeomorphisms are no longer defined. In [31], neces-
sary and sufficient conditions are given for the transformation of two-input driftless

systems into “chained” (or equivalently “power”) form.

4.3 Synthesis Methods

This section presents two methods for synthesizing p-exponential stabilizers. In
other words, given the driftless system (4.1), under what conditions can feedbacks

be constructed so that the closed-loop system is locally p-exponentially stable? The
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algorithms do not cover every analytic driftless system, however many practical
physical examples satisfy the condition in the theorems. The previous section out-
lined the objective of the algorithms: generate uniformly asymptotically stabilizing
homogeneous degree one feedbacks for the homogeneous approximate driftless sys-
tem (4.6). Lyapunov analysis is useful for proving asymptotic stability while the
requirement that the closed-loop system is degree zero enforces p-exponential sta-
bility.

Driftless systems fail Brockett’s necessary condition so no continuous time-
invariant feedback can stabilize the system to a point. However Coron’s Theo-
rem A.10 in Appendix A proves that time-periodic continuous feedback is sufficient
to stabilize the system to a point. The proof of Theorem A.10 is not constructive in
any practical sense so algorithms are still required. The prototype three-dimensional
system (3.1) is used to illustrate how time periodicity overcomes the topological ob-

struction of Brockett’s condition. The system is repeated here for convenience,

I 1 0
o | = O [wri+| 1 [ue (4.7)
T3 9 0

The z1 and z3 variables may be directly manipulated since the control inputs are
equal to the time derivatives of these variables. It is not obvious how to manipulate
z3 by changing the inputs. The Lie bracket of X; and Xj is [X1, Xo] = —3/0z3.

The motion in Lie bracket vector field is modeled by the infinitesimal loop where,

=11 0
u2(t) =0

u(t) =0 t € [e, 2¢)
ua(t) =1

w(t) == t € [2¢, 3¢)
UQ(t) =0
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t € [3¢, 4e).

In the limit as € — 0 the initial point has moved an infinitesimal amount in the
[X1, X»] direction. An asymptotically stabilizing feedback is derived below based on
this property. A continuous finite time analog of this input sequence is u; (¢) = a cos t
and uz(t) = bsint where a and b are coefficients which are chosen later. After one
period, the initial point (z1(0), z2(0), 23(0)) has moved to (z1(0), z2(0), 23(0) —abr).
Thus, z1 and z2 have returned to their initial states and z3 has moved on amount
proportional to —ab. Now choose a = z3 and b = a;% so that u; = z3cost and
up = 3 sint. This choice will “push” z3(¢) to zero given any initial condition z3(0).
The 21 and x5 variables are also required to go to zero for stabilization. One way to

enforce this is to add a term to each of the control functions which has a stabilizing

effect. One way to accomplish this is to modify the feedbacks to

U] = —I1 + x3c08t
(4.8)
Uy = —Ig + x% sint.

Although these feedbacks where derived heuristically, the system (4.7) with feed-
back (4.8) is locally asymptotically stable. Rigorous proof of this fact uses center
manifold analysis of the closed-loop system. This is sketched below.

The time-periodic terms in the feedback in equations (4.8) may be replaced by

the variables of an appended harmonic oscillator. The closed-loop system becomes,

Ty = —x1+ T37]
. 2

To = —X2 + X329

I3 = xg(—azl + :133Z1)
21 =29

z'g = —21.

The center manifold variables are (z3,21,22). Representing 1 and z» as a graph
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over the center manifold variables yields,

1 1
Ty = §:L‘321 + 51‘322 + O(3)
1 1
To = -—§w§zl + ixgzg + O(4).

Substituting these expressions into the z3 equation yields,

83 = — 1 (21— ) 2 + O(6) (4.9)

Since z; = cos(t + 0y) and 2z, = sin(¢ + 6y) for some 8y, then the center manifold
system (4.9) is locally uniformly asymptotically stable and so z; — 0 and z —
0 too. Note that the rate of convergence cannot be bounded by an exponential
envelope. This is due to the fact that the feedback is Lipschitz.

Now suppose the frequency of the oscillator variables is set to zero (so the closed-
loop system is time-invariant now) and the variables are frozen at 21 (t) = cos 6y and
Z(t) = sinfp. In this case the following two manifolds of equilibrium points passing

through (x1,z9,23) = 0 appears,

(71 Cos 007 07 71) M € R

(72 cosbp, ¥2 sinfy, y2) 72 € R.

Obviously the origin cannot be asymptotically stable. Thus the time-periodic com-
ponents in the feedback provide a time-periodic sign change similar to the Lie bracket
calculation. Destroying the periodic sign change apparently leads to the formation
of equilibrium points arbitrarily close to the origin as shown above. Brockett’s
condition is not applicable when the system is time-periodic since the closed-loop
system may always be interpreted as an autonomous system with a series of oscil-
lator appended to the states. The oscillator states are not required to converge to
the origin and so the origin is not an asymptotically stable equilibrium point.

The first algorithm is an extension of the algorithm in [37]. The time periodicity
is explicitly introduced into the system by a function which, in the absence of any

other feedback, renders every solution of the system time-periodic. It is then a mat-
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ter of perturbing these trajectories so the state converges to the origin. The details
of this procedure are discussed in the next section. The second algorithm assumes
the existence of a smooth time-periodic asymptotically stabilizing feedback and sets
forth sufficient conditions under which the smooth feedback can be converted into

a p-exponential stabilizer.

4.3.1 Extension of Pomet’s algorithm.

An algorithm for the construction of local p-exponentially stabilizing feedbacks is
described in this section. It is based on an extension of Pomet’s algorithm [37].
Using the approximation in Section 4.2, which was based on the analysis from
Section 2.2, the following truncated driftless control system is associated with the

original control system:
m
=Y X!(z)u. (4.10)
i=1

The X} are analytic vector fields, homogeneous degree 1 with respect to the dilation,
A, defined in the approximation process. The algorithm in [37] may be modified to
provide stabilizers for (4.10) when the input vector fields of equation (4.10) satisfy

the following condition,

rank{Xll,X%,...,X%%,
(X1, X3, [ XE X, (4.11)

ad)y, X3, ... adlXp,, } (o) =n.

The point zg is the desired equilibrium point. The superscript “1” will be dropped
for the remainder of this section but it is understood that the input vector fields are
degree one.

A heuristic overview of how the algorithm works is presented before embarking
on the construction of the feedbacks and proofs. Supposing the input vector fields
satisfy (4.11), a 2n-periodic function of time, «(t,z), is chosen so that all nonzero

solutions of a(t, z) X1 (z) are 27-periodic and z = 0 is an equilibrium point. In order
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to define a positive definite function on the phase space, each closed periodic “loop”
is assigned a positive number. This is accomplished by defining a positive definite
function on a Poincaré map associated with the flow of aX;. In other words, the
flow is sampled at ¢p € [0,27) and then a positive definite function is applied to
the value of the flow at this time. This resulting number is denoted V' (¢,z). The
feedback w; is defined to be the open loop part, «, minus the Lie derivative of
V(z,t) with respect to the vector field X;. The remaining inputs u;,i = 1,...,m,
are defined to be the negative of the Lie derivative of V(z,t) with respect to X;.
This choice of feedbacks guarantee that z = 0 is stable. Under some extra conditions
the feedback can be shown to be uniformly asymptotically stabilizing.

The extension of Pomet’s algorithm to p-exponentially stabilize systems of the

form (4.10) is now developed. The following modification of Proposition 1 in [37] is

made (as in [37], the vector field X3 plays a particular role),

Proposition 4.8 Let a: R x R* — R be a time-periodic, smooth on R x R™\ {0},
homogeneous degree one function with respect to Ay. Assume « also satisfies the

following conditions,

a(t +27,z) = at,z) Vtz
a(—t,z) = —a(t,z) Vi,z (4.12)

a(t,0) =0 Vi

Let V : R x R* — R be a function defined as,

V(t,z) = o((0, ¢, z)),

where o : R" — R is any positive definite homogeneous degree 2 function that
is smooth on R™ \ {0}. Here 1(t,to,z0) represents the flow of the vector field
a(t,z) X1 (z) evaluated at time t and passing through zq at time tg. The function V

has the following properties,

1. 'V is smooth on R x R™ \ {0},
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.V is homogeneous degree 2 with respect to Ay,

.V is 2m-periodic with respect to t: V(t + 2m,z) = V (¢, 1),

2

3

4. V(it,z)=0 <= z=0,

5. ;%V(t,m) #0 Vz #0 (the gradient at 0 may not be defined),
6

. V(t,z) is a proper map Vt € [0,27).

Proof: The product of the scalar degree one function a(t,x) with the degree one
vector field Xi(z) defines a degree zero vector field (aX1)(¢, ), by the convention
established in Definition 2.1. This new vector field is smooth on R" \ {0} and its
flow is complete. Completeness follows from the dilation scaling property enjoyed
by solutions of degree zero vector fields and the exponential upper bound on the
growth of solutions, i.e., the bound established in the proof of Lemma 3.4. Hence,
¥(t,tg, ) is a homeomorphism Vi,%g,z and a smooth diffeomorphism V¢, ¢, and
z # 0. Item (1) is obvious since V is the composition of functions which are
smooth on R™ \ {0}. Also note that the flow satisfies Ax1(¢, 20, o) = (¢, to, Aazo)
since the vector field is degree zero with respect to Ay. Item (2) follows from
V(t, Axz) = o(¥(0,t, Axz)) = o(Ax1(0,t,2)) = A2V (t,z). The periodicity of 1
with respect to ¢ and ¢y must first be established before proving Item (3). The first
fact to show is that ¢(—%,0,z) = 1(¢,0,z). This is accomplished by showing that

P(—t,tp, ) also satisfies the equation # = aX;. Let s = —¢ then,

dy _dy
ds (Satﬂvw) = dt (S,t()ax)

= —a(s,P(s,to, 2)) X1 (¢¥(s, to, x))
dyp

= E("t,t(),z') = O&(t,Qp(—t,t(),.%))X](’QZ)(-t,to,I)).

When tg = 0 then ¢(—%,0,2) = 9(¢,0,z) since initial conditions match. In par-
ticular ¢(m, —m,z) = z. The differential equation is periodic so time translated
solutions must also satisfy the equation: (¢t + n2w,ty + n2mw,x) = (¢, tg, z) for all
(t,tg,z). These facts show that for any ¢ the following is true,

P(t + 27,1, ) = P(t + 27, 7, (7, to, )
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- ¢(t =+ 27T7 Uy 1/)(7‘_7 -7, ’l/}(_ﬂ.a L, x)))
= ¢(t =+ 27T7 T, "p(-"f“ t, w))
= ¢(t7 -7, ’lp(_—ﬂ-v t7 27))

- I.

Generalizing to an arbitrary 27 time shift,

Pt +n2m,t,z) =Pt +n2m,t + (n— 1)2m, 9t + (n— 1)27, ¢, 7))

=(t+ (n—1)2m,t+ (n - 2)2m, ¢t + (n — 2)2m,t,2))

- .

Lastly, the starting time is arbitrary since,

P(t +n2m by, z) = P(t + n2m,p(t, to, 7))

= ’(ﬁ(t,to, 7")

Thus the flow is 2m-periodic with respect to its first argument. The flow is also

2m-periodic with respect to its second argument,

P(t,to,x) = Y(t + n2m, tog + n2w, )

= 1(t,to + n2m, ).

Item (3) is easily shown now since

V(t+n2m,z) = o(¥(0,t + n2m,z)) = o(4(0,¢,2)) = V(¢ z).

Item (4) follows from the fact g is positive definite and the origin and any nonzero



70

z cannot lie on the same trajectory. Item (5) may be written for z # 0,

%V(t,x) = Vo(0,t,z) - Dy9(0,¢, ).

Vo(y) # 0 for y # 0 from Property 2.7 and D, is full rank for nonzero z. Lastly,
V(t,z) is proper for any ¢ € [0, 27) since it satisfies the bounds c¢1p%(z) < V (t,2) <
cap*(x). [ |

The following choice of inputs u; render (4.10) stable,

ui(t,z) = a(t,z) — Lx,V(z,t)
ug(t, z) = —Lx,V(z,t)
(4.13)

um (t,z) = —Lx,, V(z,1).

Note that these control functions are smooth functions of ¢t and € R™ \ {0}. Under
additional assumptions z = 0 is exponentially stable with respect the homogeneous

norimn.

Theorem 4.9 Suppose the approzimate system satisfies (4.11) and an o satisfying

Proposition 4.8 is chosen. If the following conditions are satisfied,

Lx,V(t,z)=...=Lx, V(t,z)=0
X V(i) o ) =2 =0, (4.14)
a(t,a:)z%%(t,a:)z%r%(t,x):...zo

then z = 0 is a globally 6-exzponentially stable equilibrium point of (4.10) with respect
to the dilation when the feedback (4.13) is applied.

The proof of the theorem is very similar to the one given by Pomet however an
outline is given for the sake of completeness. Most of the modifications of his proof
are in establishing that certain functions and flows have the properties specified in his
paper. The majority of this extra work was shown in Proposition 4.8. The conditions

of the theorem guarantee uniform asymptotic convergence of the trajectories to the
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origin. The fact that the closed-loop system is degree zero with respect to Ayimplies

that the system is p-exponentially stable.

Proof: The closed-loop system, that is system (4.10) with the feedback (4.13), is
degree zero with respect to Ay. This is evident from the fact that the Lie derivatives
of the degree two function V with respect to the degree one vector fields X; is a
degree one function. This implies that the control functions are degree one since
up =a— Lx,V and uj = —Lx,V, j = 2,...,m. Scaling a degree one vector field
by a degree function yields a degree zero vector field so the closed-loop system must
be degree zero. Thus p-exponential stability is equivalent to uniform asymptotic
stability by Lemma 2.16.

The proof that feedback (4.13) is uniformly asymptotically stabilizing is shown
below. First note that the derivative of V along solutions of the system & = aX; is

zero since the value of V' on a trajectory of this system is constant,

V(t9(t,to, 2)) = o(4(0, 8, %(t, to, 2)))
= 0($(0, %0, z)),

where 1) is the flow of £ = aX;. The derivative of V along trajectories of the

closed-loop system is

v oV S
= 4 VV. aXl-(LXIV)Xl—Z(LXiv)Xi
dt ot i=2

m

- Z(szv)z

=1

The time derivative is negative semidefinite and since V is a proper function with
respect to z then all solutions are bounded. For notational simplicity the superscript
“1” will be omitted from the vector fields X in the remainder of the proof.
LaSalle’s theorem is used to show asymptotic stability. LaSalle’s theorem is
applicable in this case because the system is time-periodic. It is sufficient to show,
for asymptotic stability, that no nontrivial trajectories of the closed-loop system are

contained in the set where V = 0. The time is identified with the circle S! since the
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system is time-periodic. The set where the time derivative of V is zero is,
A={(t,z) | V(t,z) =0} = {(t,z) € S* x R" | Lx,V(t,z) =0, i=1,...,m}.

The closed-loop system restricts to the vector field Xy on the set A. The time

derivative of the functions Lx,V with respect to solutions passing through points

in A is,
d 0
”(E(inv)(tv CL') = BE(LXiV)(u :L‘) + (VLXiVO‘Xl)(t: 512)
19}
= —C;)E(LXﬂLV) + LadxlXiV + LXiLale
ov
= LXi(—a? + Lax,V)(t,7) + Lx;Lax,V

= Lx.Lox,V V(t,z) € A.

Induction may be used to show that,

47
v (LXi V) =1L

dti adl, x;V V(7)€ 4,520,

Since the functions Lx,V are zero on trajectories which stay in A then,

L V(t,z) =0 V(t,z)€ A,j>0. (4.15)

J )
adaxlX,

Now assume that a(t,z) # 0 at some point (£,% # 0) € A. The Lie bracket identity,
[fX,9Y]=fglX,Y]+f - Lxg-Y —g-Lyf-X,
where f and g are functions may used to show that,

k=1,...,m j k=1,...,m
= rank adaXIXi

rank adg(lXi . '
3=0 720

. (4.16)

when a(t, %) # 0. However the condition in equation (4.11) shows that the rank of
the set in equation (4.16) must be equal to n. The only way for the expressions in

equation (4.15) to be satisfied is for VV(,%) = 0 when « # 0. However from Item 5
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in Proposition 4.8, V(,z) # 0 for all z # 0. Thus the rank of equation (4.16) must
be less than n which implies that a(¢, z) (and all of its time derivatives) must be zero
on this trajectory in A. The hypothesis of the theorem may be used to conclude that
z = 0 is the only solution in A which is consistent with the analysis given above.
Thus the origin is uniformly asymptotically stable. The fact that the closed-loop
system is degree zero with respect to Ay implies that the origin is p-exponentially

stable where p is any homogeneous norm compatible with the dilation. ]

In practice it may be difficult to verify the conditions in the theorem to conclude
asymptotic stability. It is useful to choose « such that a(t,z) = 0 & z = 0. For
example, a(z,t) = p(z) sin ¢, where p is any smooth homogeneous norm, satisfies the
hypothesis of the theorem. The feedback is smooth on R™ \ {0} and so the solutions
of the closed-loop system are unique by Lemma, 3.4.

The proposition below demonstrates that the feedbacks locally p-exponentially
stabilize the full system. In other words, the terms neglected in the truncated system

do not locally change the stability of the equilibrium point.

Proposition 4.10 Suppose the conditions of Theorem 4.9 hold. Then the feed-

back (4.13) locally 6-exponentially stabilizes the original system (4.1).

Proof: Consider the feedback (4.13) applied to the system in equations (4.1) written
in the special local coordinates, © = 3% ; X} (z)u;(x,t) + R(z,t), where R(z,t) =

" ( 21 Xile(x)) u;(z,t). The m vector fields 3772, X (z),i=1,...,m, are
analytic and the k' component is a sum of homogeneous polynomials of degree
greater than or equal to r;, so that the absolute value of k™ component is bounded
by c¢ip" (z) in a sufficiently small neighborhood of the origin. Since the u; are
homogeneous degree one functions then the absolute value of the k£*® component of
R(z,t) may be bounded by a scalar times p"**! in a neighborhood of the origin.

The local stability result follows from application of Proposition 2.27. |

Certain driftless control systems may be transformed to exactly a nilpotent ho-

mogeneous form. Examples are the “chained form” or “power form” systems [32, 44].
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In this case Theorem 4.9 provides a globally J-exponentially stabilizing feedback
since there are no “higher order” perturbing terms.

Finally the algorithm may be summarized as,

1. Compute the local coordinate change which places the input vector fields

in form
m

z= Z (Xll(x) + X2(x) + X () —1—>uZ

1=1

2. If the relation

rank {X},X%,...,X}n,
(X1, X3), .., [ X5, XL,

adg(llX;,...,adg‘ngI,...}(0) =n

is satisfied then continue with the procedure.

3. Construct homogeneous degree one feedbacks, using the approximate
control system,

= Xll(a:)ul 4+ 4 X,ln(a:)um,

according to Proposition 4.8 and equation (4.13).

4. These feedback applied to the original system are still locally
d-exponentially stabilizing by Proposition 4.10.

The following example applies this algorithm to the prototype three-dimensional

example given by equations (4.7).

Example 4.11 The input vector fields in the system given by equation (4.7) are
degree one with respect the dilation Ay = (Azy, Az2,A\?z3). The set of input
vector fields are their own nilpotent homogeneous approximation with respect to
this dilation. The X| vector field is chosen to be X} = 9/8zs and X1 is X4 =
0/0x1 + x20/0z3. A smooth homogeneous norm which is compatible with this
dilation is,

1
p(z) = (21 + 23 + 23)1.
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The open loop input is defined as «(¢, z) = p(z) sint. The conditions of Theorem 4.9
are satisfied with this choice. Let (¢, to,zo) denote the flow of the vector field,

& = alt,z) X1 (z)

0
= p(z)sint | 1
0

One choice for the positive definite degree 2 function g is

o)=L (4934 13
2\ o)
Hence, the Lyapunov function V is defined as V(¢,z) = o(%(0,¢,z)). This function
cannot be computed explicitly so numerical computation is required. The feedbacks
are defined as
up = aft,z) — LX%V(t,:L')

(4.17)
ug = —LX%V(t, z).

The Lie derivatives of V with respect to the input vector fields must also be calcu-
lated numerically. A numerical simulation of the system with the feedback (4.17)

is shown in Figure 4.1. The exponential decay of the states is evident from the log

plot in Figure 4.2

4.3.2 Modification of smooth controllers into p-exponential stabi-

lizers

This section discusses a very useful method to modify many uniformly asymptoti-
cally stabilizing feedbacks into exponential stabilizers. Our primary motivation in
this section is in providing feedbacks which are easy to implement. Smooth asymp-
totically stabilizing controllers are often written in terms of elementary functions and

operations and are straightforward to implement but suffer from slow convergence
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rates. We now pose the question: when can a uniformly asymptotically stabilizing
controller be modified into an exponential stabilizer? If the modifications can be
performed in real-time then the method would show promise as a way of imple-
menting exponential stabilizers with slightly more computation than required by
the smooth stabilizers.

We assume that the input vector fields are already in “homogeneous” coordi-
nates. In other words, the controller asymptotically stabilizes the homogeneous
approximation discussed in Section 4.2. The dilation associated with the approxi-
mation is denoted Ay. Recall the Euler vector field, Xg(z), corresponding to this
dilation is represented by the equations ; = r;z;, 7 = 1,...,n. The following propo-
sition specifies the condition under which an asymptotic stabilizer can be modified
into an exponential stabilizer. The closed-loop system is denoted ¢ = X (¢,z) with
the feedback functions u;(¢,z),7 = 1,...,m. Most smooth stabilizing controllers are

time-periodic so we restrict ourselves to this case.

Theorem 4.12 Suppose there exists a T-periodic Lyapunov function, V (t,z), for
the T-periodic smooth vector field © = X (t,z) such that for some constant C' > 0

the family of level sets parametrized by t,
GY = {ﬁ?]V(t,a)) = C}v

are transversal to the Euler vector field for all t € [0,T). Under this hypothesis,
the original feedbacks may be modified to the following T-periodic p-exponentially
stabilizing feedbacks,

ai(tax) :ﬁ(t7$)uz(t;7t($)) i = 17"'am-
p:RxR* - RY is a uniquely defined homogeneous degree one function such that,
ﬁ(t7$)lz€G? =1

The map v : R \ {0} — G¥ returns the point on the set G which lies on the same
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homogeneous ray as z, i.e. y(z) = 6yz =T € GS for some scaling X > 0.

Remark 4.13 In many cases the stabilizing feedback is derived from Lyapunov
analysis and so the closed-loop system has a function which may be tested for the

properties given in the proposition.

Proof: We first show that p and -y are well defined quantities. We assume that the
Lyapunov function is smooth in all of its arguments and that the original feedback
functions, u;, are smooth. We define the value of the function g : RxR" \ {0} — R*

to be the A € R™ which solves,
F(\t,x) =V(t,dz)—C=0.

In other words, g(t,z) : R* \ {0} — R* returns the dilation scaling factor re-
quired to map the point x # 0 to the point T € G; on the same homogeneous
ray at time ¢. 7 is unique since the transversality condition implies that the pro-
jection 7T|Gtc : G — S%!is a local diffeomorphism. Furthermore, since G¢ is
compact and connected [46, Theorem 3.7] there is only one point in the preimage
of (W]Gtc)”l(y),y € SX'. Hence the projection is a global diffeomorphism be-
tween G¢ and S7! for each fixed t. The map from z to Z is (Wlaf)_l o7 and
g(t,z) = p(ZT)/p(x). The smoothness of g is determined with the implicit function
theorem as shown below. Suppose that (), ¢, z) satisfies (4.3.2), then we compute,

Jg B 1 OF

- (_m%%) (t, Ayz).

The quantity 0F/I\(t, Ayz) is nonzero since,

oF

oy (b Axz) =

=7 (6 Axz)

oV

12D

ZQY— t, Ayz)r il
— Oz;
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= . Z t (t, Ayz)ri\"iz;

This last condition is precisely the transversality condition on the set G¢. Thus,

OF/OX(t, Axz) # 0 and the implicit function theorem states that

Qg(t,x) = (— A QY-) (t, Axz).

ot Lx,V ot
Similarly,
dg X+l gy
t = |- B —

Note that A = g(¢, z) in these computations. We show that g is degree -1. Suppose
g(t,z) = A, then g(t,d,x) is the Ag that solves V (¢,0,,6,2) — C = 0. Since 0),0,7 =
oo then X = Ago so g(t,0,z) = Ao =g(t,z)/o.

The function v: R x R* \ {0} — G is,

’)’(t, .’L‘) = 5g(t,x)$~

Note that y(¢t, Axz) = v(¢,z),VA > 0. p: R x R* — RY is defined as,

g(tl,w) z#0
0 =20

Furthermore, for any T € Gy, p(t,Z) = 1 since y(¢,T) = . The definitions may be
used to show that «(¢,-) is smooth on R™ \ {O}and p(¢,-) is continuous on R" and
smooth R™ \ {0}. Furthermore, § is homogeneous degree 1. T-periodicity of 5 and
v is evident from the fact that V is T-periodic.

The modified feedbacks are defined as,

ai(ta ‘T) = pN(ta x)ul (ta 7(t7 m))
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These functions are degree one since,

ﬂ/i (t’ A)\IE) = pN(tJ A)\ZL')’U,Z (tv ’Y(t7 A)\.’E))

= Ab(t, 2)ui(t, y(t, z))

= /\’fLi(t, a:)

These functions agree with the original feedbacks on G¢ i.e. for T € GY, 4;(t, %) =
u;(t,Z). We assume that the input vector fields are already in homogeneous form and
that the u; are uniformly asymptotically stabilizing. We now show that the closed-
loop system, denoted & = X(t,z), with the modified feedback is exponentially
stable. The closed-loop systems is degree zero since the feedback is degree one
and the input vector fields are degree one. Hence, all we need to show is uniform

asymptotic stability with the modified feedbacks. This is accomplished with the

following degree k positive definite function,

V:RxR' - RT

(t,2) = 7°(t, ),

where k is any positive integer. The time derivative of V for z # 0 is,

%guw>=(%§)um>

_ —g—kﬁ%-a:_) (%g—(t,x) + Daglt, :c)(X')) (t,2)

_ k g(t,z) IOV _
T gt z) (_ Lx,V(t,7) ‘53:‘“’”“")

L st Y m %, __
Lx,V(t,7) ?;g (t,2) 5 (b P Xalt, ”3)) T = Sy(t0)% € Gy
k oV oV
— (7 T Xt 8oy s
gk(tax)LXEV(t,-.f) <8t ( 71;) + ; amz( 7'7:) ( o(t, ).’L‘))
k ov L1 74
= vy - = XZ ,_
wwm&m@<wWH;Mﬁ@am)
~k
kp®(t, z) ﬂ(w)’

T Lx,V(t,7) dt
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_ (inv%/) (t,3) - V(t,2).
The only remaining fact to show is that Lx,V (¢,Z) > 0. Lx,V(¢,7) is constant sign
from transversity so initially assume that this quantity is negative. For e sufficiently
small the points in the sets G and GE™¢ also satisfy L xgV < 0. As shown
above, these sets are diffeomorphic to spheres (for ¢ fixed) and so separate R” into
an exterior and interior domain. Fix an arbitrary ¢, € [0,7). The trajectory of
Xp pierces each set only once and since Lx,V < 0 then we conclude that GtCOJre
sits inside the interior domain of Gg which sits inside the interior domain of Gtco_e.
This holds for all ¢ since to is arbitrary. If we start the system # = X (¢,z) with
an initial condition (7,z) in the set GE~¢ then at some time later the trajectory
enters the ball radius of min, i 4 e GO+ |lz|| by asymptotic stability. Thus at some
7 > 7 the trajectory crosses G5 but V (v, z(7')) = C + € > V(r,2(r)) = C — ¢
which contradicts the fact that V < 0. Hence, L x5V (t,Z) > 0 and the system with
modified feedbacks is asymptotically stabile. p-exponential stability follows from

the fact that the closed-loop system is degree zero. |

The new feedback is as smooth on R® \ {0} as the original feedback restricted
to the level set of the Lyapunov function in the proof of Theorem 4.12. The original
feedback is assumed to be at least Lipschitz and so solutions of the closed-loop
system with the modified feedback are unique by Lemma 3.4.

The following example demonstrates the algorithm on the prototype driftless

system (4.7).

Example 4.14 This example uses the three-dimensional two input driftless sys-
tem (4.7) to illustrate the algorithm. A smooth asymptotically stabilizing feedback

for the system are the functions

up(t,z) = —x1 + 23 COS L,

us(t, x) = —z9 + 3 sint.

Asymptotic stability of the closed-loop system can be shown using the following
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Lyapunov function,

2

2 2
V(t,z) = (331 — —a-;ﬁ(cost + sint)) + (:62 - %?l(sint — ¢os t)> + x2.

Thus we need to check the transversality condition with a level of the Lyapunov
function. V' may be approximated by the quadratic form V = (z, Bz) for C suffi-

ciently small, where

—%a 0 1+%a2

and a = cost + sint € [—v/2,v/2]. The inner product between the level sets of V

and the Euler vector field is

Lx,V = (z,diag[r;|Bz)

= (z, Bz),
where B is the symmetric matrix
1 0 -%oz
B = 0 1 0
—%a 0 2+ %aQ

Since B is positive definite for all o € [~\/§, \/5] the Euler vector field is transverse
to any level set of V and hence any level set of V for C sufficiently small. Experi-
mentation reveals that value of C = 1 works well. The modification of the feedbacks
is carried out as specified in the proof. What makes this method attractive from
an implementation point of view is the fact that the function g(¢,z) is easily com-
puted by searching over a single scalar parameter A such that V(t,Ayz) = C. In
addition V (¢, Ayz) is a monotone increasing function of X in a neighborhood of the
A which satisfies this expression. This search may be performed efficiently in real-

time. Once the value of X has been computed which satisfies V (¢, Ayz) = 1 then
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we set p(t,z) =1/Aand T = 7(¢t,z) = A,z. The modified feedbacks are

1
w1(t,z) = 1 (=% + T3 cost),

= ; (-—,\x1 + Nz3 cos t) ,

= —x] + Azzcost,

1
’l:l,g(t, x) = B\ (—'172 -+ f% Sint) ,

= % (—/\mg + )\4x§ sin t) ,

= —x9 + A22sint.

Simulations comparing the performance of these feedbacks with the original smooth
feedbacks are shown in Figure 4.3. The p-exponential stabilizer returns the system
to a small neighborhood of the origin much faster than the smooth controller from

which it was derived. The energy in the control signals

T
Br(w) = [ (@30 + (o)t

is shown in Figure 4.4. Note that the p-exponential stabilizer requires bounded
energy to return the system to the origin. Center manifold analysis may be used
to show that the rate of decay of the closed-loop system with the smooth controller
is bounded by a constant times 1/ V't for large t. Hence, the smooth control law
consumes an unbounded amount of energy to return the system to the origin. An-
other important fact is that the smooth and modified control laws match on the set
where V (¢, z) = C so the maximum controller effort commanded by the exponential
stabilizer does not exceed that of the smooth control law for all initial conditions

satisfying V (¢,2(0)) < C.

Note that the system is robust to any higher order perturbing terms which were

neglected in the approximation process. This is consequence of Proposition 4.10.
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Figure 4.3. Comparison of modified feedback and smooth feed-

back.
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Figure 4.4. Comparison of energy in control signal.

4.4 Practical Considerations

The previous sections presented several methods for obtaining local p-exponentially
stabilizing feedbacks. This section presents several results of practical significance
for degree zero systems.

Since a linearization of the closed-loop system does not exist we must be certain
that standard control practices, such as filtering the measurements, do not destabi-
lize the system. Lowpass filters are often used to smooth sensor measurements to
avoid aliasing during digital sampling. We show below that the inclusion of lowpass
filters in the loop do not change the p-exponentially property of solutions provided
the filter bandwidth is sufficiently high. This result is reminiscent of the stability
theory for singularly perturbed systems. However, since the linearization is not
defined, the usual singular perturbation results are not applicable.

Many driftless control systems represent kinematic models in which the control

inputs are velocities. A simple model for including actuator dynamics is to extend
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the kinematic model to a system with a set of integrators preceeding each input.
The inputs into the integrators represent the control commands in this case. This
section demonstrates how a p-exponentially stabilizing controller can be converted
to a controller which stabilizes the system with integrators.

Another concern is the increased sensitivity to noise around the equilibrium
point due to the non-Lipschitz nature of the feedback. The benefit of non-Lipschitz
feedback is an increased rate of convergence. However the non-Lipschitz feedbacks
can present some additional complications. In particular, if the output of the con-
troller is specified directly by non-Lipschitz functions then any disturbance in the
signals processed through these functions can lead to large control rates. This is
mitigated by filtering the output of the non-Lipschitz functions. The framework
established for studying actuator dynamics may be applied to this problem as well
except that the additional integrators now become states of the controller. Several

examples illustrate the applications of these results.

4.4.1 Filtering of measurements

Every system with a digital controller must include some form of measurement
filtering to avoid aliasing. In linear systems, or nonlinear systems with well de-
fined linearization, the “dynamics” often dictate the filter bandwidth: the cutoff
frequency of the filter is chosen to be higher that the frequency band where active
control is desired. Driftless systems have no intrinsic time scale associated with
them because turning off the control inputs freezes the state. Lowpass filtering of
the state measurements is still required though to prevent aliasing. This section

proves that including a simple lowpass filter of the form in the loop does not

destabilize a uniformly asmptotically stable degree zero system provided the cutoff
frequency is sufficiently high. This fact is not immediately obvious especially for
some of the planar systems studied by Kawski [19]. For example, Kawski has shown

that the system,

i = (4.18)
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. 3
Ty = Tg — Ty,

may be asymptotically stabilized with the feedback,
1
u=—kzy + kz3,

for k sufficiently large. This system is homogeneous degree zero with respect to
the dilation Ayz = (Az1,A\3z3). The interesting point is that the linearization
of equation (4.19) has an uncontrollable unstable mode. Hence, in this example
the non-Lipschitz feedback succeeds in stabilizing the system where a C! feedback
cannot. It is not unreasonable to think that placing a lowpass filter in the loop
may destroy the asymptotic stability of the closed-loop system because of the phase
lag of the filtered signal. However, this is not the case as shown in the following

specialized singular perturbation result for degree zero systems.

Proposition 4.15 Suppose the system
t=X(t,z) zeR, (4.19)

18 continuous,time-periodic and degree zero with respect to the dilation Ay. Letz =0
be an asymptotically (and hence p-exponentially) stable equilibrium point. Then for

k > 0 sufficiently large, the filtered system,

z = X(t,y)
y=—kln(y — )

(z,y) € R*", (4.20)

1s also p-exponentially stable with respect to the new dilation A)\(a:, y) = (Axz, Ayy).

Proof: The filtered system (4.20) is degree zero with respect to Ay so asymptotic
stability need only be shown. Suppose a homogeneous norm associated with A is

plz) = (aci/r1 +-- -—i—me/T")% where c is evenly divisible by r;, i = 1,...,n. A smooth
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homogeneous norm for the filtered system is,
plasy) = (57 o asf g g
The compatible projection is 7 : R*" \ {0} — Sx where,

%(my)z( 7 In y1 Yn )
’ i, y) () (= y) T (s y) )

and the sphere is S = {(z,y) € R*"|j(z,y) = 1}.
Since z = 0 is a p-exponentially stable equilibrium point of the original system
there exists a Lyapunov function V (¢, z), which is smooth on R \ {0} and degree c

with respect Ay, such that

G ) 419) = G (60 + (7Y )60
_blpc(z)a

for some b; > 0. Note that the 8V/0z; is degree ¢ —r; > 0, for i = 1,...,n and so
must be continuous. Now consider the new positive definite function V (¢, ,y) for

the filtered system,

<
r

n
Vi(t,z,y) = V(t,z) +ZT2 )
c

The derivative of V along solutions of the filtered system is

U0 = e+ IV Xy) - - 2) T Ki)

where X; denotes the i component of the vector field X. The time derivative
df//dt is homogeneous degree ¢ with respect to A and is continuous in all of its
arguments. The objective is to show that df//dt is negative definite for £ > 0
sufficiently large. If (Z,7) denotes a point on Sx then the time derivative of 1%
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along solutions of equation (4.20) is,

%(ta Zz, y) = ﬁc(ma y) l:%—‘;:(taf) + VV(t7.a—3) ’ X(ta:l-j) - Z(—gz - Ei)%_lXi(t;g)
=1

The terms in the square brackets are continuous on S5 since they are the restriction
continuous functions. Define the set G = {(%,7) € Sz| T = 7}. For all (%,7) in G
the following bound holds,

)+ YV (LE) - X(T) - Y@ - 7) Xk 9)
=1
ov, _ _ _
= E(t,x) +VV(t,T) X(t,7T)
< =bip(T)
b, p(z)
(. )

By continuity there must exist an open neighborhood U C Sz of G such that

oV, _ _ _ - i 1) c+!
FEED VT X0 - Y m - K < b (5)

2==1
Now define the constants,

ov - e 3
M = —({, T t,z) - X(t,y) — g, —xTi)n Xty
= (t,T) + VV(t,%) - X(t,7) ;(yz T;) (t,y)

m= _min > (7, - T;)

(E’g)ESA\U i=1

S

Note that m must be greater than zero.
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Back to evaluating the time derivative of V,

EREIN o

E(tvwﬁy) S _ L .
(M —mk)p(z,y) (7,7) € Sx\U

Choosing k > 0 such that M — mk < 0 makes the time derivative of V negative
definite. Thus the filtered system (4.20) is p-exponentially stable with respect to
A,. m
Remark 4.16 The proposition may be applied “recursively” to show that lowpass

filters with faster rolloff also preserve stability for sufficiently high bandwidth.

Lowpass filtering of the state measurements may also attenuate the effect of
noise on the size of the ball of convergence versus the bound on the noise. If there
is some persistently acting noise disturbance, the state will not converge to zero
but will be confined to some ball around the origin. If most of the noise spectrum
is above the cutoff frequency of the lowpass filter then the ball size will shrink.
However, introducing a filter reduces the rate of convergence of the states since the
filtered state lags in phase behind the actual state. The quantitative aspects of the
trade-off between choosing a filter cutoff frequency to maximize the attenuation of
sensor noise versus closed-loop rate of convergence is not explored here except in

the following example.

Example 4.17 The system in equations (4.7) will be used to illustrate the re-
duction in the size of the ball of convergence when noise is present in the mea-
surement and the measurements are filtered. As noted in previous examples the
system in equation (4.7) is homogeneous degree one with respect to the dilation
5x(2) = (Az1, Aw2, \223). A (globally) p-exponentially stabilizing controller is given
by

t,r) = —x1+ P cost
u(t o) LT ) (4.21)

2
ug(t,z) = —z9+ ;g%f)sint,
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where p is defined as p(z) = (2} + 23 +22)(/%. A rigorous proof that this controller
p-exponentially stabilizes the system may be found in Appendix C. This controller
is chosen since it is easy to manipulate. The closed-loop system with lowpass filter

is model as,

1 = —Y1 +;@—cost

(v)
2
. Y3 .
To = —Yg + ———sint
p3(y)
&3 = my(—y1 + — cost)
p(y)

= —k(y1 — z1)
Y2 = —k(y2 — z2)

g3 = —k(ys — z3).

The filtered system is p-exponentially stable for k£ sufficiently large. The system is
most sensitive to noise introduced in the z3 variable. The argument for this is simple.
Suppose noise is introduced into the z3 variable and the maximum amplitude of the
states is measured. Now reduce the noise until the amplitude of z3 is some factor «y
of its original value. Since the system is homogeneous, the homogeneous ball which
bounds the trajectories of the system will have the z; and zo amplitudes scaled by
N2

A sinusoid of constant amplitude, n(t) = dsinwt, is added to x3 to model noise.
Figure 4.5 shows a numerical simulation of the system with and without the lowpass
filter. The parameters for the simulation are kK = 3, d = 0.2 and w = 10. The size
of the ball that the trajectories are confined to is decreased with the addition of
the filter. Figure 4.6 points out another issue of importance: the control rate is
very high even in the system with the filter implemented. The reason the rate is
large is due to the fact that the control functions given by equations (4.21) are not
Lipschitz at the origin. Thus a smooth signal passed through these functions in
a neighborhood of the origin can have an arbitrarily large time derivative. This

situation is highly undesirable since control rate limits often exist in practice. The
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Figure 4.5. Norm of states for the systems.

next section on dynamic extension shows how the controller output can be smoothed

and still preserve p-exponential stability.

4.4.2 Torque inputs and dynamic extension

Traditionally, stabilization of driftless systems has concentrated on the use of kine-
matic models of the system for control design. That is, the velocity of the system
is assumed to be a direct input which can be manipulated. Based on these kine-
matic models, a number of authors have developed control strategies which result in
asymptotic or exponential stabilization of the system around an equilibrium point.
In the exponential case, structural limitations require that the control laws be non-
differentiable at the equilibrium point. This raises questions about the applicability
of such controls to physical systems in which the torques, and not the velocities, are
the control inputs to the system.

This section develops some tools for synthesizing control laws for mobile robots

and other driftless systems that are controlled by input torques. The main result
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Figure 4.6. Norm of control command.

gives a set of conditions under which a kinematic controller (i.e., one which assumes
the velocities are the inputs) can be converted to a dynamic controller (one which
uses the torques as the inputs).
We concentrate on the class of control systems of the form
z =Xi(z)u + -+ Xp(2)uy, TR

(4.22)
U = u,v € R™.

The system

T = X1 (:E)Ul +--+ Xm(x)um (423)

describes the “kinematic portion” of the system and, for mobile robots, is derived
from the Pfaffian constraints which describe the condition that the wheels roll but
not slide. We model the dynamic portion of the system via a simple set of integra-

tors. For many, but not all, systems, more complicated dynamic behavior can be
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converted to this form using a state-feedback control law. We call equation (4.22) the
dynamic system and equation (4.23) the kinematic system. The blanket hypothesis

for the systems in this section are:
Assumption 4.18

1. the vector fields X; are degree one with respect to a given dilation A,

2. the controls u; = a;,% = 1,..., m are uniformly asymptotically stabilizing
feedbacks (for the kinematic system) which are degree one in z with

respect to Ay, smooth and time-periodic in ¢ and smooth on z € R*\ {0},

3. rank[X;(0)--- X, (0)]

l

m.

For smooth controllers, extending kinematic controllers to dynamic controllers
is straightforward and has been explored, for example, by Walsh and Bushnell [45].
However, due to the nondifferentiable nature of exponential stabilizers we consider
here, the usual control Lyapunov approach does not directly apply and must be
modified to verify that the extended controller is well-defined and continuous. The
use of continuous functions is important in applications since discontinuous control
inputs usually are smoothed by the control electronics and/or the system dynamics
and hence cannot be applied in practice, possibly resulting in loss of exponential
rate of convergence. The main result of this section is stated in the proposition

below.

Proposition 4.19 Let v = a(z,t) be a feedback satisfying the conditions of As-
sumption 4.18. Then the feedback

aai

v; = Laxa; + N

+k(ai~ui), 1= 1,...,m (4.24)

globally exponentially stabilizes the dynamic system (4.22) for k > 0 sufficiently

large.

The notation oX is used to denote the vector field >, @; X;. Controller (4.24) is

continuous for all (¢,z,u) and smooth for all x 7# 0. Furthermore, the control law
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is homogeneous of degree one with respect to the extended dilation,

Wz, u) = A"z, .., Nz, Aug, .., Aug). (4.25)

Thus the closed-loop system remains degree zero with this feedback.

Proof: The closed-loop kinematic system is time-periodic, degree zero and asymptot-
ically stable. This implies that there exists a time-periodic homogeneous Lyapunov
function V (¢, z) such that V(¢,2) > 0 for all z # 0 and all ¢ which is strictly decreas-
ing when v = a(t,z). This requires the extension of Rosier’s converse Lyapunov
theorem to time-periodic homogeneous degree zero systems developed in Section 2.3.
The Lyapunov function may be chosen to be degree two with respect to Ay. Thus
the following bounds exist:
c1p?(x) < V(t,z) < cop®(z)

(4.26)

% t=aX (t,ﬂ?) < *03p2($)7

for some ¢; > 0 and where p is a homogeneous norm with respect to Aj.

For the dynamic system with feedback (4.24) we use the following function,

1 m
W(t,z,u) = V(t,z)+ 5 > (ailt, z) —us)*. (4.27)

i=1
This function is positive definite on the extended phase space (z,u) and so is a can-
didate for a Lyapunov function. W is also degree two with respect to the extended
dilation § defined in (4.25). Continuous partials of W with respect to z do not

necessarily exist when x = 0, however when x # 0 the derivative of (4.27) along the

trajectories of the system (4.22) with feedback (4.24) is,

. . LAY B " Oy (s da;
W:V—f—Z(Z( 1%Xl(7)>ul+ 5 —vi) (i —ug), z#0

i=1 \I=1 \j=

where X l(j ) represents the 5 component of the I** input vector field. Substituting
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the expression for v; and writing

Lxaa; = Z (Z gj; )

=1

the time derivative of W when z # 0 becomes,

=1 \(Jy=1

W=V+> (Z (Z gzj ) up — o) — k(o — Ui)) (0 — ug)
j==l
=V + (a — ) (=kIn + Q(t,z))(a — u).

I, denotes the m x m identity matrix and Q(¢,z) is an m x m matrix with 75"

component given by,
1
[Q]z] == —§(LX1,O£J' + ijai). (4.28)

Lx,a; is a degree zero function and so is not necessarily defined at z = 0.

A useful observation is that V is a continuous function of x,
.oV &
V=— Lx,V 4.29

since OV/0t is degree two and the Lx,V,l = 1,...,m, are degree one functions.
The condition in Assumption 4.18 that rank[X;(0)--- X,,(0)] = m guarantees
that no non-trivial trajectory of the closed-loop system is contained in the set Z =
{(z,u) : # = 0,u # 0}. This is shown by considering the set of vectors [I,, Opxm]”
which are orthogonal to the set Z. The dot product of these vectors with the

closed-loop vector field is

0,u) =3 X;(0)u;
Omxn U i=1
=0 u=0

Thus, if a trajectory passes through the set Z at time ¢* then %(t*) may not be
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defined however %{i(t* +e€) is defined for all € > 0 sufficiently small. Thus the upper
right Dini derivative of W (#),
t* _— t*
DTW(t*) = limsup Wt +e) - W( ),
€

e—0+

is equal to the right-hand derivative of dW/dt(¢*) since dW/dt is continuous at t*+¢

for € > 0 sufficiently small:

DHW(E) = im W 1 o).

e—0t+ dt

Substituting the original expression for W when z # 0 into the expression for DTW

yields and recalling that V is continuous in all arguments,

DTW(t*) = 6l_i)r(l)rl+ [%‘; + (= )T (=kL, + Q) (e — u)]

_dav

= (>5() = Klat", 2(t%)) ~ u() P
+ Jim (o~ )" Q(ar ~ u)
av

S—(E,2() + (<k + glla(t’, 2() — ()|

t=t* ¢

t*+e

where || - || is the Euclidean norm and

g= sup [|Q(t z)|F. (4.30)
t€[0,27),2#£0

Il - ll» denotes the Frobenius norm. ¢ is well defined since Q is degree zero and
assumes all of its values when restricted to the homogeneous sphere {z : p(z) = 1}.

The above bound is also valid for W when z # 0 so,

DTW(t) < % +(=k+q)|la —ul* Vi z,u.
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Substituting the expression for V from (4.29) yields,

oV & =
D'"W < ——+ Z arLx,V + Z(uk ~ap)Lx,V + (—k + q)|la — ul? Vt, z, u.
k=1

at ~
£ (4.31)

The first two terms on the right side of the inequality are the time derivative of V
along trajectories of the system when u = a(t, ) and may be bounded by —c3p?(z)
from equation (4.26). The third term to the right of the inequality may be bounded
by cap(z)|lu — || for some ¢4 > 0. Substituting these bounds into equation (4.31)

yields,

D*W < —c3p*(x) + cap(z)llu ~ @l + (=k + g)lla — ul|?

N p(z)

3¢ —k+g [ — a(t, z)|

_03

= (p(z) |lu—alt,z)l)

2
1%

ic Furthermore the bound is

This bound is negative definite when k > k* = ¢+

degree two with respect to the dilation N S0,
DYW < —kW,

for some k > 0 whenever k > k*. The differential inequality from [23, Theorem
1.4.1] implies,

W(t) < W(0)e k.
Hence, the system is asymptotically stable. Exponential stability follows from the

fact that the closed-loop system is degree zero with respect to the extended dilation

8 defined in equation (4.25). This completes the proof. |

The states u also approach «(t,z) exponentially since the time derivative of

|lu — a|? may be written as,

d

Slu= off* = (u~a)' (~kIn + Q)(u — o)

< (=k+g)llu —af?,
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where @ and ¢ are defined in equations (4.28) and (4.30).

In many situations one is forced to rely on a local homogeneous approximation
of the kinematic system and the closed system is only locally exponentially stable.
In this case, the construction in the proof of the proposition can still be used but
gives only a local exponentially stabilizing controller for the dynamic system. The
region of convergence may be smaller for the dynamic system than for the original
kinematic system since we require that while v is converging to a(z,t), the state
must remain within the region of attraction of the original controller. The region
of attraction can be enlarged by increasing the rate of convergence of u to a (up to
the limits of the actuators).

The form of the control law shows that it can be regarded as a combined control
law consisting of a feedforward portion, which drives the system along the desired
trajectory when u = a(z,t), and a feedback portion, which stabilizes the the (ex-
tended) state space equation u = a(z,t). The following example illustrates the

procedure.

Example 4.20 We illustrate the dynamic extension procedure with system (4.7)
and the feedback in equation (4.21) This feedback is extended to the system with

integrators,

i‘l = U ’Lll = V1
.’1",‘2 = U2 ’112 = V2 (4.32)
T3 = Tauy,

where the new feedback functions v; are computed to be

Bai

v; = Lxqoy + B

-+ k(a, - uz) (433)

The terms Lx,«; are

3
Lx,a; =a;(z,t) (—1 — ml? cos t)
p
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Figure 4.7. Kinematic state response.
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Figure 4.8. Extended state response.
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3
z
+ as(z,t) ( 2x3 cos t)

+ zoa1(z,t) (
73
7

1z
P 2
72
Lxqas =a;(z,t) ( 3 73 Smt)
p

3,2
+ ao(s, 1) (—1 - 3””;‘;33 sint)
+ zo0 (2, 1) 223 sint — §—x—gsint
201\ 4L, ,03 2,07 .

The remaining terms in (4.33) are easily computed from the definitions of a;. Note

that the new system (4.32) is invariant with respect to the extended dilation

Ox(z,u) = ()\xl,)\mQ,/\Qarg,/\ul, Aug).

Hence, uniform asymptotic stability is equivalent to exponential stability with re-
spect to a homogeneous norm compatible with S,\. Simulations of the extended
system and control inputs are shown in Figures 4.7, 4.8, and 4.9 with a value of

k=5.

An experimental version of the system, with optional trailers attached to the
robot, is described in Chapter 5. The wheels are driven by stepper motors and
hence the torque controller is embedded in the dynamics of the motors. However,
the results presented show that there are no discontinuities in the time trajectories
of the velocity inputs, and hence controlling the torques (via a set of integrators) is
feasible.

The driftless system extended with integrators in equation (4.22) was used above
to demonstrate how controllers can be derived for systems in which the integrators
represent simple inertial or actuator dynamics. In this case the controller outputs
are the “v” variables in equation (4.22). The simulations in Example 4.17 point out
the disadvantages of having the control output specified directly from non-Lipschitz

functions: noisy measurements can saturate the control output rate. This saturation
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Figure 4.9. Controller output.

is evident in Figure 4.6 and would also plague the extended system when the control
output is the v variables. To ameliorate this condition, the controller output must
be filtered to remove the high frequencies. However instead of passing the control
output through lowpass filters the system setup in equation (4.22) which we have
already explored may be used. In this case the states u do not represent actuator
dynamics but are states of the controller itself. The control output u is guaranteed
to be continuously differential (assuming the noise added to the state measurements
is continuous) since it satisfies a differential equation with continuous right hand
side. Thus the controller is dynamic now and p-exponential stability is maintained.
The example below illustrates the smoothing of the control output when noise is

present.

Example 4.21 The numerical simulations use the extended model in equation (4.32)
with the feedback (4.33) derived from equations (4.21). Figure 4.10 is a plot of the

norm of the control output where the extended system is interpreted as a dynamic
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controller now. The measurement noise was modeled as the sinusoid 0.2sin 10t
added to the z3 variable as in Example 4.17. The controller parameters and gains
where chosen to be those in Example 4.20. The figure also contains the results of
a simulation in which a prefilter for the measurements is included. The prefilter
parameters are the same as those in Example 4.17. Both graphs of the dynamic
controller output show considerable smoothing compared to their counterparts in
Figure 4.6. The prefiltering reduces the size of the ball that bounds the states and

the dynamic extension smooths the control output to avoid actuator saturation.
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Chapter 5

Experimental Validation

5.1 Description of Experiment

This chapter presents experimental results on the use of time-varying feedback con-
trollers for stabilizing mechanical systems with nonholonomic constraints. In par-
ticular, the system to be controlled is a two-wheeled mobile robot towing a trailer.
The experiments demonstrate point stabilization using the methods developed in
the previous chapters. Many of the techniques and experimental results described
here are also applicable to more practical problems such as parallel parking and
backing into a loading dock. A picture of the experimental apparatus is shown in
Figure 3.1.

The fundamental assumption in modeling the kinematics and dynamics of a
mobile robot is that the wheels of the robot roll without slipping. This means that
each wheel (or pair of wheels connected by an axle) is free to roll in the direction
that it is pointing and spin around the vertical axis. This is clearly an idealization
and one of the questions which we hope to answer is to what extent this model is
accurate enough for use in control design. This problem naturally leads to driftless
control systems since the state represents by the car and trailer configuration and
the inputs are the forward and angular velocities of the front wheels. Even for the
simple kinematic wheel, the number of states is three and the number of inputs is
two. No inertial effects are involved, i.e. the standing assumption is that the motors

of the physical system provide the required forces and torques to effect the velocities
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Figure 5.1. The nonholomobile mobile robot.

specified by the controller. The driftless models for many different configurations of
car and trailer may be found in Sgrdalen [38]. These experiments use two specific
models described later.

For most of the controllers which are implemented, the kinematic equations
are converted into a special normal form, called “chained form” [32]. A system in

chained form is written as

T1 = Uy

i:g = Uy

j?g = TaUq )
5.1

.’1")4 — T3U (

ITp = Tp—1U7.

Necessary and suflicient conditions for feedback transforming a system into chained
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Figure 5.2. Experimental apparatus.

form are given in [31].

The object of the experiments is to stabilize the system about a given position
and orientation using feedback. The car is a two-wheeled device with each wheel
driven separately by a stepper motor. The position and orientation of the system
are sensed using a passive two link manipulator with the base fixed to the floor and
the distal end attached to the car. Optical encoders at the manipulator joints and
on the car return angle information. Refer to Figure 5.2 for the locations of the
encoders and kinematics of the arm.

Once coordinate frames for the car and manipulator are chosen, the forward
kinematics of the manipulator is computed to locate the position and orientation
of the car. The orientation of the trailers is provided by encoders mounted on the
car and first trailer. The orientations of the car and trailers may be referenced with
respect to a fixed horizontal or given relative to the preceding car or trailer. The
map from one convention to the other is a simple kinematic change of coordinates

and so is not presented here. Similarly, it may be desirable to reference the position
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| Parameter [ Length(cm) |

4 88.9

s 84.6

dq 19.0

do 19.0

car wheelbase 10.0
wheel radii 4.0

Table 5.1. Kinematic parameters.

of the system with respect to the rear trailer instead of the car. Again, since the
transformation is straightforward it is not included. When discussing a particular
kinematic model of the system it is assumed that any preliminary computations
have been performed so that the position and orientation information provided by
the encoders is compatible with the model.

The important kinematic parameters of the aggregate system are listed in Ta-
ble 1. The link lengths of the manipulator are denoted I; and l5. The trailer lengths
are denoted dy and ds.

The optical encoders are quadrature encoders providing 2000 counts per rev-
olution or an accuracy of 0.18 degrees. They provide about 1 mm of resolution
when the manipulator is fully extended. This was judged satisfactory for the kind
of positioning experiment performed here. Each encoder signal is decoded with a
quadrature decoder. These decoders keep a running pulse count of the encoder out-
put. The real time software checks the buffer of the individual decoders to determine
the angle that the encoder has turned with respect to its initial reset position. The
decoders reside on a prototype card attached to an IBM PC.

The car is powered by two 4-phase permanent magnet stepper motors. The
motors are configured so that a single step is 0.9 degrees. The motors can handle
a maximum step rate of approximately 500 steps per second and still provide suffi-
cient torque to accelerate the vehicle. Saturation of the motors occurs at about 600

steps per second. A parallel port chip enables/disables the motors and specifies the
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direction of rotation. The step rate is set by the output of a programmable interval
timer. The step rates of the motors can be varied from more than 400 steps/sec
to less than 1 step/sec in increments of less than 1 step/sec. This resolution was
deemed sufficient for this experiment. When the stepper motors are used in this
configuration they are controlled in an open-loop manner. For example, the control
laws compute desired velocities based on the position and orientation of the system.
The velocities are then converted into the equivalent “steps per second.” The im-
plicit assumption with this method is that the motors can apply the torque required
to overcome inertial effects to maintain the proper speed. There is no direct way
to verify that the desired velocity is actually achieved. However, since the control
laws are continuous the input to the motors is naturally ramped. An alternative is
to use DC servo motors but this requires more hardware. The experimental results
demonstrate that the stepper motors perform quite well.

Real-time control was implemented in software using the Sparrow real-time con-
trol kernel [34]. This package controls servo loop execution, provides a simplified
interface to sensor and actuator hardware, and allows data capture and dumping.
Using the Sparrow software, a 200 Hz servo loop was used to implement a 5th or-
der digital Butterworth filter with 10 Hz cut-off frequency for smoothing all sensor
inputs. The sample rate for the feedback control law was 20 Hz. This was imple-
mented by computing the control action every 10th iteration of the servo loop. Data
was captured at the 20 Hz sample rate.

The kinematic models are presented below. The car with no trailer is represented

by the following set of equations:

T = cos Ggv
7 = sin Ggv (5.2)
by = w.

The scalar v is the forward velocity of the car and w is its angular velocity. These are
inputs determined by the control law. The Cartesian position of the car is denoted

(z,y). The car with a single trailer represents a 4-dimensional nonholonomic system
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Figure 5.3. Coordinate systems.

with the model,

& = cosBv
9y = sinfyv
. (5.3)
90 = w
. 1
01 = - tan(Ho - 91)’1).
dy

With this particular model z and y are the position of the trailer. The forward
velocity of the trailer is denoted v and w is the angular velocity of the car. The
forward velocity of the car is computed as vqr = cos(6y — 61)v. The control law
computes v and w and then the car velocity, vcq,, is determined using the previous
expression. Finally, the software determines the appropriate step rate for each

motor. Figure 5.3 shows the coordinate system used for each model.

5.2 Control Laws

We now discuss application of these ideas to the stabilization of the car-trailer sys-
tem. Consider the situation in which the input vector fields of the nonholonomic
system are homogeneous of degree one with respect to some dilation. A feedback
that is a homogeneous function of degree one makes the closed-loop vector field
homogeneous of order zero (using the convention described above). If this feed-

back is uniformly stabilizing in time then each state may be bounded by a decaying
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exponential envelope. For a car and trailer system the so-called chained form coor-
dinates of the input vector fields are homogeneous of degree one with respect to a
dilation with powers assigned to a particular state corresponding to the number of
Lie brackets of the input vector fields required to span that state direction.

The stabilizing feedbacks for the systems in power form are motivated from the
discussions in [28] and [29]. The actual feedbacks are derived from optimizing the
rate of convergence as observed in numerical simulations. There does not yet exist
a computational method for generating Lyapunov functions that may be used for
analysis of asymptotically stable homogeneous vector fields. Converse theorems do
exist, however they are not useful for specific examples since knowledge of the flow
is assumed in constructing the Lyapunov function.

Recall the kinematic model of the car and no trailers. A transformation that

converts equation (5.2) into a set of “almost” homogeneous vector fields is given by

zZ = 90
29 = T cos by + ysin by (5.4)
z3 = x sinfly — y cos by.

This particular change of coordinates has the advantage of being a global diffeo-

morphism. One can confirm that the vector fields in these coordinates have the

form

21 =u
Z.Q = U9 — Z3Us (55)
23 = 21Us,

where 41 = w and up = v. This system is nilpotent but not homogeneous because of
the z3ug present in the first equation. This term actually improves the convergence
properties of the system with the feedbacks given below. One may verify this by
using center manifold analysis on the system with the smooth feedback. Hence,

we essentially ignore this term when designing the feedbacks. The dilation that
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corresponds to these vector fields is
Ax(z1,29,23) = ()\zl,/\ZQ,)\223) A>0, (5.6)
and the homogeneous norm
p(=) = (e + 25 + 23)1. (5.7)

A control law motivated by [29] is

U] = —cC1121 + 012-—23— cos Q¢
p(z)
; (5.8)
Z3 .
Up = —C2122 + o2 sin 0t
p*(2)

where the c;; are positive real parameters which may be adjusted to modify the
system response. {1} is the frequency of the time periodic component of the control.
A proof that this control law is asymptotically stabilizing is given in Appendix C.
These are homogeneous functions of order 1 with respect to (5.7), are smooth on
R*\{0} and continuous at the origin. If the closed-loop system is asymptotically
stable then it is actually exponentially stable with respect to the homogeneous
norm (5.7).

If one is interested in globally smooth feedback there are a number of results
available. We compare our homogeneous feedback to two smooth controllers derived
by significantly different methods. The first smooth controller is just a smooth

version of (5.8),

U1 = —~C11%1 + C1223 COS Qt
(5.9)
Ug = —Ca129 + o023 8in L,

where the c;; are parameters. More details on the properties of this feedback may
be found in [28, 44]. The control law is written for the system in chained form so

the preliminary coordinate transformation (5.4) is required. This smooth feedback
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is contrasted to a controller derived from Pomet’s method [37],
1 ., 1, . .
v = —c¢y(zcos by + (y(1 + G Sin Q) — 500 sin Qt) sin 6p)
1 (5.10)
w = ycos Ut — ¢y (fy — aY sin Qt),

where ¢, and ¢, are positive parameters. Note that the control law is given in
the original coordinates. Pomet’s method may be used to generate a feedback
for the system written in chained form, however one could argue that an intrinsic
advantage to this method is the fact that special coordinates are not required. We
adopt this interpretation and so derive the feedback based on (5.2). This feedback

was generated from choosing
a(t,z) = ycos Qt

1 1
Vit,z) = 3 (:c2 + 1% + (6 — aY sith)Q) )

Refer to [37] for the notation.
The system with one trailer is now discussed. Recall the 4-dimensional set of
kinematic equations describing the system (5.3). The diffeomorphism and input

transformation that places the model into chained form is

Z1 =X

1
29 = — sec® 6 tan(6y — 61)

dy (5.11)
z3 = tan 91
z4 =Y,

and the inputs are computed from

U] = cos v

1
ug = sec’ 1 tan(fy — 91)(5—’5 tan 6, tan(fy — 61) — 7 sec(bo — 61))v + (5.12)
1 1

1
— sec® 0 sec? (g — 0;)w.
dy
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The expression of the vector fields in these coordinates is

2'1 = Ul
22 = U9
2'3 = Z2U1
2.4 = Z3U1.

This system is homogeneous of degree 1 with respect to the dilation
A,\(Z) = ()\21, AZQ, AQZ3, /\324).
A particular choice of homogeneous norm is
1

p(z) = (21 + 23° + 25 + 25) 1.

The feedback that is implemented has the form

22 22 i
up = —cnzi + o2 | 5+ = (cos 2t — sin §2t),
P> p
P
Uy = —C9129 + C22—p3‘ cos 200t + 023% cos 302,
0

(5.13)

(5.14)

(5.15)

(5.16)

where the ¢;; are positive parameters. This feedback is homogeneous of degree 1

and so the closed-loop vector field is homogeneous of degree 0 with respect to (5.14).

Numerical simulations of these models will be compared to actual data in the next

section. A stabilizing feedback will necessarily stabilize at an exponential rate.

The smooth controller for the 4-dimensional system that is implemented is

from [28, 44]. The system is written in chained form and the feedback takes the

form,

up = —c1121 + C12 (zg + z3> (cos Qt — sin ),

Uy = —c%lzg + Coo23 €08 282t + ca324 cos 300,

(5.17)
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5.3 Experimental Results

The experimental results are presented in this section. The first part compares open
loop trajectories generated by a nonholonomic path planning algorithm to numerical
simulations of the equations. These results motivate the need for feedback. The
physical parameters in Table 5.1 were measured with a metal tape measure and so
the accuracy of these measurements is limited to several millimeters. This will lead
to errors in the computation of the position of the system. The most compelling
reason to employ feedback is to make the system insensitive to such errors and so
approximate measurement of the system position should be adequate if the feedback
is “good.” It is difficult to perform a detailed robustness analysis on these systems
but the fact that the closed-loop systems perform quite well is testimony to some
degree of robustness possessed by the feedback.

The results with feedback are presented following the open-loop experiments.
Some thought must be given to the interpretation of the results if a comparison
between several types of controllers is made on the same system. The rate at which
the system approaches its equilibrium position from different initial positions is a
reasonable criterion to assess the controller performance. In any application the
control effort is a real limitation on the achievable performance. This limitation
is embodied in the fact that the stepper motors saturate at about 500 steps/sec.
Therefore it is reasonable to choose, as a means of comparison between different
controllers, a fixed neighborhood of the equilibrium point where it is desired that
each control law stabilize the system with initial conditions in this neighborhood,
but at the same time not saturate the motors. The individual control laws may be
“tuned” to take full advantage of the actuator in this neighborhood. We compare the
controllers in this manner. Outside the neighborhood, where the motors saturate,
saturation functions may be used to increase the domain of attraction [43]. However,
since we are interested in the long term behavior of the system, we need only consider
initial conditions inside the neighborhood where the saturation function have no

affect.
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5.3.1 Open loop inputs

We now present some experimental results using open-loop inputs to the car (no
trailers). The velocity inputs are computed by representing the velocities as the
sum of harmonic components with unknown amplitudes. The system is converted
to chained form and integrated with the desired initial conditions. The final position
is enforced resulting in a set of polynomials with the amplitudes of the harmonic
functions as the indeterminates. The actual system trajectories are shown is Fig-
ure 5.4. The numerical simulation demonstrating that the open loop inputs steer
the mathematical model to the origin is also shown in Figure 5.4.

The inputs where chosen to returns the car to the origin with zero attitude.
The initial conditions where chosen so as to match those of a feedback experiment
presented in the next subsection. The initial conditions for computing the velocity

inputs and the numerical simulation are

z = —0.5945m y =0.3299m 6, = 0.8262rad.

The initial conditions of the experimental apparatus are

z = —0.5923m y=0.3296m 6y = 0.8294rad.

The responses are qualitatively very similar however disturbances and modeling er-
ror contribute to the large discrepancy between the actual and desired final position
of the car (20 cm in the y position and 9 degrees in orientation).

The careful designer could probably do better than this at the expense of more
detailed models for the system. However, the objective of this experiment is not to
perform such an analysis of open-loop control schemes but rather motivate the use

of feedback.
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Figure 5.4. Open-loop control.
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5.3.2 Stabilization of the car

Experimental results with feedback are now presented for the car. Figure 5.5 com-
pares the exponentially stabilizing homogeneous controller (5.8) and the smooth
asymptotic controller (5.9), both of which use the coordinate change (5.4). The
figure compares the time response of the the system with both controllers to a set of
initial conditions very close to those used with the open-loop experiment. Figure 5.6
contains a step rate comparison of both controllers. The car uses two motors and
the step rate input into one motor is plotted for both experiments. Note that the
peak step rate amplitude of the smooth asymptotic controller is higher than the
peak amplitude of the exponential homogeneous control law. Figure 5.6 also con-
tains a log plot of the y-variable. The exponential convergence of the homogeneous
controller is evident.

Figure 5.7 presents experimental results with the Pomet feedback (5.10). The
controller exhibits large effort during the initial transient period of the system re-
sponse. Figure 5.8 shows numerical simulations of the homogeneous control law and
Pomet’s smooth control law with the initial conditions of the simulation set to the
initial data of the experiments in Figures 5.5 and 5.7. The simulations are very close
to the actual response. Simulations for all of the other cases (smooth controller and
the controllers for the car and trailer) are not shown since the results are quali-
tatively similar to the experimental data. The simulations are used to adjust the
parameters of the controllers, the final tuning being performed on the actual system
after the simulations yield the desired response. Note that the smooth controllers
are asymptotically stabilizing the system but the rate is very slow. The control

parameters used in these experiments are found in Table 5.2.

5.3.3 Stabilization of the car and one trailer

The stabilization results for the car and one trailer are discussed below. Particular
attention should be paid to the behavior of the y-variable. Figure 5.9 compares
closed-loop behavior of the exponentially stabilizing homogeneous control law (5.16)

and the smooth asymptotic control law (5.17) with the same initial conditions. No



118

Homogeneous Control Law

1.5

(pex) 99 ‘(s1oj0wr) fi‘zw

15 20 25 30 35 40 45 50

10

time (sec)

Smooth Control Law

(pe1) 0g ‘(s1030wmI) fi ‘z

1520 25 30 35 40 45 50

10

time (sec)

Experimental comparison of homogeneous and

smooth feedbacks for the car with no trailers.

Figure 5.5.



119

Control Effort

600
400 [

=200

@]

g

5 0

o

g,

Q

&= -200

400 [

I I | f I I |

homogeneous
smooth

-600

10

1520 25 30 35 40 45 50
time (sec)

Convergence Rates

log(|y|)

homogeneous

| | | ] 1 ] |

5

10

15 20 25 30 35 40 45 50
time (sec)

Figure 5.6. Experimental controller effort and convergence rates
for the car with no trailers.



z,y (meters), 6 (rad)

Steps per second

120

Pomet Controller

1 T T T T T T T T

-0.8

| 1 | | | | | | |

20 25 30 35 40 45
time (sec)

50

Control Effort
600 l ] I I ; | I

200
400
300
200
100

-100
-200

-300

10 15 20 25 30

time (sec)

35 40 45 50

Figure 5.7. Pomet control law response and actuator effort for

the experimental system with no trailers.



121

Homogeneous Control Simulation

1.5

(pe1) *g ‘(s1oow) fi‘x

time (sec)

Pomet Controller Simulation

15 20 25 30 35 40 45 50

10

time (sec)

Numerical simulation of the homogeneous and

smooth Pomet controllers for the car with no trailers.

Figure 5.8.



122

| | Homogeneous (5.8) [ Smooth (5.9) [ Pomet (5.10) |

Ci1 0.3 0.3

C12 0.4 0.4

c21 1.0 1.0

c92 3.0 5.0 :
Cy . . 1.0
Cyu . . 1.0
Q 2.0 2.0 2.0

Table 5.2. Control law parameters for the car with no trailers.

] || Homogeneous (5.16) | Smooth (5.17) |

cél 0.5 0.5
lel 0.6 0.6
652 0.5 0.5
cg2 0.5 0.5
Chy 0.5 0.5
Q 0.5 0.5

Table 5.3. Control law parameters for the car and one trailer.

specific initial condition was chosen to make one controller perform “better” than
another. The step-rates generated by each control law are shown in Figure 5.10.
The peak step rate for both controllers is approximately 300 steps/sec. The log(|y|)
plot is useful for assessing the convergence rate of the system. This will be discussed
in more detail in the next section. The parameters used in the experiments with

one trailer are given in Table 5.3.

5.3.4 Discussion

The first aspect of the experimental results to note is the rate at which y approaches
zero. For the controllers which rely on chained form, the y variable is identified with
the “slowest” state. Thus the rate at which this state decays is of practical interest.

It is useful to plot log(|y|) to study this behavior. The fact that y in the homogeneous
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controllers’ response may be bounded above by a straight line (see the log plots in
Figures 5.6 and 5.10) indicates that y is approaching zero at an exponential rate. The
average rate of convergence is equal to the average slope on the plots. The smooth
controller in chained form decays at an algebraic rate. This is also evident from
the log plots. The Pomet controller is written in the original physical coordinates
so there is no distinguished “slow” state. However center manifold analysis may
be used to show that the rate of decay of y determines the rate of convergence
for the entire system. The discrete nature of the motors places a lower bound on
how close the system can come to the origin. This may cause hunting. However
this is a shortcoming of the hardware, not a limitation of the controller, and may
be dealt with by ad hoc means (such as switching the controller off in some small
neighborhood of the equilibrium point).

A few words should be said concerning the choice of fundamental period of the
control laws and the digital filtering. First, the period, Q, was chosen in order to
maximize the rate of convergence but at the same time not saturate the motors.
Analysis of the systems in chained form clearly demonstrates that shorter periods
result in faster convergence times but at the expense of increased motor speed.
Second, the bandwidth of the digital filter was chosen to be high enough to guarantee
asymptotic stability. This is basically the special perturbation result proven in
Proposition 4.15. The bandwidth was determined experimentally by balancing the
tradeoff between measurement smoothing and convergence rate.

We now discuss control design related aspects for the individual problems. The
controllers used in these experiments do not differentiate between length scales. For
example, the (z,y) position of the car may be expressed in cm, m or even km. Hence
as long as the actuators don'’t saturate, the region of convergence in terms of the
linear variables is rather arbitrary. The response of the system depends critically
on the length scale chosen though. For the homogeneous systems this is embodied
by the shape of the corresponding homogeneous ball: homogeneous balls when the
lengths are measured in kilometers and the angles in radians look much different

than the balls with the lengths measured in meters. The length scale must be chosen
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so that the system response is satisfactory. The definition of “satisfactory” depends
on the particular application .

The three-dimensional system (car and no trailers) uses a length scale of 1 meter
and angle scale of 1 radian. However the length scale for the system with the
car and one trailer is the length of the trailer itself, i.e. one “unit” of length is
19 cm. A length scale of one meter leads to undesirable behavior because, for
example, the homogeneous ball with y = 1 mm on its boundary also has z = 10 cm
on its boundary! The finite precision of the actuators and sensors will invariably
cause hunting in a neighborhood of the origin. This neighborhood is actually a
homogeneous ball, for homogeneous closed-loop vector fields, and if the length scale
is not chosen carefully can lead to large excursions of « with respect to small changes
in y. This type of behavior is characteristic of any homogeneous vector field. Our
selection of the trailer length as the length scale mitigates this undesirable behavior
for the homogeneous feedback.

The hunting behavior is demonstrated for the car and trailer in Figure 5.11 when
the characteristic length is taken as 1 m. The second figure shows that the hunting
occurs in a homogeneous ball with p ~ 0.2. The arguments for picking a good length
scale to eliminate hunting are not as compelling for smooth feedbacks since all of
the analysis may be performed with any of the usual p-norms.

Lastly, we discuss a very important concept that is germane to any control sys-
tems design requiring a diffeomorphism to place the model into a desired coordinate
representation. The singular values of the linearization of the diffeomorphism (5.11),
at various points in the phase space, indicates the amount of “stretching” per-
formed on the variables by the transformation. A controller that depends on an
ill-conditioned transformation may exhibit extreme sensitivity to small changes in
certain state variables. This is exemplified in Figure 5.12 where a poor length
scale was chosen for the transformation. Numerical simulations of the system im-
ply closed-loop stability but the actual response does not look stable. Plotting the
chained form variables shows that the z; variable is dominant and is quite noisy.

This results in very poor performance of the system. The length scale chosen for
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this experiment is 5 meters and the controller is the homogeneous controller which
uses transformation (5.11). However, this behavior is caused by the transformation
and is observed with any controller implementation. The trailer length is actually
d; = 0.19/5 =~ 0.038 as far as the diffeomorphism is concerned. The condition num-
ber of the diffeomorphism evaluated at the origin is 52.7. This is due primarily to a
singular value with magnitude 37.2. The amplification of the physical data occurs
in the 6y — 6; “input” direction to the zs “output” direction. This is illustrated by
performing a singular value decomposition on the linearization of the transformation

at the origin,

V2 1 1
z9 1 00 O 0 1 0 O 1 0 0 0 Y
29 0 0 0 -1 0 01 0O 01 0 0 )
1 1 1
2 001 0 0 0 0 7 0 0 - 7 7 0

Thus, when 6y — 6; crosses zero the same occurs to the z, variable except it is
amplified by an order magnitude.

We overcome the ill-conditioning by scaling the linear measurements with respect
to the trailer length. Even for wheeled systems judicious choice of length scale may
not solve the ill-conditioning problem. For example, consider the situation in which
the ratio of two kinematic parameters is large: a length scale cannot be chosen
to normalize both parameters to one. Finally, an important point to note is that
the 3-dimensional system has no characteristic length associated with the kinematic
model and the transformation specified by equations (5.4) has condition number 1
at all points in the phase space for any desired length scale.

The issue of transformation conditioning has not been addressed in the nonlinear
systems literature but, as illustrated here, has a large impact on the performance.
Control practitioners are well aware of the potential dangers of model inversion for
linear systems. Our transformation may be interpretated as a kinematic inversion as
opposed to the dynamic inversion often used in linear synthesis. One should expect

the same problems to arise in the nonlinear setting as well.
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Chapter 6

Conclusion

This thesis has presented an approach to obtain explicit p-exponentially stabilizing
control laws for a large class of driftless systems. The feedbacks rely on a fundamen-
tal approximation of the system and they preserve the structure of this approxima-
tion. This leads to a slightly modified notion of exponential stability. Although the
synthesis methods in this thesis do not cover all controllable analytic driftless sys-
tems, many application areas satisfy the conditions required by the methods. The
feedbacks are necessarily non-Lipschitz for exponential stabilization and this prop-
erty naturally arises from the synthesis procedure. By requiring the feedbacks to be
smooth everywhere except the desired equilibrium point the closed-loop solutions
are guaranteed to be unique.

A specialized singular perturbation result for degree zero systems proves that
lowpass filters in the loop do not change the p-exponential stability of the system.
This fact is not obvious since the system linearization is not defined. Of course, low-
pass filtering of measurements is always used in applications where the controller
is implemented digitally. Another aspect of practical significance is the fact that
the control variables are often velocities in the driftless models. The extension of
kinematic controllers to controllers which stabilize the driftless system plus a set
of integrators is given. This framework is also used to show how dynamic con-
trollers, which include the integrators as states, may be used to smooth the control
rate commanded by the controller. In this case the control action is continuously

differentiable.
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This entire paradigm was put to the experimental test with the nonholomobile.
The experiments demonstrated the superior performance of the p-exponential sta-
bilizers as opposed to traditional smooth feedbacks. The experiments also revealed

the importance of diffeomorphism condition number for nonlinear control systems.

6.1 Future Directions

Even though the synthesis methods in this dissertation do not cover the most general
class of driftless systems there are other issues which deserve just as much attention.
Several research areas, pertaining to driftless systems and to nonlinear systems in
general, are given below.

Quantitative Analysis. Many of the results proven here are of a perturbative
nature. In other words, a given property manifests itself for “e sufficiently small”
or “k sufficiently large.” This is certainly true of the averaging theorem, lowpass
filtering and dynamic extension results. These results are qualitative in the sense
that they do not actually exhibit an € or k£ for which the results hold but merely
imply the existence of such numbers. Results of this nature are usually the first
ones to be proven in analysis because they are the easiest to formulate and solve.
This does not diminish their importance in systems theory but somewhat limits
their usefulness in practical applications. A useful set of design tools would assign
values to € and k and show the tradeoff between domain of attraction, convergence
rate, and the effects of noise on control effort and control rate. Another useful tool
would explore methods to optimize the convergence rate of the closed-loop system.
Many of these issues can be partially solved with the use of a Lyapunov function.
However, there is currently no way to choose or construct the Lyapunov function
which gives the least conservative estimates of the quantities of interest.
Robustness. The converse Lyapunov theorems used in this thesis were used to
show that terms neglected in the approzimation of the model do not affect the
stability of the system. Perturbations of the model itself were not considered. When

the model is written in the coordinates adapted to its filtration it is a simple matter
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to characterize the perturbations which do not affect the stability. These results are
still of a quantitative nature though. A more useful result is the characterization of
the perturbations in the original coordinates which do not change the stability of

the system. For example, the kinematic wheel given by the model,

T = cos Ov
7 = sin fv
6=w,

is locally asymptotically stabilized by the feedback,

2

v 29 + “3 sint
= —29 ——
p*(2)
23
W= —21] + ———cost
p(z)

p(2) = (2t + 23 + 23)1,
where

2129
z9 = xcosf + ysinb

23 = zsinf — ycosd.

The convergence rate is exponential in the sense of equation (2.2) for the (z,y,6)
variables. A small perturbation of the y equation to ¢ = (e +sin8)v destabilizes the
origin as shown in Figure 6.1 (¢ = 0.1 and the initial conditions are (0,0.01,0)). This
perturbation is actually degree two compared to the degree one approximations of
the vector fields in the coordinates adapted the filtration. Unlike linear input-output
models, the states of many nonlinear models represent physical quantities. In this
case, the class of physically meaningful perturbations must be considered. In the
kinematic wheel example, the perturbation used in the y equation is not justified

from a physical basis and so we expect our controller to perform well even though an
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arbitrarily small perturbation in the model can destabilize the desired equilibrium
point.
Systems with Drift Vector Fields. Control systems with drift vector fields have

the form,
M

z = XO(tv x) + Z Xi(tv x)uz
=1

Homogeneous approximations and feedbacks have been applied to these systems in
certain low dimensional cases by Hermes [17, 18] and Kawski [20, 19]. A system with
drift vector field is more difficult to analyze when the linearization is not control-
lable. In fact no necessary and sufficient conditions have been found for STLC [41].
Thus systems with drift are a more challenging class to control. Egeland in [11]
has recently proposed a model for an underwater vehicle which has homogeneous
strucure. The drift vector field is due to the intertial effects of the vehicle and does
not fit within the framework of equations (4.22). The model also fails Brockett’s

condition for continuous time-invariant stabilization. However, an asymptotically
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stabilizing controller was derived by further developing ideas from the methods used
by Serdalen [38] who stabilized driftless systems in chained form. These references
demonstrate that homogeneous approximations and feedbacks have an important

and fundamental role to play in systems with drift vector fields.
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Appendix A

Review of Controllability and Stabilization Results for

Driftless Control Systems

This appendix reviews the basic local controllability properties of nonlinear affine
control systems. A necessary condition for continuous stabilization of driftless sys-
tems and related results are also covered. An excellent reference for the controlla-

bility results reviewed in this appendix is Nijmeijer and van der Schaft’s book [36].

A.1 Controllability

Controllability for nonlinear systems is developed for general affine systems of the

form

m
i=Xo(z)+ > Xi(m)u;, ueUCR" z€V CR (A.1)
=1
where V' is an open subset of R*, the X; are smooth vector fields defined on V,

and the u; are real valued functions of time. The following assumption is made

concerning the type of control input that is admissible:

Assumption A.1 An admissible input u satisfies the following two conditions,

i) the input space U is such that the set of associated vector fields of the sys-
tem (A.1)
m
F = {X() +ZX¢U¢I(U1,... ,um) S U}

1=1
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contains the vector fields Xy, X1,..., X,, and,

ii) an admissible control is a piecewise constant function which is piecewise con-

tinuous from the right.

See Sontag [41] for an explanation as to why the set of control inputs may be
restricted to those satisfying the assumption instead of a more general class of
functions. The trajectory of the system through the point z with admissible input

u is denoted (¢, 0, z;u). The definition of controllability is

Definition A.2 The nonlinear control system (A.1) is called controllable if for any
two points x1,z2 € V there exists an admissible control of finite duration v : [0,7] —

U such that ¥(T,0,z1,u) = zo.

An object of fundamental importance for controllability is the so called accessibility

algebra of the system (A.1).

Definition A.3 The accessibility algebra C of the system (A.1) is the smallest sub-

algebra of the Lie algebra of smooth vector fields on V' that contains Xy, X1,..., X,,.

The accessibility distribution C is the distribution
C(z) = span{X(z)|X a vector field in C},z € V. (A.2)

Let R" (z,T) denote the set of reachable points from z at time 7' > 0 following
trajectories which remain in the neighborhood W of z for all ¢t < T. Furthermore,
define

RY (z) = |J R (2, T).
7<T

The following theorem states that an open neighborhood of points may be reach

from z if the accessibility distribution has rank n at z,

Theorem A.4 Assume that
dim C(z) = n,
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Jor the system (A.1). Then for any neighborhood W of ¢ and T > 0 the set RY ()

contains a non-empty open set of V.

This theorem does not imply the system (A.1) is controllable about a given point.
However, for driftless systems, i.e. Xy = 0, a full rank accessibility distribution does

imply local controllability,

Proposition A.5 Suppose Xo = 0 in (A.1) then if dim C(z) = n then RY contains
a neighborhood of x for all neighborhoods W of z and T > 0.

Finally, another stronger definition of controllability is the notion of small time
local controllability, abbreviated STLC. The definition is reviewed below since sev-
eral references in the introduction assume the STLC property. Another important

property of driftless systems on R™ is that controllability and STLC are equivalent.

Definition A.6 The system (A.1) is STLC (at zero) if for any 1, o > 0 the set
of all points which can be reached at time ¢; via solutions, initiating from zero,
by using measurable controls ¢ — u(t) = (ui(¢),...,um(t)) satisfying |u;(t)] < o,

contains a neighborhood of zero.

A.2 Stabilization

The following necessary condition for continuous autonomous stabilization was first
brought to the attention of the controls community by Brockett [4]. The class of
systems are ordinary differential equations which are continuous in the state and

parameter u (to be thought of as a control variable),
T = f(z,u). (A.3)

Theorem A.7 (Brockett) Assume that (A.3) admits a continuous stabilizing feed-
back u(z). Then for each € > 0 there is a positive number § such that, for each y

with ||y|| < 9§, the equation

Y= f(:C,U)
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is solvable on the set ||z|| < e, ||u — u(0)]| <e.

Thus the image of f : R* x R™ — R must cover a neighborhood of the origin. The

driftless system

T =X1(x)ur + - + X (2) U, (A.4)

where the rank the input vector fields [Xi|---|X,,] is less than n (the state di-
mension) always fails this condition. Hence there does not exist a continuous
autonomous feedback which renders any point asymptotically stable. However
Coron [7] showed that controllable driftless systems may be asymptotically sta-

bilized with a smooth time-periodic feedback,

Theorem A.8 (Coron) Consider the driftless system given by equation (A.4) with
smooth input vector fields. Assume that for all z in R \ {0} there are vector fields
Y1,..., Y, in the Lie algebra generated by {X1,..., X} such that {Yi(z),..., Y (z)}
span R™. Then x = 0 can be globally asymptotically stabilized by means of a smooth

time-periodic feedback law u; = u;(¢, ).

Thus even though Brockett’s condition precludes an autonomous continuous stabiliz-
ing feedback, Coron’s result demonstrates that an explicitly time varying continuous
feedback can asymptotically stabilize the driftless system.

The limitations of smooth feedback were discussed in Chapter 4. It is of interest
to know whether faster rates of convergence can be achieved for driftless systems.
Another existence result by Coron states that controllable driftless systems may be
stabilized to the origin in finite time with continuous time-periodic feedback. The

definitions and results below are taken from [8].

Definition A.9 The continuous system satisfying the small time local controllabil-

ity condition given in Definition A.6 is locally asymptotically stabilizable by means
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of a T-periodic feedback law if there exists u : R® x R — R™ such that

u € C®(R™\ {0} x R R™) N CO(R™ x R;R™),
u(0,t) =0 Vt € R,
u(z,t+T) = u(z,t) V(zr,t) e R* x R,

and
i) 30 > 0 such that for |zq| < d,%p < t; there exists one and only one solution on
[to,t1] of & = f(z,u(t,z)),z(to) = o,
ii) 0 € R" is a locally asymptotically stable point of # = f(z,u(t, z)).
If such a u exists the the system is said to be T-LAS. If, moreover, for all small

enough g,

= f(z,u(t,z)) and z(0) =z = =(T)=0,
then the system is termed T-Locally Stabilizable (T-LS).

As mention above, for driftless systems the STLC condition is equivalent to con-

trollability. The result of primary interest from Coron’s paper is

Theorem A.10 (Coron) Assume f(z,u) = ¥, Xi(z)u;. Then & = f(z,u) is
T-LS for all positive T .

The feedbacks presented in this thesis do not stabilize the equilibrium point in
finite time however they are continuous and smooth on R" \ {0} as is required by

exponential rates of stabilization.
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Appendix B

Computation of Coordinates Adapted to a Filtration

This appendix introduces a simple algorithm for computing coordinates adapted
to a filtration. We are interested in approximating a set {Xi,...,X,,} of input
vector fields which generate a full-rank Lie algebra by a set of controllable nilpotent
vector fields. The coordinate change is polynomial with order equal to the degree of
nonholonomy of the vector fields. The algorithm has the advantage of being simple
in concept and easily implementable with a symbolic manipulation package. Even
though the algorithm is developed in the context of driftless control systems, it may
be made more broadly applicable with some minor modifications. More motivation

may be found in [18].

B.1 Background and Motivation

For notation and basic definitions the reader is referred to Chapter 2. Related
computational results may be found in [42]. This algorithm is developed for ap-

proximating the vector fields of the following nonholonomic control system,
t=X1(2)u1 + - + Xpn(@)up, R, (B.1)

where X; : R® — R" is an analytic, nonzero vector field in a neighborhood of, with-
out loss of generality, the origin. We assume n > m. The coordinates adapted to the

filtration described in Chapter 2 are generated by the following local diffeomorphism



141

z- and z-coordinates,

z=®(z) = ¢§(17r1 ) w;ng 0---0 ¢§("M (0), (B.2)

where 9% denotes the flow of X for time ¢ and the vector fields X, are selected
from the filtration according to equation (2.9). The usual notation for flows is
¥(t,t0,z). The new notation is used to simplify the writing of the composed flows
and to denote the vector field with which flow is associated. The construction of this
transformation does require solving differential equations which can be an arduous
task. The physical response of the system with the stabilizing feedback will depend
on which vector fields from the filtration are chosen to compute the transformation.
However this is not explored in this appendix. Finally, we must distinguish between
“degree with respect to a dilation” and “degree in a Taylor series expansion” (which
is actually degree with respect to the standard dilation). It should be clear which

definition is intended from the context.

B.2 Results

This section describes the algorithm and its application for the approximation prob-
lem discussed above. The diffeomorphism (B.2) can certainly be computed by hand
for low dimensional problems. However, this is undesirable if a number of transfor-
mations are desired by picking different vector fields from the filtration. For higher
dimensional systems the computations become pedantic and a symbolic manipulator
“solution” is desired.

The vector fields of the filtration are analytic so the transformation (B.2) is
analytic in a neighborhood of the origin. It is intuitive that a sufficiently high degree
Taylor approximation of (B.2) should suffice to place the X; € Fy into proper form.
Recall that X; = X! + X9 + X{l + -+, where the superscript denotes the degree
with respect to the dilation, in the coordinates adapted to the filtration. Thus,
computing (B.2) does not eliminate the “higher” order terms in the new coordinates.

Given this fact it is less compelling to compute (B.2) exactly. We should be satisfied



142

with an approximation of (B.2) as long as X; = X! + )NCZQ + 5([1 + ... in the
approximated coordinates (ie. the “degree one” part of X; remains unchanged).

The main obstruction to implementing (B.2) on a computer is the fact that sym-
bolic manipulators are unable to integrate general nonlinear vector fields symboli-
cally. The idea behind the algorithm is to perform preliminary coordinate changes
so that the vector fields are trivial to integrate. The X . may be “straightened out”
since they are nonzero in a neighborhood of the origin. Integrating the straightened
out system is trivial. Unfortunately, this coordinate change requires knowledge of
the flow Q/JB(Wi. However, we may perform a sequence of transformations on each X,
that successively removes higher order terms up to some prespecified order. The
flow of WX;- may be approximated accurately by a simple symbolic integration in
these coordinates.

We now show that if the degree of nonholonomy of the set {X;,..., X,,} is
p then it is sufficient to compute (B.2) to order p to get the correct degree one
(with respect to the dilation) approximation, X}, of X;. Suppose we have the full
diffeomorphism z = ®(z) given by (B.2). Then X;(z) given in the coordinates
adapted to the filtration is

* (B.3)

The degree of nonholonomy p implies that the variable z, has a weight p in the
dilation. Variables z; through z,, have weight 1 since each X; € Fy, i —1,...,m.
Thus, the highest order Taylor series terms in X! are monomials of 21, za, . .., Zm
with degree p — 1 appearing in the expression for z,. Hence terms of degree p — 1
must be preserved by the approximation of ®. To compute X} (z) through degree
p—1 we compute each of the terms in (B.3) through degree p — 1. This implies that

we must at least retain terms through degree p—1 in X;(z) and ®(z). Now suppose

D.(z) = A+ R(z), (B.4)
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where A € R™™" is nonsingular and R(0) = 0. The Jacobian of the inverse map

may be computed as,

(1) (2) = (@)
= (A+ R(2))™!
= AN (I + R(z)A7")7!

— 4! (1 ~REA™ + (R2)A) +.. ) (B.5)

2

— a7 (T=RE@A™ + (REA) 4t (RE41)) +00).

In practice, R(z) is truncated at order p so that the computation of (@‘1)* is correct
to order p. Thus an approximation of ®(z) through degree p terms is sufficient to
calculate X} (z) in the new coordinates.

Computing each of the diffeomorphisms, @b;}m, in equation (B.2) through order
p will ensure that ® is approximated through order p. Now we demonstrate how to
approximate the flow ng(ﬂ fori =1,...,n. Suppose that an initial linear change of
coordinates has been performed so that X,,(0) = e;. To remove the linear terms in

the vector field X, apply a change of coordinates as follows,
T =y + ha(y), (B.6)

where hg is composed of degree 2 monomials in y; and is yet undetermined. Changing

to y-coordinates yields,

Xm; (y) - (I + Dyh2(y))~lXﬂ'i (y + hQ(y))
= (I — Dyha(y) + (Dyha(y))* — .. ) Xr,(y + ho(y)) (B.7)

= X7, (0) + X (y) — Dyha(y) Xx, (0) + O(y?),

where X%) denotes Taylor terms of degree one of the vector field and Dyhs is the

Jacobian of hy. To eliminate the linear terms we choose hy such that the following
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is satisfied,
Dyha(y)Xx,(0) = XV (y). (B.8)
One way to select hg is to set

ha(y) = [ X0 (y)dy (B.9)

This choice guarantees that relation (B.8) is always true. The kernel of this operation
is all degree 2 monomials which do not contain y;. Even though these terms allow
extra degrees of freedom in the coordinate transformation, we show below that
the choice given by equation (B.9) is the most desirable for our algorithm. Once
ho is determined we can formally change the vector field into the y-coordinates
retaining all terms of degree p or smaller. It should be obvious that one can proceed
in an analogous manner to eliminate the degree k terms, X7(T]f), by specifying a

transformation z = y + hx41(y) where

hen(v) = [ X (w)dy (B.10)

consists of degree k + 1 monomials in y. Thus, successive near-identity transforma-

tions are used place X, into the following form
Xr, =ei+0(p+1). (B.11)

This process is analogous to the normal form computations for fixed points of vector

fields with the important distinction that the operation
Dyhk+1X7ri (O)

is always a surjection from vector valued monomials of degree k+ 1 to vector valued
monomials of degree k. Thus we are able to remove terms of arbitrary degree unlike

the normal form case around a degenerate fixed point. Furthermore, we are not
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concerned if this process converges for infinite sequences of transformations since
the computations are terminated at some fixed order. Approximate integration of
the vector field (B.11) can now be accomplished.

Now we approximate the solution of equation (B.11). Suppose the initial condi-
tion is x;(0) = (t1,...,%-1,0,%41,...,t,). Then the trajectory of equation (B.11)

through this initial condition is
'(p;(wl_ (QJ(O)) = (tl, ey bi, Ty, .. ,tn) + O(Ep—’_l), (B12)

where ¢ = (t1,...,%i-1,T,tit1,--.,ts). This is easily shown by expanding the so-
lution of (B.11) in a multiple power series in the time parameter 7 and the initial
condition z(0) = (¢1,...,%i—1,0,%i41,...,ts). The existence of this power series is
guaranteed by the analyticity of the vector field.

Now we have enough background to summarize the algorithm:

i) Begin with a preliminary linear change of coordinates y = A~z where

A= D,3(0)

= (X (0), X, (0), .., X, (0)) .

A is nonsingular by assumption. We abuse notation by writing the vector

fields in these new coordinates as X, (z) except now X, (0) = e;.

ii) Now we successively straighten out each vector field in equation (B.2) and
approximate its flow starting with X, . Perform the sequence of transfor-
mations described above to “straighten out” X, through order p to yield

Xr, = e, + O(p+1). Approximate the solution from the initial condition

Tp;&,n ((0)) = (0,...,0,2,) + O(Z£+1),
where z = (21, 29,...,2,). However at this stage only z, is present.

iii) Compose these intermediate transformations into one transformation and trun-

cate any terms with degree p + 1 or greater. Denote this polynomial change
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of coordinates as © = 1, (y). The construction is such that z represents the

original coordinates and y represents the new coordinate system.

Now transform the remaining vector fields X, i =1,...,n — 1, with ¢,:

(¥a'), X (0 (w))-

Abusing notation once more, denote the vector fields in these coordinates as
X (x), i = 1,...,n — 1. Note that (¢, !), may be approximated through
order p using the computation from equation (B.5) (in this case A = I so

some symbolic operations are saved).

Now straighten out X, _,(z) through order p so that in the new coordinates
Xr,_, = en—1+ O(p+1). Denote the order p transformation which accom-
plishes this ¢,,_1. Before the approximate solution of X, _, is calculated, the
initial condition z(0) = (0,...,0, z,) must be transformed into the new coor-
dinate representation. In other words the following equation must be solved

for y(0),

(0,,0,Zn) :¢ﬂ~1(y1(0)7ayn(0)) (B13)

If we make the specific choice of the h; given by equation (B.10) when con-
structing 1,1 then every term in ¢,_; of degree greater than one has a y,_
factor. Thus the unique solution of (B.13) in a neighborhood of the origin is
easily verified to be y;(0) = z;(0), i =1,...,nie y(0) =0fori=1,...,n—1
and y(n) = z,. Had we decided to exercise the extra degrees of freedom in
computing t,_; then the inversion of (B.13) would have been much more

involved.

The flow of X, _, from the initial condition z(0) = (0,...,0, z,) is approxi-
mated as

w?ﬂ;l_l (l’(O)) - (07 e 70; Zn—hzn) -+ O(Zp+1)_

Transform X,,, ¢« = 1,...,n — 2, into the new coordinates using v,1 and
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proceed to straighten out X, _,. Once again, special choice of the h;’s ensures
that the initial condition in the new coordinates is the same as the initial

condition in the old coordinates.

vii) Proceeding in this manner we finally straighten out X, with ¢); and the flow

is given by
¢§§W (0,29,23,...,2n) = (21,22, -+, 2n) + O(zp+1)
! (B.14)
= F(2) + O(z"*1).
viii) The local diffeomorphisms v;, ¢ = 1,...,n are polynomial of order p. They

relate the new z-coordinates to the original z-coordinates by following trans-

formation,

T =1pothp_1 0011 (F(2)). (B.15)

By virtue of our choices for h;, F(z) = (21,29,...,2,) although in the more
general case F' would be a local diffeomorphism itself. ¥(z) denotes the order

p truncation of (B.15) and has the property that,
®(z) = U(z) + O(zFT) (B.16)

by the construction above.
The original vector fields X;, i = 1,...,m, may be expressed in the z-coordinates
to yield the decomposition X; = X} + X2 + X' 4+ .. ..
This algorithm is rather involved for hand computations. However, its simplicity
and the fact that the flows of the vector fields are trivial in the correct coordinate

system makes the algorithm amenable to symbolic programming.

B.3 Improvements to the Algorithm

An improvement qualifies as any modification that reduces the number of symbolic

manipulations yet still produces a correct homogeneous degree one approximation
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of X;. There are several potential improvements which may accelerate the execution
time of the program. The first improvement is to note that ¥ need only be computed
through order p — 1 (i.e., all terms of degree p or higher are neglected) because the
degree p terms remaining in the transformed vector fields will either be components
of a degree 1 vector field or higher with respect to the dilation. For example, if X
is chosen to be X; € Fy then X] = e if ¥ is computed through order p as opposed
to Xi =e;+ Tp—1, Where r,_; are degree p — 1 monomials, in the situation when ¥
is computed through order p — 1.

A second improvement may be realized by computing the 4; to various orders of
accuracy depending on ¢. For example, because we are interested in the approxima-
tion of vector fields X € Fi, the z, variable, which has weight p with respect to the
dilation, appears nowhere in X' in the coordinates adapted to the filtration. Thus
the fow wﬁg‘ﬂn (0) need not be calculated through order p,as it is above, to achieve
the same approximation of X!. This implies that the order of v, may be lowered
from p. Similarly, z; has weight 1 in the dilation so that we would always want to
compute the flow of X, to order p (or order p — 1 given the argument in the first
paragraph of this section) to preserve terms like 2} ~! which may appear in the 2,
component of X, (z).

The results of a Mathematica program which implements the algorithm on an

example are shown below.

Example B.1 Consider the four-dimensional two input driftless control system

with input vector fields

0 0 0 1, 0
X1(z) = Py +x25x—2 + (21 +m2)8$3 + (z1 + 571 +:v2)ax4
(B.17)
0 0 0 0
=g — + — _ — B.1
XQ(SL') T B2, -+ 52 + (271 + 583)8563 + 1 924 ( 8)

The set {X1, X2} is controllable since

rank[ X1, X, ad%, Xa, ad%, X»](0) = 4.
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We wish to approximate the set (B.18) by homogeneous degree one vector fields.
Choosing the X, vector fields in the algorithm as X, = X, X, = Xy, X, =

aud?x1 Xo, Xy, = adﬁ(l X results in the following approximate system

1 0
1 0 1 1
Xi(y) = X3(y) = w
0 5Y1 + Y12
3YiYo Sytyo

These vector fields are degree one with respect to the dilation with scaling powers

r = (1,1,3,4). The (local) diffeomorphism between the z- and y-coordinates is

z=To f(y),

where T 1s
10 0 O 21
01 1 1 29

T(z) = :

00 0 1 23
00 -1 4 24

and f(y) is

z1 =yl

1 3 3 5. 5
29 = =247 + gyi” +y2 = 3y1y2 — Syive — 3y1ys — Suiys - SU3 — Yeu3
3 5 5. 5
— 3y1y4 — §y%y4 — Byays — 5Y3Ys — Bysys — 5y2ysys + SV + §yzyi

3., 1 3 3
23 = Eyf - gyi’ + 31y + Ey%yz +y3 + 3y1ys + §y§y3 + 293 + 2yoy3 + By1ya +

3
'2'9%’% + dyoya + 2y5ya + Ay3ys + dy2ysys — 2y — 2yoys

1, 1, 1y, 1, 1 1,
24 YL T Y2 oyl Y Y + giYs 53 + 523 T U T+ Syt

1, 1o 1
+ Yays + 5 Y294 + Y3ya + Y2y3ys — o¥a — 5Y2¥s-
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Appendix C

Stability Proof for Three-Dimensional System

There is often a trade-off between the complexity of a controller derived through
an algorithmic process versus the simplicity of a controller derived through more
hueristic means. The extension of Pomet’s algorithm and the modification of smooth
controllers to p-exponential stabilizers yield controllers for which asymptotic stabil-
ity is automatic since construction of an appropriate Lyapunov function is part of
the process. In the first case, the controller is determined numerically in all but some
special situations. In the second case, the controller is a scaled version of an explicit
smooth control law except that the scaling must be determined numerically. Hence,
controllers derived by these methods cannot, in general, be written down explicitly.
However a simple explicit control law is often desirable in real-time applications.
This appendix contains a proof of asymptotic stability for the prototype three-

dimensional two input driftless system (3.1) with the following feedback,

xs3
U] = — T+ ———<cCost
p(z)
72
Uy = — Ty + 33 sint (C.1)
p*(z)

p(z) =(a} + 25 + 23)/4.

The system (3.1) is its own nilpotent homogeneous degree one approximation with

respect to the dilation

Ax(z) = (Az1, Azo, A2x3). (C.2)
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The closed-loop system is degree zero since the feedback functions (C.1) are degree
one with respect to the dilation.

The feedback (C.1) is a hueristic modification of the smooth feedback,

U] = — 1+ T3C08t
(C.3)
Uy = — g + :L‘?Q’ sin t.

Center manifold analysis proves that this feedback is locally uniformly asymptoti-
cally stabilizing (see the introduction to Section 4.3). The smooth feedback functions
may be made degree one by rescaling each term by a power of p(z) in order to make
that term degree one. This results in the feedback given by equations (C.1). There
is no guarantee that the new feedback is stabilizing. However, we show below that
the feedback (C.1) is asymptotically stabilizing.

The function,

2
V(t,z) = (1 — —a—;ﬁ(cost +sint))? + (z3 — i%’-(sint — cost) + z3, (C.4)

is a Lyapunov function for system (3.1) with feedback (C.3). A numerical calculation
will reveal that the time derivative of (C.4) along the closed-loop system with (C.1)
is indefinite. However, the “whole” function V' is not required. As in the proof of
Theorem 4.12, if we can identify a level set of V' which may be defined as the level
set of a homogeneous function and the time derivative of V, evaluated at all points
on the level set, is negative then the system is asymptotically stable. Denote the

family of level sets of V'(¢,z) (parametrized by t) for some constant C as,
G¢ = {z|V(t,z) = C > 0}.

Suppose there exists a C such that the level set GY, for each fixed ¢, is transverse
to the Euler vector field corresponding to the dilation (C.2), Xp = z,9/0z; +
290/0x9 + 2x30/0x3. This conditions guarantees that the level sets may be defined

as the level sets of a homogeneous function (homogeneous with respect to (C.2)).
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t €10,2m)

Figure C.1. Level sets of V(¢,2) = 0.85 are transverse to Xp.

Furthermore, if the time derivative of V' evaluated at all (¢, ) with z € G¢ along the
closed-loop system with (C.1) is negative, then closed-loop system is asymptotically
stable. The arguments to show this are essentially the proof of Theorem 4.12.

The proof relies on brute force numerical computations. Figure C.1 is a plot of

min Lyx.V,
reoss XE

versus t € [0,27). The function is always positive so the level sets G985 are trans-

verse to the Euler vector field. Figure C.2 plots the function,

versus ¢ where X denotes the closed-loop system with feedback (C.1). The time
derivative of V' is negative on the set GY'%° since the function is negative. Thus the

closed-loop system is p-exponentially stable with respect to the dilation (C.2).
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-0.05
-0.1
-0.15
-0.2
-0.25
-0.3
-0.35
-0.4
-0.45
-0.5

t €0, 2m)

Figure C.2. Closed-loop system is asymptotically stable.
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